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MEASUREMENT OF FLOW MAGNITUDE AND DIRECTI®N

R. W. Fox
Purdue University
Lafayette, Indiana

ABSTRACT

A technique is developed for the measurement of mean velocity

direction and magnitude and the turbulence quantities in incompressible

fluid flow within a plane, when the flow direction is known only approxi-

mately within the plane.

W

	

	
A low degree polynomial is fit to the calibration data by least

squares, in the forme square root of velocity versus square of voltage.

Thereby known approximate adherence to King's law is used to advantage,

yet accounting for small deviations from the law.

A normal-component cooling model accounts for probe directional

sensitivity. Calibration is performed at flow directions near those

expected in the measurement situation, and the model is used to find a

calibrated wire reference angle. Data taken at several flow angles

revealed that the normal cooling model worked well in reducing the cali-

bration data to a single curve.

I

	

	 Measurements of turbulent shear stress in fully developed pipe flow

gave excellent agreement with a theoretical prediction of total shear

distribution. The techniques developed were also used to measure the

velocity field of an ejector.



MEASUREMENT OF FLOW MAGNITUDE AND DIRECTION

BY HOT WIRE ANEMOMETER

INTRODUCTION

A technique is developed for the measurement of mean velocity

direction and magnitude and the turbulence quantities in incompressible

fluid flow within a plane, when the flow direction is known only approxi-

mately within the plane. This situation may arise, for example, in the

study of the development region of swirl-free axisymmetric pipe flow or

in the study of the velocity field of a jet flow,

The development of the method is restricted to a low level of turbu-

lence such that the anemometer response to velocity perturbations is

linear, i. e. , for "small" velocity perturbations. Use is made of the

knowledge of approximate King's law behavior and of an assumed normal-

component cooling effect.

The technique is checked by comparing measured results with

known behavior in fully developed pipe -flow. This case does constitute

a significant simplification of procedure in that the flow direction is

known to be parallel to the axis of the duct. Data were also taken in the

mixing region of a ducted axisymmetric jet, where the flow direction is

not known; and some sample results are presented.

ANALYSIS
4	 Quantities Measured

1.

	

	 The flow quantities to be measured with respect to reference axes

in a plane are mean velocity magnitude, UR , mean direction of flow S,

longitudinal turbulence velocity uR	 transverse turbulence veloc-
1/2

ity
r
	 ,and Reynolds stress uR vR.
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Fundamentals

King's law for an anemometer may be written

E 2 - E 2 «U1/2
o	 eff

where E is the voltage of the wire, and E  is the voltage at Ueff - 0'
and Ueff is the effective cooling velocity. This relation is developed

from considerations of the wire energy balance including convective cool-

ing; it is possible to evaluate the proportionality from the analysis.

However, in practice a calibration of the wire is developed by measuring

E in a known flow. Since the relation of E 2 versus Ul/2 is nearly a

linear one, the calibration data may be accurately curve-fit by a poly-

nomial of low degree, e.g.,

	

E 2 = f (Ul/2) =a0 + alU1/2 +a2 Uc + a3U3/2	 (1)
or

	Uc/2 - g (E c) = bo + b 1E^ + b2E^ + b3Ec	 (2)
These calibration curves may then be employed in determining wire

sensitivities to turbulence fluctuations and in determining mean velocities.

Use of a Normal-Sensor Probe

Assuming that the turbulence fluctuations are "small" and that the

calibration relation, developed in a low turbulence flow, applies instan-

taneously in the flow, one can develop working relations. For a sensor

which is oriented normal to the mean velocity, Fig. 1,

®	 U = fn (E)	 (3)

and

e2 = S 2 u 2	 (4)
where Su = aE c/aUc I U . Thus once the wire has been calibrated

(E c versus U  determined) the values of U and u 2 may be determined

2by measuring E and e .
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Use of an Inclined-Sensor Probe

For a probe lying in the xy plane and inclined to the mean velocity

(assuming x corresponds to the direction of the mean velocity U),

Fig. 2, the following relations apply:

E = f (U, co)	 (5)

e = S u u + S v v	 (6)

Su = aE _	 (7)

au u
s = 1 aE'
	

(8)
u a^o u

The relation f is fixed by calibration and may be expressed

E c = f(Uc , (P c )	 (9)

In the general situation the probe is held so that the sensor has a fixed

orientation with respect to reference coordinates x R, yR, zR9 these co-

ordinates are set by the geometry of the situation (see fig 3) and may cor-

respond, for example, to the axial, radial, and tangential directions in a

cylindrical duct. For the present purpose the x, y and the x R, yR planes

are coincident, however the angle co is unknown. In the measurement

situation the unknowns are U, co, u 2 , v2 , and uv, with respect to a set of

flow coordinates arranged such that the direction of mean velocity vector

and the x coordinate direction coincide. It is ultimately desired to know

the velocity and turbulence quantities relative to the coordinates xRI yR'

Y	 and z  which are fixed by the geometry. Therefore 6, the angle between

U(x) and xR, must be found. The unknowns are UR, S, uR, vR, and

U, j and at least 5 measurements are required to determine them.

To see how these measurements are accomplished, consider the

sensor arranged at two different orientations relative to the flow, in the

plane of interest, Fig. 3. The angle co o is fixed by geometric constraints,
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i. e. , the sensor may be held by a probe body lying along the y R axis;

and since co o is thereby fixed, S becomes the variable of interest in

the calibration and use of the probe.

The calibration relations may be stated,

E c1 = f 1 (Uc' 6)	 (10)

Ec2 _ f2 (Uc' S)	
(11)

For purposes of determining U and b, these can be written:

	

Uc = gl(Ecl)' S parameter	 (12)

	

Uc _ 92(Ec2)' S parameter	 (13)

These relations are established by setting up a table of E c , Uc, S in

a flow whose direction and magnitude are controlled. However, as it is,

the table is not very helpful in determining U and S when E 1 and E2

are measured in a flow of unknown velocity.

The use of the calibration data would be facilitated if the angular

dependence could be handled in equation form. It is well known that a hot

wire is cooled primarily by the component of velocity normal to itself.

By calibrating the probe at values of co, i. e., b, near the values expected

in the measurement situation, effects due to the velocity component along

the wire may be accounted for in the mean. Therefore

Ueff = U sin co

	= U sin (coo t S)	 (14)

with the plus used in orientation 1 and the minus used in orientation 2.

With the above assumption, one may write

{U sin co) 1/2 = g(E2 ) =b 0  + b 1E 2 .+ b 2E 4 + .....	 (15)

and

E2 = f l-- sin co) 1/2	 (16) .
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The above formulations have been checked by calibrating the wire in

orientation one in a known flow, perturbing its position by amount b

about angle co 0* A sample of the result may be seen in Fig. 4. For the

range of S T s chosen the data do indeed collapse to a single curve. The

same procedure must be carried out for orientation two (no figure shown);

the results will be the calibration relations

CY sin (coo + 8))1/2 = g
1 (E21)
	 (17)

IU sin (co o - 6)11/2 = 92 ^E	 (18)

These relations are then used, once E 1 and F 2 are measured in the

measurement situation, to determine UR, VR. Using appropriate

trigonometric identities

g2 ^2) + g2
lE 

2^
UR =U Cos 6= 1 	 (19)

2 sin coo

V = U sin b = gl F̀ - g2\E2/	 20R'	 2 cos coo 	( )

Therefore
V

S = tan

	

	 (21)
UR

c0 1 = cP o + s	 (22)

c0 2 = (Po - 'b	 (23)

Thereby the mean velocities are determined, assuming co o is known.

One may assume co o = 450, as probe manufacturers attempt to accom-

plish, or one may determine co o by using the assumed normal-component

cooling behavior:



.....................

6

CU sin (coo + 6)) 1/2 = g(E 2 )	 (24)

In the calibration rig U and S are known and E is measured. In orien-

tation one or two, one may set two known values of 6(6 A and 6 B) and

control U in the two cases so that

EA = E 	 (25)

For the case S A = 0, 6  * 0, using an appropriate trigonometric

identity:

UA sin coo = g2 (E 22 ) = g2 (E 2 = UB (sin co o Cos SB + Cos co o
 
sin SB)

thus

	

	 (26)

UB sin SB
tan co o =

	

	 (27)UA - 
UB cos 6  

In practice these steps may be carried out several times, and an average

value for co o may be taken.

It remains yet to determine the turbulence quantities. Equation

leads to the following for orientations one and two:

	

e1 = Sul u2 + 2 Sul Svl uv + Sv1 v2	(28)

	

2 = Su2u	 +2 Sul Sv2 u  + Sv2 v	 (29)

which maybe solved for uv and v2

	

2 2	 2 22 2	 2 2	 2
UV = Sv2 e l - Sv1 e2 - (Sul Sv2 - Sv1 Su2 

u	
(30

2 Sv1 SA (Sul Sv2 - Svl Su2,

2
v2 - el - Su1 u - 2 Sul uv	 (31)

Sv1 SO	 Svl
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These relations, however, require that u2 be given; this requires

an additional measurement. To determine u 2 a separate wire may be

placed in the flow at the same location such that U is always normal to

the wire, thus sensitive to u2 . This implies aligning the wire along the

z axis; the procedures for a normal wire may then be applied.

Finally the turbulence components with respect to the reference

coordinates are:

uR = u2 Cos 26 + v sin 26 - 2 u`v cos b sin S 	 (32)

v22 = u2 sin 26 + v2 cos 26 + 2 uv cos S sin S	 (33)

u  v  = (u2 - v2 ) cos b sin S + (cos 26 - sin 26) uv	 (34)

The wire sensitivities for each of orientations one and two are deter-

mined as follows:

E^ = f (arg)
	

(35)

arg = (Uc sin ep) 1/2.	 (36)

Here f represents the curve-fit of the calibration data

E 2 = f(arg) = a + a l arg + a2 arg2 +a3 arg3 + .....	 (37)

From these

Su = aE	 = r df	 sin cp	 (38)
^...au U, cp darg 4 E (U sin cp)

1/2 U, co, E

S = 1 aEdf	 cos cp	 (39)
v U a I U,	 dar 	1/2

=

`^	 g 4 E (U sin co)	 U, cp, E

where df/darg is found by differentiating the least squares curve-fit of

the calibration data.
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RESULTS

In order to evaluate the techniques which have been developed,

measurements of uv were made in fully developed pipe flow and the

results were compared with a theroetical prediction of the total shear

stress distribution for such a flow. Recall that in turbulent flow the

turbulent ,shear stress uv is virtually equal to the total shear stress

everywhere in the pipe except near the wall where a laminar viscous

shear layer exists. While the fully developed flow (6 = 0) permitted

significant simplifications, the results provide a reasonable check of

the techniques.

As seen in Fig. 5 the uv results are in good agreement with the

theoretical prediction. In the figure T represents the shear stress,

p represents the air density, and U T represents the wall shear velocity

found from measurement of pressure loss per unit length in the pipe,

y is the distance from the wall and R is the pipe radius.

Additionally Fig. 4 has already shown the effectiveness (in the 6

range considered) of collapsing the calibration curves via the assumed

normal cooling model.

Results of Measurements in a Ducted Jet

Some sample results of mean velocity magnitude and direction and

turbulent stress in the mixing region of an axisymmetric ducted air

jet are presented in Fig. 6 and 7. The reported variables are defined

_	 relative to cylindrical coordinates x, r, and 8, which correspond to

xR, yR, and zR respectively from the section on the use of an inclined-

sensor probe. Thus U  is the component of mean velocity in the axial

direction, delta is the angle between the mean velocity vector and the



turbulent Reynold shear stress corresponding to axial-radial coordinates.

The results shown are characteristic of jet mixing, with a zone of

high radial mean velocity gradient between the inner and outer flows.

The flow direction plot shows the outward spread of the central high

speed flow and the inward entrainment of the outer flow into the mixing

zone. Finally the plot of uRvR, Fig. 7, shows the high turbulent shear

stress resulting from the large velocity gradient between the inner and

outer flows and the very low shear stress in the potential outer flow.

These results have been selected to demonstrate the practical

application of the hot wire techniques. For a complete report of the

ducted jet results, see Ref. I.

SUMMARY OF RESULTS

Techniques have been presented for the measurement of mean

velocity magnitude and direction and of turbulence quantities. The

results were-

1. Good agreement was found between the data and a theoretical

prediction of shear stress in fully developed pipe flow. The pipe flow

test did comprise a significant simplification in that the mean flow direc-

tion was known throughout.

2. The use of the normal-component cooling model was effective in

accounting for the directional sensitivity of the probe in the range of

y	 angles considered. The model was also used to establish the reference

angle of the probe.
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CONCLUDING REMARKS

A procedure has been developed for determining, within a plane,

time mean velocity magnitude and direction and turbulence quantities.

It is required that the flow direction be approximately known within this

plane in order to effectively calibrate the probes.

Two probes are required for the measurements: one which can be

placed normal to the plane at all points of interest, and a second one

which is placed in the plane at first one and then a second inclination

relative to the flow.

The limitations of the method are that:

1. The probe configurations must be achievable, and obviously

one must be able to reach the "samesame point" with the two probes.

2. The flow field must be steady in the mean, since the measure-

ments are not taken simultaneously.

3. Due to the assumption of linear voltage response to perturba-

tions of velocity, velocity fluctuations must be "small".

4. In the region of interest, the sine law cooling assumption must

adequately describe the directional effect of the flow.

5. The calibration of the probe in a low turbulence flow applies

instantaneously in the flow.

6. All second order effects (e. g. , wire length) have been neglected.

Some notable benefits of the method are that:

1. Subject to the indicated restriction, the directional dependence

of the calibration is handled in equation form.

2. A digital computer may be readily applied for calibration and

data reduction, and some on-line arrangement could be possible.
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3. The curve fit is not forced to represent the calibration data with a

single exponent, which would depend on the range of velocity.

4. The reference angle of the probe coo is determined experimentally,

I	 consistent with the assumed normal component cooling model.
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