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Abstract 

Novel sa fe ty  problems are introduced by the  
hybrid rocket vehicle/airplane presently called the  
space shut t le  t h a t  r e l a t e  t o  the  durabi l i ty  re -  
quired of i t s  systems t o  serve 100 missions, the 
short  service time between f l i g h t s ,  it special  en- 
gines, fue ls  and cargo. This paper samples some 
representative problems of which those who maintain 
the shut t le  and c e r t i f y  it fo r  f l i g h t  readiness 
should be int imately aware. While most of these 
problems are  known t o  designers exploring shut t le  
configurations, the point i s  s t ressed t h a t  those 
who must maintain and operate the shut t le  must de- 
velop techniques and be t ra ined i n  t h e i r  use f o r  
judging i t s  condition before f l i g h t .  Methods and 
means f o r  inspection, maintenance, and check-out 
must be recognized ear ly  i n  the shut t le  design i f  
accommodations must be made f o r  them i n  the vehic le  
This paper samples some of the problems and d i s -  
plays t h e i r  technical. content t o  a l e r t  those who 
w i l l  be concerned f o r  shut t le  sa fe ty  t h a t  they w i l l  
see some new problems which are peculiar t o  the 
shut t le  and some old problems i n  aggravated form 
f o r  which present solutions no longer hold. 

Introduction 

The safe ty  of the space shut t le  i s  being ex- 
plored by highly competent technical  teams who recy 
ognize t h a t  t h i s  hybrid rocket vehicle/airplane 
w i l l  require our bes t  design performance t o  do the  
mission and meet the  100 f l i g h t  l i f e  expectancy. 
In  each of the  many areas of s a f e t y  concern experts 
are  engaged who can ant ic ipate  the  problems faciqg 
shut t le  operatiop. Once the shut t le  is  placed i n  
operation, however, those who maintain and pBerate 
it assume s a f e t y  respons ib i l i ty  from the  designers 
and fabricators  who created the vehicle. Early 
fami l ia r i ty  of the maintenance and operational per- 
sonnel with the  special  features  of the  shut t le ,  
i t s  mode of operation, and the peculiar cargos it 
may carry i s  required i f  they are  t o  be ready f o r  
t M s  responsibi l i ty .  To make t h i s  point, t h i s  re- 
pc)rt displays the  technical  content af a few novel 
sa fe ty  problems and some solut ions which typ i fy  the  
shut t le  and i t s  mission. These problems though 
well understood by spec ia l i s t s  i n  the separate 
f i e l d s  have bas ic  subt le t ies  t h a t  are generally un- 
known or  misunderstood. The selected problems re -  
l a t e  t o  rocket engine durabi l i ty ,  airbreathing en- 
gine l i f e ,  f u e l  f i r e s ,  s t ruc tura l  integri ty ,  and 
radioactive cargo. 

Rocket Englne Durabi l i ty  

Control over the design and performance of the  
hydrogen-oxygen rocket is highly developed and ex- 
ce l len t  s ingle  f l i g h t  r e l i a b i l i t y  exis ts .  
strong t h r u s t  perturba4ions i n  combustion chamber 
s t i l l  s t r e s s  engine components, and dr ive sustained 
osc i l la t ions  i n  the propellant flow through vibra- 
t iona l  coupling with the vehicle s t ructure  (POGO). 

Yet 

The rocket s t ructure  and machinery w i l l  be 
subjected t o  many cycles of high thermal and/or 
mechanical s t resses  i n  100 f l i g h r s  which raise a 

serious fat igue and wear threa t .  Thrust chamber 
designs w i l l 3 e  devised which have the  poten t ia l  
f o r  100 f l i g h t s ,  but t h e  l imited service experi- 
ence with re-used motors w i l l  require heavy r e l i -  
ance on thorough inspection by nondestructive test- 
ing techniques. The access ib i l i ty  of the thrus t  
chamber components makes such inspection a re la -  
t i v e l y  easy matter with f a i r l y  sophisticated in-  
spection equipment. 

Turbopump Bearings 

However, the bearings of t h e  propellant turbo- 
pumps, and more particularly,  those of the hydrogen 
pump are  vulnerable t o  f a i l u r e  within the in te rva l  
of 100 f l i g h t s .  Major disassembly e f f o r t  would be 
required t o  permit periodic visual  inspection of" 
the bearing. 
placed on acoustical  methods f o r  assessing bearing 
health,  since such methods are applied t o  the  as- 
sembled. machine. 

Heavy rel iance w i l l  no doubt be 

A high degree of t ra in ing  is  required of an 
operator of acoustical  diagnostic equipment t o  
enable him t o  dis t inguish t h a t  amount of bearing 
wear t h a t  requires bearing replacement from t h a t  
which i s  tolerable .  

To understand the  l imited l i f e  of the  hydrogen 
pump bearing, it i s  necessary t o  r e c a l l  t h a t  the 
l iqu id  hydrogen which wets the  bearing serves only 
t o  remove the f r i c t i o n a l  heat. Lubrication i s  pro- 
vided by the  subt le  mechanism i l l u s t r a t e d  i n  
Fig. l ( a )  which is a sketch of a b a l l  bearing typ- 
i c a l  of those used for  hydrogen pumps. 
ture of the bearing which s u i t s  it f o r  hydrogen 
use i s  the b a l l  re ta iner  which is usually made of 
te f lon  reinforced with glass  f i b r e s  within it. 
The te f lon  serves as a dry lubricant  which t rans-  
f e r s  t o  t h e  surface of the b a l l s  i n  rubbing con- 
t a c t  w i t h  it, and from the  b a l l s  t o  the  bearing 
races.  
cold welding of the b a l l s  t o  t h e  race metal i s  pre- 
vented w d  the bearing operates with acceptable 
coeff ic ient  of f r i c t i o n  and w e a r .  Unfortunately, 
the te f lon  coating on the races bui lds  t o  a maxi- 
mum thickness of several  microns and then wears 
out. 
ment and dis integrat ion on the  race is  shown i n  
Fig. l (b) .  The profil imeter da ta  i n  t h e  f igure 
show t h a t  the  te f lon  f i lm on t h e  race bui lds  for 
the  f i r s t  284 minutes of operation. By 404 minutes 
of operation the te f lon  f i lm is  worn through and 
race surface damage has begun. These bearing opera- 
t i n g  times correspond t o  those one expects i n  100 
f l i g h t s  of the  shut t le .  Repair of t h i s  te f lon  
f i lm on the races by fur ther  t ransfer  from the  re -  
t a i n e r  via the b a l l s  i s  l imited by the glass  re in-  
forcing within the retainer .  Transfer of te f lon  t o  
the b a l l s  from the re ta iner  occurs u n t i l  the  su r -  
face te f lon  i s  worn away and the  underlying glass  
f i b r e  i s  exposed throughout the  b a l l  contact areas 
i n  the re ta iner  ( f ig .  l ( c ) ) .  Once bare metal i s  
exposed on both the  races and the  b a l l s  cold weld- 
ing between the  two leads t o  progressive surface 
spal l ing which accelerates t o  bearing fa i lure .  
The oxygen pump bearing spa l l s  l e s s  readi ly  when 

The fea-  

A s  long as the  te f lon  f i lm coats the races 

A typ ica l  h i s tory  of the te f lon  f i lm develop- 
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the te f lon  f i lm i s  l o s t  since the  oxygen t h a t  w e t s  
the  bearing oxidizes the surfaces of balls and 
races. The oxide f i lm s o  prpduced serves as an 
anti-weld compound which slows the  spal l ing ra te .  
While bearings can run w i t h  some spall ing,  the r e -  
maining l i f e  becomes uncertain once spal l ing begins. 
For shut t le ,  the r u l e  w i l l  probably be t h a t  no 
f l i g h t  shall begin with kriown spalled bearings. 

Since disassembly of the  pumps f o r  bearing in-  
spection would be awkward and time consuming, the  
rocket engines may be designed fo r  easy periodic 
replacement of the  e n t i r e  propellant turbopump or  
for  application of diagnostic techniques which 
might be used t o  assess the  bearing condition dur- 
ing turbopump operation. Diagnostic devices f o r  
monitoring bearings are  usual ly  acoustic pickups 
attached t o  the  case of the  turbopump adjacent t o  
the bearing. Shut t le  maintenance personnel must 
judge from the  acoustic record made during a pre- 
vious f l i g h t  whether or  not the bearing condition 
i s  adequate f o r  the next f l i g h t .  
discern the necessary information from the  record 
i n  s p i t e  of the  accompanying high background nose 
leve l  over a wide frequency range is yet something 
of an art. Considerable experience by maintenance 
personnel i n  t h i s  diagnosis technique should be ob- 
tained with the  turbopump operating i n  the complete 
rocket engine during qual i f icat ion runs i f  re l iance 
on this diagnostic technique i s  t o  be par t  of the  
shut t le  maintenance plan. 
t h i s  diagnostic technique apply it with consider- 
able confidence; but  l e t  the  novice beware. 

The a b i l i t y  t o  

Those experienced i n  

J e t  Engine Safety 

The airbreathing turbofan f o r  shut t le  booster 
and orb i te r  i s  t o  be an advanced mi l i ta ry  engine 
having a turbine i n l e t  temperature above 2000' F 
and t o  be powered by a conventional, or  s l i g h t l y  
modified, j e t  propulsion fuel .  The high engine 
temperature makes turbine l i f e  sens i t ive  t o  modest 
departures from optimum operating conditions and 
the f l i g h t  prof i le  of booster and orb i te r  requires 
special  f u e l  system maintenance i f  f l i g h t  f i r e  with 
the j e t  propulsion f u e l  i s  t o  be avoided. A de- 
t a i l e d  understanding of  both of these matters is  
important t o  effect ive safe ty  surveil lance.  

Turbine Life 

The turbine i n l e t  gas temperature of the 
shut t le  fan engine is  t o  be several  hundred degrees 
above the temperature (1750' F) a t  which the  t u r -  
bine vanes and buckets lose  s t rength rapidly with 
fur ther  temperature increase. Air-cooling of the 
blades and vanes holds the  metal temperature t o  
1750' F while t h e  turbine inlet gas temperatures 
can r i s e  above 2000' F with useful  turbine l i f e .  

In  typ ica l  cooled turbine,  vanes and buckets 
contain air cooling passages, such as those shown 
i n  Fig. 2(a). 
the  buckets at the root,  or the  vane at root  or  t i p ,  
blows through passages within the  vane o r  bucket 
and i s  exhausted a t  the  t i p  o r  the t r a i l i n g  edge as 
shown i n  the f igure.  
Fig. 2(b), shows the cooling air s l o t s  a t  the  
t r a i l i n g  edge. 

A i r  drawn from the  compressor enters  

A picture  of a cooled blade, 

Blade l i f e  i s  l imited by s t r e s s  rupture 
through long time application of t e n s i l e  loads, and 
by therm& low cycle fa t igue and oxidation from the 

hot turbine gas stream. Blade l i f e  declines rap- 
i d l y  with increasing metal temperature f o r  all 
three  t h r e a t s  t o  thenblade. While the  decline i n  
stress rupture l i f e  with temperature i s  c l e d l y  
re la ted  t o  t h e  reduction i n  t e n s i l e  strength,  the  
reasons f o r  more serious low cycle fa t igue and ox- 
idat ion problem with high temperature turbines are  
l e s s  obvious and merit  some discussion here. 

Fai lures  by low cycle fa t igue  show as chord- 
wise cracks on the leading and t r a i l i n g  edges o f  
the  turbine blade. Typical leading edge cracks 
are shown i n  Fig. 3. These cracks are  the  r e s u l t  
of a l te rna t ing  compressive and t e n s i l e  s t resses  
produced by the  more rapid temperature change of 
the leading and t r a i l i n g  edges as compared with the  
r e s t  of the vane or bucket when turbine i n l e t  gas 
temperature is changed. The more rapid edge heat- 

. ing during engine acceleration places t h e  leading 
edge i n  compression since it i s  constrained from 
i t s  normal expansion by the cooler bulk of the  vane 
or  bucket. A t  the  high Slade temperature permanent 
p l a s t i c  deformation of the  edge occurs under the  
force of t h i s  compressive load. When the  engine i s  
decelerated t h e  leading edge cools more quickly 
than the  r e s t ,  but it i s  kept from shrinking by the  
w m e r  bulk of the remainder of the  blade. This 
places the  edges i n  tension. 
tension cycling is  responsible f o r  the  thermal (low 
cycle) fa t igue  cracks i n  Fig. 3. The higher the 
turbine i n l e t  air temperature, the  greater  the  
t rans ien t  temperature differences between the  edges 
and the  r e s t  of the blade are apt t o  become. Also, 
small departures from normal conditions of blade 
cooling can increase the  thermal gradients on the 
blade and aggravate the thermal fa t igue problem. 

Such compression- 

A s  turbine i n l e t  gas temperatures are  raised, 
the  more complex do the  cooling channels within 
turbine blade become t o  minimize temperature gra- 
dients.  For blades which must  operate a t  turbine 
i n l e t  gas temperatures above 2000' F, one approach 
f o r  cooling the  vulnerable leading edge employs 
s l o t s  or holes around the leading edge through 
which air issues  from the blade i n t e r i o r  t o  provide 
COOL fi lms along the adjacent exter ior  surfaces. 
Application of the cool-film principle  t o  a turbine 
vane is  shown i n  Fig. 4. These s l o t s  have narrow 
flow passages, which r a i s e  anxiet ies  about clogging 
and consequent excessive loca l  metal temperatures 
and i t s  adverse e f fec t  on s t r e s s  rupture, low cycle 
fa t igue and blade oxidation. Likewise, these s l o t s  
and holes, representing discont inui t ies  i n  the 
blade material ,  can serve as s i t e s  f o r  crack i n i -  
t i a t i o n .  

With regard t o  blade oxidation, the key t o  
blade l i f e  i s  the oxidation r e s i s t a n t  coating which 
protects  it. While many forms of coating are  
studied experimentally, those i n  use f o r  high tem- 
perature blades are formed on the  blade surfaces by 
chemical react ion of the blade material  with the  
ingredient that confers oxidation resistance.  For 
nickel  base blade alloys,  fo r  example, the  coating 
can be nickel aluminide formed by chemical react ion 
of the blade metal with an aluminum salt t o  produce 
a coating 0.003 in. thick,  as shown i n  the  photo- 
micrograph of Fig. 5. The photomicrograph shows 
the coating t o  be an in tegra l  par t  of the blade 
metal since it i s  formed from it. A l l  surfaces, 
including those which form the in te rna l  cooling a i r  
flow channels, must be coated uniformly t o  r e s i s t  
oxidation. Achieving qual i ty  coatings requires 
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highly refined techniques. 

Unfortunately, t he  coating is  i t s e l f  vulner- 
able t o  oxidation through the  formation of A1203 
which flakes off the  surface. The marked depend- 
ence of the  coating l i f e  on metal temperature is 
shown i n  Fig. 6(a).  These data, taken from rea l -  
i s t i c  t e s t s  of blade coating which simulate blade 
temperature h i s to r i e s  and surface erosion by high 
velocity gases, show that coating l i f e  halves for 
each 60' F increase i n  surface temperature. Since 
blade f a i l u r e  follows shor t ly  a f t e r  coating fa i l -  
ure, one can judge t h a t  t he  desired 500 hour blade 
l i f e  requires t h a t  m e t a l  temperature must not ex- 
ceed 1850' F anywhere on the  vanes 0- ,- buckets. 
This r i s e  i n  m e t a l  temperature t o  1850' F can occur 
quite eas i ly  i f  blade cooling effectiveness i s  
l o s t ,  o r  a combustor f a i l u r e  produces zones of ex- 
cessive temperature i n  the  turbine i n l e t  gas. The 
charac te r i s t ic  progressive de te r iora t ion  of a sur- 
face coating of CoAl on cobalt super a l loy  i s  shown 
i n  Fig. 6(b). The change from a t i g h t  coating im-  
pervious t o  oxygen penetration t o  a porous and 
fractured f i l m  is evident i n  the  figure. 

Ironically,  the  very coating devised t o  pro- 
t e c t  the  blade from embrittlement by oxidation can 
itself threaten the blade with f a i l u r e  by =brit- 
tlement. This embrittlement appears as t h e  pro- 
gressive prec ip i ta t ion  of sigma phase needles i n  
the  basic blade material  immediately below the  
coating, as shown i n  Fig. 6(c).  While the  metal- 
lurgy of the  sigma phase formation is  poorly under- 
stood, it is believed t o  be due t o  the  diffusion 
of consti tuents of t he  protective coating in to  t h e  
adjacent base material. Since the  r a t e  of t h i s  
diffusion increases rap id ly  with metal tempera- 
ture,  the requirement t o  maintain f i n e  control over 
blade temperature i s  emphasized again. 

Flaw Detection 

These considerations of the s e n s i t i v i t y  of blade 
l i f e  t o  s m a l l  departures from normal engine condi- 
t ions  suggest t h a t  carefu l  inspection of the  engine 
a t  frequent in te rva ls  should be practiced, particu- 
l a r l y  during the  ea r ly  days of  t h e i r  use. Because 
of the high cos t  of the  i n t r i c a t e  cooled turbine 
blades and t h e i r  replacement time, the urge t o  
maintain them i n  service following inspection w i l l  
be great. For t h i s  reason, a nondestructive t e s t -  
ing technique is  desired which gives an estimate of 
the  remaining blade l i f e .  Since no t e s t ing  method 
i s  available now, estimates of remaining l i f e  w i l l  
have t o  be made on the  bas i s  of v i s ib l e  blade dam- 
age, par t icu lar ly  cracks. For uncooled blades, 
which a re  usually solid,  most cracks show on ex- 
t e r i o r  surfaces and a judgment based on experience 
can be made as t o  whether or  not the  blade may be 
restored t o  use by simple repair .  
blade may develop cracks which run t o  in t e rna l  sur- 
faces and require X-ray inspection for  detection. 

The cooled 

Fortunately, a marked improvement i n  crack 
detection by X-ray is  available through the  use of 
an opt ica l  separation technique f o r  analyzing ra -  
diographs, which a re  heavily exposed t o  reveal f i n e  
de t a i l .  The d e t a i l  that is  l o s t  t o  t he  eye viewing 
a dense radiograph i s  made v i s ib l e  by the  op t i ca l  
process which d i f f e ren t i a t e s  t he  various degrees of 
grey on the  radiograph with far greater resolution 
than is  possible by eye. 

In this technique, a s e t  of pictures, derived 
from t h e  radiograph, i s  made on high contrast  film. 
Each p ic ture  of the s e t  contains the  portion of t h e  
image on t h e  radiograph whose in t ens i ty  (depth of 
grey) l i e s  between narrow limits. A separate pic- 
t u r e  i s  made a t  each in t ens i ty  l eve l  of t he  image. 
The high cont ras t  f i lm exaggerates s m a l l  d i f f e r -  
ences i n  the  depth of grey of t h e  image on the  
origin& radiograph t o  reveal d e t a i l s  t h a t  cannot 
be detected by eye on the  original.  A comparison 
of t he  or ig ina l  radiograph of a portion of wing. 
spar, Fig. 7(a), with a separation made from the  
same radiograph, Fig. 7(b), shows a c lear  crack i n  
one of t he  holes i n  the  separation t h a t  i s  barely 
suggested i n  t h e  or ig ina l  radiograph. 
crimination advantage provided by the  method is  far 
greater than i s  i l l u s t r a t e d  here. 
t he  e y e , t o  de tec t  f l a w s  is enhanced i f  each sep- 
aration p ic ture  is  printed i n  a d i f f e ren t  color, and 
a composite multicolored p r in t  i s  produced from 
them. The f l a w s  show more r ead i ly  because they 
have colors which contrast  with the  surroundings. 
NASA i s  cooperating with USAF t o  develop a con- 
venient device which provides these inspection ad- 
vantages. The device is useful f o r  reading infor- 
mation from any radiograph regardless of the  ra- 
diation,used t o  produce it. 

Flaw d i s -  

The a b i l i t y  of 

J e t  Fuel Problems 

The recent decision t o  power the  turbofan 
with' j e t  f u e l  ra ther  than hydrogen suggests the 
value of reviewing some sa l i en t  sa fe ty  problems 
t h a t  r e l a t e  t o  the choice of f u e l  tank system. 
The following remarks on f u e l  system safe ty  a re  
made on the  assumption t h a t  t he  des i re  t o  minimize 
the  weight of the  shu t t l e  w i l l  ul t imately d i c t a t e  
a f u e l  system along conventional airplane l ines ,  
modified t o  the  extent t h a t  a f u e l  tank vent clo- 
sure w i l l  allow penetration i n t o  space while the  
tank pressure i s  maintained a t  several  pounds per 
square inch absolute t o  suppress f u e l  boiling. If 
t h i s  proves t o  be so, then the  subjects of f u e l  
tank f i r e s  and fue l  loss hazards explored f o r  t h e  
supersonic transport  have meaning at t h i s  time t o  
guide the  system design, since both airplanes a re  
designed f o r  high a l t i t ude  f l i g h t  and a re  subject 
t o  aerodynamic heating. 

Ignition of f u e l  vapors i n  the  tank vapor 
space by aerodynamic heating w a s  indicated i n  lab- 
oratory studies simulating f l i g h t  conditions of 
Mach 3 and above. In these .studies tank f u e l  
(JP-4, 5, e tc . )  was  heated t o  450' F t o  simulate 
the  f u e l  temperature i n  near-empty tanks t h a t  were 
subject t o  many minutes of aerodynamic heating. 
A i r  i n  the  tank ullage contained f u e l  vapor which 
varied from well  within the combustible range t o  
well  beyond the normal r i c h  combustible l i m i t  f o r  
hydrocarbon-air mixtures. With mixtures i n  the  
normal combustible r e f i r e s  occurred a t  tem- 
peratures of about 450 
classes of j e t  fuels.  Beyond the  r i c h  l i m i t  f o r  
hydrocarbon-air mixtures "cool" flames were ob- 
served i n  the  tank a t  the  same temperature. 
These "cool" flames a re  luminous manifestation of 
low grade oxidation reaction of t he  hydrocarbons. 
They produce pressure changes i n  the  tank t h a t  
vary from negligible t o  several  times the  i n i t i a l  
tank pressure i f  t he  i n i t i a l  pressure exceeded 
4 ps i a  ( f ig .  8). For f u e l  tank designs typ ica l  of 
a i r c ra f t ,  this pressure r i s e  imposes serious 
s t resses  on the  tank structure.  

7 F and above for  all 
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Transit ion from "cool" t o  normal flames 
occurred i n  these experimen$i when air entered the  
tank vent a t  a r a t e  which simulated an emergency 
descent of 8000 f t  a minute or  more. The extreme 
danger presented by such flames needs l i t t l e  com- 
ment. 

If t he  f u e l  tanks i n  the  shu t t l e  booster and 
orbi te r  w i l l  be so located t h a t  t he  temperattre of 
all the  tank surfaces w i l l  be held below 450 F, 
then the  f i r e  t h rea t  j u s t  described does not apply. 
However, fuel-tank sea lan ts  may have l imited l i f e  
i f  they  are allowed t o  cool t o  temperatures which 
shrink or  embrit t le them a f t e r  cold soaking i n  
space and then t o  be warmed on entering t h e  e a r t h ' s  
atmosphere. The f u e l  leakage problems Chat plagued 
the  B-70 may reappear f o r  the  shut t le .  
leakage i n t o  uninsulated bays of the  airplane 
occurs, then each fuel-wetted bay could be the  si te 
of ign i t ion  of t he  type j u s t  described during de- 
scent through the  atmosphere. 

If fue l  

A fur ther  f u e l  system anxiety r e l a t e s  t o  the  
re lease  of gases dissolved i n  the  f u e l  during the  
rapid climb from launch. 
preferen t ia l ly  i n  hydrocarbon fuels,  t he  oxygen and 
nitrogen mixture evolved from solution during 
climb are  r i che r  i n  oxygen than i s  air. Because of 
t h i s  oxygen enrichment, t h e  tank ullage contains 
fuel-vapor-air mixtures t h a t  a re  i n  the  combustible 
range t o  higher a l t i t udes  than would normally 
ex i s t  without such enrichment. The combustible 
a ix ture  fue l - a i r  which flows from the  f u e l  tank 
vent i s  vulnerable t o  ign i t ion  by l ightning s t r ikes  
t o  the  vent a rea  f o r  a long period of the  climb. 

Also, t he  oxygen and nitrogen evolved from 
solution during climb from launch may cause the  
l o s s  of subs tan t ia l  volumes of j e t  f u e l  from the  
tank vent. This undesirable prospect stems from 
the  tendency fo r  the  f u e l  t o  delay the  re lease  of 
dissolved gases i n  climb u n t i l  t h e  f u e l  is highly 
supersaturated with respect t o  the  a i r  pressure 
i n  the  tank ullage. A violent evolution of d i s -  
solved gas occurs throughout t he  f u e l  volume 
when desorption from the  highly supersaturated 
s t a t e  begins. 
gas bubble-filled f u e l  may overflow the  tank 
through the  vent. 
i s  provided, t he  f u d l o s s  maybe c r i t i c a l .  The 
magnitude of this f u e l  foaming-over problem cannot 
be judged from airplane experience because the  
shu t t l e  w i l l  climb f a r  f a s t e r  and a t t a i n  higher 
a l t i tudes  (lower tank pressures) when desorption 
occurs. Fuel tank pressurization t o  leve ls  high 
enough t o  avoid t h i s  problem might impose an un- 
acceptable tank s t ruc ture  weight penalty. 

Since oxygen dissolves 

The accompanying expansion of the  

Unless a la rge  i n i t i a l  ullage 

The danger t h a t  incendiary e l ec t ros t a t i c  
sparks within the  tank may accompany violent f u e l  
foaming remains a nagging uncertainty. 
richment of t he  evolved gases improves the  proba- 
b i l i t y  t h a t  a combustible atmosphere may ex is t .  
Control over e l ec t ros t a t i c  generation under these 
conditions i s  poorly understood. 
more airplanes experiences a f u e l  tank f ire l a i d  t o  
e l ec t ros t a t i c  sparks generated within the  f u e l  sys- 
tem. 

Oxygen en- 

Each year one or  

In order t o  eliminate all f u e l  tank f i r e s  
th rea ts  it is  recommended t h a t  shu t t l e  designers 
and operators consider iner t ing  the  fue l  and tank 
ullage i n  the  following way. F i r s t ,  s t r i p  the  d i s -  

solved gases from the  f u e l  i n  a ground-based f a c i l -  
i t y  j u s t  p r ior  t o  loading on the  shut t le .  One of 
t h e  several  types of f a c i l i t i e s  f o r  doing t h i s  is 
shown schematically i n  Fig. 9. In the  f igure  the  
f u e l  t o  be stripped is  contained i n  a tank which is  
connected t o  a suction source. A manifold i s  in -  
s t s l l e d  at t h e  tank bottom f o r  d i s t r ibu t ing  f i n e l y  
divided bub5les of nitrogen gas uniformly across 
the  tank. Means f o r  providing such uniform d i s t r i -  
bution with simple nitrogen manifolds axe available 
from the  a i r c r a f t  accessory industry. During the  
s t r ipp ing  operation f i n e l y  divided nitrogen gas 
bubbles a re  caused t o  r i s e  through the  f u e l  while 
t he  tank pressure is lowered by the  suction source. 
The nitrogen bubbles stimulate t h e  ea r ly  re lease  of 
dissolved gases by providing a dense population of 
desorption centers (nuclei) .  The tank pressure i s  
decreased gradually t o  a value equal t o  or  s l i g h t l y  
l e s s  than the  minimum pressure of the  ullage during 
f l i gh t .  The oxygen and nitrogen t h a t  remain i n  so- 
lu t ion  a re  i n  equilibrium a t  this pressure and w i l l  
not come opt of solution at higher pressures. The 
f u e l  s o  t rea ted  may now be loaded on the  shu t t l e  
shor t ly  before f l i g h t  using nitrogen as a cover gas 
t o  prevent fur ther  contact with oxygen. 
solution of nitrogen i n t o  f u e l  i s  slow, the  bene- 
f i ts  from the  s t r ipp ing  treatment w i l l  be preserved 
f o r  a useful time. 

Since the  

It i s  recommended fur ther  t h a t  a s m a l l  quan- 
t i t y  bf  nitrogen, perhaps as l iqu id ,  be carried on 
the  shu t t l e  t o  control t he  f u e l  tank pressure with- 
out t he  need f o r  ingesting air during descent and 
when f u e l  is withdrawn f o r  the  engines i n  the  
f l i g h t  back t o  land. A l l  anxieties about f u e l  tank 
f i r e  would be resolved by maintaining an atmosphere 
of nitrogen i n  the  tank. 

Miscellaneous Anxieties 

Aluminum Oxygen Tanks 

The l i qu id  oxygen tanks for  shu t t l e  w i l l  be 
aluminum, according t o  present plans. While most 
compatibility t e s t s  show aluminum t o  be safe  with 
l iqu id  and gaseous oxygen, aluminum oxygen tanks 
do burn occasionally. A recent f i r e  and explosion 
of an aluminum truck-mounted oxygen dewar i s  shown 
i n  Figs. lO(a) and (b).  The w a l l  thickness of t he  
tank is about 314 in., designed f o r  a working 
pressure of 200 lbs/in.2. 
explosion i s  evident from the  material  burned and 
melted from the  once near-circular ba f f l e  from the  
dewar shown i n  Fig. lO(c). The oxygen carried was 
of high pur i ty  used for  hospi ta l  breathing oxygen. 
This accident occurred j u s t  a f t e r  a hospi ta l  l iqu id  
oxygen tank was  f i l l e d  and the  truck w a s  beginning 
t o  draw away. T h i s  w a s  a new tank which w a s  f i l l e d  
about 25 times i n  service, well within the  100 pro- 
jected uses of t he  shu t t l e  booster. 
of t h i s  f i r e  has not been determined, but since it 
did not occur on f irst  use, repeated use probably 
contributed t o  developing the  condition t h a t  led t o  
the  f i r e .  This accident suggests t h a t  t h e  tech- 
niques used t o  ensure freedom from f i r e  danger i n  
one-shot systems must be augmented f o r  multiple use 
systems. Accordingly, it i s  recommended t h a t  the  
shu t t l e  oxygen tank be designed t o  permit: 

1. Careful cleaning following assembly. 
2. Periodic inspection of in te rna l  tank com- 

ponents f o r  s t ruc tu ra l  i n t eg r i ty  and cleanliness. 
3. Quality repair ,  inspection and cleaning by 

man access i n t o  the  tank through manways. 

That a f i r e  preceded the  

The cause 
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Space Radiation lems i n  the  hot section of the  engine. 

Radioactive Cargo I While the  danger from space rad ia t ion  t o  men 
and materials i s  the  subject of carefu l  study, the  
e f f ec t  of t h i s  radiation on ce r t a in  classes of 
s a fe ty  instrumentation i s  sometimes overlooked. 
Recent estimates show t h a t  i n  some regions of t he  
o rb i t  desired f o r  the  shv t t l e  the  radiation within 
the vehicle can be high enough t o  introduce spuri- 
ous signals i n to  monitoring systems. Radiation 
produces these s igna ls  by stimulating electron 
emission i n  sensing equ ipen t ,  by ionizing the  
space between instrument electrodes, o r  by exposing 
photosensitive plates.  A p a r t i a l  l i s t  of the  types 
of common sensing elements which can be stimulated 
by radiation includes photomultiplier tubes, ion 
chambers, Geiger tubes, and s c i n t i l l a t i o n  crys- 
t a l s .  

For some instrumentation systems such stimu- 
l a t ion  may increase the  system noise t o  t he  point 
where the  signal-to-noise r a t i o  is unacceptable. 
For others, such as u l t r av io l e t  f i r e  detectors, t he  
signal stimulated i n  the  detector could produce a 
f a l s e  f i r e  warning. Likewise, smoke detectors 
which measure the  change i n  the  e l e c t r i c a l  conduc- 
t i v i t y  of t he  atmosphere under surveillance, can be 
upset by l eve l s  of ionizing rad ia t ion  which might 
prevail. Means f o r  radiation protection or  methods 
f o r  cancelling rad ia t ion  induced spurious signals 
a re  an e s sen t i a l  par t  of t he  instrument develop- 
ment. Failure t o  cope successfully with this prob- 
lem can render useless an otherwise desirable in- 
strument. 

Likewise, t rans is tors ,  i n i t i a l l y  i n  marginal 
health, may degrade r a p i d l y t o  a useless condition. 
V i t a l  standby c i r cu i t s  which a re  r a re ly  used, and 
whit$ may contain marginal t rans is tor ,  should be 
checked periodically for assurance tha t  all i s  
well. 

Orbiter Reentry 

The operation of t he  turbofan engines and 
associated accessories on en t ry  in to  the  atmosphere 
following a period of several  weeks soaking i n  the  
vacuum of space w i l l  require considerable study t o  
ensure performance r e l i a b i l i t y .  Fuel regulators,  
engine accessory bearings and gears, and o i l  scav- 
enge pumps are  par t icu lar ly  v i t a l  machine compo- 
nents which must operate s a t i s f ac to r i ly  from a d ry  
s t a t e  without hes i ta t ion  as soon as the  engines a re  
started.  Failure of t he  f u e l  regulator t o  respond 
quickly may produce hot engine starts t h a t  could 
over-temperature combustors and turbines t o  l i m i t  
t h e i r  r e l i a b i l i t y  and l i f e  severely. While lubr i -  
cation can be provided t o  main bearings rap id ly  on 
engine start, since the  o i l  w i l l  be carried i n  
pressurized tanks and the  o i l  pressure pump can 
function M e d i a t e l y ,  t he  bearings and gears of 
accessories, par t icu lar ly  the  engine s t a r t e r ,  may 
operate dry  at high load f o r  a period long enough 
t o  wear unduly. Likewise, the  engine o i l  scavenge 
pump w i l l  be required t o  operate d ry  and unprimed 
a t  the  low pressure of 40 000 f e e t  a l t i t ude  when 
the  engines a re  being s ta r ted .  Unless special  pro- 
visions are made t o  ensure t h a t  the scavenge pumps 
operate quickly o i l  might be l o s t  t o  the  engine 
airstream by leakage through bearing and sump 
seals.  Since these o i l s  a r e  synthetic and may con- 
t a i n  chemically active additives, t h e i r  appearance 
i n  the main engine stream may r a i s e  corrosion prob- 

Highly radioactive spent reactor f u e l  elements 
and radioactive isotopes sometimes w i l l  be par t  of 
the  shu t t l e  cargo i n  l o g i s t i c  support of an orb i t -  
ing space base. Means must be devised t o  contain 
these radioactive materials should the  shu t t l e  ex- 
perience a violent crash. Current experiments on 
containment of nuclear materials a re  proving the  
point that such containment i s  possible with rea- 
sonable s t ruc tures  which withstand the  maximum cred- 
i b l e  crash impact. 

One of several  successful spherical  vessels i s  
shown i n  Fig. l l ( a ) .  The outer shell ,  having a 
diameter of 2 fee t ,  i s  made of 5 /8  in. t h i ck  s t ee l .  
A so l id  sphere about 1 foot  i n  diameter, concentric 
with the  outer she l l ,  represents t he  radioactive 
cargo. The space between t h i s  sphere and the  outer 
s h e l l  is f i l l e d  with saddle-shaped metal chips. 
Water f i l l s  t h e  voids between the  chips. Impact 
t e s t s  of the  containment vessel  a r e  conducted by 
supporting the  vessel  i n  the path of a sled- 
mounted concrete block which is rocket propelled t o  
impact speeds. 
vessel  upon impact with the  concrete block i s  shown 
i n  Fig. l l ( b )  for an impact speed of 480 fee t /  
second. The vessel deforms without f a i l u r e  of t he  
outer she l l .  The reinforced concrete block i s  
heavily damaged. 

The progressive deformation of the  

Because radioactive materials generate heat 
continuously, cooling loops may have t o  penetrate 
the  containment vessel  t o  maintain safe tempera- 
tures.  
which do not de t rac t  from the crash res i s tance  of 
the  vessel  is the  next s tep  i n  the  development of 
t h i s  technique for safe  transport  of radioactive 
materials. The work is presently being conducted 
by those who are  exploring the  f e a s i b i l i t y  of a 
nuclear airplane. 

Auxiliary Power Units 

The design of penetration arrangements 

Present plans c a l l  fo r  several  auxi l ia ry  power 

These power units burn hydrogen i n  
un i t s  t o  be operating on the  orb i te r  and booster 
when they land. 
oxygen, with hydrogen i n  excess t o  l i m i t  flame 
temperature. When t h i s  excess hot hydrogen i s  ex- 
hausted t o  the  a i r  it may produce a barely v i s ib l e  
flame charac te r i s t ic  of burning hydrogen. 
t he  hydrogen should be consunied with a la rge  excess 
of air i n  an afterburner t o  provide a hydrogen- 
f r ee  exhaust of moderate temperature, o r  t he  burn- 
ing hydrogen should be made v i s ib l e  by additive in -  
jected i n t o  t h e  hydrogen as it is  released t o  warn 
those operating close by. 

Either 

Concluding Remarks 

Many of t he  safe ty  issues ra i sed  i n  this r e -  
port  w i l l  be attended t o  i n  the  shu t t l e  design and 
some may not be pertinent t o  t h e  f i n a l  configura- 
t ion.  However, those charged with the  maintenance 
and sa fe ty  of the  shu t t l e  operation need t o  under- 
stand the  novel features of the  shu t t l e  and i t s  
operation t h a t  must claim t h e i r  a t ten t ion  now. If 
short  tu rn  around times of a few weeks a re  t o  be a 
shu t t l e  requirement, then maintenance and safe ty  
may require special  accommodation i n  the  basic ve- 
h i c l e  design which permits rapid assessment of i t s  
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condition in  all respects, F d  easy correction of 
deficiencies. Now is the  time f o r  maintenance and 
safe ty  t o  become aware of t h e i r  future  problems i n  
operating the  shu t t l e  and make t h e i r  needs known 
t o  the designer. This paper attempts t o  foresee 
some of these problems. Their t o t a l  scope cannot 
be l i s t e d  u n t i l  a desigr. is f inal ized.  
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(d) Run  time, 404 minutes. 
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Profi le trace of bearing inner  race normal to bal l - ro l l ing direction. Progressive profi le traces of inner-race groove (normal to ball- 
ro l l ing  direction). Cage material, 38 percent glass-cloth wi th 62 percent 
Teflon binder; shaft speed, M OOO rpm; th rus t  load, 200 pounds; coolant, 
hydrogen gas at 60" R. 

Figure Ub). - I n n e r  race surface history. 



Figure UC). - Retainer wear. 

CS- 5 1958 v 
Figure  2(a). - Cast o r  forged convection cooled blade. 



Figure 2(b). -Trai l ing edge cooling air exhaust slots on turbine blades. 

CS-51885 

Figure 3. - Thermal fatigue cracks on 
tu rb ine  blade leading edge. 
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F i g u r e  4. - F i l m  a n d  convec t ion  cooled blade. 
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Figure 6(a). - Coating life, 1 hour  cycles. 
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Figure 6(b). - Coating degradation. 
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Figure 6(c). - Blade embritt lement by sigma phase precipitate. 
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Figure 7(a) Radiograph of w ing  spar. 

Figure 7(b). - Optical separation radiograph reveals clear crack. 
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Figure 8. - Fuel tank pressure r ise produced 
by llcoolll flames. 
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Figure 9. - Dissolved gas str ipper for  jet  fuel. 
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(a) Long view. C-57452 

(b) Close-up. CS-57453 

(c) Burned baffle. CS-57461 
Figure 10. - A l u m i n u m  tank explosion. 
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Figure ll(b). - Sequence photographs at impact of containment system model. 
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