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FOREWORD
 

This report is a technical summary of the progress made by the
 

Electrical Engineering Department, Auburn University, toward fulfill

ment of Contract NAS8-20104 granted to Auburn Research Foundation,
 

Auburn, Alabama. This contract was awarded April 6, 1965, by the
 

George C. Marshall Space Flight Center, National Aeronautics and
 

Space Administration, Huntsville, Alabama.
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SUMMARY
 

A numerical integration scheme for solving the four parameter
 

vector differential equation is derived and investigated in this report.
 

The results obtained can be applied to a large class of numerical
 

integration schemes, since this class can be shown to be equivalent
 

to the derived scheme.
 

Bounds for the truncation errors and roundoff errors generated
 

by the digital computer in computing the four parameters using the
 

derived scheme are developed. Study shows that the resulting error
 

bounds are useful in the determination of an optimal integration
 

scheme and sensor sample rate for a particular mission using a
 

given computer.
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I. INTRODUCTION
 

Navigation is that branch of art or science of directing the
 

course of vehicles. It involves the knowledge of present position, and
 

the direction and magnitude of motion with respect to other reference
 

points. Most navigation systems depend upon some external aid in ob

taining this information, while inertial navigation systems are capa

ble of deducing all this information from on-board measurements in
 

self~contained system. These on-board measurements are obtained'
 

means of sensors, such as accelerometers and angular rate gyroscopes
 

mounted to the vehicle. There are two methods in mounting these
 

sensing devices: the stabilized platform method and the strapdown
 

method.
 

In the stabilized platform method, the sensors of the inertial
 

navigation system are mounted on a stable platform. The platform is
 

kept inertially aligned with a predetermined set of inertial axes by
 

suspending in a system of gimbals. Therefore the resulting measure

ments are in the inertial coordinate system.
 

In the strapdown method, the sensors of the inertial navigation
 

systems are rigidly fixed to the vehicle and hence the resulting mea

surements are in the vehicle coordinate system. Since navigation
 

equations are usually solved in the inertial coordinate system, it is
 

necessary to generate a coordinate transformation matrix that can in
 

turn be used to transform the measured acceleration vector in the
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vehicle coordinate system to the inertial coordinate system. The
 

coordinate transformation matrix is generated by an on-board digital
 

computer. This computer utilizes angular rates obtained from the sen

sors, which are mounted to the vehicle, to compute the transformation
 

matrix.
 

The coordinate transformation matrix, C, relating the inertial
 

coordinate system to the vehicle coordinate system is given by 16]
 

V1 = c_(Ii) 

where V is a column vector with components measured in the vehicle
 

coordinate system.
 

V1 is the same vector with components measured in the inertial
 

coordinate system, and
 

C is the square matrix of direction cosines of the inertial
 

axes relative to the vehicle axes.
 

There are three basic methods of representing the transformation
 

matrix C. These methods are
 

1. 	Direction cosine.
 

2. 	Euler angles (three and four angle methods).
 

3. 	Four parameter methods (Euler parameters, quaternions, and
 

the Cayley-Klein parameters).
 

In each case the transformation matrix can be computed using a
 

set of first order differential equations which require as inputs the
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measured angular rates about the three vehicle coordinate axes. The
 

four parameter method will be considered in this study since it has
 

fewer computer operations required for its implementation than the di

rection cosine method and has no singular point as does the three
 

Euler angles method.
 

As shown in 1i], there are three different methods (Euler's theo

rem, quaternions,and Cayley-Klein) in deriving,the same coordinate
 

transformation matrix as expressed by the four parameters. These meth

ods also lead to the same set of first order differential equations re

lating the vehicle body angular rates to the time rate of change of the
 

four parameters.
 

The four parameters may be defined by the application of Euler's
 

theorem, which states that any real rotation may be expressed as a ro

tation through some angle, about some fixed axis, as
 

el - Cos P/2
 

e2 = Cos y Sin V/2 (1-2)
 

e3 - Cos S Sin P/2
 

e4 = Cos y Sin p/2
 

where p is the angle of rotation and a, 0 and y are the direction 

angles between the rotation axis and x, y and z axes of the inertial 

coordinate system. The transformation matrix relating the initial 
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coordinate system and the vehicle coordinate system in terms of the
 

four parameters is
 

e 2 -e2..e2+e2 2(e e4 -e e 2(ele 3 +e 2 e 4 ) 

C = 2(eee) e3 eee2-e 2 2(e e -e e ) (1-3)
1 2 3 4 23-14 

2(e 2 e 4 - ee 3 ) 2(ee3+ele4) e1 +e2 e2-e2
4 1 2 12 3 4
 

The time rate of change of the four parameters in terms of the body 

rates is
 

= 
(-2ze2 - *ye3 

2 2 zl X3 4 ) )
 

1((,e +4 

2 Yl + Xe2 - e4) 

e4 - ee1(+- ye2 + ze3) 

where ;x' 4y and $zare the measured angular rates of the vehicle with
 

respect to the inertial coordinate system.
 

Now equation (1-4) is to be solved by various numerical integra

tion techniques using an on-board computer to update the four parame

ters, which in turn are used to compute the coordinate transformation
 

matrix. In order to select an optimal integration scheme, to determine
 

the computer sizing and to evaluate the performance of the system re

quirements, it is necessary to determine the error introduced by the
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computational process. The object of this study is to investigate the
 

computational errors introduced in computing the numerical solution of
 

equation (1-4) using a digital computer.
 

The main body of this study is divided into five chapters and five
 

appendices. The layout of subsequent material is as follows:
 

Chapter II derives the exact solutions for the four parameters
 

when the angular rates are proportional to each other. A four parame

ter algorithm is then presented for error analysis purposes.
 

Chapter III analyzes both the truncation and the roundoff errors
 

introduced in the digital computation of the four parameters using the
 

algorithm developed in Chapter II. Roundoff error bounds for the basic
 

arithmetic operations are discussed. Techniques for determining the
 

propagated truncation errors and accumulated roundoff errors are de

scribed.
 

Chapter IV presents the results of two selected examples.
 

Finally, Chapter V embodies the conclusions and recommendations.
 

Appendix A describes the application of the Peano-Baker method of
 

successive approximation. Appendix B discusses the vector and matrix
 

norms. Appendix C proves that O(m)E(k) = E(k)1(m) for proportional
 

angular rates. Finally, Appendices D and E contain computer programs
 

for examples in Chapter IV.
 



II. COMPUTATION OF THE FOUR PARAMETERS 

In this chapter, exact solutions for the four parameters when the
 

angular rates are proportional to each other are derived. A numerical
 

integration scheme is then selected for computational error analysis.
 

CLOSED-FORM SOLUTION
 

As shown in Chapter I, the time rate of change of the four para

meters is
 

_(t) = _ (t)e(t) (II-l) 

2 

where e(t) is a 4 x 1 column matrix consisting of the four parameters
 

el, e2, e3 , e4 and Q(t) is a 4 x 4 skew-symmetric matrix of body angular
 

rates as measured by the system gyroscopes
 

0 -4z -4y -x
 

% 0 4,
Q(t) (I2= ;y (11-2) 
Sy x 0 -4z
 

;x -;y ;z 0
 

A closed-form solution to (II-i) can be obtained if the angular rates
 

are proportional to each other. Then the angular rate matrix E?(t) may
 

be written in the following form:
 

Q(t) = Kf(t) (11-3) 
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where K is a constant 4 x 4 coefficient matrix defined by
 

0 -k -k -k
 

kz 0K = -kx k
Y(11-4)
 

kx 0 -kz
 
kx -ky kz 0
 

and f(t) is a scalar function. Under the above-mentioned assumption, 

the angular rate matrix at t1 and t2 can be written as 

(tl) = Kf(tl) (11-5) 

and 
(t2) = Kf(t2) (11-6) 

and is therefore commutative for all t. 

2(t1) S(t 2 ) = n(t 2 ) a(t 1 ) (11-7) 

The solution to (II-i) is given by [7, 8] 

1ft ° Q()dT
 
=(t)2 to e(to)
- e

Wt f (-r) dT (11-8) 
-2 e(to)
 

Let a(t) = ft f(T) aT, (11-9) 
to
 

a (t)
 
then e(t) = s 2 e(to)
 

= [ + a(t) K + a2 (t) 2 + at)K3 + . e(t (II-0)
0
23 3!
2 22.21 




Since K is a skew-symmetric matrix, the following identities can be
 

obtained.
 

2
K- = (kx2 + ky2 + kz2)I k21
 

K3 
=- k2K
 

K4 
= k41
 

In general
 

n-1
 
-Kn= (-1) 2 k 1 K for n odd 

n 

= (-1)2 kn I for n even (II-ll)
 

where
 

k2 k 2 + k 2 + k 2 (11-12)xC y z 

Using these identities, equation (II-10) can be further simplified to
 

=~ (-2)( )I (- K)
et) ={i + a(t)K + ()2 221-T I1) + (a2t)3k2K)
 

2 2 2! 2 '3
 

+ _ a(t))4 4 1 (t) 5 4 1 
t 4 I) ) (2 ) (k K)(l,)...}e(t0 

=+Tf(-.) ( I + .fi~A
2 ! 2 '40
 
( t ){I, a k) 2 1 + (a(t k) 

3! 2 C}t) - .Y!1 ) 

a(t)k K a(t)k 
{I,,O ao(t)] + f Sin( w lt(113

2 k 2 0t I-a 
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Example
 

Let x = alt 

= a2t
y 


z 3t
 

then 

0 -a1
-a3 -a2 


a3 0 -aI a2
 
K 2
 

a2 a, 0 -a3
 

0
a1 -a2 a3 


2 2 1-a2 +a2k =a,+ 
a2 +a
 

and
 
2
 

t t 2 

a(t) dT =- I =-
o 2 0 2 

therefore
 

t 2 K Sin (2)
 

e(t) {I Cos - ), + ~in(i,)l efo)
4k 


The same result is obtained by using the Peano-Baker method of successive
 

approximation which is presented in Appendix A.
 

Both equations (II-10) and (11-13) are exact solutions for the four
 

parameters under the assumption that the angular rates are proportional
 

to each other. Equation (11-13) is a closed-form solution which is
 

obtained by making use of the fact that K is a skew-symmetric matrix.
 

These exact solutions are expressed in terms of the angular rates. If
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rate-integrating gyroscopes are used for the inertial system, then the
 

outputs of the gyroscopes are the integrals of the input rates, i.e.
 

Aei =ft *. dt for i =x,y, z.
 
to
 

For this reason it will be necessary to express the exact solution in
 

terms of the integral of the input angular rates. This can be developed
 

in the following manner.
 

For proportional angular rates, the angular rotations about each
 

coordiante axis can be represented by
 

;x = k xf(t)
 

$ = k f(t)
y y
 

z = kzf(t) (11-14)
 

Therefore, the integral of the angular rates may be written as
 

t 

= ktof f(r)d(-) = k.a(t) for i = x, y and z. (11-15)
0 1 

Now expressing the arguments of equations (II-10) and (11-13) in terms
 

of Aox, A0y and Aez, the following expressions can be obtained.
 

21
 
a(t)k a(t)(k. + k2 + k )2
-= .Y 

2 2
 

2 +I-12
2
(x +Ay + zO) (11-16) 

2 



0 -k -k -kzy x 

k 0 -k k
 
a(t) z x y
 

k a(t)k k k 0 -k z
y x 

kx -ky k z 0 

0 -AGz -Ay -AGx
 

1 ez 0 -A8 x AG 

AG Aey AGx 0 -AGz
 

Aex Sy -Ae AG z 0 

Ae
 

and
 

a(t)K A (-8) 

2 2 

2 2 2where (A) =AO + Ae + AO22 
x y z 

and 

0 -AG -AG -AG 
z y x 

AO 0" -AG Ae
 
AG= z x y
 

AG AG 0 -AO
 
y x, z
 

AG -AG AO 0
 
x y z 

Substitution of (11-16), (11-17) and (11-18) into (II-10) and (11-13)
 

yields
 

AG 
Cr-) 

e(t) =s e(t) (-19) 

and
 

e(t) {I Cos(2-)AGI + 
2 AO 2~~) ~_ (TT-20) 
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Both equations (11-19) and (11-20) are exact solutions for the
 

four parameters and are expressed in terms of the integrals of the input
 

rates.
 

Numerical Integration Scheme
 

As shown in Chapter I, the vector differential equation of the
 

four parameters in terms of the body rates relative to the reference
 

system is
 

e(t) 1 Q(t)e(t) 
- 2 -2 

Then e(t) = e(o) + f	t I (t)e(t)dt (11-21) 
0 2 

where ft ! f(t)e(t)dt can be solved by various numerical integration
02
 

techniques using a digital computer. A large number of numerical
 

integration schemes have been proposed for the integration of this class
 

of differential equations. The most commonly used integration schemes
 

are the Euler algorithm, [4]
 

where
 

eL(n+l)T] = e[nT] + T [nT] 	 (II-22)
 

the Modified Euler algorithm,
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where 

(11-23)
e[(n+1)T] = e[nT] + T {h[nT] + £inTi (e[nT] + T &[nT])} 

T 2
 

and the Fourth Order Range-Kutta algorithm, [3]
 

where
 

(11-24)
e[(n+l)T] = e[nT] + I {mi + 2E2 + 2m3 + 14 

m =TA
 
-1 6
 

=
 
112 I S[nT]{e[nT] +I m
 
-2 2 2-1
 

= T [nT]{e[nT]+ln} 
2 2 2
 

= T[nT].{e[nT] + m I 
-4 2-


A different numerical integration scheme is considered in this study.
 

This can be derived in the following manner.
 

From equation (11-19), the exact solution for the four parameters is
 

AO
 
e(t) = t2) e(t_) 

= 4'(tto)e(t
0 

) (11-25) 



14
 

where the matrix '(t,to) is called the state transition matrix. 

Ae(t 2,tl) + Ae(tl,to) AO(t 2,t1) AO(t1 ,to) 

2 2 2Since - 2 ' 

then
 

s(t2 ,t) = (t2,t1 ) '(tl,t 0 ) for all t2, t1, to 

This is the group property of the state transition matrix. From
 

this group property, it is evident that for t = mT, T > 0, the recursive
 

formula for equation (11-25) is
 

Ae®[(m+l)T, mT]
 
e[(m+l)T] = e 2 e[mT]
 

= 0[(m+l)TmT]e[mT], m = 0, 1,'... (11-26) 

There are several different methods of evaluating the state
 

transition matrix. The principal methods are [7]:
 

1. The infinite series method
 

2. The inverse Laplace transformation method
 

3. The transfer function method
 

4. The Sylvester's theorem, and
 

5. The Cayley-Hamilton technique
 



15
 

Among these methods, the infinite series method is most suitable for
 

digital computation [16].
 (A)
 

In the infinite series method, the state transition matrix C
 

is calculated by the infinite series
 

,AO, 	 AO 2 AE) 3 

+ 	 AO -+ + ( + (11-27) 
2! 3! 

Since the infinite series (11-27) is uniformly convergent for all
 

finite elements of A9[171, it can be computed by the truncated series
 

= Z2 	 (11-28)
i=o i! 

0 

where A = I
 

within prescribed accuracy using a digital computer. Thus, for
 

proportional angular rates, the numerical integration scheme for the
 

vector differential equation of the four parameters is
 

e[(m+l)T] = 	 $[(m+l)T, mT]e[mT] , m = 0,1,.... (11-29) 

e(o) E e(o)
 

where a hat 	(^) over a quantity denotes that quantity is an approximation
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as a result of the finite series approximation.
 

It has been shown by Marshall [18] that the Euler, the Modified
 

Euler and the Fourth Order Range-Kutta algorithms are equivalent to
 

Ae 
( - )


the first two, three and five terms in the series expansion for e ,
 

respectively. The authors also concluded that:
 

in the series expansion of the matrix exponential
(1) taking k terms 


series is equivalent to using a (k-i) st-order Range-Kutta numerical
 

integration scheme.
 

(2) a computer program written using the first k terms of the matrix
 

exponential series will provide greater computational efficiency than a 

program written using a (k-i) st-order Range-Kutta numerical integration 

scheme. Therefore, by investigating the infinite series method, a large 

class of numerical integration schemes are being studied.
 



III. COMPUTATION ERROR BOUNDS
 

In Chapter II, a numerical integration scheme for solving the
 

four parameter vector differential equation is derived. The numerical
 

integration scheme will produce, corresponding to each mT, a vector
 

e(mT), which is an approximation to e(mT), the exact solution of the
 

four parameters vector differential equation. The difference between
 

e(mT) and e(mT) is called the truncation error c(mT). The truncation
 

error is caused by the fact that only a finite number of terms of the
 

infinite series is used in the numerical integration scheme. Due to
 

the fact that all digital computers work with only a finite number of
 

digits, the computed solution e*(mT) will in general not agree with
 

e(mT). The difference between 5*(mT) and e(mT) is called the roundoff
 

error r(mT). This chapter analyzes both the truncation error and the
 

roundoff error introduced in the floating-point computation of the
 

four parameters using the finite series approximation method. Vector
 

norms and matrix norms will be used to give an assessment of the size
 

of a vector or a matrix, respectively. Their properties and definitions
 

are given in Appendix B.
 

Truncation Error
 

As developed in Chapter II, the exact recursive formula for the
 

four parameters is
 

17 
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(AE[(m)T].)
 

e[(m+l)T] = E e[mT]
 

= D[(m+l)T, mT]e[mT] (III-l) 

for t = mT, T > 0 and m = 0,1,2.... where the matrix exponential 

(AO[(-l)T])
 
is defined by
 

Ae[(m+l)T] 

22 (111-2)
 

i=0 -,
 

and (AO[(m+l)T)0I (II-3)
 
2
 

For digital computation, equation (III-i) is generated by the following
 

approximate recursive formula:
 

4[(m+l)T] = Z [ )i e [mT]
 
i=0 
 i
 

= [(mrll)T]e[mT] (111-4) 

The error incurred by using the approximate recursive formula will be
 

considered for both constant angular rates and time varying angular
 

rates.
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Constant Angular Rates
 

(AG[ (mI)T])
 

For constant angular rates, the matrix exponential e
 

AG
 
-
is a constant matrix C . The state transition matrix $[(m+l)T, mT]
 

is also a constant matrix which can be represented by
 

AG
 

'DIE(m+l)T, mT] = 2 

= 0 for m = 0,1,.. (111-5) 

where K is given by equation (11-4).
 

From equation (III-I), the exact recursive formula for the four
 

parameters is
 

e[O(m+l)T] = (De[mT] (111-6) 

By a process of iteration, the following equation is obtained
 

e[mT] = m e(0) for m = 0,1,-... (111-7) 

where e(0) is the initial condition of the four parameter vector and
 

00 is defined to be the identity matrix.
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Let qP = + E (111-8) 

AO 
-
where $ is the approximating matrix for the matrix exponential s
 

2T%) (111-9) 

N=O if 

A® 

and where E is the difference between the matrix exponential s
 

and the approximating matrix $
 

K I
 
(1-1o)E= T), 

i=p+l i 

Substituting equation (111-8) into equation (111-7) yields
 

e[mT] = [#+ E]m e(O) (II-ll) 

Expanding equation (I1-1i) yields
 

e[mT] = (^Dim)e(O) + (E e(0)
 

i=O
 

+ 0 (&m-2, E
2) e(0) (111-12)
 

where 0(;m-2, E2) represents terms which are of higher order in E.
 

If the four parameters are computed using the approximate recursive
 

formula
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e [(m+l)T] = 1 e[mT], (111-13) 

then the solution e(mT) to equation (111-13) is
 

e[mT] = ;m e(O)
 

The truncation error is defined as the difference between the
 

exact solution e[mTj and the approximate solution e[mT]. Subtracting
 

equation (111-14) from (III-12)'gives the propagation of the truncation
 

error c(rT)
 

c(mT) e(mT) - e(mT)
 

m-i
 
= I E $i)e(O)
 

i=O
 

+ 0 ($
m-2, E2)e(O)
 

The norm of the truncation error is
 

1._ m-1 E DilI 11(mT)I I < Im-I-i • Ie(0) 
i=O
 

+ II0($ m-2,E2)I1IIe(0)II (111-15) 
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For practical purposes, the higher order terms in E are much
 

smaller than the first term and therefore may be neglected yielding
 

AIca(mT)II -< M in-II E " I0 (111-16)
 

for iKILT less than one, the norm of E is given by [19]

2(p+2)
 

HEl < IIKIIP+I " (T/2)P+I" (p+2) (111-17)
(p+l)2 (p+2) - IK[I" (T/2)' 

and it can be shown that 

Iii irn-i= II [ (K'T/2)i I 

i=0
 

< (mn-l).IIKII. T/2 (11-18)
 

Substituting equations (111-17) and (111-18) into equation (111-16) gives
 

IIc(mT)II sim • C(In11K1T /2 (111-19) 

p+ (p+2)
(T/2)p
+ I 


(IIKI l (p+l)!- (p+2) - K)I I (T/2)) - Ik(O)II 

Equation (111-19) gives the truncation error bound in computing
 

the four parameters using the finite series approximation method for
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constant angular rates..It is shown that for a fixed time period
 

t = mT, the truncation error bound decreases with decreasing time
 

increment T. For a fixed time increment T, the truncation error
 

bound decreases with increasing number of terms used in the numerical
 

approximation of the state transition matrix eKT/2.
 

Time Varying Angular Rates
 

From equation (III-1), the exact recursive formula for the four
 

parameters is
 

e[(m+l)T] = $[(m+l)T, mT]e[mT] (111-20)
 

for t = mT, T > 0 and m = 0,1,2 .... and from equation (111-13), the 

approximate recursive formula for the four parameters is 

e[(m+1)T] = f[(m+l)T, mT]e[mT] (111-21) 

for t = mT, T > 0 and m = 0,1,2....
 

By definition, the truncation error c(mT) is the difference between
 

the exact solution and the approximate solution. Hence
 

c[(m+)T] = e[(m+l)T] - e[(m+l)T] (111-22) 
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To simplify the notation, let
 

U[(m+l)T, mT] = (mre+l) (111-23) 

[(m+l)T, mT] = 'I(m+l) 
 (111-24)
 

and T be ommitted in [mT]
 

Define the remainder matrix E(m+l) by
 

E(m+1) = I(m+l) - ;(m+l) (111-25) 

Now, substituting equations (111z20) and (111-21) into equation (111-22)
 

yields
 

c(m+l) = 0(m+l)e(m) - n(m+l)e(m) (111-26) 

Utilizing equations (111-25) and (111-22), equation (111-26) may be
 

expressed in terms of '(m+l),c(m), E(m+l) and e(m). Thus 

c(m+l) = ;(m+l)c(m) + E(m+l)e(m) + E(m+l)c(m) 

for m = 0,1,2** (111-27)
 

Note that c(O) = e(0) e(0) 

=0 
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If the initial conditions e(O) are known, then equation (111-27) can
 

be solved recursively for m = 0,1,2....
 

Thus,
 

c(l) = E(l)e(O) 

c(2) = '(2)E(l)e(O) + E(2)e(1) + E(2)E(l)e(O) 

c(3) = $(3)$(2)E(1)e(O) + $(3)E(2)a(1) + $(3)E(2)E(l)e(O) 

+ E(3)e(2) + E(3)(2)E(l)e(O) + E(3)E(2)e(l)
 

+ E(3)E(2)E(1)e(O)
 

= $(3)$(2)E(1)e(O) + $(3)E(2)e(l) + E(3)e(2) 

+ 0 3(E 2 ) 

m-i m-(i+2 )
 

c(m) = [ i i(m-k)] E(i+l)e(i)
 
i=0 k=0
 

+ 0m(E2,;) for m = 1,2. (111-28)
 

where 0m(E 2 ,$D)represents terms which are of higher order in E(m) and
 



26 

i-l
 

Tr p(m-k) (m)(m-l).... 4(m-i+l) , i > 0
 
k=0
 

I , i = 0 (II-29) 

where I is the identity matrix.
 

It follows from equation III-28) that
 

m-i m-(i-2)

[l (m) iT I lD(m-k)jj • lE(i+l) ll - jj (i)jj-] .


i=O k=0
 

+ II0m(F 2 ,)JI (111-30)
 

By using an approach similar to that used in the constant angular 

rate case in determining jI (m-k)]j and [I-E(i+l)ll , and by neglecting 

the higher order remainder terms a closed-form solution for the 

propagation of the truncation error bound can be obtained. Note that
 

for constant angular rotations, equation (111-30) reduces to
 

m-l m-(i-2)
 

L () II I [ 1i;11 - JEll I2(i)II
 
i=0 k=0
 

< m • []$]j m -I  . EIF1 • jje(0)jj (111-31)
 

This is in agreement with equation (111-16) which is derived by
 

assuming constant angular rates. Observe that the higher order
 

remainder terms Om(E2 ,$) in equation (111-28) are generated by the
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product term E(m+l)e(m) in-equation (111-27). Since for practical
 

purposes,
 

m-i m-(i-2)
I [ Tr ll;(m-k)Il] - jE(i+l)Ij . jI(i)jI >> 110m(E2,$^)Il, 
k=0
i=0 


the higher order remainder terms may be neglected. Consequently
 

equation (111-27) may be approximated by
 

c(m+l) = $(m+l)c(m) + E(m+l)e(m) 

for m = 0,1,2.... (111-32) 

Equation (111-32) gives the propagated truncation error which can be
 

evaluated by means of a digital computer.
 

An interesting form of solution for the propagated truncation error
 

can be obtained by expressing equation (111-26) in terms of (Dm+1),s(m), 

E(m+l) and e(m)'. Thus, by utilizing equations (111-25) and (111-22),
 

equation (111-26) may be rewritten as
 

c(m+l) = (m+l)c(m) + E(m+l)e(m) - E(m+l)c(m) 

for m = 0,1,2".. (111-33) 

If the initial conditions e(0) are known, then similar to equation
 

(111-27), the solution to equation (111-33) is
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m-1 m-(i+2)
 
c(m) = [ f Z(m-k)] E(i+l)e(i) - Om(E 2 ,)
 

1=0 k=0
 

for m = 1,2.... (111-34)
 

where 0m(E2 ,D) represents terms which are higher order in E(m) and
 

i-i
 
w (m-k) 4'(m)4(m-1).... $(m-i+1) , i > 0 

k=0
 

l , i = 0 (111-35) 

Using the fact that
 

(1) e (i) .. (1 e(~~il()(0)
 

i-i
 

or e(i) = T '(i-k)] e(0) (111-36) 
k=0 

and (as shown in Appendix C)
 

(2) for proportional angular rates
 

O(m)E(k) = E(k)I(m) for all positive integers k and m
 

equation (111-34) becomes
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m-i m-(1+2) i-1 
C(m) = E(i+l) [ i 4(m-k)][ $(i-k)] e(0)
 

i=0 k=0 k=0
 

- 0m[E 2 ,1] for m =1,2 

or m-i m-i 
c(m) = E(i+l) [ P e(Oy4(m-k)] 


i=O k=O
 
k#(rn-i-i) 

- 0 [E2 ,6'] for m = 1,2.... (111-37)m 

It follows from equation (III-37) 'that
 

n-i mn-i
 

Sc~m) I__< I JIE(i+l) ll [ 1I 1(m-k)ll'] ILe(0)
 
i=0 k=0
 

k# (rn-i-i) 

+ I0m[E2 ,'flI 

for m = l,'2-- (111-38)
 

For 1 2 11 less than one, the norm of E(i+l) satisfies
 

p+2
 

E ) + l ) l ip+ ' (p+(2 (11-39)
 

'P) A0(i+2)(pl.(p+2) - 11" 2 11 
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Equation (111-37) gives the propagated truncation error vector
 

c(m) in computing the four parameters using the finite series
 

approximation method for time-varying, proportional angular rates.
 

Each element of c(m) can be determined by neglecting the higher order
 

remainder terms. Equation (111-38) gives the propagated truncation
 

error norm. It shows that the truncation errors depend upon such
 

factors as the initial conditions of the four parameters, the
 

magnitude of the angular rotations and the number of terms, p+l, used
 

in the numerical approximation of the state transition matrix.
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Roundoff Error
 

Generally there are two different approaches in analyzing the
 

roundoff error in digital computation. These are the deterministic
 

approach and the statistical approach. The deterministic approach is
 

exemplified by Wilkerson's work [20-26] on determining maximum bounds
 

for the roundoff error. The statistical approach is advanced by
 

Henriei [27-31] and has been verified by entensive numerical .
 

experimentation. Since the truncation error bound derived in the last
 

section is based on the deterministic approach, Wilkerson's approach
 

will be used in analyzing the roundoff error. The layout of this
 

section is as follows. The roundoff error for the fundamental
 

arithmetic operations will first be developed. Then the roundoff
 

error bound in the computation of the four parameters using the finite
 

series approximation method will be discussed.
 

Roundoff Errors in Floating-Point Computation [20,32]
 

III.l Notation
 

For any real number x, let x* be its floating-point machine
 

representation. For floating-point computations, let fl[.] be the
 

floating-point machine number obtained by performing the arithmetic
 

operation specified by the parenthesis [7]. It is assumed that
 

computation proceeds from left to right.
 

111.2 	Floating-Point Machine Number Representation
 

In floating-point arithmetic, all numbers are represented in the
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computer by floating-point machine numbers which are of the form:
 

b
x* = (sign x) ' a . a (111-40) 

where a is a terminating a-nary fraction satisfying the following
 

normalization condition
 

< a < 1 (111-41) 

b is an integer, ranging between -E to E, and 8 is the base of the 

number system employed by the computer. The 8-nary fraction a is called 

mantissa or the fractional part of the floating-point machine number x. 

It is represented by 

t 
a = aiO-1 (111-42)
 

i=J

where t is the number of 8-nary digits a computer used for the
 

fractional part. The integer b is called the'exponent or the charac

ter which is given by:
 

b = [logolxl] + 1 (111-43)
 

where the brackets [.] denote the largest integer not exceeding the
 

quantity inside the brackets, and log8 denotes the logarithm to the base a.
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The range covered by the magnitude of a floating-point machine
 

number x* is
 

<x*(j - -)0t).< 

0- Eor 8 -(E+l) < Ix*I < (1 - t) . (111-44) 

The range of the computer is defined by the interval
 

- E
R = [-(1- t) s ,( - ) . 1 (111-45) 

It is assumed that enough bits are allowed for the exponent so that
 

no computed floating-point machine number will lie outside the
 

permissible range.
 

111.3 Input'Roundoff Error
 

Consider a real number x. The process of replacing x by a floating

point machine number x* is called input rounding. Input rounding can
 

usually be achieved either by truncation or by rounding. In truncation,
 

the first t digits of the mantissa are retained and those digits
 

beyond the first t digits are dropped. Since x* = 

t 

.(sign x)'pb.( ai-1), it is evident that if x s R, lxi _> -(E+ I), 

i=l 

the input roundoff error is bounded by 
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IN - xl <b . t (111-46)
 

Noting that Ob < lxi 8,,equation (111-46) becomes
 

Ix - x*I < lxi (111-47) 

or fl[x] =x*
 

= x(1 + Cin) (111-48) 

where leinl < al - t (111-49) 

The above relation shows that if x s R and lxi 8 (E+), then
 

the relative error of the truncated floating-point representation x*
 

-of x is at most $ t . 

In rounding, the first t digits of the mantissa are retained 

after a 0/2 is added to the (t + l)th digit. Therefore the input 

roundoff error is bounded by 

Ix- x*j < 0b . ( - (t+l)). (111-50) 

Since $b lxi ",8 equation (111-50) may be expressed as 

IN- X*Z li< 80-t (111-51) 
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or fl[x] 	= x* 

= x(l + Sin) (III-52) 

where ein c 1 l-t 	 (111-53) 

The above relation shows that if x e R and lxi L 8 -(E+), then
 

the relative error of the rounded floating-point representation x*
 

1 B-t.
 
of x is at most! •
 

111.4 Addition and Subtraction
 

Consider the addition or subtraction of two floating-point machine
 

numbers x* and y* each with a t digit mantissa. Let
 

b t 
x* = (sign x) " CX a i) (111-54) 

b t 
-y* = (sign y) Y ( a .S ) 	 (111-55) 

i=1
 

b5x < by 

b t 
= 
and fl[x* 	± y*] z* = (sign z)• ( a 01) (111-56) 

i=l
 

It is assumed that the sum (or difference) of x* and y* is computed
 

in the following manner. The exponents b. and by are compared and the
 

fraction of y* is right-shifted bx - by places. The fractions are
 

then added algebraically to form an intermediate sum IS. This
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intermediate sum consists of (t + 1) digits and a possible carry. 

The extra digit is a guard digit obtained from the fraction which is 

shifted right. After the addition, the intermediate sum is left 

shifted or right shifted so that the resulting mantissa satisfies the 

normalization condition, the exponent b being adjusted accordingly.
x 

Finally the resulting mantissa is truncated or rounded to t digits. 

This gives az . Rounding by truncation will be assumed from here on. 

The process may be illustrated by three examples of addition of
 

machine numbers in 4 digits floating-point decimal arithmetic.
 

Example 1: 1 < IS < 1 

fl[104 (0.7414) + 101(0.3995)] = 104(0.7417)
 

ay is shifted 3 spaces to the right and the addition takes place
 

in the form
 

4 guard digit

0
 

104 X 
0.7414 


+104 X 0.0003 9
 

104 X 0.7417 9
 

X 0.74179 which is then normalized and
The intermediate sum is 104 


truncated to 104 X .7417.
 

Example 2: IS > 1
 

fl[105(0.7419) + 105(0.6159)] = 106"(0.1357)
 

The addition takes place in the form
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105 X 0.7419 
0guard digit
 

+105 X 0.6159 0
 

105 X 1.3578 0
 

The intermediate sum is 105 X 1.35780 which is then normalized and
 

truncated to 106 X .1357.
 

1
 
Example 3: IS < I
 

fl[lO-4 (.1000) + 10-6(-.9999)] = 10-5 (.9001) for truncation
 

The addition takes place in the form
 

- digit
10 4 X .1000 0 


-
-10 4 X .0099 9
 

-
10 4 X .0900 1
 

-
The intermediate sum is 10 4 X .09001 which is normalized and 

truncated to 10- 5 X .9001. 

b t 

If the computed sum is (sign z) z a i-) 

then it is evident that the magnitude of the error is bounded by
 

b
I(x* ± y*) - fl[x* ± y*]<< 0 z .(11-57) 
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Since s ](x* ± y*)j • for x* ± y*) # 0 

equation (TI-57) may be rewritten as
 

+ y*) .fllx* ±y*j }(x* +y*)j.l-t
 

or flfx* ± y* = (x* + y*)(i + 6) (111-58) 

wbare l-t
where 
 0- (z11-59) 

Thus the relative error of the truncated sum (or difference) of x* and
 

l- t .
y* is at most a


111.5 Multiplication
 

Consider the multiplication of two floating-point machine numbers
 

x* and y* each with a t digit mantissa. Let
 

bx t
 
x* = (sign x) , • ( y ax,i ) (111-60)
 

b t 
y* = (sign y) - y a * ) (111-61) 

.bt
 
and flIx*X y*] = P* (sign P) . a ) (111-62)

i=l
 

It is assumed that the product of x* and y* is computed in the
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following manner. The exponents b. and by are added together and the
 

product of t t
 
a . B- and- a . is then computed. The 

1=1 X i=I ys'
 

resulting intermediate product will have a fractional part of 2t or
 

(2t - 1) digits. This product is normalized if necessary by a left

shift, the exponent being adjusted accordingly. The resulting product
 

is then truncated to give a t digit mantissa of the computed product P*.
 

Example
 

flj.1303 X .1003] = 10-1 X .1306
 

5

Absolute error k,1303 X .1003 - fl[.1303 X .10031] = .909 X 10- 5 < 10-

Relative error 5 1(.1303 X .1003) flf.1303 X .100311 - .696 X 10 3
 

(.1303 X .1003)
 

If P* E R, then it is evident that the magnitude of the roundoff
 

error is bounded by
 

J(x* X y*) - flix* X y*]j b " (111-63) 

Since a < jx* X y*j 8, equation (II-63) may be expressed as
 

* 
- (x* X y*) - fllx* X Y*]] s Ix x y*JI 1t 

or flx* X y* = (x*X y*)(1 + E) (111-64) 

1 where W$ S ' (111-65)
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Thus the relative error of the truncated product of x* and y*
 

is at most l-t.
 

111.6 Division
 

Consider the division of two -floating-pointmachine numbers x* and
 

y* each with a t digit mantissa. Let
 

b t
 

x* = (sign x) - x a -) (111-66)
 

b y t
 
y* = (sign y) • a c ay,i 8)#0 (111-67) 

and fllx* + y*]= D* = (sign D) . "( D i. 
-i) (111-68)

i= 


It is assumed that the quotient of x* divided by y* is determined 

in the following manner. The exponent by is subtracted from bx . The 

mantissa of zx* is then divided by the mantissa of y*. If ]ajl < Jay], 

then the resulting quotient fraction is normalized by a right-shift 

and the exponent is adjusted for the shift. Finally the quotient 

fraction is truncated to t digits. 

Example
 

fl10 6 X .9.37 10o 2 X .1312]
 

-
= f,110 4 X (.9317 + .1312)]
 

= f1110-3 X .696417....]
 

= 10- 3 X .6964 
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Absolute error =1(10-6 X .9137 - 10 - 2 X .1312) 

- fl lO-6 X .9137 10-2 X .1312]1 

= .17 X 10-7 < 10 - 7 

Relative error R Absolute error 

(106 X .9137 10 - 2 X .1312) 

- 4 - 3 
= .24 X 10 < 10 

If D* s R, that it is evident that the magnitude of the roundoff 

error for division is bounded by 

bD 
](X* + y*) -fllxk+ y3 < . (111-69) 

bD
 
Since 8 < Y I " B , equation (111-69) becomes
 

I( Y*) - fllx* 4 y*jI Jx*] y*j • 1 

or fljx* y*= (x* + y*)(l + 0)> (111-70) 

i < a1-twhere 


Thus the relative error of the truncated quotient of x* and y*
 

is at most R1St for y* not equal to zero.
 

111.7 Extended Additions
 

Consider the addition of a sequence of n floating-point machine 

numbers xl*, x2. x
1 2 ' 
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Let S flf4 
=x
 

* flS* * 
and Si = flS + xi] for i > 1 (111-71) 

Then by applying equation (111-58) to equation (I1-71), the computed
 

sum for the first two terms of the sequence can be represented as
 

= fl + 2x] = xl(l + 62) + x2(1 + 62) 

where 1621 - 01-t (111-72)
 

Similarly the computed sum for the first three terms of the sequence
 

can be written as
 

* flfSS3 = fi s2 + x3 ] 

= $2( 1 + 63) + x3(l + 63) (III-73) 

1 -t
 
where 16] 


Substituting equation (111-72) into equation (111-73) yields
 

S= X(1 + 62)(1 + 63) ± x*(l + 63) (I11-74) 
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It follows that the computed sum for the sequence of n terms can be
 

represented as
 

S = 	fl[S" + x 
n n- f 

* U + 62)(1 + s3)*...(l + ) + 

x2(l 	+ 62)(i + 63 n
 

*3(U+ 63)(1 + 64).. (1 + 6n + ... +
 

x*(l 	+ 6) (111-74) 

where ]61 < 81-t for i = 2, .n. 

Expression (111-74) shows that the upper bound for the roundoff
 

error is least when the smallest terms are added first, since the
 

largest factor, (I + 62)(1 + 63) .... (1 + 6n), is associated with the
 

smallest term.
 

111.8 	Extended Product
 

Consider the multiplication of a sequence of n floating-point

) 

machine numbers x1 , x2 ,x 3, .... ,x n . 

Let 	p* = fl[x ] 

1 
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and p * x*] for i (111-75) 

=flIPi . foi>l 

Then by applying equation (III,64) to equation (11175), the computed
 

product for the first two terms of the sequence can be represented as
 

P2 = l[pX2l] 

= * 	x2 (l + C (111-76) 

" 81-twhere 1c2 

Similarly the computed product for the sequence of n terms can be
 

expressed as
 

*. 	[ * 

Pn = n-1 x.]
 
n
 

* * * 
=x 1 	x2 x(l + 2)(1 + c3 ) ....(1 + n) (III-77) 

-t
where ICi < 8l for i = 2 ..... n. 

The actual error incurred will depend on the order in which the
 

multiplications are computed, but the error bound given by equation
 

(111-77) is independent of the order of multiplication.
 

111.9 	Roundoff Error in Matrix Operations
 

Based upon the previous derived error bounds, it can be shown that
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if k is a scalar, A and B are n X n matrices, then
 

flIA] = Jaij (1+ in, ij)j  (111-78) 

fl[A* + B* = (a* + b)(I + 6.) (111-79)
ij ii ii 

flfk* A*] = Ik*a*.. (1 + '..)] (111-80)
ii 1 

where a a and b. denote the (i,j) element of the matrices

ij, ii ij 

A, A* and B respectively. The s. 's are in general different but
in, ij 

t
all are bounded by 1- . The same is true for the 6ijs and 0 s. 

For matrix multiplication, consider the multiplication of two
 

n X n matrices A* and B* with elements that are floating-point machine
 

numbers. Let c* be the (i,j) element of A*B* which can be represented

11 

by
 

fljc .I= fl[a* b* + ai bl* + .... a* b (I1-81) 
iiil 1: 2 in 

By applying equations (111-64) and (111-74), equation (111-81) becomes
 

flfc..] = [ailblj (1+ )(l + 62). (i + 6n) + 

ai2b*(l+42ja* 2)(1 + 62) .... (1 + an) + 

a)* b* (l+ )( + 63).... ( + .... ++ 63) 
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a b .1+ )(1 + & )] (111-82)
in nj n n
 

where Icil < 0 1t i = l. n 

land sil < t 1= 2,. n 

Equation (111-82) can be written as
 

n 

flf&Y] = 1(1 + a ) I a* b* (111-83)
- 1k=l jik 

n 

for k=lY a*aik  b*kj 0 andn f *i 

n
where -1-t) < + a .. < (l + $1-t)n (III-84)
 

Since the roundoff error bounds to be derived do not depend
 

critically upon whether equation (111-82) or equation (111-83) is used,
 

equation (111-83) is assumed without loss in generality. The error
 

bound for the last expression is very conservative, but it greatly
 

simplifies the derivation of roundoff error bounds for extended
 

matrix operation.
 

Now consider the roundoff error made in raising a n X n matrix A*
 

to its ptlt power where p is a positive integer. Consider first the
 

computation of A*A*. Let a*(2) be the (i,j) element of A*2 . From
ii
 

equation (111-83), the computed value of a*(2) can be represented as
 
ij
 



47
 

flIa* 2 )] 1=Il + a1)) a*(2)] (III-85
ij ij
 

where 

< (l M < (I + 1(111-86) 

Consider next the computation of A*flIA*2]. Let a*(3 ) be the
 

ii
 

(i,j) element of A*3 . From equation (I1-82), the computed value of
 
* (3) 

a.. can be represented as
i3
 

( 3 ) ] Ifla* = Ia a*(2)(1 + a (1)( + )( + 6) (1 + 6n) + 
i2 i ilj 1 2 n
 

Ia* a*(2)m(1 + a(1))( + 2 )( + 62) (1 + 6 ) + 
12 2j 2j 2 2 n
 

a* a*(2)(1+ a())(i + )( + S) (l + ) + + 
i3j 3j33n
 

* .- (1)*(2)
Sa *(2)1+ a (1 + ) ( + s )J (1I-87)
in nj nj n 

where (1 - t 1(tn< i + a.11)b-t~n() ) 

I i--,....n. (111-88)
 

l <s1,.. i= ...
 

Tor the computation of ronndoff error bounds, equation (111-87) can be
 

rewritten as
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flJa*(3) = I (I + C(2) )a (3)] (111-89)i3 ij ij
 

where (I -B 1lt)2n < 1 + ( <2 (I + S1-t)2n 

Similarly, it can be shown that if p is an integer 

flfaP ) J = I + a(P-i))a* (p) (111-90)
'2 iij 

where (I - f-t) (,p- < I + a- < (l + lt) (p-1)n (i,91) 

Roundoff Error in the Computation of -the Four Pareters
 

Now consider the roundoff error incurred in the floatingpoint
 

computation of the four parameters using the approximate recursive
 

formula. From equation (111-4) and using the same rotation as
 

defined by equation (111-24), the theoretical approximate recursive
 

formula is
 

e6(m+l) ( 2 ) ea(m)
i=O i 

- (xmel)_(m) m = 0,1,.... (111-92) 

To compute a(m+l), the theoretical approximations £(m+) and a(m) 

are computed first giving the computed approximations (ji+l) and e_*(m) 

respectively. Then $*(m+l) is multiplied byj*m) to give e (m+l) 
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Hence the computed values of a(m+l) can be represented as
 

e*(r+l) = fl[$*(m+l)e*(m)] (111-93) 

. (m+l) be the (ij elmn of 

Leti,j)
Le3 element of (Im+) and e.(m) be the ith 
1
 

element of e (m). The computed value of ei(m+l),e (m+l), can be 

represented as 

e*&n+l) 4,l(m+l)el(m)A (I + i)t + a2 )( 1 + 6)( + 64 +1 1 

i2(m+l)e 2(m)(l + 2)(i + 62)(1 + 63)(1 + 64) + 

4i3(m+l)&3(m) (I + 3 M + 63)(1 + 6 + 

i4(m+l)e 4 (m) (l + 4) (1 + 64) (ItI94) 

Hence
 

e (e+l) = A*l(M+l)(m) (i + Cl
 

$* (m+l)2(m)(i + )
 
i2 J 2 IfJL 02i 

i3 (i+l)A3i(m)(l + a )
i3 3 ai41 

(in+)a*(m) (l + ai4) (III-95) 
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.4+ < (i + 1-t) 4 
where (l 8l&t)4 

(l a1---t)6 j < 1 + 0ij 1 (1 + a1-t)6 5j j = 2,3,4) (111-96) 

Therefore, associating the factor (1+ ij) witli $ij (m+l), equation
 

(111-93) can be rewritten as
 

e(m+l) = @..(-) •(1 + a,.)]e (m) (111-97)
 

'3 'J
 

It will be shown in section III-10 that
 

*(+l)+ a..) = + rij (re+l) (111-98)(i 4,.(an+l) 

where rij (nI) is called the local roundoff error. Substituting
 

equation (111-98) into equation (111-97) yields
 

(m+l) = [$.. (+l) + r..(a+1)]e (m) (111-99) 

Let R(m+l) = rij(m+l)], then equation (111-99) can be rewritten as 

e(m+ 1) (e+l) + R(m+l)]e (m) (III-100) 

By a process of iterations, the solution e*(m) for equation (III-100)
 

is given by
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M-1.
 

e_(in) = [$(m-k) + 	 R(m-k)] e (0) (111-101) 

where 

,r ( =- R(m)Jl1n-1) + R m4l)]....Im-k) + R(m-k)] 	 (m) + 
k=0
 

. 8 (1) + (i) 	 , m> 0 

, mI= 0 (111-102) 

If the initial values of e(0) are equal to the floating-point machine
 

values, then equation (1114101) can be written as
 

rn-1 
e (m) { r ji(m-k) + R(m-k)]}e(0) (111-103) 

k=0 

Expanding equation (111-103) yields 

m-i m-I m-(i+2), i-i
L (m) { $ (m-k) + 	 I I w q(m-k)] • R(i+l) 7 I 

k=0 i=0 k=0 	 k=0
 

+ OmJR$ ] - e(0) 	 (111-104)
 

Equation (111-104) gives the computed solution for the four
 

parameters using the finite series approximation method. The theoretical
 

approximate solution a(m) for the four parameters can be determined
 

from equation (111-92) by the same process of interation used to obtain
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equation (III-101). Thus
 

yin) = r D (r!'nk) (1e11Cu-105) 
k=O
 

The difference between the computed solution e(m),and the theoretical
 

approximate solution e(m) is defined as the accumulated roundoff
 

error. Hence, by subtracting equation (I1-105) from equation (111-104),
 

the accumulated roundoff error r(m) is obtained. Thus
 

r(:m) e (m) -_(i)
 

m--I re-(i+2)^ i-I
 

X 1 '7 (m-k)] . R(i+l) * f ^D(i-k)] • e(O)
 
i=O k=0 k=O
 

+ OmIR,#] • e(0) (111-106)
 

It follows from equation (111-106) that the norm of the accumulated
 

roundoff error is given by
 

mn-l m-i
 
i I=1R(i+l) T• Ik11)(m-k) Il 

0 k=0 

SL_(m)11 Y< il I JLe(0) II 

k4 (m-i-l)
 

+ I 0m[R2,;]Il Ile(O) I for m = 1,2,.... (111-107) 

For practical purposes,
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rn-i rn-I
 

jl[ -	 (O)II >> 2 ]IIl(i+1)I [ I (m-k)jjI] I[ IlOm[R2,&$j . IL(o)11
i=O k=0
jo (m-i-l) 

Therefore, the higher order terms in R may be neglected yielding
 

m-i 	 m-i
Ir(m)l < IIR(i+l)l 7T (m-k) l] l ol 
i=O 	 k=O 

k# (m-i-O) 

for m = 1,2 .... (111-108) 

Equation (111-108) gives the accumulated roundoff error norm in
 

computing the four parameters using the finite series method. It
 

shows that the roundoff errors depend upon such factors as the
 

initial conditions of the four parameters, the magnitude of the
 

angular rotations and the local roundoff errors.
 

III'10 An Example of the Procedures for Bounding the Roundoff Error
 

Norm r(m)
 

Consider the computation of the four parameters for constant
 

angular rates. From equation (111-8), the approximate state transition
 

matrix 4 for the 	matrix exponential 6KTI2 is
 

= I + KT/2 + (KT/2)2f + .. (KT/2)Pf 	 (111-109) 
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where fi ., for i = 2,3..... p. Let iY be the (i,j) element
i.j
 

of 5. Then the (i,j) element of ' can be represented as 

ij = Aij + k.. T/2 + k(2)(T/2)2f + .... + k)(T/2)f 

j :13 132 I 

kk (T/2)Pf (III-110)
 

where Aij = 1 for i=j
 

= 0 for i #j 

The application of equations (111-48), (111-77) and (III-90) .leads to
 

fZ[kf)] = (i + a(Z-1))k.)
ij 11 

ft[T] = T(1 + e. (II-ill)
 

fft 1]= TzL(1 + t)
 

T 

fZ[21] = 2Z(1 + Y) 
2 

and -f f fJ= f (l + f)
fl 
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81-t)5Z-4 (C-i) i1_t)5t-4
 

) < 1 + a < (1 + 0 )
where (1-

in, 

(I - l t .< i + 6 in,T < I+ l - ) (111-112) 

2 - £ I(il 1t < 1 + E:T < (I + B-)
 
(11-t)2-1- 1t 2-

l
 
(I- 81-t) < 1 + E ( + 1

2 

and (1- l-t) < 1 + <(1+ -t) 

Hence
 

ft[k . ) (T/2)zf ] = k (T/2) (1+ E.. ) (111-13)
:ij £ fC. 

where (1 - i-t) 8-2 < 1 + Eij,t < (I-+ 01-t) 8Z-2 (111-114) 

Now, the computed value of ij can be determined by applying equations
 

(111-74) and (111-113) to equation (III-110). Thus
 

+1) (2) ( P- 2 ) + +T22 
^J ijp-i + k. .(T/2) 

2 f 2(1+ p)"- "4j = ~Aij(1 + p) + ki. T/2 (1 + e_) 

s__9 .+ kW (T/2)tft(1 + 63-3 p-Z 
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) (T /2)pf 
+ (1+ c (111-115)

jP 
 0 

where (1-$it) < 1 + ( l+st)P 

<
(I - 01-t)p+4 < I + p- (1 + 1-t)p+4 

-
and (I - 01-t)7Z- 1+ p < 1 + 6p-Y < (i + s1-t)7t +P forZ = 2,3 ..... p. 

It follows that
 

^* (1)

$ij(1 + Gij) = Aij(l + p) + kij T/2(1 + pl) + .... 

+ k )(T/2) 2f (l + p_) +
 

+ kiW (T/2)zft(1 + pz) + 

+ k(P (T/2)f (I+ 0) (111-116) 
ii ~p 0 

where (1 + 1-t)p+6 - j < I + p (1 + 61-t)p+6-j (111-117) 

(i + 1-t)(p+4)+6-j < 1 + 4p1 < () + 1-t)(p+4)+6-j (111-118) 
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and (I + pl-t)(7f-4+p)+6-j _ 1 + 4p-t < (1 + 6l-t) (7t-l+p)+6-j 

j = 2,3,4. (111-119) 

Now, if i an integer and i .1-t• < 1is 1, then
 

(i - 1-t i + < (i + 5t1 ii 

may be replaced by the simpler inequality [20]
 

<
ICI i a (111-120)
 

1.06 al-t
where a = 


Therefore, inequalities (111-117), (111-118), and (111-119) may be
 

replaced by the following inequalities
 

I < (p+6-6) a (111-121) 

[ 1p-l< (p+10-j) s (111-122) 

kp-Yl < (7Y+5+p-j)a (111-123) 
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Equation (111-116) may be rewritten as
 

* .(I+ C ) = A + ) T/2 + k.. (T/2)2f +j 1 J 13 13 2 .... 

+ j+ k.) (T/2)fft + . 

+ kfO (T/2)Pf + r..I3 p 13 

+

^ij rj 
 (111-124)
 

where the local roundoff error rij is bounded by
 

IrijI <sa[(p+6-)Aij(p+l-i)Ikf~I T/2 + (19+p-i)Ik7I T2) 2f+..
 

.... + (7t1-5+p-j) lkQ ) (T/2)tf2 +....i3
 

"" +5jlkp I3(T/2)Pf 1 (111-125)
 
p 

Since j > 2, inequality (111-125) may be rewritten as
 

Jrij<Ia[(P+4)Aij + (p+8)1 kj(1) (T/2) + (p+17) 1k{?) (T/2) 2 f 2 + 

+ (p+7 +3)I k(f) (T/2)ftL+ 

+ (8p+3) k(P) (T/2)Pfp] (111-126)
.... i
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Let JRI denote the local roundoff error matrix with elements Irijj, then
 

[R1 <a[(p+4)I + (p+8)jK I (T /2) + (p+17)IK12 (T/2)2f2 +
 

+ (P+7Z+3)IK[Z(T/2)Yf + 

+ (8p+3)IKIP(T/2)Pfp] (111-127)
 

It follows that
 

IiRIi <ty[(p+4 )l + (p+8)IIKII(T/2) + (p+17)11KI1 2 (T/2)2f2 + 

+ (p+7L+3) II Kl(T/2)t f/+ .... 

+ (8p+3)IIKIlP(T/2)Pfp] (111-128)
 

Since IKi(T/2)if < sIKIT2 it can be shown that' 
i=O
 

[IR! < a[(p+ 3) IIKIIT/2 + 1-2IIKIIT/2+711KI (T/2) IIKIIT/2] 

(111-129) 
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Using the fact that for constant angular rate
 

m- m-i m(rk-i) m (111-130)]<_1T12
~~~~~~ ~[ rJT/2n.)~]<r
 

i=O k=O 
k# (r-i-i) 

and substituting inequalities (111-129) and (111-130) into inequality 

(111-108), the accumulated roundoff error norm 1 r(m) Ij bound is 

L1r(m)II <_m E(-l)IIK! IT/2 . c[(p+ 3)IIKIIT 
/2 + 1-211KIIT/2
 

+ 7I IK I(T/2)eIIKIT/2] ILe(0) I (111-131)
 



IV. STUDY RESULTS
 

In order to check the validity and to demonstrate the applicability of
 

the analytical results developed in the preceeding chapters, two exam

ples will be considered in this chapter.
 

'Example 1
 

Consider the following first order linear fixed autonomous system
 

x = Ax (IV-l) 

where x is a two dimensional column vector and A is a constant 2 x 2
 

matrix given by
 

A =(IV-2)
 
-2 -3 

Let the initial conditions for equation (IV-i) be specified as
 

I (IV-3)

x 2(0 1] 

The solution of equation (n-i) at t = 1 sec. is to be computed using 

the following recursive formula: 

61 
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x[mT] = sATxr(m lI)T] (IVM4)
 

for mT = 1, T > 0 and m = 1,2..., and EA T is to be computed by the
 

truncated infinite series
 

p.. 
A=

i=O
AiTi (Iv-5)± ! 

It is desired to determine the actual computational error norms and the
 

theoretical computational error norms of x(1) so that the two error
 

norms can be compared.
 

Actual Computational Error Norm
 

A digital-computer program is written to compute the actual com

putational error norms. The program is written in FORTRAN IV and has
 

been run successfully on the IBM 360/50 digital computer at Auburn Com

puter Center, Auburn, Alabama. The actual computational errors are
 

taken as the difference between the computed values of x(l) and the
 

theoretical values of x(l). The computed values of x(t) are obtained
 

by implementing equation (IV-4) and equation (IV-5). The values of
 

x(l) are then computed for p = 6,8 and T = 2(1 - i), i = 1,2,...10,
 

using single precision (six hexadecimal digits or six bytes). The
 

theoretical values of x(l) are determined by using the Laplace Trans

formation method. They are given by
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[2l(E2 2 - E:)+(2-2 - 61~ s l2 c
I x 2 ( l 

and are computed in double precision (14 hexadecimal digits). The re

sulting actual computational error norms are plotted in Fig. 1 as a 

function of the time increment T for p = 6 and 8. Note the shape of 

the characteristic curve of the actual computation error norm. It is 

observed that minimum computational error norm occurs at T = .125 

second and I = .25 second for p = 6 and p = 8, respectively. 

Theoretical Computational Error Norm
 

From equation (I1l19), the norm of the truncation error is bounded
 

by
 

P
m snm - l)-IIAIIPT IAJPl+ TP 1 __+ 2 _p 


(p +l) (p + 2)1 - IAIT
 

Ix(O)Il 

Following a similar technique used in deriving equation (I1-131) and
 

noting that T, ni, and the elements of A are machine numbers, it can
 

be shown that the norm of the roundoff error is bounded by
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Figure 1. 	Actual computational error norms as a function of time
 
increment for p=6 and p=8 on a 6-bytes fractional computer.
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m-C l).JjAjjT. + 2(cI AT -1) - IIAI!TJ - IIAIIT] 

+ 2al1 + JAT
}Ts11AIT]}.I1x(0) I
 

The theoretical computational error norm is then the sum of the trunca

tion and roundoff error norm. The three norms are computed for p = 6
 

and 8. The resulting error norms are plotted in Fig. 2 as a function
 

of the time increment for p = 6 and 8.
 

From Fig. 2, it may be seen that minimum theoretical computational
 

error occurs at T = .125 second and T = .25 second for p = 6 and p = 8,
 

respectively. This is in good agreement with the experimental results.
 

Note also that for T greater than the optimal T, the computational error
 

is dominated by the truncation error and the roundoff error can be ne

glected. For T less than the optimal T, the computational error is dom

inated by the roundoff error and the truncation error can be ignored.
 

This shows that there are essentially two regions of computational er

ror. These are, due to their origin, the truncation region and the
 

roundoff region.
 

Fig. 2 also illustrates that, in the truncation region, the com

putation error is a function of both the time increment T and the order
 

of the finite series p. Decreasing the time increment decreases the
 

computational error. Increasing the order of the finite series p also
 

reduces the computational error and increases the slope of the trunca

tion curve. In the roundoff region, the computation error is also a
 

function of both time increment T and the order of the finite series p.
 

Increasing the time increment results in a lower computational error.
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Figure 2. 

as a function of time increment for p=6 and p=8.
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Decreasing the order of the finite series also decreases the computa

tional error. Notice also that the slope of the roundoff error line is
 

approximately minus one which compares favorably with the experimental
 

results.
 

The theoretical computational error curve is compared with the
 

actual computational error curve in Fig. 3 for p = 8. It shows that the
 

theoretical error norm is larger than the actual error norm. This will
 

always be true since the theoretical result is an upper bound on the
 

error.
 

Example 2
 

To check the theoretical results derived in Chapter III, the
 

floating-point computation of the four parameters using the finite se

ries method is considered.
 

Actual Computational Error
 

A digital-computer program is written to compute the actual com

putational error. The computed values of e(t) are obtained by imple

menting equation (11-29) for angular rates of one degree per second
 

with eT(0) = (1,0,0,0). The values of x(l) are computed for 

p = 2,3,...10 and T =2(1 i), = 1,2...10, using double precision 

(14 hexadecimal digits). The theoretical values of e(l) are determined 

from equation (11-13) 
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Figure 3. 	Theoretical and actual computational error norms as a function
 
of time increment for p=8.
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e (1) Cos (,F /360)
 

e2(1) (1/A) Sin(ii n/360)
 

e3 (3) (i/A) Sin($3 /360)
 

e4(l) (11 f) Sin(r3 /360)
 

The computed values of e(l) and the theoretical values of w(l) are com

pared so as to obtain the actual computation error. Some of the re

sulting actual computational error norms are plotted in Fig. 4 as a
 

function of the time increment T for p = 2,3,4 and 7. Notice that be

tween T = 1 and T = .001, the computational error is dominated by the
 

truncation error for p = 2 and is dominated by the roundoff error for
 

p = 7. It is observed that minimum computational error norm occurs at
 

7 - 2 2-1 
T = 2- second, T = 2 4 , T = 2- , and T = for p = 3, p = 4, p = 5,
 

and p = 6, respectively.
 

Theoretical Computational Error Norm
 

The norm of the truncation error is obtained from equation (111-19)
 

and the norm of the roundoff error is obtained from equation (111-131).
 

The norm of the theoretical computional error is computed by adding the
 

truncation and roundoff error norm. Some of the results are depicted
 

in Figures 5 through 7.
 

Fig. 5 shows the theoretical truncation error norm and theoretical
 

roundoff error norm as a function of the time increment for p = 2, 4
 

and 6. Again, it illustrates all the characteristics described in
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Example 1. It may be noted that the roundoff error is not as sensitive 

to the order of the finite series, p, as the truncation error is. 

Fig. 6 shows the theoretical computational error norm as a function 

of the time increment T. It is observed that the optimal T for p = 3, 

- 6 4 - 2p = 4, p = 5, and p = 6 is 2 second, 2- second, 2 second, and 1 

second, respectively. 

In Fig. 7, theoretical curves for the computational-error norm are
 

compared with the actual curve for p = 2,3,4 and 7. It may be seen that
 

using higher order finite series with a larger time increment will re

duce the speed for the computer in calculating e as well as decrease
 

the computational error.
 



V. CONCLUSIONS AND RECOMMENDATIONS
 

A numerical integration scheme (the finite series method) for
 

solving the four parameter vector differential equation is derived
 

and investigated in this report. The results obtained can be applied
 

to a large class of numerical integration schemes, since this class
 

can be shown to be equivalent to the finite series approximation
 

method.
 

Studies show that there are two types of computational errors in
 

computing the numerical solutions to the four parameter vector
 

differential equation using a digital computer. These are truncation
 

error and roundoff error. Truncation error is caused by the
 

approximate nature of the numerical integration scheme. Roundoff
 

error is due to the fact that all numbers are represented by a finite
 

number of digits in a computer."
 

Bounds for the truncation errors and roundoff errors generated
 

by the computer in computing the four parameters using the finite
 

series'method are derived. The results show that ihe truncation
 

error norm can be expressed as a function of the initial conditions
 

of the four parameters, the magnitude of the angular rotations and
 

the number of terms used in the numerical approximation of the state
 

transition matrix. The results also illustrate that the roundoff
 

error norm can be expressed as a function of the initial conditions
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of the four parameters, the magnitude of the angular rotation and the
 

local roundoff error. The local roundoff error in turn can be
 

expressed as a function of the number system and number of digits
 

employed by the digital computer and the number of terms used -in the
 

numerical approximation tO the state transmission matrix. Study
 

results show that the error norm developed is useful in the determina

tion of an optimal integration step size for the four parameter algorithm,
 

and the computer sizing requirement for a particular mission.
 

It should be emphasized that the computational error norm derived
 

in this analysis is an upper bound on the error generated by the
 

digital computer in computing the four parameters using the finite
 

series method. The actual errors that would be observed might therefore
 

be and are shown to be considerably less than the error analytically
 

determined by this method. Nevertheless, this technique does provide
 

a means of obtaining the limit that can be placed on the errors caused
 

by the computational process using a digital computer. In order to
 

obtain a more realistic bound on the roundoff error, a statistical
 

approach should be investigated.
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APPENDIX A
 

SOLUTION OF THE FOUR PARAMETERS USING THE
 

PEANO-BAKER METHOD OF
 

SUCCESSIVE APPROXIMATION 19]
 

Consider e = A(t) e(t) 	 (A-i) 

Integrating (A-1) gives:
 

= e(t) + tt)A() e(T)dt 	 (A-2) 

Equation (A-2) may be solved by an iterative scheme called the Peano-


Baker method of successive approximations which involves repeated sub

stitution of e(t) from the left member of (A-2) into the integral.
 

ist iteration: e(t) e(to) + A(T) e(to) dT
 
to
 

t 

= {I + ft A(-)dT}e(to) 
0
 

t t 

2nd iteration: e(t) = e(t ) 	+ ft A(T) {I + ft A(T)dT}e(to)dz 
0 to to 

t t t 
= {I + fo A()dT + fto A(T)[fto A(T)dT]dr}e(to) 

Thus an infinite series can be obtained. If the elements of the
 

matrix A(t) remain bounded in the range from 0-to t, it may be shown that 
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the infinite series converges to the solution e(t).
 

If the elements of A(t) are of the form AL, let A(t) = Bt
2 

where 

0 -a3 -a2 -a,
 

1 a3 0 -a1 a2
 
22 

0 -a3
a1
a2 


a, -a2 a3 0 

then 

t t t 
e(t) = fI + ft o A(T)d + fte A()Ift A()dr]dT + . et) 

t t t 
= {I + ft (BT)dT + f t(BT)Ift (BT)dr]dT + e-(t) 

t t t 

= {1 + B ft TdT + B2 ft ift TdTjdT + . e(to) 

0l0
 
Let t = 0 

4 Bt 2n
 +2B+B 2t


e(t) = {I 1t2 2 x 4 . + .:'.} e(t

2 x 4 2n(nI) 0 

B4t 8 Bt I 0 
B2t4 B3t6 


={I+ 7 3t +2 +2 +-4) +25(!) + ... J e(t) 

Since B is a skew-symmetric matrix, the following identities can be
 

obtained
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B2 
 cl2 (a2 2 2%f) - I -a2 -a3I 

2 (a2 + 2 2 c) 2 
2I where c = a 2 

2
 

B3 
 = -e 2E 

B =cI 

In general
 

n-l
 
= (-1) 2 B for n odd
 

n
 

= (-1)2 c I for n even
 

2 4
Thus t2 2"t 3 tc -.. 
e(t) = {BI(L-) - 1 . 

2 3! 5!
 

c2 t2)2 4
 

21 
 4! e(to 

3t3 5t( 5 
2-B ........
.= c 2 1 - ++ 

51 _ . . {-Ic -) 3!2 

2 
+ I[Cos (I- )]} e(to)

2 0
 

Sin(2) + T[Cos()]} e(to)

2 2 -o={-Sin(-) +Ir l.1} 

kt2 1 ok/Jt2 
A3
 

e(t) si (A-3)
) + I[Cos -1e(t
k 4 ) o ) 

Equation (A-3) is the exact solution for the elements of the e vector
 

at
 
if the elements of.A in equation (A-i) are of the form over the time
 

interval 0 to t.
 



APPENDIX B
 

VECTOR AND MATRIX NORMS 

The norm of an N-vector * is a real, non-negative number, 

denoted by I 1lI, which gives an assessment of the size of the vector. 

This norm satisfies the following properties 

III > 0 if x #0 (B-i) 

(B-2)
Ilxil =0 if x 0 


IikxlI = Iki ixli where k is a scalar (B-3) 

IILxZlF 11dI + li-li (B-4) 

From inequality (B-4), the following inequality is deduced
 

FIx-yl F iI I- lXiI (B-5) 

PEi-yi >_ ly2I - Ilxil (B-6) 

The most commonly used vector norms are defined by 

N(1) ixi 1= lxii 
i I 
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N 

(2) 11? 1
2 = .x?]1/2 and 

i=l
 

(3) 11= max jxj
 

Similarly, the norm of an (NxN)-matrix A is a real, non-negative 

number, denoted by I1AI , which satisfies 

I1AII > 0 if A [0] 
 (B-7)
 

IIAII = 0 if A = [0] (B-8)
 

IIkAI = Ikl IIAII where k is a scalar (B-9) 

IIA+Bll < IJAII + IIB[I 
 (B-10) 

II1-I < I 1AllJ1]j (B-li) 

lABil < IJAll 11B11 (B-12) 

The matrix norms corresponding to the 1,2 and w-vector norms are, 

respectively: 

(1) jIAII max 
N 
I Jaijj (B-13)
 

j i=l
 

(2) JAIl 2 = (maximum eigenvalue of AHA)1/2 . (B-14)
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where A denotes the complex conjugate transpose of A, and
 

N
 
=
(3) IIAIIL max Ylaij (B-15) 

i j=1 



APPENDIX C
 

To prove that for proportional angular rates
 

(m)E(k) = E(k)P(m), for all positive integers k & m (c-l) 

first consider O(m)(k).
 

From equation (II-10), it can be shown that
 

i 
[a(m)K]

O(m) = ., and (C-2)
i=O i 

$(k) = 
p 

[a(k)K (C-3) 
i=0 

where K is a constant matrix defined by equation (11-4) and a(k) and
 

a(m) are scalar functions. Thus
 

[a(m)K i° [a(k)K~i } (C-4)
 

()$(k) ={ a . 0i! 
i=0 i=0 

Since a(m) and a(k) are scalar functions and K is a constant matrix, then
 

f [ [a(m)K]i } [a(k)K]' = [a(k)K]i { [ [a(m)KVi }  (C-5) 

-i=O i! i! i! i=O i! 
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Therefore
 

D= (m {)[a(n)K 31s [a(k)K] 1
 

i=0 i i=O i'
 

= -I 
= {[a(k)R11 { [a(m)K]1 

i=O i=O 2!
 

Si(k)4'(m) (C-6)
 

Next consider O(m)O(k). For proportional angular rate,
 

$(m)4(k) is defined as
 

a(m) a(k) 

D(m) (k) = E E (C-7) 

SinI a(m) I--a(k) KJI = a(k)]-- [a(m)](8--- (C-8)Since 


a(m) a(k) a(k) a(m) 

then (m) (k) = e2 6 2 E: 2 = z(k)'i(m) (C-9) 

Now consider O(m)E(k). From equation (111-25), D(m)E(k) can be
 

represented as
 

4(m)E(k) = @(m)[c(k) - $(k)] = O(m)O(k) - O(m)O(k) (C-10) 
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Substituting equations (C-6) and (C-9) into equation (C-10) yields
 

iD(m)E(k) = [-(k) - ;(k)] (m) = E(k)@(m) (C-i)
 



APPENDIX D 

DIGITAL COMPUTER PROGRAM FOR SOLUTION 

OF EXAMPLE 1 IN CHAPTER IV
 

DIMENSION TX(2), A(2,2),B(2,2),C(2,2)D(2,2)PHI(2,2) 
1,F(20,T,DT,X(2) ,XO(2)
 
DOUBLE PRECISION R
 
TX(i)=2.*DEXP(-I.DO)-DEXP(-2.DO)+DEXP(-i.DO )DEXP'(-2.DO) 
TX(2)=2.*(DEXP(-2.DO)-DEXP(-i.DO))+2.*DEXP(-2.DO)-DEXP(-i.DO)
 
WRITE (6,22) TX(1),TX(2)
 

22 FORHAT(IX,6HTX(it)-,El6.8,5X,6HTX(2)=,El6.8)
 
DO 100 K=5,11
 

F(2)=2.EO 
F(3)=6.EO
 
F(4)=2.4E1
 
F(5)=1.2E2
 
F(6)=7.2E2
 
F(7)=5.04E3
 
F(8)=4.032E4
 
F(9)=3.6288E5
 
F(10)=3.6288E6
 
F(11)=3.99168E7
 
DO 100 M=1,19
 
XO (1)=,
 
XO(2)=i.
 
T=.0005
 
DT=2.** (l-M)
 
TSTOP=.
 
A(1,1)=0.
 
A(1,2)=.*DT
 
A(2,1)=2.*DT
 
A(2,2)=3.*DT
 
DO 1 1=1,2
 
DO 1 J=1,2
 
D(I,J)=0.0
 
D(I,I)=1.0
 
PHI(I,J)=D(I,J)+A(I,J)
 
C(I,J)=A(I,J)
 
N=2
 
DO 3 L=2,K
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http:F(3)=6.EO
http:F(2)=2.EO
http:TX(2)=2.*(DEXP(-2.DO)-DEXP(-i.DO))+2.*DEXP(-2.DO)-DEXP(-i.DO
http:DEXP'(-2.DO
http:TX(i)=2.*DEXP(-I.DO)-DEXP(-2.DO)+DEXP(-i.DO
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DO 2 1=1,2 
DO 2 J=l,2 

2 B(I,J)=C(I,J) 
CALL MATMUL (A,B,N,C) 
DO 3 I=1,2 
DO 3 J=1,2 

3 PHI(I,J)=PEI(I,J)+C(1,J)/F(J) 
5 T=T+DT 

DO 7 I=1,2 
X(I)=O. 
DO 7 J=1,2 

7 X(I)=PHI(I,J)*XO (J)+X(I) 
DO 8 1=1,2 

8 XO(I)=X(I) 
IF(T.LT.TSTOP) GO TO 5 
R= ABS(X(1)-TX(L))+ ABS(X(2)-TX(2)) 
WRITE(6,23) DT,K 

23 FORMAT (IX,31-1DT=,F6.3,2HK=,12) 
DO 6 1=1,2 

6 WRITE (6,21) T,I,X(I) 
21 FORMAT(2X,22HT=,F6.3,7X,2HX(,12,2H)=,El6.8) 

WRITE(6,42) R 

42 FORMAT (10X,2HR=,D23.16,//) 
100 CONTINUE 

STOP 
END 

SUBROUTINE MALM-L (A,B,N,C) 
DIMENSION A(2,2),B(2,2),C(2,2) 
DO 1 I=1,N 
DO 1 J=1,N 
C(I,J)=o.o 
DO 1 K=1,N 

1 C(I,J)=C(I,J)+A(I,K)*B(K,J) 
RETURN 
END 



APPENDIX E 

DIGITAL COMPUTER PROGRAM TO COMPUTE 

THE FOUR PARAMETERS USING THE 

FINITE SERIES METHOD 

DOUBLE PRECISION A(4,4),B(4,4),C(4,4),OMEGA(4,4),
 
lE(4),EO(4) ,PHI(4,4)PHIXD,PHIYD,PHIZD,T ,D(4,4),DT,
 
10MEGO(4,4) ,E1,E2,AA,CC,EE,R,F(20)
 
F(2)=2.EO
 
F(3)=6 .EO
 
F(4)=2.4EI
 
F(5)=1.2E2
 
F(6)=7.2E2
 
F(7)=5.04E3
 
F(8)=4.032E4
 
F(9)=3.6288E5
 
F(10)=3.6288E6
 
F(11)=3.99168E7
 
AA=3.*(3.14159265/180.)**2.
 
CC=DSQRT(AA)
 
EE=CC/2.
 
EI=DCOS (EE) 
E2=DSIN (EE)/DSQRT(3.DO) 
WRITE (6.41) E1,E2
 

41 	 FORMAT(10X,3HE1=,D23.16,2X,3HE2=,D23.16)
 
PHIXD=3.14159265/180.
 
PHIYD=3.14159262/180.
 
PHIZD=3.14159265/180.
 
OMEGA(1,1)=O.O
 
OMEGA(1, 2)=-PHIZD
 
OMEGA(1,3)=-PHIYD
 
OMEGA(1,4)=-PHIXD 
OMEGA (2,1)=PHIZD 
OMEGA(2,2)=0.O
 
OMEGA(2,3)=-PHIXD
 
OMEGA(2,4)= PHIYD
 
OMEGA(3,1)= PIIIYD
 
OMEGA(32,)= PHIXD
 
OMEGA(3,3)=0.0
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http:FORMAT(10X,3HE1=,D23.16,2X,3HE2=,D23.16
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OMEGA (3,4)=-PHIZD 
OMEGA (4, 1)=PHIXD 
OMEGA(4,2)=-PHIYD 
OMEGA(4,3)= PHIZD 
OMEGA(4,4)=0.O 
OMEGO (1, 1)=O.0 
OMEGO(1,2)=0.O 
OMEGO (1,3) =0.0 
OMEGO(1,4)=O.O 
OMEGO(2,1)=0.o 
OMEGO (2,2)=0.0 
OMEGO (2,3) =0.0 
OMEGO (2,4)=0.0 
OMEGO(3,1)=0.O 
OMEGO(3,2)=0.0 
OMEG00(3,3)=0.0 
OMEGO(3,4)=0.O 
OMEGO(4,1)=0.0 
OMEGO(4,2)=0.O 
OMEGO(4, 3)=0.0 
OMEGO(4,4)=0.0 
DO 100 K=2,10 
DO 100 M=1,10 
T=.0005 
DT=2.**(l-M) 
TSTOP=1. 
FO (1)=1. 0 
Bo (2)=O. 
Eo(3)=0. 
E0 (4)=0. 
DO 1 1=1,4 
DO 1 J=1,4 
A(I,J)DT*(OMEGA(I,J) )/2. 

C 
C CALCULATION OF STATE TRANSITION MATRIX PHI 
C 

D(I,J)=0.0 
D(I,I)=1.0 

C 
C CALCULATION OF THE FIRST TWO TERMS OF THE STATE 
C TRANSITION MATRIX 

PHI(I,J)=D(I,J)+A(I,J) 
1 C(I,J)=A(I,J) 

C 
C CALC. OF PHI FOR P>2 
C N IS THE ORDER OF THE SYSTEM 
C (K=1)=NUMBER OF TERMS USED IN THE INFINITE SERIES 
C 
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N=4
 
DO 3 L=2,K
 
DO 2 1=1,4
 
DO 2 J=1,4
 

2 B(I,J)=C(I,J)
 
CALL 	MATMUL (A,B,N,C)
 
DO 3 I=1,4
 
DO 3 J=1,4
 

3 PHI(I,J)=PHI(I,J)+C(I,J)/F(L)
 
5 	 T=T+DT
 

DO 7 1=1,4
 
E(I)=O.
 
DO 7 J=1,4
 

7 	 E(I)=PHI(I,J)*EO(J)+E(I)
 
DO 8 I=1,N
 

8 	 EO(T)=E(I)
 
IF(T.LT.TSTOP) GO TO 5
 
R=DABS (E (1)-EI)+DABS (E2)+DABS(E(3)-E2)
 
1+DABS (E(4)-E2)
 
WRITE(6,22) DT,K
 

22 FORMAT(lX,3HDT=,F6.3,2HK=,I2)
 
DO 6 I=1,4
 

6 WRITE (6,21) T,I,E(I)
 
21 FORMAT(2X,2HTo,F6.3,7X,2HE(,I2,2H)=,D23.16)
 

WRITE(6,42) R
 
42 FORMAT (10X,2HR=,D23.16,//)
 
100 CONTINUE
 

STOP
 
END
 

SUBROUTINE MATMTL (A,B,N,C)
 
DOUBLE PRECISION A(4,4),B(4,4) ,C(4,4)
 

C 	 CALCULATE C(I,J) COEFFICIENTS
 
DO 1 I=1,N
 
DO 1 J=1,N
 
C(I,J)=O.O
 
DO 1 K=1,N
 

10 (I,J)=C(I,J)+A(I,K)*B(K,J)
 
RETURN
 
END
 

http:10X,2HR=,D23.16
http:FORMAT(2X,2HTo,F6.3,7X,2HE(,I2,2H)=,D23.16

