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SPIN EXCHANGE IN COLLISIONS

BETWEEN He IONS

G. M. Ressler and F. G. Major

ABSTRACT

The spin exchange cross section for the collision between two He+
ions is calculated in the impact parameter approximation with the
use of a variational technique to determine the He - He + interac-
tion potential due to exchange. It is found that the spin exchange
cross section reaches a maximum of 3,66 rr ao at a relative
impact energy of 85 e.v, and falls rapidly to zero below 10 e.v.
As applied to a proposed ionic frequency standard, the results in-
dicate that relaxation effects due to spin exchange are negligibly
small.
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SPIN EXCHANGE IN COLLISIONS BETWEEN He + IONS

INTRODUCTION

The use of (Hg 199 )" ions confined in an RF quadrupole field as the atomic ref-
erence system in a highly stable atomic frequency standard has recently been
proposed by F. G. Major.' With this system, an accuracy of one part in 1013

and a fractional line width of 10'" at the microwave resonance frequency of
40.74 Gliz are predicted.

The basic feature which limits the reproducibility and stability of an atomic
frequency standard is the degree to which the i Aerence atoms c to be localized
in a perturbation free environment. The standards which exist toklay, e.g.,
Cesium, Rubidium and Iydrogen Maser, basically differ only in the amount and
manner of isolation of these atoms.

In the hydrogen inaser, which is presently the most stable atomic frequency
standard, all external perturbations have been reduced to a point where spin
exchange between the reference hydrogen atoms themselves is essentially the
only perturbation which limits its short term stability, For a hydrogen maser
operating at a typical temperature of 300°K, which corresponds to a relative
impact energy of ^-.04 e.v., the spin exchange cross section between hydrogen
atoms is about 30 Tao  0 2, 3

It has been shown' that the external perturbations associated with the proposed
(Hg 199 ) 4 ionic frequency standard should, as in the case of the hydrogen maser,
be negligible. However, there are two important perturbations which arise from
the mutual interaction of the confined particles, whose effects have yet to be
discussed in any detail. These are the Stark effect due to the interaction of the
electric field of one icn with another, and spin exchange between the unpaired
electrons of the ions. It is with respect to the latter that this paper will be
devoted. A treatment of the Stark effect will be attempted at a later date.

Spin exchange as a relaxation process leading to frequency shifts was first
considered by Purcell and Fie1r1 4 and Wittke and Dicke s . Basically, the spin
exchange process is as follows:

In a collision between two, spin 1/2, particles there will be a finite probability
that the spin of one particle is exchanged with that of the other. If a denotes the
"spin up" state and ,5 the "spin down" state, then there are three possible sym-
metric combinations with respect to the exchange
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a (1) a (2),

-- ia(1) is (2) f a(2) ii(1)],

/i ( 1 ) /-) ( 2 ) ,

and one possible antisymmetric combination

ti 2 [a (
1 ) 3̂ ( 2 )	 (2) /l (1)] .

The former are called the triplet and correspond to total spin S = 1; the latter
is called the singlet and corresponds to S == 0. Now, assuming the particles
initially have opposite spins, then the state

q: (initial )	 a (1) f3 (2)

may be represented by an equal mixture of symmetric and antisymmetric parts,
thus

(initial) - v	
3
2 [a (1) 8(2) + a (2) ^i (1)]

+ 
32fv-1

2. [a ( 1 ) ( 2 ) - a ( 2 ) (1) ]

During the collision this state may be changed such that the final state is no
longer an equal mixture of symmetries, i.e.,

(final) = A v2 (a (1) 8(2) .* a (2),8(1)]

+ B l 
2 

[a (1) 13 (2) - a (2) 8 (1) ]

or

(final) =	 BA 2 a ( 1 ) 8 ( 2 ) + A , 2 a ( 2 ) 8 (1)

I

1\

2
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Therefore, after the collision, there is a finite probability

I A -B
P 12

that the particles will be in the "spin exchanged" state a (2) fj (1) .

The problem of the interaction of two complex ions such as (Hg 199 ) + would be
extremely difficult to solve. Therefore, in order to make the problem tractable
while maintaining the basic properties of the actual system of interest, the
theoretical treatment will be directed to the interaction between two He + ions.
If only the shielding effects of the electrons in the closed shells of (Hg 199 ) + are
considered, then both (Hg 199)+ and He+ can be considered as hydrogenic ions
differing only in their size and mass.

The theoretical treatment of the collision will be "semi-classical," that is, the
Ile ions are considered to move adiabatically along classical trajectories and
time-dependent perturbation theory is used to determine the resulting effects on
the electron wave functions (Impact Parameter Treatment).

3
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COLLISION 'I'III,011y 6.1

If it is assumed that the interaction potential which determines the trajectory of
the IIe f ions i:w purely Coulomb (e 2 /R), the ions may be thought of as moving along
classical orbits (diffraction effects will be small) when 

(11/2

where ^ is the free particle wavelength divided by 2 n and R C is the distance of
closest; approach of the ions. In terms of the relative impact energy E (e.v.) in
the center of mass of the Ile + - He + system, condition (1) can be written as

6.69 X 10 -2 E 1/4 <<c 1

which will be satisfied for impact energies up to about 1000 e.v.

The collision may also be treated as adiabatic (slow) if

AL

	

- 7	 > °> 1t.	 C	 '

where AE is the exitation energy for a transition from the ground state to the
first excited state and T  is the total time of the collision. (It is assumed that
the Ile ^ ions are initially in the ground state.) For the He + - He + system con-
dition (2) becomes

4.03 x 10-6 E'/1 << 1

which is also satisfied for energies up to about 1000 e.v.

In summary, for E < 1000 e.v. the ions can be thought of as moving adiabatically
along classical trajectories and time-dependent perturbation theory can be used
to determine the probability of a spin exchange occurring.

Since the collision is adiabatic, the internuclear distance can be treated as a slowly
varying function of time, and the He + - He+ system may be thought of, at each in-
stant of time, as an Het + molecule with fixed nuclei. The total molecular wave
function '^ (r 1 s 1 , r 2 s 2 , R(t)) is a solution of the time dependent Schrcdinger
equation

(2)

4
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,

7 t	 (3)

where the Hamiltonian i, is given. by

2
112V2- t,2 `.2 +Z2 V 2 +c,2

2111 L	 ' 2M R R(t) r
12i_1

(4)
2

- Z c , 2 T	 - 1	 1+
ri	 RA ( t )	 'Li - R B( t )i = 1

and where (see Figure 1), in the center of mass of the nuclei; r 12 is the inter-
electronic distance; R is the internuclear distance; r a , r 2 and RA , R B are
respectively the coordinates of the electrons and nuclei of the molecule; m is
the Electronic mass; M is the reduced mass of the nuclei; s l , s 2 are the z
components of the electron spins.

A solution of S3) is

-h f tv+(R(t))dt
s ir ( r l S 1 1 r 2 s 2 , R ( t )) =C + (R ( t ) ) X _ ( s V s2) 4) + ( r l , r 2, R(t)) e

+ C - (R ( t )) X + ( s l , s2) (D- ( r l , r 2 , R(t)) e
-
 
i I t V_(R(t))dt	

(5)

i
where the spatial wave functions (D+ and 4)_ are, at each instant of time, solutions
of the stationary state Schr5dinger equation

H(D } = Vf (Dt ,	 (6)

with H defined by
2

	

H=:^ + 	X22

2 !l4

The eigenvalues V + (R.( t ) ) and V_ (R( t ) )of equation (6) are the interaction
potentials of the molecule in the triplet and singlet states respectively, and are
determined by a variational method which is described later.

5
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Figure 1. Coordinate System for Impact Parameter Treatment

1^or large R the states `D+ and fi, behave as

O j, - [,^ (A1) ,k( B2) f -̂ (A2 ) 0 (BI )1,

where -^ (Al), ^,(I32) are the wave functions of the ions at R = , and 0 (A2) 0 <k (B1)

are the wave functions representing; the exchange of the spatial coordinates of
the electrons. In the limit as R w the exchange terms vanish and

4'+ =4)- = 0(A1)0(B2).

The functions X + and X _ are respectively the triplet and singlet spin wave
functions given by

6

9
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x (1) tr (2)

X,	 (1) a (2) + a (2) /1(1)J
► 2

fi ( 1 ) ti (2)

and

X_ 1 Ca ( 1 ) i1 ( 2) - a (2) f3 (1)]
v2

where as before ;t (1) denotes electron 1 in the "spin up" state, 13(2) denotes
electron2 in the "spin down" state, etc.

It should be noted that the products X. 0_ and X_ t'+ which correspond to the
3 2.' and 1 c states of the molecule respectively are, as required by the
Pauli Principle, antisymmetric with respect to an exchange of both the space
and spin coordinates, making the total molecular wave function antisymmetric
in the same exchange.

If at time t - x, the system is chosen to be in the initial state

^( ) = a ( 1 ) 13 ( 2 ) 96 (A1 ) 0(B2 ) = 2 (X+ + Y_) 0(A 1 ) 95 (B2 ),	 (7)

where specifically	
i

X+ _ 
32 [a (1) Q	 ^( 2 ) + a ( 2) (1))

(an initial state represented by X + =a(1) a(2) or X+ =,8(1),8(2) will not lead to a
spin exchange), then the coefficients C + and C _ of equation (5) are given by

' f ^V+(R(t))dt
C+(R ( t )) = i e"

3 2	 (8)

and

i f ^V_ (R (t)) dt
C- (R ( t )) = 1 e^	 (9)VT

7
i
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wile reC,	 and IC + ^^^ ;c-^^	 1.

Substituting (H) an(] (9) into (5) gives the adiabatic time-dependent molecular
wave function for arbitrary t

f_ . v+ (R(t)) (it
r.t	 2 s 2 , Z (t))	 X, ( s l, S 2 ) (1'+ ( r l + r 2, R (t))

(10)

h m

	

f t 	V- ( R ( t )) dt
+ X+ ( s l , S 2 ) (r_ ( r l , r 2 , R (t))	

_

Now, the spin exchange operatr,.;r PPX is such that

a (2) 13 (1) = Pex a ( 1 ) [3 (2)

Therefore, if the system was in an initial state given by (7) the final spin ex-
changed state would be

0 ( + W) = PPX q, (--LX')

or

(+ z,) = a ( 2 ) 13(1) '^(A1) ^(B2) = y.
2 

(X+ -- X-) ck(A1) 0(B2 )•	 (11)

The probability p that the system would be found in the particular state ^ ( +oo ),

i.e., the probability that a spin exchange has occurred after the collision, is given
by the squared modulus of the projection of ^ ( +co) on T (+oo); thus

Using the fact that at t = +oo, (D+ = fi =O(A1) O(B2) equation (10) becomes

8

(12)
%1

RM
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1	
i r
	 V+ d 

1' 2

(13)

1_^ v.. dt

+ X+ A (A1) ,k (B2) e fi

Hence, from equations (11), (12), and (13)

2
fi±^ V^ dt	 - fi f V+ dt

E9 _ 
2	

f °	 - e	 ,	 (14)

where the conditions

<X, (X + >=O, <X t {Xt>=1

and

(4 (Al) i ^(Al)> = <cb(B2) I ^b(B2)> = 1

were used.

Thus, the probability that the system will go from the initial state given by
equation (7), to the final state given by equation (11), i.e., the probability that a
spin exchange has occurred., is from equation (14)

p = Sin 2
2 ,
	 (15)

where

y=fi	 (V+-V_)dt	 (16)
_OD

0



dt= C )) 1^-
dR

E 1
b 2 	 e2 1/2
-- -

R2	 R

(17)

^	 s

i

Now, the classical trajectory along which the ions move is assumed to be de-
terminated only by the Coulomb interaction, therefore, from classical orbit
theory 

where 1) is the classical impact parameter. Using (17) in (16) gives

1 (M11 /2 fR(t 	 ^	 (V+ - V- ) dR

2/
(t=-OD) E 1	

b2	 e2 1/2
 -- _

R 2 	 R

However, the orbit is symmetrical about the distance of closest approach of the
ions 11, (classical turning point), which allows (18) to be written as

/2M 1/2

R

 , cD	 (V+ - V-) dR
y -_ —	 s	 (19)

^'h 2 	 b2	 e2 1/2
E 1 --with	 R2	 R

L2	 1 e 4 	 1/2
RC 2 E +

i 
	 4 b2 	(20)

IE2+

The differential cross section for scattering with spin exchange is

do-ex = p do-C Y 	 (21)

where p, the probability that a spin exchange has occurred during the collision,
is defined by equation ( 15) and where (see Figure 2) dui is the (elastic) differen-
tial cross section for classical scattering

d c-C = 2 7r b d b.	 (22)

Substitution (22) and (15) in (21) and then integrating over the impact parameter
b, leads to the total cross section for spin exchange

(18)

10
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INCIDENT
OF' PARTI

i

Y'

f X i 27a	 h Sine 
(7

,Y) 
clb,	 (23)

fo
with , clefineci bit equations (19) and (20).

Figure 2. Classical scattering of a particle in a central field; b is the impact
parameter, R . is the distance of closest approach, R and 0 are the instantane-
ous coordinates of the particle, n is the scattering angle and ti s the azimuthal
angle.

1 n

;1

11
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Figure 3. Coordinate system for calculation of He + — He + exchange potentials.
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E*.XC'IIANGF 1NTEItACTION

The Ile, + - Ile 
i 

exchange interaction potentials V + and V_ were evaluated by adapt-
ing a method used by Rosen l ° ,11 for determining the normal state ( 1 7- * ) of the
hydrogen molecule.

If it is assumed that the Het ions form an Het+  molecule with fixed nuclei then
the Hamiltonian of the molecule is

2	 2
ti 22r ^ i - Ze2 , 

r(—A  + rl +
Z R +IT

i el	
I	 83	 12

where (see figure 3) r Al and rA2 are the distances between nucleus A and
electrons 1 and 2 respectively, rBl and r S2 are the distances between nucleus
B and electrons 1 and 2 respectively, and ? = 2 is the atomic number for He+.
All other quantities are defined as before.

The properly symmetrized wave function which will be used to represent the
molecule [see equation (6)] is

1Df = 0(A l) 0(B2 ) ± 1-'(A2 ) 0(B1)
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where again (set' page 7), (J) + corresponds to the singlet spin case and ( ►_ to the
triplet.

Now, a basic assumption associated with this calculation is that the electronic
charge distribution of one ion is distorted (polarized) by the field due to the
charge distribution of the other ion; the distortion increasing as the ions ap-
proach each other. To account for this effect, the individual ionic wave func-
tions are written in the form

where / ° is the ground state wave function of the He + ion, " is a function with
an angular dependence such that it is symmetrical about the inter-nuclear axis
but riot in the plane which contains the axis, and o- is a variable parameter which
can be thought of as a measure of the distortion.

Specifically, the functions t ° and ^t,' which are finite at the origin, go to zero at
infinity and satisfy the orthonorma.lity conditions

and

are given by

i	 i-	 r	 -	 r

4, 0 (Al) = No e a° Ai , O O (A2) _ N° a so 
A2'

z	 2r- _. r
^o (B1) =Noe e

° BI , 

0 0 (B2) = No e- 70,g° B2'

i	 i (24)
r	 -	 r

V (A1) = Ni a a° 
Al 

rAl Cos 9A1 ; (k' (A2) = Nl a a° A2 rA2 Cos 8•,2

z	 z
a rBl	 a rB2

$' (B1) _ - NI e	 °	 rBl Cos OBI ; 0'(B2) = -Nl e	 °	 Cos 0B2

I

13
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where "A) , "A2 , '"Bi , n2 are defined as in Figure 3, Z is a variable parameter
referred to as the "effective" nuclear charge, a o is the first Bohr radius, and
by normalisation

	

Z3	 1 '2	 ZS )1/2

No =	 N1 =

	

7Ta 3
o	 7Ta

5

The minus sign in ^' (B1) and O f (B2) assures that all the functions of (24) are
symmetrical with respect to a plane midway between and perpendicular to the
line joining the nuclei.

The functions (f o all satisfy a wave equation of the form

H o
 0 0 =  

Z 2 Eo 00,

where

Ho - - 
fi e 

172 
_ Z e2

2m	 r

and E'):-- 13.605 e.v. is the ground state energy of Hydrogen. The functions Of,
R	 which represent the 2p state of a hydrogenic atom of chaz •ge 2Z. are solutions

of

H' cf l = Z 2 Eo Of,

where

H, `_ h2 p2_2Ze2
2m	 r

Now, in order to evaluate the potentials V+ and V- , a variational method is used
in which the ;parameters Z, and o- are varied so that

<11 ' IHI 4) L

	

}	 ^10+ ^ 4)+>

is a minimum. The method is as follows. For a particular value of R, a value of
Z is chosen and c- is then varied until a minimum of (25) is found. Taking this
value of o- as fixed, Z is then varied until another minimum is reached. This

14

(25)

WW
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procedure is continued until a minimum is reached with respect to both ^J
and ! . (The integrals which are needed in the evaluation of (25) are given in
reference 7.)

The results of the minimization for He y - Hey are given in Tables 1 and 2.
Plots of V + , V_ and (V + - V_) are given in Figures 4 and 5 respectively.

15
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,cable 1. Z
-4

	 V + and Z_, ?_ , V- for various values of R

al , and V- are in c .v. and R is in units aq = 6.29 x 10- 11 meter)

R 7, + `- + j,- V-
09 1 ?.65 --0.76 0.991'3V32D 03 3 9 57 -0.01 0.9400521D 03
0.2 2e 50 -0.60 0.45770750 03 3915 09n7 0.31927470 03
0..3 ?. 3 0 -0.4 ;3 09?940353D 03 3@13 0.1 1 0. 16174590 03
094 ?9 3? -09 3A C&1 947,472f) 03 ?944 0.1 4 0.9775601D 07
0.5 2927 -0930 0914A23730 03 2.7A 0916 095743765D 02
0 * 6 2.23 -0.24 0.114A298D 03 ?.64 0.t7 093780 7 16n 02
0.7 ?9?Q -0919 0.912??49'3 02 ?.5? (,.17 092539749D 0?
0. q 2.17 -0914 0.73916760 02 2.41 Oe1A 0.1Q62205D 02
O. Q 2.15 -0910 096062 7 4/0 02 ?933 0.1A 0.15597890 02
190 2912 -0.07 09504527?.D 02 ?9?5 0.17 091325539D 0?
1.1 2.10 -0.04 0.4?50392D 0? 1919 G917 091195?540 02
1.? ?900 -090?. 0.36236370 02 2.13 0.16 0011300490 02
1.3 :'.07 -O.C1 0.31256020 02 2.09 0.16 0.11036620 02
1.4 2906 0.0 0.27273347 02 2905 0.15 091099796D 02
199 2.05 0901 0.24064500 02 2.03 0.14 091107139D 02
1 * 6 2.04 0902 0,2146301 r) 02 2.00 0.1 3 0.11 18?,31D 02
1.7 2903 0.03 0.19343630 02 1.99 0.12 0911?8061D 02
1.8 ?903 0903 0.1759662D 07 1.99 0.11 0.11337910 02
1.9 2.02 0.03 091615172D 02 1 9 97 0 9 1,0 0.11336450 02
290 P@02 0903 091494454D 02 1.97 0.09 0.11275690 02
?91 2.02 0.03 091392A000 02 1997 0.0 9 0.11154100 02
2.2 2.01 0.03 0.13062580 0? 1999 0907 0.10981710 02
2.3 2901 0903 0.t231912D 02 1.'13 0906 091076A46D 02
?94 2.01 0.03 0.11674600 02 1999 0.06 0910520430 02
295 2.01 0.03 0.1111042D 02 199A 0.0:, 0.10262090 02
296 2.00 0.03 0.10611350 02 1.99 0.04 0999901960 01
2.7 2.00 0.03 0.1016613D 02 1.99 0.04 0.97095690 01
2.8 ?.00 0003 0.97658710 Ol 1099 0004 009433672D 01
299 2.00 0.03 0.94032130 01 1.99 0.03 099160931D 01
3eO 2.00 0.03 0990 722840 01 1999 0903 003844538n 01
391 ?.00 0.02 O.A76671090 01 2.00 0.03 0,,A638420D 01
3.2 2 * 00 0.02 0.84834590 Ot P9000G 0.0 a O * B3926910 01
3.3 2.00 0.02 0.92204400 01 2900 0.02 099155587n O1
3.4 2900 0.02 0.79751	 ZI D 01 2.00 0.02 0979280610 01
3.5 ?.00 0.02 0.77455550 01 2900 0902 0977114220 01
3.6 2.00 0.02 0.75299130 01 2.00 0.02 0.75052250 01
3.7 2.00 0.02 0.73267970 01 2.00 0.02 0.73099740 01
3.A 2.00 0.02 0971349020 01 2900 0902 0971221480 01
394 2900 0.02 0.69534610 01 2900 0.02 006944221D 01
4.0 2.00 0.02 096781309D 01 2.00 0.02 0967746720 01
401 2000 0901 09661 7230D 01 2900 0.01 0.66128640 01
4o2 2. 00 0.0 1 0.64601 360 01 2.00 0.0 1 0 964 570 16D 01
4.3 2.00 0901 0.63104570 01 2900 0901 0.63082290 01
494 2.00 09C1 0961676520 Ol 2.00 0901 0.6166065D 01
4.5 2.00 0.01 0.60312410 01 2.00 0.01 0.60301110 01
4.6 2.00 0901 0.59007880 01 2900 0.01 09589b985D 01
4.7 2.00 0.01 0.5775902n Ol 2.00 0001 0957753310 01
4.8 2.00 0.01 0956562240 01 2.00 0.01 095655820D 01
4.9 2.00 0.01 0955414320 01 2900 0901 0955411450 01
5.0 2.00 0.01 095431227D 01 2.00 0901 0.54'310240 01
5.1 2.00 0.01 0.53253370 01 2.00 0.01 0.53251930 01
592 2.00 0.01 0952235110 01 2.00 0.01 09 !223409D 01
5.3 2.00 0.01 0.51?55187 01 2.00 0901 0.51254460 01
594 2.00 0.01 0950311440 01 2.00 0901 0e50310Q4D 01
5.5 2.00 0.01 0.49401930 01 2.00 0901 0.49401570 01
5.6 2.00 0.01 0.44524800 01 2900 0901 0648524550 01
5.7 2.00 0.01 0.47679350 01 2.00 O.OI 0947678170 01
59$ 2.00 0.01 0.4686100n OL 2.00 0901 0.46860870 01
5.9 2.00 0.01 094607126D 01 2.00 0.01 0.46071180 01
6.0 2.00 O.OI 0945307 777 01 2900 0.01 0945307710 01
691 2900 0.01 0.44569237 01 2.00 0901 0 * 44569190 01
6.2 2.00 0.01 0943854440 O1 2.00 0.01 0943A54410 01
6.3 2900 0.01 0.43162270 01 20n0 0901 094316225D 01
6.4 2.00 0.01 0.42491670 01 2900 0001 0042491650 0'
6.5 2.00 O.OI 0941A41630 01 2000 0001 0041941620 01
6.6 2.00 0.0 1 0.4 1 211 230 01 2.00 0.0 1 C 9 41 21 1 230 01
6.7 2.00 0.41 0.4059960() 01 2900 0901 0.40599600 01
69A 2000 0001 0.40005900 01 2900 0.01 0040005 0 00 01
6.Q 2.00 0901 0.3942936n O1 2.00 0901 0.39429360 01
790 ?900 0901 0.38067?5n 01 2900 0901 0938869057 01
7.1 2.00 090 0.34323 0 40 01 2.00 0.0 093932344D 01

16
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v -, 11, V, , V allot (V} -- V_ ) for various vtllues of lt.
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RESULTS

The spin exchange cross section v x for He + - He r was calculated for relative
impact energies up to 1000 e.v. and is presented in Figure 6. It reaches a
maximum value of 3.66 r ao at 85 e.v., and as can be seen from Table 3, falls
rapidly to zero below 10 e.v.

Table 3. He" - He r spin exchange cross section for
various values of impact energy.

E (e. v.) CTe x (7T 8^)

5 9.95 x 10-8

6 3.24x10-5

7 1.81 X 10-3

8 3.34 x 10
-2

9 2.65x10'1

10 9.39x10"1

20 2.77 x 100

40 3.48 x 100

60 3.63 x 100

80 3.65 x 100

85 3.66 x 100

100 3.65 x 100

200 3.53 x 100

400 3.31 x 100

600 3.16 x 100

800 3.06 x 100

1000 2.97 x 100
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At energies less than 5 e.v. the spin-spin interaction between the ions is the
dominant force which leads to spin exchange. However, this interaction goes as
to/R3 (too is the Bohr magneton) and the cross section will therefore continue
to become smaller for decreasing values of energy.

CONCLUSIONS

The magnitude of the spin exchange between ions is essentially determined by
the degree to which their outer electron wavefunctions overlap and hence, is
dependent on their distance of closest approach, which for zero impact parameter
b (see equation 20) is at its smallest value given by R,, (a.u.) = 27.21/E(e.v.).
Now, the radius of the outer orbital of (Hg 199 )+ is roughly four times greater
then than that of He+ and therefore, the spin exchange cross section between
two He+ ions with a given relative impact energy would essentially be equivalent
to that of two (Hg' 99 ) + ions ut one fourth this energy 12 Using this criterion and
the results given in Table 3, it can be seen that if the relative impact Energy
between the (Hg199 )+ ions confined in the quadrupole field of the proposed ionic
frequency standard is choosen to be about 1.5 e.v., which should be easily
achievable experimentally, then the spin exchange cross section for (Hg199 )+ -
(Hg 199 )f' will be negligible (about six orders of magnitude smaller than that due
to H - H collisions in the hydrogen maser at typical operating temperatures)
and hence, spin exchange between (Hg 199)+ ions can be ignored as a relaxation
phenomenon.
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