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This memorandum is written to share some thoughts on the landing of
the shuttlecraft, and to list the capabilities of a variety of naviga-
tional aids.

It appears that if the shuttlecraft is to possess an anytime abort
capability, landings at any of a large number of airports must be within
the ability of the shuttle's landing system. This means that the system
must be able to utilize the conventianal navigational aids in an emer-
gency or backup mode whenever more sophisticated equipment is not avail-
able or operational. With this in mind, it is proposed that the shuttle's
landing system, including man-display interfaces, be capable of using
position and bearing information from a variety of sources for either
manual aircraft type landings or for incorporation into an inertial
automatic system. Differences in operating frequer-ies, transmitter/
receivers. antennas. decoding, efc.. must be traded off against weight,
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reliability, usefulness and gain in flexibility beforc a navigation aid
capability is added to the system design.

Errors associated with some of the long and medium range navigation

aids are given in table I. The position errors of most of the long range
systems are large enough to degrade a well functioning inertial naviga-
tion system but could be used for gross checks on the accuracy of the
primary system or in a backup emergency mode. Position information from
some of the long and medium range systems might be improved by onboard data
processing and filtering not now part of the current system setup. Use

of Doppler radar and processing in the Decca system is largely responsible
for the accuracy of the system. The TACAN and VOR systems would have
sufficient accuracy to vector the shuttle to the vicinity of the landing
area, where other landing aids could provide the closer tolerances required
for the landing approach.

Table II lists the errors for a small number of airport landing systems.
Most of the conventional ILS sites appear unable to support zero-zero
landing due to their large lateral errors and beam path interference.
However, some have ILS systems capable of supporting landings down to

CAT II conditions (200 ft. decision height, 2600 ft. runway visibility).
The British BLEU automatic landing system improves the conventional ILS
with the addition of magnetic cables to provide accurate lateral control
near the runway. Standard deviations computed from 4000 landings define
the accuracy of the BLEU system. The PAR system is a scanning beam radar
system possessing more path stability (lees distorting interference) and
greater accuracy than the conventional ILS. AILS are advanced ILS systems
using scanning beam radars and show a marked improvement in accuracy.
These systems should be capable of supporting landings in near zero-zero
conditions. The AILS have been tested but are not operational yet and
probably would not have sufficient distribution to support shuttle land-
ing at all airports. However, use of the AILS system at preselected
shuttle landing si%tes should be given further study.

Studies have shown (ref. 7) that optimal mixing of conventional ILS and
inertial state information can produce an accurate navigation system.

In this system the high frequency noise of the ILS and the low frequency
errors of the inertial unit can be filtered out. However, a capability
for the high glide slope landings necessitated by an unpowered shuttle-
craft have not been demonstrated with the ILS glide slope beam.

Table III contains data on the Apollo IM rendezvous radar system. It

is possible that a similar radar system incorporating a low cost trans-
ponder at candidate airports might prove very useful and inexpensive as

a navigational aid. Bearing and range information from the RR could

also be used to update the inertial system. Doppler radars are currently
being used in some aeroplane navigation systems and could be used to
provide velocity and wind information for the shuttle. Altitude infor-
mation from an Apollo type landing radar is less desirable than




3

radar type derived altitude information as the landing radar suffers from
terrain effects.

In summary, it appears that there is a necessity to include some of

the currently operational navigational aids in the shuttle equipment

if emergency landings at almost any airport are attempted. There are

a variety of navigational aids available some of which have enough
accuracy to vector the shuttle to the landing area and perform a guided
approach. However, at present, there is no system that has demonstrated
guided landings at the large glide angles necessitated by an unpowered
shuttle landing. In addition, it appears that a transponder type ER set
right at the landing site could help vector the shuttle in an emergency

or serve to update the inertial system.

Richard J. Labrecque

-y . APPROVED BY:

B. Bennett
Chief, Landing Analysis Branch

Distribution:
(See attached list)




NOTATIONS

ATLS advanced instrument landing system
BLEU blind landing experimental unit
DECTRA Decca tracking and ranging

DH decision height

DME distance measuring equipment
ILS instrument landing system

KC kilo-cycle

M lunar module

LORAN long range navigation

m mile

n. ni. neutical mile

MC megacycle

PAR precision approach radar

RR rendezvous radar

TACAN tactical &ir navigation

VOR very high frequency cmni-directicn renge
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range
range rate

beam width

TABLE IIT

APOLIO RENDEZVOUS RADAR

80 ft. to 400 n. mi.

+4900 fps

+3.5° transmitter/reciver

+60° transponder

range error

range rate error

angular error

frequencies

bias 4120 ft. for ranges < 50 n. mi.

random 80 ft or 1% ranges 80 ft to 5 n. mi.
300 ft or 1/4% range above 5 n. mi.

bias 1 fps 30
random 1 fps

range bies random
200 n. mi, 8 mr 4.8 mr
5 n., mi, 8 mr L,7Tmr
80 ft 8 mr 10 mr

9832,.8 mec transmitter
9792 me transponder
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