
‘‘1 

.e 

N M x- 

By J. M. Clemons and A. C, Krupnick 
Astronautics Laboratory 

February 25, 1971 

MSFC - Farm 3190 (September 1968) 



OF THERMOELECTRIC DEVICES AS 
SPACECRAFT THERMAL CONTROL COATINGS 

NASA-George C. Marshall Space Flight Center 
Marshall Space Flight Center, Alabama 35812 

National Aeronautics And Space Administration 
Washington, De C. 20546 

TECHNICAL MEMORANDUM 

15. SUPPLEMENTARY NOTES 
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An elementary introduction to thermoelectric devices is given. 
The "figure of merit" and associated factors are subsequently discussed. 

Theoretical calculations with bismuth telluride as a semiconductor 
model are exhibited, and a basic scheme for deposition of a thin-film 
array as a thermal control coating is presented. 
constraints of Skylab I are presented as a means of example for the 
utilization of active thin-film thermoelectric array devices. 

In addition, the thermal 
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THE APPLICATION OF THERMOELECTRIC DEVICES AS SPACECRAFT 
ACTIVE THERMAL CONTROL COATINGS 

SUMMARY 

Calculations ind ica te  t h a t  i t  i s  possible  to  optimize a rea  and 
thickness r a t i o  of thermoelectric devices so t h a t  they may be applied 
successful ly  a s  spacecraf t  thermal control  coatings.  

A favorable method of deposi t ing thin-fi lm ar rays  a s  a thermal 
control  coating has been proposed, and the  thermal cons t ra in ts  of 
Skylab I have been used a s  an example fo r  u t i l i z a t i o n  of t h in  f i lm 
thermoelectric a r rays  

INTRODUCTION 

Basic Thermoelectric Device Theory 

A l l  known conventional spacecraf t  passive thermal control  coatings 
a r e  suscept ible  t o  i n f l i g h t  r ad ia t ion  damage and degradation by var ious 
contaminants. 
cont ro l l ing  cabin temperature. 
considered here a s  a means of a l l e v i a t i n g  these problems. 

Passive coatings a l so  o f f e r  no r e a l  v e r s a t i l e  means of 
The use of thermoelectric devices is 

Thermoelectric devices a r e  constructed by connecting n- and 
p-type semiconductor bar mater ia l  through a good e l e c t r i c a l  conductor 
t o  form a s ingle  heat  t r ans fe r  element. I n  addi t ion,  these elements 
may be connected i n  series or p a r a l l e l  based upon the e l e c t r i c a l  and 
hea t  t r ans fe r  f a c t o r s  of var ied s i tua t ions  with the  c i r c u i t  ends i n  
contact  with some e l e c t r i c a l  energy source. A s  current  flows through 
the e n t i r e  device, the metal conductors w i l l  e i t h e r  heat o r  cool (due 
to  summation of t he  Pe l t i e r ,  Seebeck, and Thomson e f f e c t s ) ,  depending 
on the d i r ec t ion  of d i r e c t  cur ren t  flow. A thermoelectric device 
operating i n  t h i s  manner i s  r e fe r r ed  to  a s  a thermoelectric hea t  pump. 

I n  addi t ion,  opposite metal ends of thermoelectric devices may be 
exposed to  a temperature gradient .  When t h i s  condition e x i s t s ,  d i rec t  
cur ren t  w i l l  flow from one semiconductor bar mater ia l  through an 
ex terna l  c i r c u i t  i n t o  the second bar mater ia l  and the c i r c u i t  w i l l  
operate  a s  a thermoelectric generator.  
of the summation of th ree  thermoelectric parameters. F i r s t ,  the  
P e l t i e r  e f f e c t  which s t a t e s  t h a t  a s  current  i s  driven across  the 

These phenomena a r e  the r e s u l t  

ion of two metals, the contact  e i t h e r  hea ts  or  cools depending on 



the  d i r ec t ion  of cur ren t  flow. The Thomson e f f e c t  which s t a t e s  t h a t  
when d i f f e r e n t  p a r t s  of the  same metallic conductor a r e  maintained a t  
d i f f e r e n t  temperatures, a po ten t ia l  d i f fe rence  may be observed i n  the 
conductor. F ina l ly ,  the  Seebeck e f f e c t  which says t h a t  i f  two wires  of 
d i s i m i l a r  metal a r e  joined a t  t h e i r  ends, and these ends a r e  maintained 
a t  d i f f e r e n t  temperatures, a current  may be observed i n  the  wires of 
the c i r c u i t .  

The above mentioned phenomena, associated with thermoelectric 
devices, can be u t i l i z e d  i n  a thermal control  coating fo r  spacecraf ts .  
The desired fea tures  of such a revers ib le  device would a l s o  include a 
th in  coating providing a surface t h a t  i s  not  damaged by r ad ia t ion  and 
a v e r s a t i l e  means of cont ro l l ing  cabin temperatures a s  desired by the 
occupants. 

I n  order t o  obta in  maximum bene f i t  from such individual  semi- 
conductor devices,  they would have t o  be developed as la rge  thin-fi lm, 
l ightweight a r rays  of semiconductor mater ia l ,  have low extraneous 
power requirements, and be economically f eas ib l e  t o  apply t o  a va r i e ty  
of s t r u c t u r a l  geometries. A p i c t o r i a l  example of an elementary 
thermoelectric device i s  shown i n  Figure 1. 

Figure of Merit 

It may be deduced from Figure 1 t h a t  the  most important component 
of a thermoelectric device i s  the semiconductor mater ia ls .  Select ion of 
the semiconductor mater ia l  i s  based upon a term ca l led  ” f igure  of meri t ,”  
denoted by the l e t t e r  2. This property i s  s p e c i f i c  for  every semiconductor 
compound. 
equation : 

The value of the ’‘figure of merit” i s  given by the following 

where : 

Z = Figure of merit (/Deg) 
a = Thermoelectric power @V/Deg) 
k = Thermal conductivity (Watt: M-lDeg-l) 
y = Res i s t iv i ty  (Ohm-M) 

2 



When two semiconductor compounds are involved i n  a thermoelectric 
device, the  ove ra l l  "figure of m e r i t "  f o r  the  device i s  given by the  
following equation: 

Higher q u a l i t y  thermoelectric devices w i l l  be derived from s e m i -  
conductor compounds with grea te r  Z values.  

Examination of the "figure of merit" equation ind ica t e s  t h a t  Z 
may be improved by e i t h e r  increas ing  thermoelectric power o r  by 
decreasing k and 7. Since thermoelectric power, o r  the Seebeck 
coe f f i c i en t ,  i s  b a s i c a l l y  a function of the  Fermi l e v e l  of the 
o r i g i n a l  material, no attempt i s  made t o  a l t e r  a. 
values of a semiconductor mater ia l  a r e  improved by lowering e i t h e r  
k o r  y ,  or  both. 
derived from the Weidemann-Franz r a t i o  which i s  given here i n  a 
generalized form by the  equation: 

Generally, Z 

In s igh t  i n t o  the  e f f e c t  of reducing k and y can be 

2cy = cT 

where : 

(3 1 

k = Thermal conductivity 
7 = R e s i s t i v i t y  
c = Constant 
T = Temperature 

It i s  apparent t h a t  when y has been optimized, k has been minimized. 
However, it has been found t h a t  by s u i t a b l y  doping semiconductor 
compoundss k can be lowered by as much as  50 percent while y remains 
approximately constant. The reason genera l ly  advanced i n  explaining 
t h i s  phenomenon i s  tha t  t he  impurity atom interatomic d is tance  i s  c l o s e r  
t o  phonon wave lengths  than c a r r i e r  wave lengths.  

Another method of reducing k while 7 remains constant i s  by a l loy ing  
d i s s imi l a r  semiconductor compounds. Increasing composition i n  one 
d i r e c t i o n  f o r  certain compounds lowers t h e  l a t t i c e  thermal conductivity 
while the o r i g i n a l  r e s i s t i v i t y  remains approximately constant.  A t  
p resent ,  t he re  i s  no theo re t i ca l  explanation f o r  t h i s  phenomenon. 

Based upon present  day technology, it has been found t h a t  bismuth 
t e l l u r i d e  (Bi2Te3) compounds when su i t ab ly  doped, o f f e r  maximum "figure 
of merita*' 
3 x 10-3 deg"l (3). 

Many of these compounds e x h i b i t  Z values as high as 
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CALCULATIONS CONCERNING THF3MOELECTRIC DEVICES 

Area Optimization by Using 
Fundamental Electrical Proper t ies  Data f o r  Bi2Te3 

The cross sec t iona l  area r a t i o  of the type of semiconductor bar 
mater ia l  used i n  these thermoelectric devices may be calculated from 
the following equation: 

where : 

An ,,=J 

AP 

Y =  

B =  

AP 

Area r a t i o  of 

R e s i s t i v i t y  

n mater ia l  t o  p material 

A mathematical condensation constant which d i r e c t l y  r e l a t e s  
thermal conductivity and thermoelectr ic  power difference 
r a t i o  with temperature e 

An expression f o r  B i s  as follows: 

where : 

k = Thermal conductivity 
Spn = (a - 
Th = HOE s ide  temperature 
AT = Cold junct ion temperature - hot  junction' temperature 
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Assuming a Th of approximately 30OOC and a AT of -279OC, f o r  c e r t a i n  
bismuth t e l l u r i d e  a l l o y s ,  B i s  obtained, using given parameter values 
(4) by the  following r e l a t i o n s  : 

~p = 280 

= 185 

kp = 3.10 10-3 

$ = 2.0 

Z(3.10 x 10-3 - 2.0) (-279) 
B =  

(280 - 185)2 (300)2 

B = 1.37 x 10-6 

By s u b s t i t u t i n g  the  proper numerical values i n  equation ( 4 ) ,  we 
obta in  the  area r a t i o  d i s t r i b u t i o n  f o r  n and p type semiconductors: 

f o r  bismuth t e l l u r i d e  a l loy ,  yn and y are: 
P 

1 - - - ohm cm+' '= 0.0012Q cm" 
Yn 850 

f 
= -  

yP 85.79 
ohm cm" = Oe0116l2 cm" 

therefore :  
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1.2 x 10-3 

J(le2 ) [ 1 - k  (1.37 ~10-6)( )] (8) (1.2 10-3)(1.37 i o + ) +  
1.16 x 1.16 x 

- =  
1 -(1.37 x 10"6)(0.0116) AP 

k, 0.322 1 

1 3 

cv - 5 -E - 
AP 

The ac tua l  area of a semiconductor l e g  i s  no t  randomly selected 
but  must consider both the thickness  and length of the mater ia l .  
thickness r a t i o s  are ca lcu la ted  from the following equation: 

Area 

where A and L are area and length,  respec t ive ly ,  and o ther  terms a r e  
defined above 

2 
0.0116 x 2.0 

a 
0.0012 3.10 10-3 

Ap Ln 1 - -  = 7.89 x 10 
An Lp 

1 
P from previous ca lcu la t ion  - s 

I 

An 0.322 
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thus 

Ln - = 25.40 
LP 

Upon assuming $/L 
length r a t i o  f o r  netype bismuth t e l l u r i d e  i s :  

e= 100,000 f o r  p-type bismuth t e l l u r i d e ,  the area t o  

An 

Lrl 
- -  - 1.267 x 

Optimized surface area with r e spec t  t o  thickness of a t h i n  f i l m  
a r r ay  of properly doped thermoelectr ic  (Bi2Te3) devices operat ing under 
a ho t  temperature of 3 O O O C  with a AT of -279OC across  the device i s  
presented i n  Table I. 

TABLE I 

APPARENT CURRENT PRODUCED BY AREA 
OPTIMIZED Bi2Te3 DEVICES 

The maximum curren t  produced by t h i s  optimized cmice funct ioning 
as a generator on the cold s ide  i s  given by (5): 

where: [ I ]  = Apparent cur ren t  

To - TI = Cold junct ion temperature - hot  junction temperature = AT. 

7 



Assuming t h a t  the surface a reas  of both devices a r e  equal, 

where : 

St ipula t ing  

LP Ln - = 1 10-5,, - = 7.89 x 10-4 

2R = Z(0.0116 x + 0.0012 x 7.89 x 

2R = 2(1.16 x 10-7 + 9.46 x 10-7) 

2R = Z(10.62 x 10-7) 

2R = 21.24 x I O m 7  

R = 10.62 x 10-7 

= 95 pvldeg = 95 x 10-6 vldeg 

95 x 10-6 x (-279) 

21.24 x 10-7 

% 

D.l = 

[I] = -12,478.8 amps 

EX1 = 12,478.8 amps 

where: 

[I] = apparent working cur ren t  assuming a C.O.P. of un i ty  and 
complete u t i l i z a t i o n  of cold s ide  surface area, 
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I f  a cabin temperature i s  t o  be maintained a t  say 21°C,  t he  
question a r i s e s  as t o  what w i l l  be the cont ro l lab le  hot  s ide  temperature 
i f  thermoelectric generators on the cold s ide  a r e  used to  dr ive  the hot 
s i d e  thermoelectric heat  pump. This question may be resolved by 
examining the following equation: 

where 

“Pn e Th ((xp an) 
and, 

Th = hot  s ide  surface temperature. 

thus, subs t i t u t ing  the proper r e l a t i o n  f o r  atpn w e  see t h a t  

solving for  the term Th, 

12,478.8 x 10.62 x 10-7 
Th = 

95 x 10-6 

Th = 139.5OC 
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THE USE OF THERMOELECTRIC COOLING DEVICES 
INVOLVING STJRFACE AREA 

I f  one considered a thermal control  problem involving Skylab I, 
using surface area parameters as shown i n  Table 11, an e f f e c t i v e  control  
a r r ay  could be designed t o  prec ise ly  r egu la t e  and t r ans fe r  surface 
absorbed r ad ia t ion  e 

TABLE I1 

Total Surface Area 3,000 f t 2  

Average Cold Surface Area 0.60 x 3,000 = 1,800 f t 2  

Average Hot Surface Area 3,000 - 1,800 = 1,200 f t 2  

Since surface areas of the  generator and the  r e f r i g e r a t o r  were 
assumed t o  be equal i n  previous ca lcu la t ions  t o  determine Th, t he  
calculated generator output would be e f fec ted  by changes i n  the  surface 
area r a t i o .  
expression: 

This new output could be calculated from the following 

Surface Area Generator 

Surface Area Refr igerator  
Dl  = [ I l l  x 

[I1] = 12,478.8 amps, from previous ca lcu la t ions  

1,800 - Surface Area Generator ratio for Skylab 
1,200 Surface Area Refr igerator  
__I_- 

[ I ]  = 12,478.8 x 1.5 

[ I ]  = 18,718.2 amps 

i s  produced cur ren t ,  [ 1, again i s  calculated using a device C.O.P. of 
un i ty  and assuming complete u t i l i z a t i o n  of cold s ide  surface area. 
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A ca lcu la t ion  f o r  Th based upon Skylab geometric parameters i s  as 
follows: 

18,718.2 x 10.62 x 10-7 - 
95 x 10-6 

Th - 

Th = 209.25"C 

A means of circumventing t h i s  seemingly low Th (compared t o  the  
expected Th of 300OC) would be t o  a l t e r n a t e l y  cool a reas  on the ho t  
s ide .  Areas on the hot  s ide  could be a l t e r n a t e l y  cooled and generators  
could be converted t o  hea t  pumps and vice versa through e l ec t ron ic  
switching c i r c u i t s .  These switching c i r c u i t s  would cons i s t  of nothing 
more than thermocouples imbedded i n  s p e c i f i c  regions of devices and s o l i d  
s ta te  solenoid-operated cur ren t  d i r ec to r s .  Therefore, i t  i s  poss ib le  
t h a t  by using t h i n  f i lm  thermoelectr ic  a r r ay  devices the power now r e m  
quired t o  operate  the  overall  environmental cont ro l  system i n  a Skylab 
system can be r a d i c a l l y  reduced. 

INSTALLATION OF THIN-FILM THERMOELECTRIC 
DEVICE ARRAY 

Actual i n s t a l l a t i o n  of thermoelectr ic  devices as a thermal cont ro l  
coat ing could be accomplished by deposi t ing t h i n  f i l m  a r r ay  of metal 
and semiconductor material on a mechanically a t tachable  surface,  o r  by 
deposi t ion in t imate ly  on the  spacecraf t  surface.  

Basical ly ,  there  are two favorable  methods of t ranspor t ing  semi- 
conductor material from a bulk source t o  a deposi t ion surface.  These 
methods a r e  t h e  f l a s h  evaporation process and the  close-spaced method. 

In the  f l a s h  evaporation method, individual  gra ins  of semiconductor 
material are contacted with a surface temperature s u f f i c i e n t l y  high t o  
immediately sublimate the  material. Compound stoichiometry i n  the 
deposi t ion surface i s  present ly  somewhat d i f f i c u l t  t o  cont ro l  because 
subs t r a t e  temperature must be maintained r e l a t i v e  t o  the material 
source temperature 

11 



A temperature grad ien t  between the  source and subs t ra te  i s  a l s o  
necessary i n  the  close-spaced method. However, i f  the spacing i s  about 
1/10 of the diameter of the source and subs t r a t e ,  then the chemical 
t r anspor t  condi t ions are independent of the condi t ions elsewhere i n  the 
system. 
process and are  ava i l ab le  f o r  re-use as t r anspor t  agents  between source 
and subs t ra te .  This process i s  p a r t i c u l a r i l y  w e l l  su i t ed  f o r  covering 
l a rge  areas wi th  semiconductor deposi ts .  

Transport agents  such as oxygen are n o t  consumed i n  t h i s  

Doping can be ca r r i ed  out  by t r anspor t  from the  source material 
o r  by adding a s u i t a b l e  dopant as a vapor during the growth of the  layer .  
Regardless of t he  f i n a l  deposi t ion sur face ,  the  deposi t ion process 
could theo re t i ca l ly  be  ca r r i ed  out  i n  the four  p i c t o r i a l  s teps  shown 
i n  Figure 2.  

RESULTS OF APPLICATION OF THERMOELECTRIC DEVICES 
AS THERMAL CONTROL COATINGS 

Speci f ic  Charac t e r i s t i c s  of Coatings 

The th in  f i lm  a r r a y  t o  be f i n a l l y  employed as a thermal cont ro l  
coat ing f o r  spacecraf t  should be a f i l m  of about 1 2  m i l s  th ick  which 
w i l l  have an add-on weight of about one pound per  square yard compared 
t o  S-13G which has an add-on weight of roughly 0.8 pound per square 
yard of coat ing sur face  area. 

Eff ic iency of t he  device w i l l  be  a t  least  25 percent  improved by 
using a thickness optimized f i l m  which w i l l  show considerable improve- 
ment i n  r a d i a t i o n  damage resistance. 

This  thermal cont ro l  coat ing concept could o f f e r  space travelers 
the  f i r s t  real versatile means of con t ro l l i ng  spacecraf t  surface 
temperatures regard less  of t he  o r b i t a l  a l t i t u d e s .  

Problems Associated with Thermoelectric Devices as  
Thermal Control Coatings 

The operat ion of thermoelectr ic  devices as a hea t  pump must be 
s t a r t e d  i n i t i a l l y  wi th  an  extraneous power source,  otherwise the  hea t  
pumps would act  as a generator regard less  of the  d i r ec t ion  of temperature 
gradient .  
disposable  o r  on-board power source, 

The hea t  pump could be s t a r t e d  by energy provided by e i t h e r  a 

Experimental work must progress  i n  devis ing means of cont ro l l ing  
the thermal conduct ivi ty  of the  semiconductor device. The thermal 
conduct ivi ty  of semiconductors approach t h a t  of asbestos  by a f ac to r  
of f i f t e e n  as a thermal in su la to r .  

12 



CONCLUSIONS 

It has been demonstrated theo re t i ca l ly  t h a t  c e r t a i n  thermoelectric 
devices may be used as thermal cont ro l  coatings.  However, research i n  
severa l  a reas  i s  required before t h i s  technique can provide an eco- 
nomically competitive system t o  the passive coatings present ly  used. 

Attempts w i l l  be made t o  improve the "figure of m e r i t , "  Z ,  f o r  
ex i s t ing  bes t  known mater ia ls .  Deposition techniques a r e  t o  be de- 
veloped and sca l e  vehicle  environmental t e s t s  w i l l  be done t o  evaluate  
the e f fec t iveness  of t h i s  thermal cont ro l  concept. 

Service l i f e  coupled with t r u e  a b i l i t y  t o  cont ro l  cabin tempera- 
t u re  w i l l  eventual ly  be assessed. However, bas ic  Thermoelectric device 
theory provides confidence and proof of v a l i d i t y  even though the major 
engineering problems remain to  be solved. 

13 
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FIGURE 2, FABRICATION OF A THIN-FILM THERMOELECTRIC DEVICE 
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