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IMP-I LAUNCH WINDOW ANALYSIS

I. INTRODUCTION

The IMP-I orbit is very different from previous IMPs in that it is first
inserted into a parking or preliminary orbit. This park orbit is circular and
inclined about 2873 to the equator. After remaining in this orbit for exactly
one-half period, the second stage is re-ignited and later separated from the
third stage which injects the satellite into the final highly eccentric orbit. Final
injection occurs over the west coast of Australia with the apogee of the orbit
occurring over the northern hemisphere (Reference 1).

II. ORBITAL AND SPACECRAFT REQUIREMENTS

The final orbit of IMP-I is of course determined by the mission objectives.
These objectives are to study solar and cosmic radiation, the solar plasma,
wave particle interaction, and interplanetary and outer magnetospheric electro-
magnetic and electrostatic wave characteristics.

In order to achieve these objectives, IMP-I will be launched from ETR into
a highly eccentric orbit of about 30° inclination with an apogee radius of about
30 Earth radii. The orbital requirements also include the following constraints:

A. An orbital lifetime not less than three years.

B. A perigee altitude not less than the injection height, although this may
be reduced to 200 km altitude above a spherical Earth if suitable launch times
are not otherwise available,

C. A centerline-station vector angle within 55° to 125°, This is the angle
between the spin axis (centerline) and the vector to any tracking station. The
spin axis will be reoriented after the first apogee so that it is perpendicular
to the ecliptic (pointing in the direction of the south ecliptic pole) and will main-
tain this orientation. The reason for this constraint is that there are -8 db and
-10 db nulls in the antenna pattern in the regions bounded by centerline-station
vector angles of less than about 40° and greater than 135°. Only low bit rate
(800 bps) telemetry operation is possible in these null regions; however, the
satellite is designed to operate nominally at 3200 bps (Reference 2),



D. Ecliptic plane apogee-sun angle between 15° and 60° and decreasing
with time. This angle is defined as the angle between the sun line from the
Earth and the projection of the apogee vector from Earth onto the ecliptic plane.
This will allow the projected apogee vector to go through the subsolar point
between approximtely 15 and 60 days after injection.

E. The spin axis-sun angle from injection up to the first apogee must be
known so that the spin axis may be reoriented to be perpendicular to the ecliptic.
During this first half-orbit the spin axis is defined as the initial velocity vector
at injection.

F. The spin axis-earth angle must be !mown up to the first apogee where
reoricntation of the spin axis will begin,

III. INJECTION CONDITIONS

The final earth-fixed injection conditions alcng with the estimated injecfion
covariance matrix are shown in Table I. This information is taken from Ref-
erence 3.

IV. COMPUTING TECHNIQUES

A total of 20 hours of 360/95 computer time was required for this study. Many
different computer programs were used and various checks were made during
the course of the study by using independent programs to insure the accuracy of
the results. The programs included both approximate and highly accurate
numerical integration techniques. A brief description of each is probably in
order.

A. SABAC

SABAC was developed by Renard and Sridharan (References 4 and 5) and
uses approximate stahility criteria which allow one to eliminate costly and time-
consuming numerical integration. The rapidity of this program allows one to
map out a complete launch window in a single computer run of less than two
minutes, whereas use of numerical integration techniques would require many
hours. While this program is approximate and is not intended to be highly
accurate, it provides an extremely useful picture of the launch window as a basis
for more detailed study. This program was obtained from the IMP project
office.
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B. ENCKE N-Body Numerical Integration Program (ENCKE)

ENCKE is an accurate n-body numerical integration program which was
developed and written by B. Kaufman. Using a reference ellipse and integrating
only the variations from this ellipse, the program is very fast compared to
other n-body programs and has proven to be very accurate. The disturbing
function includes the following:

1. Gravitational potential of the central body described by a linear combi-
nation of zonal, sectorial and tesseral harmonics,

2. Point mass effects of other bodies,
3. Solar radiation pressure.

The program also calculates penumbra and umbra times for the spacecraft
and was modified to compute the angles described in II C, D, E and F =2bove.
ENCKE was the major computational device used in this study. Unfortunately no
documentation exists yet for this program.

C. Network Analysis Program (NAP)

NAP is a highly accurate numerical integration program developed by DBA
Systems, Inc. (Reference 6). Using power series methods, the program integrates
the equations of motion for a spacecraft and includes in the model the following
perturbations:

1. Gravitational potential described by a linear combination of zonal, sectorial
and tesseral harmonics,

2. Point mass effects of other bodies,
3. Atmospheric drag,
4, Solar radiation pressure.
Since NAP was the only accurate program used which contained atmospheric

drag, it was used mainly as a backup program to provide confidence in the
results obtained from the faster Encke program described above.



D. Special Purpose Programs

Several special purpose programs were written to allow the calculation of
contours of constant value for several of the angles discussed above. These
contours will be discussed later.

V. LAUNCH WINDOW

A. Injection Times

Since the spacecraft will initially be inserted into a circular park orbit for
exactly one-half period, all times mentioned in this report will be injection times
into the final orbit. The actual liftoff times are found by taking into considera-
tion the half-period of the park orbit.

Figure 1 (produced in part by SABAC) is a complete picture of the injection
times from Jan. 15, 1971, to April 30, 1971, which yield a lifetime of at least
three years. Various parts of this contour were chosen as test points in the
Encke program and it was found that the contour was fairly accurate until
approximately March 16, 1971, near 1600 to 1800 hours, where some complex
forces apparently are beginning to combine in a manner that SABAC may not
consider. As can be seen by the points plotted on the curve, this complex action
is most significant around March 26 and appears to be disappearing at about
April 10 and therefore is probably a cyclic occurrence related to the Sun. For
this reason, if the launch is to occur later than about March 24, extreme care
must be used. Several points plotted on Jan. 27 show just how sensitive the
lifetime is to injection time where a difference of 1" 15™ in injection time
means the lifetime decreases from more than 3 years to about 4 days! Despite
the ahove-mentioned complexities, Figure 1 is an excellent starting base for a
detailed look at the launch window.

Superimposed on Figure 1 are two grids or contours: constant centerline-
Earth angle, and ecliptic plane apogee-sun angle. The line of 0° for ecliptic
plane apogee-sun angle was added in order to extend the window beyond March
30. The centerline-Earth angle is calculated at apogee (where the satellite
spends the majority of its time) where the difference between it and the centerline-
station angle is small,

Using the information available on Figure 1, it is seen that the window closes
on March 30 if the ecliptic plane apogee-sun angle is not allowed to go below
15°. However, as discussed earlier this is precisely in the region where 3-year
lifetimes may not exist. By lowering this constraint to 0°, the window extends



to April 11 but again the lifetime constraint is still somewhat cloudy here and
would need detailed investigation by means of numerical integration. As can be
easily seen, the centerline-Earth angle imposes no additional problems and the
injection times are bounded by 1600 to about 1900 hrs. at the beginning and by
1600 to about 1800 hours near the end of the window.

B. Effect of Injection Errors on the Launch Window

The uncertainty in the state vector at injection is described by the injection
covariance matrix in Table I. Because the off-diagonal terms are of significant
magnitude, it was decided that it would be inadequate to examine only the effect
of 3-sigma perturbations defined by the diagonal elements of the covariance
matrix. Hence a Monte Carlo procedure was devised where a set of random state
vectors was generated having a normal distribution about the nominal, as de-
fined by the covariance matrix. The procedure involved the following steps:

1. Performing a coordinate rotation on the covariance matrix such that the
resulting matrix was diagonal.

2. Generating 350 normally distributed random vectors, the clements of
which had means zero, and variances equal to the elements of the diagonal
matrix,

3. Multiplying these random vectors by the inverse rotation matrix and
adding the nominal injection vector to each of the 350 resulting vectors.

These final 350 random vectors were then converted into the SABAC input co-
ordinate system, and 350 corresponding launch windows were generated for
each launch day considered. Details of the mathematics involved can be found
in Appendix A,

It was originally planned to make runs using larger samples for some of the
more desirable launch dates, but all the results using a sample size of 350 con-
sistently showed that the launch window is essentially insensitive to injection
state errors. Figures 2 and 3 show histograms of the lower and upper limits
of the launch window on each Wednesday, January through April, 1971. The
SABAC runs were made with lifetime studies at 15-minute intervals. In all
cases, the launch window lower limit differed by no more than £15 minutes
from that of the nominal state vector, and over 99% of the upper limits were
within 30 minutes of the nominal., The conclusion is that raising the nominal
lower limit by fifteen minutes and lowering the nominal upper limit by 30
minutes should avoid any problems caused by injection state errors.



VI. SPACECRAFT PARAMETERS
A. Centerline-Station Vector Angle

Figures 4, 5, and 6 are curves of the maximum centerline-station vector
angle and centerline-Earth angle for one period of a nominal orbit on three
different launch dates. Table II represents the same data in tabular form and
also shows the maximum difference between the two. It is seen that, after about
16 hours from injection, the difference between looking at the center of the Earth
and at a station is less than 2° and that the angle is above the 55° lower boundary.

Figures 7 and 8 show 2 history of the centerline-Earth and maximum
centerline-station angle as well as the angle to that station with the maximum
deviation from the centerline-Earth angle. With the rate of increase seen here,
the upper boundary of 125° will nct be reached within the 3 years of the satellite's
lifetime.

Table IIT shows the injection times for centerline-Earth angles at apogee
from 55° to 85° from Jan. 27 to April 7, 1971. This data was used in superim-
posing the grid on Figure 1.

B. Ecliptic Plane Apogee-Sun Angle

As shown in Figure 1, the ecliptic plane apogee-sun angle imposes a tight
constraint on the injection times, causing a closing of the window on March 30,
1971, if the angle is to be no lower than 15° at the first apogee. By allowing
this constraint to drop to 0°, the window may be extended to April 11.

Table IV shows the ecliptic plane apogee-sun angle at the first apogee for
1/2-hour intervals across the injection window for a three-year lifetime.
These data are presented weekly from Jan. 20 to April 28, Wednesdays were
chosen as the typical injection dates solely for convenience and represent no
special importance.

C. Spin Axis-Sun Angle

Tuble V shows the spin axis-sun angle from injection up to the first apogee
in 4-hour intervals. These data are presented for every Wednesday from Jan,
217, 1971, to April 7, 1971, at the injection times which yield an ecliptic plane
apogee-sun angie of 15°, 30°, 45°, and $0° and is within the three-year lifetime
constraint. These two dates are for a 0° angle only. The spin axis is here
assumed to be the initial velocity vector (inertial), At the first apogee, reorien-
tation of the spin axis is begun.



D. Spin Axis-Earth Angle

The initial orbit has the same relationship with the rotating Earth regardless
of the day or time of day on which injection occurs. Therefore the spin axis-
Earth angle is invariant with respect to time, at least during the first half-orbit
when perturbations have not yet altered the orbit. The spin axis is here again
defined to be the initial velocity vector. This angle will start at 90° at perigee,
increase to 180° at a true anomaly of 90° and then decrease to 90° at apogee.

Table VI shows the variation in the spin axis-Earth angle every two hours up
to the first apogee where reorientation of the spin axis begins. The angle will
of course change rapidly near perigee and Table VI shows that most of the
change takes place in the first two hours. Figure 9 is a plot of the spin axis-
Earth angle during these two hours.

VII. CHARACTERISTICS OF THE ORBIT
A. Perigee Radius

The lifetime of the spacecraft is accurately predicted by the behavior of the
perigee radius. When perigee decreases sufficiently to allow the spacecraft to
enter the atmosphere, then the effective life of the spacecraft is over since
impact will occur shortly thereafter.

Figures 10 through 25 are plots of the periapsis radius every five orbits for
three years. These plots are for an injection date of every Wednesday from
January 27,1971, through March 17,1971, and for times on these days when the
ecliptic plane apogee-sun angle is 15°, 30°, 45° and 60° where these times also
satisfy the three-year lifetime constraint. From March 24 through April 7, the
plots are for an angle of 0° in order to extend the window.

All of these curves were produced from runs made with the previously de-
scribed Encke n-body program where the perturbations used included the presence
of the sun and moon and a potential model for the Earth's asphericity. All of the
runs were also checked for the first two months of the orbit on the NAP program
using atmospheric drag to insure that the omission of drag did not affect the
results, As can be seen from the curves, the perigee radius grows rapidly
during the first few orbits and therefore the effects of drag (if any) will appear
early. It was found that there were no noticeable atmospheric effects on the
orbits,




B. Shadow Periods

At the top of Figures 10 through 25 are shown (by dark blocks) the orbits
during which the spacecraft is in the shadow of either the Earth or the moon;
however, due to the distance from the moon and the fact that only the penumbra
of the moon's shadow is encountered, the latter is probably of no importance.
Just below these blocks are two numbers indicating the maximum time spent in
penumbra and umbra, respectively, during the entire interval when shadow occurs.
Where only one number appears it indicates that only penumbra is encountered.
The first block of shadow is always at or near perigee and the second block is
near apogee,

C. World Map
Figures 6 and 7 are world maps or ground traces of the first two orbits

for a typical nominal orbit. Table VII represents the same data in tabular
form with the value of true anomaly also included.
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APPENDIX A

Monte Carlo Procedure for Study of Injection Errors

Assume that the injection covariance matrix, P, describes a normal distribu-
tion of injection state vectors, X having mean, ¥, the nominal injection state
vector. Then by definition

—

E(X,) =X

— —

E[X, -X) X -X)T] =P

where E(x) denotes the expected value of x. Let S represent a coordinate rota-

tion matrix, and suppose Q is the corresponding covariance matrix for S_K about
mean SX. Then

Q=E[(SX, - s§) (sX. - s§)T]

- —_

=E{[SX, - X)] [SX, -X)IT}

P

- E[S(X, _% X, - X)T sT]

-

= SE[(X, _% (X -X)T] sF

=SPST

It is desired, if possible, to find a rotation matrix, S, such that Q is dia_onal.
If R is the matrix of eigenvectors for P, with associated eigenvalues, A, then
RT will satisfy these properties. This is clear because

R'PR=diag. (\)),

and RT is a coordinate rotation matrix because it must be orthogonal.

11




The Monte Carlo procedure involves the following steps:

1. Scale the covariance matrix so that is will be better conditioned for
evaluating the eigenvalues. Let P represent the scaled matrix, and let ¥ repre-
sent the nominal state vector with the same scaling.

2, Evaluate the vector of eigenvalues, », and associated matrix of eigen-
vectors, R, for the matrix P.

3. Generatt_a a set of normally distributed random vectors, ﬁi , With mean.,
0 and variance ;. These random vectors are in the coordinate system of RT X.

4, Transform the random vectors to the X coordinate system, and add X
to correct the mean:

>l
1]
=
!
><()1

2 T

5. Convert the random vectors ii into the coordinate system and units
acceptable by SABAC as input.

6. For each launch day of interest, run SABAC to generate a launch window
for each of the f('i input vectors. The distribution of the limits of these launch
windows on a given date describes the effect of injection errors on the launch
window of that date.

12
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Centerline - Station Angle/Centerline - Earth Angle
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Toble IV. Ecliptic Plane Apogee = Sun Angle in 1 /2 hou: intervals

Note: Negative Angle Means Sun Leads the Apogee Vector

Positive Angle Means Sun Trails the Apogee Vector and Closes in Real Time

Duie Time Angle (deg) Date Time Angle (deg) Date Time Angle (deg) Date Time Angle (deg)
12071 12v00™ -R1.8 2171 13h 3 -45,7 317’71 10" oo™ -107.3 47N 1M 00™ -30.5
‘2 30 -73.0 14 00 -35.8 10 30 -97.3 14 30 -23.4
13 00 -63 8 14 30 -26.3 11 00 -87.1 15 00 -16.4
13 30 -54.2 15 00 -17.2 1 30 -77.0 15 30 - 9.7
14 00 -44.3 15 30 - 8.5 12 00 -67.1 16 00 - 3.0
14 30 -34.2 16 00 0.2 12 30 -57.4 16 3C 3.6
, 00 -24.0 16 30 77 13 00 -48.2 17 00 16.1
15 30 -14.0 17 00 15.2 13 30 -39.3 17 30 16.7
16 00 - 4.2 17 30 22.5 14 00 -30.9 18 00 25,2
18 00 29.5 14 30 -22.9
1277 12%00™ -80.9 18 30 36.3 15 00 -15.3 41421 09"00™ -118.1
12 30 -Nn.7 19 00 43.0 15 30 -8.0 09 30 -108.0
13 00 -62.1 19 30 49.6 16 01 £0.9 10 00 -97.9
13 30 -52.2 20 00 56.1 16 30 6.0 10 30 -88.2
14 00 -42.1 17 00 12.7 11 00 -78.8
14 30 -32.0 22471 1"oo™ -93.6 17 30 19.4 ‘1 30 498
15 00 -21.9 1" -83.8 18 00 25.9 12 00 -61.3
15 30 -12.1 12 00 -73.7 12 30 -53.1
5 00 -27 12 30 -63.6 3/24/7.  10"00™ -105.0 13 00 -45.4
16 30 6.3 13 00 -53.5 10 30 -94.9 13 30 -38.0
17 00 14.9 13 30 -43.7 11 00 -84.8 14 00 -30.8
17 30 23.0 14 00 34.1 1 30 -74.8 14 30 23.9
18 00 30.8 14 30 -24.9 12 00 -65.2 15 00 RYA
18 30 38.3 15 00 -16.2 12 30 -55.9 15 30 -10.4
19 00 45.5 15 30 -7.2 13 00 -47.0 16 00 -3.8
19 30 52.4 16 00 0.0 13 30 -38.5 16 30 2.7
20 00 59.2 16 30 7.6 14 00 -30.5 17 00 9.3
20 30 65.9 17 00 14.8 14 30 -22.8
21 00 72.5 17 30 21.8 15 00 -15.5 4/21/71 08" 00™ -135.9
18 00 7.7 15 30 - 8.4 08 30 -125.8
2 371 nhoo™ -97.4 18 30 35.4 16 00 -1.5 09 00 1156
1 30 -88.7 19 00 42.0 16 30 5.2 09 30 -105.6
12 00 -79.6 17 00 1.9 10 00 -95.8
12 30 -70.0 3/ 3/71 10"00™ -110.8 17 30 18.5 10 30 -86.4
13 00 -60.1 10 30 -101.4 18 00 25.0 1 00 -77.4
13 30 -50.1 1 00 -91.7 1 30 -68.8
14 00 -39.9 i 30 -81.6 3/31/n 10hoo™ -102.7 12 Co -60.6
14 30 -29.9 12 00 -71.5 10 30 -92.5 12 30 -52.9
15 00 -20.0 12 30 -61.4 11 00 -82.6 13 00 454
15 30 -10.6 13 00 -51.5 1130 -72.9 13 30 ~38.%
16 00 1.5 13 30 -41.9 2 00 -63.5 14 00 -31.3
16 30 7.0 14 00 -32.7 12 30 -54.6 14 30 -24.5
17 00 15.3 14 30 -23.9 13 %0 4.1 15 00 -17.8
15 00 -15.6 13 30 -38.1 15 30 1.2
21071 12h00" -77.9 15 30 -7 14 0 -30.4 16 00 -4.7
12 30 -68.1 16 00 0.1 14 30 -23.0
13 00 -58.0 16 30 7.2 15 00 -15.9 4/28/77 08" 00" -133.4
13 30 -47.8 17 00 14.2 15 30 - 9.0 08 30 -123.3
14 00 -37.8 17 30 211 16 00 -2.2 09 00 -113.3
14 30 -27.9 18 00 27.8 16 30 4.4 09 30 -103.4
15 00 -18.4 17 00 1.0 10 00 -94.0
15 30 -9.35 3o/ nhoo” -89.5 17 30 17.5 10 30 -84.9
e 00 0.7 1 30 -79.3 18 00 4.1 11 00 -76.3
16 30 7.5 12 00 -69.2 1" 30 -68.1
17 00 15.4 12 30 -59.3 4/ 7/ 10h00™ -100.3 12 00 -60.3
17 30 22.9 13 00 -49.7 10 30 -90.3 12 30 -52.8
18 00 30.1 13 30 -40.4 11 00 -80.5 13 00 -45.6
18 30 37.1 14 00 -31.6 1 30 7.2 13 30 -38.6
19 00 43.9 14 30 -23.3 12 00 -62.2 14 00 -31.8
19 30 50.6 15 00 -15.3 12 30 -53.7 14 30 -25.2
20 00 57.2 15 30 -7.4 13 00 -45.6 15 00 -18.6
16 00 +0.4 13 30 -37.9 15 30 -12.0
247/ 1t oo™ -95.3 16 30 6.7 16 00 =i 8,8
1 30 -85.8 17 00 13.5
12 00 -75.9 17 30 2.3
12 30 -65.9 18 00 26.9
13 00 =55.7 18 30 33.5
19 00 40.0
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INJECTION DATE - 1971

Table V. Spin Axis = Sun Angle (D.g) (spin axis is initial velocity vector)

Time from 1/27 1/27 Va7 210 2/10 N7 217 217
Epoch (hrs) [ 17M0™25%.811 [ 17M56ma3%.628 | 18M58™1%.675 | 167 58™30%.896 | 17M59m238.469 | 16P0Mad’ 494 | 167 s9mena58 | 18M2ma as9
0 97.9 85.0 Nna 97.7 8.5 10.9 97.0 82.1
4 98.1 85.2 n.s 97.9 8.6 nma 97.1 82.2
8 98.2 85.3 n.s 9.0 8.8 m.2 97.3 0.3
12 98.4 85.5 7.8 98.2 83.9 M. 97.4 82.5
16 98.5 5.6 7.9 98.3 84.0 m.s 97.6 82.6
20 98.7 85.7 72.1 9.5 84.2 m.z 97.7 82.8
2 98.8 85.9 7.2 98.6 84.3 m.s 97.8 82.9
28 99.0 86.0 72.3 98.8 8.4 nm.e 98.0 83.0
32 99.1 86.2 72.5 98.9 84.6 12, 9.1 8.2
36 99.2 86.3 72.6 9.0 84.7 n2.2 9.2 8.3
0 9.4 86.5 72.7 99.2 84.8 Nn2.4 9.4 83.4
4 9.5 86.6 72.9 9.3 85.0 n2.5 9.5 83.5

APOGEE 9.0 86.7 72.9 99.4 85.1 2.6 9.6 8.6
(46)

Time from 2/24 2/24 33 3/10 nz 3/24 33 4/7
Epoch (hr) | 17h0™a7%108 | 18"s™52%373 | 17ha™16%.961 | 1776™29%082 | 17M10™1%.839 | 16Pe™38%.629 [ 16P10™ %470 | 16" 13ma3% 990
0 95.8 80.3 94.2 92.4 9.3 104.4 102.4 100.2
4 9.0 80.5 94.4 92.5 9.5 104.6 102.5 100.4
8 9.1 80.6 s 92.7 9.6 104.7 102.6 100.5
12 9.2 8.7 9.7 92.8 9.7 104.8 102.8 100.6
16 96.4 8.9 9.8 92.9 9.9 105.0 102.9 100.8
2 9.5 81.0 9.9 9.1 9.0 105.1 103.0 1909

2 9.6 8.1 95.1 9.2 9. 105.2 100.1 101.0

8 9.8 8.3 95.2 9.3 9.2 105.4 103.3 1000

‘32 9.9 0.4 95.3 9.5 9.4 1055 103.4 100.3

3 97.0 81.5 95.5 9.6 n.s 105.6 103.5 101.4

10 97.2 0.6 9.6 9.7 .6 108.7 103.6 100.5

“ 97.3 8.8 9.7 .0 n.e 105.9 100.8 101.6
AP(O“(‘;EE 97.4 a8 95.8 7.9 9.8 105.9 103.8 101.7 (impact 1029 Doys)
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Table VI. Spin Axis = Earth Angle
(Spin Axis is Initial Velocity Vector)

Time from Angle Time from Angle
Epoch (hrs)  (deg) Epoch (hrs)  (deg)
0 90.0 24 98.9

2 135.2 26 7.9

4 122.5 28 97.0

6 116.4 30 96.1

8 112.,5 32 95.3

10 109.6 34 94 .4

12 107.3 36 93.6

14 105.4 38 92,9

16 103.8 40 22.1

18 102.4 42 9.3

20 101.2 44 90.6

22 100.0 APOGEE~46 89.9
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Table VII. World Map: Injection 10 Feb. 1971

ECLIPTIC PLANE APOGEE - SUN ANGLF = 15°

LONGITUDE IS POSITIVE EAST

16" 58™30*.899

. |+ NORTH + HEADING TOWARD APOGEE
LATITUDE {- SOUTH AROMALY {- HEADING TOWARD PERIGEE

True True
Time from Anomaly Time from Anomaly
Epoch Lot. (deg) Long. (deg) (deg) Epoch Lat. (deg) Long. (deg) (deg)
oh -24.0 1.4 0 92" 10™ -22.0 171.5 6.0
oh 2™ -20.4 122.4 1.2 92h12m -18.1 -178.4 16.7
o"4m -16.3 132.4 21.9 92h 14™ -13.8 -169.2 26.9
ohe™ -12.0 141.3 32.0 92h 16™ -9.6 -161.1 3.4
ohg™ -7.8 149.1 4.2 92h18™ -5.5 -154.0 44.9
oh20™ 9.9 179.0 78.4 92h20™ -1.8 -147.7 52.3
1h 24,7 -152.5 117.9 93hom 23.8 -102.0 112.5
2h 28.0 -149.0 134.8 94h 28.2 - 95.0 132.7
10k 28.0 120.0 160.8 100" 28.5 -157.6 157.0
20h 26.6 -21.4 168.9 110" 27.0 63.5 167.3
30h 25.5 -166.3 173.8 120" 25.8 - 80.9 172.8
40h 24.5 47.5 177.8 130" 24.7 133.1 176.9
46" 23.9 - 40.4 180.0 138h 23.8 16.0 179.9
50h 23.5 - 99.0 -178.5 140" 23.6 -13.3 -179.3
60" 22.2 114.6 -174.7 150" 22.4 -159.8 -175.5
70" 20.6 -31.0 -169.9 160" 20.9 54.4 -170.9
8ok 17.9 -174.2 -162.6 170" 18.4 - 89.5 -164.4
90" 6.0 59.9 -135.8 180" 1.3 135.7 -147.6
90 h54™ 0.0 57.4 -123.3 182" 5.9 116.0 -136.0
91h -1 57.8 -121.1 183" 0.0 13,1 -122.2
91h30™ -9.5 65.8 -103.5 183" 30™ - 8.4 119.4 -106.5
91h40™ -14.5 73.4 - 92.5 183h40™ -12.6 125,1 - 97.4
91hs50™ =21.3 87.8 - 75.1 183h50™ -18.4 135.7 - 83.5
91h52m -22.9 92.1 - 70.3 183h52™m -19.8 138.7 - 79.9
91h54™ -24.5 97.3 - 64.9 183h54™ -21.2 142.3 - 75.8
91 h56™ -26.0 103.3 - 58.8 183h56™ -22.8 146.4 -7.3
91hsg™ -27.4 110.3 - 51.9 183" 58™ -24.3 151,2 - 66.2
92ho™ -28.5 118.5 - 44,2 184h0™ -25.8 156.8 - 60.9
92hom -29.0 127.8 - 35.6 184h2" -27.2 163.3 - 50.1
92ha™ -28.8 138.2 - 26.1 184h 4™ -28.3 170.8 - 4.8
92he™ -27.6 149.3 -15.8 184hg™ -29.0 179.5 - 38.8
92hg™ -25.3 160.5 - 5.0 184hg™ -29.0 -170.8 - 2.9
92Mh10™ -22.0 171.5 6.0 184" 10™ -28.2 -160.3 - 2,2
184h12m -26.4 -149.5 - 9.9

184" 14" -23.6 -138.7 0.6
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CENTERLINE ANGLE (Deg)

130

120

110

10

3/10/71
-\ 17"6™29*.082
_\\ ———— MAXIMUM CENTERLINE -
\ STATION ANGLE
— \\ —— === CENTERLINE -
\ EARTH ANGLE

APOGEE

| I N I I I | lll

1 |
20 40 60 8 100 120 140 160 180 200 220

HEIGHT ABOVE EARTH (10% km)

NASA-GSFC-T&DS
MISSION & TRAJECTORY ANALYSIS DIVISION
BRANCH £S5 DATE__(-71

BY_KAVFMAAN _ PLOTNO, L2392

Figure 6. Centerline Angle
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ANGLE (Deg)

(SPIN AXIS 1S INITIAL VELOCITY VECTOR)

160

150

130

120

110

INITIAL PERIGEE

) | | l | | ] 1 | ]
12" 24" 36" 48" b "1™ v 4™ h3e™ (4T 2+
TIME FROM EPOCH NASA-GSFC-TADS

MISSION & TRAJECTORY ANALYSIS DIVISION
BRANCH____ 58/  pAte___ /-7
8Y_KAuFMAN PLOT NO.

Figure 9. Spin Axis - Earth Angle
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PERIGEE RADIUS (kn

PERIGEE RADIUS (km)

30,500

MOON MOCN

PERIGEE APOGEE SHADOW SHADOW
T B || 1 1
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