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ACCURACY OF PITOT-PRESSURE RAKES FOR TURBULENT
BOUNDARY-LAYER MEASUREMENTS IN
SUPERSONIC FLOW

Earl R. Keener and Edward J. Hopkins
Ames Research Center

SUMMARY

Boundary-layer profiles from three conventional pitot-pressure rakes and a new probeless rake
are compared with those from a single traversing probe in a supersonic turbulent boundary layer on
the wall of a wind tunnel. Measurements were made at Mach numbers from 2.4 to 3.4 and at
momentum-thickness Reynolds numbers from 26,000 to 75,000. The boundary-layer thickness was
approximately 6 inches and the rake heights were 5, 8, and 12 inches with different probe size and

spacing.

The pitot pressures from both the conventional rakes and the probeless rake agree with the
single traversing-probe pressure within 2 percent of the edge pitot pressure. The resulting errors in
Mach number and velocity ratios are less than 2 percent; momentum and displacement thickness
errors are less than 4 percent. These errors are not excessive and indicate that multiple-probe and
probeless rakes can be used in measuring turbulent boundary layer.

The low error of the probeless rake indicates that this type of configuration might have useful
application at high temperatures where conventional rake probes might warp or fail.

INTRODUCTION

Measurements of boundary-layer pitot-pressure profiles are often made with a single traversing
pitot probe in order to minimize probe-interference effects. However, it is often prohibitive in an
experiment to provide the space for a surveying mechanism or sufficient time to traverse the
boundary layer to avoid time lag in the pressure measurement. Consequently, it is convenient in
these cases to be able to use multiple-probe rakes. A need for additional experimental data in a
thick turbulent boundary layer in flight at supersonic Mach numbers led to the present
investigation.

Before describing the investigation, it is appropriate to review briefly the possible errors of
pitot-pressure measurements in a boundary layer. Most of the errors involved in using either single
or multiple pitot-pressure probes (rakes) are discussed in references 1 to 12 for incompressible flow
and references 9 and 13 to 21 for compressible flow. These errors are related to probe geometry,
transverse pressure gradient, wall influence, low Reynolds numbers, shock waves from the probes,
support interference, fluctuating velocity components in turbulent flow, time lag, and mutual
interference between multiple probes. Indications are that circular probes cause smaller errors than
flattened probes unless the probes are small enough that the geometry effects are inconsequential



(less than 5 percent of the boundary-layer thickness). Special care must be given to any probe in a
supersonic laminar boundary layer because the shock-wave-boundary-layer interaction from both
the probe and the probe support causes the flow to separate and the boundary layer can be
distorted. A similar distortion does not occur in a supersonic turbulent boundary layer. Apparently,
the upstream propagation of probe disturbances is suppressed by the turbulent mixing process
which thins the subsonic part of the boundary layer and allows the flow to approach the probe
without distortion. Mutual interference effects between multiple probes in a turbulent boundary
layer appear to be negligible if the probes are spaced at least two diameters apart between center
lines.

The present results were obtained as part of a wind-tunnel investigation of the supersonic
turbulent boundary layer. The investigation was conducted in support of the NASA Flight Research
Center flight test program for the XB-70 research airplane. In the flight test program, measurements
were made in boundary layers approaching 10 inches in thickness at subsonic and supersonic speeds.
Reference 22 presents the resuits of the first part of the wind tunnel program — correlation of
surface-pitot tubes for use in flight to obtain local skin friction.

In the present investigation, turbulent boundary layers measurements from three XB-70
pitot-pressure rakes, 5, 8, and 12 inches high, were compared with those from a single traversing
probe. A new probeless rake designed for use in a high temperature environment was also tested.
Measurements were made on the wall of the Ames 8- by 7-Foot Supersonic Wind Tunnel at Mach
numbers of 2.4, 2.9, and 3.4 in a turbulent boundary layer that was approximately 6 inches thick.
Estimates are presented of the accuracy of boundary-layer characteristics calculated from the
pitot-pressure rakes.

INSTRUMENTATION

Photographs and drawings of the test instrumentation are shown in figures 1 and 2. Figure
1(a) is a photograph of the general arrangement of the boundary-layer instrumentation mounted on
a 4-foot window blank in the side wall of the Ames 8- by 7-foot wind tunnel. The photograph also
shows instrumentation not included in this report that was part of the general investigation of the
supersonic turbulent boundary layer. The Preston tube and skin friction data are reported in
reference 22.

Four pitot-pressure rakes were used in this investigation. Three were designed for use in the
flight test program of the XB-70. They were of conventional design as shown in figures 1(a) and (b)
and figure 2(a).

The rakes were 5, 8, and 12 inches high, with probe outside diameters of 0.042, 0.062, and
0.093 inches, respectively, and with different spacing. The fourth rake (figs. 1(d) and 2(b)) was a
new type designed for possible application under conditions of high temperature. It was simply a
rake with no protruding tubes or probes, and is called herein a probeless rake. The probeless-rake
configuration might have application at high temperatures where rake probes might warp or fail.
Orifices (0.062 in. diam) were drilled in the front face and connected to tubes inside the support.
The front face was 0.125 inch wide which was about 3 percent of the boundary-layer thickness.



Five simulated orifices were drilled into the face of the rake at y <1 inch, as shown in the drawing,
to see if there would be an interference effect from closely spaced orifices. For the last part of the
test, the simulated orifices were plugged.

A single traversing pitot-pressure probe (fig. 1(c)) was used to obtain the boundary-layer
pitot-pressure profile with minimum interference effects as a reference for the rake pressures.
Figure 3 shows the geometry of the traversing probe, which was designed to minimize the flow
disturbance of the tip and the deflection under load. The tip was carefully constructed to be free of
burrs and imperfections. The probe was moved perpendicular to the wall by means of a screw device
to which a height gage with a vernier was attached for measuring the probe height accurately.

Precision mercury manometers, mounted in temperature controlled cabinets, were used to
measure reference pressure, calibration pressure, and pitot pressure outside the boundary layer
(pt 2)e- Test pressures were measured by Ames designed precision electrical strain-gage-type,
slack-diaphragm, transducers mounted in a temperature controlled cabinet. The transducers were
uscd to measure the differential between the test pressure and a reference pressure. The reference
pressure was set so that the lowest range transducers available (575 psfd) could be utilized. Each
transducer was individually check-calibrated over its range in the laboratory and selected to meet
the tolerances described in the section on Data Reduction and Accuracy. Sufficient time (about
2 minutes) was allowed for the pressures to stabilize before each measurement was taken.

TEST CONDITIONS

The investigation was conducted in the Ames 8- by 7-Foot Supersonic Wind Tunnel. The
instrumentation was mounted on the side wall where the turbulent boundary layer is approximately
6 inches thick. Test Mach numbers were 2.4, 2.9, and 3.4 at which unit Reynolds number was
varied by changing stagnation pressure within the available limit of about two atmospheres.
Boundary-layer traverses were made with the single pitot probe at unit Reynolds numbers of 1.0,
2.5, and 3.2 million per foot. Flow conditions correspond to that for a turbulent boundary layer on
a flat surface with nearly zero pressure gradient and nearly adiabatic wall temperatures. Additional
information is given in reference 22.

DATA REDUCTION

Mach number, Reynolds number, total pressure, dynamic pressure, and static temperature at
the boundary-layer edge were calculated from the measured pitot pressure outside the boundary
layer, the wall static pressure, and tunnel total temperature. Compressible flow relations in
reference 23 were used in the calculations. Edge pitot pressure (Pt,2)e Was taken to be the pressure
measured at a height of 8.50 inches on the 12-inch boundary-layer rake. Wall-static pressures,
measured at four locations throughout the test area, agreed to within 0.5 psf. Static pressure was
assumed to be constant through the boundary layer. Integral parameters 8 and 8* were calculated
assuming an isoenergetic boundary layer (constant total temperature).



ACCURACY

Pressures

Estimated probable errors of the rake pressures were taken to be the RSS(root-sum?) of the
individual instrumentation errors (the RSS being representative of a combination of individual
random errors). The following individual errors were considered: reference pressure and (pt,2)e
from precision manometer, *0.28 psf: differential pressure from slack-diaphragm transducers,
+0.29 psf for y <2 inches and +0.58 for y > 2 inches: and maximum zero shift of transducers
during test runs, *0.3 psf. The RSS value of these errors is 0.5 psf for y < 2 inches and +0.7 psf for
y > 2 inches. Consequently, the pressure errors are generally much less than 0.3 percent of (pt,2)e’
which ranged from about 250 to 1240 psf.

Geometric Measurements

The traversing-pitot probe error in height was within +0.003 inch. This includes the maximum
play in the mechanism of about +0.002 inch at the probe tip and the reading error of £0.001 inch.
The height of the boundary-layer rake probes was measured to within +0.005 inch.

RESULTS AND DISCUSSION

Conventional Rakes

The results for the conventional pitot-pressure rakes, designed for the XB-70 flight research
program, are shown in figure 4 for nominal Mach numbers of 2.4, 2.9, and 3.4. Rake pitot pressures

are compared to the pitot pressures measured by the single traversing pitot probe at Rg from
26,000 to 75,000.

Figure 4 shows that there is general agreement within 2 percent of (pt,2)e between the
traversing-probe pressures and the rake pressures throughout the boundary layer. The deviations are
mostly random. Although the rakes were separated by about 2 feet from the traversing probe, all
pitot pressures near the boundary-layer edge agree within 1 percent. At y = 8.5 inches (where
(pt,2)e Was measured), pressures of the traversing probe and the 12-inch rake agree within
0.5 percent.

Experimental “Probeless” Rake

A new type of rake, designed without probes as shown in figure 2(b) was included in the test
program. Five simulated orifices were included in the design within the first inch in height to
determine interference effects of closely spaced orifices. Measurements were made with the
simulated orifices open and closed (plugged). The results with the simulated orifices closed are
presented in figure 5 for a Mach number of 2.9 and for momentum-thickness Reynolds numbers of
27,000 and 57,000, determined from the 5-inch rake profiles. The figure shows that the pitot
pressures from the probeless rake and the 5-inch rake agree at y > 1 inch. Aty <1inch thereisa small
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difference reaching a maximum of 2 percent of (pt,2)e at y = 0.5 inch. Although not shown in
figure 5, there was no noticeable change in the comparison between the two rakes with the
simulated orifices open.

Other Boundary-Layer Parameters

The desired objectives in a boundary-layer survey are to obtain the Mach number and velocity
profiles and the integral parameters of momentum thickness () and displacement thickness (§%).
Assuming a constant error in rake pitot-pressure ratio [(pt,2/(Pt,2)e] of 2 percent and an
isoenergetic boundary layer, the maximum probable errors in both M/M; and U/U, are of about the
same relative magnitude as the error in pitot-pressure ratio (2 percent). Consequently, the maximum
probable error in 6* and 0 is estimated to be 6 and 10 percent, respectively. Calculated values
of 6* and 0 from the rake and traversing probe measurements agree within 4 percent.

These errors are generally within the required accuracy for the proper analysis of
boundary-layer characteristics and indicate that multiple-probe rakes can be used in turbulent
boundary layer measurements. In many cases considerable experimental time can be saved over the
time required for a traversing probe: for example, these measurements required about one hour for
each traverse.

CONCLUSIONS

The accuracy with which turbulent boundary-layer characteristics can be determined by use of
multiple-probe rakes was investigated in a supersonic turbulent boundary layer on a wind tunnel
wall. Boundary-layer profiles from three conventional pitot-pressure rakes and a new probeless rake
are compared with those from a single traversing probe. Measurements were made at Mach numbers
from 2.4 to 3.4 and at momentum-thickness Reynolds numbers from 26,000 to 75,000. The
boundary-layer thickness was approximately 6 inches and the rakes were 5, 8, and 12 inchs high
with different probe size and spacing.

The pitot pressures from both the conventional rakes and the probeless rake agree with the
single traversing-probe pressures within 2 percent of the edge pitot pressure. The resulting errors in
Mach number and velocity ratios are less than 2 percent; momentum and displacement-thickness
errors are less than 4 percent. These errors are not excessive and indicate that multiple-probe and
probeless rakes can be used in turbulent boundary-layer measurements.

The low error of the probeless rake indicates that this type of configuration might have useful
application at high temperatures where conventional rake probes might warp or fail.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, November 11, 1970
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Figure 2.- Geometry of boundary-layer pitot-pressure rakes.
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