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ABSTRACT

A oroblem in the linear theory of elasticity is con-
sidered wherein a layer with a circular cylindrical hole is
subjected to a nonuniform radial displacement. The defor-
mation is imposed on the cylindrical boundary such that axi-
symmetric disvlacements and stresses result. The solution
utilizes Navier's equations of elasticity. These equations
are solved by use of extended Hankel transforms to obtain
displacements. Shear and longitudinal stresses are obtained
by transformed stress-strain relationships. Radial and
circumferential stresses, however, are obtained directly by
use of stress-strain equations.

The solution of a problem where the imposed radial dig-
placement is a linear function of the axial coordinate is pre-
sented. Numerical results are given in grarhical form for
two different ratios of hole radius to layer thickness. The
infinite inteqrals of the inversion formulas were evaluated
numerically using Longman's technique for computing infinite

integrals of oscillatory functions.
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CHAPTER I
INTRODUCTION

In 1964, Scott and Miklowitz[l]1 introduced the use
of extended Hankel transforms in a problem of elastic wave
propogation. The problem was an infinite plate with a cir-
cular cylindrical holes The cylindrical boundary was sub-
jected to a uniform step radial displacement and the result-
ing axially-symmetric compressional waves were studied. No
attempt was made to determine the state of stress in the body.
Seco[2] introduced the use of this type of transformation in
solving an axisymmetric heat conduction problem in 1969.

The extended Hankel transformations employed in this
thesis are based on an expansion formula discovered by
Weber[B] in 1873, Orr[u] rediscovered Weber's formula in
1909 by a method of contour intesration. The formal proof
of the Weber-Orr expansion formula was established in 1922
by Titchmarsh[5] who, in his book[6], broadened its use. The

following expansion formulas are given by Titchmarsh[é] 3

“s 2 (5va) /s
S fo Tes) #ytes) f;ﬁﬂ&(%m) ~ (et

“s & (57;8) /s g '
A =, SEonnds, [ PR Gy, 2

INumbers in brackets refer %o the Bibliography at
the end of the thesis.



where

& (sria) =  Jolor) Y, (5a)- J, (5a) Yo (6v)

B, l(sra) = J (sv) YEad —J, Ga)y, s

The same set of transforms used by Scott and Miklowitz
[1] are employed in this thesis. Defining the zero and first-

order transforms as

@,[f/f’)j = Z(’) L’;f/f) o (5770) /7~ (1.3)

&2, [jc/f')] = Z/S) fs ) B Gra) -/1—) (1.4)

respectively, it follows from Eqs. (1.1) and (1.2) that the

inverse transforms are

wf P
& 2 65) ) - - 5 Kes) Ko (r,73a) s Q
o [7/33 ) L Uilse) - ytsee (1.5)

- ) o ony . (= F6) B lrdds
@' iz( 53 f/) o Jsa) * ) tGe) ° (1.6)

Properties of the transforms which are applicable to
this thesis are presented in Appendix A.

The problem to be studied in this thesis is an out-
growth of the work done by Scott and Miklowitz. The aim of
this gtudy is to vpresent a method for determining the static

displacements and stresses throughout the elastic body posed



by Scott and Miklowitz for the case of a nonuniform radial
displacement.

The statement of the problem and its analytical solu-
tion is presented in Chapter II. The technique used to eval-
uate the inverse transforms numerically is presented in
Chapter III. Numerical results are given in Chdpter IV and

are followed by the Summary and Conclusions in Chapter V.



CHAPTER 11
THE PROBLEM

Consider an elastic layer of thickness ﬁ with a cir-
cular cylindrical hole of radius4&. The cylindrical coor-
dinate system #7®,z2 is used, 7"being the radial coordinate
and Z being the coordinate along the axis of symmetry, as
shown in Fig. 1. The layer is resting on a rigid foundation
in such a way that zero shear stress and zero normal dis-
placement exists at the interface.

An axisymmetric radial displacement is imposed on
the cylindrical boundary which varies. linearly in the Z-
direction. This imposed deformation, shown in Fig. 2, gives
rise to axially~symmetric displacements and stresses through-
out the layer.

The problem shown in Fig. 3 revpresents an infinite
free plate of thickness 24 with a circular cylindrical hole.
The plate has an axisymmetric radial displacement imposed on
the cylindrical boundary which is also symmetric about its
mid-plane. This type of problem, which could be of practical
importance, is completely equivalent to the problem represented:

in Figs. 1 and 2.

The Navier Equations.

The Navier equations of elasticity in cylindrical



geometry and coordinate system.



Figure 2. The imposed radial
deformation of the layer.



e

Figure 3. The ejguivalent problems.



coordinates for the case of axial symmetry are (see, for

examole, Reference 7):

2 2 <
2(/—y}{§£g *%’fﬁ“%) fﬁmzy)%i;‘% -+ ;%%5 = 3

-4
G (e +532) o+ 2() 3B+ E(r)=0

where ¢ and w are radial and longitudinal displacements,

respectively, and #/ is Poisson‘'s ratio.

Solution by Extended Hankel Transforms.

Following Scott and Miklowitz's work, Egs. (2.1) and

(2.2) will be solved by employing the £,and & transforms
defined by Egs. (1.3) and (1.5) and Eqs. (1.4) and (1.6),

respectively. Using the properties of the transforms given

(2.1)

(2.2)

in Appendix A and applying the Q! transform to Eq. (2.1) and

the ® transform to Eq. (2.2), the following differential

equations result:

~2(1st) G - Cp2n) DT - S DT = ﬂ%?-ﬁ () z)

- (H2w) S r2(r2) DB DT “Zgﬁ;y) dwlaz)

o7

= @)a/gz)
FE ag J

where D = %E*

(2.3)

(2.4)

From Fig. 2, the imposed radial displacement is egiven



by the relation

Ml 22y = &£ - /ﬁ‘{—z} THnr B (2e5)
Therefore,
¥ w (a,2)
—_— o= — T3 b . (2.6)

The requirement that the cylindrical boundary be free

of shear stress implies that

D w (o,2) 3 u(p,z)
mﬁ@&mm—s#;rwdﬁ, (2.7)

Substituting Egs. (2.5),(02.6) and (2.7) into Eqs. (2.3)

and (2.4), one obtainss

-2 () ST e ) Dz ~-sDN =
L[ 4 v A p] (2.5)

—2w) ST e ()D& IS Da =

SR, 4 2.°
= = TP (2.9)

It can be shown that these equations are equivalent
to the following fourth order., uncoupled differential equa-

tions:
o g
(D”f‘; Zs’%a‘wﬁﬁ"} & = %{ﬁé # ﬁ»ﬁ"f)%@:} (2.10)

(b - 2% D @vﬁ'%’}m& L ? Wﬁ&#¢ - (2.11)
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The general solutions of Egs. (2.10) and (2.11) ares

F& FE

& = 3;932%;5@@” %Bﬂgg@ga%—g,ﬁzé +*

PR o icinel il (2.17)
w E
— TR - 52 -SZ
) = C;e f‘cgg ?L'ngg %ngze
2 b # Cx-H) 2w ;
= e *OE @/, (213
Substituting Egqs. (2.12) and (2.13) into Eq. (2.8)
gives the following relationships between the arbitrary
constantss
G-s) C
z, G-y) <5 <, (2a14)
Y
' <
&, = LE-y)cy <, (2.15)
S
Ep = - Oz (2.16)
By = <y, (2.17)
kEquation (2.12) now becomes
7 = C3-yp) €y = FC, #5F CFS) T £ T o5
=z =z
sz - FE. 2 et g
- o — .18
GZe  + rRe #~ Pl (2.18)
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Equations for Stresses.
The stress-strain relations for axial symmetry are

(see, for example, Reference 8):

o3 = Av-;u)%% +-A(-§§_-+-—%) (2.19)
o = (Aeza) T2 o+ N(Ls 32 (2.20)
w e (e (e d) oo
OF2 = _s %% + S« ) (2.22)

where ) and &« are the Lame'constants.
Applying the @otransform to Egs. (2.19), (2.20) and
(2.21) and the ®,transform to Eq. (2.22), one obtains

T = (drza)Dw + ) (—;—s Wla,zd + 50) (2.23)
SqE = (A-p—y.e)[% UBe) I - f}«/ﬁv&/rj»*
o~ A[D&:? #f:’a(’ﬂz)ﬁ e/f] (2.24)

S = (/\'rs«u)[[‘::‘/ﬁz)&o’r'] + A& aasn -

L
- f ey Ko g’rj (2.25)
&

CFyp, = /a[ @ﬁmss‘aje (2.26)
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Equations (2.24) and (2.25) are not in a useful form
and, therefore, Egs. (2.20) and (2.21) do not possess suitable
transforms. Radial and circumferential stresses must be
obtained from a method other than direct transformaticn of
their resvective stress-strain relations. Using the integral
expressions for Ufr;z) and w/f;z) and Egs. (2.20) and

(2.21), one obtains: .

- S SO‘JT£77458).13'ﬂ9
- = <C¥+5“9 s Yoo " Ubv93)+54293>

o‘J'éﬁéhz) Y A

R ) -

+ A gz .”J.—/,;:;i)%i’/;- o
o = Om)ef TEEREE

R T

s )2 (s ads (2:26)

22 ) ngfzé) ”k‘ﬁﬂbs) o
If the following three conditions are satisfied, the
order of intecration and differentiation may be interchanged

(see, for examrle, Reference 9):

(i) the integrands are continuous
(ii) the given integral exists

(iii) the resulting integral is uniformly convergent.
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It can be shown that these conditions are satisfied.
The first two conditions are obvious and the third condition
requires knowledge of the arbitrary constants in Eqs. (2.13)
and (2.18) which are determined in a later section.
Interchanging the order of integration and differenti-
,

ation and performing the necessary operations, Egs. (2.27)

and (2.28) becomes

f,'(é;z) /Po /S
I

6 (nz) = ()\+;a)L )+ N as

+ ASQ f;‘(s,l> Pa JS
e JI (as) 'f'y;aﬂ’)

2 (T Zis) B o

(2.29)

T Je  J(as) +Y,2cas)
_ PL A 052 + A (52)] B s
5 (> = A NATCE I W(Zsz) +
+ ® s&EZl2) £ s (2.30)

T Jde  Jlms) Y, i@ws) )

where /£ /e2) = g‘[e‘“(c;a-zc,) +e"sz(c,»zq,)j (2.31)
Ry = of [ (2o -s2) e -

-s6] + € [(r20-20) ~52) G-

- 5¢ | § (2.32)
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Completing the operations as prescribed by Egqs. (2.23)
and (2.26), the follrnwing expressions are obtained for trans-

formed longitudinal and shear stresses:

G = "-'E)A;’” ge”[ 26 +$V* Sz (/-20) ) Cz~

- 5 (7-2v) C‘,] - e”sl[(z—»év‘-f- v *
+ SZ (I-zy)) Ce + s(r-2v) Cz} g (2.33)
oS = 2« I(e’z[sc, ~ (rew-5z)cz] -

- e-sz’[ SCc, + (/-24 +S5Z) C"‘J (20 3%)

The longitudinal and shear stresses can now be obtained

by inverting Egqs. (2.33) and (2.34). Using Egs. (1.5) and
(1.6), one has:

&5
3T (s.e) P Js ,
= p == g S Oz Y
2 (m8) = ) T w v (e-3n)
*° < &85(s2) R, ds :
o= - = 2 L .
7 (12 5 JE@s) + Y, @s) (2.90)
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Determination of Arbitrary Constants.

From the statement of the problem, the following

boundary conditions can be deduced (refer to Fig. 1):

6z (;50) = © (2.37)
Grz (o) = O (2.38)
6= (&) = © (2.349)
w (A) = O . (2.47)

Applying the Btransform to both sides of Egs. (2.37)
and (2.40) and the &, transform tc both sides of .Eqs. (2.38)

and (2.39), one obtains for the transformed boundary conditions:

[ (s,ed = o© (2.41)
Grz (s,0 = © (2.42)
0z (s,4) = © (2.43)
T (s4A) = O, (2.44)

Substituting these boundary conditions into Egs. (2.18),
(2.33) and (2.34), the following equations in G,} Cz, Cs and Cgy

results
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-~ SC, -~ SC, + 2(rv)Cz ~2¢rv)cy = O (2.45)
SC, -S¢ = ()-2x)Cy = (1-20) Cy = O (2.47)
5’@5‘4;; - se"”‘c; - a-sh)Ee, -//=2y,ss£)e"4(,. =0  (2.47)
e -e"'?; - C'?'—'I:i-—"")e’"‘c:, - Qﬁ’fi‘i)e“’“c; = —%(2.45)

Equations (2.45) through (2.48) have the solution:

7o f 5 & 'Zﬂ—zy} -34 ] + e-f“[{/—zy) +:66¢-w)]£_ (2.59)
”3’,(1"“’)/-#4—{("#{‘“‘) N

C',n

T d F e’/[l(/-zu} 54 F-v3)] + e"‘( [ crea) . v, Z -
C-z B ”’(ﬁy){—y;‘_ettlr_e-g,‘ > s 50

G = s f 5 e"‘(- ﬁ-z:‘)e""‘f (7.51)

732 hw) Cy3h - 35K . o-55K)

o B 5 Crz5) e _ e-*% £
75E (/-»)(-’/,—4_3‘8’{* f-:sif) ’

Special Casge, ¢ =0,

<g (2.52)

To reduce this problem to that worked by Scott and
Miklowitz, i.e., one where the imposed radial displacement
is constant with respect to Z, ¢ is merely set equal to zero.
This causes the arbitrary constants to vanish and Eqs. (2.13),

(2.18), (2.29), (2.30), (2.33) and (2.34) become:

- _ zé
“i7sy = T pse (2.53)



F{fsg} -]

On(rz) = *%f
&

G (1:2)

O (7335) =

o

gﬁ;rZZdha)lﬁ.yﬁ

J\*as) + ¥, @3

2u (P S aG) B s

ufu

] J"/os) * ” E@,}

Using the property from Appendix A that

e

S" £ cos,r) os

S [ Ji*cas) v, o)

oo

&

the above equations can be summarized as:

wr2) = 07 (52) = O (732)

e Cr)

=

o

17

(2.54)
(2.55)

(2.56)

(2.57)

(2.59)
(2.60)
(2.61)

(2.62)
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The expressions for i and &/ agree with the plotted
data ("long-time solution”) by Scott and Miklowitz. In
addition, the expressions for displacements and stresses
agree exactly with Lame's solution for a thick-walled cy-
linder (see, for example, Reference 10) when the outer radius

is infinite.

Nondimensiconalized Equations.

The equations for stresses and displacements can be
nondimensionalized by introducing the following dimensionless
variables: eo{= %, Y4 ‘/4) 7 = £, o= 7'/{ "A/‘/;’ 2/43
With these substitutions, Egqs. (2.5), (2.6), (2.35), (2.36),

(2.29) and (2.30) take the nondimensional formss

«pf) _ f"’yé‘/zr)emﬂy)/y .
Z L ilwy) it (o) oY

wee Z) f t A AIL AL I e o ‘.
é A ) St

i pf) f” 7 5i25)5 (147) o7

£ Ji'torz) + W 7 o
Osa (,o, 9 { 7 5%l $) B o pn) (2.66)
Siwy) + 90 o7) ,
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Spinz) _ ) (T K f) ftupn) S
===—T (/vygﬁfyj e o a(’!’f} » ¥ B(q,!)
. ¥ g” A (2f) B lopo)dy
L G N R P A
. [ &@] ‘ (2.67)
o ()
0a () _ @ ‘ifjfhﬁt941411322134%/3@9‘@'

= T ke )y ) s ¥ (4

s Ty
N A:‘?&:%z ) (2.68)
~ (-

el uc,e e, pe?” .

where

a(t7)

14 &
+GIe T TR - on(pemmd)

wegy) - [ e - o] 4
+[ rs;ygrg N Qj &7 @{e‘f?.

PC;;;@Q;’? # 2,:;;¢

& (%.7) = ";%“f eﬁ[ (2-4¥ pvu ™ Giv)$7) G
-~ ey) e,] - ”gﬁ?ﬂz’zwgﬂ g -

o CrNER) Sy + Fraw) fgjg
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S (5’;?) = 3)4‘; ef?[w,aﬁazw;q) cgjﬂ

- e“f’[y’c} w (120257 ) Cy ]

C = Tt B f e crew)-Flr-997 » €7 Cr-280) +97) §
’ 7y Cv)l-f 7~ €T 6T

T B f e - (rew) -7 to-y2) ] e ev) r7] 3
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Singularity at ¥ « & , &£ = ge

It can be shown that & singular point occurs at
YV e &, 2 = {e Radial and longitudinal displacements
and shear stress have imposed boundary conditions at this
point, however, radial, longitudinal and circumferential
stresses increase without bound.

For large arguments of the independent variable & ,
the functions E, F, and ﬁ (Reference Eqs. 2.31, 2.32
and 2.33) can be shown to approach =§- for ‘& = ,{ e Also,
for large arguments of the independent variable § and for

<7~ = 4 , the following condition holdss

Lo, Ro(saa)
S —» o0 J:(sa) i-y,z(ﬁ)

Anplying these two properties to Eqs. (2.29), (2.30)

=  CONITANT

and (2.35), it can be shown the inversion integrals for the
radial, longitudinal and circumferential stresses fail to

exist.
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CHAPTER III
NUMERICAL EVALUATION OF INVERSE TRANSFORMS

The numerical inversion of Egs. (2.63) through (2.68)
is accomplished using a technique developed by Longman [11].
Loneman's method is based on Euler’'s transformation of a
convergent, alternating series[12]e A brief explanation of
the method is given below.
According to Euler's transformation, an infinite series
\/G—vi +V;-—\/, +v*-aoo)
where
Vw =0, Vi, < Vo , Fae #u w,
and -, .
e ¢ ’
A% =v~*,'~v‘~) A ”g A%ﬁl- Advﬂ

can be exoressed as

N

)

2 e = EVe - gAY, ¢ gl e (3.1)

L

Consider a function which oscillates about zero in
such a way that the integralfover each half-cycle is smaller
in absolute value than that over the preceding half-cycle.
The infinite integral of this function can be represented
as an infinite alternating series where the jith term is
the integral over the ith half-cycle. Applying Euler's
transformation to this series gives an accurate answer for

a relative short interval of integration. The degree of

accuracy is illustrated in Longman's paper ﬁi]e
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To use this method, it is necessary to determine the
roots of the inversion integrands. The equations from which
the roots are computed, based on asymtotic approximations
of the Bessel functions, are derived in Appendix B,

For large values of the radial parameter. successive
magnitudes of the half-cycle integrations were found to
initially increase. The largest magnitude existed for the
third half-cycle. Using a series of seven terms (integrals
of the first seven half-cycles) to approximate the integral
and arplying Euler's transformation to the last five terms,

"gives for the value of the integral
PRy
= + 3 2 3 L/
. VieVe 2 [%V:-T,-M +50Vs-cd Y +354 V:J (3.2)

In this form, each term retains its comuuted sign and the
sign of the bracketed terms is the same as that of V.

Plots of the inversion kernels, K, and'}(‘, as func-
tions of fadial parameter are presented in Appendix C.
Additionally, selected plots 6f various inversion integrands
are presented. ,

All numerical computations were accomplished by use
of the Univac 1108. The method of inteeration was Simpson’s
3/8 Rule. Routines for intesration and evalugtion of Bessel
functions were obtained from the Univac library prozram,

"MATH=-PACK" s



CHAPTER IV
RESULTS

Figures 4 through 17 are plots of the nondimensional
displacements and stresses as functions of the rédial para-
meterfﬂk for three different values of the‘axial coordinate Z,
Ficgures 4 through 7 are for the upper surface (Z zfe 0),
Figs. 8 through 13 for the mid-plane (Z = ‘p%, 5: .5) and Figs.
14 through 17 for the lower plane (2 =%, 3 =1.0). Each
Figure has two curvesj one corresponding to o{ equal one and
the other for o{ equal two. The dimensionless parameter of
is defined as the ratio of hole radius to layer thickness.

For all computations, the values 2/ =.3,&=.01 and¢ =,020833
were used. Figures 18 and 19 are sketches of the deformed
state (heavy lines) superimposed on the undeformed state (light
lines) for e =1.0 and &£=2.0, respectively.

Fisures 4, 8 and 14 are curves for nondimensional
radial displacements, %ﬁ‘e Figures 4 and 8 are curves for
tne upper surface and mid-plane, respectivelys As shown, the
radial displacemsnts are smooth, monotonically decreasing
functions. The curves in Fig. 14 give the radial displace-
ment of the lower surface. The curves exhibit an initial
increase, reach their maximum values at ?%h slightly greater
than unity, and approach zero in the same smooth manner as

the curves of Figs. 4 and 8.
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The graphes for nondimensional longitudinal displace-
ments, wﬂg are shown in Pigs. 5 and 9 for the upper sur~
face and mid-plane, respectively. Each curve shows negative
values of displacement (upward) at 7 = @& . With increasing
774, s each curve rapidly decreases in magnitude to zero,
becomes positive and then approaches zero asymtotically.

Figures 6 and 7 represent the nondimensional radial
and circumferential sﬁresses, @fs and c‘%, respectively,
on the upper surface., It can be seen that the radial stresses
are compressive and rapidly approach zero with ‘7"'/4, . The
circumferential stresses are tensile and approach zero in
an equally rapid manner. As one would expect, the radial
stresses have the larger maximum values (at7=a&).

Figures 10, 11, 12 and 13 are curves of the nondimen-
sional radial, longitudinal, circumferential and shear stresses,
respectively, on the mid-plane. Radial and circumferential
stresses behave as they did on the upper surface and are
approximately equal in magnitude. The longitudinal stress,
GE/E » is seen to rapidly decrease in magnitude. The stress
is initially tensile, becomes compressive and then approaches
zero. The curve for shear stress, ﬁé,, shows a rapid vari-
ation in magnitude. The value of shear stress is initially
-zero, but quickly reaches a maximum and then approaches zero.

Figures 15, 16 and 17 are curves for nondimensional
radial, longitudinal and circumferential stresses, respectively.

Each curve exhibits & singularity at¥=&. This feature will
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be discussed later. The longitudinal stress is shown as
initially tensile. A rapid change from tensile to compressive
stress occurs with a subsequent tendency to gero. The curve
of radial stress exhibits the same general properties. The
curve for circumferential stress is monotonically decreasging
and, with the exception of the singularity, possesses the

same basic properties as the other curves of circumferential
stresses.

Figures 18 and 19 depict the deformed shapes of the
layer for the two cases of e{l= 1 and o= 2, respectively. It
can be seen that longitudinal displacement become insignificant
with respect to radial displacement for increasing values of
/4.

The singularity that exists at fad,Zeé can be best
understood by considering the imposed boundary conditions.

The shear stress on the cylindrical boundary is prescribed as
zero. This fact, as shown by Eq. (2.7)., requires the following

conditions
S wla,z)

o~ = TN 95 .

On the lower surface, the longitudinal displacement, ¢/, is
forced to be zero. This constraint on normal displacement

gives rise to the following condition.

W (75 4)
m_?g.;aw e @ .

From these two equations, it can be seen that at ¥ = £,



27

zZ = £, inconsistent constraints result which will force a
singularity.

Curves Afor stresses and displacements are plotted
using computed data over the range 1.05 = ‘% < 3.5 « Below
T/a, = 1.05, significant error was introduced because of trun-
cation in the evaluation of the infinite integrals. The
number of roots of the integrands that could be used in the
integration technique described in Chapter III became limited
due to their magnitudes. The roots became sufficiently large
and caused computational overflow in the computer. As
aprroaches ¢, the roots of each integrand increases without
bound. At values of .7/ close to unity, the first several
roots take on very large values. Reference is made to Appen-
dices B and C where the equations for computing the roots and
curves showing integrand dependence on 7 , respectively,
are shown. With the exception of stresses at the singular point,
all' curves were extrapolated to 7"'/4,,& 1.0 The extrapolation
provided excellent results for radial displacements, ég/é »
Figs. 4, 8 and 14, where the data at ¥ =& was known. Also,
extrapolation of the curves for shear stress, ﬁj/é, Fig. 13,
provided good results at 7 =& where the shear stress was im-
posed as zero.

It is interesting to note two features which are con=-
trary to what one might intuitively expect. From Figs. 15 and
16, it can be seen that radial and longitudinal stresses are

tensile at 7 =& (Zsﬁ)a The longitudinal stress is tensile
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because the surface of the cylindrical hole is negatively
displaced (upward) but is constrained to be zero at the lower
_surface. This extension gives rise to positive strain and,
therefore, tensile stress. The cylindrical boundary being
displaced upward is attributed to the absence of shear stress
on its surface. The radial stress is tensile because the
larger radial displacement imposed on the upper portion of
the layer attempts by shear to displace the lower portion
farther than the boundary condition will allow. This also
explains the odd shape of the radial displacement curve; Fig.
14, for the lower surface.

Reasonable accuracy was obtained in checking the com=
puted data by use of the following stress~-strain relation
for the case of axial symmetrys:

L= Fo(GF).
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CHAPTER V
SUMMARY AND CONCLUSIONS

The problem of an elastic layer with a transverse
cylindrical hole being subjected to an axially-symmetric
radial deformation was investicated. The solution to this
problem was achieved by use of extended Hankel transforms.

The solution was based on transforming Navier's equations of
elasticity in the radial coordinate 7 and solving the re-
sulting ordinary differential equations in the axial coor-
dinate 2 . The solution of these differential equations
provided the displacement functions. The stresses were ob-
tained by use of stress-strain relations. Ihversion of the
displacement and stress functions required the numerical eval-
uation of infinite integrals.

With the exception of the singularity, the curves for
stresses and displacements were seen to behave in a very nor-
mal manner. The imposed radial displacement on the cylin-
drical boundary is obviously impractical. One could not ex=-
pect to maintain the sharp corner and remain within the confines
of linear elasticity. The practical implication of this
singularity (and the tensile radial stress) can be understood
by considering a large disk of thickness z;ié with a transverse

cylindrical hole of radius & . Consider this disk to be
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shrink-fitted (frictionless) onto a shaft with a circum-
ferential V-groove having the geometry shown in Fig. 3. It
can be deduced from the results of this study that the zone
of tensile radial stress would not be in contact with the
shaft. Instead, the cylindrical surface of the disk would
maintain a smooth shape in keeping with the boundary condi-
tions of zero shear stress.,. At Z si s the cylindrical sur-
face would be pervendicular to the radial axis.

It is further concluded that, while the forward trans-
formations ot Navier's equations and the analytical solutions
thereof are relatively straightforward, the inversion pro-
cess requires special attention. It is felt the technique
presented herein is an acceptable method for numerically

evaluating the infinite inversion integrals. .
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APPENDIX A
PROPERTIES OF THE TRANSFORM

The following properties of extended Hankel trans-

forms are taken from Scott and Miklowitz[1]:

20

f‘f F L (574) H =[rf£(z5¢.)_7:— sfeo (A1)

f 7‘[ 22 s~ _ﬂ]l’ (558) S =
= ;[rg—ff +/_‘7£ 5 5a) - sTFB G 7a) g:—-

— st Fes) (a2)

f:r[;"% F£ )& (s5d) S =

= [‘7"‘ /&(&ra.)v-sfff,é'-r‘a)] - S‘f’(S) (a3)
Lo (57a) S5 T

- 4
o 5L Yae) r Y] 27~ . (A%)
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Additional properties (see, for example, Reference

2) are:
?O(S;a;@§ = = 7;4 (A5)
E (544 = O (A6)
S5 Fe(s,1a) = =Sk (5,%a) (A7)

-%_—[rﬁ (s,v;a,)] = KL care) -STE 6,58 (ab)

%’F[‘P' Gha] = sKe 5;752) - 7 £ £1,4) (A9)
(8 G| = =7 -
SFELT4 -81;’0)] = srA& Gra) ; (A1C)

Parlas [13] showed by contour integration that the

following condition is true:

&S
Lo (5,5a) o
i Ti5> sy = O T>a (A11)
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APPENDIX B
ROQTS OF THE INTEGRANDS IN THE INVERSE TRANSFORMS

In order to find the roots of the inverse integrands,

5 b)) B totra) o5 (B1)
Jas) + y,as)

s Koy £ (51a) 5
J2fos) » Y, les) )

it is only necessary to determine the roots of R,(sm;a) and

& (s;r4) which are defined as followss

L lstm) = Jotsm) Y, (50) - J sa) Yolsr (B3)

& (sra) = J i)Y, fsa) - J./m)}/,ﬁr) . (B4)

The derivation of the expressions for the roots
utilizes Stoke's method (see, for example, Reference 14).
The following are asymtotic approximations for Bessel funce

tions of the first and the second kind{[15]:

I &) & E ) Pre cosp - e sy ] (B5)

Yo i) & y;g [ PCTy) S % + GPTx) c«os"’a’j : (B6)
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where
o s Griierts) | @RlyslyEalyrie) |
Plrx) = / ST ianT 77 oo (B7)
_ vzE @ Y erie) y2tes)
EEx) N 37 cex) _(B8)
Y = X-Bek)w (B9)

Roots of Qjo (%T;a)»

Given Eq. (B3) and letting Po=sa and Y= 7/a ,

Eq. (B3) becomes:
B lA,y) = Jlws) Y, ) ~di(A) ) (38) (B10)

It follows that Egs. (B5),(B6),(B7),(B8) and (B9) can be

written:

F3 2 2 y
4 ) g}é;“;‘;gi@&yf;} W&aﬁ)g “cos (¥, - G-w) (e
where

wod ¢ Z3

4l = FHA ol
’ Ly Gvey

% 2 %
) = ;%?;;;P(f{e%} f“&@ﬁjg cos (f-Y-ayy | (B12)
where

-d B )
F s IR -
“we = 72 {sﬁ?\}



5L

Yo (¥p0) g»;;% g Pl %@&gﬁjz S0 (- Jresyy | (B13)

)
where éﬁg = ?ﬁﬁjd(a«w R B
T T vy

-2, / 7 2 2 o
V() = g jPar - Qual” Ry, s

where L. = -y (f &
y 7o (57 - (5;’) )
Setting fq. (B10) equal to zero and realizing Lhe
equalities that exist with the »/3% ;P%,—y) + @z(‘?;;’k’)E'/z.

terms, the following simplification results:

SIA/ - - T I SO i A -t .
(ﬁ ¥ Z el A 72,3 * s7f
Z&
- = O .
39¥(¥?&>33 & (Bl))
For positive values of # ., the zeros of Eq. (B15)

are represented Dby:

- - 7Y ﬁv m-iw — i o
B¥e -7 * gf@ L A #ﬁyﬁ s84 (v Ry 7 (Bl6)

/‘g&ﬁ ﬁi;g’ é&é%g‘)‘@"

e

Rearranging to solve for # in terms of »/ gives:

. w@“%} ull o d o oo z
ﬁ -7 BFa (¥-1) 8 Cy=i)

& S&
- B (B17)

&2 B2y L1 1N Be )
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where ¥ represents the nth root of Eq. (B10).

Letting
(244-?&277” - € (Blz)
-/

—

and assuming
g, iy
'ﬁ'g*?*s;

it can be shown the expression for computing the nth root

o o ® e s *ﬂ)

of %, (7".\’) iss

- LK) 3Y#/
o () y-7 T YR T

_ & . r2rtrysy®. Sy is¢w-2s (8261
572 7373 - 24)3 . -

Roots of B (sra)

Using the same procadure as before, the expression

for computing the nth root of R(g,¥) iss

' | A 3001
7 (%) = v/ 4 Y ‘)
215 - 2y g 399y 33y S p2y¥ -2/ . (B21)

/28 v i3

Comment.

The expression for the roots of R,(s,ra) , Eq. (B21),
is verified by Gray and Mathews[16] . Data generated from
Eq. (B20) have been veg-ified by the curves of the functions
presented in aAppendix C. There is slight e:ror in the first

root due to the asymtotic approximations of the the Bessel



functions being for large arguments. This error,

had no effect on the results presented herein.

however,

56
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APPENDIX C
CURVES FOR INVERSION KERNWELS AND SELECTED INIEGRANDS

Curves for the inversion kernels K, and K. and
inversion integrands K, and & Kg are prz‘esented as func-
tions of the independent variable S&. These curves are
representative in nature and are not intended to imply
specific importance.

The terms & and & are defined in Chapter II of

the text and K, and [, are defined as:

K, = = £ (50 (C1)

JP =) # Y, Yets)

= (C2)

K. = s & s, 0
! Jlgéﬁlﬁf} %%sz@s} J

where

Bol(s0,p) = Jolpsd Y, tas) — dilasd Yolps) (Cl)

B (sa0) = Ji(pdy ) = (4D Y (7D . (c5)
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kernel versus independent variable,
r/a=1.05
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Figure C7. First-Order inversion
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Figure C8. First-Order inversion
kernel versus independent variable,
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Figure C9. First-Order inversion
kernel versus independent variable,
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Inversion integrand versus

independent variable, radial dig-
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Figure Cl12. Inversion integrand versus
independent variable, radial dis-
placement, r/a=3.5.
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Figure Cl13. Inversion integrand versus
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