
DESIGNING A COMPUTER:
 

THE ECLECTIC INFORMATION PROCESSING SYSTEM 

JAMES H. HAYNES
 

CEP REPORT, VOLUME 4 No. I
 

JANUARY 1971
 

(CO(I 

Q(SA CROR "AX o4 AD NUME1) (CAIEGORY) 

The Computer Evolution Project
 
Applied Sciences
 
The University of California at
 
Santa Cruz, California 95060
 

Repomduced by CAL 

*~0WNAINLoSERWEC::: 



DESIGNING A COMPUTER: 

The Eclectic Information Processing System
 

Abstract 

The outstanding manifestation of the third computer generation 

has been the continuing crisis in software development. This 

crisis has been a natural result of the nature and historical 

development of computers. The thought processes of computer users 

have changed rather drastically since the beginning, while the hardware 

has changed rather little. The gap which now exists between computer 

users and their machines has been bridged with compilers and with 

operating systems; but these special programs still have to be 

created by someone. Software design and construction remains a 

major undertaking. Our proposal for getting the problem under 

control is twofold: software should be written in conceptually­

powerful high-level languages, and machines should be designed to 

execute programs written in the languages to be used. This paper 

explores some implicationg for system design of this philosophy. 

Many of the ideas presented can be attributed to Iliffe and his 

'work with the Rice University and ICL Basic Language machines. 

The other main source of ideas has been the great Barton tradition, 

beginning with the B-5000 of Burroughs and continuing through 

the work of Dent, Hauck, Cleary, and McKeeman.
 

This work was supported in part by National Aeronautics and Space
 

Administration under grant NGR05-061-005 and by National Science
 

Foundation Grant GJ-150.
 



I
 

How We Got Into This Mess
 

"Machines should work; people should think." - IBM 

The builders of ENIAC were experienced desk-calculator users in
 

search of a much faster way to solve a particular kind of numerical
 

problem. It is not surprising that their machine turned out to be
 

an enlarged electronic version of its mechanical counterpart. The
 

electronic computer became much more generally useful with the advent 

of such improvements as easily-alterable program storage, program
 

self-modification, subroutine libraries, and assembly programs.
 

Hand-in-hand with these developments programming became something
 

of an arts-and-crafts activity, requiring of its practitioners 

above all else cleverness. The person having a problem to solve 

but no previous computer experience was more and more easily 

intimidated. 

Probably the most significant development in all the history of
 

computing was the creation and marketing of FORTRAN. For one thing, 

FORTRAN made computing power readily available to a class of users 

who had been repelled by computers before; and in sheer numbers of 

users this class far outweighed all of the professional programmers.
 

More fundamentally, FORTRAN gave to users a conceptual machine which
 

accepted statements in a language not far removed from their owm
 

thinking, just as ENIAC had accepted a language that was familiar 

to its users. The effects of FORTRAN were to create a huge new 

market for computing power and to bring intellectual forces to bear 

on the problems and opportunities of user-oriented languages. Thus 

the commercial success of FORTRAN put at the disposal of language 



developers economic muscles which they had never enjoyed before.
 

There remained a great many applications to which FORTRAN was
 

unsuited, including the writing of the FORTRAN translator itself.
 

This was natural enough at first, because language translation was
 

complex and mysterious, and because some of the benefits of programming
 

in user-oriented languages were not yet visible. We may now attempt
 

to list the features desired in programming languages.
 

1. 	Ease of learning the language
 

2. 	The provision of conceptual tools, such as multidimensional
 

arrays, subroutines, and arbitrary meaningful operand names 

3. 	 The ability to transfer programs from one machine to another 

without extensive change, and without retraining programmers 

4. 	 Reduced manual labor in program writing 

5. 	 Programs are easy to read and require little or no external 

documentation
 

6. 	 Compilers are easy to write and are easily designed to 

produce efficient object code.
 

Although many professional programmers subjected them to ridicule,
 

programming languages are now firmly established. With modern 

compiler-generating systems it is fairly easy to turn out a language 

for some particular class of users, and a translator from that 

language to some particular machine language. It is not so easy 

to produce a translator that can operate in a small memory, and that
 

can produce efficient object code. Many such language systems
 

operate by assuming the existence of a special machine for which 

-2­



efficient object code is easily produced; an interpreter program
 

then simulates the pseudo-machine on a real machine.
 

Computer users, emboldened by the power made available to them
 

through programming languages, have ventured forth to tackle increas­

ingly challenging problems. This has caused them to make increasingly
 

challenging,demands upon systemq and systems programmers. A system
 

these days is expected to have a large software set available in
 

on-line storage. It is ekpected 'to perform multiprogramming and 

perhaps multiprocessing. It is expected to multiprogram jobs written 

in various languages, so that many functions formerly considered 

a part of the language system must now be shared among several
 

language subsystems. The modern system is expected to present a
 

familiar face to the batch user, and at the same time look like a
 

remote batch system, a general-purpose time sharing system, and a
 

dedicated on-line application system. The modern system must contain 

a comprehensive file subsystem (whatever that means!). It is a 

long way from the language of "LOAD A" to the language of 

"A[I,J]=SIN(B+X**P);l. It is yet another giant step to a job
 

control language which allows one to say, in effect, "execute the
 

program named DAILY RUN using the file named TRANSACTIONS as input
 

and updating the file named MASTER FILE." Since most present-day
 

computer hardware is still working at-the "LOAD A" level the computer
 

user is separated from the machine by many layers of software.
 

The hardware machine might be regarded as simulating a different
 

virtual machine, which is itself simulating still another virtual
 

-3­



machine, ad infinitum. With all this simulation going on it is 

not surprising that rather few of the instructions executed by the 

machine make any direct and obvious contribution to solving the 

user's problem.
 

There have been several rather ill-advised attempts to build
 

machines which can execute FORTRAN or some other language directly
 

1 20]
in hardware.[ '95 ' Few of these were ever built, and none
 

was successful in the marketplace. Probably the main obstacle
 

facing these early designs was their complexity, at a time when
 

hardware cost and unreliability dominated the thinking of computer
 

center managers. Too, the languages that were implemented were
 

not very comprehensive, lacking the flexibility of more traditional
 

machine languages, and were disdained by professional programmers,
 

who would have regarded the machines as interesting toys but not 

as real computers. Today's environment might be much more receptive 

to a language-in-hardware approach; but on more fundamental grounds 

these designs overlook some very sound reasons for introducing 

a stage of compilation between the user language and the hardware. 

For example, parentheses in an arithmetic expression serve to 

indicate the order of performing the evaluation operations, but 

in addition they usually have a 'grouping' meaning to the programmer.
 

This higher meaning does not exist for the machine, which is required
 

only to evaluate the expression correctly. If an expression is to 

be evaluated only once it does not matter whether the order of the
 

operations is discovered at run time or in an earlier compiler
 

run; but if the expression is evaluated repeatedly it is definitely
 

-4­



a waste of effort to extract this invariant information anew at
 

each iteration. But a version of the expression which is efficient
 

for computation would be decidedly unpalatable to most human beings.
 

Thus the direct-execution machine operates under quite an efficiency
 

handicap in any iterative process.
 

We now find ourselves in the following situation. Computer software
 

in the form of programming languages and operating systems is an 

essential ingredient in the way we use computers. With very few
 

exceptions computer hardware does not differ much from its desk­

calculator ancestors, in spite of advertising claims to the contrary.
 

Software design remains largely a craft, caught as it is between the
 

ever-advancing concepts of users and hardware that is modern in
 

construction but primitive in concept. It is not surprising that
 

newly-introduced machines are plagued for years by vastly expensive
 

software that does not live up to its promises. Nor is it surprising
 

that some conceptually simple and powerful things we would like to 

do with computers get bogged down in a morass of LOAD A's. 

We must not ignore a few bright spots in this generally dismal
 

picture. The NELIAC project[17] furnishes an early example of the
 

use of a high-level language to write a compiler for a high-level
 

language (in this case, for NELIAC itself). Both NELIAC and JOVIAL
 

are offshoots of the work that led to ALGOL; but they developed in
 

the direction of systems programming languages rather than scientific
 

languages. The family of machines that began with the Burroughs
 

-5­



B_5000[39618199101 emphasized both machine design geared to high­

level languages and the practice of writing all programs in such
 

languages. The Burroughs extensions to ALGOL 60 produced a language
 

in which compilers could be written. A very similar language, ESPOL,
 

provided the few extra handles needed for the operating system
 

program: principally access to mechanisms in the hardware that are
 

invisible to the ALGOL programmer. The Rice University computer
 

[12,15] provides special hardware features for handling structured
 

data and simplifying software. These features are improved and
 

enlarged in a new machine now under construction at Rice, and in
 

the I.C.L. Basic Language Machine of Iliffe.[13hi4J The recent
 

Burroughs B-6500 represents a considerable enlargement of the
 

B-5000 concepts (in which the existence of the earlier machine
 

played no small part - much of the B-6500 software was written 

and tested in B-5500 ALGOL). The MULTICS project at M.I.T. has 

undertaken the writing of a .very large and complex operating system 

in a subset of PL/1. There has been some unfair judgement of this 

system because of its slow progress; we must realize that in this
 

project research is at least as important as development. Too,
 

the 1ULTICS group does not have the advantage of a machine designed
 

expecially to implement the PL/i language.
 

Software will continue to be a problem as long as man's reach exceeds
 

his grasp; but it need not be a disaster. The remainder of this
 

paper is devotedtoan exploration bf two notions: that all software
 

should be written in appropriate high-level languages, and that the
 

-6­



hardware should be designed for easy implementation and efficient 

execution of the language., Al-though a few original ideas may turn 

up here and there, what follows is essentially an appreciation of 

the work that ha already'been done by the pioneers previously 

cited. 

Additional References 

Reference [303 shows that the idea that the machine should have 

something to say about its oi' programming &rose quite early. 

Later writers emphasized that the needs of programming should 

have a powerful influence on computer designl1'4,18] ; while others 

wisely suggested that in the search for computer improvements the
 

greatest payoff could come from a consideration of what the machines
 

really do, rather than how they do what they do.E223 Several other
 

papers of general philosophical interest have appeared.
[7 '18'23'
 t8'32
 

Other interesting work is known to be in progress; so perhaps we
 

are finally beginning to achieve a body of knowledge about computer
 

organization.
 

-7­



Sse.Functions 

"Machines should work; people should think." - IBM 

The modern information processing system seems to have at least the
 

following features:
 

1. 	A large software set residing in on-line storage
 

2. 	A multiprogramming operating system
 

3. 	All user and systems programming is done in high-level
 

languages
 

4. 	Variable hardware configuration: both statically variable,
 

to allow for growth, and dynamically variable, to accomodate 

maintenance while the system is running 

5. 	Built-in data communication capability
 

6. 	A large main memory, to accomodate the multiple simultaneous
 

users
 

7. 	An elaborate file system
 

We begin by considering the programming languages. We might say
 

in passing that there are many ways to approach the problem of
 

computer system performance: fast circuits, pipelining, associative
 

memory, arrays of processors, vector processing, etc. We believe
 

that the language approach to computer design is fruitful simply
 

because it is through languages that computer users express their
 

desires to the computer system. A user should begin by inventing
 

a language, if necessary, in which he can say what he wants the
 

system to do. Only after this step should he be required to say
 

-8­



how the system might accomplish his desires by fabricating his
 

own what out of a set of more primitive whats. Once a user has
 

expressed a willingness to live with his own set of whats the machine
 

designers can move in to implement this set as efficiently as possible.
 

Although the invention of new programming languages is a favorite
 

pastime of computer scientists we choose for this project to use an
 

outgrowth (or undergrowth) of ordinary PL/1. PL/i was designed
 

with both scientific and business data processing in mind; accordingly
 

we expect that a system which can implement PL/I should present
 

no great impediments to the implementation of FORTRAN, COBOL, and
 

ALGOL 60. Additionally, PL/i contains facilities which look as if
 

they would be useful in writing an operating system: particularly
 

multitasking and storage allocation features. In choosing to talk
 

with a PL/i accent we do not intend to pick fights with those who
 

feel that LISP,cALGOL 68, or Iverson notation are "better"; our
 

real concern is with 'the data processing activity which is called 

for by the statements of the language rther thahwith the style 

of expression. And we do not hesitate to introduce non-PL/i 

constructs where they seem"to be neeaed;' nor do we intend at this 

time to be committed to the design of a itPt/t.mabhine". 

"Systems", says Mealy, "resemble the organizations that produce
 

them." Systems also resemble the languages in which they are 

written. FORTRAN and assembly language are "flat" languages in which 

all subroutines have equal rank and all identifiers are either 

strictly local or strictly global. ALGOL and PL/I by contrast allow 

-9­



arbitrarily many levels of nesting. A flat language encourages the
 

writing of a flat operating system in which any subroutine can be
 

called from any point and need not terminate with a return to the
 

calling point. Recursive calls and multiple executions of routines
 

require special handling. Any instruction can reference any location
 

in memory, unless special memory protection hardware is present.
 

The availability of a nested language suggests that nesting can be
 

applied to several practical system problems. For exapple, a form
 

of storage protection results from the use of disjoint scopes of
 

declaration. We may regard the entire system as a single large
 

program in which the various jobs are concurrent tasks. Independent
 

jobs canfinot disturb one another deliberately because their respective
 

sets of local variables and procedures are mutually invisible.
 

The system library subroutines are declared at a level global to the
 

jobs and thus are available to all. Any job may, however, contain
 

a procedure declared with the same name as a system procedure. This
 

causes the declaration to apply in a natural way to that job alone.
 

System routines which are declared globally but which should not be
 

accessible to all jobs automatically can be sdreened by the automatic
 

insertion of dummy local-to-the-job declarations of their names at
 

compile time. The fact tha allprogramming is done in high-level
 

languages is itself a protection, since the compilers can refuse to
 

compile any instructions that are not intended to be available to
 

users. Accidental interference among programs is not precluded by
 

these measures; a user's program might attempt to index beyond
 

the end of an array, or might cause operands to be fetched where
 

instructions are expected. The abnormalities must be prevented
 

-10­



by hardware checks of index quantities nd instructions. These
 

checks can be quite simple in nature, and are applied exactly where
 

they are needed. In the system tobe desbribed index quantities
 

are checked against array extents before any access to array data
 

takes place. Instructions are marked as such and are execute-only,
 

while operands are marked as such and are non-executable. Programs
 

are pure procedures, so that any sequence of instructions which has
 

been compiled correctly cannot be changed into something dangerous
 

during execution.
 

It is sometimes necessary to share data among independent processes.
 

It may be objectionalbe to declare such data globally, because this
 

would make it equally available to all processes. One solution to
 

this problem is to declare a block to contain the shared data and
 

all jobs that are to be allowed access to it. A more general solution
 

is to declare a global "message-center" procedure which contains the
 

declaration of the shared data. All accesses to the shared data are
 

then made as calls on its containing procedure, which may require
 

any desired activity as a condition for granting access to the data.
 

In fact the user procedure does not access the data at all; it
 

requests that the message-center procedure perform some access function
 

on its behalf. The scope-of-declaration rules of ALGOL and PL/i
 

assumed here are not the only ones possible, and they may not be the
 

most desirable for our purposes, but they appear to be adequate.
 

A serious problem with nested languages for systems work is the
 

-11­



necessity to use. subroutines compiled at different times. For
 

example, we cannot afford to recompile the operating system when­

ever a new job enters. And even if our compilers are very fast we 

do not wish to recompile a large element of software or a large user 

program when some small portion of it is changed. In flat languages 

the same problem really exists, but it is much less apparent because 

rather simple artifices can be used to solve it. There are really 

two aspects to the problem: 

1. When a procedure is compiled it will in general contain
 

references to names that are not declared locally. These
 

will consist of names that are declared in some containing
 

blzockwhich mayy.br-may hot have ;b~e compifl-, already). 

There may also be undeclared names which are simply program­

ming errors.
 

2. The name of a procedure must be known at the point where 

that procedure is to be called, even if that procedure
 

has not yet been compiled.
 

The first aspect of the problem has often been solved simply by keep­

ing all unknown names in their character-string representation and
 

then performing a search at load time or execution time for their
 

owners. Another popular scheme is to keep all such operands in a 

common area, the layout of which is known to all program writers. 

Then a symbolic name can be replaced at compile time with a reference 

to the appropriate location in the common area. Neither of these 

schemes preserves the nested structure of a program. We might note 

-12­



in passing that this aspect of the problem is entirely absent when
 

the procedure to be compiled contains only local names and parameters.
 

A general solution to this part of the problem might be to have a
 

compiler output containing all symbol tables resulting from com­

pilation, together with an indication of their nesting relationships.
 

Then to alter a procedure the compiler would be preloaded with the
 

°applicable set of symbol tables and nesting information. Addition 

of a procedure would require some means of indicating what scope 

of declaration should be chosen by the compiler. To the user the 

system might resemble conventional assemblers and compilers having 

alteration facilities controlled by line numbers. We intend to have 

the compiler symbol tables partially preloaded anyway with the names 

of the system library subroutines so that user programs can reference 

these. A compiler option will then be needed to overwrite the
 

preloading so that the'system library'routihe's themselves can be
 

compiled. Aside from the separate compilation problem, symbol
 

tables have to be saved s6meTherefor the diagnosis of run-time
 

errors.
 

The second aspect of the problem requires that the name of a
 

separately-compiled procedure be available to the statements which
 

call it. Many languages include a feature for this purpose; in
 

PL/I it is the ENTRY declaration. This in itself solves only part
 

of the problem. It provides a location within a program to which
 

references to the separately-compiled procedure 6an be directed.
 

A separate mechanism must further direct those references to the
 

-13­



actual location of the procedure. Yet another form of this problem
 

shows up when the name of the separate procedure isuunknown when the 

calling statement is compiled. A particular instance of this concerns
 

the user -jobs within the system, which to the system executive are 

procedures to be called as multiple tasks. The call may take place 

at any time, and has the effect of creating a process which is 

executable'. Adtual execution is delayed/until a processor becomes 

available. More will be said about this later; for the -presentit 

isbufficient to note that an entry can be a variable to which a 

value can be assigned. Thus the language readily allows one to write 

calls on procedures when the actual names of the procedures being 

called are not known until the moment that the call takes place. 

The operation of most contemporary systems is strongly influenced
 

by interrupts. The prompt interpretation and servicing of these
 

interrupts is of major concern in systems programming. We propose
 

a different philosophy under which interrupt servicing becomes much
 

less crucial. First we make a distinction between interrupts and 

traps. A trap is an exception condition in a processor which is the 

direct result of the activity in progress there (e.g., exponent. 

underflow in a floating-point arithmetic operation). The appropriate 

activity when a trap occurs is an automatic call on a procedure 

which takes some fix-up action and returns to the program that was 

in execution. The fix-up procedure does not have any particularly 

difficult addressing environment problem. It can have locally 

declared nettrces andtsyst&mbglobalireZerencesi. If it has any 

parameters they are likely to be the operands at the current point 

-14­



of execution. An interrupt, on the other hand, results from activity
 

outside the current process and usually means that the process cannot.
 

continue forthwith. Our first attack on the interrupt problem is to
 

legislate against problems of patience; that is, those situations
 

in which an interrupt must be serviced within some time interval 

else some dire event takes pl&ce. This principally means that I/O 

processors must be designed to complete autonomously whatever 

operations they start. On completion of an i/O operation the desired 

activity is that some process which was roadblocked until completion 

of the operation is to be unblocked. This is normally accomplished 

by having the I/O processor make an entry in a queue which is 

periodically examined by the operating system executive process. 

Periodic examination is guaranteed by an interval timer which 

periodically interrupts whatever process is currently in execution.
 

We computer designers have been far to anthropomorphic in our views
 

of interrupt priority and urgency. We imagine ourselves speaking 

to the system as we might to a subordinate employee, "Drop everything, 

here's a hot bne!". At the machine's time scale dropping everything 

(in a way that allows it to be picked up again) is itself a time­

consuming assignment not to be given lightly. When there really is 

a need for different priorities of access to a processor the solution 

is to have a different queue of ready-to-run tasks for each level 

of priority - effectively a queue of queues, or a vector of queues. 

Then it is necessary only to make the time interval between timer 

interrupts short enough to assure an adequate grade of service to 

the queues. The only interrupt we propose in addition to the interval 

-15­



timer is a voluntary relinquishment. This activity carries with it 

the concept that the current process is to be suspended and placed 

in a queue of some kind, from which it will be reactivated later. 

We might even convert the timer from an interrupt to a trap, with theo7 

idea that a timer trap would call a procedure which normally executes
 

a relinquish operation immediately, placing the process in a ready­

to-run queue. This would allow certain system procedures to be
 

invulnerable to timer interruptions simply by calling a different
 

trap procedure which does nothing. However it would then be necessary
 

to have the compiler guard against unauthorized attempts to bypass 

timer traps. Probably in the.interests of system security it is best 

to make the timer interrupt irresistible. Note that an urgent 

situation like imminent power failure has not been established 

as an interrupt. The most appropriate response to imminent power 

failure would seem to be the sole responsibility of each processor 

acting alone, and would consist of storing everything volatile and 

then ceasing all activity. The recovery upon reapplication of power 

might be to simply resume operation. These objects could be most 

easily achieved with a small nonvolatile store local to each processor. 

The power failure activity might consist simply of a voluntary 

relinquish operation which places the current process in a ready­

for-processing queue and safe-stores only the location of the .queue. 

For a deliberate manual shutdown of a processor the same system 

can be used.
 

We believe that input/output is a very poorly understood subject
 

at the present time. It seems terribly complex, both to the user
 

-16­



programmer and at the system level. I/O is used for many different 

purposes: "original" input, "final" output, storage during execution 

of a program, passing data from one program to another, etc. A
 

comprehensive file system makes these things a little more orderly
 

by attempting to free users from concern with specific physical devices.
 

Data communication is in some respects quite different from more
 

conventional I/O; on input characters simply arrive without being
 

requested by the system. Some input characters call for action,
 

while others are simply to be added to a string being accumulated.
 

It is best to view the input from a remote terminal syntactically,
 

with the idea that a parsing program examines each new character
 

as it arrives. The parsing program may be executed by either a
 

central processor or an I/O processor. In the former case the
 

I/O processor places the incoming character in a buffer and enables
 

a parsing process for the main processor, while in the latter case
 

the I/O processor must itself be able to parse.
 

In some instances we may be able to spare the user explicit concern
 

with I/O altogether. The simplified languages SPL and SPL use
 

pseudo variables instead of conventional reading and writing facilities.
 

INPUT may appear in the right-hand side of an assignment statement.
 

Each reference to INPUT yields the next operand from the input stream.
 

OUTPUT may appear on the left-hand side of an assignment statement. 

Each value assigned to OUTPUT is appended to the output stream. 

This scheme could be extended to any sequential file by the addition 

of mechanisms to declare file names and to rewind and backspace. Some 

conventions would have to be established about alternate reading and 

-17­



writing; If F is a file in the program: 

F= 1; 
A = F; 

there might or might not be an automatic backspace so that the value 

of F is always that which has just been assigned to it. Thus A 

might receive the value 1, or it might be given the non-value 

undefined. 

The view of the system as a single large program suggests that the
 

use of a file to pass data from one program to another could be
 

allowed simply by declaring the file at a level visible from all
 

of the job programs. This suggests a job control language identical
 

with the programming language. Consider a job using a file and having
 

two programs to be executed in sequence. The user might write the
 

simple program:
 

DECLARE F FILE, (P1,P2) ENTRY;
 
CALL P1;
 
CALL P2;
 

and submit this program for compilation and execution. The object 

code for PI and P2 would of course have to be supplied and would be 

inserted into the resulting program using the alter facility. Suppose 

this job is to be run every day, with P1 writing daily transactions 

on F and P2 processing them at the end of the day. Then the calls 

on PI and P2 can be put into an endless loop. P1 willugo into 

execution and sooner or later hang waiting for input. As input 

arrives PI processes it and again hangs waiting for more. At the 

end of the day some special code in the input is recognized by P1, 

causing it to terminate with a RETURN. The main program then calls 

-18­



P2, which does its job and returns, causing P1 to be called again. 

P1 then again hangs until some input for it arrives. Because of the 

automatic storage allocation f'cilities of the system there is no 

great penalty for leaving P1 hanging, as it occupies only a word or
 

two in memory when it is not in active execution. If it happens
 

that P1 and P2 in this example have different names for the file
 

this can be handled by declaring two variable file names to which 

F is assigned at appropriate times between calls. 

We would like to make it unnecessary for the user to be concerned 

with files just because his program is too large to fit into the 

amount of main storage available to him. We have in mind here both 

data files and procedure filesi although in some cases a data file 

may be the most natural way to handle data in an algorithm. The
 

term "folding" has been applied to any activity performed on a large 

" program towmake it .fit into a small memory. 9 3 We may distinguish 

between preplanned folding and automatic folding. In preplanned
 

folding the user.must- plan in advance exactly what parts of his program 

are to occupy memory at the same time. This can get so complicated 

that automatic-folding-can-be just about as effective, in spite Of its 

lack of intelligence. Part of the work necessary for preplanned 

folding comes naturally to.the user who programs in a nested language 

and makes good use of the subroutine and blocking facilities of the 

language. Segmentation is an automatic folding scheme which manipulates 

the blocks of the user's program independently. Paging is an automatic 

folding scheme which ignores these natural entities of a program and 

instead divides the entire extent of a program into fixed-size pages. 

-19­



With either scheme the decision to move a segment or page from
 

backing store to main memory is usually deferred until the program
 

attempts to reference the missing information; hence the term
 

"demand paging". The much harder decision in automatic folding is
 

where to put the information when there is no free space in main
 

storage; something already there has to be overlaid. Algorithms
 

of varying complexity have been devised for making these decisions,
 

which in preplanned manual folding would have been made in advance
 

by the user. The goal of all overlay algorithms is to maximize
 

system performance by avoiding unnecessary data movement. There 

is some experimental evidence, to suggest that simple overlay algorithms 

work almost as well as complicated ones and give better overall
 

results. Experiments in this area tend to be controversial, because
 

an experiment can always be devised which will make any particular 
* 

algorithm look good or bad at will.
 

An important concept with either paging or segmentation is that of 

the working set, which may be regarded as a threshold number of 

segments or pages present in main storage at the same time. If a 

program is given enough main memory to accomodate its working set 

it will run faitly well; while with less memory it sill spend most 

of its time moving data between main memory and backing store and 

will get very little done between moves. When there are parallel
 

independent processes, as in multiprogramming, there is a working
 

*The literature on memory management has become so large that we 

are herein avoiding all references except to Dennings survey [29], 

which in turn references almost all of the original works.
 

-20­



set for each process. Thrashing is a mode of system behavior in
 

which no process can 'get a working,set into memory; the available
 

memory is spread too thin. Thrashing can be avoided by limiting the
 

number of simultaneous processes so that all can have their working
 

sets in memory. This is easier said than done, since the size of
 

the working set may be unknown when a process presents itself for
 

execution, and since the size of the working set may vary dynamically
 

as execution proceeds. It also points up a considerable difference
 

between batch multiprogramming and time sharing. With batch processing 

it is optimum to multiprogram a number of jobs just equal to the 

current capacity of the system. With time sharing the goal is to 

service a given number of users simultaneously; this number is in 

general larger than the capacity of the system in a batch processing 

sense, so that efficiency in job processing is sacrificed to get 

and keep users happy. 

An anti-thrashing measure which can be applied easily is to allow
 

a process to overlay only its own segments; it can add to its allocation
 

of main memory only by capturing free space, and that perhaps only
 

with the permission of the operating system. This rule guarantees
 

that a process which cannot secure its own working set at least 

cannot disturb any other process in its attempts. It seems necessary
 

to have the operating system monitor the accretion of free space
 

to processes. Otherwise the processes currently in execution would
 

gobble up all free space as it became available and prevent the
 

creation of new processes. We conjecture that space would tend to
 

-21­



accrue to the process already having the most space, as it is this
 

process which can proceed longest between missing-segment events
 

and thus which has the highest probability of being in execution 

when free space becomes available. 

Paging in principle seems inferior to segmentation because of its
 

Procrustean-bed nature which makes no use of the natural blocking
 

within a program. This could be partly overcome by providing an 

assortment of page sizes, but then the page swapping mechanism would
 

become as.Pbrhplicted as'one which handles segments of completely
 

arbitrary size. A combination of these two techniques, in which
 

only the very large segments-are paged, may offer an improvement over 

either technique used alone; for this would allow a user to define 

segments even larger than the capacity of main memory if this happened 

to suit his purposes. 

In a paging or segmentation system the pages or segments of a process
 

may be assigned to fixed locations in backing storage for the life 

of the process. No attempt is made to use the backing store space
 

formerly occupied by a segment or page when that entity is moved
 

to main memory; the space is reserved for the eventual return of the
 

segment or page. This seems reasonable because backing storage is
 

much larger than main memory; and at most only an amount of backing
 

storage equal to the capacity of main memory is held in reservation. 

With a rotating backing store we might wish to move a segment from 

main storage into the first available location in backing storage 

rather than into a fixed position so as to avoid rotational delay. 

This is fairly easy to do with paging because all pages are the same 

-22­



size; but with segmentation it requires finding,a space that is
 

big enough to accomodate the segment to be moved. In a system which 

is large enoughtto have several requests for movement between main 

memory and backing storage pending attthe same time the rotational 

delay can usually be washed out anyway by arranging the requests in 

a shortest-access-time-first order.
 

Another problem with segmentation is the fragmentation of main
 

storage. Usually a segment will be moved into an area which is
 

somewhat oversize, leaving a small space. Opportunities to make
 

use of the small space may be few and far between, so that such
 

spaces tend to lie unused for a long time. Yet the total amount of
 

space devoted to such fragments may be quite large. If the space­

finding algorithm attempts to find the best possible fit for a segment
 

to be moved in the potential for creating short fragments is greatly 

increased.. For 'this
II 

reason Knuth advocates choosing the first 

available space that is big enough in preference to the one which
 

p
most nearly fits.[16' 3 When a very small fragment results 

from the fitting process it is best just to move the segment into 

the oversize space, as the extra space just cannot be used anywhere 

else. Bence the space allocation mechanism tends to produce chips 

of space just larger than some minimum size. Eventually all of 

memory is chopped up this way and is practically useless. One 

solution to this prcblem is a "garbage collection" mechanism which 

from time to time merges adjacent chips into larger spaces, and 

perhaps moves in-use segments around, until all free space has been 

turned into one contiguous area. If the garbage collection program 

-23­



is canlled in too late there may be no space large enough to contain
 

it, and the whole system breaks down. A different approach is a
 

sort of continuous automatic garbage processing in which the adjacent
 

free areas are recognized and merged immediately. This is most easily 

done just as an in-use space is evacuated. The spaces on either side
 

are examined and, if free, are merged with the in-use space.
 

With paging there is no fragmentation of this kind because storage
 

is- always allocated invpage-size blocks. The wasted space in a 

paging system is less visible, and consists of in-use pages which 

contain fiactive material in addition to their active material.
 

Hence a process in a paging system may appear to have an artificially
 

large'working set., This effect is minimized by having small pagps,
 

but small pages demand a relatively large and expensive page table
 

(memory map).
 

Paging creates for the user a very large contiguous virtual memory. 

It succeeds if this memory is always larger than what the user 

needs-; otherwise the user has to resort to manual foldingaanyway.
 

One way to use the large virtual space is just like that used in
 

an ordinary memory with an ordinary loader program. That is, the 

various blocks of the user's program are packed into the available
 

space with internal addresses relocated as necessary in the process.
 

Then the storage efficiency is reduced as just noted by the fact
 

that many pages in main memory will contain both active and inactive 

material. An alternative is to load each block of the program into, 

as many pages as necessary, starting each new block on a fresh page. 



Unused space at the end of a block on the last page of that block
 

remains unusable for the life of the block, which makes this scheme
 

totally unacceptable if the page size is larger than the average
 

block size. However it makes the relocating loader unnecessary since
 

each block of the program can begin at address zero of its first
 

page. The availability of a large low-cost associative memory would
 

allow paging of segments in this way with a very small page size,
 

so that a compromise might be effected between wasted space and the
 

complexity of segmentation.
 

-25­



III 

Data, Data Structures, and Data Processing
 

"Machines should work; people should think." - IBM 

An important feature of the system design philosophy is the deliberate 

concealment of certain features of the implementation. There are 

two reasons for this. The first is to prevent users from employing 

clever tricks which use the equipment in some unplanned-for manner. 

The second reason follows from this; it is to preserve the freedom 

of the designers to change details of the implementation at will, 

provided that the "official" description of the system is not violated. 

Hence the following descriptive material must be taken with a grain
 

of salt whenever such details as the number and arrangement of bits
 

in an operand are given. 

Early FORTRAN provided only for integer and floating-point data; 

character strings could be quoted, but not manipulated. Although 

the integers are in a class by themselves, where numbers are concerned,
 

,their inclusion in FORTRAN may have resulted more from machine-dependent
 

thinking than from real need.. Identifiers were limited to six
 

characters because six characters in the code employed would exactly
 

fit into one machine word. Even in some contemporary machines the
 

memory word length exerts a strong influence on all matters of
 

data representation. Operands requiring fewer bits than an entire
 

word are either stored one per word, wasting space, or packed several
 

to a word, requiring special hardware instructions or programming
 

to do the packing and unpacking. In the latter case a word may not 

hold an integral number of operands, so that there must still be
 

-26­



some waste space unless rather complicated software or hardware is
 

employed to work across the word boundaries. These considerations
 

explain the popularity of 36 bits as a word length. Aside from the
 

acceptability of 36 bits in a numeric operand, 36 can be divided
 

evenly more ways than any of its near neighbors. (36 has nine 

factors; 24, 30, 40, and 42 each have 8 factors; and it is not until 

we reach a length of 48 with 10 factors that 36 is bettered.) An 

alternative to this preoccupation with word lengths and packing is 

offered by the variable-field-length machines which allow arbitrarily­

long strings of small (4-8 bits) data elements. This can be quite 

successful in a small machine in which one is illing to expend one 

memory cycle time per byte accessed, but it can be quite discouraging 

when high performance is desired.
 

We might like to push aside the matter of memory word length entirely,
 

taking the single bit as a primitive data item and allowing an 

operand to contain any number of bits. PL/i contains some rather 

dubious features along these lines, allowing fixed and floating 

point operands to be declared with any number of digits in either 

binary or decimal base. Bit and character strings of any length 

are also allowed, but these are data structures rather than elementary
 

items. There are several drawbacks to the strict variable-by-bit
 

length specification. 

1. 	Small operands require big addresses. A memory of 2N bits
 

contains 2N distinct locatiens, each addressable with an
 

N-bit address. A process which ultimately references all
 

locations must manipulate N*2N bits of address data to
 

-27­



access 2N bits of operand data. The number of addresses which
 

must actually be generated or stored in the course of a comput­

ation may be small or large, depending on the extent to which a 

single description can apply to many distinct data items. Thus 

the address length factor may or may not be important.
 

2. An efficient encoding for the operand length specification is
 

needed. A 1-bit number is sufficient to distinguish two 

different operand sizes, while a very large number is needed 

to distinguish among a very large number of operand sizes. 

It may be important for storage economy to represent a one-bit 

operand in a one-bit notation instead of using 2 bits; but there 

are rather few situations in which a 38-bit operand is definitely 

large enough and 39 bits is definitely too large. Hence a more 

efficient encoding of operand length might be had by offering 

a limited assortment of useful operand lengths and representing 

each length by a short code group. A variable-length code might
 

well be employed, in which short operands receive short length 

'2 codes and long operands get the long codes. 

3. It is difficult to build fast hardware for a completely 

variable-length scheme. This may be regarded as the mani­

festation in hardware of the problem of manipulating a large 

number of large addresses (which must be done in hardware, even 

if the addresses are invisible to the user). An operand located 

anywhere with respect to the memory word boundary must in
 

general be moved to a particular position for processing. The 

easiest but slowest way to perform alignment is to place the 

bit string containing the operand into a shift register and 

shift it to the desired location, masking off any superfluous 

.-28­



bits that may remain. To store into memory is somewhat more 

complicated, because we must preserve the bits on either side 

of the operand in question unchanged. To make either of these 

processes go faster we must replace the iterative shifting 

process with a faster process. An N-fold increase in shifting 

hardware will not yield the expected N-fold increase in speed 

because of second order effects such as wire length and logic 

circit loading. 

In the machine under study (herein called the W machine) a compromise
 

is made: the memory is addressable to the level of 8-bit bytes, and
 

all data elements are composed of an integral number of bytes. If 

this turns out to lead to an unacceptable waste of storage for small
 

operands the scheme can be revised to use smaller bytes. The following 

primitive data elements have been defined. 

a. Alphanumeric character - 1 byte 

b. Ordinal - 2 bytes 

c. Address - 3 bytes
 

d. Numeric operand - 5 bytes 

e. Double-precision numeric operand - 9 bytes 

f. Instruction - various lengths 

The present plans are to store all operands smaller than 8 bits as 

alphanumeric characters. There is no clear need for packed decimal
 

data (4 bits per digit), so this has been omitted. The standard 

character code for the system will be an 8-bit representation of 

ASCII, although other codes can be used. 

The ordinal is a small integer which cannot be manipulated directly
 

-29­



as a program variable. Ordinals are usually used as relative address­

es, and as such are created automatically in the system whenever a
 

relative address is required. An address, which may be used for
 

purposes other than addressing, is similar to an ordinal in that it 

is beyond the reach of the user. A 24-bit address is adequate for 

addressing more than 16 million bytes of memory. 

The numeric operand serves for both integer and floating point data.
 

Its internal structure is a mantissa of 27 bits plus sign and an 

exponent of 11 bits plus sign. Both components are binary based. 

The double precision operand provides 54 bits plus sign for the 

mantissa and 16 bits plus sign for the exponent. These operand sizes 

are purely arbitrary and can be changed rather readily if they turn 

out to be objectionable. Likewise a quadruple-precision operand
 

can easily be added if the need arises. There are no plans to allow
 

these operand sizes to be altered by a console switch or under program
 

control. A change in operand size necessitates at least a cold
 

start of the system, because it affects the memory mapping; and it 

may even require recompilation of all programs. Even these objections
 

could be overcome by additional hardware; but if one is really 

concerned about changing operand sizes it would probably be better 

to employ a completely variable-length machine from the start. 

Most instructions occupy one or two bytes, but some contain literal
 

constant data and thus are longer. The length of an instruction is
 

implied by a portion of its leading byte. Still other data types
 

exist and will be introduced later. A sort of gratamarhasbbeen 

-30­



used as an aid in the description of data structures. (See Appendix I) 

An implication of this is that if the grammar is unambiguous a 

particular data structure can be recognized by the hardware and 

decomposed into its constituents. This aids in run-time determination 

of data types.
 

There seem to be exactly three ways to fasten data elements together 

to form structures: concatenation, pointers, and content association. 

The elements of a concatenated structure are located adjacent to one 

another in memory. Adjacent here means in the usual sense of 

consecutively-numbered addresses, so that the address of a byte n 

places away from a given address is obtained by adding n to the 

given address. Also, only one-dimensional concatenation is intended 

here since physical memory addresses are only one-dimensional. 

Multidimensional concatenation can be represented on a one-dimensional 

address space by using storage mapping functions, or by means of 

more complicated structures to be discussed later. 

In a concatenated structure each element has exactly two neighbors,
 

except for the two special elements occupying the ends of the
 

structure. The ends must be so identified in some way, either
 

internal or external to the structure. The sizes of the elements
 

in the structure must also be made known so that from the address 

of a given element the addresses of its neighbors can be calculated. 

If all elements in a concatenated structure are the same size the
 

structure is said to be homoomeral. Only in a homoomeral concatenated 

structure is it possible to index; that is, to select the n-th
 

-31­



element of the structure directly by using the starting address 

of the structure, the element size, and n. A relative ordering of 

elements is implied by their relative positions in the structure; 

but the user may or may not regard the structure as ordered. A 

concatenated structure can expand or contract conveniently only at 

its ends. Any insertion or deletion affecting the middle of the 

structure, or any rearrangement of its elements other than a one­

for-one swap, requires that other elements be moved. 

A pure pointer structure is not very interesting, because the pointers
 

are the elements. Each element can be only a pointer to the next.
 

The structure may have two ends or none, as the pointer of the "last"
 

element may point to the "first". For the present we do not distin­

guish between pointers which are absolute addresses and those which
 

are relative to something.
 

More interesting and useful structures are combinations of con­

catenated structures and pointer structures. These include both
 

concatenated strings of pointers and pointer structures having
 

concatenated structures as elements. A string of concatenated
 

pointers is homoomeral and can be used to make a non-homoomeral
 

concatenated structure indexable. The pointers simply point to the 

beginnings of the elements of the non-homoomeral structure. This 

kind of mechanism can also be used to change the ordering of a
 

concatenated structure without moving the elements; only the pointer
 

values have to be changed. A pointer structure having concatenated
 

structures as elements can be quite complex. Each element may contain
 

any number of pointers, in addition to other data, so that the
 

-32­



structure may be linked in several different orders. Not all pointer
 

chains have to link the same sets of elements. The most common use
 

of one of these pointer-linked structures is as an ordered structure 

which allows insertions and deletions at arbitrary points along the
 

structure. Pointer structures can never be indexed. 

A pure content-associated structure is uninteresting because all of
 

its elements are exactly alike; otherwise the elements are themselves
 

structures of some kind. In useful content-associated structures
 

the elements have their similarities and their differences. We may
 

wish to determine all of the elements of a structure which have some
 

common property, or we may wish to determine whether exactly one 

element is related to an item outside the structure. With ordinary 

technology these operations require an item-by-item search of the 

structure. Usually this is acceptably fast only if the extent of 

the structure is known and is small,or if most of the elements do 

have the property of interest. With associative memories an entire 

structure can be examined at once. It is hard to imagine a really 

general application for content associated structures alone, because
 

it is hard to pin down just what kinds of elements might make up
 

such a structure and what constitutes membership. Hence most uses
 

of content-associated structures involve tightly defined operations
 

upon tightly dfined sets of operands.
 

The most common concatenated structures in the HW machine have
 

elementary items as their elements and are preceded by a four-byte
 

head. The homoomeral concatenated structures are called strings.
 

-33­



The first byte of a string head contains a unique type code for 

strings and a code for the size of the elements in the string. The 

other three bytes contain the extent of the structure, in bytes. A 

concatenated structure containing instructions is a procedure. A 

procedure head is just like a string head except that the size code
 

implies a procedure instead of a size. The third kind of concatenated
 

structure is the stream. A stream may contain a mixture of different
 

kinds of elementary items. Each element must be preceded and followed
 

by a one-byte type code which specifies its type and by implication 

its size. Thus a stream is a concatenation of typed elements.
 

A pointer consists of a type code, control bits, and an address. A
 

pointer may appear wherever any other typed element or structure is
 

allowed; in this context the pointer is simply an indirect address. 

The pointer control bits convey information about the object pointed 

to, such as whether the object is present in memory, whether it has
 

ever been written, etc. A controller, of which there are several
 

different kinds, is similar to a pointer with additional information
 

appended, usually in~the form of one or more ordinals. In a program
 

controller, for example, the address points to the procedure head,
 

while a single ordinal points to the next instruction to be executed.
 

A stack controller likewise contains one ordinal. The address
 

points to the head (base) of a stack, and the ordinal points to the
 

current top-of-stack element. Stack overflow can be detected by
 

comparing the stack controller ordinal with the extent value given
 

in the stack head. "Stack head" here is used colloquially, since
 

what is meant is really a stream or string head. A queue controller
 

-34­



contains two ordinals which point to the current first and last 

elements of the queue. A queue is circular; when an ordinal passes
 

the last address in the queue it isset to zero- and when it passes
 

zero in the opposite direction it is set to the last element. When
 

the ordinals are equal the queue may be completely empty or completely
 

full, depending on how they got to be that way. This distinction
 

is recorded in the control bits..
 

Program Structure:
 

As noted above a program controller contains a pointer to the head
 

of a procedure and an ordinal pointing to the next instruction to be
 

executed. On entry to a block of instructions a program controller
 

with a zero ordinal is automatically cre&ted. To fetch an instruction
 

the machine adds the address and ordinal of the program controller,
 

and then adds 4 (to space over the head). At the same-time the
 

value of the ordinal can be compared with the extent in the procedure
 

head to be sure that the resulting address is actually within the
 

procedure body. Each time an instruction is fetched the program
 

controller ordinal is incremented so that it points to the next
 

instruction. The size of the increment cannot be deterYind until
 

the first byte of the instruction has been partially decoded, because
 

of the variable length instructions., A conditional or unconditional
 

jump within the procedure is accomplished in the obvious way: by
 

altering the value of the ordinal. The ordinal of the program
 

controller currently being used thus corresponds to the instruction
 

counter of a conventional machine.
 

A subroutine call -mayresult from an explicit CAL statement or by 

-35­



encountering a function name used as an operand. In either case
 

the processor will find itself holding, as an operand, a program
 

controller pointing to the procedure being called. The logical
 

structure for handling procedure calls is a pushdown stack. Hence 

the program controllers currently active are collected into a string, 

called the control stack, which is under the control of a stack
 

controller. The program controller in the position of an operand is
 

pushed into the control stack and becomes the source of the next
 

instruction to be 'fetched. On return from a procedure the control
 

stack is popped, discarding the old program controller and making
 

the former one again available. This mechanism allows subroutine
 

calls to any depth of nesting; it requires no special features to
 

handle recursive calls. The operation of a trap consists of forcibly 

stacking a program controller which points to the trap servicing 

routine. For reasons to be discussed later a pointer may be found 

at the address pointed to by a program controller address. In
 

this case the address taken from the pointer is used to locate 

the procedure head.
 

A problem is created by a jump from within a proceddure to a labelled 

point outside that procedure. Many languages allow this, although 

we may always wonder just what the programmer really had in mind 

in writing such a jump. A jump into the middle of a procedure or 

block is even more casual. Our immediate impulse is to disallow
 

such jumps altogether. The resulting source language restriction 

will not bother the FORTRAN user because all of GO-TO's are local 

and do not come under this restriction. People who are sophisticated 

-36­



enough to write meaningful non-local GO TO's in other languages are 

probably wise enough to know why they should not do so. One kind 

of jump into a procedure which is sometimes desirable and often
 

used is exemplified by the procedure with multiple entry points.
 

In this case the activity which takes place is a genuine procedure
 

call-entry rather than a jump. Extra procedure entry points can be
 

created simply by creating extra program controllers in which the
 

ordinals are initialized to some value other than zero. This alone
 

is not sufficient, howevdr, for there is usually some invisible (to
 

the user) activity associated with procedure activation which in a
 

single-entry procedure is accomplished by instructions preceding the
 

user's first executable statement. In a multiple-entry procedure
 

this activity must be made a separate, invisible sub-procedure which 

can be called from any entry point. 

There are some obvious difficulties in trying to achieve high per­

formance with such a complicated instruction fetch mechanism. (And 

other mechanisms yet to be described are equally complicated.) Our 

approach thus far has been to seek logically correct machine structures, 

and afterwards to seek engineering solutions to the performance problems 

that they create. At least the logically correct machine can be 

expected to work, albeit slowly. The alternative of designing a 

fast simple machine and pushing the implementation problems off onto 

the software designers does not guarantee that the system can ever 

be made to work at all. Even if it can, it will not have high 

performance after the software designers have transformed it by
 

programming into the machine it should have been all along.
 

-37­



Computational Structure:
 

The mechanism for expression evaluation is based upon Polish suffix
 

notation, and uses a pushdown stack to hold operands during evaluation.
 

The action takes place in a stack called the value stack. The value
 

stack is a stream pointed to by a stack controller. The operation
 

can best be illustrated by examples of expressions and the resulting
 

procedures.'
 

Example 1.
 

expression instruction list 

-A B + C;I location A 
Value B
 
Value C
 
Add
 
Store
 

The Location A instruction causes the address of A to be formed on 

top of the value stack. The Value B instruction fetches the current 

value of B to the top of the stack. Value C likewise places the 

current value of C on top of the stack. ADD requires that the two 

top-of-stack operands be values;- since they are, it performs the 

addition and leaves the result on top of the stack. The values of
 

B and C are consumed in the process, so that the stack now contains
 

the value B + C on top and the location of A just beneath. The
 

Store instruction requires a value on top and a location next, so
 

it can now be performed immediately. Both the value and the location
 

are consumed, leaving the stack empty (or at least with whatever
 

contents it may have held before the execution of A = B +C;). 

-38­



Exahple 2. 1 

expression 	 instruction list
 

A = (B+C)*D; 	 Location A
 
Value B
 
Value C
 
Add
 
Value D
 
Multiply 
Store
 

Example 2.2
 

expression 	 instruction list
 

= B + C*D; 	 Location A 
Value B 
Value C 
Value D 
Multiply 
Add
 
Store
 

Example 2.3
 

expression 	 instruction list
 

I = I + 1; 	 Location I 
Value I 
Literal =1 
Add
 
Store
 

The lack of identifiable registers for operands means that there
 

will sometimes be heavy traffic 	to and from memory (which may or 

may not mean actual main memory 	cycles).; but the compiler never has
 

to decide how best to use a limited number of hard registers, no
 

matter how complicated the expressions become.
 

In:the,7sourceilanguagenbt~tiont"hereiis no:dibtinbtiom made obetween 

a function call and a subscripted 	variable. A theorist might argue 

that a subscripted variable is really just a kind of function anyway; 

but in the machine rather different actions are called for in the two 

instances. This is unfortunate 	if at code generation time the 

compiler must examine the meaning 	 associated with the function or 

-39­



array name before it can decide what code to generate. 

Horrible Example 3.1
 

expression list 

F: PROCEDURE (x,Y) RETURNS (FIXED);

X =X+1;
 
Y =Y+;
 
RETURN (X+Y);
 
END F;,
 

I =1;
 
J = 2; 
A(IJ) -F(I,J); 

When F is called the values of I and J are 1 and 2 respectively. 

Clearly the value returned by F should be 5. But is it A(1,2) or 

A(2,3) which receives this value? 

Horrible Example 3.2
 

expression list 

F: [as defined in above example]
 
I = 1;
 
J = 1;
 
A(I,J)=F(1,I+J); 

When X+1 is encountered in the body of F this expression clearly has 

a value of 2. But is the assignment of 2 to X permitted? And does
 

F return the value 3, 4,, 5, or something else?
 

We do not attempt to say what the evaluation rules in these cases 

"ought" to be, for this is very much a matter of personal taste.
 

Some users favor very simple rules such that programs are essentially 

self-explanatory and side effects of procedures are not allowed. 

Others delight in constructing innocuous-looking procedures which 

use side effects in an obscure and devilishly clever way to accomplish 

astounding results. The original ALGOL 60 position was the "copy 

rule"; procedures should behave as if their actual parameters were
 

copied into the procedure body in place of the formal parameters.
 

-40­



When simple variables are used as actual parameters this results in 

a call-by-name evaluation procedure. Call-by-name can be defeated
 

by declaring the formal parameters to be call-by-value. When a 

constant or expression is used as an actual parameter the substitution 

rule fails in those statements in the procedure body which assign 

a value to the corresponding formal parameter. The most devastating 

implication of the copy rule is that an expression used as an actual 

parameter must in general be calculated anew for each reference to 

the corresponding formal parameter; for the variables in the actual
 

parameter expression may be assigned new values in the course of
 

execution of the procedure. Some related problems of ALGOL 60 have
 

apparently never been laid to rest. It is not difficult to construct
 

expressions involving functions in which the final values obtained 

depend upon some subtleties of the order of evaluation in the 

expressions. No one seems to be bothered by these problems simply
 

because no one has ever intentionally attempted to use the kinds of
 

expressions which evoke them.
 

In PL/I the rules governing parameters are terribly complicated 

because of the many different kinds of objects that can be used as 

parameters. The actual rule of execution seems to be simpler than 

-the copy rule of ALGOL: any actual parameter which is simply a name 

is called by name, while anything else is called by value. A simple 

name can be forced into the call-by-value mode by enclosing it within 

parentheses. Hence any actual parameter which could not logically 

be assigned a value in the course of execution of the procedure is 

regarded as a call-by-value parameter. Expressions used as actual 

-41­



parameters are evaluated only on procedure entry. The effect of 

the copy rule could always be achieved if required by writing a 

function which evaluates the expression to be used as a parameter, 

and then using that function as the parameter instead of the expression. 

The formal parameter in this case would have the ENTRY attribute 

rather than an ordinary operand attribute. (In the H machine these 

attributes are irrelevant.) All things considered, the PL/1 

parameter mechanism seems to be more natural than the ALGOL 60 copy 

rule; for it prohibits the contradiction of assigning a value to 

a constant, and it makes the user responsible for writing in trickwq 

side effects if he wishes to use'them.'
 

It appears possible to implement an evaluation rule of the PL/i 

kind in the W machine rather easily and in a manner which allows 

the compiler to generate the same instructions for both function 

calls and subscripted variable references. The proposed mechanism
 

is to compile all names appearing in subsciipt lists and actual
 

parameter lists as pointers to the values or procedures represented
 

by those names. The appearance of an arithmetic operator in a 

parameter or subscript list causes the pointers to be followed,
 

the values to be fetched, and then the arithmetic to be done,
 

leaving the resulting value in the parameter or subscript list. 

The body of a procedure begins with allocation of storage for the 

local variables and formal parameters. Then the actual parameters
 

left in the value stack are stored into the formal parameter locations. 

At compile time a simple name enclosed in parentheses (for call-by­

value) must be distinguished from a name not so enclosed; and a
 

Value instruction must be generated instead of the Location instruction. 

-42­



A one-dimensional array variable can be stored as an indexable string. 

A common practice with multidimensional arrays is to employ a storage
 

mapping function which maps the elements of the array into a one­

dimensional array. For example, if A(O:l,O2,O:4) is an array the 

physical one-dimensional array would contain 2*3*5 = 30 elements 

and the mapping function for accessing A(I,J,K) might be I+2*J+6*K.
 

Thus A(0O,0,) would be stored in location 0 of the one-dimensional 

array, while A(1,2,4) would be stored in location 29. The compiler 

must generate instructions for computing the storage mapping function, 

taking the actual subscript ranges into account. Storage mapping 

functions can be employed in the HW machine, but a more general 

method ig preferred. We may think of an array as a special case of 

a tree structure, in which the root node of the tree represents the
 

name of the entire array and the edges leading out of the root
 

represent the different possible values of its first subscript; or
 

in other words a partitioning of the array in one of its dimensions.
 

At the next level of the tree the array is partitioned in another
 

of its dimensions, and so on until the leaves of the tree, which rep­

resent the individual elements of the array, are reached. For a
 

rectangular array the number of levels of the tree above the root
 

is equal to the number of dimensions; and all nodes at a given
 

level have the same number of edges emanating from them. Selection
 

of an element of the array is therefore a matter of traversing the
 

tree, using one subscript at eabh level to choose the route to the
 

next level. In the machine representation the root node is a pointer
 

which points to the head of an indexable string, the elements of
 

which represent the nodes of the next level of the tree. In traversing
 

the tree each string head encountered demands an ordinal from the
 

-43­



value stack. The value of the ordinal selects an element from the
 

string. If the selected element is not an elementary item it will
 

be a pointer to another string head, which calls for another
 

ordinal. All of the ordinals needed in the process can be created
 

in the value stack from the subscript values supplied (assuming
 

that the correct number of subscripts has in fact been supplied).
 

When subscripts may have aribtrary origins these must be taken into
 

account in generating the ordinals. The Rice University computer
 

does this automatically, as the subscriptzorigin values are stored
 

in the codewords which are the equivalents in that machine of our 

pointer and string-head objects. Origins can be handled in software 

by compiling the literal values of the origins and subtract instructions 

whenever a subscript is used; but this has the disadvantage of requiring 

that the compiler distinguish between subscripted-variable references 

and function calls at compile time. Even this can be avoided by 

compiling functions which take on the names of the array variables 

and which perform subscript-origin adjustment before making access 

to the real array variables. These must be rather strange functions, 

since array variable names can appear on either side of an assignment 

statement. These functions can be compiled at the time the array 

variable declarations are processed; whereas correction of subscript 

origins at the point of reference to a subscripted variable requires 

that remotely-located information about the variable must be considered
 

in compiling each reference. Hence the functional treatment of arrays
 

clearly saves compilation time and instruction storage space at run
 

time, but at the expense of going through the function call mechanism
 

at each array variable reference at run time. Further study will
 

be needed to determine which method is ordinarily preferable. In 

-4)4­



some languages a different out is implied: simply ignore the lower
 

subscript bound. This is about all that can be done in languages 

which do not use array dimension declarations at all, aid 1t41s 

a dg allow only 1-origin subscripts. 

Note that the tree structure built of arrays of pointers is not
 

limited in its application to rectangular arrays. It can be used
 

for any sort of tree, including one in which the edges leading out
 

of a node terminate in nodes nearer to the root of the tree. Such
 

recursively-defined trees do not lead to an endless loop at execution
 

time because an ordinal from the value stack is consumed each time
 

a node of the tree is passed.. Sooner or later the stack will run
 

out of raw material for the manufacture of ordinals even if a leaf
 

of the tree has not been reached.
 

Example 3.3 

expression instruction list 

X = A(I,J); Location X 
Location I 
Location J 
Value A 
Store 

If A were known to be a subscripted variable, and if the subscript
 

ranges had already been adjusted to zero origin, Value instructions
 

could have been used instead of the Location instructions for I and
 

J. The instruction sequence given assumes that it is not known at
 

the point of compilation whether A is a subscripted variable or a
 

function name. Shown below is the contents of the value stack at
 

the time the Value A instruction begins execution, and also an
 

example of a function which might be used to access the array A
 

-45­



after adjusting the subscript values.
 

value stack access function
 

Location of J Literal = Subscript_2_Origin
 
Location of I Subtract
 
Location of X Exchange [the top two items]
 

Literal = Subscript 1 Origin
 
Subtract
 
Location %A
 
'Return
 

In this example the execution of Value A will not reach the root
 

pointer of array A; instead-it will find a program controller which
 

points to the access function. %A is a made-up name which really
 

contains the root pointer of array A. The Subtract instructions 

find the location Of I or J whei-e values are expected, so these 

location pointers are automatically followed until values are 

reached.- The Exchange instructionhere is admittedly anartifice
 

to make this example work. '(The probleVis".hgtstadking has
 

buried:thehsubsdript: lodatons whic14 havdrto bbvLdjdistd.-)nbhatpyt/ 

isr1needed ii-vgenerlisceither an operator which can transfer locations 

found in the value stack to local operands of the function or a
 

generalized operator which rotates the n top items of the stack.
 

In this example 'theLocation %A instruction puts the root pointer
 

of the physical array A into the value stack, on top of the adjusted
 

subscript values. On return from the functioithe following Store
 

operator finds: Location of A root pointer
 
Value of I, adjusted
 
Value of J , adjusted
 
Location of X
 

The Store instruction requires a value on top of the value stack and
 

a location under it. Since the stadk is not in this condition the
 

root pointer of A will be followed automatically to the location of
 

A(I,J), the valuesoof I and J beingconsumed in the process. Since
 

a value is called for the value of A(I,J) will be placed into the
 

-46­



value stack rather than the location of this element. At this
 

point the conditions necessary for the Store instruction to proceed
 

are satisfied.
 

The array access function might be simplified slightly if we take
 

note of the fact that an array name onxthe left side of an assign­

ment operator is syntactically distinct from a function name, even 

if one on the right side isn't. Hence a compiler could generate
 

in-line code for subscript adjustment in processing a left-side
 

array reference. Then access functions would be needed only for
 

right-side array references; and since these always return a value it
 

would be unnecessary to return a location and subscript values from
 

the access function. The access function itself could obtain the
 

required value and return that. Note in passing that when a location
 

of an array is in the stack all pointer following and use of the 

subscript values is deferred until either a value is required or a
 

Store instruction is encountered. An alternative would be to follow 

pointers as soon as a subscript value is available, leaving in the 

end a pointer to an element value in the value stack. In a simple 

system this might be attractive; but with automatic swapping between 

main and backing stores going on in the background it would lead to 

some potential booby-traps. A pointer to an array element on the left 

side of an assignment statement would be developed before evaluation 

of the right side. During this evaluation the program might be 

interrupted; and during the interruption the array variable might 

be moved. The pointer remaining in the suspended process would then 

be entirely incorrect. One way out of this trap would be to make 

the root pointer of the array non-overlayable at the time the pointer 

:-7-'
 



is brought into the value stack, and to restore the former overlayability 

of the pointer after the Store operator has-been executed. All 

things considered, it' seems preferable simply to defer all pointer 

following util use 6t the information developed thereby is clearly 

imminent. Then Wfen if the overlaying mechanism marks a root pointer 

non-present just after it has been used to develop an element pointer, 

the operation involving~the element~pointer can be completed before
 

the overlaying mechanism can possibly start moving the data.
 

At the time of a function or subroutine call, if we adopt the PLA 

evaluation rule, the value stack will contain the locations of all 

actual parameters which are ordinary identifiers not enclosed in 

parentheses, and the values of all other parameters. The first 

action taken by a procedure when it gains control will be to copy 

the parameters from the stack into its local variables. This will 

require a special store instruction, which might more properly be 

called a copy instruction. The copy instruction might contain
 

the local name into which the top-of-stack operand is to-be copied, 

literally (without any automatic pointer-following); or it might 

use a Location instruction to put the name of a local variable on 

top of the stack and then simply copy the next-to-top item into the 

location indicated by the top item. The former seems to involve
 

less lost motion. This same scheme -canbe used for the array
 

accessifunction. There is really no need to store array subscripts
 

into local variables, but this may be easier than trying to implement 

a general stack-rolling operation. If the roll operation is omitted 

from the machine design there are still two options for array
 

subscript adjustment open to the compiler writer. The compiler can
 

-48­



perform this adjustment either in an array access function or in 

the subscript list at each reference to the subscripted variable.
 

Example 4 

expression list instruction list 

DECLARE A(2:24) FLOAT; [procedure F body] 
A(I) = F(1,X+Y,A(J)); Copy R
 
.. Copy Q
•. 

F: PROCEDURE (P,Q,R) RETURNS Copy P 

(FLOAT); Location S
 
DECLARE (P,Q,R,S) FLOAT; Literal = 1 
S = 1; Store 
P P +1i; Location P 
I = I +1; Value P
 
R = R +1; Literal =1
 
RETURN (PfQ+R43); Add
 
END F; Store
 

Location I

instruction list 
 Value I
 
[main program] Add 
Value I Store 
Literal = Sbscr_Org = 2 Location R 
Subtract Value R 
Location A Literal =1
 
Literal =1 Add
 
Value X Store
 
Value Y Value P
 
Add Value Q 
Value J Add
 
Literal = Sbscr Org 2 Value R
 
Subtract Add
 
Value A Value S
 
Value F Add
 
Store Return
 

The Copy instructions in the body of F seem awkward, since they
 

must be arranged in reverse order with respect to the formal parameter
 

list. Perhaps a better technique would be to pass the number of
 

parameters in an actual parameter list as an invisible parameter
 

following,the list. This number would be at the top of the value
 

stack as the procedure is activated. A single Copy Parameter List
 

instruction could then copy all of the parameters into the local
 

storage allocated to formal parameters automatically, reversing their,
 

-49­



order in the process. An equivalent mechanism would be to pass a 

pointer to the beginning of the parameter list in the value stack as 

the final invisible parameter. Formal parameter references then
 

could be made relative to this pointer into the value stack itself, 

or the actual parameters could be copied into the formal parameter
 

local storage. Working with the parameters directly in the value 

stack has the difficulty that they must be protected against being
 

gobbled up by instructions, and that they remain in the value stack 

at the end of the procedure. The copying process takes more time
 

and storage, but it leaves the value stack clean at the end of the
 

procedure evaluation, with only a returned-value there if the
 

procedure returns a value.
 

Reference Structure:
 

In the foregoing examples we have used instructions such as Value 

A and Location X without stating just how these operands are to be
 

obtained. The task of the reference mechanism is to supply named
 

operands to these instructions. In early programming systems each 

operand was simply assigned to a unique memory location at compile
 

time. This obviously fails when procedures can be activated recursively
 

and by parallel independent processes. Within the lexicographical
 

structure of programs we note that all operands are local variables
 

of some block (which may be a procedure or a BEGIN block). The
 

reference mechanism must satisfy essentially two constraints:
 

Dynamic Constraint: Every activation of a block requires a
 

fresh set of local variables for the duration of the
 

activation.
 

-50­



Static Constraint: The sets of variables accessible to a
 

process must at every moment be exactly those which are
 

made accessible by the fixed lexicographical structure
 

of the program.
 

The constraints apply to sets of local variables, which suggests that 

machine addresses be divided into at least two parts. One or more 

parts of an address identify the particular set of variables con­

taining the desired operand; and one part locates a,particular 

operand wthin that set. The simple variables, root pointers of 

structured variables, and pointers or controllers referencing pro­

cedures might as well be made a concatenated structure (a stream). 

Thus the location of a particular operand can be states as its 

offset or displacement relative to the beginning of the stream.
 

Since the operand sizes are known at compile time (if not, the operands 

themselves are replaced with pointer of known size) displacements
 

can be expressed directly in bytes. The reference mechanism then 

has to provide the starting address of the set of operands 

containing the one of interest, after which that one is located
 

by adding the given displacement to the starting address. 

Our first attempt to design a reference mechanism might be to give
 

each block in a program a distinct block number; and to have a
 

vector of pointers indexed by block number point to the various 

streams containing the local operands of the corresponding blocks. 

This approach fails in several areas. 

1. 	Since procedures can be activated recursively, there must
 

in general be a stack of sets of local variables for each
 

-51­



block, rather than just one set.
 

2. 	Since the entire system is a single large program all blocks
 

of all jobs must have distinct block numbers; yet all job
 

procedures are not compiled at the same time, so that we 

cannot know in general which block numbers are available. 

3. 	 Since several activations of a block can exist in parallel 

simultaneously even the stack of operands sets for eabh 

process is not adequate. 

4.' 	 Out of all the block numbers that are assigned, only a few 

operand sets are accessible at any time. Thus most of the 

numbers and their associated pointers and stacks of operand 

sets are wasting storage space most of the time. 

Some of these objections can be overcome by allowing each independent 

process to have its own vector of pointers to operand set stacks. 

Each such vector need contain only the stacks of operand'sets which 

pertain to its process. Since the vector of pointers serves only
 

to 	render the stacks of operand sets indexable by block number we 

may speak logically of vectors of stacks, even though the physical
 

structure involves the pointers. With independent vectors of stacks
 

we do away with the need for unique block numbers among all blocks. 

At any level of nesting only the relatively global blocks must have 

predetermined block numbers. The relatively local declarations are 

invisible globally and may freely mhke use of in-use block numbers
 

that are mutually invisible. 

This condition on the block numbers if formalized by adopting the 

lexicographic level of a block as its block number. For example: 

-52­



A: PROCEDURE; lexicographic level = 0, operand 1 
DECLARE VA; tt it = 1, 1 
B: 	PROCEDURE; " " =1, " 2 

DECLARE VB; it = 2, , 1 
C: 	 PROCEDURE; " = 2, 2 

DECLARE VC; " t = 3, " 1 
D: 	PROCEDURE; it = 3, 2 

DECLARE VD; " " = 4, " 1 
VC = 2; [refers to 1.1. = 3, operand 1] 
CALL B; [refers to 1.1. = 1, operand 2] 

END D;
 
E: PROCEDURE; lexicographic level = 3, operand 3 

DECLARE VE; = 4, " 1 
VC = 1; [refers to 1.1. - 3, operand 1] 
CALL B; [refers to 1.1. = 1, operand 2] 
*. 

.
END E; 

CALL D TASK; [refers to 1.1. = 3, operand 2] 
CALL E TASK; [refers to 1.1. 3, operand 3] 

END 0 
CALL C; [refers to 1.1. = 2, operand 2] 

END B; 
CALL B; [refers to 1.1. = 1, operand 2] 

END A
 

(In this example the operands were simply numbered, beginning with 1, 

whereas in machine code these numbers would be replaced by displace­

ments in bytes.) The non-uniqueness of these block numbers is
 

immediately apparent; there are two operands with 1.1. = 4, operand 1.
 

These two operands are mutually invisible, according to the scope
 

rules of the language, so that their block numbers will be unique
 

during execution. This example illustrates both an indirect recursion
 

(B is called from D and E after being called from A while this earlier
 

activation is still in effect) and parallel processing (D and E are
 

called as concurrent tasks).
 

Imagine for the moment that the task option is absent from the
 

calls on D and E, so that we have only a single recursive process.
 

We 	have assumed that a single vector of stacks of operand sets will
 

-53­



process this program correctly; let us see how this works out in
 

practice. When A is activated the reference vector contains a
 

pointer to the head of A in position zero, and operand VA and a
 

pointer to the head of B in position 1. A calls B via the latter
 

pointer, causing the operand VB and a pointer to the head of C to
 

be placed into the stack at position 2. B calls C, using the last­

named pointer; this causes VC and (via pointers) D and E to be placed
 

on the stack for position 3 of the vector. C calls D, placing VD
 

in the level 4 stack. D references VC, which is found in the level
 

3 stack. It then calls B via the pointer in the level 1 stack. At
 

this point VC, D, and VD become invisible simple because the compiler
 

cannot possibly compile references to them; they are still lying in
 

their respective stacks. Now the new activation of B stacks a new
 

VB and pointer to C on top of the level 2 stack, making the prior
 

contents of that stack invisible because of the stack mechanism. B 

calls C via this new pointer. C stacks a new VC, D, and E on level 

3 and then calls D via this new pointer. D stacks a new VD on level 

4 and references the top VC rather than the one which was referenced 

previously. We now assume that statements not shown in the example 

cause the recursion to terminate; assume a RETURN from D. This
 

causes the top set of operands at level 4 to be discarded, revealing 

the previous set (if any). Now C will execute the call on E, which 

will proceed to stack its own operand VE on the level 4 stack. Then 

E references VC in the most recent activation of C and calls B, leading
 

to another recursion. Again we assume a RETURN that is not shown 

in the example. The return from E causes the most recent set of 

level 4 operands to be discarded. The return from C similarly
 

discards a set of level 3 operands; the return from B a set of level
 

-54­



2 operands. Now we are back inside D, or perhaps E, and the
 

not-shown return mechanism causes another round of throwing off 

operand sets. This continues unravelling things until the return 

from B to A causes the last set of level 2 operands to be discarded,
 

and then the end of A discards the level 1 operands.
 

The lexic levels do not have to be numbered from the outbide in.
 

Some further insight into the workings of the reference mechanism
 

can be gained by using self-relative':lexic level numbers. That
 

is, the variables just inside .the current block are at level 0;
 

the current block and other operands declared at the same level
 

are level 1; operands further outward are given levels 2, 3, etc. 

These self-relative numbers-are easily converted to absolute numbers
 

by recording the currents absolute lexic level in a counter, from
 

which the self-relative numbers are then subtracted. It has not
 

yet been decided whether to use absolute or self-relative level
 

numbering in the W' machine; each has its compile-time advantages.
 

Now let us return to the full-blown example with multi-tasking. 

Everything works as before up through the call on D. C then 

calls E without waiting for a return from D. E cannot just stack 

its own operand set on top of the level 4 stack, for D is still
 

using its own operand set located there. Further, both tasks
 

attempt to assign a value to VC. This is probably not what our
 

obviously unskilled programmer had in mind; but the point is that
 

the two tasks are not synchronized in any way, so there is no telling
 

what generation of VC will be on top of the level 3 stack when the
 

assignment takes place. It is clear that when there are multiple
 

-55­



concurrent tasks (either actually concurrent or potentially con­

current) each must have its own vector of local variable sets.
 

Yet each must continue to reference the common set of variables
 

that are global to all such tasks. This is accomplished by giving 

each independent task its own reference vector, but filling in 

the lower levels (lower than the task) with pointers to the reference
 

structure of the calling program. If the calling program then 

is recursively called while the concurrent subtasks are still
 

in execution the latter will continue to have access to the same
 

operands, even though'these operands have become invisible to the
 

calling task. Further, if one of the subtasks makes a recursive 

call on some global procedur6 its:om reference vector entries 

will be perhaps covered up, but the calling task will not be 

distunbed. The rules of PL/1 require that all currently active 

subtasks be destroyed, whether or not they have finished executing, 

when the calling task terminates. This means that pointers into 

the reference vector of the calling task cannot remain in existence
 

invalidly after the calling task has ceased to exist. 

The foregoing discussion has been concerned mainly with the dynamic
 

aspects of the reference mechanism. Clearly every activation of a
 

block will create a fresh set of local operands for that block; for
 

this is built into the block entry operation. Exit from a block will 

turn up the previous set of operands, for the block exit operation 

is built that way. What has not been shown is that the proposed 

reference mechanism will correctly preserve the static lexicographic 

structure of a program. In fact it will not, as shown by the 

following example taken from McKeeman.* 

*A Compiler Generator, page 69.
 

-56­



DECLARE C FIXED;
 
P: 	PROCEDURE (F);
 

DECLARE A FIXED, F ENTRY;
 
A = 31
 
CALL F;
 
END P;
 

Q: 	 PROCEDURE;
 
DECLARE B FIXED;
 
R: 	PROCEDURE;
 

DECLARE DUMMY FIXED;
 
C = B;
 
END R;
 

B = 2; 
CALL P(R);
 
END Q; 

CALL Q; 

All seems well until P calls R via the name F. When R attempts 

to reference B the set of local operands containing B will be buried 

beneath the set of local operands of P. With lexicographic levels 

used as block numbers the result will be that A is actually referenced
 

where B is intended, simply because A occupies the same relative
 

position in the local operands of P that B occupies in the local
 

operands of Q. Note that this problem would not have come up if we
 

had elected to use unique block numbers for all blocks. The solution
 

to this problem to be employed in the 11W machine has not been decided.
 

Some possibilities, in addition to that of numbering all blocks
 

uniquely, are:
 

1. Legislate against the kinds of procedures and calls which
 

cause the problem. This non-solution derives some moral
 

support from the view that such side-effects are a means
 

of circumventing the scope rules built into the language
 

and are thus rather easily misused anyway.
 

2. When a procedure name appears in a CALL statement, create 

a vector of pointers to the current tops of the reference
 

vector stacks. Pass this vector (by means of a pointer)
 

with the procedure name in the call. When the procedure is 

-57­



then called, use the vector of pointers for references
 

instead of the existing reference structure.
 

3. 	Whenever a procedure name is introduced into'a set of
 

local variables on some reference stack, create a chain
 

of pointers linking its scopes as of that time. On any
 

call of the procedure use the chain links instead of the
 

nomal reference mechanism.
 

4. 	Employ a modification of the unique-block-numbers scheme, 

in which the compiler is expected to minimize the consumption 

of block numbers by detecting when a number can be re-used 

with absolute safety. This obviously places a burden on the 

compiler;, but if the compiler is to make this kind of 

analysis of the program anyway for code optimization purposes 

the results will be available for block number conservation. 

5. As in 2. above, create a vector of pointers at call time to
 

the current reference environment of a procedure. On entry
 

to that procedure, simply stack the pointers from the vector
 

on top of the current reference stacks. This will re-create
 

the proper addressing environment while the called procedure
 

is active, and will restore the reference structure on exit
 

from 	the called procedure. 



IV
 

System Functions Revisited
 

"Machines should work; people should think." - IBM
 

Process Structure:
 

Throughout the foregoing discussion we have used the term "process"
 

rather loosely, with the connotation that a process is something
 

that can be executed more-or-less independently. We now apply the
 

name process to a very specific collection of information, which is
 

exactly the information needed to specify such an independent
 

activity. A process consists of:
 

a. The stack controller for the control stack
 

b. The stack controller for the value stack
 

c. A pointer to the reference vector of stacks
 

d. An ordinal containing the process number.
 

Depending on the outcome of the procedures-called-as-parameters
 

question the pointer to the reference vector may turn out to be
 

a stack controller instead. The point is that a process contains
 

in its 18 or 20 bytes all of the information needed to place a
 

task in execution or to preserve a task for later reactivation. A
 

process is small enough to be conveniently "handed-abbut" from
 

processor to processor via queues; or it can remain in one place
 

while a pointer to it is moved about. Still another possibility
 

would be to arrange processes into a vector and refer to them by
 

ordinals. This would make it unnecessary to have the process number
 

as part of the process; but there would be holes in the process
 

vector from time to time as processes terminate. The reason for
 

-59­



the process number is to allow the process to identify itself to the 

operating system, both for processor time charging and for memory 

allocation. Wit process numbers stored in the process, rather than 

implied by the location of the process in a vector of processes, 

it is possible for more than one process to have the same process 

number. 'This may be useful, since it automatically causes processor 

time for all processes having the same number to be charged to that 

same number, and for all, processes running with the same number to 

share a common allocation of memory. A process is created as a 

result of a CALL statement containing the TASK option. It is then 

placed into a ready-to-run queue, from which the processors take 

their orders. If a process in execution is interrupted by timer 

runout it is simply placed at the tail of the ready-to-run queue. 

If the process is suspended by a voluntary relinquish the queue which 

is to receive it will be designated in the relinquishment. This might 

be a queue of processes waiting on some event variable or a queue 

of processes requesting service of an I/O processor. A process is 

liquidated when it has nothing more to do. This can be aetected by
 

an attempt to return from its own outer block procedure, which will
 

cause the control stack toiiunderflow. We may also wish to allow a
 

process to commit suicide without returning from its outer block.
 

When a process is liquidated the operating system must be informed
 

so that storage allocated to that process can be set free and the
 

process number used again. If 'aprocedure creates sub-tasks and then
 

terminates before its sub-tasks terminate the lattershould be 

terminated by force. Presumably this kind of thing will not be 

programmed to happen deliberately, since it leads to unpredictable 

results; and unpredictable results are rarely if ever useful. 

-60­



Storage Management:
 

A variable-length segmentation scheme is proposed for the HW machine,
 

with the added possibility that large segments will be paged. The
 

segments belonging to a process are chained together in a linked
 

list by pointers. The heads and tails of chains are locatable by
 

means of a memory allocation vector, which is indexable by process
 

number. Process number zero is reserved for the free chain.- Non­

overlayable operating system segments may be gathered.together when
 

the system is initialized and omitted from any chain, since their
 

storage allocation is permanent. In an existing machine simulator 

program the chains are doubly-linked and can be traversed in either 

direction; but this is not absolutely essential.
 

Suppose that the system has been running for some time, so that
 

several in-use chains have been established and the memory is quite
 

checkerboarded with segments belonging to different chains. We will 

first consider the release of allocated storage to the free list, as
 

this provides some necessary background for an understanding of the 

complementary activity of requesting more space. Also we shall 

assume for now that each segment contains just one structure: procedure,
 

indexable string, or stream. This structure is pointed totby a 

pointer, program controller, queue controller, stack controller, etc.
 

There is only one such controller containing the presence information 

for the segment; if there must be more than one controller controlling
 

the segment a single pointer is created to contain the presence
 

information, and all other controllers are referred to that pointer
 

for access to the segment.
 

-61­



The procedure which releases space is called with either the location
 

of the segment to be released or the location of its controller as
 

a parameter. The segment itself contains an address pointing to the
 

controller; this is called its control link. The segment also contains
 

the predecessor link and the successor link, which are links to the
 

rest of the in-use chain. The extent of the segment body is con­

tained in the head of the structure residing in the segment. This
 

enables one of the neighbors of the segment, the.rightward segment,
 

to be located from the head of the segment. The other neighbor, the
 

leftwardsegment, ends just before the segment begins; its head
 

can be located by using an address, the segment tail, which is located
 

just beyond theuend of the data proper. The segment releasing
 

procedure does the following.
 

1. 	Changes the control-link to zero, to indicate a free segment
 

2. 	Cuts the segment out of the in-use chain and links the
 

loose ends of the in-use chain back together.
 

3. 	Examines the leftward segment to see whether it is in-use
 

or free. If free its control link will be zero. In this
 

case the two segments are merged by increasing the extent
 

.df' the leftward segment and changing the tail address of 

the segment to be released. 

4. 	Examines the rightward segment to see whether it is free. 

If so, it is cut but of the free list and merged into the 

segment being released., 

5. 	If the segment being released was not merged with its
 

leftward neighbor it is now added to the end of the free list.
 

These details are open to change. For example, implementation may
 

be easier if the segment being released is always,attached to the tail
 

-62­



of the free chain. Then any free neighbor can be cut out of the
 

free chain and merged into the segment being released.
 

A process requesting more space must furnish its process number and
 

the amount of space requested as parameters to the space-procuring 

procedure. This procedure may in principle deny the request at once,
 

and cause the requesting process to be delayed, suspended, or killed;
 

this part of the procedure is up to the systems programmer. Assuming
 

that the request is accepted the free list-will first be searched
 

for a sufficiently large segment. Note that segments being released 

could have been placed in the free list in order by size, so that
 

on searching the list from beginning to end the first fit found would 

be the best fit. Instead the free list is ordered at random, so that 

the algorithm is first-fit rather than best-fit. This is as recommended 

by Knuth.[16 tp. 435 ff.] If a fitting segment is found it may be 

entirely too large,, so that it is worthwhile to split it into two 

parts. One of these is cut out of the free list and given to the 

requesting process by attaching it to the tail of the in-use chain 

for that process. The leftover segment, if any, remains in the 

free list. Once the found segment is attached to the in-use chain
 

its control link is set to point to the controller involved in the
 

request and then the requesting process is allowed to continue.
 

If there is no space in the free list large enough to satisfy the
 

request this will be indicated by a successor-link value of zero,
 

which indicates the end of the free list.
 

If there is no free space the user's own in-use list may be examined
 

next in search of something that can be overlaid. Codes in the 

-63­



controllers of in-use segments indicate those which are non-overlayable,
 

and perhaps also those which have never been written into and thus
 

do not have to be written out to the backing store before they can
 

be overlaid. The in-use list can be searched just like the free list,
 

but by using a more complicated procedure the search can be made
 

more rewarding. This procedure consists of considering the neighbors
 

of a too-small in-use segment to see if one of them might be free,
 

and then if the two segments combined might be large enough. It is
 

probably not worhwhile to consider whether both neighbors are free
 

and the three segments combined are large enough, but it will take
 

statistical studies to-answer this question more definitely. When
 

an in-use segment is to be overlaid, with or without combining with
 

a free neighbor, its controller is first marked non-present. Then
 

if the segment has been written a backing-store transfer is set up
 

and the process is temporarily suspended for completion of that
 

transfer. Once this is out of the way the segment can be merged with
 

a neighbor, if this is to be done, and then considered for subdividing.
 

Subdividing will create the desired segment, to be placed at the end
 

of the in-use chain, and a free segment to be added to the free
 

chain (after checking for free neighbors with which it might be
 

merged). Placing the found segment at the end of the in-use chain
 

leads to a first-in, first-out swapping algoiithm. This may be
 

modified by the desirability of choosing non-written segments for
 

swapping. It would be possible, for example, to keep all procedure
 

segments at the head of the in-use chain; and since procedure segments
 

are never written into this would increase the probability of finding
 

-64­



an overlayable unwritten segment to overlay. Similarly non-overlayable
 

segments could be kept at the tail of the in-use chain, or even in
 

a separate in-use chain, so that no time is wasted in examining them
 

for possible overlay use. Most of the more sophisticated overlay
 

selection algorithms require that some usage statistics be recorded.
 

These could be worked into the segment heads or controllers; but
 

for the present we are inclined to believe that the simpler first-in,
 

first-out algorithm is about as good as any other, all things 

considered.
 

Since the use of the memory allocation system does entail some
 

overhead it may be undesirable always to store one program structure
 

per segment. It is not difficult for the system to store more than
 

one structure per~segment, although this does require some additional
 

machinations in the compilers. Consider a tree operand such as an 

array. If the dimensions of the array are small all of its operands 

and pointers can be packed into a single segment. The root pointer 

acts as the controller for the entire segment. The other pointers 

are permanently.marked present, since if any one of them can be 

accessed at all the entire structure must be present. The extent 

of the segment, as stored in the segment head, must be artificially 

large, as it applies to the entire structure rather than to the 

outermost vector of pointers. This precludes automatic bounds 

checking of the first subscript; but it does not invalidate protection. 

Bounds checks will at least insure that the subscript points somewhere 

within the segment. The additional complexity of these packed 

segments arises from the fact that the compiler must somehow force 

-65­



the internal pointers or controllers to indicate present, and must
 

never try to release the storage allocated to some part of the
 

structure; only the entire structure can be released. Instruction 

strings that are nested lexically might also be nested into one 

segment. This is more difficult than packing an array because of 

overlaying considerations. The root pointer of an array is examined 

at every access to any element of the array. Thus the whole array 

can be swapped into'and out of main storage at any time so long as 

the presence information in the root pointer is kept up to date. 

Instruction fetching references only the current program controller. 

The system might overlay an outer block and all of its contents while
 

art inner block wasstill, being used. This can be prevented by an 

appropriate mechanism, although the prevention may be more trouble 

than it is worth. For example, an inner block might contain 

instructions on entry to make its containing block non-overlayable, 

and to restore its former overlayability on exit. 

It is easiest to talk about the operation of the system in terms
 

of processes that are in execution. Other matters that must be con­

sidered include the complexities of getting processes started from
 

scratch. At compile time a-program consists of executable statements,
 

literal constants, and variables that have not yet received any
 

values. (Variables which are to receive initial values by an
 

INITIAL attribute can receive these values at run time by instructions
 

which store literal constants into the variables.) In principle a
 

compiler can pre-evaluate some expressions of a program and in general
 

bring the program to a point beyond which it cannot proceed without
 

run-time input. Such a pre-evaluated program could be expressed by
 

'-66­



transforming it into a program with INITIAL declarations, or it might 

have values already assigned to its variables. The compiler output 

thus may contain instruction strings, undefined variables, and var­

iables having values. To get a job started aiprocess must be created 

for it. The control stack must contain a single initialized program 

controller pointing to the outer block of the job by the time the 

first instruction is to be fetched. The value stack will be empty; 

and the reference vector must contain pointers to the global reference 

vector. Meanwhile all the procedures of the job presumably reside 

in data segments of the compiler, or in some other non-executable 

form in mass storage. For a procedure to be executable its head 

must indicate that it is a procedure, and it must have a pointer 

or controller in a reference stack somewhere from which it can be 

called. If the procedure segment is present this pointer will point
 

to it; otherwise the address in the pointer will point to a control
 

word containing the backing-store address of the segment and its
 

extent. The big problem is that reference stacks come and go with
 

procedure activation, while the instruction strings of procedures
 

endure at least for the life of a process. These instruction strings 

are quite similar to the oiin variables of ALGOL or the STATIC 

variables of PL/I. One way to implement STATIC variables is to ignore 

their actual positions in the nesting structure of programs and to 

treat them as if they were declared in the outer blocks. It is up 

to the compiler to work around any naming conflicts and programming 

errors of scope violation which might result from this change in 

declaration. In other words, the compiler doesn't tell the user 

where it really put the operands and doesn't allow him to reference 

-67­



them globally unless they are really declared that way. Hence it
 

seems reasonable to treat instruction strings in the same way, hiding
 

their declarations in the outer block. Since the outer block lasts
 

for the life of the job this means that the process of connecting
 

the procedure segments with their declarations has to be done only
 

once. It is now reasonable to imagine a loader system procedure which
 

performs the special function of creating outer blocks for jobs.
 

Note in passing that this method of declaring procedures effectively
 

results in giving each procedure block a unique block number. Also, 

each block must now contain instructions to set up the correct reference
 

stack on block entry and to restore it on block exit; no longer can 

.the reference stack number be implicit in the block's own level of
 

declaration. The term "loader" is used only by analogy to more 

conventional systems. It does not -really have to load anything into
 

main storage since this will be done dynamically by the Thetlay 

mechanism. The loader simply obtains an empty segment, fills it with
 

pointers to the instruction strings of a job, and stacks this segment
 

on the appropriate reference stack in the process that has been created
 

for that job. Some sort of unloader will also be needed to release
 

the backing storage of a job at its termination, and to destroy its
 

outer block. Further, it will often be desirable to call the
 

loader procedure from inside a program. This will allow a prototype 

compiler, for example, to run as a user job and to have its output
 

placed into execution. Indeed, an entire prototype operating system
 

could be run as a user job under an existing operating system. This
 

would also be advantageous if it is desired to run time-sharing
 

concurrently with batch processing; the time-sharing system would
 

run as a single batch job.
 

_68­



APPENDIX I
 

A BNF Description of Data in the W Machine 

The following is intended only for data description; it is not a 

true grammar. Semantic explanations are enclosed in [square brackets]. 

<primitive element>: :=<character> [1 byte] 
kordinal> [2 bytes] 
I<address> [3 bytes] 
<number> [5 bytes] 
i<d-p-number> [9 bytes]
 
F<1nstruction> [I or more bytes]
 

<character string>: :=<character string><character>
 
I<character>
 

<ordinal string>: =<rdinal string>b<rdina-l>j<ordinal>
 

[and so on, for strings containing primitive elements of only one kind]
 

<pointer>: :=00110<ointer control><address>
 

<pointer control>::= 111 [absolute address, present, non-overlay] 
1110 [presence unknown: follow pointer] 
1101 [present, overlayable; written] 
IiOO [present, overlayable, never written] 
1010 [a ghost: storage has not been allocated 

yet, and the address is the size needed]
 
1000 [non-present: address points to control
 

word containing location]
 

,pointer string>: :=<pointer string><pointer>I<pointer>
 

<homoomeral string>: :=<haracter string>
 
k<crdinal string>
 
I<address string>
 
1<bumber string> 
i<d-p-string> 
1<pointer string> 
program controller string>
 

1<stack controller string>
 
<queue controller string>
 

<program controller string>: :=<program controller string>
 
<program controller>
 

J<program controller>
 

A-I
 



[stack and queue controller strings defined in the obvious way] 

<typed element>: :=<typed character> 
(<typed ordinal> 
<typed pointer>
ltyped number> 
I<typed d-p-number> 
Ityped stack controller>
 
ktyped queue controller>
 
l<typed program controller>
 

[for use in streams] 

<typed character>: :=O001O000<character>0O010000 

<typed number>: :=O0010001<humber>00010001 

<typed d-p-number>: : =00010010<d-p-number>00010010 

<typed pointer>: :=<pointer>O0110xxx 

<typed stack controller>::=<stack controller>OOOllxxx
 

<typed queue controller>: :=<queue controller>OOlOlxxx
 

<typed program controller>: :=<program controller>OOlOOxxx
 

<Indexable string>::=<index head><homoomeral string> 

<Index head>: :=0000<size code><extent> 

<size code<::= 0001 [character - 1 byte] 
10010 [ordinal - 2 bytes] 
10011 [address - 3 bytes] 
10100 [pointer - 4 bytes] 
10101 [number - 5 bytes]
10110 [program or stack controller - 6 bytes] 
11000 [queue controller - 8 bytes] 
11001 [d-p-number :-9 bytes] 

<stream>: :=<stream head><typed string>
 

<stream head>: :=00000000<extent> [an index head with zero size]
 

<typed string>: :=<typed string><typed element>i<typed element>
 

<procedure>: :=<procedure head>ednstruction string>
 

<procedure head>: :=00001011<extent> [an index head with size ii]
 

<program controller>: :=00100<pointer control><addres s><ordinal>
 

<stack controller>: :=00011<pointer control><address><brdinal>
 

A-2
 



<queue controller>: :=00101cqueue control bits><address><ordinal 1> 
<ordinal 2> 

<queue control bits>::= 111 Epresent, non-overlayable, non-empty]
 
1110 [present, non-overlayable, empty1
 
1101 [present, overlayable, non-empty]
 
1100 1[present, overlayhble,.eep y]
 
1010 [non-present ghost, address is size]
 
1000 [nonpresent, address points to control
 

word containing location]
 

<ordinal 1>: :=<brdinal> Ethe head of the queue] 

<rdinal 2>: :=<brdinal> [the tail of the queue] 

<segment>::=<predecessor link><successor linl'lzontrol link>
 
<segment body>
 

<predecessor link>: :=<address> 

<successor link>: :=<address> 

<control link>: :=<address> 

<segment body>::=4ndexable string><segment tail> 
<btrcan'<egment tail> 
<procedure><segment tail> 

<segment tail>: :=<address>
 

<process>: :=<bontrol stack controller><value stack controller>
 
<reference vector pointer><nser number>
 

<control stack controller>: :=<stack controller>
 

<value stack controller>: :=<stack controller>
 

<reference vector pointer>: :=<pointer>
 

<iser number>: :=<ordinal>
 

Summary of type codes: 

0000 index, stream, or procedure head 
00010000 typed character
 
00010001 typed number
 
00010010 typed d-p-number
 
00011 stack controller
 
00100 program controller 
00101 queue controller
 
00110 pointer
 

The distinction among indexable strings, streams, and procedures
 

A-3
 



is based on the size code part of the head. If the sizes of elements
 

in indexable strings are limited to values between 1 and 15, excluding 

11 and 13, an efficient hardware operation of indexing can be realized. 

The beginning of' any-item, relative to the beginning of the string, 

is located at N*S, where N is the index value (zero origin) and S is 

the item,size. 'This multiplication can be performed by a two-input 

adder (or less) for sizes of 1-15 except 11 and 13. Hence these
 

Awkward size codes are,tentatively reserved for non-indexable strings.
 

A different typing systemhhas also been considered and will be
 

described briefly. This system assigns a type code to -every element,,
 

even though those elements stored in indexable strings do not require
 

individual type codes. It is based on a memory addressable by
 

nine-bit byte, and uses a variable-length code. The variable length 

code minimizes the use of type bits where they are hard to come by,
 

and uses them lavishly where they are abundant. For example, a char­

acter is represented by a leading type bit of I and 8 bits of data. 

Any other item has-a leading type bit of 0. An instruction has a' 

leading type code of 01 and 7 bits of data -- or more if a multi-byte 

instruction is involved. All remaining elements have leading bits 

other than 1 or 01. Leading codes of 0011, 0010, and 0001 are
 

available for three more elements which can use these-sizes conven­

iently,. Thus a 14-bit ordinal could be made with two bytes, the 

first of which has a -code of 0011; and a 23-bit address can be made 

with three bytes and a leading code of 0010. Leading codes of
 

0000111, 0000110, 0000101, and 0000100 accomodate four more elements,
 

after which the codes begin with 00000 and so on. By juggling the
 

A-4
 



codes and data elements like this it is usually possible to arrive
 

at satisfactory elements which have enough bits for data and then
 

fill out an integral number of bytes with code bits. The coding
 

technique is similar to Huffman coding, except that the goal is not 

to minimize the total expenditure of bits so much as it is to minimize
 

the expenditure of bytes while providing operands of appealing length. 

A-5
 



Bibliography
 

1. Anderson, James P.:"A Computer for Direct Execution of
 

Algorithmic Languages"; Proc. EasternJJoint Computer Conference,
 

1961, page 184.
 

2. 	Anderson, James P.; Hoffman, Samuel A.; Shifman, Joseph; and
 

Williams, Robert J.:"D825 - A Multiple-Computer System for
 

Command and Control"; Proc. Fall Joint Computer Conference,
 

1962, 	page 86. 

3. 	Barton, R. S. :"A New Approachito the Functional Design of a
 

Digital fomputer"; Proc. Western Joint Computer Conference,
 

1961, page 393.
 

4. 	 Barton, R. S.:"The Interrelation Between Programming Languages
 

and Machine Organization"; Proc. IFIP Congress 65.
 

5. 	 Bashkow, Theodore R.; Sasson, Azra; and Kronfeld, Arnold: 

"System Design of a FORTRAN Machine"; I.E.E.E. Transactions 

on Electronic Computers, Vol. EC-16, No. 4, August, 1967. 

6. 	Bock, R. V.:"An Interrupt Control for the B5000 Data Processor
 

System"; Proc. Fall Joint Computer Conference, 1963, page 229.
 

7. 	Bryant, Peter:"Levels of Computer Systems"; Communications of
 

the A.C.M., December, 1966, page 873.
 

8. 	 Carlson, C B.:"The Mechanization of a Pushdown Stack"; Proc.
 

Fall Joint Computer Conference, 1963, page 243.
 

9. 	 Cleary, J. G. :"Process Handling on Burroughs B6500"; Proc. 

Fourth Australian Computer Conference, 1969, page 231.
 

10. 	Hauck, E. A.; and Dent, B. A. :"Burroughs' B6500/B7500 Stack 

Mechanism"; Proc. Spring Joint Computer Conference, 1968, page 245. 

B-1
 



11. 	 Hopper, Grace M.;'and Mauchly, John W.:"Influence of Programming
 

Techniques on the Design of Computers"; Proceedings of the
 

I.R.E., Vol. 41, No. 10, October, 1953, page 1250.
 

12. 	 Iliffe, J. K.; and Jodeit, Jane G.:"A Dynamic Storage
 

Allocation Scheme"; The Computer Journal, October, 1962, page 200.
 

13. 	 Iliffe, J. K.:Basic Machine Principles; London, 1966, [U.S.A.
 

distribution through American Elsevier Publ. Co. Inc.]
 

14. 	Iliffe, J. K.:"Elements of BLM"; The Computer Journal, August,
 

1969, page 251.
 

15. 	 Jodeit, Jane G.": Storage Organization in Programming Systems"; 

Communications of the A.C.M., November, 1968, page 741. 

16. 	 Knuth, D. E. :The Art of Computer Programming, vol. 1, "Fun­

damental Algorithms"; Addison-Wesley, 1968.
 

17. 	Halstead, M. H.:Machine-Independent Computer Programming;
 

Spartan Books, Washington, D.C., 1962.
 

18. 	McKeeman, W. M. :"Language Directed Computer Design"; Proc.
 

Fall Joint Computer Conference, 1967, page 413.
 

19. 	Melbourne, Alan J.; and Pugmire, John M.:"A Small Computer
 

for the Direct Processing of FORTRAN Statements"; The Computer
 

Journal, April, 1965, page 24.
 

20. 	Mullery, A. P.; Schauer, R., F.; and Rice, R.:"ADAM- A Problem-


Oriented Symbol Processor";Proc. Spring Joint Computer Conference,
 

1963, page 367.
 

21. 	Randell, B.; and Russell, L. J.:ALGOL 60 Implementation;
 

Academic Press, London, 1964.
 

22. 	Richards, R. K.:"New Logical and Systems Concepts"; Proc.
 

Eastern Joint Computer Conference, 1958, page 51.
 

B-2
 



23. 	Rosen, Saul:"Hardware Design Reflecting Software Requirements";
 

Proc. Fall Joint Computer Conference, 1968, page 1443.
 

24. 	 Thompson, Rankin N.; and Wilkinson, John A.2"The D825 Operating
 

and Scheduling Program"; Proc. Spring Joint Computer Conference,
 

1963, page 41.
 

25. 	Weber, Helmut:"A Microprogrammed Implementation of EULER on
 

IBM System/360 Model 30";Communications of the A.C.M., September,
 

1967, page 549.
 

26. 	Wegner, Peter (editor):Introduction to System Programming;
 

Academic Press, London, 1964.
 

27. 	Wirth, Niklaus; and Weber, Helmut:"EULER: A Generalization of 

ALGOL and its Formal Definition"; Communications of the A.C.M., 

January, 1966, page 13, and February, 1966, page 89, and 

errata December 1966, page 878. 

28. 	Wirth, Niklaus:"On Multiprogramming, Machine Coding, and 

Computer Organization";Communications of the A.C.M., September, 

1969, page 489. 

29. 	 Denning, Peter J. :"Virtual Memory"; Computing Surveys, 

September, 1970, pge 153. 

30. 	Huskey, Harry D. :"Semiautomatic Instruction on the Zephyr"; 

Proceedings of a Second Symposium on Large Scale Digital 

Calculating Machinery; Annals of the Harvard Computation 

Laboratory, Harvard University, 1951, page 83. 

31. 	 McFarland, Clay:"A Language-Oriented Computer Design"; Proc. 

Fall 	Joint Computer Conference, 1970, page 629.
 

B-3
 


