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T h i s  repor t  out l ines  t h e  theory used i n  FASTER-111, a Monte Carlo 
computer program f o r  the  t ransport  of neutrons and gamma rays i n  com- 
plex geometries. 
the minimum weight layered u n i t  shield configuration which w i l l  meet a 
specified dose r a t e  constraint .  
regions bounded b y  quadratic and quadric surfaces with multiple radia-  
t i o n  sources which have a specif ied space, angle, and energy dependence. 
The program calculates ,  using importance sampling, t h e  resu l t ing  number 
and energy f luxes a t  specified point, surface, and volume detectors.  

t ron and both primary and secondary photon t ransport  i n  a spherical  
reactor-shield configuration. 
the shield configuration. 

The code has t h e  addi t ional  capabi l i ty  of calculat ing 

It includes t h e  treatment of geometric 

Resul ts  a re  presented f o r  sample problems involving primary neu- 

These r e s u l t s  include the  optimization of 

Section 1 
INTRODUCTION AND SUMMARY 

The or ig ina l  FASTER program ( re f .  1) contained 
a number of new techniques which provided the  capa- 
b i l i t y  of obtaining accurate rad ia t ion  leve ls  at 
specified points i n  complex geometries. Pr ior  use 
of FASTER indicated a need t o  broaden the overa l l  
program capabi l i t i es ,  automate t h e  importance 
sampling, increase the  computational efficiency, 
and revise  the  users manual. This revised program 
has been designated FASTER-I11 t o  dis t inguish it 
from e a r l i e r  versions. 

A spec i f ic  program capabi l i ty  permitting the  
calculat ion of minimum weight layered u n i t  shield 
configurations f o r  mobile nuclear reactor  applica- 
t ions,  e.g. , nuclear propulsion f o r  a i r c r a f t ,  sur- 
face e f f e c t  vehicles,  and spacecraft  has ryFently 
been developed. The basic  Monte Carlo t rabsport  
method was extended t o  include a calculat ion of 
p a r t i a l  der ivat ives  of the  radiat ion f luxes w i t h  
respect  t o  specified shield dimensions. 
r iva t ives  are then used t o  define exponential re -  
la t ionships  used i n  t h e  shield optimization pro- 
cedure. 
more completely i n  Section 2. 

Data preparation i s  simple, with very l i t t l e  
judguent required t o  s e t  up t h e  importance sampling j 
f o r  most problems. The code a l s o  has a u n i t  shield 1 

weight optimization capabi l i ty .  

I11 a r e  t h e  following: 

pl ing parameters based on p a r t i a l  der ivat ives  of 
the  variance (Section 2.3j .  

variable f i e l d  formats includfng the ANISN-DTE' for -  
m a t  for neutron cross sections.  

and photon t ransport  (using time moments and/or 
time in te rva ls )  including an optional exponent id  
atmosphere. 

sampling models with t h e  various importance sam- 
pling parameters b u i l t  i n t o  the  program. 

Refs. 2 t o  6. 

These de- 

This optional program feature  i s  described 

Par t icu lar ly  noteworthy features  of FASTER- 

(1) A calculat ion of optimal importance sam- 

( 2 )  The acceptance of da ta  i n  e i t h e r  fixed o r  

(3) me calculat ion of time-dependent neutron 

(4)  The improvement and addition of importance 

Various program features  are described i n  

The application of the  FASTER-I11 program t o  a 

shield optimization problem is  discussed i n  Section 
3 .  The problem involved a spherical  reactor-shield 
configuration and included primary neutrons and 
both primary and secondary photons. 
and recommendations a r e  presented i n  Section 4. 

Section 2 

Conclusions 

ANALYSIS 

The techniques used i n  calculat ing optimum 
shield configurations an3 optimum importance sam- 
pling parameters are s m a r i z e d  below. The d i s -  
cussion i s  given i n  three  par ts :  
a t ives  with respect  t o  shield layer  thicknesses, 
optimization procedures, importance parameter op- 
t imization. 

dose rats deriv- 

2 . 1  Dose Rate Derivatives 

The dose r a t e  a t  a point detector  y for a 
specified reactor  shield configuration i s  wr i t ten  
as : 

J .  

j=1 

where J i s  the  t o t a l  number of energy groups for 
both neutrons and photons (including secondaries), 
qj(2) is  t h e  p a r t i c l e  f l u x  i n  the jt& energy group, 
and R j  i s  t h e  response function t o  convert from 
f l u x  t o  dose r a t e .  
r a t e  with respect  t o  a shield layer  thickness is 

The r a t e  of change of the  dose 

simply 

2 = 1, 2, . . ., L (2) 

where L is the t o t a l  number of shield layers  and 
ti i s  the  thickness of the  1% layer .  The equa- 
t i o n  used by the program for determining the  flux 
i s  wr i t ten  as:  



B 

where N i s  t h e  t o t a l  number of h i s t o r i e s  tracked 
v i a  the  Monte Carlo method, k i s  the  number of 
p a r t i c l e  co l l i s ions ,  & 
k$& col l i s ion  of the  n& history,  S j h ( = )  the  
number of p a r t i c l e s  i n  the  jt& energy group 
emerging from & i n  the  d i rec t ion  of the  
detector  per u n i t  so l id  angle, and K j g , . x l  rep- 
resents  the  mater ia l  and geometric attenuation 
kernel f o r  p a r t i c l e s  i n  t h e  j& energy group 
going from % t o  the  detector .  

spect t o  the  lg shield layer  thickness i s  
simply: 

i s  the  posit ion of t h e  

The p a r t i a l  der ivat ive of the  f l u x  with re -  

The swtmations a re  a minor par t  of the  calculation. 
Therefore, t h e  notation i s  simplified by concentra- 
t i n g  on the  elements i n  the  summation 

M 

m = l  
m=l 

(9) 

m = l  

The p a r t i a l  der ivat ive of t h e  p a r t i a l  path 
length sm w i t h  respect t o  the shield layer  thick- 
ness tl i s  zero unless the m s  region tra- . 
versed i s  affected by a change i n  tl. In  par t ic -  
ular ,  i f  t1 i s  a charac te r i s t ic  dimension of the  
region, i . e . ,  i t s  thickness, then 

where pm i s  the cosine of the  angle measured 
from the  surface normal *, with which the  par- 
t i c l e  crosses the  boundary of the  region. 

In  the  s t r i c t  sense, the  change of t h e  thick- 
ness of one shield region can a f f e c t  other shield 
regiohs. In par t icular ,  fo r  a spherical ly  symtnet- 
r i c  reactor-shield configuration, an increase i n  
the thickness of a shield region forces a movement 
of all shield regions having a la rger  radius.  The 
inclusion of these e f f e c t s  i n  t h e  above equation 
unnecessarily complicates the  analysis  and t h e  ca l -  

where ejkn represents  t h e  contribution t o  t h e  
f lux  i n  the  jl& energy group from the k s  col-  
l i s i o n  of the  n$& his tory.  This equation i s  re-  
wri t ten as 

aejkn= 
culations.  
region dimension i s  t o  change t h e  number of mean 
f r e e  paths which par t ic les  have t o  t raverse  i n  

. reaching the  detector ,  Therefore, i n  calculat ing 
the  der ivat ives ,  only the  e f f e c t  of the mater ia l  
attenuation i s  t reated.  

The primary e f f e c t  of changing a shield 

at1 

The der ivat ives  a t  a spec i f ic  boundary cross- 
In ‘;h(!&n) + a In Kj(zkn, (6)  ing ml then simplify to :  at, 

M 
The second term i n  brackets involves the  attenu- a 

at1 
- I n  Kj(&, 2) = - at ion kernel 

where M i s  the  t o t a l  number of regions traversed 
from t o  the  detector,  8 i s  the  path length 
f o r  the  mt& region traverse%, ujm i s  the t o t a l  
cross sect ion of this region f o r  par t ic les  i n  the 
jt& energy group, and s is  the  t o t a l  distance 
from t o  t h e  detector,  i . e . ,  

M 
‘m s =  

m = l  

A subs t i tu t ion  of t h i s  kernel gives: 

m = l  

= - (ujm, i. :) Frknm’ 1 - (0 + :) --.& 

where m ‘  i s  t h e  index of a region having tl as 
a dimension. The p a r t i a l  der ivat ives  of t h e  par- 
t i c l e  weight with respect  t o  t h e  shield dimensions- 
the f irst  term i n  brackets i n  Eq. (6 )  - a r e  zero 
at t h e  point of or igin of all primary par t ic les .  
For subsequent p a r t i c l e  col l is ions,  the  deriva- 
t i v e s  are  calculated using the  re la t ionship  be- 
tween p a r t i c l e  weights on subsequent co l l i s ions :  

2 



where 
coming out  of ' the previous co l l i s ion  point i n  the  
d i rec t ion  and i n  t h e  iG energy group, 
K i ( s - 1  n, &) i s  the  attenuation kernel between 
particl:! co l l i s ion  points, T i j ( m ,  - m) i s  
the  sca t te r ing  kernel f o r  t r ans fe r  of  pa r t i c l e s  from 
group i t o  group j,  and A(&) i s  the  probabi l i ty  
dens i ty  function used i n  se lec t ing  the  co l l i s ion  
point. 

A straightforward subs t i tu t ion  gLves 

S? k-J, n ( b )  i s  the  number of pa r t i c l e s  

(16) 

where q & ( b )  i s  a probabi l i ty  dens i ty  function 
used t o  s e l e c t  the  p a r t i c l e  d i rec t ion ,  s = 1% - 
3-1 n l  
point f r o m  the  previous co l l i s ion  point, A(s) is  an 
importance f ac to r  fo r  each region which changes 
discontinuously at region boundaries, and 
an e f f ec t ive  cross section which changes discontin- 
uously a t  region boundaries and which may change 
continuously within a region. 

is the  distance of the  selected co l l i s ion  

a ( s )  i s  

The der iva t ive  of the  logarithm of &(&) 

L 

-After some manipulation, t h i s  reduces t o  

where 

The f i r s t  term i n  brackets i n  Eq. (14) i s  the  
same p a r t i a l  der iva t ive  f o r  co l l i s ion  k-1 as the  
p a r t i a l  der iva t ive  now being calculated f o r  c o l l i -  
sion k. Therefore, it i s  known, e i the r  i den t i -  
c a l l y  zero f o r  k=O, o r  as determined from Eq. (14) 
f o r  k > 0. The second term i n  brackets i n  Eq. (14) 
i s  s i m i l a r  t o  t he  second term i n  brackets i n  Eq. (6) 
and is  therefore determined by Eq. (11). The last  
term i n  brackets involves the  def in i t ion  of  the  
probabili ty dens i ty  function used t o  se l ec t  the  
co l l i s ion  point b. 

sion point has the  form 
The probabi l i ty  dens i ty  function f o r  a c o l l i -  

involves o n l y  those terms which change when a 
sh ie ld  dimension changes, i. e., 

Let SI denote the  distance t o  a boundary in-  
volving the  1s sh ie ld  dimension. If the  f i r s t  
term on the  l e f t  side o f  Eq. (17)  i s  affected by a 

'change i n  t h i s  shield dimension, i . e .  i f  s > s z ,  
then 

(18) = -a(sl)  - 
p2 kn 

1 

where 
boundary of the  shield and ~ 2 b  is the  cosine the  
p a r t i c l e  path makes with the outer sh ie ld  normal. 
If there  i s  any crossing involving the  2% sh ie ld  
dimension, t he  second term i n  Eq. (18) w i l l  always 
have a non-zero derivative,  i. e. ,  

a(s1) i s  the  e f fec t ive  cross section a t  the  

. 

3 



Curved sh ie ld  surfaces may be crossed more than once 
along the  path between two p a r t i c l e  co l l i s ion  
points. Therefore, a summation of Eqs. (18) and 
(19) over every in te rsec t ion  involving the  
sh ie ld  dimension i s  required t o  completely evaluate 
Eq. (17 ) .  

2% 

2.2  Optimization Procedures 

The sh ie ld  optimization calculation yields the  
s e t  of sh ie ld  layer thicknesses 

:k dose constraint .  The Monte Carlo calculation i s  
performed f o r  an i n i t i a l  s e t  of sh ie ld  layer  thick- 
nesses 2 = (t l ,  t 2 ,  ... t 2 ,  ..., t L )  and yields a 
s e t  of fluxes, cpj(&), j = 1, 7, ..., J and deriva- 
t ives,  & q j ( t ) / a t 2 ,  j = 1, 2, ..., J; 2 = 1, 2, ..., 
L. The assumption i s  made t h a t  the  fluxes vary 
exponentially with respect t o  sh ie ld  dimension 
changes i n  the  form 

2' = ( t i ,  ti, . . . , . . . ti) such t h a t  the  dose r a t e ,  D(Lt), meets 

-. 

In  par t icu lar  

o r  

The weight i s  a l so  expressed as a function of 
the  shield layer  thicknesses. The weight i s  de- 
noted by W(t') and f o r  spher ica l ly  symmetric 
shields : 

where p2 is  the  dens i ty  of the  1s sh ie ld  re- 
gion and ro is  the  minimum shie ld  radius. 

The purpose of the  optimization procedure i s  
t o  minimize the  weight W(4') subject t o  the  dose 
r a t e  constraint  D(2') = Do where Do i s  a speci- 
f ied  dose r a t e .  A t  this optimum, a s m a l l  weight 
perturbation i n  any layer  causes the  same dose r a t e  
change. The r a t e  at which dose r a t e  changes with 
respect t o  a sh ie ld  weight change i n  the 2% layer 
i s  given by 

4 

a D ( t ' )  

at; 
a w  
at; 

Q2 =-= constant, 1 = 1, 2,  ..., L (25) 

The necessary der iva t ives  are:  
* 

j=1 

and f o r  spher ica l ly  symmetric sh ie ld :  

In  a r r iv ing  a t  the optimum shield,  the  t o t a l  
shield weight i s  b u i l t  up i n  increments of weight 
AW. Each increment i n  sh ie ld  weight i s  always 
associated with a par t icu lar  sh ie ld  layer thickness. 
A t  each i t e r a t ion ,  the  pa r t i cu la r  shield dimension 
i s  selected by examining the  values of the  sh ie ld  
weight qua l i t y  factors,  Q Each f ac to r  Q2 rep- 
resents  the  approximate ckkge  i n  dose r a t e  per 
un i t  change i n  weight corresponding t o  a change i n  
the  2t& sh ie ld  dimension. Negative Q Z 1 s . a r e  the  
most usual and correspond t o  sh ie lds  fo r  which an 
increase i n  weight - and shield dimensions - gives 
a decrease i n  dose ra te .  Posit ive Q2's can occur, 
however, and correspond t o  sh ie lds  f o r  which an in- 
crease i n  weight a l so  increases the  dose r a t e .  

I f ,  at a par t icu lar  i t e r a t ion ,  the dose r a t e  
i s  above the dose r a t e  constraint ,  the minimum 
shield weight increment would correspond t o  the  
l e a s t  pos i t ive  value of those $ 2 ' ~  fo r  which 
Q2 > 0 and f o r  which ti > t2(min),  where t2(min) 
i s  the  minimum value of the 
thickness. I f  such a Q exis t s ,  the  dose r a t e  
can be decreased while &so decreasing the  shield 
weight the  maximum amount. I f  t he re  i s n ' t  such a 
Q l ,  the  next bes t  procedure i s  t o  f ind  the  most 
negative of the  Q ' s  f o r  which Q2 < 0 and f o r  
which ti < t2(maxf, where t2(max) i s  the  maximum 
value of the 2% sh ie ld  layer thickness. A 
change i n  t h a t  Q, would give the  maximum decrease 
i n  dose r a t e  per un i t  increase i n  weight. 

r a t e  a t  a par t icu lar  i t e r a t ion ,  the  minimum shield 
weight increment would correspond t o  the l e a s t  
negative of those Q 2 ' s  fo r  which Q2 < 0 and f o r  
which ti > t2(min).  I f  such a Q2 exis t s ,  the 
dose r a t e  can be increased while decreasing the 
sh ie ld  weight t he  maximum amount. I f  there  i s n ' t  
such a Q2, the  next bes t  procedure is  t o  f ind  the  
most pos i t ive  of those 9 1 ' s  f o r  which Q2 > 0 
and f o r  which ti < t,(rnax). A change i n  t h a t  Q2 
would give the  maximum increase i n  dose r a t e  per 
un i t  increase i n  weight. 

2t& sh ie ld  layer  

I f  the  dose r a t e  i s  below the  specified dose 



Assuming a par t icu lar  value &m of t h e  S i ' s  
i s  selected through the  above arguments, t h e  cor- 
responding shield dimension ti i s  changed by a 
maximum mount Atm where Atm i s  calculated as  

its 
s e t  
The 

at; 

I f  this change would put t& outside one of 
specified l i m i t s ,  the  value of t& would be 
t o  t h a t  l i m i t ,  i . e . ,  t,(min) 2 I t,(max). 
shield weight increment AW i s  calculated as  

subject t o  the  constraint  t h a t  JAW) < Awo where 
AWo 
ment per i t e r a t i o n .  Note t h a t  AW, and therefore  
At,, may be posi t ive o r  negative depending on the 
value of and whether the  dose r a t e  i s  above 
or below the  dose r a t e  constraint .  

Once a shield layer  thickness i s  changed, the  
dose,. weight, and t h e i r  der ivat ives  are re -  
evaluated and the  e n t i r e  process i s  repeated. The 
optimization would be discontinued i n  several  
ways. If the  dose r a t e  equals the  dose r a t e  con- 
s t r a i n t  within t h e  r e l a t i v e  e r ror  of the  or ig ina l  
Monte Carlo dose r a t e  calculation, the  program w i l l  
proceed t o  t h e  next problem - which may be ident i -  
c a l  except with more h i s t o r i e s  t o  t ighten the  con- 
vergence of Monte Carlo calculat ions.  
i f  a l l  shield layer  thicknesses have reached t h e i r  
minimum o r  maximum values, and i f  the  optimum 
shield cannot be determined with these constraints ,  
the program would again proceed t o  the next prob- 
lem. Final ly ,  i f  the  dose r a t e  and dose r a t e  con- 
s t r a i n t  a re  decades apart  i n  value, the program 
would reevaluate the  f luxes and t h e i r  der ivat ives  
by Monte Carlo every time the  dose r a t e  changed by 
more than a specified fac tor  during the  optimiza- 
t i o n  procedure. 

is a specif ied maximum shield weight incre-  

Similarly,  

2.3 Importance Parameter Optimization 

The optimization of the  importance sampling 
must be performed f o r  some function, e.g., dose 
rate ,  of the  energy-dependent f luxes since there  
i s  a d i f fe ren t  optimum for every i n i t i a l  p a r t i c l e  
energy. Therefore, assume t h a t  a minimum variance 
calculat ion of the  dose r a t e  is required where 

1 
N 

- 
DN = - , Dn 

n = l  

where N i s  the  t o t a l  number of h i s tor ies  and Dn 
i s  the  dose r a t e  from the  nt& h is tory  and DN 
i s  the  average value of the  dose r a t e  a f t e r  
his tor ies .  The r e l a t i v e  e r r o r  of this dose r a t e  i s  
given by 

N 

Taking t h e  logarithm of t h i s  equation and 
then performing a formal calculat ion of t h e  p a r t i a l  
der ivat ive with respect t o  an unspecified param- 
e t e r  a yields  

5 

a a - a  - I n  EN = -- I n  DN - - I n  N 
aa a a  aa . 

a -  
a;l DN 

&I 
= - -  

+ 

Thus the  p a r t i a l  der ivat ive of the r e l a t i v e  
e r ror  with respect  t o  t h e  parameter a i s :  

The dose r a t e  from the  nt& h is tory  i s  given by 

5 

Dn = R j  qjkn (34) 
j = 1  k 

where J i s  the  t o t a l  number of  energy groups, k 
i s  the  number of par t ic le  co l l i s ions ,  R j  i s  the 
f lux  t o  dose rate conversion f a c t o r  f o r  the  jt& 
energy group, and 'pjh i s  the  f l u x  ia the  jt& 
group from the  kt& col l i s ion  of the  nt& h is -  
tory. Since 

i=1 
( 3 5 )  

the  calculat ions required t o  evaluate Eq. (33) a l l  
involve the  summation of terms which involve 

The remainder of the  analysis,  therefore,  can 
be concentrated on the p a r t i a l  der ivat ives  of the 
fluxes.  
formed are  given above. 

posit ion & so the  equation f o r  the  p a r t i c l e  f l u x  
i s  wri t ten as  

All other  operations which must be per- 

The fluxes typ ica l ly  depend on the  detector  

qjkn(2) = sTh(&)Kj(s ,  (37) 

The t ransport  kernel Kj(&,  does not in -  
volve any importance sampling parameters so t h a t  



This equation can a l so  be wr i t ten  as 

Without going i n t o  grea t  d e t a i l ,  it turns  out 
t h a t  t h e  p a r t i c l e  .weight S l h ( % )  i s  composed of 
a purely ana ly t ica l  numerator, V g b ( % )  and a de- 
nominator which i s  the product o all t h e  probabil- 
i t y  dens i ty  functions used t o  s e l e c t  t h e  c o l l i s i o n  
points,  i .e. ,  

Since V j h ( 5 )  does not e x p l i c i t l y  involve 
any importance parameters, it follows that 

t o  a set of parameters which can have a reasonably 
simple role .  These parameters consis t  of t h e  r e l -  
ative importance 1, of  each region. Normally 
these parameters a re  a l l  equal. However, i n  asym- 
metric problems, it turns  out that some regions are 
much more important i n  terms of t h e i r  sca t te r ing  
contributions t o  a detector.  Therefore, these i m -  
por tant  regions have a l a r g e r  value of I . 

The region importance en ters  i n t o  tge selec-  
t i o n  of a c o l l i s i o n  point through t h e  following 
probabi l i ty  dens i ty  function: 

h=l  

where r i s  t h e  region i n  which t h e  c o l l i s i o n  
occurs (selected a t  random), p;(s) i s  the piecewise 
continuous probabi l i ty  dens i ty  function i n  t h i s  're- 
gion a t  t h e  selected co l l i s ion  point (a  dis tance s 
from t h e  previous co l l i s ion  point) ,  H i s  the  t o t a l  
number of regions i n  which the  c o l l i s i o n  could have 
occurred, and PE is  the  i n t e g r a l  of pE(s ')  over 
the  p a r t i a l  path length i n  region h. 

equation yields:  
Calculating the  logarithm of each s ide  of t h e  

k 
The p a r t i a l  der ivat ive of Eq. (47) with re- 

spect t o  the spec i f ic  importance parameter I - 
= -  

aa g 2=0 the  r e l a t i v e  importance of region g - yie lds  

Therefore, Eq. (39) can be re-wri t ten as 

2=0 

Moreover, the p a r t i a l  der ivat ives  are energy- 
independent so that Eq. (36) becomes 

The evaluation of t h e  p a r t i a l  der ivat ives  of 
the probabi l i ty  densi ty  functions can be wr i t ten  
as 
k k-1 a - In P&n) = ha 

2 =1 1 =0 

A t  t h e  kt& col l is ion,  t h e  f i r s t  term on t h e  
l e f t  s ide  of Eq. (45) i s  known, i d e n t i c a l l y  zero 
i f  k = 0. Therefore, the analysis  i s  completed 
a f t e r  examining the  calculat ion of the  second 
term. 

A t  this point it is  necessary t o  i d e n t i f y  the  
par t icu lar  importance parameter a. Since most of 
the  importance sampling parameters have f a i r l y  
involved roles ,  t h e  technique w i l l  be applied here 

where Egh = 0 i f  region h i s  not region g and 
6gg = 1. 

Thus Eq. (48) i s  evaluated during t h e  random 
se lec t ion  of t h e  kt& c o l l i s i o n  point and the  
f i n a l  term necessary t o  evaluate Eq. (45) and a l l  
preceding equations has been determined. 

The above analysis  i s  used t o  calculate  t h e  
p a r t i a l  der ivat ives  of the  r e l a t i v e  e r ror  of the  
dose r a t e  with respect  t o  t h e  r e l a t i v e  importance 

of each geometric region, and a similar analy- 
2 s  is  performed f o r  t h e  other  importance sampling 
parameters. The r e s u l t  of the  complete Monte Carlo 
calculat ion i s  a set of p a r t i a l  der ivat ives  which, 
for t h e  region importance, are given by 

(49) 

where aDn/aI r  i s  obtained from Eq. (44) using 
Eqs. (45) and (4%). 

values of the  importance sampling parameters are 
After  the  calculat ion is  completed, optimal 
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calculated by requir ing that t h e  relative e r r o r  be 
zero - not  ac tua l ly  achieved of course. 

By a f i r s t  order expansion 

where R i s  t h e  t o t a l  number of  regions. A simple 
gradient analysis  says that I i  - I, should be 
proportiondl t o  aEn/aI, s o  that - 

, where, by subs t i tu t ion  i n t o  Eq. (50), 

The program p r i n t s  t h e  optimum values of  1; 
and &her importance parameters after completing- 
the  Monte Carlo f l u x  calculation. This analysis  
is  performed for every response function. After 
more experience i s  obtained w i t h  the technique, the 
program could be modified t o  change these param- 
eters i n t e r n a l l y  corresponding t o  a specif ied r e -  
sponse function. 

Section 3 
SfWIPLl2 PROBLEM RESULTS 

Two problems were investigazed using t h e  
shield optimization c a p a b i l i t i e s  of the  FASTER-I11 
program. Both problems involved a spherical  
reactor-shield configuration and included primary 
neutrons and both primary and secondary photons. 

The two problems were s i m i l a r  except f o r  t h e  
power level ,  375 MW and 600 MW respectively.  Both 
problems used a f la t  r a d i a l  d i s t r ibu t ion  f o r  t h e  
primary neutron and photon source d is t r ibu t ion .  
The primary photon source included an i n f i n i t e  
operation equilibrium f i s s i o n  product term. 

The core r a d i i  for t h e  two problems were 82.38 
and 96.38 em respectively,  corresponding t o  a power 
densi ty  of 4.53 MW/ft3. 
1.62 em Be re f lec tor ;  a 5 em depleted uranium 
shield;  th ree  depleted uranium-borated w a t e r  shield 
layers of 57, 15, and 15 em thickness and 6.4, 
4.6, and 2.8 @/em3 dens i ty  respectively; and a 
117 em borated water shield.  This base l i n e  shield 
configuration w a s  based on parameters obtained from 
SAIiX-SAGE calculat ions and subsequent calculat ions 
using t h e  UNAMIT program, Ref. 7. The reactor-  
shield compositions a re  given i n  Table 1. 

u t i l i z e d  multigroup cross  sect ions for 26 energy 
groups. F i f teen  energy groups were u t i l i z e d  f o r  
both primary and secondary photons. 
production cross  sect ions included both i n e l a s t i c  
and capture gammas. 

zed f o r  a point detector  30 f t  from the  core cen- 
t e r  by following approximately 500 energy- 
dependent packets of primary neutrons and photons 
and approximately 7000 packets of secondary pho- 
tons.  The dose r a t e s  obtained from these calcu- 

Following the  core w a s  a 

The primary neutron t ranspor t  calculat ion 

The secondary 

These i n i t i a l  configurations were each analy- 

l a t i o n s  a re  tabulated i n  Table 2 including a break- 
down b y  secondary source region. 
problems required about 28 minutes on t h e  UNIVAC 
1108 computer. 

der ivat ives  w e r e  a l so  used by t h e  FASTER-I11 pro- 
gram t o  ca lcu la te  the  minimum weight shield con- 
f igura t ion  which would give a dose r a t e  of 0.25 m r /  
hr a t  t h e  specif ied detector  point. The f i n a l  
sh ie ld  configurations following t h e  optimization 
are given i n  Table 3. 

I n  bo>h cases, the  optimum shield configura- 
t i o n  i s  s i g n i f i c a n t l y  d i f f e r e n t  from the  base l i n e  
configuration. Since t h e  base l i n e  configuration 
w a s  not  generated by t h e  FASTER-I11 program it i s  
d i f f i c u l t  t o  discuss  many fac tors  entering i n t o  
that  carculat ion which would account for t h e  d i f -  
fe ren t  optimal configuration. It is  noted, how- 
ever, t h a t  t h e  base l i n e  configuration w a s  gener- 
ated using parameters corresponding t o  a calculated 
dose r a t e  an order of magnitude below t h e  specif ied 
dose r a t e  constraint ,  R e f .  8. A s  such, t h e  base 
l i n e  configuration used i n  t h e  FASTER-I11 program 
w a s  determined from an extrapolation of a d i f f e r e n t  
base l i n e  configuration. 

FASTER-I11 r e s u l t s  independently. F i r s t  it i s  
noted t h a t  ne i ther  problem s a w  a s igni f icant  con- 
t r ibu t ion ,  less than a few percent, from photon 
sources i n  t h e  core region. In fac t ,  the 600 MW 
reac tor  dose r a t e  from t h i s  source w a s  about a fac-  
t o r  of two l e s s  than it w a s  f o r  t h e  375 MW reactor .  
This difference i s  ascribed t o  the problem s ta t is-  
t i c s  since core photon sources see approximately 
30 mean f r e e  paths of shield material. Therefore, 
it i s  doubtful i f  t h i s  dose rate component i s  con- 
verged within a fac tor  of two a f t e r  only 500 pack- 
e t s  bu t  t h i s  does not introduce a s i g n i f i c m t  e r r o r  
since t h e  or ig ina l  contribution w a s  only two per- 
cent of the t o t a l  dose r a t e .  

sources decreases the  amount of high 2 shields  
required around the  core. Therefore, both problems 
gave a s igni f icant  change i n  t h e  f irst  two shield 
dimensions during the  optimization. In  the  375 MW 
problem, t h e  f i r s t  mixture of depleted uranium- 
borated water ( p  = 6.4 gm/cm3) w a s  eliminated en- 
t i r e l y .  In t h e  600 MW problem, the  depleted ura- 
nium and most of the  f irst  mixture w e r e  eliminated. 

The main difference between t h e  two FASTER-I11 
calculat ions w a s  the  s h i f t  i n  t h e  placement of 
l i g h t e r  shield mixes towards the core for t h e  
600 MW problem. 
photon dose components indicates  t h a t  t h e  contr i -  
bution from t h e  outer two shields  w a s  about 25  per- 
cent for t h e  375 MW reactor  and almost 50 percent 
for the 600 MW reactor.  Since these sources de- 
pend on the  neutron at tenuat ion through t h e  c loser  
regions and since lower e f fec t ive  Z materials 
a re  b e t t e r  neutron at tenuators  on a weight basis ,  
the 600 MW problem tends t o  replace high e f fec t ive  
Z mater ia l  with a lower e f fec t ive  Z material. 

The differences i n  the  contribution from 
secondary sources i n  t h e  outer  shield regions i s  
grea te r  than expected fo r  t h e  nominal difference 
i n  t h e  core region. Therefore, much of the  d i f -  
ference i n  these sources m u s t  be  ascribed t o  sta- 
t i s t i c a l  var ia t ions.  I n  fac t ,  both problems had 
approximately 25 t o  30 percent calculated r e l a t i v e  
e r r o r  i n  t h e  t o t a l  photon dose r a t e .  It should be 
noted t h a t  t h e  FASTER-I11 program includes a num- 
ber  of importance sampling techniques which could 
be used t o  decrease t h i s  error. However, both 

Each of these 

The basic  calculated dose rates and dose rate 

A more c r i t i c a l  c r i t i q u e  can be made o f  the  

The s m a l l  contribution from core photon 

An examination of t h e  secondary 
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problems were run using the b u i l t - i n  def in i t ions  of 
importance parameters. Alternatively, more his- 
t o r i e s  could have been used although t h e  computer 
t i m e  requirements would have become excessive. 

Section 4 
CONCLUSIONS AND RECOMMENDATIONS 

The FASTER-I11 program w a s  developed t o  calcu- 
l a t e  neutron and photon f luxes at specif ied points 
i n  complex geometries. Alternatively, it can a l so  
calculate  f luxes averaged over specif ied surfaces 
and volumes. The program w a s  designed such t h a t  
da ta  preparation i s  simple and so t h a t  very l i t t l e  
judgment i s  required t o  s e t  up t h e  importance sam- 
pling f o r  most problems. 
s a t i s f i e s  these requirements very well. 

cluded i n  the FASTER-I11 program permits the ca l -  
culat ion of both base l i n e  radiat ion l e v e l s  and op- 
t i m a l  shield thicknesses a l l  i n  a s ingle  computer 
run. However, the  very la rge  at tenuat ion fac tors  
involved i n  the domonstration problems yielded some 
questionable resu l t s .  I n  par t icu lar ,  the s ta t i s t i -  

The FASTER-I11 program 

The shield weight optimization capabi l i ty  in -  

c a l  differences i n  t h e  r e l a t i v e  contr ibut ion from 
various secondary source regions caused correspond- 
ing var ia t ions  i n  t h e  r e l a t i v e  d is t r ibu t ions  of 
shield materials.  Of course the s t a t i s t i c a l  varia- 
t i o n s  would be l e s s  i n  problems w i t h  less overa l l  
at tenuation. 

The e f f e c t  of s t a t i s t i c a l  differences on t h e  
shield optimization can be reduced by following 
more packets. However, the  computer times staft t o  
ge t  excessive i f  t h i s  is t h e  only approach used. 
It would be more f r u i t f u l  i n  terms of the rout ine 
appl icat ion of the  program t o  expend some e f f o r t  
towards a l t e r i n g  t h e  importance sampling. 

calculat ing optimal importance parameters based on 
p a r t i a l  der ivat ives  of the  variance. T h i s  fea ture  
can be used i n  determining b e t t e r  importance sam- 
pling parameters f o r  shield optimization problems. 
In f a c t ,  t h e  o-rerall program ef f ic iency  could be 
improved i f  th i s  fea ture  w a s  u t i l i z e d  on a wide. 
var ie ty  of problems with the  r e s u l t s  being used t o  
improve t h e  b u i l t - i n  importance sampling models and 
parameters. 

The FASTER-I11 program has t h e  capabi l i ty  of 
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TABLE 3 

RESULTS Or bW.Sm-111 SHmm OPPFMMIZIITION 

(0.25 mr/hr a t  30 feet) 

375 Mkf 600 MW 

CTOR 

F i n a l  
Quantity P 

I n i t i a l  

- 
Fine l  - 

0.153 

0.250 

0.0 
6.6 
52.11 
63.1 

52 
07.11 

0.0 
7.0 
4a:4 
51.9 
98.4 

Dose Fate (mr/hi) 
Photon 
Neutron 
Total  

Shield Weieht ( 103kE) 
Depleted U 
Mix 1 
M I X  2 
Mix 3 
water 
Total  

Sh ie ld  ThIchmesS ( E m )  
' Depleted U 

M i x  1 
Mix 2 
Mix 3 
water 

0.120 
o.020 
0.140 

10.2 
71.2 
22.1 
16.1 
ELI 
206.3 . 

5.0 
57.0 
15.0 
15.0 
117.0 

0.126 
0.124 
7 

0.250 

12.6 
0.0 
52.4 
12.2 

-57.5 
80.3 

6.1 
0.0 
57.3 
13.5 
120.8 

n. 187 

0.219 

13.8 
89.2 
26.4 
19.0 

.%I 
?46.1 

5.0 
57.0 
15.0 
15.0 
117.0 

TABLE 2 

RESULTS OF FASTER-III W E  LINB CRICWIONS OF wcrm 
SEZEW C O i W I G W I O N S  AT 30 F m  PRCM CORE C E m  

photon Source Re8im 
Core 
Rerlector 
Depleted uranium 
MIX 1 Sh ie ld  
Mix 2 S N a l d  
M I X  3 Sh ie ld  
mmtad Water Sh ie ld  

0.009 
3.5~10-~ 
3.2~10'~ 
0.018 
0.062 
0.017 
0.011 

0.004 
6.3~10.' 
1.3~10-~ 
0.026 
0.075 
0.063 
0.022 

%tal 0.140 0.214 
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