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Introduction 

Certain el..-nta within RASA have Itudied the aerother.odyn-.!c alpectl of Iplce vehicle confisu­

rlUOD delip for IIIIlY yean. The advent of the Spice Shuttle hll furnilhed a focUi to theae 

atudiea thlt did not azilt prevlouIly; Ind for the palt year or .ore we hive concentrlted I larse 

effort oa ..,lorins the aerother.odyne.ic charicteri.tici of vlrioua Sp.ce Shuttle cOftfiguratioa 

CODCeptl. During the cour.e of the.e Itudie. we hive identified cert.in areal of concera which 

de.erve particular attentioa. Sa.. of the.e Ire •• of concern Ire the focil point of the follo.tas 

pre •• tltioa. 

1 



1 

rllur.a 1 and 2 111U8trate a~ of the orbiter and one of the booeter concepte whoee aerother.o­

d7D--'c characteriatica have been atudied by RASA. 
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In addition to individuel orbiter end booeter .eudiee, eerodyn .. ic end beetins cher8cteriBtlcB 

of leunch conflsuretlone beve been explored. 
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So.e of the .re •• of .tudy upon Which p.rticular attention haa been focueed in the a.rother80-

dyn .. ic inveatisationa are •• outlined here. 
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One fact with which we are continually confronted ia the unaatiafactory .tate of pr .. ent day 

prediction technique. when applied to total conficuratlonal concepta. ftevtoaian or .e.tonlan­

Uke .. thod. continue to be ueed in the hypenonlc flov realMa. 'lbe .ore eJ.eaant flov field 

calculation .. thod. are beiDi developed for .i.,le seo.etric ahape.; a .ore practical focua 

to thia work would be of value to the confiauration deaisner. 'lbe .ituation i. lea. aatl.­

factory In the transonic and aub.ODic flow reSl .... 



-.,.t of our ett .. UOll hee be .. fOCueM OIl the hilh heeUna ret. portiaa of the whlcl.--tbe 

lo.er .urfec.. Bowwr, fluid d,....tc etudi •• OIl e'-.l. eh..,..e hew .hown thet, b.ceue. of 

i-.iDl __ t of bilh eura, yorticel flow, there .. , b. ceue. for COIlc.ra--the eo-celled 

• .. hi.ld .... up,.r eurfec ... , require .or. thea. .. l protecUaa th. 1e currentl, .etiaatM. 
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Ixperi .. nt.l .tudi •• on th. Ie •• ide of .iaple .hep •• h.ve .howD he.ting rat •• to b. quite • 

bit higher th.n predicted on the ba.i. of either .epar.ted flow or att.ched l..tnar flow. 

Since ov.r h.lf the .urfBce .rea of .huttle vehicle. i. on the Ie •• ide •• ve .... 11 incr ••••• 

10 th.~al proteetion .,at .. unit weight. CaD .ffect tbe tot.l veilht .ignificentl,. Tbi. 

potenti.l are. of concern requir •• further .tudy; anale of .ttack and aeo.etry dependence 

effect. on beatina r.te need to be e.t.bli.bed. for in.tance. 

, 
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That 10terferenee eff.cta duriol launcb CaD cauae relatively lerge increaaea in local heating 

rate. 1. llluatrated. Mote tbat tbe 8L-IO i. rear .aunted, and tbat ita oo.e i. about .t~­

lencth of the booater, .blcb i •• region of low heatiag rate io the interfereace-free condition. 
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When. for the particular l.uoch trajectory UDder conaidaration. the beatias ratea are cOD.erted 

to equilibrtua vall t..,eraturaa. it ia aaea that tha iaterferenca heatiDa will ceuaa ao chanae 

la tberael protecti_ ayet_ fr~ that required for boo.ter .. try. Bowe.er. aa Doted on til. 

pre.toua fiaure. tile iDterfereDce affecta are auperi.,oaed 011 a resion of low iatarference-free 

heatiDS 8Dd tbe atate of the boundary layer Oft the booatar ia la.!nar. 

Many abuttle coocepta .tll h .. e tbe atrona ,iDterference affacta auperl-,oaed on realODa of 

alreedy biah beatlas rate; and thare ia a poealbility tr .. aitlonal or turbuleDt flow .tll azlat 

ift the i-,ort_t iaterfarence realODa. 

Leuach conflauration iaterference flow effect. require .ucb ~re atudy. Dot only fro. the 

heatiBi ataDdpolnt. but alao for draa 1oea. control and gi.hal r .. uir ... Dta. etc. 
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Sa.e typ.a of flow field interactiona which can occur during a booater-orblter aeparation 

..a.uv.r ar. 111uatrated, flow. vary from typical .ultiple ahock boundary layer interactiona 

to ~at appear~ to be a diaaoraed ahock .yatea ai_ilar to that for aD unatarted auperaonic 

ial.t. UDder nor.el atasing conditiona-·hiah altitud., Mach nu.b.r on th. ord.r of 10, and 

beace low dyn .. ic pr.aaur.--the aerodyna.dca of the -.neuver ia not expected to play a .ajor 

role. However, the aerodynaaic interactiona on the vehicle. during aD abort aeparation 

.... u .. r at low altitudea and hiah dynaadc preaaurea .. y be a very haaardoua operation. 
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The dependence of .afe ~eparltion ~'n the unknown dynamic damping derivative. i. illu.trated. 

The need for damping deriv.tive, (or their equivalent effect) to be large i •• hOWD by comparing 

the minimum .afe .ep.ration ab.ci •• a value with the estimated interference-free value for the 

.... flight condition.. The fea.ibility of elt,bli,hing the actual range of dynamic damping 

derivative. for both vehicle., where each vehicle i. in the interference flow field of the 

other, hi' yet to be .eti.factorily d.mon.treted., 
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Tbe inputl to the lolution of the equation. of motion for the two-body .yatem are all known, 

or are lalily meaaured or ca1cul .. ted for a .pecific vehicle IYltem, except the dynaaic damping 

derivativel (underlined on the figure). Until the dynamic derivatives can be meaaured or 

eltimated with rea.onable accuracy, we can have littl. confidence in our ability t~ design for 

aafe abort aeparation without reaorting to brute force techni~uel, with their relultant 

penaltiea. 
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Jet implnge.ent .ay add further complicationa to the boo.ter-orbiter .eperation problem. ThiB, 

auperimpoaed on the already co.plex and time-varying interference flow field., indicates that a 

high degree of ingenuity viii be required if the vehicle .eparation problem i. to be under.toad 

and reeolved vith adequate confidence. 



The b.atina .tudiea have lenerally been performed U81ng the pha.e change coating technique 

(RftSA TR &-230, Pebru.ry 1966). Tl ... equenced picture. of heating .tudlel on a truncated 

.o4el of the .trailht-wing orbiter are Ih~~ (model va. truncated to obtain llrle .cale in 

the regioa of lntere.t--bow ahock ~nteractionl with ving .hock--and tbU8 improve accurlcy 

of d.t., while .1.0 avold1nl tunnel blockage effecte). Heat tranefer coefficiente at e.cb 

point .re found by .... uring the ti .. required for the melt line of the tbin coating to 

reach that point. 

Two .trona interference flov regien. are leen at both 200 and 400 anglel of attack: one 

outbo.rd on the ;,ring due to bow Ihock-ving Ihock interaction~ and one ne.r tbe ving body 

Juncture due to .hock-bound.ry l.yer, and the vilcoua interactione e.uled by the differing 

wing and body bound.ry layer flow fieldl. Moet of theee interlctionl .re ab.ent at 600 

.ngle of .ttack: the wing Ibock 18 now det.ched 10 hr from the wing th.t the bow Ihock­

¥iQl .hock interaction h •• little effect on the wing_ 



Typical maxi.ua equlilbriua akio temperature diatributioo. are .bawD for laminar boundary layer 

flow. Re.ulta were obtained fro. atudiea 8uch a. those on the previoua figure io conjuncti on 

with a particular cootractor-furniabed entry trajectory. 
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The temperature dl.tributlon pattern. on the body of the .traight-ving orbiter .ugge.t the 

pre.ence of boundary layer tr8n.ltlon. Evidence of th~ exi.tence of tr8naition ia better 

aeen on the following figure. 
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The variation of lover aurface centerline heating rate on the atraisht-ving orbiter at ,J - 40
0 

ia plotted asainat nondi.enaiooal diatance fro. the noae of the truncated model for varioua 

free atre .. Reynold. nu.ber. baaed on ca.plete model length. A. Reynolda nu.ber increa.ea, bound.ry 

. 0 
layer tranaition .avea cloeer to the noae. Si-'lar .tudiea vere performed at ()( - 20 • 
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Tabulated re.ult. indicate the exiatence of boundary l.yer tr.n.ition Reynold. nu.ber., b •• ed 

on local condition., lower th.n expected (. i. aurf.ce distance fro. the Newtonian .t.go.tion 

po~nt to the beginning of tr.n.ition). Por ex..,le, at , ~ - 400
, tran.ition Reynold. nu.ber. 

are all Ie •• than 200,000; theae numbera .r~ re.1ni.cent of blunt body tr.naition Reynold. 

nUlilber •• uch a. h.a been detected on Apol,lo. 

~t boundary layer tran.ition correlati~l. th.t are pre.ently being applied to Space Shuttle 

are ba.ed on .i~le configuration. (fl.t plate., wedge., conea) at zero or low anale. of .tt.ck. 

The.e exi.ting correlationa give conflicting prediction. for condition. under whi~h the Sp.ce 

Shuttle will operate. Tran.ition will prOb.bly be do~nated by cros.-flow, pre •• ure Iradient, 

or seoaetry effect., which .. y cause the low tran.ttion Reynold. nUlilber. ob.erved. There i • 

• need then, to •••••• the appltc.bility of the.e exi.tins corr.l.tion., and to attempt to deter­

~ne .ore v.lid tran.ition criteria for .huttle confiluration •• 

Di.turbance •• uch •• velocity, entropy, and den.ity fluctuation. often cau.e di.parity b.tween 

wind-tunael and flilht tr.n.ition Reynold. nu.ber .... ur ... nt., at leaat on the .1-,le .hap •• 

/ 



atudied to date. However, the preda.1naaee of eroaa-flow, velocity Iradient, end leo.etry 

effecta .. y dt.1niah the effecta of tunnel-Ienerated diaturbenee. ao that trenaitioa 

criteria baaed on wind-tunnel deta .. y be .ore in accord with flilbt for abuttle appliea­

tiaoa. Coacentrated reaeareh in thia area ia required. 
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~ xcept for its relatively sharp nose, the plsnform of the General Dynamics/Conv~ir orbiter is 

similar to that o f the straight-wing orbiter. Y~t the tim~ £equenced phase change heating 

pI!tterns show" msrked difference in the m~nner i n which tr " ns i tional and turbulent flowa 

deve lop l'n the two configurations. The effect of geometry on t nmsition is pronounced. 
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The operational angle of attack range of the Space Shuttle may enco~aa. anglea from that for 

(LID)max to CL max or greater . Thia fi~ure illu8trates the variation of croas floy ch.~8cter­

iatica for a portion of ~hia range. Not~ that the presence of the Ying interrupta tbe eatab­

lisbed forebody pAttern, thua tending to make gener.li~ed atudies on .1.pie ~h8pe8 of dubious 

value. An affirmative anaver to the question '~3n wind-tunnel studi ... be uaed with confidence 

for deaign of the Splice Shuttle therael protection 8Y8thl7" youid be ..oat velcome--ve need 

an anawer quickly. 
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Some pre~ou. figures have indicated both the pr •• eoc. and the effect upon heating distributions 

of interference tlow fields. These electron be .. flow visualization atudiea illuAtrete the 

o 0 
variation of bow, wing, and tail ahock shepea fra. 20 to 50 englee of attack. Although not 

seen in the fig ur~ . the interaction of bow and wing ahock sends reflection waves bAck into 

~he flow--it ia pos.ible that at certain angl es of attack theae dieturbftnces can impinge on do~-

stream contro l surfaces snd effect the 8erodynwmic ~ h.recteri~tica of the vehicle. 
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The complex n~ture of the flow field about the ctrAight-wing orbiter is illustrated by the8~ 

40° electron beam flow visualization stu" Lel!l. In ",set case the mc~el ia at angle of attack; 

the vantage point from which the flow field is viewed varies. 

An area of concern is that all interference flow I!Itudies to dst~ h~ve been performed in ideal 

gs. facilities. ThP electron beam flow visualization waS obtsin~d i n a helium tunnel ~~th 

ratio of specific heats of 5/3; the heating I!Itudies were in ideal gas air tunnels with :stio 

of specific heat~ of 7/5. During entry. however, th~ Maximum he~t pulse will occur under the 

infLuenc~ of real gas effects; effective ratio of specific hests will be in the 1.1 to 1.2 

nmge. ,",ow do we interpret wi.nd-tunnel results now? ~. n answel.· to this question i. oveld 'Je. 



Concluding Remarks 

The following a~eaa of concern have been identified: 

o Preaent day prediction techniques are not adequate for complete configuration design. 

The elegant method. which are being developed are applicable to simple geometries; 

they need to be attuned to the need. of total vehicle design. 

o Lee side heating -- needs more defini~ive study for Space Shuttle candidates in opera­

tional mode •• 

o Launch interference heating -- Examin~ effect of relative fore and aft orbiter-booster 

location.. How will turbulent flow affect interference heating levels? 

o Abort separation -- Dynamic damping derivat i vea are not known but have major effect on 

the aeparaticn maneuver; reliable meaaurement techniquea muat be devised. 

o Boundary layer tranaition -- appears quite low. Are wind-tunnel results reaso~.bly 

applicable to free flight now that larg~ croas flow, pre88ure gradient, and geometry 

effect8 are present? 

o Interference -- What interpretation do we place on ideol g88 wind-tunnel result8 regard­

ing the theras1 protection design of vehicle8 which will fly in 8 real ga. atm08phere? 



GENERAL DYNAMICS/CONVA I R (d) 

Figure 1.- Models of orbiter configurations . 



Figure 2.- .Models of ~lO orbiter and McDonnell Douglas booDter . 
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Figure 3. - Illustrative areas of study. 
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Fi re 4. - Desired focus of theoretical work . 
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Figure 5.- Flow conditions on lee side of 70° sweep delta wing and flap; M = 6, a = _100, B = 00. 



HIGH SHEAR OR 
"FEATHER" REGION 

CENTER­
LINE 
N St,oo 

10-3 

LAMINAR 
STRIP T~EORY 

a =-5 

= 0° EX PER I MENT 

Rm'L 
o 18.7 x 106 

o 12.1 
o 5.2 
b. 2.4 

10-4~--~--~--~~--~--~--~~~--~~ 
105 106 

Figure 6.- Center-line heati.ng on lee surface of delta wing; M = 6, a. = 5°. 
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200 

o .2 

ASCENT 
0=0 

.4 

" ," 
I , " 
J \ , \ INTERFERENCE , \, ' , \ , \ 

I " " 

.6 .8 1.0 
xl L 

Figure 8.- McDonnell Douglas booster launch and entry phases; maximum skin temperatures. 



M = 3 

Figure 9.- Booster-orbiter separa ion . 
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Figure 10.- Effect of dynamic derivatives on booster-orbiter separation. 
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Figure 11.- Inputs for booster-orbiter separation trajectory program . 
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Figure 12 .- Booster-orbiter sepa ation, jet plume effect . 
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Pigure 13.- Phase-change pat~ersn on strai~~ wing orbiter; M = 10. 
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Figure 14.- Straight wing orbiter maximum heat transfer and equilibrium skin temperature, 
constant ~ = 200 entry trajectory; M = 8. 
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Figure 15.- Straight wing orbiter maximum heat transfer and equilibrium skin temperature, 
constant a = 400 entry trajectory; M = 8. 
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Figure 16.- Windward center-line heat-transfer distribution, strai ght wing orbiter; a = 400 • 
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Figure 17.- Windward boundary-layer transition conditions, center line of straight wing orbiter. 
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URBULENT FLOW 
Figure 18.- General. Dynamics/Convair orbiter phase-change patterns, bottom view; M = 8, CL = 250, 



a = 18° 

Figure 19.- Straight wing orbiter lower surface oil.flow patterns; M = 7. 4. 



a = 20° a = 30° 

a = 40° a = 50° 

Figure 20 . - Straight wing orbiter internal shock btructure j M = 20. 



FRONT-TOP \ lEW TOP-REAR VIEW 

Figure 21.- Straight wing orbiter shock interi'erence pat-tern j M = 0 , a. = 40°. 
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