ELECTRICAL

i
o N 7 1 -
2 {ACCESSION 7u‘5vaa€h1 g {FHRO);
% I{ J { )
b - PAGES} . CODE
S (NASACR ORTMXTOR AD NUMBER) {CATEGORY}

TR IR
by |l ey
g ii‘ K 2

ENGINEERING EXPERIMENT ST
AUBURN UNIVERSITY g,

AUBURN, ALABAMA

Raproduced by
NATIONAL TECHNTCAE
| NFORMATION* SERVICE

Spnngﬁald -Va.: 22151 .



ON ERROR BOUNDS IN THE DIGITAL COMPUTATION OF

THE FOUR PARAMETERS FOR STRAPDOWN INERTIAY, SYSTEMS

PREPARED BY
GUIDANCE AND CONTROL STUDY GROUP
JOSEPFH S. BOLAND, III, PROJECT LEADER

TWENTY FOURTH TECHNICAL REPORT

DECEMBER 14, 1970

CONTRACT NAS8-20104
GEORGE C. MARSHALL SPACE FLIGHT CENTER
NATTONAL AFROMAUTICS AND SPACE ADMINISTRATION
HUNTSVILLE, ALABAMA

APPROVED BY: SUBMITTED BY:

CAEC gy ent”

Chester C. Carroll Joseph 8. Boland, III
Professor and Head Assistant Professcor
Electrical Engineering Electrical Eagineering




TABLE OF CONTENTS

FOREWORD. « v v o o s o o o« o o s a s o 2 s o 2 a2 s s s o s s o o iv
SUMMARY & v ¢+ v o 4 o ¢t o o 4 + o o o o o ¢ 5 2 o 2 s s o o s o ¢ v
PERSONNEL . 4 v & & v v 0 o o s o o s o o 5 s 8 s s s s 2 o « s s o vi
LIST OF FIGURES + ¢« v v 4 & & s o o o ¢ s o o s o o« s o o + & = « « +wii
LIST OF SYMBOLS + & v v v & 4 4 ¢ o 4 o o o o o o o o o o o o « & » viii
I. INTRODUCTION . . & 4 4 v v 4 a6 o o o s s s 4 s o a s o s » 1
IT, COMPUTATION OF THE FOUR PARAMETERS. . . . . . . ¢ v v & « &« & 6
Closed-Farm Solution
Numerical Integration Scheme
III. COMPUTATION ERROR BOUNDS. o v v v v « v o v v o o v o o o o« 17
Truncation Error
Roundoff Error
Roundoff Error in the Computation of the Four Parameters
IV. STUDY RESULTS . & v 4 4 4 v s o o v o o v v o v s s s o o . 61
Example 1
Example 2
V. CONCLUSIONS AND RECOMMENDATIONS . . . . . « « =« o & « o o o . 13
REFERENCES. . . v v v v v v b e e e e e et e e e e e e e e TT
APPENDIX Av v v v v v v v e 0 0w e e 80

APPENDIX B. . . . . & b s v v v e v e e e v e e e e s

ii



APPENDIX C.
APPENDIX D.

APPENDIX E.

iii

86

89

9l



FOREWORD

This report is a techmnical summary of the progress made by the
Electrical Engineering Department, Auvburn University, toward fulfill—
ment of Contract NAS8-20104 granted to Auburn Research Foundation,
Auburn, Alabama. This contract was awarded April 6, 1965, by the
George C. Marshall Space Flight Center, National Aeronautics and

Space Administration, Huntsville, Alabama.
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SUMMARY

A numerical imtegration scheme for solving the four parameter
vector differential equation is derived and investigated in this report,
The results obtained can be applied to a large class of numerical
integration schemes, since this class can be shown to be equivalent
to the derived scheme,

Bounds for the truncation errors and roundoff errors generated
by the digital computer in computing the four parameters using the
derived scheme are developed. S8tudy shows that the resulting error
bounds are useful in the determination of an optimal integration
scheme and sensor sample rate for a particular mission using a

given computer.
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I. INIRODUCTION

Navigation is that branch of art or science of directing the
course of vehicles. Tt involves the knowledge of present position, and
the direction and magnitude of motion with respect to other reference
points. Most navigation systems depend upon some external aid in ob-
taining this information, while inertial navigation systems are capa=
ble of deducing all this information from on-board measurements in
self-contained system. These on-board measurements are cbtained
means of sengors, such as accelerometers and angular rate gyroscopes
mounted to the vehicle. There are two methods in mounting these
sensing devices: the stabilized platform method and the strapdown
method.

In the stabilized platform method, the semsors of the inertial
navigation system are mounted on a stable platform. The platform is
kept inertially aligned with a predetermined set of inertial axes by
suspending in a system of gimbals. Therefore the resulting measure-
ments are in the inertial coordinate system.

In the strapdown methed, the sensors of the inertial navigation
systems are rigidly fixed to the vehicle and hence the resulting mea-
surements are in the vehicle coordinate system. Since navigation
equations are usually solved in the inertial coordinate system, it is
necessary to generate a coordinate tramsformation matrix that can in

turn be used to transform the measured acceleration vector in the

1



vehicle coordinate system to the inertial coordinate system. The
coordinate transformation matrix is generated by an on-board digital
computer. This computer utilizes angular rates obtaiﬁed from the sen-
sors, which are mounted to the vehicle, to compute the.transformation
matrix.

The coordinate transformation matrix; C, relating the inertial

coordinate system to the vehicle coordinate system is given by [6]
¥y = Oy (1-1)

where V. is a column vector with components measured in the vehicle
coordinate system.
EI is the same vector with components measured in the inertial
coordinate system, and
C is 'the square matrix of direction cosines of the inertial

axes relative to the vehicle axes.

There are three basic methods of representing the transformation
métrix C. These methods are
1. Direction cosine.
2. Euler angles (three and four angle methods).
3. Four parameter methods (Fuler parameters, quaternions, and
the Cayley-Klein parameters).
In each case the transformation matrix can be computed using a

set of first order differential equations which require as inputs the



measured angular rates about the three vehicle coordinate axes. The
four parameter method will be considered in this study since it has
fewer computer operations required for its implementation than the di-
rection cosine method and has no singular point as does the three
Euler angles method.

As shown in [1], there are three different methods (Euler's theo-
rem, quaternionms,and Cayley-Klein) in deriving. the same coordinate
transformation matrix as expressed by the four parameters. These meth-
ods also lead to the same set of first order differential equations re—
lating the vehicle body angular rates to the time rate of change of the
four parameters.

The four parameters may be defined by the application of Euler's
theorem, which states that any real rotation may be expressed as a ro-

tation through some angle, about some fixed axis, as

e; = Cos n/2
ey = Cos y Sin u/2
(1~-2)
eq = Cos B Sin u/2
e4 = Cos vy Sin u/2

where u is the angle of rotation and ¢, 8 and y are the direction
angles between the rotation axis and X, v and z axes of the inertial

coordinate system. The transformation matrix relating the initial



coordinate system and the vehicle coordinate system in terms of the

four parameters is

2 2 2 2
el—ez—e3+e4 2(33e4 elez) 2(&163+3284)
- 2 2 2 2 ~ _
C 2(e1e2+e3e4) e e2+e3 e 2(e2e3 elek) (I-3)
- 2.2 2 2
2(3234.ele3) 2(e2e3+e1e4) e1+e2.-e3--e4

The time rate of change of the four parameters in terms of the body

rates is

i, ., . .
el = E(-¢ze2 - ¢ye3 = ¢Xe4)

N . .
e, = §(+¢Zel - ¢Xe3 + ¢Ye4) (1=

é3 = %{+$yel + $X32 - ¢ze4)
e =-£G+$ e, - & e, + ¢ e.)
4 9 Tx1 y 2
where éx’ $y and éz are the measured angular rates of the vehicle with
respect to the inertial coordinate system.

Now equation (I-4) is to be golved by various numerical integra-
tion techniques using an on-board computer to update the four parame-
ters, which in turn are used to compute the coordinate transformation
matrix. In order to select an optimal integration scheme, to determine

the computer sizing and to evaluate the performance of the system re-

gquirements, it is necessary to determine the error introduced by the



computational process, The object of this study is to investigate the
computational erroxs introduced in computing the numerical solution of
equation (I-4) using a digital computer.

The main body of this study is divided into five chapters and five
appendices. The layout of subsequent material is as follows:

Chapter II derives the exact solutions for the four parameters
when the angular rates are proportiomnal to each other. A four parame-
ter algorithm is then presented for error analysis purposes.

Chapter I1II analyzes both the truncation and the roundoff errors
introduced in the digital computation of the four parameters using the
algorithm developed in Chapter II. Roundoff error bounds for the basic
aritﬁmetic operations are discussed. Technigques for determining the
propagated truncation errors and accumulated roundoff errors are de-
scribed.

Chapter IV presents the results of two selected examples,

Finally, Chapter V embodies the conclusions and recommendations.

Appendix A describes the application of the Peano-Baker method of
successive approximation. Appendix B discusses the vector and matrix
norms. Appendix C proves that ¢(m)E(k) = E(k)2(m) for proportional
angular rates. Finally, Appendices D and E contain computer programs

for examples in Chapter IV.



II. COMPUTATICN OF THE FOUR PARAMETERS

In this chapter, exact solutions for the four parameters when the
angular rates are proportional to each other are derived. A numerical

integration scheme is then selected for computational error analysis.

CLOSED-FORM SOLUTTION

As shown in Chapter I, the time rate of change of the four para-

meters is
&) = % Qe (t) (11-1)

where e(t) is a 4 x 1 column matrix consisting of the four parameters
ey 95 e3, e, and 2(t) is a 4 x 4 skew-symmetric mat?ix of body angular

rates as measured by the system gyroscopes

0 -5, -0, ~by
¢ 0 -4 ¢
ey = | _ * v (11-2)
by by 0 -4,
by ~by b, 0 |

A closed-form solution to (II~1) can be obtained if the angular rates
are proportional to each other. Then the angular rate matrix Q(t) may

be written in the following form:

Q(t) = KEf(x) (I1-3)



where K is a constant 4 x 4 coefficient matrix defined by

0 -k, kg ~k_
| E 0 ~k, k

ky, Ky 0 “k,

K ~ky k, 0

(I1-4)

and £(t) is a scalar function. Under the above-mentiored assumption,

the angular rate matrix at tq and t, can be written as

Q (tl) = Kf (tl)

and

Q(tz) Kf(tz)
and is therefere commutative for all t.

R(tl) g(tz) = Q(tz) ﬁ(tl)

‘The solution to (II-1) is given by [7, 8]

lt
Eilto Q{t)dx

e(t) e(t,)

1, (t
=" £{1)dt
= 62 fto e(to)

Let a(t) = fz £(7) dr,

then e(t)

I
0
1]
Pain
T+
S’

2 2 3 3
K+ 2 ()X L2 (B)K +

co-] ele)d
2 22.91 23.31 ©

(I1~5)

(I1-6)

(II-7)

(I1-8)

(11-9)

(I1-10)



Since K is a skew~symmetric matrix, the following identities can be

obtained.
2 _ 2 2 2 _ 2
K= = —(kx + ky + kz YL = - k°T
k3 = - k&
g4 = k41

in general

n—-1
K= (~1) 2 kn—l K for n odd
n
— 2.0
= -L)* & I for n even (11-11)
where
2 2 2 2
K=k " +k + k _
, TET K (I1-12)

Using these identities, equation (II-10) can be further simplified to

e(t) = {I +9~%)—K éll-t-l) (—k I)(——) + (égt—) (kK)C

+ @0 d) + @’ e'nd). et )

R a(t) 21 41
=M - @R T L s eyt g - )

K alok
k I 2

ELE ) + EEE ) - et

{I[Cos (a—(—gll—i)] +§ [sm(é%)ﬁ)]}g(to) (11-13)



Example
Let éx = agt
¢y = a2t
iz = a3t
then
0 ~ag —ay =3y
a 0 -a a
X = 3 1 2
a, al 0 ~ag
ay ~a, a, 0
2 _ 2
k aq + a, + a3
d
an 12 )
- ft -t _t
alt) = Io Tdt = 2 Io =5
therefore
2 2
- t
e(®) = {I Cos®5 ) + ¢ sin(E )} e(o)

The same result is obtained by using the Peano-Baker method of successive
approximation which is presented in Appendix A.

Both equations (II-10) an& (II-13) are exact solutions for the four
parameters under the assumption that the angular rates are proportional
to each other. Equation (II-13) is a closed-form solution which is
obtained by making use of the fact that K is a skew-symmetric matrix.

These exact solutions are expressed in terms of the angular rates. If
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rate-integrating gyroscopes are used for the inertial system, then the

outputs of the gyroscopes are the integrals of the input rates, i.e.
t .
404 =It ¢i dt for 1 = %, v, =.
o

For this reason it will be necessary to express the exact solution in
terms of the integral of the input angular rates. This can be developed
in the following manner.

For proportiomal angular rates, the angular rotations about each

coordiante axis can be represented by

¢, = k £(t)
¢y = kyf(t)
¢, = K E(1) . (TI-14)

Therefore, the integral of the angular rates may be written as
t
AR, = kift f{t)d(t) = kia(t) for i = x, vy and z. (I1-15)
0

Now expressing the arguments of equations (II-10) and (II-13) in terms

of Aex, Aey and 48,5 the following expressions can be obtained.
2 2 2-1
a(t)k ) a(t) (kx + ky + kZ)Z
2 2
1

2
(a0, + A9327 + Aeﬁ)-z
- (I1-16)
2
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0 -k, —ky “k
k, 0 -k k
K _a(t)_ * 7
k a(t)k ky kx 0 -—kz
R k_ 0 i
F-o G -A8 -48_
1 ne, 0 -88_ My
A8 Bey A8, 0 ~A8
A8 -A8 AB 0
L y 2 ]
_ A8 (II-17)
A
and
2R _ 49 (11-18)
2 2

2 2 2
where (AB)2 = A8 4 AB 4 A9
X y Z

and
Fo -AB ~AB ~AB
2 y X
AB 0 -AB AB
r9 =| Z ® v
X AB_ 0 Y
¥ X z
AB —-AB AB 0
| * y z -
Substitution of (II-16), (II-17) and (II-18) inte (II-10) and (IT1-13)
yields
AQ
@)
e(t) = e  elt) (I1-19)
and

e(t) = {I COSG%QD + %g Sin(%g)}_g(to) (I1-20)
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Both equations (II1-19) and (iI-ZO) are exact solutions for the
four parameters and are expressed in terms of the integrals of the input

rates.

Numerical Integration Scheme

As shown in Chapter I, the vector differential equation of the
four parameters in terms of the body rates relative to the reference

system is
&) = 2 a()e(®)
Then e(t) = e(o) + J° .;: a(t)e(r)ae (11-21).
Q

where f¥ 1 Q(t)e(t)dt can be solved by various numerical integration
o 2

techniques using a digital computer. A large number of numerical
integration schemes have been proposed for the integration of this class
of differential equations. The most commonly used integration schemes
are the FEuler algorithm, [4]

where
e[ (atl)T] = e[nT] + T &[nT] (11-22)

the Modified Euler algorithm,



13

where
e[ (m1)T] = e[nT] + % {&[nT] + .S?E_IZITJ_ (e[nT] + T &[nT])}

and the Fourth Order Range-Kutta algorithm, [3]
where

e[(@r)T] = elnT] + _]6: {m, + 2my + 2my + m,}

]
H
M

m, = I., Q[nT}{e[nT] +1m}
2 2

m
-1

m=§9mmgﬂ]+%%}

3 elnTl{elnl] + m )}

(I1-23)

(I1-24)

A different numerical integration scheme is considered in this study.

This can be derived in the following manner.

From equation (II1-19), the exact solution for the four parameters is

AO
o) = £27 e )

@(t,to)g(to)

(11-25)



14

where the matrix @(t,to) is called the state transition matrix.

A(—)(tz,tl) + Ae(tl’tog. Ae(tz,tl) A@(tl,to)
Since ¢ 2 2 =g 2 £ 2 ’
then
@(tzsto) = @(tz,tl) @(tl,to) for all t2, tl’ to

This is the group property of the state transition matrix. TFrom

this group property, it is evident that for t = mT, T > 0, the recursive

formula for equation (II-25) is

(AG[(m+1)T, mT ]
£ 2

e[ (m1)T] ) e[nT]

@[(m+l)T;mT]gjmT], m=0, 1,

There are several different methods of evaluating the state
transition matrix. The principal methods are [7]:

1. ThHe infinite series method

2., The inverse Laplace transformation method

3. The tramnsfer function method

4, The Sylvester's theorem, and

5. The Cayley-Hamilton technique

(I11-26)
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Among these methods, the infinite series method is most suitable for
digital computation [16]. AB
(==

In the infinite series method, the state transition matrix g?

is calculated by the infinite series

s0. 40y2 293
5(2)51+(-&23)+ G 2 L. (11-27)
2! 3.

Since the infinite series (II-27) is uniformly convergent for all

finite elements of A®[17], it can be computed by the truncated series

~ P (é@)i
o =) 27 (II-28)
i=o il

where AO =1
within prescribed accuracy using a digital computer, Thus, for
proportional angular rates, the numerical integration scheme for the
vector differential equation of the four parameters is

el ()T = 3[ @t1)T, nT]d[mT] , m = 0,I,.... (11-29)

&(o) = e(o)

where a hat (") over a quantity denotes that quantity is an approximation
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as a result of the finite series approximation,
T+ has been shown by Marshall [18] that the Euler, the Modified

Euler and the Fourth Order Range-Kutta algorithms are equivalent to

AD
the first two, three and five terms in the series expansion for SCE‘),
respectively. The authors also concluded that:

(1) taking k terms in the series expansion of the matrix exponential
series is equivalené to using a (k-1) st-order Range-Kutta numerical
integration scheme.

‘ (2) a computer program written using the first k terms of the matrix
exponential series will provide greater computational efficlency than a
program written using a (k-1) st-order Range-Kutta numerical integration

scheme. Therefore, by investigating the infinite series method, a large

class of numerical integration schemes are being studied,



IXI, COMPUTATION ERROR BOUNDS

In Chapter II, a numerical integration scheme for solving the
four parameter vector differential equation is derived. The numerical
integration scheme will produce, corresponding te each mT, a vector
éjmT), which is an approximation to e(mT), the exact solution of the
four parameters vector differential equation, The difference between
e{ml) and éﬁmT) is called the truncation error c(mT). The truncation
error is caused by the fact that only a finite pumber of terms of the
infinite series is used in the numerical integration scheme., Due to
the fact that all digital computers work with only a finite number of
digits, the computed solution e*{(mT) will in general not agree with
éﬁmT). The difference between éﬁ(mT) and éﬁmT) is called the roundoff
error r(mF). This chapter analyzes both the truncation error and the
roundoff error introduced in the floating-point computation of the
four parameters using the finite series approximation method. Vector
norms and matrix norms will be used to give an assessment of the size
of a vector or a matrix, respectively. Their properties and definitions

are given in Appendix B.

Truncation Error

As developed in Chapter II, the ezact recursive formula for the

four parameters is

17
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(AO[(m+l)Ti)
e 2 e[nT]

el @)T]

[ (w+1)T, mT]e[mT] (ILI-1)

for t+ =ml, T >0 and m = 0,1,2++-+« where the matrix exponential

(AO[(m+l)T]
e 2 is defined by
AOf(utI)T] o aof(mt1)T].i
. -z - z (_——"'i'"—"'—) (111-2)
i=0 il
and (AO[(t;+l)T1)OE I (I1I-3)

For digital computatlon, equation (III-1) is generated by the following

approximate recursive formula:

P . oA
gl = ) LR S
=0 il
= 3[(@+1)Tle[mT] (I1I-4)

The error incurred by using the approximate recursive formula will be

considered for both constant angular rates and time varying angular

rates.
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Constant Angular Rates

AQ[ (m+1)T]
=)

For constant angular rates, the matrixz exponential ¢

A
is a comstant matrix éjr. The state transition matrix &[ (ar+l)T, mT]

is also a constant matrix which can be represented by

I
m
[\

8 (w+1)T, mT]

= ¢ form= 0,1,*"" (IIT-5)
where K 1is given by equation (II-4).
From equation (III-1), the exact recursive formula for the four
parameters 1is
e[ (@FL)T] = ¢e[mT] (111-6)
By a process of iteration, the following equation is obtained

e[mT] = o™ e(0) for m = 0,L,*""- (ITI-7)

where e(0) is the initial condition of the four parameter vector and

@0 is defined to be the identity matrix.
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A

Let ¢ = ¢ + E (I11-8)
)
where % is the approximating matrix for the matrix exponential = 2
K .1
~ P
8= ) (2 ) (I11-9)
i=0 i-'
D
and where E is the difference between the matrix exponential ¢ 2
and the approximating matrix 3
K i
o0 —T)
r- ] O (I1I-10)
f=p+1 il
Substituting equation (III-8) into equation (III-7) yields
eln] = [o + E]™ e(0) (IIT-11)
Expanding equation (TIT-11} yields
- m=1 4 . R
efnt] = o e + (7 Tt rh) e
i=0
+ 0(3™ 2, E?) e(0) (1II-12)

where O(%m“z, E2) represents terms which are of higher order in E.

If the four parameters are computed using the approximate recursive

formula
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e [@1)T] = ¢ e[nT], (1I1-13)
then the soluticn e(mT) to equation (IITI-13) is

-~ Am .

e[mT] = & e(0) (I11-14)

The truncation error is defined as the difference between the
exact solution e[{mT] and the approximate solution ;{mT]. Subtracting

equation (ITI-14) from (IiI—lZ)'gives the propagation of the truncation

error c{(mT)

c@T) = e(T) - &(nT)
m~1 ) .
= (] 1% g §iye(0)
i=0

+ 0(8™ 2, £2)e(0)
The norm of the trumecation error is
m-1 . e
Hen ] <[] § &1 e et « |[e@]]
i=0

+ |lo@™2, E2)|]+]]|e©@)]] (111-15)
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For practical purposes, the higher order terms in E are much

smaller than the first term and therefore may be neglected yielding
Ay =1
He@n || < o= [1B]"F - [J2l] -He©]] (ITI-16)

for é%gi%% less than one, the norm of E is given by [19]
p

||E|| < lIKJ Ip‘l‘l * (T/2lp+l . (p+2) (III—-17)
- (pt+1)! (e+2) - |[x[[+ (z/2)

and it can be shown that

ol "t =) b o&emR
120 il
<  @-1) lx[|- /2 (III-18)

Substituting equations (III-17) and (III-18) into equation (1IT1-16) gives

le@D || <m - e@D-lK[|172 (III-19)
k[P . (p/2)P*t (o+2)
¢ (p+1)! T2y - R[] - (T/z)) - el

Equation (III-19) gives the truncation error bound in computing

the four parameters using the finite series approximation method for
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constant angular rates. .It is shown that for a fixed time period
t = mT, the truncation error bound decreases with decreasing time
increment T. For a fixed time inecrement T, the truncation error
bound decreases with increasing number of terms used in the numerical

approximat;on of the state transition matrix EKT/Z.

Time Varying Angular Rates

From equation (III-1), the exact recursive formula for the four

paraméters is
el @t+)T] = ¢ (wtl)T, nTlelmT] (111-20)

for t=mT, T> 0 andm = 0,1,2:+++ and from equation (III-13), the

approximate recursive formula for the four parameters is

e[ (@1)T] = o[ (ar+1)T, mT]e[mT] . (I11-21)
for t =mT, T > 0 and m = 0,1,2¢-++
By definition, the truncation errorlg(mT) is the difference between

the exact solution and the approximate solution. Hence

el @H)T] = e[ (@1)T] - el (+1)T] (111-22)
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To simplify the notation, let

¢ (m+1)T, mT] & (mt+1) ) (ITI-23)

o (mF1)T, wT] = &(ark1) (ITI-24)

]

and T be ommitted in [mT]

Define the remainder matrix E(mtl) by
E(ml) = o(ml) - &(mtl) (I11-25)

Now, substituting equations (IIT<20) and (III-21) into equation (III-22)

yields
cml) = a(mtl)e(m) - (m+1)é (m) (111-26)

Utilizing equations (II1I-25) and (III-22), equation (III-26) may be

expressed in terms of 5(m+1),gjm), E{(mt+l) and éﬂm). Thus

clmtl) = a(mtl)e(m) + E@)a(m) + E(rl)c(m)

form=0,1,2"**" (III-27)

Note that c¢(0) = e(0) - &(0)
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If the initial comditions e(0) are known, then equation (IILI-27) can
be solved recursively for m = 0,1,2+--:

Thus,

<(1) = E()e(0)

c(2) = 3(2)E(1)e(0) + E(2)e(l) + E(2)E(1)e(0)

c(3) = 3(3)$(2)E(L)e(0) + $()ER)E(L) + S(IDE(2E(L)e (D)

+ E(3)e(2) + E(3)E(DE(1)e(0) + EBIE(2)e(L)

+ E(3)E(2)E(1)e(0)
= $(BDEMe(0) + F(HE@E(1) + E(3)E(2)

2
+ 03(E )

m-1 mw-{i+2)
[ T & (m-k)] E(i+tl)e(i)
i=0 k=0

c(m
+ Om(Ez,é) form= 1,2¢4.¢ (I11-28)

where Om(Ez,é) represents terms which are of higher order in E(m) and
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i_lA ~ ~ ~
7 o{m-k) = d(m)d(m—1)+++> 3 (m—i+l) , i>0
=0
=1 , i=0 (111-29)
where I is the identity matrix.
It follows from equation III-28) that
m-1 m-(i-2)
Hem ] < 2 1 = [le@w|[]1 + [[EGD]] « {le@]]
i=0 k=0
+ ||0m(E2,‘£)H (I1I-30)

By using an approach similar to that used in the constant angular
rate case in determining ||é(m—k)|| and |fE(i+1)|| s and by neglecting
the higher order remzinder terms a closed~form solution for the

propagation of the truncation error bound can be obtained., Note that

for constant angular rotations, equation (ITI-30) reduces to

-1 m-(i-

2) .
e[| < I © = [lell1 - [[el] - [le@]]

i=0 k=0

<m - ™ L IRl - e ]] (II1-31)

This is in agreement with equation (III-16) which is derived by
assuming constant angular rates. Observe that the higher order

remainder terms Om(Ez,é) in equation (III-28) are generated by the
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product term E(m+l)§ﬁm) in-equation (III-27). Since for practical

purposes,
m-1 m~{(i-2} : .
[« He@o[|1 - [{E@D|] - [le@]] > |lo &0 ],
i=0 k=0

the higher order remainder terms may be neglected. Consequently

equation (I1I-27) may be approximated by

e(mkl) = d(wtl)c(m) + EmFl)e(m)

for m= 0,1,2++" (111-32)

Equation (III-32) gives the propagated truncation error which can be
avaluated by means of a digital computer.

An interesting form of solution for the propagated truncation error
can be obtained by expressing equation (III-26) in terms of &(mFl), c(m),
E(mtl) and e(m). Thus, by utilizing equations (ITI-25) and (I11-22),

equation (ITI-26) may be rewritten as

c(mtl) = o(mtl)c(m) + E(mtl)e(m) - E(mt+1)c(m)

form= 0,1,2"**" (III-33)

If the initial conditions e(0) are known, then similar to equation

(I1II-27), the solution to equation (III-33) is
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m~] m-(i42)
e = §J [ 7 s@k)] EG@HDed) - 0 (8%,
i=0 k=0

form = 1,2+++. (I1I-34)

where Om(EZ,é) represents terms which are higher order in E(m) and

i-1
T 6(m-k) = d(m)d(m-1)++++ O(m-itl) , 1 >0
=0
=1 , 1=0 (I1I-35)
Using the fact that
(1) e(i) = e(@)e(E-1)++++ &(1)e(0)
i-1
or e(i) = 7 @(i-k)] e(0) (I11-36)
k=0

and (as shown in Appendix C)

(2) for proportional angular rates

d(m)ECk) = E(k)o(m) for all positive integers k and m

equation (ITI-34) becomes
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- m-(1+2) i-1
e = } EGHD) [ 7 om-k)I[ 7 o@i-k)] e(0)
i=0 k=0 k=0
- 0_[E?,2] form = 1,2
or m-1 m—-1
cm) = ] EGEH) [ 7 o(m-k)] e(0)
i=0 k=0
k# (m-1-1)
- om[E2,<p] form= 1,20+« (III-37)

It follows from equatiom (III-37) ‘that

o -1
He ]| = ¥ |le@ ]| -+ ||e@x)[|1 « ||ec0)]]
i= k=
k# (m-1-1)
+ | [og[E%, 01|
form= 1,2+ (IT1-38)
AQ(i+1)
For |l 2 || less than one, the norm of E(i+l) satisfies
pt2
. AQ(1+1) |\ p+l
[eG+D || < | |==5—|P . (p+2) (I11-39)

AQ (i+2)

+1)!
() 2y - |22
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Equation (ITI-37) gives the propagated truncation error wvector
c(m) in computing the four parameters using the finite series
approximation method for time—varying, proportional angular rates:
Each element of c(m) can be determined by neglecting the higher ovrder
remainder terms, Equation (IIT-38) gives the propagated truncation
error norm, It shows that the truncation errérs depend upon such
factors as the initial conditions of the four parameters, the
magnitude of the angular rotations and the number of terms, p+l, used

in the numerical approximation of the state transition matrix.
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Roundoff Brror

Generally there are two different approaches in analyzing the
roundoff error in digital computation. These are the deterministic
approach and the statistical approach. The deterministic approach is
exemplified by Wilkerson's work [20-26] on determining maximum bounds
for the roundoff error. The statistical approach is advanced by
Henriei [27-31] and has been verified by entensive numerical
experimentation. Since the truncation error bound derived in the last
section is based on the deterministic approach, Wilkerson's approach
will be used in analyzing the roundoff error. The layout of this
section is as follows. The roundoff error for the fundamental
arithmetic operations will first be developed. Then the roundoff
error bound in the computation of the four parameters using the finite

series approximation method will be discussed.

Roundoff Errors in Floating-Point Computation [20,32]

III.1 MNotation

For any real number x, let x*% be its floating-point machine
representation., For floating-point computations, let f1[.] be the
floaring—-point machine pumber obtained by performing the arithmetic
operation specified by the parenthesis [7]. It is assumed that
computation proceeds from left to right.
IIT1.2 Floating-Point Machine Number Representation

In floating-point arithmetic, all numbers are represented in the
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computer by floating-point machine numbers which are of the form:
; b .
x% = (sign x) * & - a (II1-40)

where a is a terminating B-mary fraction satisfying the following

normalization condition
Lcac<t (II1-41)
B
b is an integer, ranging between -E to E, and B is the base of the
number system employed by the computer, The f-nary fraction a is called

mantissa or the fractional part of the floating-point machine number x.

It is represented by

a= ) agt (1TT-42)
whetre t is the number of B-nary digits a computer used for the
fractional part. The integer b is called the exponent or the charac-
ter which is given by:

b = [logg|x|] + 1 (I1I~43)

where the brackets [.] denote the largest integer not exceeding the

quantity inside the brackets, and 1ogB denotes the logarithm to the base B,
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The range covered by the magnitude of a floating-point machine

nunber x¥* is

@ He " < [xx| < (1 - 87 - gF

or B~ < |x#| < (@ - 8% . gF (ILI-44)
The range of the computer is defined by the interval
= ~t E -t E
R=[-Q-8) 8" , (1-8")" 81 (LII-45)

It is assumed that enough bits are allowed for the exponent so that
" no computed floating-point machine number will lie outside the
permissible range,
I1Y,3 Input Roundoff Error

Consider a real number x. The process of replacing # by a floating-
point machine number x% is called input rounding. Input rcunding can
wsually be achieved either by truncation or by rounding. In truncation,

the first t digits of the mantissa are retained and those digits

beyond the first t digits are dropped. Since x% =

t .
Asign X)'Eb-( Z aiB—l), it is evident that if x £ R, |x] 2_8_(E+1),

i=1

the input roundoff error is bounded by
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lx — x*| < g® -+ gt (II1-46)

Noting that Bb j_]xl * B, equation (IIT-46) becomes

1-t

2 = x| < [x] - 8 (I1T~47)
or fi[x] = x*
= x(1 + Sin) (I11-48)
where Iein] f_Blnt (IIT-49)
The above relation shows that if x ¢ R and |x| 3_Bd(E+l), then

the relative error of the truncated floating-point representation x*
of x is at most it

In rounding, the first t digits of the mantissa are retained
after a B/2 is added to the (t + 1)th digit. Therefore the input
roundoff error is bounded by

x - xx| < g” - (& gDy, (L1I-50)

2
Since Bb §_|x] * B, equation (III~50) may be expressed as

|z - x| < [x] - % . gt (ITI-51)
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or fl[x] = x*
= x(1+ g ) (III-52).
1, pl-t _
where ]einl <z B (III-53)

The above relation shows that if x € R and |x] 3_BH(E+1)’ then

the relative error of the rounded floating-point representation x#*

of x is at most.% -'Bl_t.

ITI.4  Addition and Subtraction

Consider the addition or subtraction of two floating-point machine

numbers x* and y* each with a t digit mantissa. Let

b t
x*¥ = (signx) "B ¢ () a 4 87 (III-54)
i=1 ’
b t N
y* = (signy) + B 7 . (.Z a, 87 (I1I-55)
i=1
bx; by
b t »
and fl[x* + y*] = z% = (sign z) -+ B Z . ( Z a_ P l) (ITI-56)

. z,i
i=1 ?

It is assumed that the sum (or difference} of x# and y* 1is computed
in the following manner. The exponents bx and by are compared and the
fraction of y* is right-shifted b, - bY places. The fractions atre

then added algebraically to form an intermediate sum IS. This
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intermediate sum consists .of (£ + 1) digits and a possible carry.
The extra digit is a guard digit obtained from the fraction which is
shifted right., After the addition, the intermediate sum is left
shifted or right shifted so that the resulting mantissa satisfies the
normalization condition, the exponent bX being adjusted accordingly.
Finally the resulting mantissa is truncated or vounded to t digits.
This gives a,. Rounding by truncation will be assumed from here on.
The process may be illustrated by three examples of addition of

machine numbers in 4 digits floating-point decimal arithmetic.

Example 1: < I8 <1

w |

f1[104(0.7414) + 101(0.3995)] 104(0.7417)
ay is shifted 3 spaces to the right and the addition takes place

in the form

4 guard digit
107 X 0.7414 O

+10% X 0.0003 9

104 x 0.7417 9

The intermediate sum is 104 X 0,74179 which is then normalized and

truncated to 104 X ,7417.

Example 2: IS > 1
£1[107(0.7419) + 105(0.6159)] = 106(0.1357)

The addition takes place in the form
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guard digit
10° X 0.7419 0

+10° X 0.6159 O

10° X 1.3578 0

The intermediate sum is 10° X 1.35780 which is then normalized and

truncated to 106 X .1357.

Example 3: IS <-%

£171074(.1000) + 107%(=.9999)] = 1075(.9001) for truncation
The addition takes place in the form
guarﬁ digit
10™% X ,1000 O

-10"% x .0099 9
-4

10 7 X .0900 1

The intermediate sum is 10_4 X .09001 which is normalized and

truncated to 10_5 X .9001.

t s
If the computed sum is (sign z) - B z . ( Z a, iB 1)
i=1 >

then it is evident that the magnitude of the error is bounded by

b
|(x* + y%) — fl[x* % y*]| <8 z, B't (III-57)
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b
Since B-z < |(xx 2 y*)| - B for (x* £ y¥%) # 0,

equation (III-57) may be rewritten as

|Get 2 %) ~ £1Ix 5 y#]| < G+ yoy] - g2

or f1lx* ¥ y*] = (x* + y*) ({1 + §) (ITI-58)

where
ls] < sl t (I11-59)

Thus the relative error of the truncated sum (6r difference) of x¥ and
v#* is at most gl-t,
ITI.5 Multiplication

Consider the multiplication of two floating~point machine numbers

x¥* and y* each with a t digit mantissa. Let

b, ot L _

x% = (gienx) * B ¢ ( Z a, iB ) (TI11-60)

=3 ?

b t .

y*% = (signy) + BY - () a, 1670 (1I1-61)

i=1 77

.bP t _a
and fl]x* X y*] = p* = (sign P) *+ B " ( Z a, iB ) (TTT-62)
i=1 *

It is assumed that the product of x* and y* is computed in the
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following manner. The exponents b, and by are added together and the

product of + ] t

-1
izl %x,i B and-i£1 ay,i B

™ ig then computed. The

resulting intermediate product will have a fractional part of 2t or
(2t ~ 1) digits. This product is normalized if necessary by a left-
shift, the exponent being adjusted accordingly. The resulting product

is then truncated to give a t digit mantissa of the computed product P*.

Example
£1].1303 X .1003] = 10~ x 1306

Absolute error £ [,1303 X .1003 - £1[.1303 X .1003]] = .909 X 105 . 107

Relative error = ](.1303 X .1003) - £1[.1303 X .1003]] _

-3
(.1303 X .1003) .696 X 10

If P* ¢ R, then it is evident that the magnitude of the roundoff

error is bounded by
bP -t
I(x* X y%) = flj=s X y*]] < B ‘B . (1II-63)
P .
Since B ﬁ.]x* X y*] * B, equation (ITI-63) may be expressed as
Tl X y*) - £1lx% X y*1] < |xk X yx] L gET

or Fllx* X y*] = (x* X v%)(1 + &) (II1I-64)

where |E| < g1t (II1-65)
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Thus the relative error of the truncated product of x* and y*
is at most Blﬁt.
1IT.6 Division
Consider the division of two floating-point machine numbers x* and

y* each with a t digit mantissa. ILet

b t .
x* = (sign x) * B . { Z a . B : (I1I-66)
i=l X,1
by t .
y* = (signy) * 8° . () a ; B #0 (IT1-67)
B i=l y!
bp E =
and f1]x* + y*]= D* = (gign D) « B = +( ap 4 B (I11-68)

i=1 °

It is assumed that the quotient of x* divided by y* is determined
in the following manner. The exponent by is subtracted from by,. The
mantissa of x* is then divided by the mantissa of y*. If |a;| E_]ayl .
then the resulting quotient fraction is normalized.by a right-shift
and the exponent is adjusted for the shift. Finally the quotient
fraction is truncated to t digits.

Example
£1[107® ¥ .9.37 + 1072 x .1312]

£1[107% X (.9317 + .1312)]

£1[1073 X .696417....]

10-3 X .6964
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Absolute error =| (10~6 X .9137 : 1072 X .1312)
~ £1711076 X .9137 + 1072 x .1312]]

.17 X 1077 < 10~7

Absolute error

m

Relative error

(10® x .9137 » 102 x .1312)

= .24 X 104 . 1073
If D* ¢ R, that it is evident that the magnitude of the roundoff

error for division is bounded by

b
| Ge# & y*) - £llx% ¢ y*] < g © - g7C (III-69)

D
Since g f_]x* + y*[ + B , equation (III-69) becomes

i-t

als

[ % 2 y%) - fllx* & y21]| < [x* 2 yx| - g

or fllx* + y*] = (x* + y*)(Q + n) . (11I-70)
where |n] < gl-t

Thus the relative error of the truncated quotient of x* and y*
is at most Bl™T for v* not egqual to zero.
III.7 Extended Additioms

Consider the addition of a sequence of n floating-point machine

numbers x;*, xz*,----;x* .
n
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Let 5] = filx]]

*
= X7

£ _ * #
and 8; = flISi—l + x

i] for 1> 1 : (ITI-71)

Then by applying eguation (ITI-58) to equation (ITI-71), the computed

sum for the first two terms of the sequence can be represented as

* % ook %
Sy = flle + x2] = xl(l + 89 + x2(1 + 62)

where |62| E_Blut (I11-72)

Similarly the computed sum for the first three terms of the sequence

can be written as

v
0l

% %
flI82 + x3]

% %

890 1+ 85) + x,(L +85) (I11-73)
1-t

where ]63] < B

Substituting equation (III-72) into equation (ITI-73) yields

T

* _ % % -
83 = xl(l + 62)(1 + 83) + x3(1 + 63) (IT1-74)
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It follows that the computed sum for the sequence of n terms can be

represented as

v
i

% %
f1] an‘l -+ xn]

b

x’i(l + 6,00 F89)00- +.5n) +
(L + 8,0 (1 + 8) e+ (1 +8) +
x:(l + 63)(1 + 54)----(1 +8 )+ e +

*
Xn(l + Sn) (I1I-74)

1-t

where ]6! < B for i = 2,*+**n.

Expression (III-74) shows that the upper bound for the roundoff

error is least Wh;n the smallest terms are added first, since the
largest factor, (1 <+ 62)(1 + 63)°‘-'(l + Sn), is associated with the
smallest term.
III.8 Extended Product

Consider the multiplication of a sequence of n floating-point

b

machine numbers X1 xz,xa,....,xn.

Let pi fl[xi]



44

*
and p:.= fllpisl xﬁ] for i > 1 (II1~75)

Then by applying equaticn (III=64) to equation (III-75), the computed

product for the first two terms of the sequence can be represented as

*

Py

*
£1py x;]

* »
x| xZ(l +T,) (TII-76)
where !;2[‘§_Bl—t

Similarly the computed product for the sequence of n terms can be

expressed as

& 3 *
Pn = [Pn-*l Xn]
*® *
=x x’z'*--uxn(l + L)L+ L) (L +T) (I1I-77)
where IC1] i_gl"t for i = 2,+>--n.

The actual error incurred will depend on the order in which the
multiplications are computed, but the error bound given by equation
(IIT-77) is independent of the order of multiplicationm.

IIT1.9 Roundoff Error in Matrix Operations

Based upon the previous derived error bounds, it can be shown that
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if k 1is a scalar, A and B are n X n matrices, then

1A = Jag 5 (1 + ey 44)] ‘ (III-78)
£1[A% + B¥] = [(a], + sz) @+ 6,1 (I11-79)
£1[k* A*] = [k*a) S+ )] (111-80)

%*
where aij’ aij and 'bij denote the (i,j) element of the matrices

A, A* and B respectively. The i 1 's are in general different but
» 1J

i-t
all are bounded by B . The same is true for the Gij's and gij's
For matrix multiplication, consider the multiplication of two

n X n matrices A* and B¥* with elements that are floating-point machine

*

numbers. Let cij be the (i,j) element of A%B* which can be represented

by

ate

% *
bE, + cer g% -
flIcij] £1[a* i1 1 a12 b2] in bnj] (II1-81)

By applying equations (I1I-64) and (ITI-74), eguation (III-81) becomes

fz[c ]—[alb (1+§)(1+a) -(1+an)+

& %

aizsz (1+c2)(1+62)----(1+an) +

a b (L HT )+ 85q)e-e (L + 82) + +
13733 3 3 37 7 e
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% %
a b A+z)(1+8)] (IT1-82)
in nj n n )

where |;i| < pl-t i=1,....n

and o | < 8" i=2,....n

Equation (III-82) can be written as

n
* = * * -
flfcij] 1 + o4 kzl 2%, bys (III-83)
n .
for k£1 alk bkj # 0 and fl[ciJ #0
where I-t_p
(1-8 Sl4o, @+ gt-tyn (III-84)

Since the roundcff error bounds to be derived do not depend
critically upon whether equation (III-82) or equation (ITI-83) is used,
equation (ITI-83) is assumed without loss in generality. The error
bound for the last expression is very conservative, but it greatly
simplifies the derivation of roundoff error bounds for extended
matrix operation.

Now consider the roundoff error made in raising a n X n matrix A*
to its pth power where p is a positive integer. Comsider first the
computation of A%A%*, Tet aiéz) be the (i,j) element of A*2, From

equation (III-83), the computed value of a%?z) can be represented as
1]
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£1la P71 = 1@ + oDy 2* @] (III-85)
N ij ij
Where.
a - Bl,_t) < (1 + oszJl.))n < (1 + sl“t)“ (I1I-86)

Consider next the computation of A*fl[A*z]. Let a%SS) be the
1]
(i,3) element of A*3, TFrom equation (III-82), the computed value of

a:§3) can be represented as

%(3)7 - % (2) (1) cees
flIaij ] Jjail alj {1 + alj Y+ r,-l) {1 + 52) 1+ 5n) +

a-}c a*.(?,)(l + 0'.(]:))(1 + Cz) {1+ 52) vans

1+g )+
12 %23 2 @ *sy

a} a*_(-z) 1+ QS)) (L2 )@ +8) oo

(1+6)+""
I

3j ]

* - 1

& 2D Py s eoa+ e (ITTI-87)

in nj ] 3 n

-1 1~
where (1 - Bl"t)n <1+ aij) < {1 +8 t)n

lz;l < it i=1,....n (111-88)
|5, | < gt i=1,....n0.

For the computation of roundoff error

rewritten as

bounds, equation (III-87) can be

+
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Fllag 03 = 10+ o2 )2y ] (111-89)

where (1 - sl‘t)zn <1+ aj(j) < @+ 31“*-) 2n

Similarly, .it can be shown that if p is an integer

f1la  ®] = 10 + o (P 1)y )y _ (111-90)
ij ij
where (1 — ﬁl—t)(p*l)n £~1 + ig l) < (1 + Bl"t)(P’l)n (I1T-91)

Roundoff Error in the Computation of the Four Parameters

Now ceonsider the roundoff error incurred in the floating-point
computation of the four parameters using the appro%imate recursive
formula. Erom equation (ITI-4) and using the same rotation as
defined by equation (III-24), the theoretical approximate recursive

formula is

it

. E @elml)
e (mtl) ) &m)

i

& (m+1) & (m) m=0,1,.... (III-92)

To compute §1m+l), the theoretical approximations & {m¥l) and éﬁm)
. " .
are computed first giving the computed approximations ®*6m+1) and e*(m)

~ g
respectively. Then 8% (m+l) is multiplied by & (m) to give e (m+1)
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Hence the computed values of _’é_(m+l) can be represented as
e¥(mHl) = £1[2*(mkl)e*(m)] (I1I-93)

f\* ata

Let ¢ij (m+l) be the (i,3) element of & {mt+l) and eg(m) be the ith
% " -

element of & (m). The computed value of ei(m-l-l),e’; (mt1l), can be

represented as

~ P %
az(m+l) = ¢il(m+l)e1(m) 1+ ?;l) 1+ 52) 1+ 53) 1+ 64) +
ok ~
$i2 (DS @ (L + £) (L + 5,) (L + 630 +5,) +
835 (MBS @ (L + 1)L+ 5 + 8,0 +
*®
G4 HLE @) (L + ¢ Q@+, (TIT~94)
Hence
oF (i) = 5 o
e = ¢, H)e (m) (1 +
;zz (k1) (m) (1 +

$:3(m+1)é’;(m> A+, )

~k R
¢14 (m+l)e 4 (m) {1 + o, 4) (111-95)
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where (1 —-Bl‘:.t)4 R <@+ Bl_t)4

1

&1—4:) 1-=t) 6=3

- S s1to,z s (G = 2,3,4)  (131-96)

Therefore, associating the Ffacter (1 + Gij) with @*ij (m+l), equation

(ITI-93) can be rewritten as
e ak ~% )
e (m+l) = [¢ (mt1) « (1 + 0,.)] e (m) (II1-97)
- ij iy’ =

It will be shown in section ITI-10 that
!‘.* _ ~ _
¢ij (m+l) « (1 + c;ij) = ¢,ij (mt+l) + i3 {m+1) (111-98)

where rij(m+1) is called the local roundoff error. Substituting

equation (III-98) into equation (IIT-97) yields

&* (mr1) = [q?ij (@H) + g (1) 1e™® (m) (1TI-99)
Let Ri{mt+l) = Irij(m+1)], then equation (IIT-99) can be rewritten as

& i) = I8 (L) + R(m+1)1e* (m) (III-100)

By a process of iterations, the solution éf(m) for equation (III-100)

is given by
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o m—-1 . N
e (m) = Eﬂo[é(m_k) + R(m-k)] " (0) (T1T-101)
where

m=l ~ n .

« [3(mk) + R(e=k)] = J3(m) + R{m)][e(m~1) + R(m=L)]....

=0

.. I3 + R ,m>0
=1 , m=0 (I1I-102)

If the initial values of e(0) are equal to the floating-point machine

values, then equation (III-101) can be written as

=1

©8¥m) = { 7 [8(mk) + R(m-k)]}e(0) (111-103)
k=0 =

Expanding equation (III-103) yields

s m-1_ m-1 m~(3i+2) i-1
e ={rowk)+ }I 7 omk)] -  REH) + [ 7 ¢(i~k)]
k=0 i=0 k=0 k=0

+ 0_[R?313 - e(0) (T11-104)

Equation (III-104) gives the computed sclution for the four
parameters using the finite series approximation method. The theoretical

approximate solution éjm) for the four parameters can be determined

from equation (I1II-92) by the same process of interation used to obtain
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equation (III-101). Thus

m=1 ~ -
Em) = L 7 a(mk) } © e(0) (III-105)

k=0
The difference between the computed solution éf(m)\and the theoretical
approximate solution éﬁm) ig defined as the accumulated roundoff
error. Hence, by subtracting equation (ITI-105) from equation (IIT-104),

the accumulated roundoff error r(m) is obtained. Thus

)= &) ~ &(m)

m=1 m—»(i+2),\ i—‘lh
= JI ® %m<k)] c RGH) - I 7 8GEK)] - 2(0)
i=0 k=0 k=0
+ 0 IR%] - e(0) (I11-106)

It follows from equation (III-106) that the norm of the accumulated

roundoff error is given by

m—1 m—-1

@] < ] RG] - Ly [[360]] - [12O))
k# {m-i-1)

+ |]0,[R2,81]] + |]e(®)]] form = 1,2,.... (III-107)

For practical purposes,
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m-1 m-1 R
L IRGD[[I n [[e@-k)]]1 + [|eO)]] >> ]|04IR2,31|[ - ||e(0)]]
i=0 k=0

j# (m-i-1)

Therefore, the higher order terms in R may be neglected yielding

m-1 m-1
x| < } [IRGEFD|] - [ v [|é@0)]|] - ||e(O]]
i=0 k=0
k# (m-1i-0)
form=1,2,.... (II1~-108)

Equation (III--108) gives the accumulated roundoff error norm in
computing the four parameters using the finite series method. It
shows that the roundoff errors depend upon such factors as the
initial conditions of the four parameters, the magnitude of the

angular rotations and the local roundoff errors.

IIT-10 An Example of the Procedures for Bounding the Roundoff Error
Norm r{m)
Consider the computation of the four parameters for constant
angular rates. From equation (III-8), the approximate state transition

matrix ¢ for the matrix exponential sKT/2 is

=1+ KT/2 + (KT/2)2f2 +oeeee (RI/2)PE (1II-109)
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£)

for i = 2,3,.... p. Let k{%) be the (1,j) element

where f4 = %

1
.

of KIZ Then the (i,j) element of & can be represented as

b3j = bgg + k(j)T/Z + k(z)(T/2)2f Foreee 4 kég)(T/2)£f£ TR
+ k8 (z/2)2s (1I1-110)
13 P
whereAJ=l for 1 = j

]
]

for i # j

The application of equations (III-48), (III-77) and (III-90) leads to

£2[k (,ﬁ)] = (1 + Ot(.E—l))k(.ﬁ)

£LIT] = T(L + &5 o) (III-111)
g[8 = 8L + ¢ 2
T
£2028] = 281 + ¢ 2
2
and £L[fp] = £,(1 + ¢ )

)



55

_¢ 504 (£-1) 504"
vhere (L - g~ ° slta, < @+ g t)sg *
@ - st slte o @+ g™ %) (11I-112)
20 1-t, 28-1
(l~Blt)z£l§_1+eT{ei(1+B )
- T c1 e, <@ B
) :
and (1-pg By cl+e < (1+gdD
—— f —
£
Hence
@, oL W,k _
f!_[kij (T/2) fﬂ] = kij (T/2) fﬂ (1 + 3y ,f.) (III-13)
where (1 - gi~5)y88-2 _ g 4 (1 + gl-ty8e-2 (1II~114)
B SET e LS y

Now, the computed wvalue of a’ij can be determined by applying equations

(III-74) and (ITI-113) to equation (III-110). Thus

(1) ) 2 L
13 = b4 (1 +ey) + kg T/2 (F ap_l) TRy @DE,A €2’

() 2
T Rys (/LA + Ep—f,) Foann
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+ ki‘.’) (T/2)Pf (L +¢ ) (I1I-115)
where (1 - Bl_t)P <1+ EP < 1+ Bldt)p

lte, =@+ pl-t)y-14P £or p = 2,3,....p.
It follows that

% (1
. . +o,.,) = A..(1++ + k,. R
¥ (1 clJ) 15¢ cp) k]_J T/2(1 + ?;P_l)

+ k(z)

2
e + + ...
UDENER IS

(£) £
* Ky (T/2)7E, (1 + r;p_E) + oo
4P (/P51 + ) ) (I1I-116)
13 P %o
where (1 + gl HPFT . 44 g, < (L4 gL=typ+6-3 (ITI-117)

(1 + gLty PHOTE-3 st g™ty (PH4)+6-3 (I1I-118)
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and (1 + gty (7L-14p)+6-] <1+ top < (1 + pl-ty (7L-14p)+6-j

j = 2,3,4, (III-119)
Now, if 1 dis an Iinteger and i - Bl't < + 1, then
A= 1@ plHt
may be replaced by the simpler inequality [20]
lz] <10 (1II-120)

where ¢ = 1,06 Bl-t

Therefore, inequalities (III-117), ¢ITI-118), and (ITI-119) may be

replaced by the following inequalities
lzpl < (pt6-6) o (III-121)
[2pog| < GH10-D) o (ITI-122)

|zp-p| < (lr5+p-3)o (ITI-123)
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Equation (II1-116) may be rewritten as

~ 2)
= A, (1) ¢ 2
¢i‘(l + cij) gt ki3 T/2+ Ky @)%, + ...

j 1
+ kL ;
kij) (T/2)£f£ cers

(p) P
+ kij (T/2) fp + rij

= %ig t ¥y (I1I-124)

where the local roundoff error Y4 is bounded by

lrijl < ol(pt6-1)44, (p+10—j)|k3-(_;:)| T/2 + (19+p-j)|1<:§§)| (T/2)2f2 oo

v oot (7RF5tp=3)| kj(ja)] (T/2)'€f£ +....

J

voeot (8pt5-3)| kg)| (:!:/2)pr;| (III-125)

Since j > 2, inequality (III-125) may be rewritten as

|zaslal@ringg + @) 83| (@/2) + Erine?

2
3 | (m/2) £, +

ceve + (pF7 +3)| k%ol (m/2)tp+ ...

o+ (8pr3)| k{B)] (T/2)PE,] ' (III-126)
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Let |R| denote the local roundoff error matrix with elements |ti4]» then
IR] < ol (pH4)I + (p+8) K| (T/2) + (p+l7)|K|2(T/2)2f2 + ...
c+ Erred) k]S /2)te + L
.t (8p+3)|K]P(T/2)PfP] (I1I~-127)
It follows that
[IR]| < ol(ta)1 + (p+8)||K|]| (T/2) + (p+17)||K||2(T/2)2f2 ...
v+ e | [&| B a/atepr L.
oo+ (83| K[| P(1/2)P8 ] (I1I-128)

p . .
since | ||¥]|Lr/pyte, < o X172

i=0

it can be shown that:

Rl < ot HEIT2 0o gy rvaer) x| oy TEH 272

(TII-129)
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Using the fact that for constant angular xate

m-1 m-1 i -
LD ek [[1 <m e(m D] |/2

i=0 k=0
k# (m—i-1)

(I1I-130)

and substituting inequalities (III-129) and (III-130) into inequality
(III-108), the accumulated roundoff error norm ||x(m)]|| bound is

“.1.'.(“‘)” <m E(m—l)HK”T/Z . g[(P+3)E||K[|T/2 + 1....2”1(_“']_1/2

+ 7| K] | (T/2)e| x| IT/2]- [|ecoy ] (TTI-131)



1V, STODY RESULTS

In order to check the validity and to demomstrate the applicability of
the analytical results developed in the preceeding chapters, two exam-

ples will be considered in this chapter.

‘Example 1

Consider the following first order linear fixed autonomous system

(Iv-1)

where x is a two dimensional column vector and A is a constant 2 x 2

matrix given by

0 i :
(IV-2)

Let the initial conditions for equation (IV-1) be specified as

xl(O) 1
(Iv-3)

The solution of equation (IV-1) at t = 1 sec. is to be computed using
the following recursive formula:

61
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x[nr] = A3 (m « 1)T] (TV=4)

formT =1, T > 0 and m = 1,2..., and eAT 15 to be computed by the

truncated infinite series

P .
A oy alrt
i=0 1!

e

(IV-5)

It is desired to determine the actual computational error norms and the
theoretical computational error norms of x(1) so that the two error

norms can be compared.

Actual Computational Error Norm

A digital-computer program is written to compute the actual com—
putational érror norms. The program is written in FORTRAN IV and has
been run successfully on the IBM 360/50 digital computer at Auburn Com-
puter Center, Auburn, Alabama. The actual cowmputational errors are
taken as the difference between the computed values of x(1) and the
theoretical values of x(1). The computed values of x(t) are obtained
by implementing equation (IV-4) and equation (IV-5). The values of
x(1) are then computed for p = 6,8 and T = 2(1 - i), i=1,2,...10,
using single precigsion (six hexadecimal digits or six bytes). The
theoretical values of x(1) are determined by using the Laplace Trans-—

formation method. They are given by
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-1 -2

- 5"2) + (aml - )

xz(l) 2(9”2 - Egl) +~(2€"2 v~a_l)

xl(l) (2¢

and are computed in double precision (14 hexadecimal digits). The re—
sulting actual computationél error norms are ploited in Fig. 1 as a
function of the time increment T for p = 6 and 8. Note the shape of
the characteristic curve of the actual computation error norm. It is
observed that minimum computational error mnorm occurs at T = .125

second and T = .25 second for p = 6 and p = 8, respectively.

* Theoretical Computatipnal Error Norm

From equation (IIT-19), the norm of the truncation error is bounded

by

wemm Al TP s ]
(p + 1)1 e+ 2! - ||a]]r

* Hx]]

Following a similar technique used in deriving equation (IIT-131) and
noting that T, nl!, and the elements of A are machine numbers, it can

be shown that the norm of the roundoff error is bounded by
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1072 [ LOG-LOG PLOT

1077 | Optimal T for p=6 is .125
Optimal T for p=8 is

Error Norm

0l .1 .125 .25 1
T(sec)

Figure 1. Actual computational error norms as a function of time
increment for p=6 and p=8 on a H-bytes fractional computer.
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m = 1)+ |]A]]T. |14l ]z
mee -{pce

+ 0I2(_e:l |allr -1 -}

|allz1 = |]al]

+ 2010 + | |a]zs! 111

131z -

The theoretical computational error norm is then the sum of the trunca-
tion and roundoff error morm. The three norms are computed for p = 6
and 8. The resulting error norms are plotted in Fig. 2 as a function
of the time increment for p = 6 and 8.

From Fig. 2, it may be seen that minimum theoretical computational
error occurs at T = .125 second and T = .25 second for p = 6 and p = 8,
respectively. This is in good agreement with the experimental results.
Note also that for T greater than the optimal T, the computational error
is dominated by the truncation error and the roundoff error can be ne-
glected. For T less than the optimal T, the computational error is dom-
inated by the roundoff error and the truncation error can be ignored.
This shows that there are essentially two regions of computational er-
roxr. These are, due to their origin, the truncation region and the
roundoff region.

Fig. 2 also illustrates that, in the truncation region, the coﬁr
putation error is a function of both the time increﬁent T and the order
of the finite series p. Decreasing the time increment decreases the
computational error. Increasing the order of the finite series p also
reduces the computational error and increases the slope of the trunca-
tion curve, In the roundoff region, the computation error is also a
function of both time ipcrement T and the order of the finite series p.

Increasing the time increment results in a lower computational error.
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1 |- LOG-LOG PLOT

=8
Truncation
error
p=8
p=b p=8
lO"l — Roundoff
error
y
1’ /
1072 I optimal T for p=6 is .125 L K

Optimal T for p=8 is .25

—————— Computational
error

10~

| ] ]
.01 W1 1
T(sec)

Figure 2. Theoretical truncation, roundoff and computational error norms
as a function of time increment for p=6 and p=8.
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Decreasing the order of the finite series also decreases the computa-—
tional error. Notice also that the slope of the roundoff error lime is
approximately minus one which compares favorably with the experimental
results.

The theoretical computational error curve is compared with the
actual computational error curve in Fig. 3 for p = 8. It shows that the
theoretical error norm is larger than the actual error norm. This will
always be true since the theoretical result is an upper bound on the

error.

Example 2

To check the theoretical results derived in Chapter III, the
floating-point computation of the four parameters using the finite se-

ries method is comsidered.

Actual Computational Error

A digital-computer program is written to compute the actual com-
putational error. The computed values of e(t) are obtained by imple-
menting equation (II-29) for angular rates of one degree per second
with g?(O) = (1,0,0,0). The values of x(1) are computed for
p=2,3,...10and T = 2(1 - i), i=1,2...10, using double precision
(14 hexadecimal digits). The theoretical values of e(l) are determined

from equation (II-13)
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Figure 3. Theoretical and actual computational error norms as a funetion
of time increment for p=8.
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e ) Cos (/3 ©/360)

e, (1) (1/¥3) sin(/3 =/360)
e, (1) i (1/¥3) sin{/3 w/360)
e, (1) (1/¥3) Sin(/3 m/360)

The computed values of gﬁl) and the theoretical values of e(l) are com-
pared so as to obtain the actual computation error. Some of the re-
sulting actual computational error norms are plotted in Fig. &4 as a
function of the time increment T for p = 2,3,4 and 7, Notice that be-
tween T = 1 and T = .001, the computational error is dominated by the
truncation error for p = 2 and is dominated by the roundoff error for

p = 7. It is observed that minimom computational error norm occurs at

4

=277 second, T =2 ', T = 2_2, and T = 271 for p=3,p=4,p =35,

and p = 6, respectively.

Theoretical Computational Error Norm

The norm of the truncation error is obtained from equation (III-19)
and the norm of the roundoff error is obtained from eguation (TII-131).
The norm of the theoretical computional error is computed by adding the
truncation and roundoff error norm. Some of the results are depicted
in Figures 5 through 7.

Fig. 5 shows the theoretical truncation error norm and theoretical
roundoff error norm as a function of the time increment for p = 2, 4

and 6. Apain, it illustrates all the characteristics described in
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Figure 4. Actual computational error norms vs,., time Increment T,
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72

{
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Figure 6. Theoretical computational error norm vs. time increment T.
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Figure 7. Theoretical and actual computational error norm vs, time
inerement T.
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Example 1. It may be noted that the roundoff error is not as sensitive
to the order of the finite series, p, ag the truncation error is.

Fig. 6 shows the theoretical computational error norm as a function
of the time increment T. Tt is observed that the optimal T for p = 3,
P=4,p=35, and p =6 is 2“6 second, 2_4 second, 2'"‘|2 second, and 1
second, respectively.

In Fig. 7, theoretical curves for the computational-error norm a;e
compared with the actual curve for p = 2,3,4 and 7. It may be seen that
using higher order finite series with a larger time increment will re-
duce the speed for the computer in calculating e as well as decrease

the computational error.



V. CONCLUSIONS AND RECOMMENDATIONS

A numerical integration scheme (the finite series method) for
solving the four parameter vector differential equation is derived
and investigated in this report. The results obtained can be applied
to a large class of numerical integration schemes, since this class
can be shown to be equivalent to the finite series approximation
method.

Studies show that there are two types of computational errors in
computing the numerical solutions to the four parameter vector
differential equation using a digital computer. These are truncation
error and roundoff error. Truncation error is caused by the
approximate nature of the numerical integration scheme. Roundoff
error is due to the faet that all numbers are represented by a finite
number of digits in a computer.-

Bounds for the truncation errors and roundoff errors generated
by the computer in computing the four parameters using the finite
series method are derived. The results show that the truncation
error norm can be expressed as a function of the initial conditions
of the four parameters, the magnitude of the angular rotations and
the number of terms used im the numerical approximation of the state
transition matrix., The results also illustrate that the roundoff

error norm can be expressed as a function of the initial conditions
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of thg four parameters, the magnitude of the angular rotation and the
local roundoff error. The local roundoff error in turnM;an be
expressed as a function of the number system and number of digits
employed by the digital computer and the number of terms used -in the
numerical approximation td the state transmission matrix. Study
results show that the error norm developed is useful in the determina-
tion of an optimal integration step size for thé four parameter algorithm,
and the computer sizing requirement for a particular mission.

It should be emphasized that the computational error norm derived
in this analysis is an upper bound on the error generated by the
digital computer in computing the four parameters using the finite
series method. The actual errors that would be observed might‘therefore
be and are shown to be considerably less than the error analytically
determined by this method., Nevertheless, this technique does provide
a means of obtaining the limit that can be placed on the errors caused
by the computational process using a digital computer. In order to
obtain a more realistic bound on the roundoff error, a statistical

approach should be investigated.
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APPENDIX A

SOLUTION OF THE FOUR PARAMETERS TSING THE
PEANO-BAKER METHCD OF

SUCCESSIVE APPROXIMATION [9]

Consider e = A(t) e(t) (A-1)
Integrating {A-1) gives:
t
a(t) = et ) + [i A elr)dr (A-2)
o

Equation (A-2) may be solved by an iterative scheme called the Peano-—
Baker method of successive approximations which involves repeated sub-

stitution of e(t) from the left member of (A-2) into the integral.

1st

iteration: e(t) = e(t,) + fz A(T) elty) dr

0

Il

t
{I+ [ Almdrlelty)
o

znd

t
iteration: e(t) = et ) + fzo A {T+ [ Aloarle(t Ydr

[s]

t t
Alr)dr + f A(T)[ft A(T)dT]dT}gﬁto)
to o

i

t
{1 +
fto

Thus an infinite series can be obtained. 1If the elements of the

matrix A(t) remain bounded in the range from 0-to t, it may be shown that

80
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the infinite series converges to the solution e(t).

If the elements of A(t) are of the form'ég, let A(t) = Bt

2
where
' #] ~a, ~a, -a,
a 0 -a a
ay ay 0 —a3
a; ~a, a3 0
then
t t t
e(t) = {1+ ft Alrydt + [ AMIf_ A()drldr + ...} elt))
o o 0
t t t
= {I + It (BT)dt + f (BT)If (Bt)de]dr + ...} e(to)
o ts to -
) t + t
={I+3B f tdt + B2 f T[f rde]dr + ...} et )
t t t -0
0 o 0
Let tO =0
2 4 n. 2n
1 2 Bt Bt -
el(t) = {I + 5Bt + =1 ,.. + ... t
= 2 2x4 2 (al) > elsy)
) 2.4 3.6 b 8 5.10
. 1 2 Bt Bt Bt Bt .
= +--
{I +% Bt +2xé+23<3!)+24(4!)+55(51)+...}g(t)

Since B is a skew-symmetric matrix, the following identities can be

cbtained
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2 1.2, 2 2
B™ = (-2‘) (—al *‘-8.2 —-6.3)1
.2 2 _ 2. . 2 _ .2 . 1.2
= - ¢“T where ¢ = (al +aj + a3) CED =k (2)
33 = ":'CZB
34 = c4I
In general
n =L
e = (-1) 2 cnr B for n odd
n
= (—1)2 cn I for n even
Thus 2 2 5
22 c:‘?_(l;}-)3 et (%—)
e(t) = {BI(E_) i + 51 - ...]
2 2
2 .
25 fEy
+ Il - 21 + X - ...1} _g_(to)
2 2
e
- {c IC(§—9 sy + 51 - ...]
t2
+ IfCos (5‘-?? )1} g(to)
2 2
B .. et t
= {c S:L]'.'l(""é"") + I[Cos (—--2—-)]} g_(to)
= & 550 4 Tloos &L ) Tlace ) (-3
e(®) = & s1nlE) + 1[00s EE ) Tha(s, )

Equation (A-3) is the exact solution for the elements of the e vector
if the elements of.A in equation (A-1) are of the form Cégﬁ over the time

interval 0 to t.



APPENDIX B

VECTOR AND MATRTX NORMS

The norm of an N-vector X is a real, non-negative number,
denoted by ||x||, which gives an assessment of the size of the vector.

This norm satisfies the following properties

=] >0 ifx#0 (8-1)
[1Z] | =0 ifx=0 ‘ (B~2)
kx| = %] ||x]] vhere k is a scalr;n: (B-3)
Nxtzl [ < [zl + ]zl e

From inequality (B-4), the following inequality is deduced

ezl > (1=l - 11| | (5-5)

Heylf > [lzl] - Tzl (B—6)

The most commonly used vector norms are defined by

n
@ Izl = § Il
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X 2
@ llally =13 42 | ana
i=1

3 |lxl].,

max ]Xil N
i

Similarly, the norm of an (NxN)-matrix A is a real, non-negative

number, denoted by |]Al|, which satisfies

[|A]] > 0 if A # [0]

[A|] = 0 if A = [0]

||kAI| = |k| ||A|| where k is a scalar .

[la+8]] < [la]] + [{8}|
[laxl] < [} |1z]]

L1aB[ | < [Ial] T13]]

(B~7)

(B-8)

(8-9)

(8-10)

(B-11)

(B8-12)

The matrix norms corresponding to the 1,2 and =~vector norms are,

respectively:

N
@ [{af] = max 1 lagsl
| i=1

) |]A]|2 = (maximum eigenvalue of AHa)1/2

(B~13)

C(B-14)
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where AH denotes the complex conjugate transpose of A, and

N
) [|a]l]e = max } fa
i j=1

13 | (B-15)



APPENDIX C

To prove that for proportional angular rates

d(m)E(k) = E(k)2(m), for all positive integers k & m (c-1)

first consider d(m)d (k).

From equation (IT-10), it can be shown that

0 i

o(m) = Z jsi%§¥£l and {C-2)
=0 '

. P i

500 = § LaGOKI (c-3)
i=0 L.

where K is a constant matrix defined by equation (II-4) and a(k) and

a(m) are scalar functions. Thus

[a(m)K]i-}{E tﬂa<k>KJi} (C-4)
! S5

‘P(m)&)(k) ={ Z i1
i=0 0 '

Since a(m) and a(k) are scalar functions and K is a constant matrix, then

{ E [a(m)K]i} [a(k)K]i = [a(k)K]i‘{ E LESElEl?} (Cc-5)
.i=0 il il it i=0 i?
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Therefore
o(m)a(k) = Z {JE!EQ!Q i E [a(k)K]i}
i=0 il i=0 il

- ¥ {fa(k)K]i} { z léiglil?}

i=0 il i=0

2 (k)@ (m)

Next consider &#(m)®(k). For proportional angular rate,

d(m)¢ (k) is defined as

a(m)  alk)
2 K~ 79K
dm)dk) = ¢ >

Since [a(m) ][a(k) ] = [a(k) ][aﬁn)

aG@LK a(k)K a(k) a(m)

then ¢(m)e(k) = ¢ 2 £ 2 =¢ 2 £ 2

Now consider #(m)E(k). From equation (III-25),

represented as

= ¢ (k)d(m)

3 (m)E(k) can be

P@E®K) = o(m)[eCk) - (k)] = S (k) - &(m)d (k)

(c-6)

(c-7

(c-8)

(C-9)

(G-10)
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Substituting equations (C-6) and (C~9) into equation (C-10) yields

s(E®E) = [3(k) - (k)] o(m) = E(k)a(m) (c-11)
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APPENDIX D

DIGITAL COMPUTER PROGRAM FOR SOLUTION

OF EXAMPLE 1 IN CHAPTER IV

DIMENSION TX(2), A(2,2),B(2,2),0(2,2)D(2,2)PHI(2,2)
1,7(20,T,DT,X(2),%0(2) :
DOUBLE PRECISION R

TX(1)=2,*DEXP (-1,D0)-DEXP (-2 .DO0)+DEXP (-1 .DO)}=DEXP(~2.D0)
TX(2)=2, % (DEXP (~2.D0)-DEXP {(-1.,D0) )+2 . *DEXP (-2 .D0)~DEXP (-1,D0)
WRITE (6,22) TX(1),TX(2)

FORMAT (1X,6HTX (1)=,E16.8,5X,6HTX(2)=,E16.8)

DO 100 K=5,11

¥(2)=2.80

F(3)=6.E0

F(4)=2,4E1

F(5)=1,2E2

F(6)=7.2E2

F(7)=5.04E3

F(8)=4.032E4

F(9)=3,6288E5

F(10)=3.6288E6

F(11)=3.99168E7

DO 100 M=1,19

X0 (l)=19

X0(2)=1.

T=,0005

DT=2.%%(1-M)

TSTOP=1,

A(1,1)=0.

A(1,2)=1.%DT

A(2,1)=2.%DT

A(2,2)=3.%DT

DO 1 I=1,2

Do 1 J=1,2

D(I,J)=0.0

D(I,1)=1.0

PHI(I,I)=D(L,I)+A(I,T)

C(I,I)=A(T,J)

N=2

DO 3 L=2,K
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http:F(3)=6.EO
http:F(2)=2.EO
http:TX(2)=2.*(DEXP(-2.DO)-DEXP(-i.DO))+2.*DEXP(-2.DO)-DEXP(-i.DO
http:DEXP'(-2.DO
http:TX(i)=2.*DEXP(-I.DO)-DEXP(-2.DO)+DEXP(-i.DO

90

1}

D0 2 I=1
D0 2 J=1,
2 B(I,N=C(I,J)
CALL MATMUL (A,B,N,C)
DO 3 I=1,2
DO 3 J=1,2
3 PHI(I,J)=PHI(I,J)4+C(L,J)/F(J)
5  T=T4DT
DO 7 I=1,2
X(I)=0.
DO 7 J=1,2
7 X(I)=PHI(L,J)*X0 (J)+X(I)
DO 8 I=1,2
8  XO(I)=X(I)
IF(T.LT.TSTOR) GO TO 5
R= ABS(X(1)-TX(L))+ ABS (X(2)-TX(2))
WRITE (6,23) DT,K
23 TFORMAT (1X,3HDT=,F6.3, 2HK=,12)
DO 6 I=1,2
6  WRITE (6,21) T,I,X(I)
21  FORMAT(2X,2HT=,¥6.3, 7X,2HX(,12,2H)=,E16.8)
WRITE(6,42) R

3

2
2
I

42  FORMAT (10X,2HR=,D23.16,//)
100 CONTINUE

STOP

END

SUBROUTINE MALMUL (A,B,N,C)
DIMENSION A(2,2),B(2,2),0(2,2)
D0 1 I=1,N
DO 1 J=1,N
¢(I,3)=0.0
D0 1 K=1,N
1 C(L,T)=C(T,J)+A(I,K)*B(K,T)
RETURN
END
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APPENDIX E

DIGITAL COMPUTER PROGRAM TO COMPUTE
THE FOUR PARAMETERS USING THE

FINITE SERIES METHOD

DOUBLE PRECISION A(4,4),B(4,4),C(4,4),0MEGA (4,4),
1E(4) ,E0(4) ,PHI(4,4)PHIXD,PHIYD,PHIZD,T ,D(4,4),DT,
10MEGO (4,4) ,E1,E2,AA,CC,EE,R,F(20)

F(2)=2,E0

F(3)=6.E0

F(4)=2.4E1

F(5)=1.2E2

F(6)=7.2E2

F(7)=5.04E3

F(8)=4.032E4

F(9)=3.6288E5

F(10)=3.6288E6

F(11)=3.99168K7
AA=3 %(3,14159265/180.)%%2,

CC=DSQRT (AA)

EE=CC/2.

E1=DCOS (EE)
E2=DSIN(EE)/DSQRT(3.D0)

WRITE (6.41) E1,E2

FORMAT (10X, 3HE1=,D23.16,2%, 3HE2=,D23.16)

PHIXD=3.14159265/180.

PHIYD=3.14159262/180.

PHIZD=3.14159265/180.

OMEGA(1,1)=0.0

OMEGA (1,2)=-PHIZD

OMEGA (1, 3)=~PHIYD

OMEGA (1,4)=-PHIXD

OMEGA(2,1)=PHIZD

OMEGA (2,2)=0.,0

OMEGA (2 ,3)=-PHIXD

OMEGA (2,4)= PHIYD

OMEGA(3,1)= PHIYD

OMEGA (32, )= PHIXD

OMEGA (3,3)=0.0
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http:FORMAT(10X,3HE1=,D23.16,2X,3HE2=,D23.16
http:EE)/DSQRT(3.DO
http:F(2)=2.EO

0

Q

[N ]

a0 o
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OMEGA (3,4)=-PHIZD
OMEGA (4,1)=PHIXD
OMEGA (4 ,2)==~PHIYD
OMEGA (4,3)= PHIZD
OMEGA (4 ,4)=
OMEGO (1,1
OMEGO (1,
OMEGO (1,

| L U
* - »

DOOODDOOOOOOOOOO

2
3
4
,1
42
OMEGO (2,3
OMEGO (2,4
1

2

3

&

,1

2

»3

*+ s

OMEGO (3,
OMEGO (3,
OMEGO (3,
OMEGO (3,

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
s 4)

I monin g ni

}—‘HDODOOOOOOOOOOOOOD

DO .

DO 100 K—2,
DO 100 M=1,
T=,0005
DP=2, %% (1-M)

TSTOP=1,

FO(1)=1.0

E0(2)=0.

E0(3)=0.

E0(4)=0.

DO 1 I=1,4

DO 1 J=1,4

A(I,J)=DT* (OMEGA(L,J))/2.

CALCULATION OF STATE TRANSITION MATRIX PHI

CALCULATION OF THE FIRST TWO TERMS OF THE STATE
TRANSITION MATRIX

PHI(I,J3)=D(L,J)+A(I,T)

C(T,N)=A(1,J)

CALC. OF PHI FOR P»2
N IS THE ORDER OF THE SYSTEM
(K=1)=NUMBER OF TERMS USED IN THE INFINITE SERIES
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N=4
DO 3 L
DO 2 L
D02 J
2 B(L,D) > J)
CALL MATMUL (A,B,N,C)
DO 3 I=1,4 ’
DO 3 J=1,4
PHI (I,J)=PHL(L,N+C(T,T)/F(L)
T=T+DT
D0 7 I=1,4
E(L)=0.
DO 7 J=1,4
7  E(L)=PHI(I,J)*E0(J)+E(L)
DO 8 I=1,N
8 EO(T)=E(L)
IF(T.LT.TSTOR) GO TC 5
R=DABS (E (1)~EL1)+DABS (E2)+DABS (E(3)-E2)
1+DABS (E(4)-E2)
WRITE(6,22) DT,K
22 FORMAT (1X,3HDT=,F6.3,2HK=,12)
DO 6 I=1,4
6 WRITE (6,21) T,I,E(T)
21 TFORMAT(2X,2HT=,F6.3,7X,2HE(,I2,2H)=,D23.16)
WRITE(6,42) R
42 TFORMAT (10X,2HR=,D23.16,//)
100 CONTINUE
STOP
END

3

L=2,K
L,4
1,4
C(L

ll II

v, W

SUBROUTINE MATMUL (A,B,N,C)

DOUBLE PRECISION A(4,4),B(4,4),C(4,4)
CALCULATE C(I1,J) COEFFICIENTS

DO 1 I=1,N

DO 1 J=1,N

c(I,J)=0.0

DO 1 K=1,N
1C(L,I)=C(I,N+A{I,K)*B(K,J)

RETURN

END


http:10X,2HR=,D23.16
http:FORMAT(2X,2HTo,F6.3,7X,2HE(,I2,2H)=,D23.16

