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TECHNICAL MEMORANDUM X-

ANALYSIS OF OPTICAL COMPONENT MOVEMENT
BY HOLOGRAPHIC INTERFEROMETRY

SUMMARY

Several efforts are within NASA which are directed toward the eventual orbiting of
a large (~3 meters) telescope. This type of endeavor generates many problems and questions
which for the most part require state-of-the-art answers. One obvious question is: Do the
mirror characteristics change while in orbit, and, if so, to what degree? This report presents
a quick look at the application of holographic interferometry to mirror movement, since
numerous parameters such as mount sag, mirror surface creep, etc., manifest themselves
in the form of displacements. Both theoretical and experimental data are presented for
simple mirror rotation with a theoretical extension to include three-dimensional translation.

I. INTRODUCTION

With the development of wavefront reconstruction (holography), literally a third
dimension was added to the science of interferometry. The hologram allows a tremendous
amount of information to be "frozen in time" for later analysis or comparison. The latter
is the case that has such a dramatic effect on interferometry; i.e., the ability to compare one
wavefront at one point in time with another wavefront at some other point in time. With
this capability, a holographic interferometer (Holometer) is sensitive to object movement or
displacement.

In considering some of the many problems associated with orbiting a large astro-
nomical telescope, one immediately realizes that the definition of the optical surface is of
overwhelming importance. This surface may be affected and/or changed by numerous
sources such as mount sag, mirror material creep or flow, radiation, contamination1, etc.
Most of these sources are displayed by a mirror surface displacement, so the ability to detect
such a displacement and to determine its direction(s) and magnitude(s) would be extremely
useful.

1. A unique holographic interferometer is being used to study this effect and will be
reported at the annual meeting of the Optical Society of America, September 29 through
October 2, 1970, in Hollywood, Florida.



II. THEORETICAL FRINGE ANALYSIS

The following fringe analysis follows that by Haines and Hildebrand [1,2] and can
be divided into three conditional areas. These areas are: (a) the case in which the fringes
are on or very close to the object, (b) the case in which the fringes form at least several
thousand wavelengths from the object, and (c) the general case in which the fringes are
allowed to form at any distance from the object.

In case (a) the term "very close" refers to distances of a few thousand wavelengths
or less. To produce this case, the object has undergone a rotation or translation along the
line of sight only. This, of course, represents the easiest case to analyze and understand.
The necessary and sufficient condition of object rotation for tins case is well known from
the theory of interferometry. Figure 1 illustrates this case. The coordinate system is
attached to the point about which the object surface has been rotated. The surface has
been rotated by an angle a. With the line of observation along the z axis and an angle 0
between the surface and the source, the path difference for any point on x is given by

A£ = xa (1 +sin/3) . (1)

From this it is obvious that the radiation from the image and from the object differ only by
a linear phase 6 where,

6 = -2*1 x a ( l +sin0) (2)

In this case, parallel fringes will form on or very near the surface and parallel to the axis of
rotation. Equations (1) and (2) describe the case where the rotation is about the y-axis.
The distance D between fringes near the point of observation is

D = — (1 + sin/3)-1 . (3)

Thus, the degree of rotation may be found by measuring D and solving equation (3) for a.

If a small distance along the line of observation exists between the object and image
(still assuming rotation), then the fringes will form between the object and image and it will
be virtually impossible to differentiate this case from that of pure rotation. However, this
ambiguous situation does not exist when the object is examined from two different angles
through the hologram. This is also true for cases b and c. It will become evident that, to
eliminate this type of ambiguity, it is always necessary to view the object from two differ-
ent angles.
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Figure 1. Object rotation coordinates.

In case b, the fringes form at least several thousand wavelengths from the object
surface. The object surface is the small area about the point under consideration. In this
more general case, one may have translation and rotation together or translation alone.
For clarity, the object from which the holographic image was made is designated as object 1,
and the object against which this image is to be compared is designated as object 2.

The Cartesian coordinate system is attached to the point on the surface to be
observed. Let f(x,, y,, z,) be the complex reflectivity for the point x,, y,, z, on the
object surface. Then, for a general illumination front s(x!, yi, z,) on the object, the light
leaving the surface may be expressed as f(x, , y,, z,) s(x,, y,, z,). It will be assumed that
the illumination is of constant amplitude at the surface of the object and that it is generated



by a point source located at the coordinates xo, yo, ZQ. Suppose that the object, object 2

in this instance, is a slightly rotated and translated facsimile of the image made from object
1. The rotations may be described in terms of Euler angles a,0, and y as in Figure 2.

Z6
/

1
i
(

I /A

'

OBJECT 1 OBJECT 2

Figure 2. Coordinate transformation.

The translations may be designated by xg, yg, and zg. Euler angles relate the primed

coordinates to the original coordinates by the Euler matrix

x'

y'

z'

=

cosa cosy -cosa cos0 sin? sin(3 siny
- sina cos/3 sin? -sina cosy

sina cos(3 cosy cosa cos0 cosy -sin|3 cosy
+cosa siny -sina siny

sina sin(3 cosa sin/3 cos/3

X

y

z

(4)



For small rotations, (a + 7) and |3 are small, and this relationship becomes

x'

y'

z'

=

1 -7 -a & sin y

a + y 1 -0 cos y

P sin a 0 cos a 1

X

y

z

(5)

In shorthand notation, these matrices may be written as

X' X (6)

When translations are also considered, equation (6) must be revised.

xl = (I4M) (7)

where

T = (8)

The transmission function of object 2 is designated by f(xi' , y/, z/) where the
primed coordinates are related to the unprimed coordinates by equation (7). The problem
reduces to a comparison of the radiation at some general observation point x, y, z as it
arrives from object 1 (which is actually the image generated by the hologram) and from
object 2.

The diffraction pattern at this point from the image or object 1 may be approxi-
mated for large x, y, z, as



If all rotations and translations are so small that second-order terms involving these
quantities may be neglected, equation (16) simplifies to:

(dj)2 - (x - x/)2 + (y + y ,')2 + (z - z/)2 + 2x/ fxg + y(a + 7) - z 0 sin 7 1

+ 2y ,' y - x(a + 7) + z 0 cos 7 + 2z/ z - x jj sin a - y 0 cos a

- 2 (x x + y y + z z)
& & O

(17)

1/2
Let R = (x2 + y2 + z2) . Then the previous assumption that R is much larger

than all other parameters allows the square root of equation (17) to be approximated by
the first two terms in its binomial expansion.

1/2
- R

R

/ x,'2 + y/2 + z,'2 x,' [x B + y(a + 7) - z/3sin7l
+ - + - ̂ -6 - J-

2R R

R

Zi ' [z g -x |3 sin a - y 0 cos a]

R

xgx + ygy + zgz (x/x + y/y + z/z) (xxg + yyg + zzg)

R R

Similarly, the other summations can be evaluated:

I"'' = R0 -
Xo xj'2 + y/2 +z t '

2 x/ x + y0(a + 7) - z0 /3 sin 7
- - - " - - J

2R0

y l' [_yg - xp(a + 7) + ZQ g cos -yj z/ [_

KO

zg - XQ g sin a - yp <? cos aj

xp + yg yp + zg zp (xi xp + yi y0 + zt ZQ) (XQ xg -v yp yg + ZQ zg)
(19)



where

Ro = (X0
2 + yo2 + Z0

2)
1/2

I (a<)! 2 4. i, 2 _|_ ,, 21/2 x0 x, +y0 yi +z0 z, x ^ + y ,

RO 2Rj
(20)

I
1/2

= R-
H-yy, +zz, x,2 +y,2 + z,2

R 2R
(21)

The general expression

Rn =
xnx + yny

 + znz

R n

x2 + y2 + z2

2R^

may be written as

-J- ^ ( x n - x ) 2
+ ( y n - y ) 2

+ ( z n - z ) 2 ]

With this, equation (9) for Ui becomes

.2ffi "(XQ - x)2 + (y0 - y)2 + (ZQ - z)2

( x - x , ) 2 + ( y - y , ) 2 + ( z - Z l )
2

R
, !,

(22)



and

—JOT exp

(x - x/), ')2+(y-y iT+(z-2 l ' )0

R

X exp
XQ(XO zg)

Ro3

xg + y(a + 7) - z ]3 sin 7 xi

R

:(xxg + yyg + z2g) V]

R3 /J

, ry e-x0(a + -y) + z0
+y' I ^T

cos 7 y0(x0 zg)

Ro3

y - x(a + 7) + 2(3 cos 7 y(xx; + y y g
+ z z g ) "

R3

, z -x0 0 s i n a - y 0cosa z0(x0 x + y0 y~ + z0 z )

Ro Ro3

zg - x ]3 sin a - y 0 cos a _ z(xxg + yyg + zzg) xg x0 + yg y0 + zg z0

R R3
Ro

R
(23)

Inspection of equations (22) and (23) reveals that the summation of the two may be
expressed as:
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U i + U 2 =Jrr-
+ exp( i£ ) / / | f (xi, yi , zi) exp -i(w x j + w y i + w Zi) | d x i . d y j . d z i (24)

./././ L z J

where

(z0 - z, )2

f ( x i , y i , z , ) = f(x, , y,, z,) exp
-2ni |"(x0 - x t )

2 + ( y 0 - y 1 ) 2 +
X [ Ro

( x - x , ) 2 + ( y - y i ) 2 + ( z - z , ) 2 ~ |1 - s - Jl

r x g x 0 + y g y o + Z g Z o xgx + ygy + zgZ"|

Ro R

(25)

"Ro

sin 7 x0 (x0 xg + y0 yg + z0 zg)

R
3

x_ + y(a + 7) - z 0 sin 7 x(xxg + yyg + zz ) "

~R~ ~R^" ( }

[
y g - x 0 ( a + 7 ) + z0 0 cos 7 y0 (x0 xg + y0 yg + z0 zg)Wy" ~ ~
y - x ( a + 7 ) + z 0 C G S 7 y(xx (28)yy + zz ) 1

R^

[ ZK - x0 0 sin a
I>
"0I

- y0 0 cos a z0 (x0 xg + y0 ye + z0 z )
p _ B fe o

K.Q KQ

ze - x 0 sin a - y 0 cos a z(xxg
-- ?

+ yyg + zzg)

R3

1 1



Using Fourier Transform Theory, we may rewrite equation (24) as

U, + U2 = F(o) + e* F(wx, wy, wz) (30)

where F(o) is the value of the Fourier Transform at wx = wy = wz = 0.

If wx = wy = w_ = 0 this expression represents the addition of two wavefronts,

identical except for a linear phase term. This is the requirement for interference fringes to
form. The spatial frequency of the fringes that form is determined by the linear phase
term £ which is invariant to a rotation of coordinates and may thus be written as

(31)

where the subscript £ refers to the coordinates system aligned along the Rg vector. By

differentiating £ with respect to xg and yg, it is possible to evaluate xg and yg which

are now displacements lateral to the Rg vector (line-of-sight vector) using the relationships

X Rp

<32>

X Rp

-

where DX and Dy are the interfringe spacings in the xg and yg directions. However,

no equation results for Zg, and for that reason the fringe structure at some other point

must be examined. Then all three translations xg) y_, and Zg in the original coordinate

system may be determined.

Case 3 is a more general analysis than the two previous cases. The fringes are
allowed to form at any distance from the object. This was not possible in the two previous
cases since the Fresnel-Kirchkoff formula was not applicable. This analysis uses the theory
of diffraction grating, and the results are identical to those for the other two cases with

12



their corresponding assumptions. A technique for such an analysis may be evolved by
breaking the general three-dimensional object into a series of independent planes whose
orientation is normal to some arbitrary axis. It is then possible to further break each
individual plane into a series of x- and y-oriented sinusoidal gratings. Suppose, for example,
that one such x-y plane through the object at distance z from the origin (Fig. 3) is repre-
sented by an infinite sum of gratings whose grating spacings in the x and y directions
are l/v and 1/r?. Then the x-y plane of the object can be represented by

f(x, y) = \ \ f,^ exp (2-ni v\ + 2ir\ r?y) (34)

v=~v TI—-V

The propagation of each individual plane wave, radiating from each individual grating, is
well understood from field theory. A plane wave given by exp(iaxi + iby) + icz t) at the

origin results in a wavefront whose spatial distribution is exp(iax + iby + icz) at a point
x, y, z where

a2 +b2 +c2 = k2 = — • (35)

If all such plane waves from planes at all values of Z are summed at x, y, z, one then has
a technique for finding the diffraction pattern at any point, even those close to the object.
This is the technique to be used here. Results from the previous case will be used whenever
applicable.

PLANE-WAVE COMPONENT
OF THE ILLUMINATING

WAVEFRONT

(0, 0. Z)] x, y PLANE

T3
ORIGIN

Figure 3. Decomposition of object into planes.

Let us suppose that the object plane of interest is illuminated by some general
wavefront. This wavefront is not necessarily a plane wave, although certainly plane-wave
illumination makes the analysis simpler. In general, the illuminating wavefront will be an
infinite sum of plane waves, each having a direction cosine with the x axis at the x, y, Z
plane denoted by p and a direction cosine in the y axis denoted by q. A plane wave of
direction cosine p, striking a grating of spacing l/v, radiates a plane wave of direction
cosine 0Y, where (Fig. 4)

13



cos </>Y = p - \v (36)

Figure 4. Grating geometry.

Summing over all gratings in the xy plane
of interest we can represent the light radiated
from the object as

f(x, y, y y y y tvr) eXP
P Q

-ik(q-\7?)yl (37)

The diffracted wavefront at any general field point x, y, z is then

U z(x,y,z)=

P q

- i k ( 8 - A M ) ( z - Z >] (38)

Since the wave equation holds everywhere, 8 and M are dependent on p, q, y., and 77
through the relationship

+ p2 + q2 = 1

(P-7")2 + ( q - X r ? ) 2 + ( £ - X M ) 2 = 1

(39)

(40)

A matrix notation is used, as was done in the previous case. Equation (38) may then be
written as

Uz(x, y, z) = (41)

P q v T?

14



where hj is a general term in the matrix

H = p - q - XT? £ - Xju|

In the conventional shorthand notation,

X

y

z

-

0

0

Z

(42)

(43)

It is this diffracted wavefront that is actually generated by the hologram which is to be
compared to a similar wavefront diffracted by the object in another position.

Consider the situation illustrated in Figure 5, in which the object is slightly trans-
lated and rotated about the origin. The diffracted wavefront at the field point x', y', z'
may be written directly from equation (38)

r(x', y', z') = V V V y f^expr- ik^ ' -XiOk'- iktq ' -Xr^y '

-ik(£ - XM) (z' - Z)] (44)

p q

The primed coordinates x', y', z' refer to the coordinate system of the rotated and trans-
lated object as in the previous case. The cosines p', q', £' are now different from p, q, £
since they also refer to the rotated and translated coordinates of the objects. However,
if the rotations and translations are very small compared to the distances to the illuminating
source origin, p', q', and £' may be approximated as p+Ap, q+Aq, and £+A£ where
Ap, Aq, and A£ are invariant with p, q, and £ U^(x', y', z') may be written as

I I I I '>
P q v 77

, . z , + "] (45)

15



J O SYSTEM

(o.o.o) -o °R I C I N

Figure 5. Image translation and rotation.

In equation (45) the term A£ has been replaced by (p - \v) and (q - XT?) because of the
the wave equation relationship of equation (40). An examination of equation (45) reveals
that the diffraction pattern at x', y', z' is identical to the diffractin pattern in equation
(44) except for a small rotation about the x', y', z' - Z origin. This rotation between the
primed and double-primed systems may be described by the matrix

x"

y"

z"

-

0

0

z

=

1 0 A

0 1 12

-A -n i

x'

y'

z'

-

0

0

z

where

(46)

A = Ap [ l - ( p - X ^ ) 2 - (q-Xr?)2]
-1/2

(47)

and

« = Aq [ l - (p -A» ; ) 2 - (q-Xr?) 2 ]
-1/2

(48)

This rotation is shown in Figure 6. This may be expressed in shorthand notation as

X" - Z = A X" (49)

Thus equation (45) may be written as

16



Uz(x
• y " Z " > = I I I I f

Figure 6. Equivalent rotation resulting
from illumination.

wavefront, Ap and Aq, by equation (36)

exp (50)

where jj is a general term in the matrix

J = \ p - \ v X"

(51)

It appears then that a small
rotation of the illuminating wavefront on
a plane causes the diffraction pattern to be
slightly rotated about the origin on the
plane. This result is certainly what one
would expect. Furthermore, the angles
A and ft can be related to the change in
direction cosines of the illuminating

cos(0x (52)

A sin </>x = - Ap (53)

A further rotation of the x', y', z' coordinates may be carried out to write
equation (50) in terms of x, y, z. This rotation and translation is, of course, the Euler
matrix of equation (7)

IX"| = |EX.J x -IT

The transformation for the terms in equation (50) is then

(54)

The geometry of the interfering diffraction patterns of equations (41) and (50)
is shown in Figure 7. Suppose that some centroid of the diffraction pattern of interest
makes an angle 6 with the object grating and that the particular point of interest in the
diffracted field is P. In the double-primed system, this same angle, 0, exists and the
point in the diffracted field to be investigated is P". If the two centroids intersect each

17



Figure 7. Diffraction patterns generating interference structure.

other, there is a possibility of fringe construction. This implies that somewhere, some
point P must lie on P". Fringes would certainly occur about P, in this case, if R were
equal to R", because two exactly similar diffracted fields would overlay each other at
P with a difference only in their direction of propagation. But R is not in general equal
to R", and the wavefront from the original object travels a slightly different distance to
P than does the wavefront from the displaced and rotated object. Since one is concerned
with small displacement and rotations, this additional effect will be essentially approxi-
mate to a delay term designated by the extra distance AR. However, it is more exact to
designate this extra delay distance not as AR, but as AL, where AL is the delay term
accredited to each individual plane wave emanating from the object plane at the charac-
teristic angle of 0. Recall that cos 0X = p - \v for the x-directed component.

An approximation of AL may be carried out as follows, with the aid of
Figure 8:

i.~AL

Figure 8. Range-difference (AR) geometry.

18



AL = ( p - X v ) A L (q-Xrj)AL ^k
L

-
K. K

M f

K

(p . Xl;)x sin (8X - 0X) + (q - X7?)y sin (0y - 0y)X X

( £ - X M ) z s i n ( 0 - 0 )z z l (55)

where the approximation

= x sin (dx - 0X) + x (56)

has been used.

The angle over which the illumination is gathered is represented by 2(6 v - <j>v) max.
A A

This angle is almost always very small and the terms containing the sines of these angles
in the above equation may be dropped. This is the second approximation of the analysis,
the first being that the translations and rotations are small.

What has just been stated means that as a prerequisite for fringe construction the
diffraction pattern from the translated and rotated object must be

Uz(x",y",z")= (57)

p q v r)

at the point P = P". With the aid of equation (55) this condition is

(58)

19



using the matrix relationship of equation (54), equation (50) is

U2(x",y",z")

I I LJ
p q v T?

exp • -ik(p + A?) (x - xg) + (y - yg) (-a -7) + (z - zg)

+ 03 sin 7 + A ) - A Z

ik(q - XT?) (x - Xg) (a + 7) + (y - yg) + (z - zg)

oz]-0

ik(£ - XM) (x - xg) (j3 sin a - A) + (y - yg)

+ (0 cos a - fi) + z - za - Zg . (59)

By judiciously rearranging terms, one can write

U z (x" ,y" ,z")= f^exp

p q

exp i(p - Xi;) Rwx + i(q - XT?) Rw

-l- i(C - A/I) Rw9

where

(60)

Rw
^ = xg + (a + 7) (y - yg) - (z - zg) (0 sin 7 + A) + AZ -2 (61)

20



Rw AR
. - - (x - x ) (a + 7) + yg - (z - z ) (ft - 0 cos 7) - HZ - - (62)

K K

Rw7
—5- = -(x - xg) 0? sin a - A) - (y - yg) (0 cos a - ft) + zg - —-*- (63)

Equation (60) then is identical to the condition required for fringe construction
as that given by equation (62) except for the extra terms in wx, wy, and wz. So far,

little has been said about A and ft other than that they are related to the change in the
direction cosines of the illuminating wave fronts, Ap and Aq, as indicated in equation
(53). It appears that A is not independent of the grating frequency term p - X ^ . However,
as assumed, the variation of p -\v about the central value cos 6 = x/R is small and the
second-order term for A in equation (47) may be approximated as AR. This approx-
mation again assumes that the aperture used to examine the fringes is small, a valid
approximation in most cases. Then

(64)

and

(65)

Both Ap and Aq were evaluated in the previous case and are presented here in a slightly
modified form to include Z.

j_
Ro

rxg + y g ( a - 7 ) - z 0 0 sin 7!

x0 (Xg + ZA) + y0 (yg + Zft) + (z0 - Z) z 1
(66)

21



= "
Yo -Z)zg]

Ro3 (67)

and the source is assumed to be far from the object.

If equation (62) is a valid criterion for fringe formation, then wx, wy, and wz

should reduce to zero for perfect fringe construction. For fringes forming far off the
object (more than 1000 wavelengths), these conditions should be identical to those
arrived at by the analysis in the previous case. When the substitution is made for AR,

x(xe + ZA) + y(yg + Zft) + (z - Z) z
AR = e &

R
(68)

Then the conditions for fringe formation are

xg + (y - yg) (a + y) - (z - zg) 0 sin y x [x(xg + ZA) + y(yg + Zfl) + (z - Z) zg]

R R3

xg + y 0 ( a + 7 ) - Z o

Ro

|3 sin 7 x0 [x0(Xg -ZA)HHy0(yg + zs
Ro3

^) + (z0 -Z)zs]

(69)

and

yg - (x - xg) (a + 7) + (z - zg) g cos 7 y [x(xg + ZA) + y(yg + Zfl) + (z - Z) zg ]

R R3

ye -x0 (a +7) + z0 & cos 7 yo | x o ( x s H

6 L 6

Ro

h Z A ) H-y0(yg + Zfl
R 3

) + (Z0-Z)zJ

(70)



and

zg - (x - xg) g sin a - (y - yg) 0 cos 7 z [x(xg + ZA) + y(yg + Zfl) + (z - Z) zg]
~R~ R0

3

z - x0 j3 sin a - y0 0 cos a z0 [_(X0 + ZA) + y0 (yg + Zft) + (z0 - Z) zg J

(71)

If the object point of interest lies at the origin, then Z = 0 and these equations are
identical to equations (27), (28), and (29) if R is large.

Equation (71) is not arrived at directly from equation (59) but by the following
manipulations of the wave-equation conditions of equation (40). A wave-equation
relationship exists like that of equation (40)

2 +(q + A q - X r ? ) 2 +(C + A C - X j u ) 2 = 1 (72)

This equation in conjunction with equation (40) gives

(p - Xi>) Ap + (q - XT?) Aq + (C - XM) AC = - Ap2 - Aq2 - AC (73)

Since the angle over which the illumination is gathered is small, p - \v is approximately
x/R. Dropping second-order terms in equation (73) gives

— Ap+ -X- Aq+ — AC = 0
R R R

(74)

The function AC may be evaluated by investigating another condition on the wave
equation.

(p + Ap)2 +(q + Aq)2 + ( C + A C ) 2 = 1 (75)
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Therefore,

Ap • p + Aq -q + A8 • g = 0 (76)

and

AC = — Ap+ - - Aq . (77)
ZQ Z0

Using the previous equations for Ap and Aq gives

za - x0 |3 sin a - y0 |3 cos a
-=

Ro

[~x0(x +ZA) + y0(y +ZS2) + (z0 - Z) z
!— - - e-J (78)

The term

xA

in equation (63) is approximately

x — Ap + y ^- Aq
z z

which is equal to RAfi from equation (74). If xA + yfi in equation (63) is replaced by
RA£ where AC is given by equation (78), the desired equation (71) results.
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In summarizing the technique, the two wavefronts that interfere are given by
equations (41) and (61). If fringes result from this interference, then the values of
wx' wv wz °f equations (61), (62), and (63) must equal zero. This condition reduces
to the conditions of equations (69), (70), and (71) which reduce to equations (61), (62)
and (63) for fringes far off the object. Fringes resulting from a point on the image and a
similar point on the object occur whenever R" - R (Fig. 7) is some multiple number of
wavelengths. The frequency of the resulting fringes in the x direction is then

DX ax P- ~U - -^- -1— - (79)[R+AR R] x R + AR

Here again, if R is large, the fringe frequency corresponds to that of the previous case,
for then

i i K K --K 8- i (80)
Dx X L R R

The distance R" - R is invariant to a transformation of coordinates, since
transformation in an orthogonal system preserves vector lengths. We may write equation
(80) as

(81)

where the coordinates are now aligned along the line-of-sight vector Rg, and x$, xg, yg,

and yg are normal to the line of sight. This is valid since we have not chosen the direc-

tion of orientation for our coordinate system in the preceding analysis. This is, in fact,
the usual way the fringes are observed, lateral to the line of sight that passes through the
fringes to the object. Similarly, in the y direction lateral to the line of sight, we have

(82)
Dy
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while the z-direction term along the line of sight results in DZ = 0. To find all three

translations, \e, ye, and ze, and thus relate them to the original coordinate system, it
& & 5

is necessary to examine the fringe structure from two different line-of-sight angles; i.e.,
two different combinations of 0Y and 0V.A y

Once all three translations have been found, the rotations a, (3, and 7 may be
determined from equations (69), (70), and (71). Equations (64) through (67) are
required to solve for A and £1. However, R0 is usually large enough that the z terms
of equations (66), (67), and (78) may be neglected, which simplifies the equations.

I. EXPERIMENTAL SYSTEM

Two experimental setups were used in this effort. Figure 9 shows the first system
used. This setup utilized a 50-mW HeNe laser and a 40.64-cm diameter concave mirror as
the test object. Finer mirror adjustments and shorter exposure times were desired so the
setup shown in Figure 10 was used. In this system, an argon laser was used along with
20.32-cm-diameter schlieren mirrors which had fine adjustments about two axes. Figures 11
and 12 are photographs of the optical component layout for this system which produced
the data discussed in the next section of this report.

The reference beam used was a collimated 10.16-cm diameter beam. The test mirror
was illuminated by a 30.48-cm-diameter diffuser so that, upon reconstruction, the fringes
appear on a soft illuminated background. A precision plateholder with x-y adjustment
and a liquid gate was used to hold the film plate so that real-time analysis could be
achieved. Real-time analysis was conducted, but for ease of presentation, only data from
double-exposed holograms will be discussed. They essentially represent individual frames
from the continuous real-time observations. The entire system, with the exception of the
laser, is supported by a 1.22- by 1.83-meter granite slab resting on air mounts. This pro-
vided an extremely stable platform for the holometer so long-term inspections could be
made.

IV. EXPERIMENTAL RESULTS

Since most of this effort utilized the holometer with the argon laser (Fig. 10),
data from that phase of the effort will be discussed. A 20.32-cm diameter schlieren mirror
that is flat to 1/8 wavelength was used as the test mirror. Using the 4880-A line from the
laser and Agfa Gaveart 10E56 photographic plates, the total exposure times were ~ 0.3
second.
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Figure 9. Optical component bolometer (holographic interferometer).
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The data presented in this section were extracted from the real image of double-
exposed holograms. The test mirror was rotated about the vertical axis between expo-
sures. At various intervals in the testing period, double-exposed holograms were made
with no mirror rotation. The time between exposures for these holograms was ~ 10
minutes so they were used as controls to determine whether any component shifting or
mode oscillation in the laser would add or subtract any information contained in the
fringe structure of the hologram. Only one hologram, very early in this effort, displayed
component instability and this was evident by a "washing out" of ~ 40 percent of the
holographic image upon reconstruction. All subsequent tests have produced very bright
reconstructions, and the fringes formed by rotation of the surface were either on the
surface or a very small distance (few wavelengths) from the surface. Under this condition,
all calculations follow from Section II, Case 1, of this report. Three cases with different
magnitudes of rotation are as follows.

Case 1 represents a fringe spacing, D, of 1.854 cm. To obtain an accurate
measurement of this fringe spacing, all measurements were takn in the same plane as
the original object appeared. This plane is shown in Figure 13. From these measurements,
the angle, a, of rotation of the surface was computed. Fora |3 of 73.8 degrees, a for
this case is 7.677 X 10"4 degrees or 2.764 seconds of arc. From this angle, the change in
displacement, AL, for any point along the movement axis of the mirror can be calculated.
Figure 14 is a plot of A L versus the distance from the center of rotation.

Case 2 represents a fringe spacing of 0.942 cm. The measurements and calcula-
tions are the same as in Case 1. Fora 0 of 73.8 degrees, a i s l . 513X 10~3 degrees or
5.447 seconds of arc. Figure 15 shows the reconstructed fringes while Figure 16 shows
AL versus distance from the center of rotation.

Case 3 represents a fringe spacing of 0.724 cm. The measurements are again the
same as in Case 1. Fora 0 of 73.8 degrees, a is 1.971 X 10~3 degrees or 7.096 seconds of
arc. Figure 17 shows the reconstructed fringes while Figure 18 shows AL versus the
distance from the center of rotation.

V. CONCLUSIONS

The "quick look" described in this report generated useful data and indications
as to the applicability of holographic interferometry to the testing and monitoring of
large mirrors. We are able to detect and measure the change in an optical surface caused
by rotation. Even though this is the simplest case, it indicates the sensitivity of such a
device. The extension of this effort to x, y, z translations and various combinations
thereof will produce a more complete picture of its applicability.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration

Marshall Space Flight Center, Alabama 35812, August 13, 1970
981-10-10-00-62
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Figure 13. Reconstructed holographic fringes for Case 1.
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Figure 14. AL versus the distance from the center of rotation.
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Figure 15. Reconstructed holographic fringes for Case 2.
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Figure 16. AL versus the distance from the center of rotation.
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Figure 17. Reconstructed holographic fringes for Case 3.
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Figure 18. AL versus the distance from the center of rotation.
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