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A STATISTICAL  STUDY OF ABILITY OF SIMULATED PILOTS 

TOCONTROLTHEAPPROACHANDDESCENTOFTHE 

LUNAR  MODULE TO THE  LUNAR  SURFACE 

By Jacob H. Lichtenstein 
Langley  Research  Center 

SUMMARY 

An analytical  study  was  made  to assess the  ability of a pilot,  simulated by permis- 
sible error  performance,  to  control  the  entire  lunar  approach  and  descent with  relatively 
simple guidance  schemes.  The  control  task  consisted of applying retrothrust  during  the 
hyperbolic  approach  to  establish a lunar  orbit.  During  this  lunar  coasting  orbit,  the  lunar 
module  was  separated  from  the  command  and  service module. A second  deorbit  thrust 
period  was  used on the  lunar  module to establish a coasting  descent, and a final  thrust 
period  was  used  to put the  vehicle  into a reasonable  landing  situation.  Throughout  the 
maneuver  the  pilot  was  permitted  to  make  reasonable  errors,  selected  in a random  man- 
ner,  in  the  thrust  time  and  attitude  control.  The  control  schemes  consisted of main- 
taining a constant  vehicle  attitude  with  respect  to  the line of sight  to  the lunar horizon 
for  the first and  second  thrust  periods,  and a constant  angle  with  respect  to  the  line of 
sight  to  the  orbiting  command  and  service  module for the  third  thrust  period. 

The  results show that a relatively  accurate  pilot,  one  whose  standard  deviation of 
e r ro r  is 0.1 sec and 0.1' or less, would be necessary  to avoid  excessively  large  errors. 
Even  such a pilot would be  required  to  switch  to  another  form of terminal  guidance  to 
bring  the  flight  conditions  within  acceptable  values  near touchdown. 

Correction  coefficients were determined which permitted  corrections  to be  applied 
to the  second  and  third  thrust  periods for errors made  in  the  previous  thrust  periods. 
When these  correction  coefficients  were  applied,  the f i n a l  standard  error  in  altitude for 
the  worst  pilot was  reduced  from about 25 000 to 3000 f t  (7620 to 914 m) and  the  number 
of impacts with  the  ground  was  reduced  from 21  to 2 in  the  total of 51  runs. 

INTRODUCTION 

Simple  techniques  for  guidance,  navigation,  and  control are of interest  in  space 
flight as a means of reducing  hardware  complexity or for use  in  manual  backup  modes. 
Much work  has  been  done  in  this area at the NASA Langley  Research  Center as well as 



in  various  other  organizations  (see refs. 1 to 6, for example). In most  studies of this 
type  individual tasks have  been  considered,  either  analytically  or by simulation. Such 
tasks  have  included  establishment of lunar  orbits,  lunar  landings,  rendezvous,  and  launch 
from  the moon. The  control  tasks  in  each of these  phases  have involved orientation of 
the  spacecraft  and  application of a specified  thrust  level  for  some  time  interval.  The 
analyses of references 1 to 6 have  indicated  that  simple  visual  cues,  such as views of 
the  lunar  horizon  or of an  orbiting  spacecraft,  could  be  used  for  spacecraft  orientation 
during  the  thrusting  periods.  The  analyses  have  also  indicated  that  the  various  thrusting 
phases could  be  accomplished  quite  accurately  and  economically. 

The  purpose of the  present  study  was  to  examine  analytically how well a pilot,  using 
the  simplified  guidance  techniques  suggested  in  the  references  mentioned  previously,  can 
perform  the  sequential  tasks  required  during  the  lunar  landing  mission.  This  mission 
starts with  the spacecraft  approaching  the moon in a hyperbolic  orbit  and  terminates with 
the  lunar  module  close  to touchdown. The  tasks  required of the  pilot are  to  control  the 
vehicle  thrust  in  order to (a) establish a near.-circular  coasting  orbit, (b) brake  from  the 
coasting  orbit  into a descent  transfer  orbit, and ( c )  brake  from  the  transfer  orbit  to  the 
final  near-touchdown  conditions.  This  sequence of events is shown in  figure 1. Since 
statistical  experimental  error  data  for  pilots  performing  the  required  tasks  for  the  entire 
trajectory  are not available, a mathematical  model  representing  the  pilots was required. 
This  model  was  defined by the  magnitude of the  errors  in  thrust  control  angle and  in the 
response  times  for  the start and  stop of thrust.  Eighteen  pilots  were  represented by 
various  combinations of the  magnitudes of the  angle  and  time  errors.  Statistical  data 
were  obtained by making 51 complete  runs  for  each pilot,  with  the  actual  magnitudes of 
the  errors  selected by a Monte Carlo technique. 

Since it was  recognized  that  the  pilot would make  control  errors  during  the  descent 
and  that  the  final  altitude e r ro r  may  be  quite  large,  some  method of compensating  for  the 
e r ro r s  may  be  required.  Therefore, a set of e r ro r  coefficients was developed  which 
would indicate  the  changes  to  be  made  during  the  second  and  third  thrust  periods  to  com- 
pensate  for  errors  made  in  the  previous  thrust  periods. 

SYMBOLS 

In this  investigation,  measurements  were  made  in U.S. Customary  Units but they 
are  also given  in  the  International  System of Units (SI). The  symbols  used  in  this  report 
are defined as follows: 

L. 
TP 

A average  value of a parameter, 

C  correct  value of a parameter  obtained  from  nominal  run 
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G=- P M  
R2 

h 

I? 

M 

m 

m0 

n 

P 

R 

RO 

altitude  above  the lunar surface, f t  (m) 

distance  between  the LM and  the CSM, f t  (m) 

mass of the moon, slugs (kg) 

mass  of the  vehicle,  slugs (kg) 

initial  mass of the  vehicle,  slugs (kg) 

number of measurements of the  parameter  under  consideration 

value of the  parameter  under  consideration 

radius  from  the  center of the moon to  the  vehicle, n. mi. or f t  (m) 

radius of the moon, 5 702 000 f t  (1 737 969.6 m) 

S 

t 

(P - C)2 
standard  error of a parameter, 

time,  sec 

time at start of computations (at h = 200 n. mi. or 370 400 m) 

time at start of first thrust  period,  sec 

time at end of first thrust  period,  sec 

time at start of second  thrust  period,  sec 

time at end of second  thrust  period,  sec 

time at start of third  thrust  period,  sec 

time at which the  vehicle  reaches  minimum  altitude,  sec 

time at which  the  vehicle  reaches  the  moon's  surface,  sec 



Y 

71 

72 

error in  the  length of the first thrust  period,  sec 

error in  the  length of the  second  thrust  period,  sec 

t ime  error  at the start of the  third  thrust  period, sec 

velocity of the  vehicle,  ft/sec  (m/sec) 

inertial axes (see fig.  A-l(b)) 

distances  along Xi and Yi axes, respectively, ft (m) 

body axes of the  vehicles,  oriented as shown in  figure 2, with  the  subscript 
denoting  the  vehicle 

angle  between  the  local  vertical  and  the  line of sight  from  the LM to  the 
CSM, deg 

flight-path  angle,  measured up from  the  local  horizontal,  deg 

angle  between  the  line of sight  from  the CSM to  the  trailing  lunar  horizon 
and  the XCSM axis during first thrust,  deg 

angle  between  the  line of sight  from  the  LM  to  the  trailing  lunar  horizon 
and  the XLM axis during  second  thrust,  deg 

angular  displacement of the  vehicle  in  the XiYi plane, tan-l  2, rad 

longitude on the  lunar  surface,  deg 

universal  gravitational  constant, 6.668 X 
g sec 2 

angle  between  the  X body axis and the  local  horizontal,  deg 

standard  deviation of a parameter, 

angle  between  the  local  vertical  and 

1 - n - 1  

the  line of sight  to  the  lunar  horizon,  deg 
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U angle  between  the  line of sight  from  the LM to  the CSM and  the XLM axis, 
deg 

Subscripts: 

A 

a 

CSM 

LM 

%e 

t 

V 

altitude 

control  angle 

command  and service module 

lunar  module 

range 

time 

velocity 

Dots above a symbol  denote  differentiation with respect  to  time. 

METHOD 

The analysis and results of this  paper are based on the  computed  ability of pilots 
to fly along a predetermined  nominal  trajectory by adhering  to a time-defined  nominal 
flight  plan.  It is assumed  that  the  spacecraft is approaching  the moon  along a hyperbolic 
trajectory  similar  to  that  for  the Apollo mission, and the  nominal  trajectory starts at  an 
altitude of 200 n. mi. (370 400 m)  above  the  surface.  The  terminal  conditions are an 
altitude of 1 n. mi. (1852 m), zero  vertical velocity,  and a forward  velocity of about 
600 ft/sec (182.9 m/sec). In order  to  obtain  data  for  the  statistical  analysis, 51 descent 
trajectories  in which  the  control e r r o r s  were randomly  selected were computed for  each 
of the 18 pilots  considered. 

The  trajectory  computations  were  made by using a general  three-degree-of-freedom 
system of equations with the moon as the  central body. For  this  investigation, however, 
it was decided  that there would be no loss  in generality if the  problem were restricted  to 
the  planar  case with the  vehicle free to move  longitudinally  and  vertically and to  rotate 
for  thrust  alinement.  The  computations  permit  controlled  thrust of the  combined  vehicle 
(command  and service module  with  attached  lunar  module)  during its approach,  separation 
of the two vehicles,  and  thrust of the  lunar  module  while  keeping  track of the  orbiting 
command  and service module. Because  this was a general  investigation, no attempt  was 
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made to duplicate a specific Apollo mission,  in  which  the lunar horizon  may not be  visible. 
For this  investigation, it was assumed  that  the  lunar  horizon would be  visible  and  that 
there would be no uncertainty  in  horizon  determination  due  to  terrain irregularities. A 
more  detailed  discussion of the  equations  used  during  the  pilot  control  part of the  experi- 
ment is presented  in  appendix A. A separate  computational  program  was  used  to  reduce 
the  resulting statistical data  and  to  make  the  plots of these  data. 

Nominal  Flight  Path 

The  nominal  flight  path  was  determined by an  iteration  procedure which resulted  in 
the  desired  trajectory  characteristics at key  phases of the  mission.  This  trajectory was 
designed  to  allow  manual  control of the  approach,  and no attempt  was  made  to  duplicate 
the  present Apollo approach.  The  nominal  trajectory starts at 200 n. mi. (370 400 m) 
along  the  hyperbolic  approach,  and at that point it has  the following parameters: 

V = 7945.04 ft/sec (2421.65 m/sec) 

y = -20.722 936 5' 

h = 1 215 406.2 ft (370 455.8 m) 

Three  thrust  periods are used  to  accomplish  the  mission.  The first slows  the  combined 
vehicle  from  the  approach  velocity  and  establishes a nearly  circular  orbit at 80 n. mi. 
(148 160 m).  The  second  slows  the  lunar  module  from  orbital  velocity  to  establish a 
descent  transfer  orbit  with  periapsis at 50 000 f t  (15 240 m). The  third is the  final  slow- 
down to  the  terminal conditions. These  thrusting  tasks  are  depicted  in  figure 1. The 
body axes of the  vehicles  are  oriented as shown in  figure 2. 

Start of problem 

I Moon I I 
Coast in 
essentiolly 
circular orbil 

(148 160ml 
at 60 n mi. 

(a)  Establishment of c i r c u l a r   o r b i t .  

Figure 1.- The t h r e e   t h r u s t i n g   t a s k s   r e q u i r e d  of t h e   p i l o t .  
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Command and service 

t4 

Coasting orbit, 
essentially 80 n. ml. 

Transfer 

Thrust 

End of second thrust, 6589.445 SIX \ 

(b)   Establ ishment  of t r a n s f e r   o r b i t .   ( c )  Landing approach. 

Figure 1.- Concluded. 

t 
'CSM 

Figure 2.- Sketch  of   the command and  service module  and t h e  lunar module  coupled 
t o g e t h e r ,   w i t h   p o s i t i v e   d i r e c t i o n s   o f   t h e i r  body axes indicated  by  arrows.  

7 



In order to follow this  trajectory  the  pilot's  mission  time  schedule is as follows: 

to = 0.000 sec 

Problem is initiated at 200 n. mi. (370 400 m). Remain  in  the  coasting orbit. 

t l  = 205.000 sec 

Mine  the  vehicle so that  the XCSM axis is at an  angle of 50.9' with  the  receding 
lunar horizon (see fig. l(a)). Initiate  thrust  and  maintain  until t2. 

t2 = 536.100 sec 

End thrust.  Vehicle  should now be  in a nearly  circular  coasting  orbit at 80 n. mi. 
(148 160  m). 

t2 to t3  

Coast  in  nearly  circular  orbit,  during which separation of LM  and CSM occurs. 

t g  = 6580.000 sec 

Mine  the LM so that  the XLM axis is at an  angle of  67.15' with  the  receding  lunar 
horizon  (see  fig.  l(b)),  and  initiate  thrust  in  the LM. This  time was chosen  because 
it is at the  periapsis of the  nearly  circular  orbit. 

t4 = 6589.445 sec 

End thrust.  The  LM  should  be  in a descending  transfer  orbit. 

t4 to  t5 

Coast  in  transfer  orbit 

t5 = 10 069.000 sec 

Mine LM so that  the XLM axis is at an angle of -14.75' with  the  line of sight  to 
the  orbiting CSM and start thrust  (see fig.  l(c)).  Maintain  this  angle  throughout  the 
thrust  period.  This  time  was  chosen  because it is the  periapsis of the  transfer  orbit 
at h = 50 761 f t  (15 472 m). 
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e LM should  be at th e t  ermin lal conditions: 

h = 6465 f t  (1970.5 m) 

V = 549.3 ft/sec (167.4 m/sec) 
6 = 0  

These  end  conditions are similar  to  those for a medium-speed  airplane in level  flight, 
and it is assumed  that a pilot  with  proper  training can make a safe landing  on  the  lunar 
surface. 

Pilot  Performance Definition 

Since  this was an  analytical  study, a definition for  the  mathematical  model of the 
pilot  was  required. For any run  (single  trajectory computation) the  magnitude  and  direc- 
tion of the  possible e r ro r s  would occur  in a random  manner.  The  spectrum of the  errors  
for  any  task is defined by the  error  distribution and  standard  deviation. In this  investiga- 
tion it was  assumed  that  the  pilot's  errors would be  normally  distributed  about  zero.  The 
standard  deviations (aa and at) were  based on some unpublished tests using  an  engineer 
as a pilot. These tests were  multitask  jobs  in which the  pilot's  attention  was  applied  pri- 
marily  to  maintaining  three-axis  attitude  control,  and  initiation  and cutoff of thrust  were 
in  response  to  an  audible  signal.  The  results showed that  starting and  stopping  the  thrust 
could  readily  be  controlled  to 0.1 sec and  the  angle could be  controlled  to  within 0.2'. A 
total of 18 pilot  definitions  were  used  in  this  study,  and  they are specified  in  table I in 
terms of aa and at. 

TABLE 1.- PILOT PERFORMANCE  PARAMETERS 

Pilot 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

0 
0 
0 
.05 
.05 
.05 
.10 
.10 
.10 
.10 
.10 
.15 
.15 
.15 
.20 
.20 
.20 
.20 

ut, sec 

0.05 
.10 
.20 

.05 

.10 

.05 

.10 

.15 

.20 

.10 

.15 

.20 

.10 

.15 

.20 

0 

0 

0 
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A random-number  computing  subroutine,  called  the Monte Carlo te.chnique, was  used 
to  obtain  the errors at each of the  actions  required of the pilot. The  actual  distribution 
of the  errors  as they  occurred  during a typical series of runs (ua = 0.20°, ut = 0.20 sec) 
is shown in  figure 3. In figure 3(a) the  number of occurrences of the  errors  in  each  mag- 
nitude  bracket is shown for each  time (tl, t2, etc.) and  for  the  compilation of all five 
times.  Similar data for the  angle errors are shown in  figure 3(b). Because of the rela- 
tively low number of samples (51 runs) at any time point, the error distribution is only 
approximately  normal;  however, if all the  timing errors for a series (errors at tl, t2, 
t3, t4, and  t5 for all 51  runs) are considered, it can be seen  that  the  error  distribution 
is very close to a normal  distribution.  The  nearly straight line  that results when the 
cumulative  percentage  total is plotted  on  probability  paper  confirms  this  conclusion. 

Vehicle 

The  vehicles  assumed  in this investigation  were  similar  to  vehicles  considered for 
the Apollo mission. A sketch of the  command  and  service  module  and  the lunar module 
is shown in  figure 2. The  mass and thrust  magnitude data for  the combined  vehicle 
(command  and service  module with  the  attached  lunar  module)  were  obtained  from  the 
Apollo literature  available at the time this investigation  was  started.  The  values  used 
in  this  investigation  for  the  combined  and  lunar  modules are: 

Combined  vehicle: 
Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2741.67 slugs (40 011.7 kg) 

Thrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 897 lb (97 402.7 N) 

Mass flow during  thrust . . . . . . . . . . . . . . . . .  2.259 slugs/sec (33.0 kg/sec) 

Lunar module: 
Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . .  974.13 slugs (14  212.6 kg) 

Thrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 000 lb (44.482.2 N) 

Mass flow during  thrust . . . . . . . . . . . . . . . .  1.0318 slugs/sec (15.1 kg/sec) 

The  direction of thrust is along  the XCSM axis in the positive  direction  for  the  com- 
bined  vehicle  and  along  the ZLM axis in the negative  direction for the  lunar module. 
Since  this  investigation  was  concerned with piloting  performance, e r ro r s  such as thrust 
misalinement, flow irregularities, and thrust tailoff were not considered. 
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Figure 3. -  Typical  distribution of the  time and angle  errors.  
This   dis t r ibut ion i s  from p i l o t  18. 

11 



I O r  
Distribution of errors in '11 

15 

IO 
Distribution of errors in '12 

u) 
a, 

Distribution of errors in U 

L 
3 

'c 5 1  
0 

a, 
L 

e 
z 5 

25[ Compilation of the  angle errors for each error brackei 
201 

5 L M  
0_.50-~5-~r35b0-25_20-.15 -.10:05 0 .05 .IO .15.20.25.30.35gl 45.50.55.60 

Magnitude of error, deg 

(b)  Distribution of the  angle errors. 

Figure 3 .  - Concluded. 
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RESULTS AND DISCUSSION 

Standard Flight Procedure 

(a)  Pi lot   def ini t ion  angle   error .  

Figure 4.- Variation  of  the  standard  error i n  a l t i tude   wi th   p i lo t   def in i t ion .  
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Figure 4.- Concluded. 

Altitude errors .  - The  standard error  in  altitude as a furiction of pilot  definition is 
shown in  figure 4 for  several key times  along  the  trajectory.  Since all the  trajectories 
start with  the  same  initial  conditions  and  the  standard  deviations of the  pilot e r ro r s  (era 
and crt) are  reasonably  small,  there is only a modest buildup of the e r ro r  up to  the  second 
thrust  period. At this  time  the  largest  error  was about 1 n. mi. (1852 m)  in  the 80 n. mi. 
(148 160 m)  coasting  orbit. However, this   error  combined  with  the e r ro r  in  velocity at 
the  end of the  second  retrothrust  can  cause  the  largest buildup of e r ro r s  to occur  during 
the  descending  transfer  orbit.  These  error  buildups are large enough to  jeopardize  the 
landing  unless  corrective  action is taken.  The  altitude errors  presented for time 
are for  the  trajectories  that  did not hit  the  lunar  surface  and are e r ro r s  in  the  minimum 
altitudes  achieved  during  this  thrust  period (rate of descent is zero at t6). These  errors 
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are essentially  positive, as large negative e r r o r s  would cause  the  vehicle  to hit the sur- 
face.  The  seriousness of large negative e r ro r s  is indicated  in  figure 5, where  each point 
represents the  number of surface  impacts out of the 51 runs of a pilot. The data show 
that 270 of the  total of 918 runs,  or about 30 percent, hit the ground.  Even for  relatively 
small pilot e r ro r s  (standard  deviations of 0.10 or  less) there is still about a 20-percent 
chance of hitting the surface if no correction is made  to the flight  procedure. The data 
for  the  standard  error of the  vertical  velocities  at  impact,  presented  in  figure 6, show 
that these velocities  approach 300 ft/sec (91.4 m/sec). 
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(a)  Pi lo t   def in i t ion   angle   e r ror .  

Figure 5.- Variation  of  the number of  times  the  lunar module h i t   t h e  ground with  var ia t ion 
in   t he   p i lo t   de f in i t i on .  A t o t a l  of 51 runs was made f o r  each  pi lot .  
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STD. DEV. OF PILOT DEFINITION ANGLE, ci , DEG 

Figure 6.- Ver t ica l   ve loc i ty  at the  time of  impact with  the ground as a 
function of p i lo t   de f in i t i on .  
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Velocity errors.-  The buildup of the standard  error of the velocity as the  trajec- 
tories  progress is shown in  figure 7. The  velocity e r r o r s  are reasonably  small  even  up 
to the start  of landing retrothrust at t5, where the e r r o r  is only 14 ft/sec (4.3 m/sec) 
at a velocity of 5582 ft/sec (1701.4 m/sec). It is during this last thrust  period (between 
t5  and t6) that the ,largest  errors are developed.  Note that the data presented  at t6 
are for the runs that did not impact, and are thus  at  minimum  altitudes where d = 0. 
The errors,  therefore, are longitudinal  velocity errors .  
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Range errors. - The standard errors in  range are shown  in  figure 8. There is not 
much buildup  in range error as time  progresses. Most of the error is acquired during 
the first thrusting  period, and generally is less than 5 n. mi. (9260 m). 
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Correction of Terminal  Altitude 

Probably  the  most  important  conditions to be  met  in  this  study are the  terminal 
altitude of about 6500 f t  (2000 m)  with zero rate of descent. The results of this  study 
indicate  the  possibility of appreciable  departure  from these conditions by the  assumed 
pilots following the specsied  procedure. It is therefore  important  to obtain, early  in the 
task,  some  estimate of what the  terminal  conditions  will be, and to correct the trajectory 
to obtain  the desired terminal  conditions.  This  information  can be obtained  during  the 
relatively  long  coast  times  after the first and  second  thrust  periods. 

An analytical  study  was  made to determine the effects  on  the  terminal  conditions of 
thrust  aiming  errors  and  timing errors for  each of the  thrust  periods individually  while 
the  other  thrust  periods adhered to the nominal plan. The results, presented in figure 9, 
show that the  terminal  altitude  error is nearly a linear  function of the individual e r r o r s  
in  angle or time. As a result of this near  linearity, the results can be expressed as sen- 
sitivity  coefficients as follows: 

1. Final  altitude error  per  degree of first-thrust  angle  error (fig.  9(a)): 

= -92  500 ft/deg (-28  194 m/deg) a A h  
a e % >  

2. Final  altitude error  per  second of first-thrust  time  error (fig. 9(b)): 

= -38 100 ft/sec (-11 612.9 m/sec) 
+I) 

3. Final  altitude error  per  degree of second-thrust  angle e r ro r  (fig. 9(c)): 

= -3020 ft/deg (-920.5 m/deg) 
a (A772> 

4. Final  altitude error  per  second of second-thrust  time  error (fig. 9(d)): 

+Gj a a) = -65 900 ft/sec (-20  086.3 m/sec) 

5. Final  altitude error  per  degree of third-thrust  angle error (fig. 9(e)): 

= +14  200 ft/deg (4328.2 m/deg) 
a(Av) 

6. Final  altitude error  per  second of time error in  starting  third  thrust: 

= 251.4 ft/sec (76.6 m/sec) a A h  
a(l"tIrI) 

21 



22 

I I I I I I 1 
- 4  73 -2 -. I 0 .I -2 .3 4 

1- -.I 

Magnitude of first-thrust angle error, AT,, deg 

( a )   A l t i t ude   e r ro r  due t o   f i r s t - t h r u s t   a n g l e   e r r o r .  

Figure 9.- F ina l   a l t i t ude   e r ro r  due to   t he   va r ious   con t ro l   e r ro r s .  
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Figure 9.- Continued. 
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Thrust time error , A t p  sec 

(a) Altitude  error  due to second-thrust  time  error. 

Figure 9.- Continued. 
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These  control  coefficients  offer a means of rectifying e r r o r s  made  during a thrust 
period by applying corrective  measures  in  the subsequent thrust  periods. If an  angle  or 
t ime  error  was made  during a thrust  maneuver,  the  coefficients could be used  to  predict 
the  magnitude of the altitude error  that  would result at the end of the trajectory if the 
nominal  plan is followed. If the magnitude of the  error is unacceptable, corrective  mea- 
sures are necessary. By examination of the  coefficients  for  the following thrust  periods, 
the  corrections  to  the  angle  or  time  which would be required  to  compensate  for  the  initial 
e r ro r  can be determined.  Exact  correction of the  altitude e r ro r  probably  will not be 
obtained  because  the  curves  in  figure 9 are not exactly  linear and because  the e r ro r  
coefficients  were  determined as sensitivity  parameters about the  nominal  trajectory, 
whereas they will be applied  to  off-nominal conditions. 
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Figure 10.- R e s i d u a l   a l t i t u d e   e r r o r s   a f t e r   c o r r e c t i o n   o f   f i r s t - t h r u s t   t i m e   e r r o r s  
by correc t ions   dur ing   second  and   th i rd   th rus t   per iods .  

The  results of some  computations  using  these  coefficients  to  correct  for  definite 
time and angle e r r o r s  imposed  during  the  first  thrust  period  are  presented  in figures 10 
and 11, and summarized  in  table II. These show the  improvement  that  can be obtained 
for  an individual error .  

In order  to  evaluate the benefit  to be obtained by using  these  corrections  in  trajec- 
tories  where  the  errors are random  in magnitude  and can be made  throughout  the trajec- 
tory, these correction  coefficients  were  inserted  into the basic computation. Pilot 18 
(ua = 0.20'; ut = 0.20 sec) was  chosen as the example,  and  the correction  scheme  used 
was as follows: 
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1. For both angle and time  errors  made  during  the  first  thrust, a new nominal 
second-thrust  time  was  computed by adjusting  the cutoff time. 

2. For both angle  and  time  errors  made  during  the  second  thrust, a new nominal 
third-thrust  angle  was computed. 

3. Errors  incurred  during the third  thrust  remained  uncorrected  since there was 
no subsequent  thrust  period  in which corrections could be made. 

First-thrust  angle  error, A?, , deg 

Figure 11.- Res idua l   a l t i tude   e r rors   a f te r   cor rec t ion  of  f i r s t - th rus t   ang le  
e r r o r  by corrections  during  second  and  third  thrust  periods. 
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TABLE.II.- EFFECTIVENESS OF COMPENSATING  FOR  TERMINAL ALTITUDE ERRORS 

Procedural 
error 

1:: 1: 
4.4 

-.2 
-.4 

4.4 

0 -.4 
0 +. 4 
0 -.4 
0 

0 4.4 
0 +. 2 
0 -. 2 
0 -.4 

4.4 
-.4 
+. 4 
-.4 

- 

Error  in h due to 
procedural error 

feet meters 

-15 240 
-2 322.6 -7 620 
-4  645.1 

7 620 
4 645.1 15 240 
2 322.6 

-15 240  -4  645.1 
15 240 4 645.1 

-15 240 -4  645.1 
15 240 4 645.1 

-37 000 
-5 638.8 -18  500 

-11 277.6 

18  500 

-11 277.6  -37 000 

11 277.6  37 000 
5 638.8 

37 000 11 277.6 
-37 000 

11 277.6 37 000 
-11 277.6 

Compensating 
adjustment 

Estimate of error 
in  corrected 

terminal  altitude 

0 
0 

-0.232 
+.232 
0 
0 

+2.53 
+5.06 

0 -1.08 
0 +l. 08 

100 
300 

-200 
- 100 
-400 
-300 

30.5 
91.4 

-61.0 
-30.5 
-121.9 
-91.4 

0 
0 
0 
0 

-0.563 
+. 563 
0 
0 

- 12.28 
-6.14 
4.14 
+12.28 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
+2.6 1 
-2.61 

11 200 3413.8 
2 900 883.9 
3 400 1036.3 
14  300 4358.6 

300 9 1.4 
500 152.4 
-950 -289.6 
-400 -9 1.4 
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The  results of these  computations are shown in figures 4 to 8 as the  solid  symbols 
at aa = 0.20° and at = 0.20 sec.  The  improvement  in  the  final  altitude is shown in 
figures 4 and  5;  the  standard  error at time  t6  decreased  from  about 25 000 f t  (7620 m) 
to 3000 ft (914.4 m),  and  the  number of times  the  vehicle  hit  the  ground  decreased  from 
21 to 2  in  the total of 51 runs.  The  vertical  velocity at impact also decreased  signifi- 
cantly,  from  about 240 ft/sec (73.2 m/sec)  to less than 160 ft/sec (48.8 m/sec).  These 
residual  errors  result  mainly  from  the  control  errors  incurred  during  the  third  thrust 
period.  The  other  end  conditions - total  velocity  and  range e r r o r s  - were not signifi- 
cantly  affected. 

The  results  presented  in  figures 10 and 11 and  table I1 show that  terminal  altitude 
errors   can be  substantially  decreased by using  the  simple  error-coefficient  method of 
compensation. In addition,  the  results show that  corrections  to  the  second  thrust  time or 
the  third  thrust  angle are more  effective  than  corrections  to  the  second  thrust angle. 

CONCLUDING REMARKS 

An analytical  study  was  made  to  assess  the  ability of a pilot,  simulated by permis- 
sible  error  performance,  to  control  the  entire  lunar  approach  and  descent with  relatively 
simple  guidance  schemes.  The  control  task  consisted of applying retrothrust  during  the 
hyperbolic  approach  to  establish a lunar  orbit.  During  this  lunar  coasting  orbit,  the  lunar 
module  was  separated  from  the com'mand  and service module. A second  deorbit  thrust 
period was used on the  lunar module to  establish a coasting  descent,  and a final  thrust 
period was used  to put the  vehicle  into a reasonable  landing  situation.  Throughout  the 
maneuver  the  pilot was permitted  to  make  reasonable  errors,  selected  in a random  man- 
ner,  in  the  thrust  time and  attitude  control.  The  control  schemes  consisted of maintaining 
a constant  vehicle  attitude  with  respect  to  the  line of sight  to  the  lunar  horizon  for  the first 
and  second  thrust  periods,  and a constant  angle  with  respect  to  the  line of sight  to  the 
orbiting  command  and  service  module  for  the  third  thrust  period. 

The results show that a reasonably  accurate  pilot,  one  whose  standard  deviation  in 
the  time  and  angle  control is within 0.1 second or degree,  was  required so that  the  final 
altitude  and  velocity e r ro r s  would not become  too  large.  Even  with a pilot of these  spec- 
ifications,  the errors  were  so  large  that  the  vehicle  hit  the  ground about 20 percent of the 
time,  with a vertical  velocity as high as 260 ft/sec (79.2 m/sec), if no correction was 
made  to  the  flight path. 

A set of coefficients  that  permit  correction of the  final  altitude  error  was developed. 
In order  to  use  these  coefficients, it is necessary  to  obtain a measure of the  magnitude of 
the e r ro r s  made  during a thrust  period so that a proper  correction  can  be  applied  to  the 
following thrust  period. As an  example of the  corrections  that could  be  made by means of 
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these coefficients,  suppose that an  error  of 0.4' was made  in  the first thrust angle.  This 
would incur a penalty of kt37 000 f t  (11 277.6 m) in  the final altitude;  however,  corrective 
measures  applied  during  the  second  and third thrust  periods  could  reduce  this  error  to 
less than 1000 f t  (304.8 m). 

When these  correction  coefficients  were  used  in  the  basic  trajectory  computation 
program,  the final altitude errors   were significantly  decreased. For example,  for  the 
worst  pilot  (standard  deviation of 0.20' and 0.20 sec)  the  final  standard  error of altitude 
was reduced  from 25 000 to 3000 f t  (7620 to 914 m)  and  the  r.umber of surface  impacts 
was reduced  from 21 to 2 in 51 runs. 

Langley  Research  Center, 
National  Aeronautics and Space  Administration, 

Hampton, Va., January 14,  1971. 
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APPENDIX  A 

MATHEMATICAL  EQUATIONS AND METHODS  USED 

IN  THE  INVESTIGATION 

For this  investigation all the  orbits  were  restricted to one  plane  (see fig. A-1) and 
the  vehicle  was  restricted  to  essentially  three  degrees of freedom,  motion  longitudinally 
and vertically and  rotation for thrust  alinement.  This last condition was not really a 
degree of freedom  because  the  thrust  vector  was  positioned  without  resort  to  rotational 
dynamics. 

The  equations of motion  used  in  this  investigation  were 

mxi = Fxi - mG cos X 

myi = Fyi - mG sin X 

where Fxi and Fyi are  the  thrust  components  along  the Xi  and Yi axes, respec- 
tively.  The  direction of thrust  was  different  for  the two  vehicles,  being  along  the XCSM 
axis for  the CSM and  along  the -ZLM axis for  the LM. The  expressions  for  the  thrust 
are then: 

For  the CSM, 

Fxi = FcSM sin(( - X)  

Fyi = FCSM COS(( - X) 

For  the LM, 

Fxi = FLM COS(( - A) 

Fyi = FLM sin(( - X) 

The  terms FcSM and  FLM are considered 

The  term G is the  gravitational  vector 

G = -  PM 
R2 

to be  constant. 

and is given by 
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APPENDIX A - Continued 

The  instantaneous  mass is given by 

m = m o - l & d t  

where & is integrated  during  the  thrust  periods.  The  distance  between  the  vehicles 
was obtained  from 

The  radial  distance  from  the  center of the moon to either of the  vehicles is 

R = /x? + yi2 

and  the  velocity of the  vehicle is 

Two schemes  for  controlling  the  angle 5 were used: 

1. Control  scheme 1 takes its  cue  from  the  lunar  horizon  and  maintains  the  control 
angle at a constant  value  with  respect  to  the  trailing  horizon.  The  angle 5 varies as 
the  angle  to  the  horizon  varies.  The  angle T between  the  local  vertical and the  horizon 
is shown in  figure  A-l(a)  and  was  obtained  from 

T = tan -1 RO 

h(2R0 + h) 1 /2 

The  angle  from  the X body axis, which is the one  that  the  pilot  uses as a refer- 
ence, to the  horizon is given by 

and 

[ = q + 9 0 ° - 7  

The  angle 77 is the  angle  that  the  pilot  maintains at the  specified  value. 

33 



APPENDIX  A - Continued 

(a) Control  scheme 1, which  uses  the  line  of  sight to the lunar horizon. 

(b) Control  scheme 2, which  uses  the  line  of  sight  to  the  command  module. 

Figure A-1 . -  Sketches  defining  the  angles  used  in  the  two  control  schemes. 
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APPENDIX A - Concluded 

2. Control  scheme 2 takes its cue  from  the  orbiting  command module. The  geom- 
etry for this  control  scheme is shown in  figure A-l(b). The  angle  between  the  line of 
sight  from  the  LM  to  the CSM and  the  local  vertical is a, which is obtained  from 

The  control  angle v, the  angle  between  the XLM axis of the  LM  and  the  line of 
sight to the CSM, is obtained  from 

v =  a - g o o  - 5 

and  the  thrust  control  angle is thus 

The  angle v is the  angle  that  the  pilot  maintains at the  specified  value. 
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APPENDIX B 

DATA  FOR THE: ERROR  DISTRIBUTIONS 

The  basic data of this  study  were  obtained  in  terms of errors in  the  trajectory 
parameters at key  times  along  the  trajectory.  The  data  presented  in  figures B-1 to B-5 
show the  distributions of the  errors in  altitude,  velocity,  and  range.  For  pilot 18 (the 
worst one) the  distributions are shown for  several  times  along  the  trajectory (figs. B-1 
and  B-2). For the  other  pilots,  however,  the data are presented only for  the end of the 
run,  either  the  time of minimum  altitude or the  time that the  vehicle  hit  the  ground 
(figs.  B-3 and €3-5). 

The  altitude  and  velocity error  distributions as shown in  figures  B-1 and  B-2 for 
pilot  18 are at the end of the first and  second  thrust  periods (t2 and t4, respectively), 
at  the start of the  third  thrust (t5)  and at the  end of the  run  (t6 or t7). Near the start 
of the  trajectory (t2) the  error  distribution is reasonably  close  to  normal, but as the tra- 
jectory  proceeds  the  distribution  becomes  more  nearly  uniform  except  for  the  number of 
times  the LM hits the ground.  The  maximum  magnitude of the  altitude errors   increases  
very  rapidly,  progressing  from  about *4000 f t  (1219.2 m) at t 2  to 4 8  000 ft (5486.5 m) 
at t4, 345 000 f t  (13 716 m) at t5,  and +56 000 f t  (17 068.8 m) at t6. The  nominal  final 
altitude  was 6465 ft (1970.5 m);  therefore, any error  in  the  negative  direction  larger  than 
6465 f t  (1970.5 m) would cause  the  vehicle  to hit the ground. This  puts a lower limit on 
the  possible  altitude.  The  column on the  left  end of the  scale is so high  because it con- 
tains not only the  errors  that  would normally f a l l  in  this band, but also all larger negative 
errors,  The  pattern of the  velocity error  distributions is similar  to  that of the  altitude 
error  distributions.  The  velocity  errors  are as large as 6000 ft/sec (1829 m/sec). 

The  distributions of the  errors in  altitude,  velocity,  and  range at the end of the tra- 
jectories  (times  t6  and t7) a r e  shown in figures B-3 to B-5 for  the  various  pilot  defini- 
tions.  The  data are presented  to show the  effect of changing ot for a constant  magnitude 
of 0,. As expected,  the  magnitude of the  errors  increases with  increases in both types 
of permissible  pilot  errors. Of course, as the  range of the  magnitude of the errors 
increases  and  spreads out  along  the  abscissa,  the  number of occurrences  for  each error 
division  decreases;  therefore,  the  error  distribution  gradually  changes  from one  which is 
nearly  normal  to  one that approaches a uniform  distribution  across  the  spectrum. 

The  error-distribution data for  pilot 18 (aa = 0.20°,  ut = 0.20 sec) with  the first- 
and  second-thrust errors automatically  corrected are shown in  figure B-6. A  comparison 
of this  figure with figure  B-l(d)  shows  the  considerable  decrease  in  the  altitude-error 
range  that  can be achieved  with  such  corrections. 
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APPENDIX €3 - Continued 
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MAGNITUDE OF ERROR, METERS 

(a) At the end  of  first  thrust (t2). 

(b) At the end of second  thrust (tb). 

Figure B-1.- Altitude-error distributions for pilot 18 at various times 
along the trajectory. 
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APPENDIX B - Continued 

(c) At the start of third thrust (ts) . 

1 

MAGNITUOE OF ERROR. FEET 
.m I IO' 

I I I I I I I I I I I 1 I I I I I I I I 

-213 -107 6 107  213 320 427 533  640  747 853 960 1067 1173 1280 1387  1494  1600 1707 1814 I9!?OXlOI 
MAGNITUDE OF ERROR, METERS 

(d) At the end of the run (t6 or t7) . The large column at the left  includes the 

trajectories that  impact the ground. 

Figure B-1.- Concluded. 
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(b) At the end  of second thrust t . 
Figure B-2.- Velocity-error distributions for pilot 18 at various times 

along the trajectoly. 

( 4) 
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HRWITUDE OF ERROR. FT/SEC 
I I I I I I I I I I I I I 1  
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w MAGNITUDE OF ERROR, rn/sEc 

( c )  A t  the start of t h i r d   t h r u s t  (t3) . 

NRWSTUDE OF ERROR. FT/SEC 
I I I I I I I I I I I I I I I I I I I I 

-4k  46 137 2 2 9  320 411 503 594 686 777 869 960 1052 1143 1234 1326 I417 1509 1600 I692 1783 

MAGNITUDE OF ERROR, m/SEC 

(a )  A t  the end of the r u n  ( t 6  o r  t7) . 
Figure B-2. - Concluded. 
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APPENDIX B - Continued 

PILOT 1. 9 x.05 SEC 

NAGNITUOE OF ERROR. FT 

81 -62 -113 -3 -26 -16 -7 2 I I  20 29 38 117 66 65 79 83 32 101 110 I IO' 

NRGNITUOE OF ERROR. FT 

0 -30 -10 IO 30 50 70 30 110 130 150 170 1 9 0  210 230 250  270 290 310 330 r10' 
MRGNITUOE OF ERROR. FT 

( a )  Angle error   def ini t ion oa = oO. 

Figure B-3.- Altitude-error  distribution at the  end of the  run ( t6  o r  t7) for   the  
various  pilots.  The large column at the  lef t   s ide  includes  the  t ra jector ies   that  
impact the surface. 
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APPENDIX B - Continued 

PILOT 4, ol = 0 SEC 

MRGNITUOE OF ERROR. FT 

-21 -13 -16 -Ill -12 -3 -7 -9 -2 .61 3 5 8 10 13 15 I 8  20 23 25 27 I IO '  
I I I I I I I I I I I I I I I I I I I I I  

MRGNITUOE OF ERROR. m 

PILOT 6 .  q z . 1 0 S E C  

MRGNITUOE OF ERROR. FT 

(b) Angle error defini t ion ua = 0.03'. 

Figure B-3.  - Continued. 
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( c )  Angle error  def ini t ion ua = 0.10'. 

Figure B-3. - Continued. 
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MAGNITUOE OF ERROR, F I  

( a )  Angle error definit ion ua = 0.15~. 

Figure B-3. - Continued . 
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PILOT 15. c, = 0 SEC 
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(e)  Angle e r ror  de f in i t i on  oa = 0.20'. 

Figure B-3.- Concluded. 
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(a) &le  emor  def ini t ion u-. = 0'. 

Figure B-4.- Velocity-error  distributions a t  the end of  the run (ts or  t7> fo r  
the  var ious  pi lots .  
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PILOT 4, q = 0 SEC 
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MRGNITUOE OF ERROR. FTlSEC 

(b) Angle error defini t ion ua = 0.05'. 

Figure B-4. - Continued. 
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Figure B-4. - Continued. 
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(a)  Angle error   def ini t ion a, = 0.15'. 

Figure B-4.- Continued. 
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PILOT 15, q = 0 SEC 
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( e )  Angle e r ror   def in i t ion  ua = 0.20'. 

Figure B-4. - Concluded. 
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(a) Angle e r ror   def in i t ion  a, = oO. 

Figure B-5.- Range er ror   d i s t r ibu t ions  at the end  of the run ( t 6  o r  t7) f o r  
the  var ious  pi lots .  
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PILOT 4, q = 0 SEC 
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(b)  Angle e r ror   def in i t ion  ua = 0.05'. 

Figure B-5.- Continued. 
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( c )  Angle er ror   def in i t ion  a, = 0.10'. 

Figure B-5.- Continued. 
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Figure 13-5.- Continued. 
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( e )  Angle error   def ini t ion ua = 0.20'. 

Figure €3-5.- Concluded. 
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Figure B-6.- Alti tude-error  distributions for p i l o t  18 with  error  corrections 
applied for t h e   f i n a l   a l t i t u d e ,  t 6  or  t7. 
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