UART Report+ No.G7

2-P

MATHEMATICAL CHARACTERIZATION OF MECHANICAL BEHAVIOR
OF POROUS FRICTIONAL GRANULAR MEDIA

VOLUME I

by

G. Aguirre-Ramirez

Final Technical Report

This research work was supported by the
National Aeronautics and Space Administration
under Contract NAS8-25102

Research Institute
The University of Alabama in Huntsville
Huntsvilie, Alabama

%' - .
N71: '
(ACCESSION BE 6 2 s é’— (THRU)
/127 _ )
( j% T80 oy /A B e —
_ L Ropmduced By T
{NASA CR RTMX OR AD NUMBER} (CATEGORY} l lﬁéglfg‘ﬁlfhggcggg\?élk

o ﬁf;:fgsﬁuld. Va, 22151

———

FACILITY FORM 602

—_—




¥

A

MATHEMATTCAL CHARACTERIZATION OF MECHANICAIL, BEHAVIOR
OF POROUS FRICTIONAL GRANUTAR MEDTA

VOLUME I

by

G. Aguirre-Ramirez

" Final Technical Report

This research work was supported by the
National Aeronautics and Space Administration
under Contract NAS§-25102

Research Institute
The University of Alabama in Huntsville

Huntsville, Alabama

1970



PREFACE

This report presents the results of studies conducted during
the period July 1, 1969 - October 31, 1970, under NASA research contract
NAS 8-25102, '"Mathematical Characterization of Mechanical Behavior of
Porous Friction Granular Media", This study was monitored by
Dr, N. C. Costes, the Geotechnical Laboratory of NASA's Marshall Space
Flight Center.

The objectives of this project are:

(1) to develop a consistent three—dimensioﬁal mathematical theory de-
scribing the mechanical behavior of porous, frictional granular media
exhibiting a small amount of cohension. -- Volu@e I of this report
by Dr. G. Aquirre-Rameriz.

(2) to solve boundary-value problems related to in-situ measurements
performed on the lunar or planetary surface.'-- Volume II of this

report by Dr. T. J. Chung and Mr. J, K. Lee:
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SECTION I

ON THE SOILD MASS CONTINUUM

1, INTRODUCTION

A éeneral accepted practice for the analysis oé the response of a ’
_soil mass under exterﬁal loads is to model the so0il mass as a continuum,
Under this assumplion the distinction between modeling of a soll mass and
a strictly solid mass (such as rolled steel, say) as a continuﬁm is made

through the constitutive equations.

In this paper the basic equations of continuum mechanics are reassessed
as to their.applicability t; model a soil mass as a-continuum. For the
purpose of simplicity the discussion is limited to a dry (i.e., unsaturated)
soil mass, Under these conditions the effect of intgraction in a'gater '

s0il system neéd not be consldered,

As a sta;ting point the two physical properties that bodies are known
to have and which are used in the construction of a model for continua.are
taken as fundamental. These are [1] (a) that they occupy regions of space,
and (b) that they have mass. These two porperties are used together with the
porous géomeffy'of a so?l mass to shoﬁ that in,ofder‘to define the thermo-
d&namic state variable'ﬁ; the demsity of soiid aggregéte, as a field Gariable
one needs to introduce two field variable b({,t), the soll bulk mass density,
and n(x,t) the porosity of the soil. By interpreting.the mass-dénsiéy appear-
ing in the local balznce laws of mass, momentum, and energy of continuum
mechanics as the bulk mass density, thgse balance equations can be taken over
unchanged into soll mechanics to locally describe the corresponding §a1anée.

laws for the soil.



In soild mechanics the two soil geometric variables, surface porosity
-and volume porosity are taken to be the same. Here it is.shown that by
-defiwing Terzaghi'g effective stress [5] by boundary conditions this
assumption can be removed. Researchers in soil mechanics have consistently
verified that the mechanical behavior of the effective soil structure is
governed by the effective stress (c¢f. Schofield and Wroth [11]). For this
reason the balance of momentum and energy are formulated in terms of effec-

tive stress.

The introduction of the porosity as a field variable rcquires an
additional constitutive équation for the rate of change of porosity. The
need for. this constitutive equation is shown to be given by the Second Law
of Thermodynamics. It is shown that porosity influences the free energy
of the soll as an internal state variable and since its rate of change does

:
not appear in the Clausius-Duhem inequality a constitutive equétion for it
must be postulated. As an example a possible set of constitutive equations
is examined, The restrictions on the proposed constitutive response

functions are also found by a method introduced by Coleman and Gurtin 6]

constitutive equations are further linearized..

NOTATION
In this paper direct temsor notation is used, Second order tensors and
linear transformations of the three dimensional vector space U into itself
are regarded as the same, If T is a linear transformation, ET denotes its
transpose, Efl its inverse, tr T its trace and det T its determinant.
The gradient with respect to spatial coordinates is demoted by grad and

the gradient with respect to material coordinates by ¥,



2. THE S0IL MASS CONTINUUM

it is important to realize at the outset that the two. physical
properties that bodies are known to have and which are taken in the
construction of a model for continua are (11 {a) that thcyléccupy regions
of space, and (b) that they have mass, These two properties will now be

examined in relation to a soil mass.

Let R be an arbitrary region of space and consider two bodies Bl and
32 with masses Ml and M2 respectively, B1 will be considered to be a
strictly solid body (rolled stecl, say) but BQ will definitely be taken as
a dry soil. Assuming for the present that B1 and B2 occupy equal regions ol

space R, densities p1 and p2 can be introduced such that

My = fpldv (2.1)

R

M, = fpz‘dv (2.2)

R

The density pl for Bl so introduced is the mass density., However, since B

) 2
has mass by virtue of its soil skeleton, the density pz is the bulk mass

density. Thus, for the sclid continuum and soil mass continuum the defini-

tions (2.1) and (2.2) yield two differcnt types of mass densities,

The question arises as to whether a mass density for the soil body can

be introduced as a field variable. " The amswer to this question is positivc
provided that another field variable be admitted. Teo this purpose let VS

denote the” volume of the solid aggregate of the soil body B, which occupies

2
the region of space R. A density W can then be introduced such that

VS = '/1de. (2.3)



The density W is the a&ditional field variable that may be,introduced for
the seoil mass continuum [2] which, if it is aiso introduced for the solid
continuum, has a constant value of one. The variable W may be called the
solids matgriéf volume density. Note that if dv is an glement of volume

of soil masé then

dv, = Wdv ) (2.4)

gives the clement of solid aggregate volume. Having introduced ® the more

familiar variable, porosity,-of the soll mass continuum is obtaincd from

n=1-%=uw, (2.5)

The mass density P for the soil mass continuum is then given by

p
~_ "2
= =, : . 2.6
p = (2.6)

Therefore, the soll mass continuum differs from the solid continuum in
the sense that two field variables,pz, W are nceded to obtain the mass:
density.of the solid aggregates. This idea will now be put into formal

grounds.

_'In continuum mechdnics a body B is considered to be & manifold of’
particles, denoted by X. The parficles, however, are primitive elements
in the scnse that numbers are primitive elements in analyéis [3]. fThe
-body manifold is further assumed to be-(l) smooth and isomorphic to regions
in Euclideaﬁ S—Ebace, and (Zjlendowed with a non-negative measure M of space
which is its mass distribution [3]. In the same sense; a soil body can be
considered to be a set of particles, denoted by X. Thesc particles may be
called 'soil particles which, ©f course, are not to Le confused with the
physicél soil particles, The soil body manifold can also be assumed to be
(1) smoolh and isomorphic to regions in Euclidean 3-space, and (2) endowed
with two non-negative measures of space: (a) M, which is the distribution
of mass of the solid aggregate, and (b) Vs’ which is the distribution of

material volume of the solid aggregate., The measure M is assigned once .



and for all, This is not so with the measure v, which can vary in time

due to 1oca1.microscopic deformation of the solid aggreagre.

Let B denote a soil body. B can then be considered a set of particles
X, with the above mentioned structure, A configuration of B is then a

smooth hoﬁeomorphisﬁ'x of B onto a subset of Euclidean 3-space &:

x= X0, X=X @, (2.7)

Here z;l denotes the inverse of the mapping ¥X.

Consider a small element of cross-sectional arca AA of the soil body
in the configuration X. To an observer AA will then appear -to ha&e a’
ngwiss cheese-like" structure in which part of AA will correspond to the
solid aggregatés and the remalning part wiil be voids. Assuming that the
voids are fandomly distributed in their location within AA then in the limit
as AA becomes infinitesimal a distribution.a.(f) can be assigned to the

ratlio of dAv’ the element of area occupied by the voids, to da, i.e.,

aa = az(gg dA. (2.8)

Equation (2.8) will be used when the soil stresses are discussed.

3. KINEMATIGCS
‘A motion of the soil body B 1s a one-parameter family of configurations
zm’

£ = %) = XX, 1), (3.1)

where the parameter t€(-»,®) is the time. In view of -the smoothness

assumptions made X will be invertible for each te(-=,=).

A reference configuration for B is a fixed configuration.ﬁ. The place

of X€B in its reference configurationlﬁ is denoted bY,E:

X = 20, X =7 @®. (3.2



Insertion of (3.2)2 into (3.1)2 leads to

£ = %) = X®, 0. ENS

The function XK is the deformation function for B from its reference
[/ »

- . Pt
conflguratlonli.

The velocity and acceleration for X€B are defined by

=2 ¥ @0 3€=32'—5<(Xt) (3.4)
at Nﬁ et d » A atz -~: « <k

x
~

while the deformation gradicent is given by

E= Y %050 BENER)

F is a second order non-singular tensor with the property

|det Ff > 0. (3.6)
if E denotes the gradient of the velocity'% then it can be shown that

1= i) - prad
L=FE = grad X(5,0). (3.7)

~ "The various strain ﬁeasures used in continuum mechanics are constructed
from the deformation gradient E’[4] and these can be uséd to describe the
deformation of the soil mass continuum. However, for the soil mass continuum
an additional "strain" measure can be constructed, if dv denotes an

element of volumo-in'ﬁ(B) at zland dv its image under the mapping (3.3)

thenr it is known that [4]
dv = |det Flav. (3.8)

Letting dVS be the element of solid aggregate volume in E(B) and dvS the

corresponding element in Kﬂ(B,t) the following quantity can be constructed

L



dv_  wl|det |
R c9).
S5 o i

where W is the solid aggregate volume density in ﬂﬁB). A is the average
expansion (or contraction) of the solid aggrecgate. The observation is ﬁade
that 1f the éssumption of iIncompressibility of the solid aggregate of the
microscopic level is intreduced, as is common practiée in soil mechanics,

then

A=1 i (3.10)

and (3.9) becomes

w = wldet F|. . (3.11)

Introducing the change in porosity, @ through

@=n-~-n (3.12)
where n, is the porosity in'ﬁ(B), Eq. (3.9) can be written in the form

A= (1 - ——%;;-)|dec £l (3.13)

1
)

Whenever the defermation of the soil mass continuum is infinitesimal the

lincar strain mecasure E'given by
N— T
E = %1+ 1), . (3.14)

where E,is the displacement gradient, can be used. In this case under the

assumption of swall displacement gradients, i.c., \/trllll1 <1,

o

|det F| ~ 1 + tr . - (3.15)

~

Then assuming & is of the same order as the strains, 7, Eq. (3.9) can be

written as

& -1

]
T
=

272

1

(3.16)



The term tr E:is the volumetric strain., When the solid aggregate is assumed
to be microscopically incompressible (3,16) becomes
N :
t = e .
T B T (3.17)
o]
which is the formula used in soil mechanics to compute infinitesimal

volumetric strains.,

Quite often, in soil mechanics, the void ratio e is used instead of

the porosity, This is defined by

(3.18)

whoro-dvv is the element of volume of the wvoids, Note that if e and ¢
[»]

denote initial and current void ratios respectively then

a __¢
1-nmn 14+ e (3.19)
o Q
vhere § = e - e . Equation (3.17) can then be written in the form
tr T = o (3.20)
~ l+e : .

4. THE BALANCE EQUATIONS

The .basic balance equations of continuum mechanics arc local formu-
lations of the principles of physics of conservation of (a) mass, (b) linear
momentum, (c) moment of momentum, (d) ecnergy. Thesc will be taken one at a

time,
Balance of Mass - The balance of mass ecquation is given in one of two

forms [4]: the spatial form

an . . .
3% 4+ div ¢ X = 0 (4.1)



or the material form
plact k| = p_ (4.2)

vhere po and P are the mass densities in the reference aand current configu-

rations respectively.

It can'bc shown that (4.1) and (4.2) can be taken over unchanged as
the balance equation for the soil mass continuum provided that the mass
density appearing therein be interpreted as the "bulk mass densicy'.
However, for the soil mass continuum (3.8) is available. This equation

can bz .used to eliminate ]dat Fl from (4.2) and obtain
Fa=3 ' 4.3

for the balance of mass equation in terms of "mass density" of the solid

apgregate,

[

Balance of Momentum and Moment of Momentum - Consider an element of oriented
gsurface area dg of cthe soil mass continuum in its current configuration and

denote the area fraction defined by (2.8) by

a=a(x,t) =& (x) o (4.4)
X

Further let t be the stress vector acting on di The stress vector £y
acting on the solid aggregate-portion of dg is defined by
=nt. .
L, =at (4.5)
Cauchy's stress hypothesis i1s invoked and the existence of a slress teansor

T 1is assumed such that
~5

t =T n
PG ~S A

(4.6)
where E‘ig the unit normal vector of orientation of qg% The stress tensor
T is called Terzaghi's clfective stress. The reason for cal]iug‘gs the

~aS

effective stress will now be given,
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Consider a completely saturated soil and let I'be the total stress
acting at a point of the so0il., Terzaghi's effective stress is then

defined by L[5

:‘E=£s + p.l“, - (4.7)

‘wherve p is the pore water pressure which here is taken as positive in

tension, Now the portion d(!,f of the oriented element of surface da
L L

occupied by, the [luid iIs given by

dg:f = (1~(L)d3, ] (4.8)

and the portion of the surface vector t acting on the fluid is given by
Y ~ -

E& = (1—@05: ’ (4.9)
Note that
Lot he =k (4-10)

Cauchy's stress hypothesis is invoked and the existence of a total stress

tensor T and parlial stress tensor I is assunted such that
~

L

L= 1, £o= 1o (4.11)

-Substitution of (4.6), (4.11) into (4.10) leads to

(T + L - D=0 (4.12)

1£ (4.12) is to held for arbitrary n it follows that

T=T +21
ot Ly

~S

” (4.13)

Equation (4.7) follows from (4.13) by settingr'l_"f = plx Thus the reason for

calling :_ES the effective stress,
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Having defincd the soll stress, the balance of momentum and moment of

momentum for the soil mass continuum is then postulated to be given by

px = div T_ + Pb ) (4.14)
.. T ‘
=1 (4.15)

wherein b is the specific body force density, i.e., the body force per
Ll

unit solid apgregate mass.

Balance of Energy - Let € denote the specific internal encrgy of the soil
body, i.e., the internal energy per unit solid aggregate mass, r the energy
source due to external radiation, and q the heat flux., In a manner similar
to that used to define the effective stress, an effective heat flux q, can
be defined by

4. - 9. . (4.16)
The balance of energy for the soil mass continuum is then postulated to be

given by

pe = tr TS L - div Le 4+ Pr. (4.1

5. THE CLAUSIUS-DUNEM INEQUALITY

Let 8 = @Qﬁ,t) be the temperature of the soil mass continuum which is
assumed to be positive and let T be the specific entropy. Then regarding ‘
26/9 as the flux of entropy due to heat flow and r/0 the supply of entropy
from radiation, the specific rate Y of entropy production for the soil

mass continuum is postulated to be given by (4]
. br . L
oy = ph - (%5 - div 5 q). . (5.1)

The Clausius-Dubem inequality is the assertion that the rate of entropy

production is not negative, if.e.,

Y 2 0. (5.2)
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_Equatiou (5.1) may be .combined with (4.17) so as to obtain
- e, 1
Y=T]--§+-6ErSF-——"-q'g_ ) (5.3
where (3.7) has been used and

(3.4)

i
I

8" gtad 9, S, =

The specific free energy ¥ may be introduced through the definition
¢ =e- om, S (5.5)
Unde; this def?nition'(S.&) may be written in the £?rm
= -V -1 +trsh-=q-q . (5.6)
s PO Als A

The Clausius-Duhem inequality (5.2) will be used .to find restrictions on

constitutive equations.

6. CONSTITUTIVE EQUATIONS

It is well known that the deformation of a soil mass continuum is
accomp&nied by dissipative effects which are in addition to heat conduction.
Therefore the constitutive equations for the soil body must be such as to
show this fééture; In Eontinuum mechanics there are various-ways of
accounting fordissipative effects which (in addition to heat conduction)
accompany deformation."Oné of- these is to poséqlate the existence of
internal state variables which influence the freec energy and whose rate of
‘change 1is governed.by differential equations in which the girain appears.
These have been studied in detail by Coleman and Gurtin 6] for singlic
continua and by Bowen [7,8] for mixtures of continua. It will be shown
below that by considering the ﬁorosity of the soil mass continuum as an

internal state variable the dissipative c¢ffects can be accounted for.
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It is important to realize at the outset that a thermodynamic state

variable for a soil mass continuum is the solid aggregate mass density and

not the bhlk mass density, The solid aggregate mass densify is given by P.

The balance laws suggest thal constitutive equations are nccded for
¢, M, T , and q . The soil mass behavior which will be studied here is ene
~g ~s

which is characterized by four rcsponsc functions T, m, Eﬁ E‘which give

.

v, n, :'Es’ and s when p, ’1;, ’I;, 9, g are known, i.c.,

y -F5 . 1
(va TL E.G’ ) - f(p: z: E: ea ﬁ) (6'1)

s
where f stands for any m,..., E. The reason for includinglz as an
independent variable will be explained below,

Now through (2.5), (4.2), eguation (2.6) may be written in the form

=5 (6.2)

(1-n) [det F|

. . - - . A
In view of this equation the existence of functions f such that

A
f

(b,m, T, q) = T, E, 8, g, n) (6.3)

~5S ~’
can be reasoned. This demonstrates how the porosity enters as an independent
variable. Since the rate of change n of porosity does not appear in the
Clausius-Duhem inecquality a constitutive equation for n must be postulated,
"Thus to (6.3) must be added
- —A - e
n = n('Fus ‘Es 3 '%s n)' (6-4)
Therefore the porosity influcnces the free energy and its rate of change is
postulated by a differential equation in which the strain appecars through F.
Of course the assumption has to be made that n, Eﬁ ?, 0, g as functions of
Xand t are smooth enough to insure the existence of a unique solutioun
Lo
n = n(X,t) of (6.4) for all t in some interval [to, £, + 7] with n(X, to) =
Pt [ o]
noqg).. . ‘
The inclusion of_z as an independent variable will now be explained.
It can be shown that whenever the solid aggregate is incompressible the

porosity is governed by the differential equation
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n = (l-n) tr i};‘l (6.5)

Equation (6.5) is a special case of (6.4) with

A A
0N = 0, %n =0

so that

(F, ;}J, n) = (l-n) tr g;jl.

i

=y

Thus the reason for including é:as an independent variable.

It is also assumed that the effective stress Is is the sum of a

non-dissipative part I and a dissipative part Tps 1lee.,

E‘s = E‘O + ID ' (6.AE.,)
such that
A
Eo =zo(}1’ 9, n)
(6.7)
T =T (F, ¥, 0 E
ND ND ~3 ~’ 3 'g" n)'
Therefore
A A A . '
;I_'(E: ’I:: B: B n) = EO(EJB, n) +E‘D(£"£, 6: g: [‘l). (6'8)
In Section 7 it will be shown that
NP ' : -
ZD(EF 9, 9, 0, n) =-0 whenever n = 0. (6.9)

A A
The consiitutive response functions f and n have to satisfy the Clausius-
buhem inmequality (5.6). The restrictions on the responsec functions Q\and.g
by the Clausius-Duhem inequality can be found by the method used by Coleman

and Gurtin [63 and Bowen [7,8]. The main results of this exercise are:

A A .
(I) The response functions U and 7 are independent of F and = i.e.,

. A
(Y, m = h(}:s €, n) (6.10)



A A A
where h stands for either ¥ or 7).

n A .
" (II) ¥ determines M through the entropy relation

R A
n = -3g¥(E, 8, n). (6.11)
e A )
(III) -V determines I through a stress relation
N T
T = PO Y(F, 6, m)F . (6.12)
~0 'E; s
A A e .
(xv) U, 'n, T and gq obey the general dissipation inequality

Pyl . . Pl A .
tr $,(F, F, 6, g, n)F - an\bcg, 8, )n(F, F, 6, g, n)

(6.13)
- ';_gi\%(isis 8: gs n) * ,% =0,
vwhere
A _'1/\ T.-1
S0 V=50 HEH T (6.14)

Equationé (6.10) through (6.13) are necessary and sufficient conditions
that the Clausius-Duhem inequa]{ty be satisfied by the constitwtivé response
functions. It 1s possible to extract additional information from the general
dissipatién inequality (6.13). This information will be éxamincd in the

next section.

7. EQUILIBRIUM STATES

The additional information that can be extracted from the gencral
dissipation inequality (6.13) is obtained for certain values of the indepen-
dent variables, It has been found convenient to name equilibrium the state

in which these wvalues occur.

The general dissipation inequality (6.13) implics that when g = 0,
the mechanical dissipation inequality

N . . N A . )
~tr ED(E’ E’ 8, 2: n)}i + aan(E’ e: n)n(fls E: e: 2: n) =0 (7-1)
) . AN .. ,
holds, and when (F, an ¥'n) = (0, 0) the heat conduction imequality

ﬁ({: 2‘: 9: ’%s a) - ,% =0 (7'2)
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holds, Also when Qi, g) = QQ, 2) the internal dissipafion inequality
9 w(F, e: n)n(ﬁ, 2: e: 2: n) s 0 (7°3)

holds.

. . £ % ¥ N
It is convenient to call a triplet (F , 8, n) with

aa", 0, 87, 0, 0 =0 )

an equilibrium state for the soil material point X. MNote that i1f

- A . . N ’ A P .
2, E, 0, g, n) =tr S(F, F, 6, g, )F - B ¥(F, 8, ;) n (F, F, 6, g, n)

-%—éﬁcﬁ, E0gm g (7.5)
then (6.13) can be written as

L(E, F, 0, g, m) 20. D)
Clearly

2", 0, 6, 0,0 = 0 (7.7)

Therefore .as a function of (F, Eﬂ g, 25 n),.f is a minimum at the equilibrium

k3 % %
state (F , 6, n). Consequently
e W & '
d A + M, A8, 8 + Xa, ha, n + hd)ll=0= 0 (7.8)
dA
for all scalars a, 4, all vectors a, and all second order tensors‘é, E‘in

the domain of,g.

% * %
For a function G( ) evaluated at QE?, 23 0, 22 n‘) the following

notation is used
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Equations (7.5) and (7.8) imply that

i\l

tr(g h .A+)B-5¢ {tra + A+agn a+BA+d}
(7.9)
(av B£n+i /c\g+) a =0
8" ~

From the second term in this equation and the arbitrariness of fs_’, a, and d

the following is concluded: either

At AF L A
Bﬁn =0, aen =0, ann =0 (7.10)

or
a;$+ = 0. : (7.11)

For obvious reasons (7.10) must be discarded. Therefore in view of (7.11)
and the arbitrariness of B and a the following additional information is

extracted from (7.9)

A % % )

'S~D(£’ 0, 6 ’ 2: n) = R . (7.12)
AN, % % g . .
A 0 85, 0, 0 =g (7.13)

Thus at the equilibrium state the dissipative stress and the heat flux
vanish. Also (7.11) reads

L,

Moo ’ .
anwcgf, 8%, 0"y = 0. (7.14)

Equation (7.14) is called the equation of internal equi?.ibrium?

1}

Coleman and Gurtin (6] have derived an equation identical to (7.14) in
their study of constitutive equations for which the independent variahles
are (F, 0, g, @), G being an internal state N-vector.
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- + N * )
It is assumed that corresponding te¢ each strain-temperature pair (F , 8‘)
. % ~ )
there 1s exaetly onc porosity n  such that (7.4) holds. This correspondence

is given by the function

nt o= dE, 6 (7.15)

which is called the equilibrium responsc function for n. Equilibrium

. Vs * AK
response functions U , 1, X, may then be constructed through.

% % % % % % x % % % S
W, oy =REE, 0 2L Rat, 6, aE”, o) (7.16)

Fal

% Nk
T .
ﬂp

A® % A AA
where m stands for any of |, m, or I, and m for any of ¥, m,.or

Considering that

3,4, R

P N
Og¥(E, 8, n) + 9 Y(E, 8, n)dg0(F, 9)

It

3V er,
LR, 0

Fa

s . o 3 Br. 8. o3 0
NG 0w+ 2, 0, w3, ©

It follows through the internal equilibrium equation that

Ade % o A v &%
ae-k‘;f (‘E ’ 8 ) = aew(}z: B , 0)
(7.17)
Ay g % A g % %
2.,V @, &) =34, 07, 0.
Therefore in view of (6.11) and (6.12)
£3 A% 3
n =-ae_‘.‘,'~["(£", e:’r
(7.18)
2 Ak ok
S, =V (F, @)
where
T
v’c._ L ¥ T -~
20 = p*"{.‘o (’F; )y . (7.19)

Equation (7.18) defines the equilibrium entropy and stress relations.
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8. MATERIAL FRAME-INDIFFERENCE

The constitutive equations are further restricted by the axiom of
material-frame indif{ference, This axiom states that the counstitutive
response functions must be form invariant under a change of frame. The

change of frame is characterized by a time-depcndent orthogonal tensor Q(t)
(cf. Truesdell and Noll L[9]).

Under a change of frame scalars 8, €, 7, and ¥ are unaffected.

However

E, ']i", 8 9o and 2‘:.5 transform as follows

FQF

Pt b P

E"QE+RE

£ Q8 8. 1)

d 2.26'

- T

The manner in which the porosity n transforms needs to be specified. It is

postulated that n is unaffected under a change of frame. Therefore

n~"n, n~n ) (8.2)
under ‘a change of framc.

In view of (3.7) dependence on F can be indicated through depcndence
fad -
on L. Moreover L can be written as the sum of its symmetric part D and
"~ i o~

skew symmctric part W,
Lo

L=D+¥W, (8.3)
where %R =TI, + E?, %N =L-- EF. Under a change of frame
- T
27RR%
(8.4)
T T

=
1
O
=
o
+
1o
20
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Note thal from the orthogonality of Q, it follows that Q QT = -Q QT. The
~ h [ B Pt P
fact that W does not transform as a tensor under a change of frame can be
L]
used to show that the constitutive equations should be independent of W.

Thercfore

(T, 4> ™ =3, D, 8, 5, n) _ (8.5)

NOA A
where 2 stands for either "_‘5, 4, or n.

Necessary and sufficient conditions that the constitutive equations
(6.10) and (8.3) satisfy the axiom of material frame indifference are the

following

A T A
QT (F, D, 0, g, Q" =T, W, 0, g8, n)
(8.6)
A A T
gg (E: D, 8: '%s n) = ﬂ‘(g_gs 9_22 3 6: g.ﬁ,’ n)
A I T
a(E, D, 0, g, ) =M(QF, QQ', 8, Qg, n)
— A A
where a stands for either ¥ or 7. Choosing Q = :L, (8.6)2_4 becomes
A S
E(’E)-R‘s 8: '%: n) = 2("',?_,3 2: 8: "E,: n)
A
'q(F: D: e: E.: n) = q(—}:’ R: e: '&: n) (8'7>
%(F: D, 8’ 8 n) =?1(-F, D, 83 ",%: n)

VAT
Thus T, n are even functions of F and g and G is an odd function of F and g.

Using standard arguments (cf., Truesdell and Noll [9]) it can be shown

that a set of reduced forms of the response functions which are frame-

Indifferent are
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a(F,. 0, n) = a’(g, 8, n)
+ T T
T(F, D, 0, g, n) = FT'(C, C, 6, Frg, n)F
(8.8)
A + T
q(¥, D, 8, g, n) =F4q°(C, C, 8, Frg, m)
A + T
n(F) 2’ 83 g’ n) =n (E’ E! e’ E’N’ n)
where
= pr '
¢=IE (8.9)
is the right Cauchy-Green tensor. To arrive at.(B.S) the identity
é,= QE?EE has becn used.
Considering that
A +
aFl[J(Ea 8, n) = 2;5; acll’ (S; es n)
~ fa
equation (6.12) can be written as
N g T _ '
T = 2p£ac¢ (c, 8, n)F". (8.10)
Pt
Also
+
n= "aaq‘[ .(Cs es 1‘1)
+ T + T T
T = 2PERV(C, 8 wE + ET7(C, G, 8, Fg, WF
~ ) (8.11)
-+ : T .
% =E4@ & 6 Fg w
n = n+(C3 E‘: 63 E‘T‘%: n)
and the equilibrium entropy and stress relatioms (7.18) become
+
X % % *
N o= -3,4 (¢, &)
(8.12)
+ T -
% *_ % % o W, %
Lo = 2@ EoLV (¢, O)F

i
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9. MATERIAL SYMMETRY

The constitutive responsé functions for the soil mass continuum are
further restricted by material symmetries. Recall Noll's [10] definition
of the isotrOpy-groupr'of a material response function,$: the local
isotropy groupig of a material is the set of mass density-preserving changes
of local reference configuration which leaves the response function'%

unaltercd.

The above definition was arrived at through the recognition that a

change from a given reference configuration X, to another reference con-

1
figuration %2 which is indistinguishable from Kl by relating the values F
A . ~ P~
of F to deformation must be obtained by a mapping {rom zl to hz such that
p, =p, . ' ' 9.1)
b L :

For the soil mass continuum it appears more natural to base the defini-
. A
tion of the isotropy groupéy of the soil for a constitutive response F on
the solid aggregate mass density P and porosity m. Thus (9.1) is replaced by
pn = pn , O, =n - (9.2)

HOOxk K L

or in view of (2.5) and (2.6) by the equivalent statement

P, =P, . ’ (9.3
H
X ~2
. . : A
Therefore the definition of the isotropy group for a response function F of
the soil mass continuum is essentially the same as Noll's. Thus the isotropy

groupﬂy for the soil mass continuum is the set of all unimodular tensors H

such that the following identities hold:

AF, 8, n) =a(E, 6, n)

. N .
T, €, 8, g, n) =T(RH, HCH, O, g, n)
_ (9.4)
(£, G, 6, g, n) = q(EL, K'CH, 0, g, n)
Fal
n
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A A A
where a stands for either ¥ or 1.

It can be reasoned that if a solid is thought of as a body which
has somé preferrcd configuration from which any change of shape will change
gome of its properties then a soll mass is a solid. The ideas set forth
by Noll [10] can then be carried over unchanged, i.e., sinée Ehe soil mass
continuum is a solid its isotropy group-£/is a subgroup of the orthogonal '

gréup;?tﬁ) of linear transformations of Euclidean 3-space onto itself,
Y <6 (9.5)

When the soll mass-continuum 1s isotropic the isotropy group Efis egual to
the orthogonal group ((£). It can then be shown that the constitutive

equations for ¥, n, EB, 4> and n for an lsotropic soil mass which are

frame indifferent are
+
‘#=‘ll(£, ean)

M=1(8, 8, n) = -3gn' (8, 8, n)

I, = 200, 0 Wp+ T B 0 g (9.6)
Aa = E_?E(Es '}é’a e: i) n)_'

‘.1 = n%(']is ,],:3_,: 9: '%: n)

vwhere B = F E? is the right Cauchy-Green deformation tensor and all the
response functions are isotropic tensor functions. Representation theorems

for the response functions are available in Col.
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10. ELASTIC BEHAVIOR

In solid mechanics elastic deformatiohs are recoverable deformations
and the therﬁbdynamic process under which thesc take place -is a reversible
process, It follows that elastic behavior occurs under’ thermodynamic
equilibrium. Thereforé for a sbil mass continuum the constitutive equations,

for e;éstic behavior are
- k3
V= ¥ (F, ©)

n = -38°F, ©

(10.1)
% T

"2
and

n= Q(F, 8) - (10‘2)
wherein all deformations are recoverable and the temperature field is
homogeneous, Note that (10.2) can be written as

AMF, 8, n) =0, (10.3)

Upon reduction of (10.1), (10.3) for materlal frame-indifference the
following is obtained

¥ = ¢+(£s 9)

= "aeqﬁ.(s: 6)

= - 3 ot T
I =20F BEU (¢, OF (10.4)
7R

Ac, 8, n) = 0.

For an isotropic soil mass (10.4) reduees to
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V=@, ®

n= "aelp-!-(‘%: 9)

+
I 2pa£_w (B, )8 (10.5)

=9
l(’%, 8, n) = 0.

Inspection of (10.4)1_4 indicates that the elastic behavior of a soil
mass is described by constitutive equations for VY, 1, z%, 4, which are of
the same form as the equations for a hyperelastic solid under isothermal
conditions. However this is only possible whenever (10.4) is satisfied.
Consequently elastic behavior of the soil mass implies the existence A of

{(C,- €, n) such that (10.5)5 1s satisfied.

11, LINEARIZATION

In this section the constitutive equations postulated in the previous
sections will be linearized by considering small departures from thermo-
dynamic equilibrium. To this end it is assumed that the soil mass in its

reference configuration is in a state of thermodynamic equilibrium,

Introduce the Green-St. Venant strain tensor E which is related to‘g

through

‘2E = ¢ - 1, (11.1)
Consequently
qf:@*(g, 8, n) = $+(£+ 2E, 0, n). (11.2)

Thus (8.1}), f8.12) can be written as
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_ Nt T AT T T
L, =P LV E O mE +ELE, §, 6 B, E
~ - (11.3)
+ . T .
LB G E 6 g

where %é 2,8 has been used.

Let u be the displacement vector field of the soil mass. . The displacé-

ment gradient is then given by

H= Vu(X,t). (11.4)

His related to the deformation gradient through

F=1+H (11.5)

The departures from thermodynamic equilibrium can be measured by the

quantity 0 defined by

82 - (e_'eo)z + (n-no)2 +g g +tr g;f +tr o H, (11.6)

Pt

where 90 is the temperature in the reference state. The departure from thermo-

e
dynamic equilibrium is said to be small if 6 < 1. A quantity of order & is
any scalar, vector, or tensor, denoted by 0(5ﬂ3, with the property that

there exists a rcal number N such that

|| 0¢&”5 || = no”™ (11.7)

SV, -
as § # 0, Observe that O(éﬁg)O(éﬂg) = 0(d 1t %,

Under the assumption of 6 <1 it follows that
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6 -6 =0(%)
n —.n0 = 0(8)
1 = 0(8) (11.8)
B = 0(8)
g = 0(5).
Also
E =T+ 08
E=E+oeh
Fg =g+ 0(sh (11.9)

ldet Bl =1+ exr T+ 0(6%)
p=p (1~ trH+0(8%) =p_+0(5),

where E is the linear strain tensor given by (3.14).

Consider the ordered sextuple
@ E 8 Eg o
Its value in the reference configuration is
9 9, 8,0, n).

e
Thercfore ¢1 can be expanded about E = 0, 8=60, n= n to yield an

expression of the form

ar 6+ %azez + a

~~ -~ ‘ g 2 ~
. ) - 4 L
V@+E, 8 +8, n +a) =1 +a 3% 9+ %a, +b1[§]9

+ 5,0+ tr £F 4 % b, [F, £+ 0¢6%) . (11.10)
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vhere

E:@-eo, G=n-n (11.11)

o}

and § , a are constants, £ is a seecond order temsor, b [-], b [-]
e} ~ ? 1 2

1’ %27 %3
are linear and b3['1.] bilinear functions of E} The constant ¢° is the value

of the frec energy in the refercnce configuration. A term of the form asa

would ordinarily appear in (11.10) but becausc of the internal equilibrium
equation (7.14), ag = 0. Thus to within 0(53)

_ 2 2’ N (') Lavd (e B
b=y + al'G + gaz'ﬁ + asa'é + ka0 + bl['fé‘:l B+ bz[E] a+tr £T+ 52—b3[£,£].

(11.12)

it follows from (11.12) that approximate expressions for 1, EO for small

departures from equilibrium are

mn = -a; - aéﬁ - a0 - bIQE]

3

Bbl Bb2 ab3 o '
T =0 —=[E]BT+p —~[Bla+pL+3y — [EEL (11.13)
Pl OBE ~ DBE ~ Orw OaE' ~

. Also the linear approximations. for small departures from equilibrium of

. o ~y
Iy = 08 + by 1 + 26 (F] + w0, [F]
- y .
q =8 2, + 03, + 51[?:.] + }Sz[,%] (11.14)
. _ &
n = clﬁ + cza + NIEE] -+ FZEE]

vhere bl’ b2, ci, c2 are constants, 2 EQ are constant vectors,Igl['],
zh[-] are synmetric linear tensor functions, Kl£°], Kz[‘] are linear vector
~ ~,

functions, and le-], Nz['] are linear scalar functions. 1In writing (11.4)



29

use was made of the fact that ED’ n are even functions of g and e is an

o~
even function of E.
. Pl

The case of an isotropic soll mass is now considered. In this case

bl['], b2['],1§, b3[-,-] in (11.12) have the following represcntation:
.ba[-%] =dtrE, a=1,2

£=4d,1 (11.15)

q‘ ==
bBEE,gl 4,

~2 ~ 2
tr E + d5(tr E)
Also since there are no isotropic tensors of odd rank,ﬁi, 9o ?nd-ﬁﬁ L-]
must drop out of (11.4)2, and 52[.]’ E&[-j, EQ[.]’ Nl[-], N2[-] have the

followlng represcntation:

Klgl=xg
wE] =e(r HL+e) E
?&2[@] = eq(tr %‘)}ﬁ el“é: (11.16)
N]_{EJ = c3tr E ’
szg].z- e tr E’
In (11.15), (l11.16), dl’ d2’ d3, 64, dS’ K, e ez; 83’ e, C3 and ¢, are

material constants.

With the representations (11.15), (11.16) the lincar constitutive
equations (11.12), (11.13), and (11.14) become

= B 2 . ; : - % 7
Y=y +a8+ Sgaz'g + a3oc"9 4 dl'G tr £ +d,a tr Fodger B+ 3d,ex B
o~ 2
+ d (tr E) (11.17)

[Equation (11.17) continued on next page ]
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it
n= -al-aég -a3a —dltr‘£

tr )L+ 20T 4 e, B
Pt Pl ~ B

= ] E
I pi+(f1 +f2a+?\tr£+03 s E

L " KR

]

v

Clg + ::2(1 -+ c3tr £+ catr

where

P=Pdy s £y =Ry FDy s By = dybh

[+

A=pd, te , 24=pdg e, ‘ (11.18)

The general dissipation inequality (6.13) will give some incqualities for

the constants b b ¢, and the constants appearing in (11.16).

1 P20 f10 %2
However since the constitutive equations examined here arc merely for
illustrative purposes and have no bearing on true soil behavior these

inequalities will not be found.

12..CONCLUSIONS

In this study the basic equations of continuum meﬁhanics for non-polar
continuum have been reassessed as to their applicability to model a dry
s0il mass as a contimuum. It was found that the physical properties of a
body which are taken in the construction of a continuum model, namely
that of occupying a region of space and having mass, allow for the intro-
duction of two densities, the bulk mass density and the solid aggregate
volume density. In this respect the soil mass continuum differs from the
stricf]y solid continuum. The introduction of the solild aggregate volume
density brings the porosity of ‘the soil mass into play as an additional ficld
variable. It must be pointed out that in applied soil mechanics the solid

aggregate of a soll is assumed incompressible for computational convenience,

for in this casc the volumetric strain is computed through a phase diagram as
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(12.1)

e being the void ratio. Now it can be shown that in the limit the left
hand side of (12.1) becomes tr E. Thus

L (12.2)

which was found earlier (see Eq. (3.20)). Now it is realized that soil is
extremely difficult to sample and that volumetric measurements arc hard to
make. Nevertheless the assumption leading to (12.2) is dictated by this
physical handicap and it is not in general a property of the soi}.

The equations used in continuum mechanics to depict the balance of
mass, Lincar wmomentum, and energy also hold for the soll mass continuum
provided that the mass density appearing therein be interpreted as the
bulk mass density. In addition, through the balance of mass equation in
terms of bulk mass density, a balance of mass equation in terms of bulk
mass density, a balance of mass equation in terms of solid aggregate mass

density was found,

. The ingroduction of the porosity as a field variable introduces
complications since in general there is no equation relating porosity to
deformation. This indicates that a constitutive equaticn for the porosity
is needed. As an example of how a constitutive equation for the porosity
may be introduced, a set of constitutive equations for a spacial kind of
s01l mass was studied, It must be pointed out that the constitutive
equations studied here may not describe true soil behavior under load,
Howe\}er, the work presented here does yield results which are very important,

namely that under isothermal conditions,

(1) The constitutive equation for the effective stress should be of

the form

T = (En) (12.3)

vhere & indicates a general functional relationship.
el
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(2) A constitutive equation has to be postulated for the rate of

change of porosity.

(3) Elastic behavior of the soil implies the existence of a function

A such that’

t
o

A(F,n) (12.4)

for all elastic deformations.,
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SECTION II
A THEORY OF SOIL PLASTICITY
1, INTRODUCTION

A valid solution to a problem of the mechanical respomse of a soil
mass to applied load must satisfy the basic balance equations of continuum
mechanics. However, in order to obtain valid solutions, the constitutive
relation between stress and strain of the soil must be established: Without
knowledge of the stress-strain relation or its equivalent a so-called solu-

tion is merely a guess.

Partly because of the difficulty in obtaining self-consistent constitu-
tive relations, problems in soil mechanics are treated in several and
unrelated ways. For example, when no failure of the.soil is invelved stresses
at points in a soil mass under a footing, or behind a retaining wall are
computed using linear elasticity.. Problems of bearing capacity, stability
of slopes, failure of retaining walls are now being considered in the realm
of plasticity, while settlement and consolidation problems are treated as

essentially viscoelastic.

In this paper our primary concern is with the establishing of a self-
consistent phenomenclogical theory for the mechanical behavior of granular
media which shows stress-strain behavior similatr to that of an elastic-work

hardening plastic metal,

Drucﬁer and Prager (8] suggested that the Mohr-Coulomb failure criteria
for solls could serve as a yleld function with which one could associate a
flow rule and to treat the soil mass as a perfectly plastic material. Even
though several important and interesting results may be obtained by considering
the soil mass to a perfectly plastic body with a Mohr-Coulomb yield surface,
predictions of volume changes, under this idealization, were higher than those
found by exﬁeriments. Based on observations made on pressure-volume change
curves Drucker, Gibson, and Henkel [7] subsequently explained that soil
could be.treated as a work hardening material. Henkel [9], howevér, concluded
that much of the available experimental information for socils lay outside

the scope of a useful theory of plasticity. Nevertheless Roscoe and co-workers
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at Cambridge have indicated that certain soils can be described remarkably
well by a simple isotroplc work-hardening idealization. The work at
Cambridge is discussed in considerable detail by Roscoe and Burland (s].

In the work described above a goil mass differs from a strictly solid
mass by the constitutive relations describing the mechanical ‘behavior.
Aguirre-Ramirez [1] questiovned the applicability of the basic palance'
equations of continuum mechanics to model a dry soil mass without investi-
gation. He found that the two basic properties that bodies are known to have
and which are used in the construction to model a body as a continuum, namely
that (1) they have mass and (2Z) occupy regions of space, lead to the intro-
duction of two densities one of which is the soll bulk mass demsity and the.
other can be related to the porosity of the soil mass. The basic local
balance equations of a continuum can then be used for the physical-
mathematical description of a dry soil mass and the processes occuring in
it provided the mass density appearing therein be interpreted as the bulk
mass density. The porosity, however, appears as an additional field
variable that plays the role of a hidden variable. In soll mechanics
porosity changes are related to bulk volume changes by an assumption which
will be discussed in the text,

In this paper we establish a self-consistent phenomenological theory.
for -the mechanical behavior of granular mediq which shows stress-strain
behavior of the type discussed by Drucker, Gibson, and Henkel {7]. This is
done: by extending the ldeas presented in [1]. The main results of this paper
are presented in Sections 4 and 5 we have felt compelled to imclude in
Section 3 those aspects of soll mass behavior that we have used as a guide
in arriving at‘them. In Section 4 we present a theory of plasticity for
soils, The theory is g phenomenological theory.in which statements are made
directly put into mathematical form and studied as such. Using the theory
developed in Section 4 we construct constitutive relations for soils in a
triaxial compression condition. This Is done in Section 5. We- £ind that the
Cambridge triaxial compression theory developed by Roscoe and co-workers 5]
comes out as a specilal case of the theory constructed in Section 5. This is
very promising because the Cambridge triaxial compressicn theory of Roscoe
and co—workérp [5] has been found to give reasonable agreement with experi-

mental results,

We must remark that by considering the soil mass to be dry we have

disregarded the influence of the pore pressure on its behavior. This corre-
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sponds to a soil in what is called a drained condition.

NOTATTON

In this paper direct temsor notation is used except in Section 5.
For the most part vectors in the three-dimensional inner product vector
space U and points in Euclidean 3-space € are indicated by boid faced
Latin minuscules: x,...,u. Linear transformations from U in'ti-a U. are
indicated by boldfaced Latin majuscules T,...,N. Second order tensors
and linear transférmations are regarded as the same., If T 'is a linear
transformation, TT indicates 1lts transpose, T_l its inverse, tr T its trace,
and det T ifs determinant. The gradient with respect to spatial coordinates
is denoted by grad and the gradient with respect to material coordinates .
by V.
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2. PRELIMINARIES

We consider a dry soil mass body B which occupies a region R in Fuclidean
J~space in a reference configuration and denote by X the posiéion in R of the
particle X€B. We further suppose B to occupy the regioﬁ Rt at time t and
denote by‘i the position in Rt of the particle X€B. The motion of B from
R to Rt is given by

X = X(X,t) . (2.1)

Let n_ = no(x) denote the porosity of B in R. According to the ideas set -
forth by Aguirre-Ramirez [1] in order to describe -the deformed state of B at

time t we have to set alongside (2.1),

n = /ﬁ(’}s,t) , (2.2)

where n is the porosity of B at time t.- The function A is such that

n, =0 (X) = T(K,t ) (2.3)

o <o

where to is the reﬁerence time.

The gradient of E,

E = 7 XX (2.4)

is called the deformation gradient. F 1s a sccond order non-singular

~

tensor with the property

ldet EI > 0. (2.5)

We let u = Eﬂx,t) be the displacement vector from R to Rt and H be its

gradient,

H =V u(X,t). (2.6)

The deformation gradicntfg is related to H by
~s

+ H. (2.7)

F=1
L "
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We denote by dVS and dvs the element of solid aggregate of the soil body
in R and Rt respectively. The mean solid aggregate dilation or expansion A

1s then defined by [1]

(2.8)

It can be shown that A is given by [1]

A = %%fﬁls |det F| T (2.9)
o

and is an additional strain measure that is characteristic of the soil mass

body.

The quantity e = e(X,t) defined by,

e = n‘det El (2.10)

(I-n)

is the void ratio of the soil mass defined as '"the ratio of the element of
void volume at time t to the element of solid aggregate of the soil mass in
the reference configuration’™. Note that
A= LR ' . (2.11)
n
In what follows the word "specific" shall mean per unit mass of solid
aggregate, Let po, p be the soil bulk mass density and p:, ps the solid
aggregate mass density in R and Rt respectively, The differential equations

governing the deformation and motion of the soil mass body are given by 1]
(i) Balance of mass

pldet F| = p° or p b = p:. (2.12)

(ii) Balance of linear and moment of momentum

div T + pb = pX (2.13)

T = TT
~ {(2.14)
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(iii} Balance of energy

PE = tr T L - div q + pr. {2.15)
r~ o~ ~

In (2.13) and (2.14), I'ié Terzaghi's [ 2 ] effective stress which was defined
in [1] ip such a way so as to obtain (2.13) from a2 global balance law,lh

the specific body force density,'% the acceleration, € the specific internal
energy deasity, g_the effective heat flux vector, r the specific heat source

density, and L the velocity gradient which is related to F by

L=FF = grad % (x,0) (2.16) -

Alongside (2.12), (2.13), and (2.15) coustitutive equations are nceded for the
soll-mass. The work presented in [1] indicates that these constitutive equations

should be
"y = Y(E)e!n)

(g:q) = T‘(F"I}’:e,g:n) . (2.17)

where Y¥,%,8 indicate a general functional relationship,.¥ is the specific free

energy density, B8 the temperature and.
g = grad O . ' (2.18)
~

L
Also in [ 1] a triplet (F ,0 ,n ) with

w LN
‘(F :_‘9’:8‘1:033) =0 ’ (2.19)

1"

was called a thermodynamic equalibrium state for the material point X of the

goil mass.

If the stress is written as the sum of a non-dissipative part Io and a

dissipative part_ED,

T=T +1 : (2.20)
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with constitutive equations

T = £ (F.8,n) (2.21)
Tp = £p(EE.0,g,0) (2.22)

where £ ED indicate a general functional relationship, thcn.gD must be

such that

% %o
£, (8 ,0,8%,0,0%) = 0. (2-23)
Also
& * *
q= }(F ,0,6,0,n) =0, (2.24)
- — ~ -

i.e., at equilibrium the effective heat flux vanishes. In (2.24), I

indicates a generzl functional relationship.

In continuum mechanics elastic deformations are recoverable deformations
and the thermodynamic process under which these take place is a reversible
process. Therefore one may reason that elastic behavior occurs under thermo-
dunamic equilibrium. Suppose the soil mass is responding elastically with.
respect to some configuration+ R0 at time t. Then according to (2.19) all

deformations F, all porosities n, and all temperatures O are such that

~
E(F}ean) = 8(F,0,8,0,n) = 0 {2.25)

and since g = 0, the temperature field © is homogencous. The effective

stress, free energy, and heat flux is given by

]

T(F,8,n)

3

@(F,S,n) {2.26)

-=-
1

q=20

A O .
where T,Y are ordinary functions.

-+ . . . . . .

Here a configuration and the region the soil mass B occupies in & in
that configuration are taken to mean the same. No confusion need arise since
B is isomorphic to regions in €.
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To demonstrate that the above ideas of elastic behavior of the soil mass
are equivalent to the elastic behavior (constitutive equation wisa) of a .
simple continuum it suffices to indicate that the constitutive equations
for an elastic soil mass are (2.25) and (2.26). Then under sufficient
A , 5

smoothness assumptions on 2 the following equation
n = £(F,0) (2.27)

for the porosity may be obtained from (2.25). 1t follows that

T = 7H(F,6) = T(r,6,£(F,8))
N e :* ~ (2.28)
V= ¥(E,0) = V(F,0,5(F,6))

which are the constitutive equations for an elastic simple continuum.
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3. SOIL BEHAVIOR

In this scction we shall discuss some aspects of soil bechavior which we
shall use as é guide in the next section. Before doing this, however, let
us indicate that most experimental data on the response of a soil mass under
load is for infinitesimal deformations under isothermal conditions. Also in
the reduction of soil test data the following formula is used to compute

volumetric strains

Av An
T =y | (3.1

where Av,fn are the change in sample volume and porosity respectively, It
can be- shown that under infinitesimal deformations (3.1) follows from (2.9)
under the assumption of Iincompressibility of the solid aggregate of the soil.
In compressibility of the solid-aggregate is really not a general property
of the soil, The reason for using (3.1) is that volumetric mcasurements on
a soil sample are extermely difficult to make. Measurements of porosity
changes on the other hand are simpler to make since these can be related to

the amount of fluid expelled from the pores during the test.

Most soils show a phenomena that is generally not shown by metallic
solids undergoing infinitesimal deformations. This is the phenoména of

dilatancy, i.e., bulk volume changes in a state of apparent pure shear.

.- Current methods of testing soils have bcen, glmosﬁ always, restricted to
the conventional triaxial compression test, the oedometer and to a far less
extent, the direct shear test. The reader is referred to Lamb and Whitman (2]
for a discussion of these tests. In the direct shear test the sample is
assumed to be subjected to plsnc strain, In the triaxial comprassion test
and ocdometer the sample is assumed to be in a stress state in which the

jntermediate and minor physical components of the stress tensor are equal.

The triaxial test is cssentially a cylindrical sample first put under
an equal all around pressure, called the confining pressure (denoted by O
in Fig. 1), and then adding increments of load in the direction of the axis
of the cylinder (Fig 1). As ﬁentioned above the stress state of the sample

during the test is assumed to be such that

O, =0, =0 o] (3.2)



are the only non-vanishing physical components of the stress teunsor in a,
polar coordinate system. In soil mechanics it is a practice to use the

generalized stress parameters p &nd q defined by

1 .
T e— g = - -
p=3(9;+20), ¢ _03 g ) ‘ (3.3)

as an appropriate set of independent parameters that can be used in analyzing

data obtained in the triaxial test.

A typical stress-strain curve for a dry soll mass obtained In a vacuum

triaxlial test is shown in Fig. 2. This curve was obtained at the Geotechnical
Laboratory of NASA's Marshall Space Flight Center at Huntsville for a lunar
soll simulant material., For the purpose of discussion of rhis curve and for
the remainder of the paper compressive stresses will be taken as positive,
Examination of the curve (Fig. 2) indicates that the stress-strain behavior

of this particular soil mass is similar te the behavior of an elastic-strain
hardening plastic material. We also note that the response to a decrease in

stress is an elastic recovery.

The confined compression {(ovedometer) test Is a cylindricql sample sub-
jected to axial.load but prevented from horizontal movement. Because of this
last constraint lateral stresses develop which in general are not measured. -
As mentioned above accurate measurements of volume changes in dry soil are
not easy to make, In the oedometer test, however, because of the no lateral
movement. constraint, the axial strain is exactiy equal to the volumetric
strain. The parameters used to analyze data from this test are generally

the vertical effective stress denoted by p and the porosity n.

A typical p~n curve obtained in the confined compression test is shown
in Fig: 3. ihc significant features of this curve are the non-linecar
relationship between p and n and the elastic response to a decrease in stress,
We note that ‘this turve also shows behavior which is similar to the behavior

of an elastic-strain hardening material.

The similarity of soil stress-strain curves of the type shown in Figs.
2 and 3 to that of an elastic-strain hardening plastic material has led some

rescarchers to suggest that the Mohr—Coulomb+ criteria could serve as a

+In the next sectlon we shall discuss the Mohr-Coulomb failure criteria,
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yield function with which one could properly associate a flow rule [7].
While this is a valid assumption it is not a reasonable one, because if the
MohfLCoulomb envelope is used as a yield surface then yielding does not
occyr until failure takes place. As shown by the curve (Fig. 2) soils
yield long before they fail. The use of the Mohr-Coulomb failure critéria
as a yleld surface-.gives erroneous predictions of high rates of change of
volume during shear distortion. This is very unfortunate because research
workers who reject these predictions will have the tendency to discount the
usefulness of the theory of plasticity to model some aspects of.the stress-

strain behavior of soils.
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4, 8OIL PLASTICITY

In this section we shall formulate a theory of plasticity for soils.
While the considerations of Section 2 hold for finmite deformations, the
discussion In this and the following scctions is limited to small strains.

Thus the strain tensor that we shall use will be the linear strain tensor,

E = 5(H + 5. %D

Also we shall assume that the change in porosity

€ = n-n_ (4.2)-

1s of the same order of magnitude as the strains,

In a soil we may define yield as a permanent irrecoverable deformation.
We may write the strain E as the sum of an elastic or recoverable part_Er

and a plastic or irrecoverable part Ep'

E=E +E. | (4.3)

In-addition we shall assume porosity to be given as the sum of an elastic

or recoverable part n and a plastic or-irrecoverable part np,

n=n + np. A{4.4)

In view of this assumed resolution we shall have for the change in porosity

= Cr + a, {4.5)

where Qr =n -n . The quantity V given by

veA-1 (4.6)

where- A is given by (2.9) is the solid aggregate dilatation. Tor small

strains V is given by

+ tr E. (4.7)
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Under the assumed-resolution (4.3), (4.5), V is given by

o n
} = L3 P
v (l—no + tr Er) + (l_no + tr Ep).

(4.8)

Thus the solid.aggregate dilatation is the stm of two parts, & recoverable
part

r  l-n, ~r ' (4.9)

and an irrecoverable part

n
\Y =='i':$1-—+tr§ .

b (4.%0)

The plastic deformation of the soll is therefore described by the pair
E ,n ).
(E,on)
A fundamental assumption of metal plasticity is that the elastic strains
may be computed through the elastic constitutive equations for the stress.

We cdrry this assumption into soil plasticity. Thus the elastic strains and

elastic porosity may be computed through the soil elastic constitutive equation
for an isothermal process,

z = B(E,.C) (4.11)

£(E,.C,) = 0 4.12)

vhere we have iIntroduced the change in recoverable ﬁorqsigy

We assume (4.11)
to be invertible in E_, )
. T

=

>

Er (E’Cr)'

(4.13)

This allows us to write (4.12) in the form

?q;,cr> = 0, (4.14)
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We find it convenient to decompose the stress tensor into the sum of

the mean pressure p and deviatoric stress‘T: i.e.,
-

T=p1+7 (4.15)
p=3tr1, tr T=o0, ©(416)

In view of this assumed resolution we may write (4.14) as
g(p,T:6,) = 0 (4.17)

Equation (4,17) defines a surface { in (-T space. We call this surface {,

the elastic surface., Note that we may solve (4.17) for Qr SO0 as to obtain

G, = & (). (4.18)

The curve in {-p space defincd by

K A

) ;
¢."=C(p) =g (r,0) (4.19)

is called the elastic swelling curve of the consolidation curve of the soil.

We consider a curve in C-p space given by

$(p,0) = 0 . (4.20)

with § fixed and unique. For a given soil there exists such a curve which

is called the virgin consolidation curve. The intersection of the elastic
swelling curve with‘the virgin consolidation curve defines a point in (-p
space which is a yield point for the soil. We denote the mean pressure
corresponding to such a point by P, Now (4.20) may be solved for the change

in porosity (,
Pl
¢ =¢p). (4. 21)

From (4.1%) and (4.21) we find

° ~ ol

o= Gp) = €(p) (4.22)
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which indicates that with the pressure P, at yield we can associate a plastic

porosity n;. We shall use this result below,

One of the main ingredients of metal plasticity is that of a yield surface.
We shall now demonstrate how to construct a yield surface for a so0il. Our
construction of a yileld surface for the soil is wholly dependent on the

hypothesis that "plastic porosity 15 a unique function of stress,! i.e.,

n, = N(T). ‘ (4.23)
We further assume (4.23) to be the solution for np of the equation

G(g,np) =0 (4.24)

where G is unique. In plastic pososity-stress space (4.24) defines a six-
dimensional hypersurface L that is called the state boundary surface. A
soil particle will be said to be in a plastic state if the value of the

stress and plastic porosity are such that (4.24) is satisfied.

We consider a curve on X. The projection of this curve on stress space
is a five-dimensional hypersurface Y. There are curves on L which have the
unique feature that the value of plastic porosity is the same all along the
curve. Let np be the fixed value of the plastic porosity along onc of these

curves and consider the set B of all T such that
"~

G(:l;,n:) = 0. . (4.25)

We call B a yield domain. The projection of this equi-plastic porosity

curve on stress space is a five-dimensional hypersurface whose equation is

given by
A(T,n) =0, Tep (4.26)
*
where the parameter M depends upon the value np of plastic porosity, i.e.,

% = ﬁ(n::). (4.27)
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Our concept of a yield surface Y, for the soil is given by (4.26). Note
that along the-yield surface the plastic porosity has a constant value

n:, i.e., for all statecs of strcss which locate points on ¥ the value of

the plastic porosity is the same, In particular we can find a yield
surface such that the wvalue of plastic porosity associated with it is given
by (4.22), i,e., n: = n;. We call such yield surfaces "yolumetric yield
surfaces” and denote them by Yv. Thus a volumetric yeild surface is

characterized by
3 o= ’i‘t(n;).  (4.28)

. Q '
Also since with each np we can assoclate a mean pressure p, We can also

characterize volumetric yleld surfaces by

*= ) (4.29)

If we consider another equi-plastic porosity curve im & its projection
in sktress space is given by an equation of the form (4.26) but with a
different yield domain and, of course, a different value of the parameter
corresponding to a different value of plastic porosity. 1In addition, since
for all states of stress on a given yileld surface, the plastic porosity is
constant, it follows that the change in porosity { i{s also constant. We
have envisloned soil as a work-hardening material. Thus in order for plastic
deformation to cceur, the stress point must move outside the yield curve,
i.e., the initial yield point must be exceeded. A new yield curve is then
established which, depending upon the shape of the state boundary surface X,
may or may not rcsemble the old yield curve. We shall also show below that

the yield surface for soils is not a closed surface.

With our concept of a yield surface the loading and unloading criteria

are respectively given by

tr BTA(T,u)":L‘ <0, A(T,%)
oo~ ~ (4. 30)

tr aTA(T,u)c'r >0, A(T,H) =

La s

il
o

|
<o
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while the neutral loading is given by
tr 3 A(T,X)T = 0, A(T,%) = O. (4.31)
T ~ ~ i~
-~

An important ingredient of plasticity is that of D%dcker’s postulate
of stability of material [3]. This postulate is used to classify a méterial
as a work-hardening material. According to this postulate, if an external
agency applies a small surface fraction which alters the stress at cach point

by T, then upon gradual application and removal of this surface fraction

tr TE 20 (4.32)

if the material is work-hardening. Important consequences of Drucker’s

.postulate are [3].

(i) The yield surface and all subsequent loading surfaces must be

convex.

(ii) The plastic strain increment vector must be normal to the loading
surface at a regular point, and it must lie between adjancent normals to

the loading surface at a cornmer of the surface.

The normality condition (ii) implies that at smooth points on the
yield surface

B = A p@m (4.33)

. where A is a function of the deformation history and is such that (4.33) is

homogeneous in time and

D(T;) = JACL,H). (4.34)

N

We can also write the yield surface in the form
A
Ap,Tony = 0 ‘ (4.35)

The normality condition then leads to



51

,ép = IR AL
(4.36)
tbp = Aa(p,7,n
where
D(o.T%) = 3A(P,7,%)
" (4.37)
a(P:I:”-) = apA(p::r:K)

and sp is the plastic strain deviator, q% the plastic velumetric strain

given by
1
= - = 1
S I
(4.38)
= tr B tr ¢ = 0.
*p ~p’ p
We note that the dependence of 3 on°] must be such that
A -
tr E(Pg:,r,“) = 0. ) (4'39)

We shall now indicate how the Mohr-Coulomb failure c¢riteria may be
used together with our concept of the yield surface, The Mohr-Coulomb
failure criteria states that the magnitude of the shearing stress T on any
section through a mass of an isotroplc cohesive soil must not be greater than
an amount which depends linearly upon the normal stress O acting on the

section, This condition is exprcssed as

TSc+0 gan & (4.40)

where ¢ is the cohesive and ¢ the angle of friction of the soil. Failure
can occur when the equality sign in (4.40) holds for some section through
the soil., Shield [4] has constructed a surface in principal stress spacce

corresponding to

T=c+0 tan d (4.41)
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Letting O be the principal stresses with 0. =0 20 Shield Eé]

127223 1° % % %3

finds that the surface is a right hexagonal pyramid equally inclined to
the 01,02,03 axes and with vertex at the poiqt 01 = 02 = 03 = -¢ cot §
(Fig. 4). When the stress point of the soll is on this surface, the soil
mass is said to be on a-failure condition. The significant feature of the
failure surface is that it is not a closed surface in stress space ‘but
rather an open .surface, Consequently it divides stress space into two

regions I and IX. Stress points in region I are such that the inequality

<c¢c+ O tan &- (4.42)

is violated and consequently such states of stress are not possible for the
soil since by definition the soil has failed. On the other hand, points in
the region II are such that the inequality (4.42) holds and conscquently
equilibrium 6£ the soll mass is possible. However, since soils yield
before they fail, all points in region II in the vicinity of the failure
surface also lie in some yield surface. For a soil which has work-hardened
isotropicaliy two possibilities arise: (1) Y is tangent to the failure
surface, or (2) Y traverses the failure surface. If the possibility. (1)
prevails the plastic increment vector at the tangent point will be normal
tae both surfaces. Considering that the Gse of normality of the plastic
strain increment vector to the failure surface gives erroneous predictions
of high rates of change of volume during shear distortion we disregard

the possibility (1) above. Therefore the failure surface is traversed by
the yield surface. This indicates that stress points can only lie on a por-
tion of the yield surface, that portion which lies in region II. ‘

Consequently, the yileld surface is not a closed surface.

We now assume the soil to be isotropic., We further assume Er to be

linear in T. Therefore (4.13) has the representation

E. = (a(C)tr I+ a,(C0T (4.43)

where ay and a, are functions of the change in recoverable porbsity. Letting

32 = tr']’2 ; 33 = tr’T3, (4.44)
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(4.18) reduces to

%
Cr =g (p, J,s J?) (4.45)

Also we assume the soil to be isotropic work-hardening material and use the

form (4.35) of the yield surface, Thus

A A o
A(p,"T, ®) = A(p, Jys I3, ) (4.46)
e R . -
From this follows
A L A A 2
D(p,T,%) = 2BJ2A(p,J2,J3,M>I+ 38J3A(p,J2,J3,an (4.47)

and consequently

a n
tr D(p,T,¥) = 38J3A(p,32,a3,n)J2-

In view of (4.39) and the fact that J, # 0, this last equation leads to

[
BJSA(p,Jz,J3,%) = 0 (h.48)

or equivalently that A must be independent of J3. Consequently (4.35) reduces
to

Bp, 3, 1) = 0. (4.49)

Considering that
2
Jy =1, - 3p", I,=¢trT (4&.50)

we can write (4.49) in the form

ﬁ(p,Jz,K) = A(p,I,,#) =0 (4.51)

or using principal components of stress

k4
A(p,1,,%) = A (94,0,,04,%) = 0. (4.52)
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We indicated at the beginning of the last section that (3.1) follows
under the assumption of incompressibility of the solid aggregate. A formula
similar to (3.1) may also be derlved by recognizing that fundamentally there
are two mechanisms that contribute to the deformation of the soil:
distortion of individual particles and relative motion between particles as
the result of sliding or vrolling. If we assume that plastic deformations
are mainly due to the relative motlon of the soil particles duc to sliding
and rolling then a reasonable assumption we may make is that durilng this
motion the soil particles are essentially Incompressible, Mathematically

this assumption is stated as

vV =0 (4.53)

where Vp is the lrrecoverable part of the solid aggregate dilatation glven

by (4.10). In view of the ass mption (4 53) we obtain from (4.10) .

= - P
wp Ton (&.54)
o
which is a formula similar to (3.1).
Now considering that
;\ ' - A . A A
A=ap+tr1l:f+aKA annnp—o
P
where ¢ and %_afe given by (4.37), we can write (4.54) in the form
. e <A
2, = Map + tr D7D
(4.55)
B . A .
cpp = Alap + tr B‘T)a
where
1
A= e e {4.56)
(l-no)BnA Bnpna

Thus under the assumption (4.53) the flow rule is given by (4.55).
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5. STRESS-STRAIN THEORY FOR TRIAXIAL COMPRESSION CONDITION

In thils section we shall construct from the theory presented in the
previous scction stress-strain relations for the independent interpretation
of triaxial compression condition., With referenée to Fig. & we assume, that
.In a triaxial compression condition, the non-vanishing physical components of

the stress tensor to be

%1 %20 93

We further assume a homogeneous stress field in which casc it follows.from

equilibrium that

g, =0 (5.1)

Under these assumptions the mean pressure and physical components of the

deviatoric stress tensor 4y (i = 1,2,3) are

=1 =2
b= 3(03 + 202) H q3 = 3(03 - cl)
(5.2)
q; = 4, = ~¥q,-

If we assume an isotropic material then the principal directions of the
stress tensor and strain tensor coincide. The non-vanishing physical com-

ponenfs of the strain temsor are then given by

(5.3) .

where @ is the volumetrie strain.
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We can write the stress power of the soil mass in the form,
D=ErTE=trIé+ptp. (5.4)

Using the principal componrents of 4 and e we bring (5.4) into the form

D = ge + p® (5.5)
where
3 _
q = —2—q3 = 03 - Ol N e = 33. (5.6)

The form (5.5) suggests that in a triaxial compression condition the
generalized stress and strain parameters be (q,p), (e,®). Accordingly we

decompose {e,®) into the sum of recoverable and irrecoverable parts,

e

[}
)

+ e
r P
(5.7)
P=0 +Q
and construct a yield function in ¢-p space.

In two dimensional stress space the yleld surface reduces to a curve
and the Mohr-Coulomb failure surface to two straight lines mecting at a point
on the p-axis. 1In Fig. 5 we show these {wo lines for a cohesionless soil

are defined by

{c = 0). The angles @1, @2
_ 6 sin & 6 sin &
ten ) =3 smd UM% T35 (5.9)

where ¢ is the angle of internal friction of the soil. We note that the two

Coulomb lines ocl, 0C

the current yield locus Y is the curve Fle which traverses the p-axis at Py

9 divide gq-p space into two regions I and IX. 1In Fig. 5

Recall that along the yield curve the value of the change in porosity is
constant. This value of the change in porosity can be obtained from the

soil virgin consolidation line which is obtained through another experiment,



57

Without loss of generallty we take @1 = §2 and introduce the dimension-

less quantities

= B 5.
N=3 . (5.9)

The value of p,q at the point Fl is then given by

q = Mp (5.10)

where a bar over a quantlty Indicates that these are the values of q,p when
the soil is in a failure condition. We also introduce the dimensionless

quantity N defined by

=P 5,11
ng = 2 (5.11)

We note that whereas M is a constant for the soil, N, is constant only for

. £
a particular yield. However for lack of experimetital evidence to use as a
guide we shall consider Nf to be a constant for the soil. This assumption
in itself suggests experiﬁentation.

We shall assume the current and subsequent yield locii to be symmetrical
about. the p-axis and to be segments of ellipses which pass through the origin.

It can then be shown that the equation of the ellipse is

. -2 )
N“"""_“zn 5 (5.12)
M™ 4 KN
where
1 - Nf
XK= R (5.13)
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Thus the current yield locus is given by (5.12). 1In (5.12), p, appears as.
a parameter that we may use as a straln-hardening parameter. This being the
case the yield locus will be a volumetric yield locus. The dependence of

p, on np Has to be determined in order to obtain a flow rule asscciated with
{(5.12). To this purpose we assume that the virgin consolidation line of the

soill when plotted on §-1n p space is gilven by Terzaghi's well known equation

Py
¢ = -A 1n(—) (5.14)
oy . $
where Xo is 2 soil econstant and Py is the consolidation pressure of the soil
in its reference state. We also assume the elastic swelling curves to be
straight and parallel lines of slope k when plotted on (ln p space. We can
then show that the construction depicted by (4.22) leads to the following

relation
-1l 3
p_ =Y exp(-—=£) T (5.15)
o Y
where Y fs the initial yield pressure under confined consolidation and
Y=A -K. (5.16)

In order to construct a flow rule associated with (5.12) we assume that
(4.54) holds, We can then show that the coefficient of proportionality A
in (4.36) is given by )

. Yp ’ : 2 2
A= O (R, 2KTN M+ KW, (5.17)
(1—n0) P M2 L Kﬂ2 M2 _ an .

The plastic strain rates can then be shown to be given by

- y 2K p 2R
& - ( Y& + 2K,
p T (2 L B P 4 il
(5.18)
' Yy p 2xmn
@, = s @+ 2
Pl e g2 g
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Having obtained expressions for the plastic strain rates the next order of
business is to obtain expressions for the recoverable strain rates. It can

easily be shown that (4.43) and (4.45) reduce to

e, =a3(8)q
®, = 3a,(C )P | (5.19)
£, = £ (p,9)
where
a,(C) = 2a,(C) , 2,(C) = 3a,(C) + a,(C) (5.20)

For lack of experimental information regarding the dependence of Qr on

g we assume
£
3qg (p,q) =0, : (5.21)
%
i.e., gr is independent of ¢. It follows that

¢, =2 (5.22)

This being the case, we have already assumed the form of (5.22). Equation

{5.27) describes the elastic swelling curve, Consequently

¢ - xR
C K b (5.23)

r
Using (5.19),, (5.22), and (5.23) we find

v = K¢(€r,p)§ (5.24)

where

q’(gr:P) = 3p(54(gr) - agrall»(gl‘)). (5‘25)
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© If we assume that there is no recoverable energy during shear distortion

then

e = 0. (5.26)

The final stress-straln relations for triaxial compression condition

are obtained by combining (5.18), (5.24), (5.26), and (5.7),

o o_ Y 2Kn P 2K
e =e = ( YE 4
r (o)) N7 an 2 . an
. (5.27)
. 1 2YKTN * p..
= Y P
P CP +CPP @) (2 +KT| 5 + (Qr,p)p)
where
k3
A (Qr,p) =Y + K(l-no)‘lJ(Gr,p)- (5.28)

Let us now consider the following form of the material fuhction aa(gr)

appearing in (5.19)2,

aq_(g.r) = 3R(l-‘-Kn )(l-K) (exP gr = EXP(T(E)) (5.29)
(o]

where R is the residual pressure, i.e,, the pressure experience by the soil
vhen it has been held at rest in its reference configuration at all times.

The assumed equation of the elastic swelling curve is

-¢.
p=R exp(——) (5.30)

Substitution of (5.29) and (5.30) into (5.19) yields

) -C (1 K) )
.—-_.._....._.._____ - 2

@r (i-n )(1 ) (exp( 1. (5.31)

If we expand the exponential function into a power series we can write (5.31)

in the form

¢ 2
r
O
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But since we have assumed wr and Qf to be of the same order of -magnitude,

it follows that

(5.32)

which is an cquation of the form (3.1). Therefore if we assuwe (5.29) we

‘may replace (5.19)2 by (5.30) which may be written in terms of mr as

P, = (1 Wk (R) - : -(5.33)

Under the assumed form (5.29) for aa(( ), the function \F (C ,p) glvan by
(5 28) reduces to

N'(C_,p) = A (5.34)

In this case equation (5.27)2 reduces to

. 1 ZYKT]T] Py
Q= ¢ + A5 (5.35) -
(I-n)) 2y g2 ©OP :

while (5.27)1 remains the same.

Let us assume the particular value of % for the coefficient Nf given
by (5.11). 1In this case K = 1 and the yield locus and stress-strain relatiouns

(5.27), and (5.35) reduce to

2

N=-
M° + T

- y 21\ ,p, _2m

- ( y (2 4 3 (5.36)
(1 no) 2 nZ p' MZ n nZ

- 2y" P

®= (1 ) ( P t A

If we assume the line OC, in Fig. 5 to be crifical state ]ine+ instead of a

1

+Sec Schoffield and Wroth [6] for a thorough treatment of the critical
state concept in soil mechanies,
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Coulomb line then (5.36) is identical to the Ca@bridge triaxial compression
theory presented by Roscoe and Burland [5] for 'wet" clay. We must point‘
out that Roscoe and co-workers at Cambridge have, for the past decade,
concentrated considerable effort to arrive at self-consistent constitutive
relations for soils, The reader is referred to the recent article by

Roscoe and Burland [5] for an account of the work at Cambridge.
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SECTION III
ON A YIELD SURFACE FOR SOILS
1. INTRODUCTION

In 1952, Drucker and Prager (3] introduced-an idealization for the.
phenomenological behavior .of soils under load., In this idealization the
soll mass. is treated as.a perfectly plastie material-with the Mohr-Coulomb
failure .criteria for soils.as a yield function with-which a flow rule can
be associated, Volume changes predicted under this 1dealization, however,
were higher than those found by experiments, Based on observations made
on pressure-volume change curves Drucker, Gibson, and Henkel [4] explained
how soils could be treated as a work-hardening material. Roscoe and
co-workers at Cambridge have indicated that certain soils can be described
remarkably well by a simple isotropic work-hardening idealization: The
work at Cambridge is|discus§éd in considerable detail by Roscoe and

Burland [2],

‘Aguirre-Ramirez and Costes [1] presented a self-consistent phenomeno-
logical theory for the mechanical behavior of granular media which shows
stress-strain behavior of the type discussed by Drucker, Gibson, and
Henkel [4]. As an example a yleld surfiace and associated flow rule, for
triaxial compression conditions, was constructed in [1]. Tt was also
shown in L1] that the Cambridge triaxial compression theory developed by

Roscoe and co-workers [2] comes out as a gpecial case of this theory.

In this paper we generalize, to complex stress fields, the special

triaxial compression theory presented in [1]. We have been encouraged to

do 8o in view of the fact that the Cambridge triaxial compression theory
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of Roscoe and co-workers has been found to give reasonaﬁle agreement with
experimental results. Accordingly In Section 2 we briefly review the
theory of soil plasticity presented in [1]. In Section 3 the special
triaxial compression theory of [1] is also reviewed. This theory is gen-
eralized to three-dimensional complex stress field in Section 4. Recog-
nizing that many soil mechanic problems can be jdealized to plane-strain
situations we present in Section 5 a theory for plane-strain. In Section 6
we compare both the three-dimensional and plane-strain theories to those

of Roscoe and Burland (2] and find perfect agreement.
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2. PRELIMINARIES

We consider the particles of a dry soil maés continuum to
be referred to a fixed rectangular Cartesian system X (i=1,2,3)
and let u denote the displacement field. The. linear strain tensor

Yi4 is then given by

Yi5 & 1/2(ui

i3 + u, ) (2.1)

0] J.1

where we have denoted partial differentiation with respect to X,

by (),;. We also let n,n, denote the current and initial poro-

0
sity of the soil mass continuum respectively and define the

change in porosity ¢ by
T =n-n,. (2.2)

We further assume r to be of the same order of magnitude as the
linear strain tensor Yij'

Earlier we have defined yield in a soil to be a permanent
irrecoverable deformation [l].. The strain may then be written
as the sum of an elastic or recoverable part Yij and a plastic

or irrecoverabhle part ng'

s .. = 1o+ W .
Yig Yij Ylj (2.3)
In addition we shall assume porosity to be given as.the sum of

an elastic or recoverable part n' and a plastic or irrecoverable

part n",

n=n'+n" (2.4)
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In view of this assumed resolution we shall have for the change

in porosity
Z =g' + a" (2.5)

where ' = n' - nq.

According to the ideas set forth in [1] the irrecoverable
deformation o? the soil is described by the pair (Yij"’ n") .
The theory of soil plasticity presented in [1] is wholly dependent
on the hypothesis that there exists a unique function F §f plastic

porosity n" and Terzaghi's effective stress 033 such that

F[Uijf n") = 0. (2.6)

In plastic porosity-stress space (2.6) defines a six-dimensional
hypersurface ¥ which was called in [1], the state boundary sur-
face. A soil particle was then said to be in a plastic state if
the value of the stress and plastic porosity are such that (2.6)
is satisfied. l

A yield surface § for the soil was defined in [1] to be the

projection on stress space of curves on } along which the plastic

porosity has the constant value n". This is given by
A(G-.f k) = 0 (2.7)
1]
where
k = k(n") (2.8)

is the strain-hardening parameter. The flow rule asscclated

with (2.7) is given by
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u = A D o Ik 2.9
Ymr mr( ij' ) _( )

where ) is a function of the deformation history and is such that

(2.9) is homogeneous in time. Also in (2.9)

da

b {o,., k) =

. {o0.
mr o ij

i5° k). (2.10?

aomr

We often find it convenient to decomipose S into the sum
J

of its deviatoric part Tij and mean pressure Pp,

where Sij is the Kronecker's delta and
= 1/3 o = 0. 2.12
P / - T { )

Under the resolution (2.11) of the stress we may write (2.7) in

the form

Alp, Tij' k) = 0. (2.13)

The flow rule (2.9) then reads

° . N

n"n —
€op = A Dmr(p’ Tij,‘k)
. . (2.14)
where e;r is the plastic strain deviator and
~ _ aﬁ
Dmr(Pr Tij' k} "~ (P, Tij, k)
o (2.15)
alp, T35, k) = =—(p, T34, k)
op

Fundamentzlly there are two mechanisms that contribute to

the deformation of the soil: distortion of individual particles
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and relative motion between particles as the result of sliding
or rolling.- We assume that so0il irrecoverable deformations
are mainly due to the relative motion of the soil particles due
to sliding and rolling and that during this motion the soil

particles are essentially incompressible. It can then be shown

that under this assumption [1]

n -
Y= - (2.16)

e (1-n,)

The flow rule (2.14) may now be written as

*a _ ~ . . A . )
ey = A(Dij Tji + ap}Dmr . (2.17)
" = A(D,. 1., + ap)a
Ymn ( i3 Y31 p)
where
A = [{(1-n,)a oA 3% 41 (2.18)
2k on"

The recoverable strains Y&r and porosity n' may be computed

through the soil elastic constitutive equations [1]

Ve vt (o .
Yor = Yme(%igr B (2.19)

L' o= c'(oij).

. e, . . . . .
Por an isotorpic soil for which the strains are linear 1in Uij,

(2.19), has the representation

Yo . = al(c')cii me + az(c')am (2.20)

]
mY, r

where a;, a, are material functions of recoverable porosity g'.

We may also write (2.20) in the form
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[ — 2 ]
€mr T ¢ (T )Tmr (2.21)
Yom = 3¢, (&P
where
az(2') = 3o,(z") + a,(g'). (2.22)

The following form of (2.19) was assumed_in (1]

z! = -« 1n(B) : (2.23)

¢ .
where k¥ is a soil constant and R is the residual pressure, i.e.,
the pressure expefienced by the soil when it has been held at
rest in its reference configuratioﬁ at all times. We note that
in view of (2.23) we may write (2.21), in the form
- g! '

Yom = SRe, (1) exp(-;~4 (2.24)
which relates volumetric strains to recoverable change in poro-
sity. In [l] it was shown that under a suitable chosen function

o, the relation (2.24) can be reduced to

yio= - z'.. (2.25)
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3. TRIAXIAL THEORY

In this section and for the duration of the paper we shall
consider the soil mass to be isotropic. We shall also use the
convention that compressive stresses will be taken as positive.

We consider the family of deformations Y such that when

referred to a suitable set of orthogonal axes

Tmr 0, m#Tr (3.1)

Such deformations are called triaxial deformations. Since we
have assumed the séil to be isotropic it follows that the prin-
cipal directions of the strain and stress tensor coincide. This
being the case tﬁen it follows that under triaxial defobrmations
-the cémponents of the stress tensor take the particular form

o =0, m#T~x
(3:2)

i

Ull 0 -

22

It can be shown [1] that under triaxial deformations a suitable
set of generalized stress and strain parameters are (q,p), {e.,0)

where

o
n

O35 ~ 0‘1! P = 1/3(0'33 + 2011) (3.3)

= Yaz t 2v11 .

e = 2/3{yss - Yu1} » 0=y

In terms of these generalized parameters, the stress power is

given by
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@ L]

D=ge + po. (3.4)

We consider the following invariant of the deviatoric

stress tensor

J =1 T ) (3.5)
mx rm

it céﬂ be shown that in a triaxial stress field J is given by

J = 2/3(033 - 01,)% = 2/3 ¢%. (3.86)
The octahedral shear stress T, is related to-J thrbugh

T, - /L, U (3.7)
In a triaxial stress field (3.7) reduces to

‘To = /2—/-5 q. (3.8)

Equations (3.6), (3.8) give meaning toc the stress parameter g
in terms of invariants of the stress tensor.
The strain measures e, 6 may be decomposed into the sum of

recoverable and-irrecoverable parts
e=¢'+e¢" , B8=06"'"+ 8", ’ (3.9}

In [1] a one-parameter family of yield curves was constructed

in g~p space for a cohesionless soil with an angle of internal
friction ¢ at failﬁre. A member of this family is shown in Fig. 1
and is given by .

,,_B = ...._._.__..__.'M (3.10)
Do M? + Kn?
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where n = g/p and

M = ___6 sing , K = Po - Py (32.11)
3 - sing Py

Here Py is the value of the mean pressure at failure at a change
in porosity ¢ and p, represents the pressure corresponding to g
on the virgin isotropic compression curve of the socil. The para-

meter of the family was taken in [1] to be py, and is éiven by
-n" —
po = Y exp (—) (3.12)
B

where Y ig the initial yield préSSure under confined consolidation

and -
B = de = K (3.13)

Ao being a soil constant.
Under an assumed constant value of K the followihg flow
rule was established in [1],

S _ B  (_2Kn, (p . 2Kni (3.14)
(1-ne) M2-Kn?2 p  M24Kn?

gn __..._5_-_.._ (E+ gﬂlﬁ-ﬁ-)
(1-no) p M?%*+Kn?

In [1] we indicated that the yield curve given by (3.10)
and associated flow rule (3.14) reduce to the "Cambridge" triaxial
compression theory presented by Roscoe and Burland [2] if we
interpret the lin& 0OC in Pig. 1 as a critical state line instead

of a Coulomb line and if we take K = 1.
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4. THREE DIMENSIONAL THEORY

The yield curve given by (3.10} and assqciaied flow rule
(3.14} is in terms of triaxial compression stress parameters
g-p and as it gténds it is only gocd for analysis of triaxial
deformations under a triaxial stress field. In éeneral, however,
it is desirable to obtain a yield surface and associated flow
rule to analyze deformations under complex stress fields. Now

for an isotropic work hardening material (2.13) reduces to [1]
A(p, 9, k) = 0. : (4.1)

To obtain the yield curve (3.10) in terms of stress in-

variants we use (3.6)'to arrive at

P 8% (4.2)
By 024KE?
where
3 =vV2/3 M, E?= Jf ) (4.3)
p

We see that (4.2) is of the form (4.1} with the strain hardening
parameter k identified with Po. We can also write (4.2) in the

form
To = £{p; Po) (4.4)

where 1y is the octahedral shear stress and

] . & P 1/2
f(p; py) = — p(=— - 1) (4.5)
’ ViR p

We also note that by using (2.16) and (3.12) we may write (4.2)
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in the form

g" = Bn [P(®2+K§2)] (4.6)
(1-n,) Yp2 :

It can easily be shown that the flow vector associated

with the yield surface (4.2} is given by

*u — B E 2KE‘;£
Yo = palg)s . +6Kg ) (E 4+ ~Z=22y (4.7)
™ 3(1-n,)p(%-KE?) e I
where
glt) = 92 - K(g%2 + 6). : " (4.8)

Let us 'assume that there is no recoverable energy during

shear distortion, then

Vae = /2818 . (4.9)

Also combining (2,24) and (2.26) we obtain

K

g' = —=—1n (B) . (4.10)
(1-ng) R
Therefore
5 = [ 1n (Bigiiﬁé )} + Kin(B)] (4.11)
(l—n ) R
and
* _ 1 A E
Y o = (pglE}) s + 6Ko _ )8" + ——— = g (4.12)
T 3p(e?-Kg?) mx m 3(1-n,) p
Here -
é" = —__E__ (E + _EEE%_)_ {(4.13)

(1-ny) p  22+KE?
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To the above egquations we add the equilibrium eguations
o,. .t X3 =0 (4.14)
13.3) - .
where Xi is the body force, and the strain rate-velocity relations

Yor = Y2bpg, e * v ) | (4.15)

where Vv, = u, are the components of the velocity vector. Eéua—
tions (4.6), (4.12), (4.14) and (4.15) form a system of sixteen

equations for the sixteen unknowns Ymr: 9"+ Cror and v..
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5. PLANE STRAIN

In this section and for the duration of the paper Greek
indices will have the range from 1 to 2. We further consider the
case in which the soil constan£ ¥k 1s negligible in comparison
with Ap. Under this assumption the elastic response is negligible

and we may set

Yﬁm = 0. {(5.1)
.Consequently

M 5.2

Ymr Ynr ( )

and we may drop the double primes to identify the irreversible
strains.

A state of plane strain is characterized by the assumption .

(5.3)
u, = 0
It follows that for plane strain
Yins™ o ., Ym3 = 0 (5.4)
and therefore
0 = Yoo ! 8 = Yyqur (5.5)

Now in view of (5.1) the constitutive relation (4.12)

reduces to
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= i (pg(&)é + 6Ko )é". {5.6)
Ymr 3P(¢2_KEZ) mr mr

Also considering (5.4) we obtain from (5.6) the pair of eguations
0,3 =0,, =0 (5.7)
pgl{E) + 6Ko,; = 0. {(5.8)

BEquation (5.8) is a quadratic equation in o3, which may be

solved to obtain ¢33 as a function of Oug* However, since ¢

. aB’
must also satisfy (4.2) we may combine (4.2) and (5.8) so as

Oa,
to obtain
3pgp2 ~2(92-3K)g
Gog = 0 = (5.9)
2 {02+6K) : -
where
g = Uaa' FS.}Q)

With o33 given by (5.9) the mean pressure 1is given by

_ 6Ko+po ¢2
2{32+6K)

. : . (5.11)

Using (5.9) and (5.11) we reduce (4.2) to

C;I, + Cz0% + C,po = 1/4-902@“ (5.12)

where .

C; = K(¢% + 6K
”_ _ 2
c, = ($2-3K) (32 -3K+9K") (5.13)
(32+6K) )
(1-X) (2~3K)
-302(1 + )
2 + 6K

x
LI
H]
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and

I, =0 O, (5.14
2 ol  Ba )
Equation (5.12) describes the yield surface in plane-strain.

Now from (5.12) we find

: 2Xo .
6 = (2C,0,,#(2C,04C,p )8 )@y (5.15)

(1-n,) (p 2¢*~2C;0p,)

where we have used (2.16), (3.12), and (5.1}). We can then show

that with the yield locus (5.145, the associated flow rgie is

° 1 .
= .16
(201°a +(2C20+C3Po)6a5)@ (5.16)

"
op (C,0+2C3p,) _B

where
Cy, = 2C; + 4C2. (5.17)

To the above eguations we add the strain rate-velocity and -
equilibrium relations

Yog = /200, o+ vg o) ' (5.18)

aB

Equations (5.12), (5.16), and (5.18) form a system of nine equa-

tions for the nine unknowns por O s Yopr @and v .
o o B ol

B
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6. COMPARISON WITH THE "CAMBRIDGE THEORY"

In this section we shall compare the three;dimensional
theory of Section 4 and the plane strain theory of the previous
section with the corresponding theories presented by Roscoe -
and Burland [2].

In order to make the comparison we must point out that
Roscoe and Burland [2] use only principal coﬁponents of the
st?ess and strain tensof. Using principal components of stress

the invariant J is given by

J = 1/3[(01~0,)2 + (0,-03)2 + (ca—al)zg (6.1)
aﬁd is related to the stress parameter r used iP [2] bf

r= V7. - (6.2)

Therefore from (4.3),, £ = r/p and for K = 1, (4.2) reduces to

. 2 . '
P - __ % (6.3)
po 9% + &2 ' .
which is the equation for the yield surface of the three-dimen-
sional theory given in [2].
Now combining (4.10) and 4.13) and setting K = 1 we obtain

1 2eed Ké} {6.4)
(l""no) (I’z + Ez p

~CD.
f

which is the equation given in [2] for the volumetric strain
increment.
o .
We consider the invariant e of the increment of irrecoverable

deviatoric strain given by
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vz .rr .n
(e}* = ¢ Ern *

0 we may write this as

Since we have assumed gﬁr
(6-5)

£
mr rXm

Using principal components of total strain, e is given by
2. (6.6)

()2 = ¢

-

o 1 . L] [ . a . l
€ = — [ly1=v2)% + (ya2-vs) + (yy-v,) 1

' 3
Roscoe and Burland [2] use é as a strain-increment parameter.
= ]

Now from (4.7) we can show for X
(6.7) ’

ZTmr in
6",

8 =
T p(et-£?)

and from this equation we find
g.= —=2E— §u, (6.8)
(9%-£%)
Substituting. (4.13) into (6.3) and setting K = 1 we find
e = —B (—2E B 4 333 ). (6.9)
¢2-£2 p o242

{(l1-n )
0
Equation (6.9) is the equation given in [2] for the strain-
so as to

increment parameter €.
We observe that we may combine (6.7) and (6.8)

obtain
. e
= —_— 6,10
fmr T Thr N ( )
Since é’ = 0 it follows that
mr )
=1 S 4+ 17306 . (6.11)
mnr

¥
r
m m ¥



87

Using principal components of stress and strain (6.11) is equi-

valent to the three equations

v1= 1/30(20,-0,-0,) = + 6]
. r
Y,= 1/3[{20,-05-0,) & + 8] (6.12)
. _
{3= 1/31(203~0,~0,) £ + 6]
r

which are the equations given in [2] for the three principal
strain-increments. Thus, for K = 1, the three dimensioﬁal-theory
given in Section 4 is in complete agreement with the three-dimen-—
sional theory presented by Roscoe and Burland [2] for "wet" clay.
We shall now compare the plane strain theory of the previous
section with that given in {2]. The plane strain theory given in
2] is derived under the_assumption k = 0. This assumption was’
also made i# the prévious section. For K = 1, (5.9) redﬁces to

_ 3pog? - 2(3*-3)0o (6.13)
2(0%+6)

O33

which is the equation given in [2] for the determination of @y

Also for K = 1, (5.12) reduces to
(0246)I, + (92-3)g? - 3¢?p,o = 1/4 p *0". - (6.14)

Using principal components of stress we reduce (6.14) into the

form

(202+3) (8, %+0,%) - 3¢%p, (0,+t0,) + 2(9?-3)0,0, = 1/4 py*o"
(6.15)
which is the yield curve for plane strain in o,-¢, space given

in [2]7.



88

Roscoe and Burland [2] introduce stress parameters t and

(6.16)

defined by-
t = 1/2(01+02) r T = 1/2(0L“62).
Using experimental observations as a guide Roscoe and Burland
2] introduce the following approximation to (6.15),
1/2
we=nE - Y (6.17)
t - .
where .
w = X . 0 = —l¢ = _E-M_ (6.18)
: t vZ /3
?he'incremental stress—-strain reiations, based on (6.17),
given in [2] are . ;
. ’ 2t
§ = —2 = (6.19)
(1-n ) Q%+w? t
20 8

—

§ =
(R2=w?)

where
(6.20)

Y = Y17 Y2
In order to compare our results with those in [2] we find
t, T, and ¥

it convenient to introduce Mohr's circle variables

through

(6.21)

+t =
]1/2

T = [1/4(0y, = g32)% + 012012
2012
tan 2y =
Gll-caz
In terms of stress parameters t and ¢ the yield locus given by
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(5.12) reduces to
1

2C,T% + 2(C_+2C )t? + 2C,p,t = 1/4 p, 20" ' (6.22)

where Ci (i=.1,2,3) are given by (5.13). For K = 1, (6.22)

reduces to
602t% + 2(¢2+6)1* - 60%p t = 1/4 p 20" (6.23)

which is the equation for the yield locus given in- [2] in terms
of stress parameters t and T,

Equation.(6.23) may be put into the form

2 2 2 2 .
(l+9—4 O -~ POy (1 - QFELH)= 0. (6.24)
3 22 t 12t2 ' :

The expression (6.17) emerges from (6.24) under the following two
conditions: (i) 92/3 << 1 and (ii) @2%p,2/12t? << 1. It can be

" shown that under these conditions
p(e? - £2) = 2t(Q* - w?). ‘ . (6.25)

In view of (6.25) we obtain from (5.6) and (5.8) with K = 1,

the expression

® ._A 1 - g o
Vag = Ciro (0, = Ta38 6. (6.26)

Using this expression we construct

(Y - Ya2) = 19,,-922) 8. (6.27)
11 t(92_w2)

If we use principal components of stress and strain rate (6.27)

will reduce to


http:Equation.(6.23

90

f -2 6. (6.28)
(R2-w?) '

Now from the equation obtained f£rom (6.24) under the assumptions

(i) and (ii) mentioned above we find

T2 2 ) s
o f@%+w®) £ 2w - (6.29)
t- Q2 t Q%+l

However, since

- (l-n,) .
Py = —_— P, 8.
Ao

we obtain through (6.29)

* ) 2w £
g = .9 -) (6.30)
(1-ny) Q%*+w?® t

Equations (6.28) and (6.30) are in complete agreement with (6.19).
Thus for K=1, the approximate plane strain theory extracted from
the plane strain theory presented in the previous section is in

complete agreement with that of Roscoe and Burland [2].
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SECTION 1V
AXTSYMMETRIC FLASTIC FLOW

1. INTRODUCTION -

The present investigation in theoretical soil plasticity is concerned
with ideal‘soils whose postulated mechanical behavior is an approxi-
mation to that of a wide class of natural soils. It is the object of
this investigation to provide a theoretical analysis, valid under cer-
tain mathematical and physical assumptions, that has applications to a
fairly wide class of problems that concerns the general situation of

quasi-static axially symmetric plastic flow.

Z. PRELIMINARIES

We consider the particles of a dry soil mass continuum to be refgriéd
to a fixed rectangular Carﬁesian system x;(1 = 1,2,3) and let u denote
the displacement vector field. The components of the linear strain

tensor Y, are then given by
2Yij = ajui -+ aiuj (2.1)

We also let n, ng dencte the current and initial porosity of the soil

mass continuum respectively and definme the change in porosity & by
§=n-ng (2-2)

which we assume to be of the same order of magnitude as the linear strain

tensor Yy,.
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In an earlier work we defined vield in a soil as a permanent irre-
" ¢overable deformation [1]. The strain may then be written as the sum of

an elastic or recoverable part YEJ and a plastic or irrecoverable part

'Y!.;:
Yisg = Y14 + ¥is- (2.3)

We shall also assume porosity to be given as the sum of an elastic part

n® and a plastic part n”,

n =n1n° + nf. (2.4)
In view of this assumed resclution we can write

€=28°4+nf (2.5)

where §° = n® - ng.

The theory presented in [1] is basedrupon the hypothesis that the
irrecoverable deformation of the soil is described by the pair (YfJ, n?).
Also in [1] we hypothesized the existence of a unique function F of

plastic porosity n? and Terzaghi's effective stress such that
F(O,y, n?) = 0, . (2.6)

In plastic porosity-stress space (2.6) defines a six-dimensional hyper-
surface X which was called in [1], the state boundary surface. A soil
particle is then sald to be in a plastic state if the value of the stress

and plastilc porosity at the particle are such that (2.6) is satisfied.

In the theory of soil plasticity presented in (1] a yield surface

for the soil was defined to be the projection on stress space of curves
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on & along which the plastic porosgity has the constant value TP, This

is given by
A(oyy, W) = 0 (2.7)
where
n = n(@P) (2.8)

is the strain hardening parameter, For a properly chosen yield sur-

face we can assoclate a flow rule by imvoking Drucker's postulates [1,2].

We assume that soil irrecoverable deformations are mainly due to
the relative motion of the soil solid particles and that during this
motion the soil solid particles are essentially incompressiblél It can

then be shown that under this assumption

p o . 8
ey ' (2.9)

where 8° = v2; is the plastic volumetric strain. .We note that in view

of (2.4) it follows from (2.8)

no= R(EPY, (2.10)
i.e., the strain hardening parameter is a function of the irrecoverable
volumetric stralns.

Untll further notice we adopt the convention to consider compres-
sive stresses as positive, We further consider the stress field for

which

Op, =0, m# x (2.11)
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Such & stress field 1s called a triaxial stress field. In a triaxial

stress field it is convenient to use the set of generalized stress

parameters {q,p) where

fi=]
]

Uaa - Oy,
(2.12)

o
il

1
3(053 + 2011).

The 30ll mass that we consider is one that obeys the Coulomb
theory of internal friction according to which the strength of‘the so0il
is limited by its ability to resist shearing stresses. In the two
dimengional g-p space the Coulomb failure surface reduces to two straight
lines P, and Fy (Filgure 1) meetiﬁg at a common point on the p-axis

and whose equations are

q = U(p + ¢ cotd) (F)
(2.13)

g = -M(p + ¢ cot) (F,)

where ¢ and ¢ are respectively the unit cohesion and angle of internal

fric@ion and

_ 6 s8in 1 _ 6 sin
M =3 sin$ » M= 3 + sing (2°14)

The lines F; and Fy (Fig. 1) are respectively the compression and temsion

Coulomb failure lines, We introduce the parsmeter N defined by
c
N = N(p) = M(1 +.= cotd) (2.15)

We shall use this parameter below.

In [1] 2 one-parameter family of yield curves was constructed in g-p

space for a cohesionless soil (c=0) under the assumption that M = M.
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We carry this assumptlon into the present study and consider the follow-
ing curve in g-p space (Fig. 1),

Nu®

§ O S—
= T? T WP (2.16)

" where T = q/p and

Nu = N(Pu) }
(2.17)

K=0"‘u
Pu

Here py is the value of the mean pressure at failure at a change in
porosity § and pp represents the pressure corresponding to § on éhe
virgin isotropic compression curve of the soil. Equation (2.16) defines
a one-parameter family of curves. For the parameter of this family we

take po which we assume to be given by

nP
Po = Y exp (- g-) : (2.18)

where Y 1s the initial yield pressure under isotropic compression and B

is a soil constant. We can also write (2.18) in the form

Po = Y exp (ABF) (2.19)

where A = (l-ng)/B.

The yield locus given by (2.16) is in terms of triaxial stress field
parameters (g,p) and as it stands it is only good for analysis under this

particular stress field. Let us introduce the invariant
J = Tep Tre (2,20)

where T,, is the stress deviator. We also introduce the parameter §

through
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£2 = 53 (2.21)
P =
where now 3p = Opy. We can then show that the expression’
32
po - FARE (2-22).
will reduce to (2.16) in a triaxial stress field, Here
¢ =2 Ny (2.23)

3

Combining (2.22) and (2.19) we obtain

&2 2
oehm b e

The requirement that in stress space the strain-rate vector be

normal to the yleld surface leads to the following

. 2K b
efp = PYC AT Tew OF, . ) (2.25)
where ef; is the plastic strain deviator. Also from (2.24) we obtain

2KEE p

av - B P (2.26)
g% = ) L e +p ]

where we have assumed K to be constant,

We consider the stress states Uy for whichk p = py. We call such
states, limiting stress states. For O, a limiting stress state (2.22)

reduces to
J = p?% = -§- M3(p + c cotd)?. (2.27)

Also im this case (2.25), (2.26) reduce to
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a? = 2K 5P
erpg (I-8) J Trn ©

. . (2.28)
e 8 2k _S.p

ety

= [-ney Yy
We recall that the theory of earth pressure is based upon the
concept of states of limiting equilibrium satisfying Coulomb's law of
failure [3]., The defect of the theory, however, lies in its develop-
ment without comstitutive relations, Thus in the- theory a stress field
can be found, in principle, without explicit knowledge of an acceptable
velocity fileld. The need for the necéssity 0of a compatible velocity
field with a limiting stress field satisfying Coulomb's law of failure
led to the suggestibn made by Drucker and ?rager [4] of using Coulompfs
fallure criteria as a yileld criteria and to treat the soil mass as a
perfectly plastic materlal. Prediction of volume changes under the
idealization of a flow vector normal to the Coulomb failure surface,
however, were higher than those found by experiments., Below we shall
state our concept of associating a flow rule compatible witﬂ limiting

stress fields.

Even though Shield [5] has shown that the interpretation of the
Coulomb law leads to only one failure surface for three-dimemsicnal
stress fields we find that (2.27) gives a convenient valid generaliza-
tion of the Coulomb law to three dimensions, Equation {2.27) defines
‘a surface in stress space that we call the limiting surface, The set
of stress points that lie on the limiting surface are not on one yield
surface, However, each limiting stress point does lie on the curve
defined by the intersection of some yield surface with the limiting -
surface. Hence it 18 correct tec associate a flow vector with each of

the limiting stress points on the limiting surface. Here 1s the main
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difference between our use of the Coulomb surface as a limiting surface
rather than a yield surface. The strain-rate is then not normal to the

limiting surface,

J. EQUATIONS FOR AXIALLY SYMMETRIC DEFdRMATIONS

In a cylindricél coordinate system (r,®,z) we denote by (o;, Og»

Te== Tpzs T’B) the components of the stress tensor, (€, ée, €, %92’
Qrz, Q”B) the components of the strain-rate tensor and (u,v,w) the
components of the velocity. We are interested in axially symmetric
deformations in which the z-axis is taken as the axis of symmetry.
Under the assumption of axial symmetry the shear stresses T@z’ Tre,
shear strain-rates §ez, QrQ and circumferential velocity v all wvanish
identicaliy and the remaining stresses, strain-rate components and

velocities are only functions of (r,z,t).

The strain-rate-velocity relations for axial symmetry- are

@
oie 818 71T 22

du ow
or

;{rz = ("g_z' + )

Also for quasi-static conditions the stress components satisfy the

equilibrium equations

(3.2)
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assume the soil mass to be in a limiting state of equilibrium so that in

effect the stress field must satisfy (2.27) in addition to (3.2).

In view of (3.6) we may reduce (2.27) into

s = £(0) = a 0 sin $ +ac cos¢
or . ) (3;8;
s = g{p) =b p sin $ +be cos¢
where
a=3-(1+3;)sincl> ’ b=1+uzsir;¢ (3.9

We can write O,, O,, T,; in terms of the two independent variables s

and
1
Op == (s csc$ ~ ac coté) + s cos2¥

- gy =-§ (s cscd - acncot$) - s cos2y (3.10)

Tr, = 8 sin2V,
Also we can show that under the Haar-von Karman hypothesis
Op = Ty = s(cos2y - 3@) ‘ (3.11)

Substitution of (3.10), (3.11) into (3.2) ieads to the two differential

equations for the two unknowns s and ¥
' s os
| —_—
(csc$ + a cos2l) o + a sin2Y{ 3
. al .a'l
- y 28 o _ 1. b - =
2as [ sin2V = cos2l S, " 5T (cos2y - 3&) 1=0

3 (3.12)
a sin2y 5% + (csch - a cosZQ)-gg
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i

ot sin2y 1 + pag = ©

+ 2as [ cos2¥ %% + sinz2{ %g +

Now from (2.28), (3.6), and (3.10), we obtain

. 3K , .
Yeg = m ‘E 51n2¢ B
(3.13)
B s . P
b= Tony (i (X5 + -0 5 ]

where we have dropped the identification of the plastic stralns since

we are neglecting elastic strains.

The volumetric strain-rate D is given by

o=y 8 (3.14)
Com;ining (3.13), (3.14), and (3.1)4 we obtain
sin2{ g% - n-%% + sin 2§ %g + sin2y % = 0 (3.15)
where |
v = ﬁ(s) _ 2(1 - K%; siné o bz w58 (3.16)

Equations (3.12), (3.15) together with the aquation of istropy (3.3);
tan2y %% --g% - a:'- tan2 %% =0 ' (3.17)

form a system of four equations for the four unknowns s,Y,u, and w.
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4. STRESS AND VELOCITY CHARACTERISTICS

We ‘examine the case for which 3¢ = -1, i.e., O3 = Op. For this case,

(4.1)
3

b= 3 - Sin$

Using known methods we may obtailn the equations for the character-
istics of the system of equations governing s and Y. The slopes of

the characteristics in the z-r plane are given by

sin2y  cosd
cos2y + sind.

1.5 = (4.2)

We see that the characteristics will be real and non-zero. It follows
that the system will be hyperbolic. It 1s convenilent to introduce the

angle @ through

-3 (4.3)

13

(P:

and tc name the characteristic with slope tan(y - ¢) an @-line, and that

with slope tan{{ 4+ ®) a B-line, thus

-Edi-f-. o = tan(l]! - CP)
(4.4)
‘%E 8~ tan({ + ).

The @ and B characteristic directions are illustrated graphically in

Fig. 3.
The equations along the characteristics can be shown to be

cot$ds - 2s5d¥ - (pg cos({+9) - %E sing cosw)dsa 0 on ®-line

(4.5)

0 on B-line

Hj

cot$ds + 2sdy + (pg cos(V-9) +-%E sin® coslb)dsB
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where Se and SB are arc lengths measured along the @ and P lines

respectively., Introducing the quantity X defined by
s .
X = cotd |n = (4.6)
where 5o is some reference stress, we may write (4.3) in the form
1
dx - 2d¥ + - (cos$ dr - (1 - sin$)dz)

0 an ¢-line

- E% (sin$ dr - cosé dz) exp {-X tan&)
(4.7)
dax + 24y +-% (cosp dr ~ (1 - sind)dz)

+ §§ (sin¢ dr + cosé dz) exp (X tan&) 0 on B-line.

-l

We consider the case when § has a constant value y, along a stress

a—characteristic‘(say). In this case (4.7), becomes

ax - A
X _ 5 exp (-x tand) +2 = 0 (4.8)
where
A = cosd - (1 - sind) tan(y, - )

(4.9)

=
1

(sin$ - cosd tan(lo - 9)) §5

The generai solution of (4.8) can be shown to be

— KSO > BSO tan M
= A tang T (L + A tang) © (4.10)
where K is a constant of integration. At a later time we shall refer

to (4.10).

The slopes of the characteristics associated with rthe system (3.15),

(3.17) are given by
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dz _ 8in2l £/1-u3

Hisa T =% (4.11)
" whete now in view of (4.1)z
2 1-.K S
n = 2E2K, 510 2. (4.12)

We asstme # < 1, This being the case the system (3.15), (3.17) will
be hyperbolic with characteristic directions given by (4.11). By

defining the angle 7} through
- sin 27 = - (4.13)

we may write (4.11) in the form -

d A

G = tan¥ - P
(4.14)
da. ~ .
(s = tan(l + §) '

where

-1 (4.15)

&=ia

G =

" Comparing (4.15) with (4.3) we see that in general the velocity charac~
teristics do not colncide with the stress characteristics. The equations

along ‘the velocity characteristics are

du +-c§§)1,5 dw - (cos2y - §in2M)~* (sin2y - c§§)1,3 cos 2V) % dz = 0

(4.16)
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5. INDENTATION OF SEMI-INFINITE SOLL MASS BY A
LUBRICATED CIRCULAR RIGID CONE

As an application of the theory presented we consider a problem
that 1s related to ghe cone-penetrometer test used in solil mechanics,
This problem is associated with the incipient plastic flow in a semi-
infinite region of soil due to load applied through a lubricated civecu-

lar rigid cone.

We define the origin of cylindrical coordinates as shown in Fig. .4
and we shall suppose the soill to occupy the semi-infinite region
z 2 0, In addition to the load applied to the soil through the circular
csne we take into account the normal stress t (Fig. 4) which may cor-

respond to atmosphere pressure or an equivalent surcharge.

The boundary conditions on ¥, s, and velocity components for the

probleﬁ of interest are

V=6

.w = const. on z = (R-r) cotd (5.1)
u = const, ) ‘
=0

_ t sin$ + c cos&
1 -"sing

0
|

onr =R, 2z=0 (5.2)

The boundary conditions (5.1}, (5.2) together with the governing equa-
tions (3.12), (3.15), and (3.17) define a boundary value problem.- We
note that the velocity boundary conditions are not sufficient to com-
pletely determine the velocity field anywhere in the soil mass. This
indicates that we may impose further anitrary conditions on the solu-

tion to f£ind an acceptable velocity field. However we should not expect
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this solution to be unique. Cox, Eason, and Hopkins (6] discuss the

uniqueness of a similar problem.

Following Cox, Eason, and Hopkins [6) we expect the stress charac-
teristic net to exhibit the geometrical features depicted schematically
in_Fig. 5. The unknown of interest is the limiting mean pressure a;
the facé of the cone. To find this we need only to consider that part
of the stress field bounded by OA, AB and BCDO, Lines such as PS will
be @®-lines while those such as PQR will be B-lines. 1In particular
ODCB is the B-line through the apex of the cone 0. We shall discuss

this P-1ine below,

A solution for the stress field can be constructed following argu-
"ments similar to those used by Cox, Eason, and Hopkins [6]. Thus:from
a knoéwledge of s and ¥ on AB, s and ¥ can be determined on ABC by

using (4.4) and (4.5). At r =R, z = 0 a singularity is introduced

at which s and ¥ will be mqltivalued. This fact together wiéh éhe known
values of s and | can be used to determine s and ¢ on ACD. Finally

the now known values of s and { on AD together wiéh the known values of
¥ on OA determine s and § on ADQ. From this solution the limiting
stresses at the face of the cone can be determined. If we find a velo-
clty fie;d compatible with this stress field then the solution will
given an upper bound for the limiting stress field. If this stress
field can be extended in such a way so as to satisfy the conditions

of limiting equilibrium then the solution is said to be complete and

will be a lower bound for the limiting stress field,[6].

Now by considering the singular point A as a B-line of zero

length we find the conditions at point A,
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0sy<5

[}
on

. at r =R, z 5.3)
-t sin¢ + c cos¢

1 - sind

In order to extend the solution into the rigid region we must
know the location of the boundary betéeen the riéid and deforming regions.
Since at éhis boundar§ the velocity components or their spatial deriva-
tives must have some discontinuities it fellows that the boundary between
rigid and deforming reglons must be a veloecity chardcteristic line.
Considering that In the theory presented here the velocity and stress
characteristics do not coinclde we reason that the‘;tress B;charac-
teristic curve ACDO is not the boundary between the rigid and deforming

region,

Let us name the first velocity characteristic an @'-line and the
second velocity characteristic a B'-1line. 1In Fig. 4, the curve B'O
depicts the velocity Bf-line through the apex of the cone. Here we

have assumed that
n <-$ . 5.4

Now the velocity field must accomodate the incipient motion of the
rigid cone. For this reason A0 must lie within the deforming region.
The simplest configuration that can occur is when the B'-line B'O is the
boundary between the deforming and rigid region. We shall return to

this question below.

The stress field and stress characteristic net in the region BAOD

can be determined by numerically integrating (4.4) and (4.7). Using
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pgR as the reference stress s, indicated in (4.6) we replace (5.2) and

{5.3) by
y=0
N ¥ sincf + c*® cos&’
* = C0t$ In ( 1 - sing ontr >R, 2z=0
. (5.5)
) * i = =

% = cot$ Iﬂ (t sin% Szﬂg* cos$ atr =R, z 0
0=s¢y=35

Here t* = t/pgR, c* = c¢/pgR. The numerical integratiom is based upon

the approximation of (4.4) and (4.7) by finite difference equations [7].

It remains to determine the velocity of B'-line B'0 which we have
assumed to be the boundary between the deforming and rigid region. Since
in addition to ¥, X is now known on. A0 we can determine the sloée of
B'0.at 0. Suppose we extend the stress ®-lines beyond BCDO as straiéht
lines with slopes obtaineé by using the calculated values of | on
BCDO. Then along each of these stress @-lines (4.10) holds with the ar-
bitrary constant K evaluated for each ®-1line by values on BCDO. With
reference to Filgure 6 we can determine the coordinates {rr, z;) of
the point T of the intersection of the straight stress o-line with
the velocity B'-line as follows: We assume values of the slopes known
at § and M. Then the first approximation (ri, zi) to (rr, zT5 is
obtained from

z1 - 2zg = (11 - r5) tan(¥Ys - P)

(5.6)
zy - zy = (r1 - rp) tan Yk,
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where %y is known with the calculated value. With this calculated
value of ry we obtain through (4.10), (4.12) the first approximation

M1 to My. With this value ®, we can compute'thé first approximagion

Y%, to ¥*;. We can then use the average value of U#; and Y¥y to obtaim
second approximations. Using this iteratilon procedure we can deter-
mine the location of the B'-line B'G and the value of 3 at each point of

intersection of the straight stress &-line with the B'-line B'O.

Once the stress distribution along B'0 is known we can determine
the total vertical load P, exerted by the indenter, by simple statics.

The uvltimate bearing capacity qu is then obtained from

P
gu = Eﬁg (5.7)

6. CONCLUSIONS

We -have presented an approach of obtaining ultimate loads-that
differs from the graditional approacﬁ used in soll mechanics, The tradl-
tional approach for'obtaining ultimate loads for soil mechanics problems
is to exhibit an equilibrated limiting stresé field, solve for the load
equilibrating the stress field, and- then simply term this load a
"failure" or "ultimate' load. The approach presented here, however,
demands more of a load before it is termed an ultimate load. The ulti-
mate load must, in addition to equilibrating a limiting stress field,
be associited with a deforming solution in a theory involving material

deformation.

The problem formulated in Sectlon 5 can be tied to the cone pene-
trometer test. The amount that the cone has penetrated is equal to the

amount h; that the shaft has penetrated plus the Beighq h, = R tand
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of the cone.. The distance h, 1s reflected in the equivalent surcharge
t = pgh, which is a boundary value. We can'then associate with an
ultimate load P a depth h = h, + hy;. Thus we can plot a cone load
P vs. depth h curve, This, of courée, is for a given soil with cohe-

sion C, angle of internal friction $ and bulk mass density P.

We introduce the quantities qu*, h¥*, and c* defined by

% = Qu_.
qu PgR
h
L3 = - . l
we =2 | (6.1)
c
ch = e
P8R

Then for a.given soil with cohesion ¢, angle of intermal friction $,
bulk mass density p and given fixed cone geometry R and 8 we can find
an ultimate bearing capacity gy at depth h. We can then generate the

curve
qu® = £ (h¥; c¥, ¢) (6.2)

wherein 4 and c¥ appear as parameters.
The solutions for g,* most widely used in soil mechanics are
of the form

qu® = c¥H, + h#H, (6.3)

where H., Hy are bearing capacity factors which depend on $ alone. It
is possible to obtain from (6.2) values of N;, N, such that the form

(6.3) holds. However by dolng so we would have to accept the obvious
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consequences of the form (6.3), viz., linearity in c% and b¥,

The use of the cone penetrometer as a useful éest of obtaining
in situ properties of soils is highly dependent on being able to solve
the folléwing problem: given the response curve q,% vs. h¥% determine
the parameters c* and $ that correspond to this curve., In this section
we have preggnted a theory to generate qu#® vs. h%* curves for different
Qalues of ¢c® and $. It remains to look into a systEmatiF and logical

manner of using response qu¥* vs, h¥% curves to obtain values of c¢% and

$.
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Figure 1, Triaxial Compression Yield Curve
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Figure 2. Directions of Principal Stresses
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Figure 3. Stress Characteristics Directiéns
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Figure 5.
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Schematic Diagram of Characteristics
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Figure 6., Intersection of Stress Gharacteyistics‘
Through Neighboring Points P & Q
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