
_______ 

L'f3 ri RQzpot'+ 14o9'17 
62-P
 

MATHEMATICAL CHARACTERIZATION OF MECHANICAL BEHAVIOR
 

OF POROUS FRICTIONAL GRANULAR MEDIA
 

VOLUME I
 

by 

G. Aguirre-Ramirez
 

Final Technical Report
 

This research work was supported by the
 
National Aeronautics and Space Administration
 

under Contract NAS8-25102
 

Research Institute
 

The University of Alabama in Huntsville
 

Huntsville, Alabama
 

71 
0 (ACCESSIO BE 6 

INFORMATION-SERVCE
AS ;C (CATEGORY)- , L HTMX OR AD NUMBER) • NA Opp IC L 
N4T!ON,-. a. 22151CA 



MATHEMATICAL CHARACTERIZATION OF MECHANICAL BEHAVIOR
 

OF POROUS FRICTIONAL GRANULAR MEDIA
 

VOLUME I
 

by 

G. Aguirre-Ramirez
 

Final Technical Report
 

This research work was supported by the
 
National Aeronautics and Space Administration
 

under Contract NAS8-25102
 

Research Institute
 

The University of Alabama in Huntsville
 

Huntsville, Alabama
 

1970
 



PREFACE
 

This report presents the results of studies conducted during
 

the period July 1, 1969 - October 31, 1970, under NASA research contract
 

NAS 8-25102, 'Mathematical Characterization of Mechanical Behavior'of
 

Porous Friction Granular Media". This study was monitored by
 

Dr. N. C. Costes, the Geotechnical Laboratory of NASA's Marshall Space
 

Flight Center.
 

The objectives of this project are:
 

(1) 	to develop a consistent three-dimensional mathematical theory de­

- scribing the mechanical behavior of porous, frictional granular media
 

exhibiting a small amount of cohension. -- Volume I of this report
 

by Dr. G. Aquirre-Rameriz.
 

(2) 	to solve boundary-value problems related to in-sit measurements 

performed on the lunar or planetary surface. -- Volume II of this 

report by Dr. T. J. Chung and Mr. J. K. Lee; 
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SECTION I
 

ON THE SOILD MASS CONTINUUM
 

1. INTRODUCTION
 

A general accepted practice for the analysis of the response of a
 

soil mass under external loads is to model the soil mass as a continuum.
 

Under this assumption the distinction between modeling of a soil mass and
 

a strictly solid mass (such as rolled steel, say) as a continuum is made
 

through the constitutive equations.
 

In this paper the basic equations of continuum mechanics are reassessed
 

as to their.applicability to model a soil mass as a continuum. For the
 

purpose of simplicity the discussion is limited to a dry (i.e., unsaturated)
 

soil mass. Under these conditions the effect of interaction in a water
 

soil system need not be considered.
 

As a starting point the two physical properties that bodies are known
 

to have and which are used in the construction of a model for continua.are
 

taken as fundamental. These are [i (a) that they occupy regions of space,
 

and (b) that they have mass. These two porperties are used together with the
 

porous geometry of a soil mass to show that in order to define the thermo­

dynamic state variable p, the density of solid aggregate, as a field variable
 

one needs to introduce two field variable P(x,t), the soil bulk mass density,
 

and n(x,t) the porosity of the soil. By interpreting the mass d nsity appear­

ing in the local balance laws of mass, momentum, and energy of continuum
 

mechanics as the bulk mass density, these balance equations can be taken over
 

unchanged into soil mechanics to locally describe the corresponding balance.
 

laws for the soil.
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In soild mechanics the two soil geometric variables, surface porosity
 

-and volume porosity are taken to be the same. Here it is. shown that by
 

defiming Terzaghi's effective stress [53 by boundary conditions this
 

assumption can be removed. Researchers in soil mechanics have consistently
 

verified that the mechanical behavior of the effective soil structure is
 

governed by the effective stress (cf. Schofield and Wroth [111). For this
 

reason the balance of momentum and energy are formulated in terms of effec­

tive stress.
 

The introduction of the porosity as a field variable requires an
 

additional constitutive equation for the rate of change of porosity. The
 

need for- this constitutive equation is shown to be given by the Second Law
 

of Thermodynamics. It is shown that porosity influences the free energy
 

of the soil as an internal state variable and since its rate of change does
 

not appear in the Clausius-Duhem inequality a constitutive equation for it
 

must be postulated. As an example a possible set of constitutive equations
 

is examined. The restrictions on the proposed constitutive response
 

functions are also found by a method introduced by Coleman and Curtin [63
 

constitutive equations are further linearized..
 

NOTATION
 

In this paper direct tensor notation is used. Second order tensors and
 

linear transformations of the three dimensional vector space U into itself
 

ate regarded as the same. If T is a linear transformation, TT denotes its
 

-
transpose, T its inverse, tr T its trace and det T its determinant.
 

The gradient with respect to spatial coordinates is denoted by grad and
 

the gradient with respect to material coordinates by V.
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2. THE SOIL MASS CONTINUUM 

It is important to realize at the outset that the' two.physical
 

properties that bodies are known to have and which are taken in the
 

construction of a model for continua are [i]: (a) that they occupy regions
 

of space, and (b) that they have mass. These two properties will now be
 

examined in relation to a soil mass.
 

Let R be an arbitrary region of space and consider two bodies B1 and
 

B2 with masses M1 and M2 respectively. B will be considered to be a 

strictly solid body (rolled steel, say) but t2 will definitely be taken as 

a dry soil. Assuming for the present that B aind B2 occupy equal regions of 

space R, densities P1 and p2 can be introduced such that 

= fPIdv (2.1) 

R
 

M2 f P 2dv (2.2)
 

R 

The density p1 for B1 so introduced is the mass density. However, since B2
 

has mass by virtue of its soil skeleton, the density P2 is the bulk mass 

density. Thus, for the solid continuum and soil mass contiiiuum the defini­

tions (2.1) and (2.2) yield two different types of mass densities. 

The question arises as to whether a mass densit for the soil body can
 

be introduced as a field variable. The answer to this question is positive
 

provided that another field variable be admitted. To this purpose let V
 

denote the" volume of the solid aggregate of the soil body B2 which occupies 

the region of space R. A density W can then be introduced such that 

Vs = fwcdv. (2.3) 

R 
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The density W is the additional field variable that may bejintroduced for
 

the soil mass continuum [2] which, if it is also introduced for the solid 

continuum, has a constant value of one. The variable W may be called the
 

solids material volume density. Note that if dv is an element of volume
 

of soil mass then
 

dv =(Wdv" (2.4)
 

gives the element of solid aggregate volume. Having introduced w the more
 

familiar variable, porosity,-of the soil mass continuum is obtained from
 

n = 1 W. (2.5) 

Th! mass density p for the soil mass continuum is then given by
 

P . (2.6)
 

Therefore, the soil mass continuum differs from the solid continuum in
 

the sense that two field variables p2 ' W are needed to obtain the mass 

density of the solid aggregates. This idea will now be put into formal
 

grounds.
 

'In continuum mechanics a body B is considered to be a manifold of
 

particles, 'denoted by X. The particles, however, are primitive elements
 

in the sense that numbers are primitive elements in analysis [3]. The 

-body manifold is further assumed to be (1) smo6th and isomorphic to regions
 

in Euclidean 3-space, and (2) endowed with a non-negative measure M of space
 

which is its mass distribution [3]. In the same sense, a soil body can be
 

considered to be a set of particles, denoted by X. These particles may be
 

called 'soil particles which, bf course, are not to be confused with the
 

physical soil particles. The soil body manifold can also be assumed to be
 

(1) simooLh >ind isomorphic to regions in Euclidean 3-space, and (2) endowed 

with two non-negative-measures of space: (a) fl, which is the distribution 

of mass of the solid aggregate, and (b) Vs, which is the distribution of 

mateial volume of the solid aggregate. The measure M is assigned once . 
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and for all. This is not so with the measure V which can Vary in time
S
 

due to local microscopic deformation of the solid aggreagre.
 

Let B denote a soil body. B can then be considered a set of particles 

X, with the above mentioned structure. A configuration of B is then a 

smooth homeomorphismZ of B onto a subset of Euclidean 3-space C: 

X=X(X), X W(). (2.7)
 

Here Z denotes the inverse of the mapping X. 

Consider a small element of cross-sectional area 6A of the soil body
 

in the configuration ;. To an observer A will then appear -to have a'
 

"Swiss cheese-like" structure in which part of A will correspond to the
 

solid aggregates and the remaining part will be voids. Assuming that the
 

voids are randomly distributed in their location within AA then in the limit
 

as AA becomes infinitesimal a distribution a (x) can be assigned to the
 

ratio of dAy, the element of area occupied by the voids, to dA, i.e,,
 

dA =C(2x9dA. (2.8)
 

Equation (2.8) will be used when the soil stresses are discussed.
 

3. KINEMATICS
 

A motion of the soil body B is a one-parameter family of configurations
 

!x= x)= (Xt (3.1)
 

where the parameter tc(- M,) is the time. In view of-the smobthness
 

assumptions made 4t will be invertible for each tG(--,c).
 

A reference configuration for B is a fixed configuration A. The place
 

of XSB in its reference configuration A is denoted by X,
 

=
X = a(X), X YI(X). (3.2) 
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Insertion of (3.2)2 into (3.1)2 leads to
 

x M.t) t). (3.3) 

The function is the deformation function for B from its reference
 

configuration A.
 

The velocity and acceleration for XCB are defined by
 

S X(X,t) = ) (3.4) 
at at ' 

while the deformation gradient is given by
 

F = V (X,t) (3.5)
 

F is a second order non-singular tensor with the property
 

'Idet FI > 0. (3.6)
 

If L denotes the gradient of the velocity x then it can be shown that
 

I
LL = F- = grad x(x,t). (3.7)
 

The various strain measures used in continuum mechanics are constructed
 

from the deformation gradient F [4] and these can be usdd to describe the
 

deformation of the soil mass continuum. However, for the soil mass continuum
 

an additional "strain" measure can be constructed'. If dv denotes an
 

element of volume, in a(B) at X and dv its image under the mapping (3.3)
 

then it is known that £4] 

dv = jdet FNV. (3.8)
 

Letting dV be the element of solid aggregate volume in K(B) and dv the 

corresponding element in X(B,t) the following quantity can be constructed 
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dv Widet PI 
s = 

dv W 
(3.9) 

S 0 

where W
0 

is the solid aggregate volume density in X(B). A is the average
 

expansion (or contraction) of the solid aggregate. The observation is made
 

that if the assumption of incompressibility of the solid aggregate of the
 

microscopic level is introduced, as is common practice in soil mechanics,
 

then
 

A=-1 (3.10)
 

and (3.9) becomes 

W =Wldet Fi. (3.11) 

Introducing the change in porosity, a through
 

C= n - n (3.12)
 

where n0 is the porosity in R(B), Eq. (3.9) can be written in the form 

A A = (1( _ -1 a-n--)Idet Fl. (3.13) 

Whenever the deformation of the soil mass continuum is infinitesimal the
 

linear strain measure E given by
 

E k(r + P (3.14)
 

where I is the displacement gradient, can be used. In this case undar the
 

T
assumption of small displacement gradients, i.e., 'trUHi << 1,
 

Idet l I + tr 'E. (3.15) 

Then assuming U is of the same order as the strains, E, Eq. (3.9) can be 

written as 

- = tr I - _ (3.16) 

0 
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The term tr is the volumetric strain. When the solid aggregate is assumed 

to be microscopically incompressible (3.16) becomes
 

a(3.17)

tr~E = ------ -(.7 

1n
 
0
 

which is the formula used in soil mechanics to compute infinitesimal 

volumetric strains.
 

Quite often, in soil mechanics, the void ratio e is used instead of
 

the porosity. This is defined by 

dv 
V n (3.18)


e dv = 1- n 
S 

where dv is the element of volume of the voids. Note that if e and e vo 

denote initial and current void ratios respectively then 

C-n + (3.19)
i-n 1+ e
 
0 0
 

where = e - e . Equation (3.17) can then be written in the form 

tr r = lC_ (3.20)
 

4. THE BALANCE EQUATIONS
 

The .basic balance equations of continuum mechanics are local formu­

lations of the principles of physics of conservation of (a) mass, (b) linear 

momentum, (c) moment of momentum, (d) energy. These will be taken one at a 

time. 

Balance of Mass - The balance of mass equation is given in one of two 

forms [4]: the spatial form 

"4 div p x = 0 (4.1)
(4.1
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or the material form 

pjdet F1 Po (4.2)
 

where P0 and p are the mass densities in the reference and current configu­

rations respectively.
 

It can be shown that (4.1) and (4.2) can be taken over unchanged as 

the balance equation for the soil mass continuum provided that the mass 

density appearing therein be interpreted as the "bulk miss density". 

However, for the soil mass continuum (3.8) is available. This equation 

Can be.used to eliminate jdt Fj from (4.2) and obtain 

PA = P (4.3) 

for the balance 6f mass equation in terms of "mass density" of the solid 

aggregate. 

Balance of Momentum and Moment of Momentum - Consider an element of oriented 

surface area da of the soil mass continuum in its current configuration and 

denote the area fraction defined by (2.8) by 

a = a(x,t) = 0, (30 (4.4)
Xt
 

Further lot t be the stress vector acting on do. The stress vector t
 

acting on the solid aggregate-portion of djis defined by
 

t =t. (4.5)
 

Cauchy's stress hypothesis is invoked and the existence of a sLress tensor 

T is assumed such that 

t =T n (4.6) 

where n is the unit normal vector of orientation of d.,. The stress tensor 
T is called Terzaghi's effective stress. The reason for calling T tle 
'S
 

effective stress wi]l now be given.
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Consider a completely saturated soil and let T be the total stress
 

acting at a point of the soil. Terzaghi's effective stress is then
 

defined by [5]
 

=T T + pl (4.7)
1 IS
 

*where p is the pore water pressure which here is taken as positive in 

tension. Now the portion dof of the oriented element of surface dat,
IfI
 

occupied by. the fluid is given by 

d& = (1-)dCt (4.85 

and the portion of the surface vector t acting on the fluid is given by
 

tf = (l-o)t. (4.9) 

Note that"
 

t + t = t. (4.10)
jS If
 

Cauchy's stress hypothesis is invoked and the existence of a total stress
 

tensor T and partial stress tensor T is assumed such that
 

t = Tn, t = Tn. (4.11) 

.Substitution of (4.6), (4.11) into (4.10) -leads to
 

(T + T - T)n = 0. (4.12) 

if (4.12) is to hold for arbitrary n it follows that
 

=T T + T (4.13)
Is -,f
 

Equation (4.7) follows from (4.13) by setting T = pl. Thus the reason for 
If I
 

calling T the effective stress.
 
Is 



Having defined the soil stress, the balance of momentum and mo: ont of 

momentum for the soil mass continuum is then postulated to be given by 

pR= div T + pb (4.14) 

T T (4.15)
 

-wherein b is the specific body force density, i.e., the body force per
 

unit solid aggregate mass.
 

Balance of Energy - Let G denote the specific internal energy of the soil 

body, i.e., the internal energy per unit solid aggregate mass, r the energy 

source due to external radiation, and q the heat flux. In a manner similar 

to that used. to define the effective stress, an effective heat flux Is can 

be defined by 

Is = t4q" (4.16) 

The balance of energy for the soil mass continuum is then postulated to be
 

given by
 

Pe = tr T L - div q + Pr. (4.17) 

5. THE CLAUSIUS-DUHEM INEQUALITY 

Let 0 = e(x,t) be the temperature of the soil mass continuum which is 

assumed to be positive and let n be the specific entropy. Then regarding
 

qIS as the flux of entropy due to heat flow and r/O.the supply of entropy 

from radiation, the specific rate y of entropy production for the soil
 

mass continuum is postulated to be given by [4] 

py = p- (Pr - div q(5.1) 

The Clausius-uhem inequality is the assertion that the rate of entropy 

production is not negative, i.e., 

y A 0. (5.2) 
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Equation (5.1) may be .combined with (4.17) so as to obtain
 

y - 2 (5.3) 

where (3.7) has been used and
 

T-1
S=grad 0, S T 

ds= A ±F (5.4) 

The specific free energy 4 may Se introduced through the definition 

4=6 - Oj. i(5.5)
 

Under this definition '(5.4) may be written in the form
 

" 
71 rqs" q (5.6)
 

The Clausius-Duhem inequality (5.2) will be used to find restrictions on
 

constitutive equations.
 

6. CONSTITUTIVE EQUATIONS
 

Itis well known that the deformation of a soil mass continuum is
 

accompanied by dissipative effects which are in addition to heat conduction.
 

Therefore the constitutive equations for the soil body must be such as to
 

show this feature. In continuum mechanics there are various ways of
 

accounting fordissipative effects which (in addition to heat conduction)
 

accompany deformation. One of-these is to postulate the existence of 

internal state variables which influence the free energy and whose rate of
 

'change is governed by differential equations in which the strain appears._
 

These have been studied in detail by Coleman and Gurtin [6] for single
 

continua and by Bowen [7,8] for mixtures of continua. It will be shown
 

below that by considering the porosity af the. soil mass' continuum as an
 

internal state variable the dissipative effects can be accounted for.
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It is important to realize at the outset that a thermodynamic state
 

variable for a soil mass continuum is the solid aggregate mass density and
 

not the bulk mass density. The solid aggregate mass density is given by p.
 

The balance laws suggest that constitutive equations are needed for
 

,0, T, and q The soil mass behavior which will be studied here is one
 

1, T, q which give
which is characterized by four response functions 

, T and q when p, i' 0, k are known, i.e., 

(4, f, T , q ) = f(p, F (6.1) 

where f stands for any 7,..., q. The reason for including F as an
 

independent variable will be explained below.
 

Now through (2.5), (4.2), equation (2.6) may be written in the form
 

= PO (6.2) 

(1-n) jdet FI 

In view of this equation the existence of functions f such that
 

(6.3)
0,7, TA g, n) 


can be reasoned. This demonstrates how the porosity enters as an independent
 

variable. Since the rate of change of porosity does not appear in the
 

Clausius-Duhem inequality a constitutive equation for n must be postulated.
 

Thus to (6.3) must be added
 

= 4 , F, , ~g, n). (6.4) 

Therefore the porosity influences the free energy and its rate of change is
 

postulated by a differential equation in which the strain appears through F.
 

Of course the assumption has to be made that n, F, F, 0, g as functions of
 

Xand t are smooth enough to insure the existence of a unique solution 

n = n(X,t) of (6.4) for all t in some interval [to, t + T1 with n(X, to) = 
-01 0 ri 0 

The inclusion of F as an independent variable will now be explained.
 

It can be shown that whenever the solid aggregate is incompressible the
 

porosity is governed by the differential equation
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-n (1-n) tr F F (6.5) 

Equation (6.5) is a special case of (6.4) with 

A= 0, aA 

so that 

n(F*, n) = (l-n) tr F-l 

Thus the reason for including F as an independent variable.
 

It is also assumed that the effective stress T is the sum of a
 

non-dissipative part T and a dissipative part TD i.e.,
 

T T +T (6.6)
 

such that
 

T =T(F, 6, i) 

(6.7) 

TD T (F, F, , n). 

Therefore
 

AA AZ(F ' F , 4, n) T(F, n) + TD(F,.L' 0, , n). (6.8) 

In Section 7 it will be shown that 

T5F, 0 0, 0, n) =-O whenever n = 0. (6.9) 

A a 
The constitutive response functions f and n have to satisfy the Giausius-


A A 
Duhem inequality (5.6). The restrictions on the response functions f and n 

by the Clausius-Duhem inequality can be found by the fnethod used by Coleman 

and Gurtin [6] and Bowen E7,8J. The main results of this exercise are: 

A A 
(I) The response functions I and T1are independent of F and g, i.e.,
 

•(, r) = 
A
h(F, 6, n) (6.30) 
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A A A
 
where h stands for either * or r}.
 

A A
 
(II) J determines 1] through the entropy relation-

A
n--e (L,6, n). (6.11)
 

(III) -A determines O through a stress relation
 

T Pb ( n)FT . (6.12) 

A AA A
 
(IV) 4,n, T, and Z obey the general dissipation inequality
 

tr SD(F, 'e,g,n)F - n'(F, e,n)n(F, £ ,e,g,n) 
.AA
 

(6. 13)
' q,(,.F , 0, £, n) n) 

where
 

A 1 A T-l

,SD( ) = T( )(F) . (6.14) 

Equations (6.10) through (6.13) are necessary and sufficient conditions
 

that the Clausius-Duhem inequality be satisfied by the constitutive response
 

functions. It is possible to extract additional information from the general
 

dissipation inequality (6.13). This information will be examined in the
 

next section.
 

7. EQUILIBRIUM STATES
 

The additional information that can be extracted from the general
 

dissipation inequality (6.13) is obtained for certain values of the indepen­

dent variables. It has been found convenient to name equilibrium the state
 

in which these values occur.
 

The general dissipation inequality (6.13) implies that when = 0, 

the mechanical dissipation inequality 

A * A 
-tr SD(F, F, 6, 0, n)F+ bn e(F, F, , , n) 0 (7.1)
 

n ) =
holds, and when (F, n (0, 0) the heat conduction inequality
 

$(F, 2, 6, , n) • g : 0 (7.2)
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holds. Also when (F, (O, 0) the internal dissipation inequality 

A 
7n'(F, 8, n)n(F, 0, 00, n) 0 (7.3) 

holds. 

It is convenient to call a triplet (F , n ) with 

An( , 8* , n 0 (7.4) 

an equilibrium state for the soil material point X. Note that if
 

A A A 
(F, F, 8, ,' n) = SD(F , F, 6, , n)i- a *(F, 0, n) n (F, F, 8, g, n) 

IlA
1 A (F, F, 0, g, n) g (7.5) 

then (6.13) can be written as 

iF t , , , n) 0. (7.6) 

Clearly 

0, , 0 n) 0 (7.7) 

Therefore .as a function of (F, F, 0, £, n), f is a minimum at the equilibrium 

state (. , , n ). Consequently 

d £(F + XA, XB, 8 + Xa, Xa, n + Xd) 1x=0 = 0 (7.8) 

for all scalars a, d, all vectors a, and all second order tensors A, B in 

the domain ofi. 
* * n* 

For a function G( ) evaluated at (F 0, 0 , n the following 

notation is used 

G+ = O , O , nn) 
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Equations (7.5) and (7.8) imply that
 

TTA+ r+ A+I 
i+ n + n+ d tr( - in+T)B- , A + n

'B-c tr on AI nn
 

(7.9)
nA+ 1 A+ 

From the second term in this equation and the arbitrariness of A, a, and d
 

the following is concluded: either
 

+
n - 0 A = 0 n 0 (7.10)
N n 

or
 

-an = 0 . (7.11) 

For obvious reasons (7.10) must be discarded. Therefore in view of (7.11)
 

and the arbitrariness of B and a the following additional information is
 

extracted from (7.9)
 
A - * * * 
A(F , 0, 0, n ) = 0 (7.12)
 

A * * 
q(FO, ,O, n)0 7.13) 

Thus at the equilibrium state the dissipative stress and the heat flux
 

vanish. Also (7.11) reads
 

Yn(F &, n) 0. (7.14) 

Equation (7.14) is called the equation of internal equilibrium.
 

XtColeman and Gurtin [61 have derived an equation identical to (7.14) in 
their study of constitutive equations for which the independent variables
 
are (F, 0, Z, CL), Mbeing an internal state N-vector.
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It is assumed that cdrresponding to each strain-temperature pair (F, 6*)
 

there is exactly one porosity n such that (7.4) holds. This correspondence
 

is given by the function
 

* * F* e*
 
n a (E , (7.15) 

which is called the equilibrium response function for n. Equilibrium 
^* * A* 

response functions 4I, , T may then be constructed through­

* * * A* * * def A * * * * 
0 , T m (F 0)m(F , 6, a(F, ")) (7.16) 

A* * AA A 

where m stands for any of , and m any l,, or T for of lt.or T 

Considering that 

At~* 6)= A A 
A t 

A.'- a,A (F,6,n)+ tnA'(F e, n)%e(L, 6) 

F 6, n) anr(F, 0) 

It follows through the internal equilibrium equation that 

F (F,6) SF(F, - 6, n)aF(F) 

At '* ) * * *A* 7 
6**(F, 6 ) (F, 0 , n) 

(7.17)

At * * A * * * 8F* (F , 6 = 8F'l(F , e , n) 

Therefore in view of (6.11) and (6.12)
 

* A* * e* 
1 6* L,(7.18)
 

* ~A* * * s - F** F
S= 'Fa L 6)
 

where 

* 1 * ,T 1 

S =-T (F) . (7.19)
E(0e rim e 

Equation (7.18) defines the equilibrium entropy and stress relations.
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8. MATERIAL FRAME-INDIFFERENCE
 

The constitutive equations are further restricted by the axiom of
 

maLerial-frame indifference. This axiom states that the constitutive
 

response functions must be form invariant under a change of frame. The
 

change of frame is characterized by a time-dependent orthogonal tensor Q(t)
 

(cf. Truesdell and Noll [91).
 

Under a change of frame scalars 8, e, TI, and I are unaffected. However 

F, F, g, q, and T transform as follows 
-ss
 

F -.Q F
 

F Q i+ QF 

£ g (8.1)
 

SQq.I 

-s
 

Q T Q 
T 


The manner in which the porosity n transforms needs to be specified. It is
 

postulated that n is unaffected under a change of frame. Therefore
 

n n, n-'n (8.2)
 

under'a change of frame.
 

In view of .(,3.7) dependence on F can be indicated through dependence 

on L. Moreover L can be written as the sum of its symmetric part D and 

skew symmetric part W, 

L=D +W, (8.3) 

where 2D = L + L , 2W L-- L. Under a change of frame 

4Q
D T
 

(8.4)
 

W Q WQ T+ Q QT 
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Note thaL from the orthogonality of Q, it follows that Q QT = _Q QT The 

fact that W does not transform as a tensor under a-change of frame can be
 

used to show that the constitutive equations should be independent of W.
 

Therefore
 

(T, q~s n) = a(F, B, e, g, n) (8.5) 

Ahere A 
where a stands for either T, q, or n. 

Necessary and sufficient conditions that the constitutive equations
 

(6.10) and (8.3) satisfy the axiom of material frame indifference are the
 

following
 

(F, 8, n) a(Q F, e, n) 

A T A 
Q T (F, D, 8, g n)Q= T(QF, QDQ, , Qg, n) 

(8.6) 
QcA (F, D, 0, ,, n) : q(QF, T , , 

A /I T 
n(F, D, 8, g, n) = n(Q F, QDQT , e, Qg, n) 

where a stands for either t or 1]. Choosing Q = -1, (8.6) becomes 
- 2-4 

A A 
T(F,.D, e,, n)= T(-F, D, 6, -£, n) 

-q(F, 
A 
D, e, ,, n) = 

A 
q(-F, D, 6, -,, n) (8.7) 

n(,D, og, n) (-F, D, 0, n).AA

AA A 
Thus T, n are even functions of F and g and q is an odd function of F and g.
 

Using standard arguments (cf. Truesdell and Noll [9]) it can be shown
 

that a set of reduced forms of the response functions which are frame­

indifferent are
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a(F,,A, n) = a (C, 0, n) 

T(F, D, 8,g, n) =F 

(F, D, 6, g, n) = F 

'F(C, C, 8, r, n)FT 

q+(C, c, FTg, n) 

(8.8) 

n(F, D, 8 ,g,F) n g n) 

where 

C =FTF (8.9) 

is the right Cauchy-Green tensor. To arrive at (8.8) 

o 2FTDF has been used. 

Considering that 

A+ 
b 4(F , e, n) = 2F bC (C, 0, n) 
F PPSC 

the identity 

equation (6.12) can be written as 

T = 2pFa4C(C, 6, n)F T . (8.10) 

Also 

TI 

T 

. o + ( C, 

= 2Ft+(C, 

n) 

0, n)FT + FT(C, C, 6, FT n)F T 

q F +(CC , 0, FTZ, n) 

and the equilibrium entropy and stress 

260A T*, a) 

+ * F* + 

relations 

* 8F ,T 

(7.18) become 

(8.11) 
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9. MATERIAL SYMMETRY
 

The constitutive response functions for the soil mass continuum are 

further restricted by material 
of
symmetries. Recall Noll's 

A 
[10] definition 

of the isotropy group-V of a material response function 'F: the local 

isotropy groupZ of a material is the set of mass density-preserving changes
A 

of local reference configuration which leaves the response function F
 

unaltered.
 

The above definition was arrived at through the recognition that a
 

change from a given reference configuration hi to another reference con­

figuration a which is indistinguishable from a by relating the values F
 
2
/A


of F to deformation must be obtained by a mapping from to a2 such that
 

pn .p . (9.1)
;; 2 

For the soil mass continuum it appears more natural to base the defini-

A 

tion of the isotropy group N of the soil for a constitutive response F on
 

the solid aggregate mass density p and porosity n. Thus (9.1) is replaced by
 

, ) nx= n (9.2) 
A;2 -- ;L2Ll 


or in view of (2.5) and (2.6) by the equivalent statement
 

oPh (9.3) 
A 

Therefore the definition of the isotropy group for a response function.F of
 

the soil mass continuum is essentially the same as Noll's. Thus the isotropy
 

group- for the soil mass continuum is the set of all unimodular tensors H
 

such that the following identities hold:
 

A A
a(F, 6, n) a(FH, 0, n) 

A A
= T(F, C, 0, ,, n) T(F1H, 11TCH, 0, g, n) 

(9.4) 
A A

0qj, C, 0,,, n) 

A 
n(F, 0, 0, , n) = 

A 
n(FH, H Gil, 6, g, n) 
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A A A
where a stands for either I or T1. 

It can be reasoned that if a solid is thought of as a body which
 

has some preferred configuration from which any change of shape will change
 

some of its properties then a soil mass is a solid. Th6 ideas set forth
 

by Noll [10] can then be carried over unchanged, i.e., since the soil mass 

continuum is a solid its isotropy group & is a subgroup of the orthogonal 

group &'(E) of linear transformations of Euclidean 3-sjpace onto itself, 

of C ) (9.5) 

When the soil mass-continuum is isotropic the isotropy group 2 is equal to
 

the orthogonal group &(F). It can then be shown that the constitutive
 

equations for t, n, T, q, and n for an isotropin soil mass which are
 

frame indifferent are
 

= 4+(B, n) 

<T = +(B, n) = O6 TI (B, 0,-n)
 

T B 0$6,n)B + T (, B 0, n) (9.6) 

(B,B,6 i' 

(B n
 

non(B, B, n)j
 

T

where B F F is the right Cauchy-Green deformation tensor and all the
 

response functions are isotropic tensor functions. Representation theorems
 

for the response functions are available in [9].
 



24 

10. ELASTIC BEHAVIOR
 

In solid mechanics elastic deformations are recoverable deformations
 

and the thermodynamic process under which these take place -is a reversible
 

process. It follows that elastic behavior occurs under thermodynamic
 

equilibrium. Therefore for a soil mass continuum the constitutive equations.
 

for elastic behavior are
 

T Pa (F,e)F 

and
 

n = a(F, 0) (10.2) 

wherein all deformations are recoverable and the temperature field is
 

homogeneous, Note that (10.2) can be written as
 

X(F, 6, n) = 0. (10.3)
 

Upon reduction of (10.1), (10.3) for material frame-indifference the
 

following is obtained 

€ C€(c, 6) 

ii= -%,1t(c, 6) 

T 2P £ 1c+(c, )FT (10.4) 

&--o 

X(c, 0,n) 0. 

For an isotropic soil mass (10.4) reduces to 
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'i'n
71 -a fl) 

.e) 
a EL'6 

T = 2P6B+(B 8)B (10.5), 

~qs 0 

=00.

X(B, 6, n) = 0. 

Inspection of (10.4)1-4 indicates that the elastic behavior of a soil
 

mass is described by constitutive equations for 4, T1, T, qs which are of
 

the same form as the equations for a hyperelastic solid under isothermal
 

conditions. However this is only possible whenever (10.4)5 is satisfied.
 

Consequently elastic behavior of the soil mass implies the existence X of
 

(C,AG, n) such that (10.5)5 is satisfied.
 

11. LINEARIZATION
 

In this section the constitutive equations postulated in the previous
 

sections will be linearized by considering small departures from thermo­

dynamic equilibrium. To this end it is assumed that the soil mass in its
 

reference configuration is in a state of thermodynamic equilibrium.
 

Introduce the Green-St. Venant strain tensor E which is related to C
 

through
 

"2E = C - 1. (11.1) 

Consequently
 

=+ (E, ,n) ( 2E, , n). (11.2) 

Thus (8.10), (8.12) can be written as
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S-O(E* 0, n)
 

T A 4+T
 
zs ~~LE' 8;-n)F + F T EE e 

(11.3)
 

qS +(b£,F , E, n)
 

n0, n)
 

where 2E = C has been used. 

Let u be the displacement vector field of the soil mass. -The displace­

ment gradient is then given by 

H = Vu(X,t). (11.4) 

H is relatdd to the deformation gradient through 

F = 1 + H (11.5) 

The departures from thermodynamic equilibrium can be measured by the 

quantity 6 defined by 

62 (6'6o)2 2(T +o)2 (11.6) 
+ (n-n) + + tr H~ + tr 11 (11.) 

where 6 is the temperature in the reference state. The departure from thermo­

dynamic equilibrium is said to be small if 6 < 1. A quantity of order 6& is
 

any scalar, vector, or tensor; denoted by 0(6 , with the property that
 

there exists a real number N such that
 

II O(8'jj II N6""! (11.7) 

as 6 . Observe that 0(60')0(6 7) 0(6"/+0 . 

Under the assumption of 6 < 1 it follows that 
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o - e = 0(6) 
0 

n - n0= 0(6) 

H = 0(b) 

= 0(6) 

= 0(6). 

(11.8) 

Also 

E ' 

T=%+ 

0(62) 

62o(52) 

F = 

Idet 

g + 0(62) 

I= 1 + tr 2 + 0(62) 

(11.9) 

p = Po(1 - tr ' + 0(82) = P0 + 0(6), 

where ' is the linear,strain tensor given by (3.14). 

Consider the ordered sextuple 

Its value in the reference configuration is 

(0,o0, 0, 0,no) 

Therefore can be expanded about E =0,8 

expression of the form 

Q& + a+ 0, n. + + a 1 + 

8, n n to yield an 

a24 bAya2-+ 

b2EJa+ tr £E+ b [, + 0(63) (11.10) 
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where
 

9= 9 - 0 , = n - n (11.11) 

0 0 

and ', al, a2' a3 are constants, is a second order tensor, b 1'],b21-1 

are linear and b'' bilinear functions of E. The constant 4'is the value 
3 1' 

of the free energy in the reference configuration. A term of the form a5
 

would ordinarily appear in (11.10) but because of the internal equilibrium
 

Thus to within 0(63)
equation (7.14), a5 = 0. 


+a -= + a -2 + a 4a + bl3 - + b 2I a + tr £ ' + b E,E].o0+ 1 2 + -a aa EE 3 

(11.12)
 

It follows from (11.12) that approximate expressions for In,T for small
 

departures from equilibrium are
 

= -a1 - a2 - a a- b[
2 3 l1 3
 

ab 'E. 1.3 

T% 0- ++ pP0 -a a + p Z + p E,']. (11.13) 

Also the linear approximations- for small departures from equilibrium oT
 

Sq,, n are
 

Z=-(bf'G + baz)LI + M1E3 + MN'9 

+E2 (11.14)qs la,+Qa +K['+Kg]
'-1 2 slr~ - ;2-X 

n = Ol- + c2Q + N M'] + N2
 

where bl b2) oi, c2 are coastants, l 2 are constant vectors, i[.L
 

are symmetric linear tensor functions, i [ are linear vector
 

functions, and N1E.]N2.I are In writing (11.4)
, linear scalar functions. 
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use 	was made of the fact that TD' n are even functions of g and q is an
 
1z' 	 ;,D 

even function of E. 

The case of an isotropic soil mass is now considered. In this case 

bl['], b2 ' Z, b ,'J in (11.12) have the following representation: 

b £JI = dtr 1, a = 1,2 

=d 1 (11.15) 

~d tr E+d 5 (tr 2b '92

Also since there are no isotropic tensors of odd rank'al, a2, and, K ] 
must drop out of (11.4)2, and X2 rJ, M gXj, NlB], N2 '] have the 

following representation: 

= K 	g 

I 	 = e1 (tr-')l + e2 £ 

o3 = e (tr 1 +4 (11,16) 

N[i= c tr 

NI£['] C
4
tr 

-N2' 


In (11.15), (11.16), d1 , d2, d3, d4, d5, K, e,, e2, e3, e4, c3, and c4 are
 

material constants.
 

With the representations (11.15), (11.16) the linear constitutive
 

equations (11.12), (11.13), and (11.14) become
 

2 
a2 U2 a + dl tr E + d2 tr E + d3 tr + d4 tr T

S+ 	 al -+ + a3 1 

+ 	d5(tr )2 (11.17)
 

[Equation (11.17) continued on next page]
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1 ±=-a-a 2 G -a 3 L -dltr 

T = pl + (fl- + f2 c + Xtr E + e 3 tr 21.2+ e 4hi+ 

c1 T' + c2cL + c3 tr 2 + c4 tr 

where
 

p = POd3 f1 p d - b , f 2 Pod 2+ b2 

S= Pod4 + e , 2 = pod +.e5 (11.18) 

The general dissipation inequality (6.13) will give some inequalities for
 

the constants bl, b2, cl, e2 and the constants appearing in (11.16).
 

However since the constitutive equations examined here are merely for
 

illustrative purposes and have no bearing on true soil behavior these
 

inequalities will not be found.
 

12.. CONCLUSIONS
 

In this study the basic equations of continuum mechanics for non-polar
 

continuum have been reassessed as to their applicability to model a dry
 

soil mass as a contimuum. It was found that the physical properties of a
 

body which are taken in the construction of a continuum model, namely
 

that of occupying a region of space and having mass, allow for the intro­

duction of two densities, the bulk mass density and the solid aggregate 

volume density. In this respect the soil mass continuum differs from the 

strictly solid continuum. The introduction of the solid aggregate volume 

density brings the pbrosity of 'the soil mass into play as an additional field 

variable. It must be pointed out that in applied soil mechanics the solid 

aggregate of a soil is assumed incompressible for computational convenience, 

for in this case the volumetric strain is computed through a phase diagram as 
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•Av = Ae (12.1)
 
1+e'
 

e being the void ratio. Now it can be shown that in the limit the left
 

hand side of (12.1) becomes tr E. Thus
 

tr - (1.2) 

which was found earlier (see Eq. (3.20)). Now it is realized that soil is
 

extremely difficult to sample and that volumetric measurements arc hard to
 

make. Nevertheless the assumption leading to (12.2) is dictated by this
 

physical handicap and it is not in general a property of the soil.
 

The equations used in continuum mechanics to depict the balauce of
 

mass, linear momentum, and energy also hold for the soil mass continuum
 

provided that the mass density appearing therein be interpreted as the
 

bulk mass density. In addition, through the balance of mass equation in
 

terms of bulk mass density, a balance of mass equation in terms of bulk
 

mass density, a balance of mass equation in terms of solid aggregate mass
 

density was found.
 

-The introduction of the porosity as a field variable introduces
 

complications since in general there is no equation relating porosity to
 

deformation. This indicates that a constitutive equation for the porosity
 

is needed. As an example of how a constitutive equation for the porosity
 

may be introduced, a set of constitutive equations for a special kind of
 

soil mass was studied. It must be pointed out that the constitutive
 

equations studied here may not describe true soil behavior under load.
 

}lowever, the work presented here does yield results which are very important,
 

namely that under isothermal conditions,
 

(1) The constitutive equation for the effective stress should be of
 

the form
 

T (Fn) (12.3) 

where indicates a general functional relationship.
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(2) A constitutive equation has to be postulated for the rate of
 

change of porosity.
 

(3) Elastic behavior of the soil implies the existence of a function
 

such that
 

X(F,n) = 0 (12.4)
 

for all elastic deformations.
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SECTION II
 

A THEORY OF SOIL PLASTICITY
 

1. INTRODUCTION
 

A valid solution to a problem of the mechanical response of a soil
 

mass to applied load must satisfy the basic balance equations of continuum
 

mechanics. However, in order to obtain valid solutions, the constitutive
 

relation between stress and strain of the soil must be established: Without
 

knowledge of the stress-strain relation or its equivalent a so-called solu­

tion is merely a guess.
 

Partly because of the difficulty in obtaining self-consistent constitu­

tive relations, problems in soilmechanics are treated in several and
 

unrelated ways. For example, .whenno failure of the-soil is involved stresses
 

at points in a soil mass under a footing, or behind a retaining wall are
 

computed using linear elasticity.. Problems of bearing capacity, stability
 

of slopes, failure of retaining walls are now being considered in the realm
 

of plasticity, while settlement and consolidation -problems are treated as
 

essentially viscoelastic.
 

In this paper our primary concern is with the establishing of a self­

consistent phenomenological theory for the mechanical behavior of granular
 

media which shows stress-strain behavior similar to that of an elastic-work
 

hardening plastic metal.
 

Drucker and Prager [8] suggested that the Mohr-Coulomb failure criteria
 

for soils could serve as a yield function with which one could associate a
 

flow rule and to treat the soil mass as a perfectly plastic material. Even
 

though several important and interesting results may be obtained by considering
 

the soil mass to a perfectly plastic body with s'Mohr-Coulomb yield surface,
 

predictions of volume changes, under this idealization, were higher than those
 

found by experiments. Based on observations made on pressure-volume change
 

curves Drucker, Gibson, and Henkel [7] subsequently explained that soil
 

could be-treated as a work hardening material. Henkel [9], however, concluded
 

that much of the available experimentalinformation for soils lay outside
 

the scope of a useful theory of plasticity. *Nevertheless Roscoe and co-workers
 



35 

at Cambridge have indicated that certain soils can be described remarkably
 

well by a simple isotropic work-hardening idealization. The work at
 

Cambridge is discussed in considerable detail by Roscoe and burland [5].
 

In the work described above a soil mass differs from a strictly solid
 

mass by the constitutive relations describing the mechanical-behavior.
 

Aguirre-Ramirez [I questibned the applicability of the basic balance
 

equations of continuum mechanics to model a dry soil mass without investi­

gation. He found that the two basic properties that bodies are known to have
 

and which are used in the construction to model a body as a continuum, namely
 

that (1) they have mass and (2) occupy regions of space, lead to the intro­

duction of two densities one of which is the soil bulk mass density and the
 

other can be related to the porosity of the soil mass. The basic local
 

balance equations of a continuum can then be used for the physical­

mathematical description of a dry soil mass and the processes occuring in
 

it provided the mass density appearing therein be interpreted as the bulk
 

mass density. The porosity, however, appears as an additional field
 

variable that plays the role of a hidden variable. In soil mechanics
 

porosity changes are related to bulk volume changes by an assumption which
 

will be discussed in the text.
 

In this paper we establish a self-consistent phenomenological theory
 

for -the mechanical behavior of granular media which shows stress-strain
 

behavior of the type discussed by Drucker,*Gibson, and Henkel [7]. This is
 

done-by extending the ideas presented in [1]. The main results of this paper
 

are presented in Sections 4 and 5 we have felt compelled to include in
 

Section 3 those aspects of soil mass behavior that we have used as a guide
 

in arriving at them. In Section 4 we present a theory of plasticity for
 

soils. The theory is a phenomenological theoryin which statements are made
 

directly put into mathematical form and studied as such. Using the theory
 

developed in Section 4 we construct constitutive relations for soils in a
 

triaxial compression condition. This is done in Section 5. We- find that the
 

Cambridge triaxial compression theory developed by Roscoe and co-workers [5]
 

comes out as a special case of the theory constructed in Section 5. This is
 

very promising because the Cambridge triaxial compression theory of Roscoe
 

and co-workers £5] has been found to give reasonable agreement with experi­

mental results.
 

We must remark that by considering the soil mass to be dry we have
 

disregarded the influence of the pore pressure on its behavior. This corre­
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sponds to a soil in what is called a drained condition.
 

NOTATION
 

In this paper direct tensor notation is used except in Section 5.
 

For the most part vectors in the three-dimensional inner product vector
 

space U and points in Euclidean 3-space 8 are indicated by bold faced
 

Latin iminuscules: x,...,u. Linear transformations from U into U.are
 

indicated by boldfaced Latin majuscules T,...,N. Second order tensors
 

and linear transformations are regarded as the same. If T'is a linear
 

-
transformation, TT indicates its transpose, T its inverse, tr T its trace,
 

and det T its determinant. The gradient with respect to spatial coordinates
 

is denoted by grad and the gradient with respect to material coordinates­

by V.
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2. PRELIMINARIES
 

We consider a dry soil mass body B which occupies a region R in Euclidean 

3-space in a reference configuration and denote by X the position in R of the 

particle XCB. We further suppose B to occupy the region Rt at time t and 

denote by x the position in R of the particle XCB. The motion of B from 
t
 

R to Rt is given by
 

x = X(Xt). (2.1)
 

Let no n (X) denote the porosity of B in R. According to the ideas set
 

forth by Aguirre-Ramirez [1] in order to describe-the deformed state of B at
 

time t we have to set alongside (2.1),
 

n = n(X,t) (2.2)
 

AA 

where n is the porosity of B at time t. The function n is such that
 

n =n:(X) = n(X,t.) (2.3)
0 0~ 

where t is the reference time.

0 

The gradient of
 

F = V Z(Xt) (2.4) 

is called the deformation gradient. F is a second order non-singular 

tensor with the property 

Idet F1 > 0. (2.5)
 

We let u = u ( ,t) be the displacement vector from R to Rt and ,1 be its
 

gradient,
 

11 = V u(Xt). (2.6) 

The deformation gradient F is related to H by 

F 1 + H. (2.7) 
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We denote by dVs and dvs the element of solid aggregate of the soil body
 

in R and Rt respectively. The mean solid aggregate dilation or expansion A
 

is then defined by [I]
 

dv
 
A 	 =(2.8)
 
s
 

It can be shown that A is given by [i]Y
 

A (1-n) IdetF 	 (2.9)

(1-n0) I
 

and is an additional strain measure that is characteristic of the soil mass
 

body.
 

The quantity e = e(X,t) defined by,
 

e det 	 (2.10)

(1-no)
 

is the void ratio of the soil mass defined as "the ratio of the element of
 

void volume at time t to the element of solid aggregate of the soil mass in
 

the reference configuration". Note'that
 

A : 	 e. (.1
 

n
 

In what follows the word "specific" shall mean per unit mass of solid
 

aggregate. Let p,P be the soil bulk mass density and p, p the solid
 

aggregate mass density in R and Rt respectively.. The differential equations
 

governing the deformation and motion of the soil mass body are given by [1]
 

(i) Balance of mass
 

0 	 P0
pidet F1 = p or 	 (2.12)
 

(ii) Balance of linear and moment of momentum
 

div 	T + Pb = P (2.13) 

TT
T = 
- -	 (2.14) 
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(iii) Balance of energy
 

p = tr T L - div q + Pr. (2.15) 

In (2.13) and (2.14), T is Terzaghi's [2 2effective stress which was defined 

in [I J in such a way so as to obtain (2.13) from a global balance law, b 

the specific body force density, X the acceleration, C the specific internal 

energy density, q the effective heat flux vector, r the specific heat source 

density, and L the velocity gradient which is related to F by
 

L = = grad (xt) (2.16)
 

Alongside (2.12), (2.13), and (2.-15) constitutive equations are needed for the
 

soil-mass. The work presented in li] indicates that: these constitutive equations
 

should be
 

(T,q) = ' (F,F,0,g,n) (2217) 

n= (F, Fegn) 

where , indicate a general functional relationship,.* is the specific free
 

energy density, e the temperature and.
 

g = grad 9 (2.18)
 

Also in E 1 a triplet (F ,O ,n ) with 

'(F ,,,0,n ) =0 (2.19) 

was called a thermodynamic equalibriumr state for the material point X of the 

soil mass. 

If the stress is written as the sum of a non-dissipative part T and a
 -o
 
dissipativd part TD'
 

=T1 T, + T I0-) (2.20) 
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with constitutive equations
 

T = Z (F,6 ,n) (2.21) 

TD = (F ,,,gn) (2.22) 

where £ ZD indicate a general functional relationship, then Z must be

-0 D -D 

such that 

(F ,0 ,0,n ) =0. (2.23) 

Also
 

q = (F ,0,6 ,0,n ) =0, (2.24) 

i.e., at equilibrium the effective heat flux vanishes. In (2.24), X
 

indicates a general functional relationship.
 

In continuum mechanics elastic deformations are recoverable deformations
 

and the thermodynamic process under which these take place is a reversible
 

proces's. Therefore one may reason that elastic behavior occurs under thermo­

dunamic equilibrium. Suppose the soil mass is responding elastically with.
 

respect to sonic configuration+ R at time t. Then according to (2.19) all
 0 

deformations F, all porosities n, and all temperatures 6 are such that
 

..(F,O,n) = 4(F,0,0,0,n) = 0 (2.25)
 

and since g = 0, the temperature field 6 is homogeneous. The effective 

stress, free energy, and heat flux is given by 

T .A4(F,O,n) (2.26) 

q=0
 

A"
where T,4 are ordinary functions.
 

+Here a configuration and the region the soil mass B occupies in L' in 
that configuration are taken to mean the same. No confusion need arise since 
B is isomorphic to regions in E. 
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To demonstrate that the above ideas of elastic behavior of the soil mass
 

are equivalent to the elastic behavior (constitutive equation wise) of a
 

simple continuum it suffices to indicate that the constitutive equations
 

for an elastic soil mass are (2.25) and (2.26). Then under ufficient
 
A 

smoothness assumptions on the following equation
 

n = f(F,G) (2.27) 

for the porosity may be obtained from (2.25). It follows that
 

+ A 
T =T (F,O) = T(F,,f(F,))I(2.28)
 

= (F,8) = (F,,f(r,8))
 

which are the constitutive equations for an elastic simple continuum.
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3. SOIL BEHAVIOR 

In this section we shall discuss sonic aspects of soil behavior which we
 

shall use as a guide in the next section. Before doing this, however, let
 

us indicate that most experimental data on the response of a soil mass under.
 

load is for infinitesimal deformations under isothermal conditions. Also in
 

the reduction of soil test data the following formula is used to compute
 

volumetric strains
 

Av An (3.1)
 

0
 

where Av,An are the change in sample volume and porosity respectively. It
 

can be- shown that under infinitesimal deformations (3.1) follows from (2.9)
 

under the assumption of incompres'sibiliLy 6f the solid aggregate of the soil.
 

In compressibility of the solid-aggregate is really not a general property
 

of the soil. The reason for using (3.1) is that volumetric measurements on
 

a soil sample are extermely difficult to make. Measurements of porosity
 

changes on the other hand are simpler to make since these can be related to 

the amount of fluid expelled from the pores during the test. 

Most soils show a phenomena that is generally not shown by metallic
 

solids undergoing infinitesimal deformations. This is the phenomena of
 

dilatancy, i.e., bulk volume changes in a state of apparent pure shear.
 

Current methods of testing soils have been, almost always, restricted to
 -

the conventional triaxial compression test, the oedometer and to a far less
 

test. The reader is referred to Lamb and Whitman [2]
extent, the direct shear 


for a discussion of these tests. In the direct shear test the sample is
 

assumed to be subjected to plne strain. In the triaxial compression test
 

and oedometer the sample is assumed to be in a stress state in which the
 

tensor are equal.
intermediate and minor physical components of the stress 


The triaxial test is essentially a cylindrical sample first put under
 

an equal all around pressure, called the confining pressure (denoted by 0
 

in Fig. 1), and then adding increments of load in the direction of the axis
 

of the cylinder (Fig 1). As mentioned above the stress state of the sample
 

during the test is assumed to be such that 

a, = a2 = a , a3 (3.2) 
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are the only non-vanishing physical components of the stress tensor in a
 

polar coordinate system. In soil mechpnics it is a practice to use the
 

generalized stress parameters p and q defined by
 

CY
p = 2(a + 2G) , q = 3 - . (3.3) 

as an appropriate set of independent parameters that can be used in analyzing
 

data obtained in the triaxial test.
 

A typical stress-strain curve for a dry soil mass obtained in a vacuum
 

triaxial test is shown in Fig. 2. This curve was obtained at the Geotechnical
 

Laboratory of NASA's Marshall Space Flight Center at Huntsville for a lunar
 

soil simu~ant material. For the purpose of discussion of this curve and for
 

the remainder of the paper compressive stresses will be taken as positive.
 

Examination of the curve (Fig. 2) indicates that the stress-strain behavior
 

of this particular soil mass is similar to the behavior of an elastic-strain
 

hardening plastic material. We also note that the response to a decrease in
 

stress is an elastic recovery.
 

The confined compression (oedometer) test is a cylindrical sample sub­

jected to axial.load but prevented from horizontal movement. Because of this
 

last constraint lateral stresses develop which in general are not measured.-


As mentioned above accurate measurements of volume-changes in dry soil are
 

not easy to make. In the oedometer test, however, because of the no lateral
 

movement constraint, the axial strain is exactly equal to the volumetric
 

strain. The parameters used to analyze data from this test are generally
 

the vertical effective stress denoted by p and the porosity n.
 

A typical p-n curve obtained in the confined compression test is shown
 

in Fig. 3. The significant features of this curve are the non-linear
 

relationship between p and n and the elastic response to a decrease in stress.
 

We note that *this 6urve also shows behavior which is similar to the behavior
 

of an elastic-strain hardening material.
 

The similarity of soil stress-strain curves of the type shown in Figs. 

2 and 3 to that of an elastic-strain hardening plastic material has led some 

researchers to suggest that the IMohr-Coulomb+ criteria could serve as a
 

+In the next section we shall discuss the Mohr-Coulomb failure criteria. 
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yield function with which one could properly associate a flow rule [7].
 

While this is a valid assumption it is not a reasonable one, because if the
 

MohrLCoulomb envelope is used as a yield surface then yielding does not
 

occur until failure takes place. As shown by the curve (Fig. 2) soils
 

yield long before they fail. The use of the Mohr-Coulomb failure criteria
 

as a yield surface-gives'erroneous predictions of high rates of change of
 

volume during shear distortion. This is very unfortunate because research
 

workers who reject these predictions will have the tendency to discount the
 

usefulness of the theory of plasticity to model some aspects of the stress­

strain behavior of soils.
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4. SOIL PLASTICITY
 

In this section we shall formulate a theory of plasticity for soils.
 

While the considerations of Section 2 hold for finite deformations, the
 

discussion in this and the following sections is limited to small strains.
 

Thus the strain tensor that we shall use will be the linear strain tensor, 

E = (H+ )T (4.1) 

Also we shall assume that the change in porosity 

C n-n (4.2) 

is 	of the same order of magnitude as the strains.
 

In a soil we may define yield as a permanent irrecoverable deformation.
 

We may write the strain E as the sum of an elastic or recoverable part Er
 

and a plastic or irrecoverable part E I
 
-p
 

E = E + E .	 (4.3) 

In-addition we shall assume porosity to be given as the sum of an elastic
 

or recoverable part nr and a plastic or-irrecoverable part n,
 

n =n + n . (4. 4)r 	 p
 

In view of this assumed resolution we shall have for the change in porosity 

C Cr + np (4.5) 

whe r = nr-no. The quantity V given by 

=A- i (4.6) 

where- is given by (2.9) is the solid aggregate dilatation. For small 

strains V is given by 

V = C + tr E. (4.7) 
0 
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Under the assumed~resoiutibn (4.3), (4.5), V is given by 

Cr n
 
Vc(y-+tr Er) + ( + tr Ep). (4.8)(Y--+ t -Er 1-n


0 0
 

Thus the solid.aggregate dilatation is the sdm of two parts, a recoverable
 

part
 

V -- + tr E (4.9)
r 1-nr
 

and an irrecoverable part
 

n 
V -p + tr E (4.10)
p 1-n. "P 

The plastic deformation of the soil is therefore described by the pair
 
(Ep,np). 

A fundamental assumption of metal plasticity is that the elastic strains
 

may be computed through the elastic constitutive equations for the stress.
 

We carry this assumption into soil plasticity. Thus the elastic strains and
 

elastic porosity may be computed through the soil elastic constitutive equation
 

for an isothermal process,
 

=--( C) (4.11) 

f(, = 0 (4.12) 

where we have introduced the change in recoverable porosity. W& assume (4.11)
 

to be invertible in E,
 

E =E(T C)rIr (4.13)
 

This allows us to write (4.12) in the form
 

XT, r) - 0. (4.14) 
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We find it convenient to decompose the stress tensor into the sum of
 

the mean pressure p and deviatoric stresst, i.e.,
 

T p I + T (4.15) 

p = T, tr 0. (416)-tr 

3
 

In view of this assumed resolution we may write (4.14) as
 

(4.17)
g(p, ,r ) = 0 


Equation (4.17) defines a surface 0 in C-T space. We call this surface 0,
 

the elastic surface. Note that we may solve (4.17) for Cr so as to obtain
 

Cr= g(p (4.18)
 

The curve in C-p space defined by
 

S* A 
Cr Cr ( p ) = g (P' ) (4.19) 

is called the elastic swelling curve of the consolidation curve of the soil.
 

We consider a curve in C-p space given by
 

'(p,C) = 0 (4.20) 

with f fixed and unique. For a given soii there exists such a curve which 

is called the virgi consolidation curve. The intersection of the elastic 

swelling curve with the virgin consolidation curve defines a point in C-p 

space which is a yield poinEt for the soil. We denote the mean pressure 

corresponding to such a point by p0. Now (4.20) may be solved for the change 

in porosity C, 

(4.21)
C = C(p). 

From (4.19) and (4.21) we find 

o n AC(po - ArP)(4.22) 
np C1
 

http:rP)(4.22
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which indicates that with the pressure p at yield we can associate a plastic
 
porosity no. We shall use this result below.
 

P
 

One of the main ingredients of metal plasticity is that of a yield surface.
 

We shall now demonstrate how to construct a yield surface for a soil. Our
 

construction of a yield surface for the soil is wholly dependent on the
 

hypothesis that "plastic porosity is a unique function of stress," i.e.,
 

= 
n N(T). (4.23)
P 

We further assume (4.23) to be the solution for n of the equation
P 

G(T,np) = 0 (4.24) 
np
 

where G is unique. In plastic pososity-stress space (4.24) defines a six­

dimensional hypersurface E that is called the state boundary surface. A
 

soil particle will be said to be in a plastic state if the value of the
 

stress and plastic porosity are such that (4.24) is-satisfied.
 

We consider a curve on E. The projection of this curve on stress space
 

is a five-dimensional hypersurface Y. There are curves on E which have the
 

unique feature that the value of plastic porosity is the same all along the
 

curve. Let n
P 

be the fixed value of the plastic porosity along one of these
 

curves and consider the set B of all T such that
 

G(T,n ) 0. (4.25) 

We call B a yield domain. The projection of this equi-plastic porosity
 

curve on stress space is a five-dimensional hypersurface whose equation is
 

given by
 

A(T,a) = 0 , TCB (4.26) 

where the parameter 7 depends upon the value n of plastic porosity, i.e.,
 

A *
 
= X(np). (4.27)
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Our concept of a yield surface Y, for the soil is given by (4.26). Note
 

that along the yield surface the plastic porosity has a constant value
 

np, i.e., for all states of stress which locate points on' the value of
 

the plastic porosity is the same. In particular we can find a yield
 

surface such that the value of plastic porosity associated with it is given
 
* = 0 

by (4.22), i.e., nP nP . We call such yield surfaces "volumetric yield 

surfaces" and denote them by T . Thus a volumetric yeild surface is 

characterized by
 

A (np) (4.28)
 

Also since with each no we can associate a mean pressure p we can also
 
p0 

characterize volumetric yield surfaces by
 

4.
+((4.29)
 

If we consider another equi-plastic porosity curve in E its projection
 

in stress space is given by an equation of the form (4.26) but with a
 

different yield domain and, of course, a different value of the parameter
 

corresponding to a different value of plastic porositfy. In addition, since
 

for all states of stress on a given yield surface, the plastic porosity is
 

constant, it follows that the change in porosity C is also constant. We
 

have envisioned soil as a work-hardening material. Thus in order for plastic
 

deformation to occur, the stress point must move outside the yield curve,
 

i.e., the initial yield point must be exceeded. A new yield curve is then
 

established which, depending upon the shape of the state boundary surface 5,
 

may or may not resemble the old yield curve. We shall also show below that
 

the yield surface for soils is not a closed surface.
 

With our concept of a yield surface the loading and unloading criteria
 

are respectively given by
 

tr A(T A)T < 0, A(TK) = 0 

(4.30) 

tr A(T~na' > 0, A(T,a) = 0 
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while the neutral loading is given by
 

tr bTA(T,x)T = 0, A(T,A) 0. (4.31) 

An important ingredient of plasticity is that of Drucker's postulate
 

of stability of material [3]. This postulate is used to classify a material
 

as a work-hardening material. According to this postulate, if an external
 

agency applies a small surface fraction which alters the stress at each point
 

by T, then upon gradual application and removal of this surface fraction
 

trTE 0 (4.32)
 
-- p
 

if the material is work-hardening. Important consequences of Drucker's
 

.postulate are [31:
 

(i) The yield surface and all subsequent loading surfaces must be
 

convex.
 

(ii) The plastic strain increment vector must be normal to the loading
 

surface at a regular point, and it must lie between adjancent normals to
 

the loading surface at a corner of th& surface.
 

The normality condition (ii) implies that at smooth points on the
 

yield surface
 

= D(T,K) (4.33)
-p
 

where X is a function of the deformation history and is such that (4.33) is
 

homogeneous in time and
 

D(T-x) = 6TA(T,X). (4.34) 

We can also write the yield surface in the form
 

A(p,6,%) = 0 (4.35) 

The normality condition then leads to
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p. 

(4.36) 
p ­

=P Xa(p'5;) 

where 

A 

"= (4.37)
 

p ­

and e is the plastic strain deviator, Tp the plastic volumetric strain
 
-p p 

given by 

e E p -'p 3- p 
(4.38)
 

cP = tr Ep, tr pe = 0. 

We note that the dependence of 2 on7 must be such that 
A 

tr D(pta) = 0. (4.39) 

We shall now indicate how the Mohr-Coulomb failure criteria may be
 

used together with our concept of the yield surface. The Mohr-Coulonb
 

failure criteria states that the-magnitude of the shearing stress'T on any
 

section through a mass of an isotropic cohesive soil must not be greater than 

an amount which depends linearly upon the normal stress a acting on the
 

section. This condition is expressed as
 

- c + G tan @ (4.40) 

where c is the cohesive and the angle of friction of the soil. Failure 

can occur when the equality sign in (4.40) holds for some section through 

the soil. Shield [41 has constructed a surface in principal stress space 

corresponding to
 

T c + a tan (4.41) 
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Letting C1Co2,o3 be the principal stresses with UI 02 > 03, Shield E41 

finds that the surface is a right hexagonal pyramid equally inclined to 

the a, a G axes and with vertex at the point I = CF = G -c cot 
1'2' 3 1 2 3
 

(Fig. 4). When the stress point of the soil is on this surface, the soil
 

mass is said to be on a-failure condition. The significant feature of the
 

failure surface is that it is not a closed surface in stress space -but
 

rather an open.surface. Consequently it divides stress space into two
 

regions I and II. Stress points in region I are such that the inequality
 

< c + C tan " (4.42)
 

is violated and consequently such states of stress are not possible for the
 

soil since by definition the soil has failed. On the other hand, points in
 

the region II are such that the inequality (4.42) holds and consequently
 

equilibrium of the soil mass is possible. However, since soils yield
 

before they fail, all points in region II in the vicinity of the failure
 

surface also lie in some yield surface. Scr a soil which has work-hardened
 

isotropically two possibilities arise: (1) ? is tangent to the failure
 

surface, or (2) ' traverses the failure surface. If the possibility.(1)
 

prevails the plastic increment vector at the tangent point will be normal
 

to both surfaces. Considering that the use of normality of the plastic
 

strain increment vector to the failure surface gives erroneous predictions
 

of high rates of change of volume during shear distortion we disregard
 

the possibility (1) above. Therefore the failure surface is traversed by
 

the yield surface. This indicates that stress points can only lie on a por­

tion of the yield surface, that portion which lies in region II.
 

Consequently, the yield surface is not a closed surface.
 

We now assume the soil to be isotropic. We further assume E to be
,r
 

linear in T. Therefore (4.13) has the representation
 

S a
 E = (a r)tr T)l + a2(r)T (4.43)
 

where aI and a2 are functions of the change in recoverable porosity. Letting
 

2 =
 J2 = trt J3 trl 3, (4.44)
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(4.18) reduces to
 

=gg (p ' J20 J3) (4.45) 

Also we assume the soil to be isotropic work-hardening material and use the
 

form (4.35) of the yield surface. Thus
 

A A (.6
A(p,T, K) = A(p, J2 ' 3 ) (4.46) 

From this follows
 

A( /K'r j

D(p,vrt) 2 A(p,j 2 ,j 3 ,siy+ 3a8 P~ 2 3 3 (4.47) 

and consequently
 

tr f(p,V,h) = 3 A(P,J,J, h)J.
-r J ~, 232'13
 

that J2 0, this last equation leads to
 

3(P,J2 ,J 3 ,t) 0 (4.48)
 

In view of (4.39) and the fact 2 


or equivalently that A must be independent of J3' Consequently (4.35) reduces
 

to
 

0. (4.49) 

Considering that
 

2 = 1 2 3 2 = tr T2 (4.50)
 

we can write (4.49) in the form 

A(p,J 2 ,K) A(p,1 2 ,X) = 0 (4.51) 

or using principal components of stress 

A(p,1 2,) =A ( 0 2'0 3,) = 0. (4.52) 
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We indicated at the beginning of the last section that (3.1) follows
 

under the assumption of incompressibility of the solid aggregate. A fornula
 

similar to (3.1) may also be derived by recognizing that fundamentally there
 

are two mechanisms that contribute to the deformation of the soil:
 

distortion of individual particles and relative motion between particles as
 

the result of sliding or rolling. If we assume that plastic deformations
 

are mainly due to the relative motion of the soil particles due to sliding
 

and rolling then a reasonable assumption we may make is that during this
 

motion the soil particles are essentially incompressible. Mathematically
 

this assumption is stated as
 

vP = 0 (4.53) 

where V is the irrecoverable part of the solid aggregate dilatation given
 
p 

by (4.10). In view of the ass mption (4.53) we obtain from (4.10)­

n 
- -PPp 1-n (4.54)
 

0 

which is a formula similar to (3.1).
 

Now considering that
 

AA A A. 
A ap + tr D + A Anp 0 

A 

where a and D are given by (4.37), we can write (4.54) in the form
 

e = A(ap + tr D7)D 

(4.55) 

(_ = A(ap + tr D1)a 

where
 

(1 - ,W -a (4.56) 

p
 

Thus under the assumption (4.53) the flow rule is given by (4.55).
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5. STRESS-STRAIN THEORY FOR TRIAXIAL COMPRESSION CONDITION
 

In this section we shall construct from the theory presented in the 

previous section stress-strain relations for the independent interpretation
 

of triaxial compression condition. With reference to Fig. 4 we assume, that
 

in a triaxial compression condition, the non-vanishing physical components of
 

the stress tensor to be
 

ai, a2 a3 

We further assume a homogeneous stress field in which case it follows.from
 

equilibrium that
 

C1 =C 2 . (5.1) 

Under these assumptions the mean pressure and physical components of the
 

deviatoric stress tensor qi (i = 1,2,3) are
 

1 2
 
p=(3 +20 2 ) , q3 ' (33 - 1 )
 

(5.2)
 

ql = q2 - q3"
 

If we assume an isotropic material then the principal directions of the
 

stress tensor and strain tensor coincide. The non-vanishing physical com­

ponents of the strain tensor are then given by
 

cI = e2 3 

and the physical components of the strain deviator by
 

=
e 3 3 

(5.3) 
e =e = - 3e 

ewher 2 33s 

where CQis the volumectric strain. 
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We can write the stress power of the soil mass in the form,
 

D = tr T E = tr + p. (5.4) 

Using the principal components of T and e we bring (5.4) into the form
 

D = qe + pC (5.5)
 

where
 

q03 - a ,l e = e3. (5.6)
 

The form (5.5) suggests that in a triaxial compression condition the
 

generalized stress and strain parameters be (q,p), (e,cp). Accordingly we
 

decompose (e,cp) into the sum of recoverable and irrecoverable parts,
 

e=e +e
 
r p 

(5.7) 

CP Pr + CP 

and construct a yield function in q-p space.
 

In two dimensional stress space the yield surface reduces to a curve
 

and the Mohr-Coulomb failure surface to two straight lines meeting at a point
 

on the p-axis. In Fig. 5 we show these two lines for a cohesionless soil
 

(c = 0). The angles I 2 are defined by
 

tan - 6 sin t 6 sin (
1 3 - sin tan 2 - 3 + sin @ (5.8) 

where § is the angle of internal friction of the soil. We note that the two
 

Coulomb lines OCl OC2 divide q-p space into two regions I and II. In Fig. 5
 

the current yield locus N is the curve FIF 2 which traverses the p-axis at po.
 

Recall that along the yield curve the value of the change in porosity is
 

constant. This value of the change in porosity can be obtained from the
 

soil virgin consolidation line which is obtained through another experiment.
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Without loss of generality we take 22 and introduce the dimension­

less quantities
 

M = tan i 

N = (5.9)PO
 

p
 

The value of p,q at the point F1 is then given by
 

q= (5.10)
 

where'a bar over a quantity indicates that these are the values of q,p when
 

the soil is in a failure condition. We also introduce the dimensionless
 

quantity Nf defined by
 

Nf = i(5.11i) 

f 
 PO
 

We note that whereas M is a constant for the soil, Nf is constant only for
 

a particular yield. However for lack of experm4tal evidence to use as a
 

guide we shall consider Nf to be a constant for the soil. This assumption
 

in itself suggests experimentation.
 

We shall assume the current and subsequent yield locii to be symmetrical
 

about the p-axis aid to be segments of ellipses which pass through the origin.
 

It can then be shown that the equation of the ellipse is
 

-2 
N 2 K2 (5.12)
 

M + Kfl 

where
 

K - Nf 

Nf (5.13) 
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Thus the current yield locus is given by (5.12). In (5.12), p appears as­

a parameter that we may use as a strain-hardening parameter. This being the
 

case the yield locus will be a volumetric yield locus. The dependence of
 

p on n has to be determined in order to obtain a flow rule associated with
 
0.p
 

(5.12). To this purpose we assume that the virgin consolidation line of the
 

soil when plotted on C-in p space is given by Terzaghi's well known equation
 

C= -X ln(p) 	 (5.14)0. Pi 

"
 

where X is a soil constant and pi is the consolidation pressure of the soil
 

in its reference state. We also assume the elastic swelling curves to be
 

straight and parallel lines of slope K when plotted on Cln p space. we can
 

then show that the construction depicted by (4.22) leads to the following
 

relation
 
-n 

pO = Y exp(- ) 	 (5.15)

Y 

where Y is the initial yield pressure under confined consolidation and
 

y = - K. 	 (5.16) 

In order to construct a flow rule associated with (5.12) we assume that
 

(4.54) holds. We can then show that the coefficient of proportionality
 

in (4.36) is given by
 

YPo ' 2Kn 	 )M2 + Kn2, 
Xf 2 2)(.7X (1-n) cp + 2 2) + -	 (5.17) 

The plastic strain 	rates can then be shown to be given by
 

- Y 2KT + 2KrM
 

p (-0n) M2. KT 2 M2 + K 2)
 

(5.18)
 

Y p 2K1f
 
p (1-0) p 2 + K "
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Having obtained expressions for the plastic strain rates the next order of
 

business is to obtain expressions for the recoverable strain rates. It can
 

easily be shown that (4.43) and (4.45) reduce to
 

er= a3(Cr )qer
 

- r = 3a4 (r)p (5.19) 

= 
Cr g (p'q)
 

where
 

2
 

a3((r) = 
2(c). a4 (C) 3al(c) + a2(cr) (5.20)
 

For lack of experimental information regarding'the dependence of C on
r 

q we assume
 

qg (p,q) = 0 ,(5.21)
 
q 

i.e., g is independent of q. It follows that
 

= Cr 9A(p). (5.22)
 

This being the case, we have already assumed the form of (5.22). Equation
 

(5.27) describes the elastic swelling curve. Consequently
 

(5.23)
 

Using (5.19)2 (5.22), and (5.23) we find
, 


= K*(Cr,p)2 (5.24)
r p
 

where
 

W(r p) - 3p(a 4 (cr) - ra4 (Cr)). (5.25) 
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If we assume that there is no recoverable energy during shear distortion
 

then
 

r = 0. (5.26) 

The final stress-strain relations for triaxial compression condition
 

Are obtained by combining (5.18), (5.24), (5.26), and (5.7),
 

e =( 1 Y 2)_( 2 

0 r ( -o M2 -
_) + M 

M2 + KY2 

(5.27) 
1 2YKr ',p)-R) 

r p (1-n) k22(2++ r 

where
 

X*(Cr p) Y + K(l-no)(cp). (5.28)
 

Let us now consider the following form of the material function a4(Cr )
 

appearing in (5.19)2,
 

= (exp Cr - exp(r)) (5,29) 

where R is the residual pressure, i.e., the pressure experience by the soil
 

when it has been held at rest in its reference configuration at all times.
 

The assumed equation of the elastic swelling curve is
 

-Cr 

p = R exp(--) . (5.30) 

Substitution of (5.29) and (5.30) into (5.19) yields
 

-
K _ -exp_ K)Cr( I


=
Pr (1-n )(1-K) K (5.3)Kp( -). 


If we expand the exponential function into a power series we can write (5.31)
 

in the form
 

Ir+ (C2) 
r (-n 0r0) ( 
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But since we have assumed cPr and r- to be of the same order of-magnitude, 

it follows that 

(1-no)P r (5.32) 

which is an equation of the form (3.1). Therefore if we assume (5.29) we 

may replace (5.19)2 by (5.30) which may be written in terms of q)r as 

Kr 

r (1-no) 
In (R). -(5.33) 

Under the assumed form (5.29) for a4 (cr), the function (Cr p) given by 

(5.28) reduces to
 

(r 'p) = K. (5.34) 

In this case equation (5.27)2 reduces to
 

1 2YK1 +x )5.35) 
(I-no) (M2 + KI2 op ( 

while (5.27)1 remains the same.
 

Let us assume the particular value of for the coefficient Nf given 

by (5.11). In this case K - I and the yield locus and stress-strain relations 

(5.27), and (5.35) reduce to
 

M2
 

N M2 2" 
14 +fl1 

S- Y 2T1 p, 2T ) (5.36) 

(1-n) (M2 02 (_ K+5 36)+T 

1 2Yfll
 
(i-no) (M2 2 +x .2 

1+ 112 

If we assume the line OC1 in Fig. 5 to be critical state line+ instead of a
 

+S'ee Schoffield and Wroth £6] for a thorough treatment of the critical 
state concept in soil mechanics. 
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Coulomb line then (5.36) is identical to the Cambridge triaxial compression 

theory presented by Roscoe and Burland [5] for "wet" clay. We must point 

out that Roscoe and co-workers at Cambridge have, for the past decade, 

concentrated considerable effort to arrive at self-consistent constitutive
 

relations for soils. The reader is referred to the recent article by
 

Roscoe and Burland [5] for an account of the work at Cambridge.
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SECTION III
 

ON A YIELD SURFACE FOR SOILS
 

1. INTRODUCTION
 

In 1952, Drucker and Prager [3] introduced-an idealization for the
 

phenomenological behavior of soils under load., In this idealization the
 

soil mass. is treated as, a perfectly plastic material with the,Mohr-Coulomb
 

failure.criterla for soilsas a yield function with-which a flow rule can
 

be associated. Volume changes predicted under this idealization, however,
 

were higher than those found by experiments. Based on observations made
 

on pressure-volume change curves Drucker, Gibson, and Henkel [4] explained
 

how soils could be treated as a work-hardening material. Roscoe and
 

co-wDrkers at Cambridge have indicated that certain soils can be described
 

remarkably well by a simple isotropic work-hardening idealization: The
 

work at Cambridge is discussed in considerable detail by Roscoe and
 

Burland [2],
 

'Aguirre-Ramirez and Costes [I] presented a self-consistent phenomeno­

logical theory for the mechanical behavior of granular media which shows
 

stress-strain behavior of the type discussed by Drucker, Gibson, and
 

Henkel [4]. As an example a yield surface and associated flow rule, for
 

triaxial compression conditions, was constructed in []. It was also
 

shown in [] that the Cambridge triaxial compression theory developed by
 

Roscoe and co-workers [2] comes out as a special case of this theory.
 

In this paper we generalize, to complex stress fields, the special
 

triaxial compression theory presented in El]. We have been encouraged to
 

do so in view of the fact that the Cambridge triaxial compression theory
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of Roscoe and co-workers has been found to give reasonable agreement with
 

experimental results. Accordingly in Section 2 we briefly review the
 

theory of soil plasticity presented in [I]. In Section 3 the special
 

triaxial compression theory of [iJ is also reviewed. This theory is gen­

eralized to three-dimensional complex stress field in Section 4. Recog­

nizing that many soil mechanic problems can be idealized to plane-strain
 

situations we present in Section 5 a theory for plane-strain. In Section 6
 

we compare both the three-dimensional and plane-strain theories to those
 

of Roscoe and Burland [2] and find perfect agreement.
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2. PRELIMINARIES
 

We consider the particles of a dry soil mass continuum to
 

be referred to a fixed rectangular Cartesian system x. (i=1,2,3)
 

and let u denote the displacement field. The linear strain tensor
 

Yij is then given by
 

Yij = i/2 (ui,j + uj, i) (2.1) 

where we have denoted partial differentiation with respect to x. 

by ( ) We also let n,n0 denote the current and initial poro­

sity of the soil mass continuum respectively and define the 

change in porosity ; by 

= n - no. (2.2) 

We further assume to be of the same order of magnitude as the
 

linear strain tensor yij.
 

Earlier we have defined yield in a soil to be a permanent
 

irrecoverable deformation [1].. The strain may then be written
 

as the sum of an elastic or recoverable part yjj and a plastic
 

or irrecoverable part yi'
 

Yijj= yj + y. (2.3)
 

In addition we shall assume porosity to be given as. the sum of
 

an elastic or recoverable part n' and a plastic or irrecoverable
 

part n",
 

n = n' + n" (2.4) 
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In view of this assumed resolution we shall have for the change
 

in porosity
 

;= ' + n" (2.5) 

where Q = n' - no. 

According to the ideas set forth in [1] the irrecoverable
 

deformation of the soil is described by the pair (yij"' n").
 

The theory of soil plasticity presented in [1] is wholly dependent
 

on the hypothesis that there exists a unique function F of plastic
 

porosity n" and Terzaghi's effective stress °ij such that
 

F(aij, n") = 0. (2.6) 

In plastic porosity-stress space (2.6) defines a six-dimensional 

hypersurface z which was called in [1], the state boundary sur­

face. A soil particle was then said to be in a plastic state if 

the value of the stress and plastic porosity are such that (2.6) 

is satisfied.
 

A yield surface Q for the soil was defined in [1] to be the
 

projection on stress space of curves on Z along which the plastic
 

porosity has the constant value E". This is given by
 

A(o.j, k) = 0 (2.7) 

where 

k = k(n") (2.8) 

is the strain-hardening parameter. The flow rule associated
 

with (2.7) is given by
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"'D (ij' k) 	 (2.9) 
mr
 

wherex is a function of the deformation history and is such that
 

rr 


(2.9) 	is homogeneous in time. Also in (2.9) 

Dmr(aij, k 9 (aij, k). (2.10) 
m mr 

We often find it convenient to decompose aij into the sum 

of its deviatoric part Tij and mean pressure p, 

aij = P6ij + Tij (2.11)
 

where 6.. is the Kronecker's delta and
 
13
 

p= 1/3 am Tm = 0. 	 (2.12)
 

Under the resolution (2.11) of the stress we may write (2.7) in
 

the form
 

A(p, tij, k) = 0. (2.13) 

The flow rule (2.9) then reads 

A 

X D (p, 	Ti, k)el= 


mr
 

where e" is the plastic strain deviator and
 

mr 

Amr (P , T ij , k ) = 3A (p , riJ ' k ) ( . 

D ~ (2.15) 
*z(p, tij, k) = - (p, Tij, k) 

ap 

Fundamentally there are two mechanisms that contribute to
 

the deformation of the soil: distortion of individual particles
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and relative motion between particles as the result of sliding
 

or rolling. We assume that soil irrecoverable deformations
 

are mainly due to the relative motion of the soil particles due
 

to sliding and rolling and that during this motion the soil
 

particles are essentially incompressible. It can then be shown
 

that under this assumption [1]
 

(2.16)
n il 

(1-n


0 )
 

The flow rule (2.14) may now be written as
 

mr r A(Dij jiir+ ap)D (2.17)
 

A S 

= A(Di tji + a) -a 

where
 

A -(1-o) 3A 3k -1 
A-[(=-n 0)a A - (2.18) 

Dk Dn" 

The recoverable strains y' and porosity n' may be computed

mr 

through the soil elastic constitutive equations [1] 

y' = y (. , -') 

m~r 1W ((2.19) 

'= c'(o. .).
13
 

For an isotorpic soil for which the strains are linear in aij,
 

(2.19), has the representation
 

mr 
Sa 1(')ai i + a2( ')Gmr (2.20)
 

where al, a2 are material functions of recoverable porosity C'.
 

We may also write (2.20) in the form
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e' = 2( -'Ir (2.21) 
mr mr
 

ymm= 3a3 )p 

where
 

a3( ) = 3aj(c') + c 2 ('). (2.22) 

The following form of (2.19) was assumed in [1]
 

= - ln(R) (2.23) 
K
 

where K is a soil constant and R is the residual pressure, i.e.,
 

the pressure experienced by the soil when it has been held at
 

rest in its reference configuration at all times. We note that
 

in view of (2.23) we may write (2.21)2 in the form
 

ym= 3Ra 3 (') exp--.) (2.24) 

which relates volumetric strains to recoverable change in poro­

sity. In [1] it was shown that under a suitable chosen function
 

a3 the relation (2.24) can be reduced to
 

' = - C (2.25) 

(1-n0) 
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3. TRIAXIAL THEORY
 

In this section and for the duration of the paper we shall
 

consider the soil mass to be isotropic. We shall also use the
 

convention that compressive stresses will be taken as positive.
 

We consider the family of deformations y such that when
 

referred to a suitable set of orthogonal axes
 

= ymr 0, m r 
(3.1) 

" 1 -- Y22-

Such deformations are called triaxial deformations. Since we
 

have assumed the soil to be isotropic it follows that the prin­

cipal directions of the strain and stress tensor coincide. This
 

being the case then it follows that under triaxial deformations
 

.the components of the stress tensor take the particular form
 

Gr = 0, M 74r (3.2) 

all = a 2 2 . 

It can be shown [1] that under triaxial deformations a suitable
 

set of generalized stress and strain parameters are (q,p), -(,6)
 

where
 

q = 3 3 - a11  p 1/3(a 3 3 + 2cr1 ) 

s = 2/3(Y33 - Yi) , = Y33 + 2 7yi 

In terms of these generalized parameters, the stress power is
 

given by
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D = q + . (3.4) 

We consider the following invariant of the deviatoric
 

stress tensor
 

J =t T(3.5)' 

mr rm 

It can be shown that in a triaxial stress field j is given by 

2J = 2/3(a 3 3 - a 1 1 ) 2 2/3 q . (3.6) 

The octahedral shear stress T is related toJ through 

To = (3.7) 
3 

In a triaxial stress field (3.7) reduces to
 

To = q. (3.8) 

Equations (3.6), (3.8) give meaning to the stress parameter q
 

in terms of invariants of the stress tensor.
 

The strain measures e, e may be decomposed into the sum of
 

recoverable and-irrecoverable parts
 

E = ' + El , = 6' + 8". (3.9) 

In [i] a one-parameter family of yield curves was constructed
 

in q-p space for a cohesionless soil with an angle of internal
 

friction at failure. A member of this family is shown in Fig. 1
 

and is given by
 

__ M (3.10)
 
2
 

+Po M2 Kn
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where n = q/p and
 

6 sint Po - Pu (3.11) 

3 - sin Pu 

Here Pu is the value of the mean pressure at failure at a change
 

in porosity ; and P. represents the pressure corresponding to
 

on the virgin isotropic compression curve of the soil. The para­

meter of the family was taken in [1] to be po and is given by
 

=
P0 Y exp n (3.12)_
 

where Y is the initial yield pressure under confined consolidation
 

and
 

= l0 - (3.13) 

X0 being a soil constant.
 

Under an assumed constant value of K the following flow
 

rule was established in [1],
 

8 2Kj ) (j + 2K. ) (3.14)

2


M2-K 2 p M2+Kq
(1-no) 


- , -_L (P+ i
 
M'+Kn2
 

(1-no) p 


In [1] we indicated that the yield curve given by (3.10)
 

and associated flow rule (3.14) reduce to the "Cambridge" triaxial
 

compression theory presented by Roscoe and Burland [2] if we
 

interpret the line OC in Fig. 1 as a critical state line instead
 

of a Coulomb line and if we take K = 1.
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4. THREE DIMENSIONAL THEORY
 

The yield curve given by (3.10) and associated flow rule
 

(3.14) is in terms of triaxial compression stress parameters
 

q-p and as it stands it is only good for analysis of triaxial
 

deformations under a triaxial stress field. In general, however,
 

it is desirable to obtain a yield surface and associated flow
 

rule to analyze deformations under complex stress fields. Now
 

for an isotropic work hardening material (2.13) reduces to [1]
 

A(p, J, k) = 0. (4.1)
 

To obtain the yield curve (3.10) in terms of stress in­

variants we use (3.6)'to arrive at
 

p _(4.2)
 

p 0 2+K 2
 

where
 

0 = 2/3 M , 2 = -- (4.3) 
p.
 

We see that (4.2) is of the form (4.1) with the strain hardening
 

parameter Ik identified with P0. We can also write (4.2) in the
 

form
 

To = f(p; pa) (4.4) 

where To is the octahedral shear stress and
 

f(p; Pa) = L p(p, - 1)1/2 (4.5) 
Wp
 

We also note that by using (2.16) and (3.12) we may write (4.2)
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in the form
 

=	 p 2 K C2)  
8" ~E [ ,2--Li- (4.6)
 
(l-n0) y 2
 

It can easily be shown that the flow vector associated
 

with the yield surface (4.2) is given by
 

S+6K, 	 (P-+ 2K4
 
T	 K 2 
mr 	 3 ( Jmr Sa p +- .02+K 2 (4.7)3(1-n)p(n D2 -K 2) % 


where
 

g(E) 	= D2 - K(E2 + 6). (4.8) 

Let us assume that there is no recoverable energy during
 

shear distortion, then
 

(4.9)
1/2 6' 6mr.
r 


Also 	combining (2.24) and (2.26) we obtain
 

' = in 	 (4.10)i--- (2) 

(1-n0 ) R
 

Therefore 

6 - [ ln(2_L+M)) + Kln()] (4.11) 

(1-n0 ) yp2 R 

and
 

;M1 (pg()6mr + 6Kamr) + K 6mr(4.1 2 )
3pC(2KE2 ) 3(1-n 0) p 

Here
 

o 	 2K9) (4.13)
 

(1-nO) p D2+KC2
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To the above equations we add the equilibrium equations
 

+ Xi =
 a, . (4.14) 

where X, is the body force, and the strain rate-velocity relations 

Ymr = l/2 (Vm,r + Vr,m) (4.15) 

where v= ur are the components of the velocity vector. Equa­

tions (4.6), (4.12), (4.14) and (4.15) form a system of sixteen 

equations for the sixteen unknowns mr' G", amr and vr. 
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5. PLANE STRAIN
 

In this section and for the duration of the paper Greek
 

indices will have the range from 1 to 2. We further consider the
 

case in which the soil constant K is negligible in comparison 

with X0. Under this assumption the elastic response is negligible
 

and we may set
 

YLr = 0. (5.1) 

.Consequently
 

(5.2)
Ymr Yr 


and we may drop the double primes to identify the irreversible
 

strains.
 

A state of plane strain is characterized by the assumption.,
 

uc = u(xl, x2 ) (5.3) 

U3 = 0
 

It follows that for plane strain
 

=
ym'3 0 ,my = 0 (5.4) 

and therefore
 

66 = Yau ata (5.5)
 

Now in view of (5.1) the constitutive relation (4.12)
 

reduces to
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(pg( )6 r + 6Kra )". (5.6) 
mr3p(4 2-KE) Mrpa 

Also considering (5.4) we obtain from (5.6) the pair of equations
 

a1 3 = a23 = 0 (5.-7) 

pg(g) + 6Ka 33 = 0. (5.8)
 

Equation (5.8) is a quadratic equation in U33 which may be
 

solved to obtain a 33 as a function of aB" However, since a,,,
 

a33 must also satisfy (4.2) we may combine (4.2) and (5.8) so as
 

to obtain
 

3pD2 -2(02-3K)a (59) 

2 (j2+6K) 

where
 

(5.10)
= .e" 


With G3 given by (5.9) the mean pressure is given by
 

Sp 
 = 6ir+po0 2 (5.11)
 

2 (D2+6K)
 

Using (5.9)and (5.11) we reduce (4.2) to
 

2
q]012 + C2a + C3p0a = i/4"p 2D4 (5.12) 

where
 

= 
K((D2 + 6)
 

C = (D2 -3K) (,2-3K+9K2) (5.13)
2 


(02+6K)
(l-K) (0 -3K)
 

CS = -3D 2 (1 +
 
@2 + 6K
 

C 
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and
 

12 = ao a . (5.14) 

Equation (5.12) describes the yield surface in plane-strain.
 

Now from (5.12) we find
 

(2Czo +(2C2a+C3p0 )d )c (5.15)
 
2
(-n0)(p 0 . 

4 -2C 3apO) a$ a$
 

where we have used (2.16), (3.12), and (5.1). We can then show
 

that with the yield locus (5.14), the associated flow rule is
 
=e 1Co2s0 (2Ciao+C2C a+C3P0)6 )6 (5.16)
 

(C4aY+2C 3P0 )
 

where
 

C4 = 2C, + 4C . (5.17)
 

To the above equations we add the strain rate-velocity and
 

equilibrium relations
 

Y'a 1/2 (v ,8 + va) (5.18) 

+ X2 = 0. 

Equations (5.12), (5.16), and (5.18) form a system of nine equa­

tions for the nine unknowns pa, ae I a', and v.t
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6. COMPARISON WITH THE "CAMBRIDGE THEORY"
 

In this section we shall compare the threedimensional
 

theory of Section 4 and the plane strain theory of the previous
 

section with the corresponding theories presented by Roscoe
 

and Burland [2].
 

In order to make the comparison we must point out that
 

Roscoe and Burland [2] use only principal components of the
 

stress and strain tensor. Using principal components of stress
 

the invariant j is given by
 

3)2
J = l/3[(oa-a 2)2 + (a2-r + ( 3-aI) 
2 ] (6.1) 

and is related to the stress parameter r used in [2] by
 

r = CJ .	 (6.2) 

Therefore 	from (4.3), r/p and for K = 1, (4.2) reduces to 

P D (6.3)02 


Pa D2 + 2 

which is the equation for the yield surface of the three-dimen­

sional theory given in [2.
 

Now combining (4.10) and 4.13) and setting K = 1 we obtain
 

1 [~fL+ KR 	 (6.4) 
E 2
(1-n0 ) 02 	+ p
 

which is the equation given in [2] for the volumetric strain
 

increment.
 

We consider the invariant c of the increment of irrecoverable
 

deviatoric strain given by
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( ) 2 = I . o 

mr rm
 

Since we have assumed = 0 we may write this as 

(' = S £ (6.5) 
rm
mr 

Using principal components of total strain, s is given by 

- [(&1- ±)2 + (+2 3) # (4_51) ]1/2 (6.6)
/Y
 

Roscoe and Burland [2] use s as a strain-increment parameter. 

Now from (4.7) we can show for K = 1 

(6"7
mr 2Tmr 
S= Ct, (6.7) 

and from this equation we find
 

(6.8)
 

Substituting. (4.13) into (6.3) and setting K = 1 we find 

" __ ( 2) (p_ + 2 2) (6.9) 

(1-n ) 02_E2 p '+ 

Equation (6.9) is the equation given in [2] -for the strain­

increment parameter .
 

We observe that we may combine (6.7) and (6.8) so as to
 

obtain
 

Emr T - (6.10) 

Since ' = 0 it follows thatmr
 

ymr = T + 1/3; mr . (6.11)mr r 
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Using principal components of stress and strain (6.11) is equi­

valent to the three equations
 

- - t o
Yi l/3 [(2 a0-c2-q,)£ +
f,
 

2= 1/3 [ 202- 3-Ca1I) + (6.12) 
r
 

y 3 l/3[(2a 3--- a 2 ) 5-+ a]
 
r 

which are the equations given in [2] for the three principal
 

strain-increments. Thus, for K = 1, the three dimensional theory
 

given in Section 4 is in complete agreement with the three-dimen­

sional theory presented by Roscoe and Burland [2) for "wet" clay.
 

We shall now compare the plane strain theory of the previous
 

.section with that given in (2]. The plane strain theory given in
 

[2] is derived under the assumption K = 0. This assumption w&s'
 

also made in the previous section. For K = 1, (5.9) reduces to
 

2
033 3po° - 2(@2-3)a (6.13) 
2((2+6)
 

which is the equation given in [2] for the determination-of c .
 

Also for K = 1, (5.12) reduces to
 

.
(2+6)I2 + (@2-3)a2 - 3&2p0o = 1/4 p0 2 ,
4 (6.14) 

Using principal components of stress we reduce (6.14) into the
 

'form
 

(2,2+3) (012+a22) - 3@2P0 (a1 +a2 ) + 2(D2-3)O 12 = 1/4 p0 2,D 

(6.15)
 

which is the yield curve for plane strain in 01-02 space given
 

in [2].
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Roscoe and Burland [2] introduce stress parameters t and T 

defined by. 

t = 1/2(a+2) , t = i2(o 1 -c 2 ). (6.16) 

Using experimental observations as a guide Roscoe and Burlahd 

[2] introduce the following approximation to (6.15);
 

,= 0(p - 1)/2 (6.17) 
t 

where 

1 -- (6.18) 
t r 

The incremental stress-strain relations, based on (6.17),
 

given in [2] are
 

'X0 2W4 t (6.19)
 

(1-n) Q2-"w 2 t
 

-0 =W2 

where
 

y =y 1 -y 2 . (6.20) 

In order to compare our results with those in [2] we find
 

it convenient to introduce Mohr's circle variables t, T, and ip
 

through
 

t 1/2(aii + a22 

1 / 2t= [1/4(o11 - 022)2 + o12012 (6.21) 

tan 2* -- . 
S1-0 2 

In terms of stress parameters t and T the yield locus given by
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(5.12) reduces to
 

2C I2 + 2(C +2C )t2 + 2C3P0 t = 1/4 p0 2#4 (6.22)

i a
 

where Ci (i=..1,2,3) are given by (5.13). For K-= 1, (6.22)
 

reduces to
 

6( 2t2 + 2(( 2+6)'T 2 - 642p0t = 1/4 p0204 (6.23) 

which is the equation for the yield locus given in-[2] in terms
 

of stress parameters t and T.
 

Equation.(6.23) may be put into the form
 

(1+cz) - P0- + (i - =. (6.24) 

0 23 t 12t 2
 

The expression (6.17) emerges from (6.24) under the following two
 

conditions: (i) q2/3 << 1 and (ii) C2p02/12t 2 << 1. It can be
 

shown that under these conditions
 

p(02 - E2 ) Z 2t(&22 - w2). (6.25)
 

In view of (6.25) we obtain from (5.6) and (5.8) with K 1,
 

the expression
 

o = 1 (ao - a 3 3 6 ). (6.26) 
= tC(S?_w 2) a0 e 

Using this expression we construct
 

7zz (6.27)
- ° = t(Q2_ 2) 

If we use principal components of stress and strain rate (6.27)
 

will reduce to
 

http:Equation.(6.23
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2 0. (6.28) 
(n 2 -W2 ) 

Now from the-equation obtained from (6.24) under the assumptions
 

i) and (ii) mentioned above we find
 

S (l 2 +w) (i + -6 ). (6.29) 

t n2 t f2+w 2 

However, since
 

*_(1-n)
 

P0 =po .
 

we obtain through (6.29)
 

- 10 (--- (6.30) 

2+w 2(1-n0 ) 0 t
 

Equations (6.28) and (6.30) are in complete agreement with (6.19).
 

Thus for K=l, the approximate plane strain theory extracted from
 

the plane strain theory presented in the previous section is in
 

complete agreement with that of Roscoe and Burland [2].
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SECTION IV 

AXISYMMETRIC PLASTIC FLOW
 

1. INTRODUCTION
 

The present investigation in theoretical soil plasticity is concerned
 

with ideal soils whose postulated mechanical behavior is an approxi­

mation to that of a wide class of natural soils. It is the object of
 

this investigation to provide a theoretical analysis, valid under cer­

tain mathematical and physical assumptions, that has applications to a
 

fairly wide class of problems that concerns the general situation of
 

quasi-static axially symmetric plastic flow.
 

2. PRELIMINARIES
 

We consider the particles of a dry soil mass continuum to be referred
 

to a fixed rectangular Cartesian system xi(i = 1,2,3) and let u denote
 

the displacement vector field. The components of the linear strain
 

tensor yij are then given by
 

2yij = aui + alui (2.1) 

We also let n, ijo denote the current and initial porosity of the soil
 

mass continuum respectively and define the change in porosity § by
 

= n - no (2.2) 

which we assume to be of the same order of magnitude as the linear strain
 

tensor Yij.
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In an earlier work we defined yield in a soil as a permanent irre­

coverable deformation Ei]. The strain may then be written as the sum of
 

an elastic or recoverable part y7, and a plastic or irrecoverable part
 

Y = YiJ + 1j. (2.3) 

We shall also assume porosity to be given as the sum of an elastic part
 

P
n0 and a plastic part n ,
 

n = no + nP. (2.4)
 

In view of this assumed resolution we can write
 

= ge + nP (2.5) 

6
where g0 n - no. 

The theory presented in [I] is based upon the hypothesis that the
 

irrecoverable deformation of the soil is described by the pair (yir, nP).
 

Also in [1] we hypothesized the existence of a unique function F of
 

plastic porosity n P and Terzaghi's effective stress such that
 

F(aij, nP) = 0. (2.6) 

In plastic porosity-stress space (2.6) defines a six-dimensional hyper­

surface E which was called in EIl, the state boundary surface. A soil
 

particle is then said to be in a plastic state if the value of the stress
 

and plastic porosity at the particle are such that (2.6) is satisfied.
 

In the theory of soil plasticity presented in Ell a yield surface
 

for the soil was defined to be the projection on stress space of curves
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on 2 along which the plastic porosity has the constant value E9. This
 

is given by
 

A(u1j, a) 0 (2.7)
 

where
 

n = A(jjP) (2.8) 

is the strain hardening parameter. For a properly chosen yield sur­

face we can associate a flow rule by invoking Drucker's postulates [1,2].
 

We assume that soil irrecoverable deformations are mainly due to
 

the relative motion of the soil solid particles and that during this
 

.
motion the soil solid particles are essentially incompressible' It can
 

then be shown that under this assumption
 

OP = nP(29
 

(1 -no) (2.9)
 

where 09 YrMPis the plastic volumetric strain. We note that in view
 

of (2.4) it follows from (2.8)
 

K = K(p), (2.10)
 

i.e., the strain hardening parameter is a function of the irrecoverable
 

volumetric strains.
 

Until further notice we adopt the convention to consider compres­

sive stresses as positive. We further consider the stress field for
 

which
 

azr = 0, m # r (2.11)
 

C1i = C 2 2 
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Such a'stress field is called a triaxial stress field. In a triaxial
 

stress field it is convenient to use the set of generalized stress
 

parameters (q,p) where
 

q = ass - 711 
(2.12)
 

The soil mass that we consider is one that obeys the Coulomb
 

theory of internal friction according to which the strength of the soil
 

is limited by its ability to resist shearing stresses. In the two
 

dimensional q-p space the Coulomb failure surface reduces to two straight
 

lines F1 and F2 (Figure 1) meeting at a common point on the p-axis
 

and whose equations are
 

q M(p + c cot$) (Fi
 
(2.13)

(Fs)
 
q - -M(p + c cot) 


where c and are respectively the unit cohesion and angle of internal
 

friction and
 

M=3 3+ sine
6-sisin M = 36 sin$. (2.14) 

The lines F, and F2 (Fig. 1) are respectively the compression and tension
 

Coulomb failure lines. We introduce the parameter N defined by
 

N = N(p) = M(l +.- cot$) (2.15)
 
p
 

We shall use this parameter below.
 

In EiJ a one-parameter family of yield curves was constructed in q-p
 

space for a cohesionless soil (c=O) under the assumption that M = Mi.
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We carry this assumption into the present study and consider the follow­

ing curve in q-p space (Fig. 1),
 

2 Nu
2 ? (2.16)

2
Po Nui + Kfl


where ' q/p and
 

Nu= N(Pu)
 

K =o 2 (2.17)
 

Pu
 

Here p, is the value of the mean pressure at failure at a change in
 

porosity § and Po represents the pressure corresponding to § on the
 

virgin isotropic compression curve of the soil. Equation (2.16) defines
 

a one-parameter family of curves. For the parameter of this farwily we
 

take Po which we assume to be given by
 

Po = y exp (-. ) (2.18) 

where Y is the initial yield pressure under isotropic compression and
 

is a soil constant. We can also write (2.18) in the form
 

=
Po Y exp (Xe') (2.19)
 

where X (l-no)/.
 

The yield locus given by (2.16) is in terms of triaxial stress field
 

parameters (q,p) and as it stands it is only good for analysis under this
 

particular stress field. Let us introduce the invariant
 

J = Trb Trm (2.20)
 

where Trm is the stress deviator. We also introduce the parameter
 

through
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2 -(2.21) 
p
 

where now 3p = ama. We can then show that the expression
 

(2.22)
 
po + Kg2
 

will reduce to (2.16) in a triaxial stress field. Here 

=/2 N (2.23) 

Combining (2.22) and (2.19) we obtain
 

OP = n C p( a + K Z) ](2.24)
 
(1-no) 7-(
 

The requirement that in stress space the strain-rate vector be
 

normal to the yield surface leads to the following
 

• = 2K
 
rM pO - K 2 ) Trm (2.25) 

where e.m is the plastic strain deviator. Also from (2.24) we obtain 

2K t (2.26)
(1-no)
 

where we have assumed K to be constant.
 

We consider the stress states Cjj for which p Pu. We call such 

states, limiting stress states. For arj a limiting stress state (2.22) 

reduces to 

2 §2
J = p H(p + c cot$)'. (2.27) 

Also in this case (2.25), (2.26) reduce to 
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•;P 21 ,M6
 

(2.28)
 

(1-no) (+) p
 

We recall that the theory of earth pressure is based upon the
 

concept of states of limiting equilibrium satisfying Coulomb's law of
 

failure [3]. The defect of the theory, however, lies in its develop­

ment without constitutive relations. Thus in the-theory a stress field
 

can be found, in principle, without explicit knowledge of an acceptable
 

velocity field. The need for the necessity of a compatible velocity
 

field with a limiting stress field satisfying Coulomb's law of failure
 

led to the suggestion made by Drucker and Prager [4] of using Coulomb's
 

failure criteria as a yield criteria and to treat the soil mass as a
 

perfectly plastic material. Prediction of volume changes under the
 

idealization of a flow vector normal to the Coulomb failure surface,
 

however, were higher than those found by experiments. Below we shall
 

state our concept of associating a flow rule compatible with limiting_
 

stress fields.
 

Even though Shield L5] has shown that the interpretation bf the
 

Coulomb law leads to only one failure surface for three-dimensional
 

stress fields we find that (2.27) gives a convenient valid generaliza­

tion of the Coulomb law to three dimensions. Equation (2.27) defines
 

-asurface in stress space that we call the limiting surface. The set 

of stress points that lie on the limiting surface are not on one yield 

surface. However, each limiting stress point does lie on the curve 

defined by the intersection of some yield surface with the limiting ­

surface. Hence it is correct to associate a flow vector with each of 

the limiting stress points on the limiting surface. Here is the main 
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difference between our use of the Coulomb surface as a limiting surface
 

rather than a yield surface. The strain-rate is then not normal to the
 

limiting surface.
 

3. EQUATIONS FOR AXIALLY SYMMETRIC DEFORMATIONS
 

In a cylindrical coordinate system (re,z) we-denote by (Cr, Ce, 

T 5
T 0z rz, Tr) the components of the stress tensor, (r, 6G, z, Yez,
 

Yrz, YG) the components of the strain-rate tensor and (u,v,w) the
 

components of the velocity. We are interested in axially symmetric
 

deformations in which the z-axis is taken as the axis of symmetry.
 

Under the assumption of axial symmetry the shear stresses Tz , Tra ,
 

shear strain-rates YGz, yr0 and circumferential velocity v all vanish
 

identically and the remaining stresses, strain-rate components and
 

velocities are only functions of (r,z,t).
 

The straih-rate-velocity relations for axial symmetry-are
 

• u
au
 

0 r 
• w
 

Yz : + 

Also for quasi-static conditions the stress components satisfy the
 

equilibrium equations
 

7r + r o 

(3.2) 

6Trz + au + rz + P8 0
 
TrTF _
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assume the soil mass to be in a limiting state of equilibrium so that in
 

effect the stress field must satisfy (2.27) in addition to (3.2).
 

In view of (3.6) we may reduce (2.27) into
 

s = f(a) = a a sin 4 + a c cos­

or (3;8) 

s g(p) = b p sin 4+ b c cos4 

where 

3 a
3 ( + 39) sin' b= i +C, a sin (3.9) 

We can write ar, a, T rz in tdrms of the two independent variables s 

and 

Ur = ((s csc4 - ac cot4) + s cos2 
a
 
1I
 

aT - - s cos2 (3.10)I (s csa4 ac-cot$) 


T
 rz s sin2.
 

Also we can show that under the Haar-von Karman hypothesis
 

Ur - a s(cos2* - 3a) (3.11)
 

Substitution of (3.10), (3.11) into (3.2) leads to the two differential
 

equations for the two unknowns s and
 

as bs
 

(csc4 + a cos2I) + a sin2* ­

•° -

- 2as [ sin2tP cos2 1 (cos2 - 3a) ] =0 ar o24a - 2rcs~] 

(3.12) 
a sin2i -as + (csc4 - a cos2*) ­
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+ 2as I cos2* Lr + sin2* 6P + sin2* I + pag = 01 


Now from (2.28), (3.6), and (3.10), we obtain
 

3K sin2*
 
=4(1 K) a
 

(3.13)
 
[2K (1 K) 

(1-no)(1+K) s (p 

where we have dropped the identification of the plastic strains since 

we are neglecting elastic strains. 

The volumetric strain-rate G is given by
 

u w 
0 = r+ - + u (3.14) 

Combining (3.13), (3.14), and (3.1)4 we obtain
 

sin2* " + sin 24 + sin2 ur 0 (3.15) 

where
 

K(s) = 2(1 - K)b sin4 b 
 (3.16)
3K (s- be cos4) (3.16) 

Equations (3.12), (3.15) together with the equation of istropy (3.3)2
 

auau r aw
tan24 au 6w_ z FF-= 0 (3.17)
 

form a system of four equations for the four unknowns s,4,u, and w.
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4. STRESS AND VELOCITY CHARACTERISTICS
 

We examine the case for which 30 = -1, i.e., Cs = a.. For this case, 

al
 
(4.1)
 

b 3 
-sin4
 

Using-known methods we may obtain the equations for the character­

istics of the system of equations governing s and j. The slopes of
 

the characteristics in the z-r plane are given by
 

dz sin2* ± cos(

(tr)1, =cos2* + sin 

We see that the characteristics will be real and non-zero. It follows
 

that the system will be hyperbolic. It is convenient to introduce the
 

angle y through
 

=(4.3)
 

and to name the characteristic with slope tan(* - V) an a-line, and that 

with slope tan(* + cp) a -line, thus 

dz = tan(* ­
dra
 

(4.4) 
dz tan(4 + cp). 

dr5 

The a and $ characteristic directions are illustrated graphically in
 

Fig. 3.
 

The equations along the characteristics can be shown to be
 

cot~ds - 2sd - (pg cos(+cp) - 2-inc cosf)dS = 0 on a-line 

I 2s (4.5)= 0 on -line
 
+ -2Ssinc cos*)dS
42sd4+ (pg cos(-)
cot~ds + co(-)+­s0+(
cot~ds 
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where S. and S are arc lengths measured along the a and 0 lines
 

respectively. Introducing the quantity X defined by
 

X = cot4 In SO 
(4.6) 

where so is some reference stress, we may write (4.5) in the form 

dX - 2d* +-I (cos4 dr - (1 - sin4)dz) 

- -SO (sin$ dr - cos4 dz) exp (-x tan$) 0 an a-line 

(4.7) 

dX + 2dt +I (cosi dr - (I - sin4)dz) 

+ -8 (sin4 dr + cos4 dz) exp (-x tan$) = 0 on P-line.so 

We consider the case when * has a constant value 40 along a stress 

a-characteristic (say). In this case (4.7), becomes 

Hx - B exp (-X tan4) + = 0 (4.8) 
dr r 

where 

A = cos4 (1 - sin4) tan(' - 9) 

(4.9) 
B = (sin$ - cos4 tan(*, - cp)) _gso
 

The general solution of (4.8) can be shown to be 

S KS6 + Bsotan (4.10) 
,A tn4 + (i + A tan ) 

where K is a constant of integration. At a later time we shall refer 

to (4.10). 

The slopes of the characteristics associated with the system (3.i5), 

(3.17) are given by
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dz sin2 h. I-x2 (4.1
 

Tr 3 ' cos2V x 

where now in view of (4.1)2
 

2(1K sin$ (4.12)
 
3K p
 

We assdme x < 1. This being the case the system (3.15), (3.17) will
 

be hyperbolic with characteristic directions given by (4.11). By
 

defining the angle I through
 

- sin 21=K (4.1-3) 

we may write (4.11) in the form
 

- .dz 

(d)1 = tan(* - 4) 

dz" 
(4.14)
 

tan(* + $)
 

where
 

- (4.15)
 

Comparing (4.15) with (4.3) we see that in general the velocity charac­

teristics do not coincide with the stress characteristics. The equations
 

along'the velocity characteristics are
 

.dz " dz z 

du +-(= -1,2dw - (0os2* - sin2j))1 (sin2* - (_)1,2 cos 2*) - dz = 0 

(4.16)
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5. 	 INDENTATION OF SEMI-INFINITE SOIL MASS BY A 
LUBRICATED CIRCULAR RIGID CONE 

As an application of the theory presented we consider a problem
 

that is related to the cone-penetrometer test used in soil mechanics.
 

This problem is associated with the incipient plastic flow in a semi­

infinite 	region of soil due to load applied through a lubricated circu­

lar rigid cone.
 

We define the origin of cylindrical coordinates as shown in Fig..4
 

and we shall suppose the soil to occupy the semi-infinite region
 

z 0. In addition to the load applied to the soil through the circular
 

cone we take into account the normal stress t (Fig. 4) which may cor­

respond to atmosphere pressure or an equivalent surcharge.
 

The boundary conditions on *, s, and velocity components for the
 

problem of interest are
 

w = const. on z = (R-r) cot6 (5.1) 

u = const. 

t sinl + c cos 
S = t - sin on r = R, z = 0 (5.2) 

The boundary conditions (5.1), (5.2) together with the governing equa­

tions (3.12), (3.15), and (3.17) define a boundary value problem. We
 

note that the velocity boundary conditions are not sufficient to com­

pletely determine the velocity field anywhere in the soil mass. This
 

indicates that we may impose further arbitrary conditions on the solu­

tion to find an acceptable velocity field. However we should not expect
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this solution to be unique. Cox, Eason, and Hopkins [6] discuss the
 

uniqueness of a similar problem.
 

Following Cox, Eason, and Hopkins [61 we expect the stress charac­

teristic net to exhibit the geometrical features depicted schematically
 

in Fig. 5. The unknown of interest is the limiting mean pressure at
 

the face of the cone. To find this we need only to consider that part
 

of the stress field bounded by OA, AB and BCDO. Lines such as PS will
 

be U-lines while those such as PQR will be W-lines. In particular
 

ODCB is the n-line through the apex of the cone 0. We shall discuss
 

this s-line below.
 

A solution for the stress field can be constructed following argu­

ments similar to those used by Cox, Eason, and Hopkins [6]. Thus'from 

a knowledge of s and * on AB, s and 4 can be determined on ABC by 

using (4.4) and (4.5)-. At r = R, z = 0 a singularity is introduced 

at which s and 4 will be multivalued. This fact together with the known 

values of s and 4 can be used to determine s and 4 on ACD. Finally 

the now known values of s and * on AD together with the known values of 

* on OA datermine s and * on ADO. From this solution the limiting 

stresses at the face of the cone can be determined. If we find a velo­

city field compatible with this stress field then the solution will 

given an upper bound for the limiting stress field. If this stress 

field can be extended in such a way so as to satisfy the conditions 

of limiting equilibrium then the solution is said to be complete and 

will be a lower bound for the limiting stress field [6]. 

Now by considering the singular point A as a s-line of zero
 

length we find the conditions at point A,
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at r = R, z = 0. _(5.3)
t sin + c cosg 
1 -sin 

In order to extend the solution into the rigid region we must
 

know the location of the boundary between the rigid and deforming regions.
 

Since at this boundary the velocity components or their spatial deriva­

tives must have some discontinuities it follows that the boundary between
 

rigid and deforming regions must be a velocity characteristic line.
 

Considering that in the theory presented here the velocity and stress
 

characteristics do not coincide we reason that the stress 0-charac­

teristic curve ACDO is not the boundary between -the rigid and deforming
 

region.
 

Let us name the first velocity characteristic an Q"-line and the
 

second velocity characteristic a 0'-line. In Fig. 4, the curve B'O
 

depicts the velocity 0'-line through the apex of the cone. Here we
 

have assumed that
 

<c. (5.4)
 

Now the velocity field must accomodate the incipient motion of the
 

rigid cone. For this reason AO must lie within the deforming region.
 

The simplest configuration that can occur is when the S'-line B'O is the
 

boundary between the deforming and rigid region. We shall return to
 

this question below.
 

The stress field and stress characteristic net in the region BAOD
 

can be determined by numerically integrating (4.4) and (4.7). Using
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pgR as the reference stress s. indicated in (4.6) we replace (5.2) and
 

(5.3) by
 

sin$ + C* COS
,t* 1 - sin on r > R, z = 0
 

} (5.5) 

x =cot4[n (t* sin + c* cos$ at r = R, z = 0 

1 - sin 

Here t* = t/pgR, c* = c/pgR. The numerical integration is based upon
 

the approximation of (4.4) and (4.7) by finite difference equations [7].
 

It remains to determine the velocity of P'-line B'O which we have
 

assumed to be the boundary between the deforming and rigid region. Since
 

in addition to *, X is now known on-AO we can determine the slope of
 

B'O.at 0. Suppose we extend the stress a-lines beyond BCDO as straight
 

lines with slopes obtained by using the calculated values of * on
 

BCDO. Then along each of these stress a-lines (4.10) holds with the ar­

bitrary constant K evaluated for each U-line by values on BCDO. With
 

reference to Figure 6 we can determine the coordinates (rT, zT) of
 

the point T of the intersection of the straight stress a-line with
 

the velocity 0'-line as follows: We assume values of the slopes known
 

at S and M. Then the first approximation (r1 , z1 ) to (rT, Zr) is
 

obtained from
 

z1 - z, = (r, - r.) tan(40 - c) 
(5.6)
 

ZI - ZM = (r, - r2 ) tan 1*m
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where 4*M is known with the calculated value. With this calculated
 

value of r, we obtain through (4.10), (4.12) the first approximation
 

K1 to KT. With this value K, we can compute the first approximation
 

**I to **T- We can then use the average value of 4*" and **M to obtain
 

second approximations. Using this iteration procedure we can deter­

mine the location of the P'-line B'O and the value of S at each point of
 

intersection of the straight stress a-line with the P'-line B'O.
 

once the stress distribution along B'O is known we can determine
 

the total vertical load P, exerted by the indenter, by simple statics.
 

The ultimate bearing capacity qu is then obtained from
 

qu = -- (5.7)
 

6. CONCLUSIONS
 

We -have presented an approach of obtaining ultimate loads that
 

differs from the traditional approach used in soil mechanics. The tradi­

tional approach for obtaining ultimate loads for soil mechanics problems
 

is to exhibit an equilibrated limiting stress field, solve for the load
 

equilibrating the stress field, and-then simply term this load a
 

"failure" or "ultimate" load. The approach presented here, however,
 

demands more of a load before it is termed an ultimate load. The ulti­

mate load must, in addition to equilibrating a limiting stress field,
 

be associated with a deforming solution in a theory involving material
 

deformation.
 

The problem formulated in Section 5 can be tied to the cone pene­

trometer test, The amount that the cone has penetrated is equal to the 

amount hs that the shaft has penetrated plus the height h0 = R tan6 



of the cone.. The distance h, is reflected in the equivalent surcharge
 

t = pgh which is a boundary value. We can then associate with an
 

ultimate load P a depth h = h0 + ha. Thus we can plot a cone load
 

P vs. depth h curve. This, of course, is for a given soil with cohe­

sion C, angle of internal friction $ and bulk mass density p.
 

We introduce the quantities qu*, h*, and c* defined by
 

= qu* 

pgR
 

h* h (6.1)
R 

cC* 


pgR
 

Then for a.given soil with cohesion c, angle of internal friction I,
 
bulk mass density p and given fixed cone geometry R and 6 we can find
 

an ultimate bearing capacity qu at depth h. We can then generate the
 

curve
 

qu* = f (h*; c*, 4) (6.2)
 

wherein $ and c* appear as parameters.
 

The solutions for qu* most widely used in soil mechanics are
 

of the form
 

=
qu* c*H0 + h*H4 (6.3)
 

where H,, Hq are bearing capacity factors which depend on $ alone. It
 

is possible to obtain from (6.2) values of N., N. such that the form
 

(6.3) holds. However by doing so we would have to accept the obvious
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consequences of the form (6.3), viz., linearity in'c* and h*.
 

The use of the cone penetrometer as a useful test of obtaining
 

in situ properties of sQils is highly dependent on being able to solve
 

the following problem: given the response curve qu* vs. h* determine
 

the parameters c* and $ that correspond to this-curve. In this section
 

we have presented a theory to generate qu* vs. h* curves for different
 

values of c* and It remains to look into a systematic and logical
 

manner of using response qu* vs. h* curves to obtain values of c* and
 

4. 
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Figure 6. Intersection of Stress Characteristics
 
Through Neighboring Points P & Q
 

Si'r~ss,/-/'h /Ans-Oyh V 

Stress c< ines 
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