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I. 	Introduction
 

This review aims to present an up-to-date description of the
 

microstructure of the solar wind and its relation to the lrge scale
 

structure. The term microstructure refers to features that are seen on
 

a scale of_4Ol AU (Burlaga and Ness, 1968; Burlaga, 1969). Since
 

these features are being convected at a speed of A400 km/sec past the
 

spacecraft where measurements are made, it corresponds to a time scale
 

of e1 hr. or less,
 

This review is descriptive rather than analytical. However, it is
 

interpretive in that it describes the solar wind in terms of hydro­

magnetic waves and discontinuities. The process of interpreting magnetic
 

field and plasma measurements is not straightforward, and several
 

controversies have developed. Some of the questions which this review
 

aims to answer are the following. Are the frequently observed discon­

tinuities in the direction of B predominantly tangential or rotational? Are
 

power spectra levels due mainly to discontinuities, Alfven waves, or some other
 

type of structures? Are microscale fluctuations related to P? What are
 

filaments?
 

Theoretical results and ideas concerning the physical processes that
 

occur on the microscale and cause the microscale features will be
 

reviewed by Barnes at this conference. The theory of hydromagnetic waves
 

and discontinuities which is appropriate for the solar wind and the
 

experimental evidence for the existence of such waves and -iscontinuities
 

in the solar wind are presented in a review by Birlaga and Ogilvie (1971).
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II. Discontinuities
 

1. Introduction
 

Discontinuous changes in the magnetic field and
 

plasma parameters are frequently observed on a scale of .01 A. It is
 

generally agreed that these are hydromagnetic discontinuitia. There are
 

several types of hydromagnetic discontinuities (Landau and Lifshitz,
 

1960; Jeffrey and Taniuti, 1964; Colburn and Sonett, 1966; Hudson, 1970;
 

Burlaga (1971). They are fast shocks, slow shocks, contact
 

discontinuities, rotatinnal discontinuities and tangential discontinuities.
 

Most types have been identified in the solar wind (Burlaga and Ogilvie,
 

1971). 

Given a conplete set of measurements, p, n., T T, Te, Te, TC IF"TT 
II * ' ii ' II' 

V, and B, made with a time resolution of several seconds at 4 or more
 

spacecraft, the interpretation of the measured discontinuities is
 

relatively simple (Hudson, 197Q). Such complete measurements have never
 

been made, however. In practice, it is necessary to introduce an operational
 

definition of a discontinuity which describes the incomplete measurements.
 

This is usually subjective and somewhat arbitrary, but ideally it is
 

sufficiently clear and quantitative that it can be used by different
 

observers with different data to identify the same type of discontinuities.
 

The operational definitions of discontinuities that appear in the
 

literature are given in the next section and the nature of these
 

discontinuities (tangential, rotationaletc.) is discussed in Section 3.
 

The statistical properties of these discontinuities and their morphology
 

are discussed in Sections 4 through 7.
 

The concept of a filament is related to that of a discontinuity.
 

The history of filaments is reviewed in Section 8.
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2. 	Definitions.
 

Several definitions of discontinuities have been used,
 

primarily based on magnetic field measurements. These are as follows:
 

Filament-discontinuity. (Ness et al., 1966). Ness et al.
 

were the first to observe the frequent occurence of discontinuities
 

in the magnitude and direction of interplanetary magnetic field.
 

Examples from Pioneer 6 are shown in Figure 1 Note the scale.
 

These were not defined quantitatively.
 

Directional discontinuities. (Burlaga and Ness, 1968; Burlaga,
 

1969). This term was introduced in reference to the type of
 

discontinuities discussed by Ness et. al. It refers to changes
 

in the magnetic field direction >300 which occur in less than
 

30 sec and are preceded and followed by relatively uniform
 

fields. A more detailed operational definition is given by
 

Burlaga (1969). Some examples from Pioneer 6 are shown in
 

Figure 2, which shows 30 sec averages plotted on a scale of 1 hr.
 

Simple discontinuities. (Siscoe et. al. 1968). In studying
 

Mariner 4 data, it was observed that the magnetic field components
 

sometimes change from one more-or-less steady direction to another
 

more or less steady direction in a time short compared with the
 

time that it previously or subsequently remains nearly constant,
 

as shown by the examples in Figure 3. Sisecoe et. al. called
 

such changes "simple discontinuities". Other types of rapid
 

change's identified by Siscoe et. al. are also shown in Figure 3.
 

For computational purposes, they required that [p(t2 ) - B(tl)Ij 4
 

for simple discontinuities. They found that most of the
 

transitions associated with simple discontinuities had durations
 

less than 15 sec.
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"Possible tangential discontinuityt (Turner and Siscoe, 1971).
 

This type of discontinuity was identified using plasma points
 

obtained at 5 min intervals and corresponding magnetic field
 

averages. The resolution-is an order of magnitude lower than
 

that used for identifying the discontinuities discussed above.
 

The procedure for identifying this type of discontinuity is as
 

follows: a) select intervals in which the density changes by
 

o0% between 2 consecutive readings, b) select the subset for
 

which the density is nearly constant for the 3 measurements
 

before the discontinuity and for the 3 measurements after the
 

discontinuity, c) select those discontinuities for which the
 

magnetic field direction changes by a sufficiently large amount,
 

-I
meaning that the larger of sin (3I/B1 ), sin-
1 (3a2/ B2 )
 

(where a, and a2 refer to standard deviations in the measurements
 

of the components, see Turner and Siscoe) should be less than
 

the angle between B and B d) eliminate those discontinuities
 

with a shock signature.
 

'"ossiblerotational discontinuitiesV (Turner and Siscoe, 1971).
 

This is based on 5 min magnetic field averages and plasma measure­

ments made at 5 min intervals. The selection procedure is as
 

follows: a) choose changes in the bulk speed AV>25 kin/sec between
 

consecutive measurements, b) eliminate those discontinuities
 

for which the bulk speed changed appreciably in the 15 nin before
 

or after the discontinuity, c) eliminate thosediscontinuities
 



- 6 ­

across which the magnetic field intensity changed, d) require 

that the change in the magnetic field direction be sufficiently 

large, as discussed above for "possible tangential discontinuities", 

e) choose those for which AV - AB .7 fAyj AB[. 

Sharply-crested Alfven waves, Abrupt Alfven waves.(Belcher and
 

Davis, 1971). These terms are used by Belcher and Davis without
 

a definition. They call a rotational discontinuity a "sufficiently
 

sharp crested Alfven wave". (See Figure 4).
 

'Appreciable' discontinuities. (Quenby and Sear, 1970). This
 

term is not defined by the authors, and is very subjective, as
 

the name suggests.
 

It is clear from the definitions and from Figures 1, 2 and 3, that
 

filament discontinuities, directional discontinuities and simple
 

discontinuities are similar. Further simularities will be discussed below.
 

The definitions of "possible tangential discontinuities" and "possible
 

rotational discontinuities" are very restrictive and are likely to give
 

two distinct sets consisting of mostly tangential and rotational discon­

tinuities, respectively. The definitions of the terms filaments,
 

directional discontinuities, and simple discontinuities, do not distinguish
 

between tangential and rotational discontinuities (Burlaga, 1969).
 

3. Nature of discontinuities. The discontinuities are likely to be
 

shocks, rotational discontinuities, tangential discontinuities, or a
 

combination of these. The number of shocks is sufficiently small that
 

they can be considered negligible. One question then is what is the ratio
 

of tangential to rotational discontinuities for each of the classes
 

defined above.
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Ness et al. (1966) suggested that filament discontinuities are all
 

tangential. Some supporting evidence form simultaneous cosmic ray and
 

magnetic field data was given by McCracken and Ness (1966).
 

Burlaga (1971) showed that most (but not necessarily all) directional
 

discontinuities observed in the period Dec. 18 to Dec. 25, 1965, were
 

tangential. The argument is as follows. The discontinuities are probably
 

either tangential, rotational, or a mixture of both. If they'are
 

rotational, then necessarily they satisfy the condition 

-V = ±($24l ) (T-) xAQA 

where A is I for an isotropic plasma and A0.9 + .1 for the anisotropics 

typically measured in the solar wind. 

This is not satisfied for most of the directional discontinuities (Figure 5).
 

The peak occurs at 0 rather than at +.9. Thhs most of the discon­

tinuities are not rotational; they must be tangential. Burlaga shows
 

that the fraction of rotational discontinuities in the set of
 

directional discontinuities must be less than .25. Smith et al. (1970)
 

have recently suggested that the ratio is greater than .5.
 

Siscoe et al. (1968) analyzed the structure of current sheets associated
 

with simple discontinuities and concluded that they correspond to tangential
 

discontinuities rather than rotational discontinuities. The reason for
 

the difference between this result and that of Smith et al. is not clear.
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In view of the many constraints using both plasma and magnetic
 

field data in_ the definition of "possible tangential discontinuities",
 

there is little reason to doubt that most are in fact tangential.
 

Similarly, most probable rotational discontinuities,are indeed likely
 

to be rotational. There is still some possibility that there are
 

some rotational discontinuities among the probable tangential
 

discontinuities", but it is not likely to appreciably affect their
 

statistical properties.
 

The nature of the "rappreciable discontinuitiesr discussed by
 

Quenby and-Sear has not been studied directly using both plasma and
 

magnetic field measurements. They suggest from a theoretical argument
 

based on cosmic ray measurements, that most "appreciable discontinuities"
 

are rotational.
 

4. Statistical Properties of Discontinuities.
 

Directional discontinuities and simple discontinuities. The
 

basic distributions are for B1 /B2 , w (the angle between B and B),
 

the time interval between successive discontinuities, and the directions
 

nA =BNeB/Bx 

The distributions of BI/B 2 for planar simple discontinuities and
 

(B1 -B2) / Max(B1 ,B2 ) for directional discontinuities are shown in 

Figure 6. It is clear that for both types, a) the most probable case 

is that the magnetic field intensity B does not change across the 

discontinuity, b) increases and decreases in B are equally probable. 

The distribution of w for directional discontinuities is shown
 

in Figure 7. An empirical fit gives - e ( ) . Clearly, most

dw 5
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directional discontinuities have small w. The lower limit w = 300 is
 

a result of the definition of a directional discontinuity. It was
 

used to avoid confusing discontinuities and the fluctuations that
 

are usually present. The corresponding distribution of w for simple
 

discontinuities is shown in Figure 8. For w > 600 it is very similar
 

to that for directional discontinuities. The decrease for o < 500 is
 

due to the selectinn criterion, B -BiI > 47. Note that for the usual
 

0 
case, B = B - 57, this criterion gives a discontinuity with w > 50.
 

41 2
 

The distribution of time intervals between successive directional
 

discontinuities is given in Figure 9 for 4 classes of these discontinuities,
 

°
 those with 300 < w 600, 600 < w < 90 , 900 < w !91200, 1200 < w -w1500. 

The form of the distributions is that which would be expected if they 

occur with a Poisson distribution. They occur at the rate of l/hr. 

The probability of finding a simple discontinuity in any time interval 

T is shown in Figure 10. The probably of finding a simply discontinuity 

in an arbitry 5 min interval is .1. Thus, they occur at the rate of 

sl1/hr. Again we find that the characteristics of directional-discon­

tinuities and simple discontinuities are very similar. 

The distribution of "normals" for directional discontinuities is
 

shown in Figure 11. They tend to be perpendicular to the spiral direction
 

and out of the ecliptic plane. The distribution of trnormals"
 

of the current sheets associated with simple discontinuities
 

are shown in Figure 12 from Siscoe et al. (1968). Here a sector
 

dependent asymmetry is also shown. Although Figure 11 and Figure 12
 

are not directly comparable, it is clear that the normal tends to be
 

out of the ecliptic in both cases. The orientation of
 

n with respect to the spiral field is not clearly shown by the projection
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in Figure 11.
 

The distributions discribed above show that directional discontinuities
 

and simple discontinuities have essentially the same statistical properties.
 

Since their definitions are also similar, and since different, independ­

ent analyses show that each type consists predominantly of tangential
 

discontinuities, we may infer that directional discontinuities and simple
 

discontinuities are essentially equivalent.
 

"Possible tangential discontinuities". One expects the properties
 

of these discontinuities to be similar to directional and simple
 

discontinuities, since physically they seem to be the same. However,
 

one expects "probable tangential discontinuities" to occur less frequently
 

because of the more stringent requirements involved in their definition.
 

The rate at which"possible tangential discontinuities" passed
 

Mariner 5 is - 1/25 hrs, which is to be compared to I/hr for simple
 

and directional discontinuities.
 

The distributions of BI/B 2 and w for "possible tangential discon­

tinuitiesr were not given by Turner and Sidcoe.
 

The distribution of the polar angles of the normals normalized to
 

obtain the number per unit solid angle is shown in the L-S of Figure 13.
 

The normals of possible tangential discontinuities tend to be normal to
 

the spiral direction and in the ecliptic plane. Recall that the "normals"
 

associated with directional discontinuities also tend to be normal to
 

the spiral direction, but they tend to be out of the ecliptic.
 

"Possible rotational discontinuities". Forty of these were found
 

in 40 days of data from Mariner 5, but most occurred in 3 intervals of
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5+1 days. Thus, the maximum rate is z .1 per hour which is only 10%
 

of the rate of directional and simple discontinuities. Most of the
 

time the rate is much less than 'this. Although the ratio of " possible
 

rotational discontinuities" to 'ossible tangential discontinuities"
 

is ;1, it does not mean that this is the ratio of rotational to
 

tangential discontinuities in the set of directional discontinuities.
 

One can only say that at times up to 10% of the directional discontinuities
 

might be possible rotation discontinuities.
 

The w and BI/B2 distributions were not given by Turner and Siscoe.
 

The distribution of average normals for 3 subsets of discontinuities is
 

given in Figure 13. This is different from that of probable tangential
 

discontinuities.
 

Changes in Plasma Parameters at Discontinuities. The early models
 

assumed that the plasma parameters change across most magnetic field
 

discontinuities. This is probably not so, but the matter has not
 

been studied extensively. Burlaga (1968) found no change in n, V or T
 

across directional discontinuities with BI s B2, which according to
 

Figure 6 is the most probable case. Changes in plasma parameters do
 

sometimes occur, however. Burlaga classified discontinuities according
 

to changes in B, n, and T, as shown in Table 1. The symbol (+,-,0)
 

implies an increase .in B, a decrease in n, and no change in T. The
 

other symbols have similar meaning. Nine of the 13 possible signatures
 

were found in the Pioneer 6 data. This scheme may be useful for
 

discussing the statistical properties of discontinuities when more data
 

becomes available. It has been used to discuss interaction of
 

discontinuities with the earth (Burlaga, 1970C). Hudson (1970) has
 

pointed out that it cannot be used for identifying tangential or
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rotational discontinuities in an anisotropic medium such as the solar
 

wind. Recently, Burlaga and Chao (1971) showed that the discontinuities
 

in B which they selected,(> 20% in <min) are essentially always
 

accompanied by changes in n and possibly T (Figure 14). However,
 

Figure 6 shows that the probability of such a change in B across A
 

directional discontinuity is small.
 

5. Morphology of Simple and Directional Discontinuities.
 

This section aims to present a mesoscale (;1 AU) picture of the
 

topology of the discontinuity surfaces and the variations of plasma
 

parameters between them. This is intended to be a zeroth approximation,
 

details must be supplied by later work.
 

The separations between discontinuity surfaces can be approximately
 

described by the distribution of time intervals between successive
 

discontinuities, since the discontinuities are convected past the space­

craft at the solar wind speed. This is an approximate description
 

since the solar wind speed changes, but it is a good zeroth approximation
 

because the changes are seldom greater than 50%. Figure 9 from Burlaga
 

(1969) shows such a distribution of time intervals for four classes
 

of directional discontinuities. The corresponding mean separations in
 

space are shown in Figure 15.
 

The topology of individual surfaces can be studied only with
 

multiple spacecraft observations. Burlaga and Ness (1969) and Ness
 

(1966) discuss one exceptional surface seen by Pioneer 6 and IMP 3
 

which was plane and unchanged over a distance of .01 AU. Burlaga and
 

Ness (1969) studied 6 surfaces each of which was observed at 3 spacecraft,
 

Explorers 33, 34, And 35. These are shown in Figure 16 where it is
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seen that some of them do show an appreciable curvature over distances
 

of 100 RE = .005 AU. These are probably atypical; the curvature
 

is likely to be larger for most discontinuities.
 

If it is assumed that the surfaces are plane, then their orientations
 

can be computed very simply using the formula n BxB B B and
 

measurements from just one spacecraft. This proceedure shows (unpublished
 

results) that the surfaces associated with directional discontinuities
 

intersect at a distance .0l AU from the earth-sun line. This should
 

not be surprising, since the auto correlation length of B is s.Ol AU.
 

The result does not imply that directional discontinuities are not
 

tangential. Rather, it implies that the surfaces are appreciably curved
 

on a scale of ;01 AUo
 

The picture that is suggested by the above results is illustrated
 

in Figure 17. There are numerous discontinuity surfaces (current sheets)
 

in space, separated by .01 AU. Although the surfaces are shown as
 

planar in Figure 17 for simplicity, they are actually appreciably warped
 

and bent on the scale of the figure. Successive discontinuity surfaces
 

are not parallel, but they do tend to scatter about the spiral field
 

direction. The magnetic field direction changes discontinuously across
 

each of the surfaces and varies appreciably between adjacent surfaces.
 

The magnetic field directions are shown as straight line segments in
 

Figure 17, but in reality are appreciably bent and "distorted" on the
 

scale shown there. In reality, they are probably additional discontinuities
 

° 
between the directional discontinuities which have w < 30 or which are 

obscurred by fluctuations and noise. 

Figure 17, just discussed, gives only a rough approximation to 
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reality. There are infinitely many variations of detail, and complexities
 

not yet mentioned. The way that surfaces connect with one another
 

(if they do so) and their extent toward the sun is unknown, The cosmic
 

ray measurements of McCracken and Ness (1966) suggested that the
 

magnetic field lines on either side of a discontinuity go directly to
 

the sun; but this does,not necessarily imply a similar extent of the
 

current sheet.
 

The density, temperature or bulk speed usually do not change
 

across the discontinuity surfaces, but that such changes do occasionally
 

occur. The plasma parameters sometimes also vary between the discon­

tinuity surfaces. Thus, if one were to use a color code to map plasma
 

parameters in Figure 17, he would probably find a weak relation between
 

the color pattern and the directional discontinuities.
 

6. Relations between Discontinuities and Mesoscale Structure.
 

Siscoe et al. (1968) noted that there was a pronounced north-south,
 

sector - dependent asymmetry in the distribution of current
 

sheet normals. (See Figure 12). They suggested that this is due to
 

velocity shears acting in tangential discontinuities. Another inter­

pretation was given by Siscoe and Coleman (1969). Subsequently, however,
 

Turner and Siscoe (1971) offered the hypothesis that the north-south
 

asymmetry is due mainly to rotational discontinuities. This is based
 

on the assumption that more than half of the discontinuities in Siscoe
 

et al. (1968) are rotational. At the moment, there is no evidence to
 

support this assumption. The results of Burlaga (19700) argue against it,
 

if the discontinuities studied by Siscoe et al. are directional
 

discontinuities. Obviously, the problem needs further study.
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Burlaga (1970b) looked for a relation between the rate of occurance
 

of directional discontinuities and positive bulk speed gradients, and
 

he found none. This implies that most of these discontinuities are
 

not caused by the gradients.
 

7. Variation of discontinuities with distance from the sun.
 

The only work on this subject is that of Burlaga (1970b) based
 

on the Pioneer 6 data of Ness for the region between .8 AU and I AU.
 

He found that a) the "rdensity" of discontinuities (number passing the
 

spacecraft per hour) was possibly 35% less at .8 AU than at 1 AU,
 

but that this difference could be due to the higher quality data near
 

the earth, b) the distributions of w, the change in the direction of
 

B across a discontinuity, were essentially identical at .8, .9, and
 

I AU. The conclusion is that most discontinuities originate within
 

.8 AU and their characteristics do not change very much between .8
 

and I AU.
 

8. Filaments.
 

The concept of a filament is widely used, but never precisely
 

defined. This has caused much confusion. The concept has evolved
 

appreciably during the last 10 years, so a historical discussion is
 

appropriate.
 

The idea that filaments might exist in the solar wind seems to
 

go back to Parker (1963), who suggested that they would be the result
 

of an assembly of fine streamers or temperature striations in the
 

corona.
 

Parker pictured the streamers as more or less discrete flow tubes
 

separated by regions of material with different density, temperature
 

and magnetic field intensity, The scale of these filaments was set
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at .O1 AU. The radio observations of Hewish were interpreted as
 

evidence for such filaments, but this interpretation has been questioned
 

by Jokipii and Hollweg (1970). The observation of filamentary structure
 

in comet tails was also interpreted as evidence for filaments in the
 

solar wind, but more recent work (Kubo et al. 1970) suggests that this
 

might result from turbulence, instabilities, or some other mechanism.
 

The early observations by Explorer 10 showed regions of plasma with
 

density 7-20/cm3 and B szi07 alternating at ;hour intervals with higher
 

field regions (207) with no detectable plasma. This was said to be evidence
 

for filaments in the solar wind, but more recent observations suggest that
 

Explorer 10 was alternately inside and outside the magnetosheath.
 

With the advent of high time resolution magnetic field data from
 

Pioneer 6, Mariner 4 and other spacecraft, the concept of filaments
 

was rejuvenated. Ness (1966) pointed to 2 kinds of filaments, those
 

bounded by pairs of nearly identical directional discontinuities
 

(Figure 11) and those characterized by less abrupt changes, in magnetic
 

field intensity (Figure 18). It was suggested (McCracken and Ness, 1966)
 

that the interplanetary field could be viewed as bundles of intertwined
 

filaments bounded by tangential discontinuities (directional discon­

tinuities), and extending to the sun. This has been referred to as
 

the spaghetti model. Support of this model was given by Siscoe et al.
 

(1968) using Mariner 4 data who suggested that the shape of.the
 

filamentary tubes is elliptical.
 

Michael (1967) proposed an alternate model, with "entropy
 

fluctuation cellsr, but this has not be discussed further in the literature.
 

Burlaga (1969) pointed out that such filaments are exceptions rather
 

than the rule at I AU and suggested that the interplanetary medium should
 

be regarded as discontinuous rather than filamentary. Figure 19 shows
 

a day of Ness's Pioneer 6 magnetic field data with a number
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of clearly defined directional discontinuities, but it would be
 

difficult for 2 observers to agree on how it might be divided into
 

filaments. The point is that there is generally no obvious pairing
 

of directional discontinuities. This does not imply that filaments
 

bounded by similar directional discontinuities never occur, only
 

that they are relatively rare. Siscoe et al. (1968) found only 9
 

pairs of nearly identical simple discontinuities separated by 2 to
 

30 min in the Mariner 4 data. "Filamentst of the kind shown in Figure
 

18 are not uncommonly seen behind driven shocks. These structures
 

resemble more closely than any others the type described by Parker (1963);
 

but their nature might be different. Again, they are the exception
 

rather than the rule.
 

The current situation is that the term filament has many meanings.
 

It seems more appropriate to describe the solar wind near 1 AU as
 

discontinuous rather than filamentary. This does -not exclude the presence
 

of waves, fluctuations, or turbulence. Pairs of simple discontinuities
 

and pairs of directional discontinuities do sometimes occur, but their
 

significance is not certain.
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III. Waves and Fluctuations
 

Introduction. Linear hydromagnetic theory predicts three
 

types of waves: fast, slow and Alfven waves. It is possible that all
 

three types are present at one time or another in the solar wind as well
 

as larger amplitude non-linear waves. The observed waves are very seldom
 

periodic and frequently nonlinear, and they are probably coupled with one
 

another. The interpretation of the observations is thus intrinsically
 

complicated and is further hindered by incomplete plasma observations.
 

The usual approach is to study the fluctuations in the magnetic field and
 

try to interpret them with the limited available plasma data and/or with
 

idealized models, in terms of the linear hydromagnetic theory.
 

Much confusion has resulted from the loose or erroneous use of words
 

and definitions. The next section reviews the various types of waves and
 

fluctuations that have been mentioned in the literature. The interpretation
 

of power spectra is discussed in Section 3, the controversy concerning
 

microscale fluctuations is dealt with in Section 4, a hypothetical model
 

of the relation between the bulk speed and fluctuations is presented as
 

a basis for future discussion in Section 5, and evidence for the variation
 

of fluctuations with distance from the sun is presented in Section 6.
 

2. Types of Waves and Fluctuations.
 

Periodic Alfven Waves. Unti and Neugebauer (1968) searched
 

Mariner 2 data for sinusoidal changes in the direction of B which
 

satisfy the conditions for Alfven waves. One (but only one) such wave,
 

with a doppler-shifted period of 30 min, was found. (See Burlaga, 1971).
 

Such waves do not play an important role in the general structure of the
 

solar wind at 1 AU, but their existence is of fundamental physical
 

significance.
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Periodic Waves. Burlaga (1968) found a few sinusoidal wave
 

trains with doppler-shifted periods of -5 min in the Pioneer 6 magnetic
 

field data of Ness. These were compressive waves, probably magneto­

acoustic and fast waves (Burlaga, 1971). Again, only a few periodic
 

waves were found in 6 months of data, so they are not basic to the
 

general structure of the solar wind at I AU.
 

Large-Amplitude Aperiodic Alfven Waves. Belcher et al. (1969)
 

found that 30% of the time in the Mariner 5 data, the bulk speed and
 

radial component of B were strongly correlated (See Figure 20), and
 

argued that the fluctuations during these times were primarily Alfven
 

waves. An example of such a wave train is shown in Figure 21. Note
 

that this is actually a mesoscale plot, based on 5 min averages0
 

The basic criterion which Belcher and Davis (1971) and Belcher
 

et al. (1969) use to identify Alfven waves is a strong correlation
 

(>.8) between V and BR. They consider 3 subclasses of "Alfven" waves:
 

1) "Pure wavesr. Waves are called "pure" if there is no power 

in B , i.e. no compression oscillations and the wave is linear.
 

Such a condition seldom if ever occurs in the solar wind. Strictly
 

speaking, an Alfven wave is linear and is characterized by a constant B,
 

so it must be a pure wave. Thus, intervals of pure Alfven waves seldom
 

if ever occur in the solar wind.
 

2) "Almost Pure Waves". These are periods when the power in
 

B is judged to be much less than that in the components of B. Belher
 

(private communication) expects the power in the magnitude to be at
 

least an order of magnitude below phe power in the components, with a
 

correlation between 6V and 6B above .8, for "almost pure" waves. There 

may also be some non-linear coupling with other modes.
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Belcher and Davis (1971) sometimes refer to "ralmost pure waves" as
 

rrpure waves"., 

3) "Good waves"!. These show a correlation between 8V and 8B
 

but are presumably accompanied by changes in B as well. These seem 

to be the most common type of "large amplitude aperiodic Alfven wavedf! 

Physically, there is no such thing as an almost pure Alfven
 

wave or a good Alfven wave. When Belcher and Davis use these terms 

they are referring to the fraction of the power which is contributed
 

by Alfven waves. It might be better to stop using these terms and
 

refer instead to power levels and correlation coefficients.
 

Most "aperiodic Alfven waves" move away from the sun. This is
 

shown by Figure 22, from Belcher et al. (1969).
 

Belcher and Davis further distinguished between 'sharply crested
 

waves"t and "smooth waves". The distinction was not defined, operationally, 

and it depends on the time scale used (Belcher, private communication).
 

"Fluctuationsrr This is a general term, seldom defined,
 

which is used to describe nearly any kind of change in B. Consider 

a time series B(t). For a given interval this may be written B(t)= 

B +B'(t) where B is the average over that interval. The term 

fluctuation reters to B'(t). In this paper, we use the term for that 

which is described by the power spectrum of B(t). Obviously, B(t) 

contains shocks, tangential discontinuities, sector boundaries, 

Alfven waves, aperiodic Alfven waves, and many other phenomena besides. 

But possibly the power spectrum is dominated by only one of these struc­

tures and the dominant type may change with time. This will be
 

discussed more precisely below.
 

Microscale Fluctuations of Burlaga et al.
 

Burlaga et al. (1969) noted that there are certain isolated periods,
 

usually an hour or two in length, in which there are large, high
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frequency (minutes) fluctuations in both the magnitude and direction
 

of B. (See Figure 23). They called these microscala fluctuations
 

because they are seen when the data are plotted on a~scale of 1 hour,
 

but not all fluctuations seen on a scale of 1 hour are fluctuations
 

of the type discussed by Burlaga et al.
 

'Microscale'Fluctuations of Belcher and Davis.
 

Belcher and Davis (1971) also used the term microscale fluctuations,
 

but unfortunately they refer to a phenomenon distinctly different from
 

that described by Burlaga et al. (1969). The'microscale'fluctuations
 

of Belcher and Davis are actually mesoscale phenomena seen on a scale
 

of days with frequencies 1/(4.2 hrs. to 10 min), and they occur more
 

or less continuously. They seem to be essentially the same as the
 

"fluctuationst discussed above. Belcher and Davis use variances to
 

describe the fluctuations.
 

"Abrupt Alfven Waves"r. This term was used by Belcher and
 

Davis to describe 3 discontinuous or nearly discontinuous changes in
 

B (in the sense defined in Section II) which were correlated with V
 

in accordance with the relation 6B = +D6V. They consider abrupt
 

Alfven waves to be identical to rotational discontinuities. Belcher
 

and Davis stated that such changes occur at the rate of one per hour;
 

however, they presented no evidence to support this remark.
 

3. 	Fluctuations and Power Spectra.
 

Observations. The standard techniques of spectral analysis
 

are used to describe the magnetic field time series and its relation to
 

other time series such,as VR(t).
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This method of analyzing interplanetary magnetic field fluctuations
 

was used by Coleman (1966;) in his analysis of Mariner 2 data.
 

The basic results are as follows:
 

1) The power spectra of Br, Be, B , and B for 24 hour periods 

have the approximate form f9, 1< a <2, in the range 10- 5 to 10-2 ps. 

-2) Power levels range from (103 to 50)y2/tps at 10 3 cps. 

3) P(B ) > P(B) > P(BR) > B(IB'), i.e. the fluctuations are 

primarily transverse rather than compressional, and the largest 

fluctuations are normal to the ecliptic plane. The power in compressional 

oscillations was typically 112 to 1/3 that of the power in the components. 

In none of the 6 intervals examined by Coleman were there no fluctuations 

inI [­
4) Vr and Br were correlated. Their phase difference was 1800
 

when BAV was away from the sun and 40 when BAV was toward the sun.
 

The magnitude of the square of the coherence between Vr and Br was
 

between .05 and .49 in the range 1-50 cycles per day; it was typically
 

5 to 8 times larger than that for (Vr B ) (Vr,B ) and (V ,B), although 

all pairs showed significant coherences.
 

5) The ratios P(Bi)/B(Vr) , i = R, 0, y, were essentially
 

independent of frequency in the range 1-50 cpd.
 

-
Power spectra from Mariner 4 covering the range 3x10 4 to .5 aps, for
 

six 24 hr intervals in the period Dec. 7, 1964 to Jan. 2, 1965 were
 

reported by Siscoe et al. (1968) (See Figure 24). They show the same
 

general characteristics (I to 3 above) found by Coleman.. Siscoe et al. (1968)
 

distinguished active, intermediate and quiet times; they found an
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order of magnitude more power at active times than at quiet times
 

(see Figure 24).
 

Belcher et al. (1971) reported that they computed power spectra
 

and cross spectra for the high data rate part of the Mariner 5 mission
 

to Venus, and obtained results similar to those of Coleman (196 6a).
 

The spectra are not published, however.
 

Interpretation of Power Spectra. Power spectra and cross
 

spectra are simply statistical descriptions of time series. Their
 

physical interpretation is not straight-forward since phase information
 

is not preserved in the computation of power spectra. There has been
 

some confusion in the literature about their meaning.
 

Coleman (1966b-1967) concluded that typical spectra are probably
 

due to fast hydromagnetic waves or a mixture of fast waves and Alfven
 

waves. He could not exclude either of these two possibilities.
 

He did exclude the possibility that the spectra were due to pure
 

Alfven waves alone, because he always found a significant amount of power
 

in IB), amounting to nearly 1/3 or 1/2 that in the other components. The
 

results of Siscoe et al. (1968) could be interpreted similarly.
 

Belcher and Davis (1971) imply that "nearly pure" Alfven waves
 

dominate the power spectrum a30% of the time. This seems to conflict
 

with Coleman's conclusion, but it is a probably a matter of semantics.
 

By "nearly pure", Belcher and Davis mean that the power in fB
I and n
 

was judged to be "much less" than that in the components, but not
 

necessarily zero. This seems to be the case in Figure 24, for example.
 

Belcher and Davis have not published power spectra for periods of
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nearly pure Alfven waves, so we do not know the actual ratio
 

between l'(B) and P(Bi), i = K, 0, y for such periods.
 

The observations of Belcher and Davis that there is
 

a strong correlation between Vr and Br and that the coherence indicates
 

outward going waves, were also made by Coleman. In effect, Belcher
 

and Davis have taken the further step of discussing the subset of
 

spectra for which l(B)/P(Bi) is "very small". This process selects
 

intervals where the ratio of Alfven waves to compressive waves is
 

large. Referring to Figure 24 from Siscoe et al. (1968), this subset
 

would occur at times of intermediate activity. This is consistent
 

with remarks in Belcher and Davis (1971).
 

Coleman (1967, 1966b) assumed that the power in B was due to some
 

kind of wave. He inferred that fast waves were the principle contributers.
 

A compressive wave implies a positive correlation between n and B.
 

Such a correlation was not examined by Coleman. However, Burlaga and
 

Ogilvie (1970b)showed that changes in magnetic and thermal pressures
 

tend to be anticorrelated on a scale of .01 AU. This is illustrated
 

for a particular period in Figure 25 which shows many changes in the
 

magnetic pressure PB = B 2/(8r) accompanied by opposite changes in
 

the thermal pressure P. = nk(T+T ) Thus, it is possible that much of­

the power in B is due to convected structures (not necessarily
 

discontinuities).
 

Sari-and Ness (1969) showed that there are also times when the power
 

levels inthe components of B' is due primarily to discontinuities. This
 

is shown in Figure 26 which compares the observed power in the interval
 

1200 - 2400 UT on Dec. 23, 1965 with the power computed from the
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discontinuities that were present. Clearly, the observed power can
 

be accounted for by the discontinuities alone. The actual power
 

spectrum for this time is shown in Figure 27. The spectrum has the
 

form f-2 as predicted for a series of discontinuities. The power
 

levels are rather low and geomagnetic activity as indicated by KP 

was very low. The solar wind speed at that time was decreasing from 

375 to 350 km/sec. Siscoe et al. also considered the possibility that 

discontinuities might dominate the spectrum, but found no evidence 

for it. Belcher et al. (1970) have challenged the results of Sari 

and Ness (1969). (See the reply by Ness et al, (1970) Actually, 

they challenged a misinterpretation of the results in Sari and Ness, 

namely that discontinuities always dominate the power spectrum. 

Sari and Ness (1970) themselves show that discontinuities are not 

always dominant. It seems to be agreed (Belcher et al. 1970), that 

discontinuities can dominate the spectrum at times; the evidence is 

that given by Sari and Ness (1969). 

4. Microscale Fluctuations of Burlaga et al. (1969)
 

The most important feature of these fluctuations is a strong
 

correlation with the local value of P = 8rnkT p/B
2, as shown in Figure
 

23. Very disturbed intervals are associated with high 3, very quiet 

conditions with low P. The high P's were due primarily to high 

temperatures. 

Microscale fluctuations such as those shown in Figure 23 are not
 

common features of the data; only 126 hours out of -2500 hours which
 

were examined contained such fluctuations. Hour intervals with such
 

fluctuations tend to be isolated. Less than 24% of such disturbed
 

intervals occurred in pairs, and less than 20% in groups bf more than
 

3 hour intervals.
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Belcher and Davis (1971) challenged the result of Burlaga et al.
 

(1969): They assumed that the power in microscale fluctuations is measured
 

by as, the square root of the 3-hour average of the 168.75 sec minute
 

total variances in the magnetic field components. They found a low
 

correlation between a and g (-.12), and suggested that this implies a1 


conflict with the results of Burlaga et al. (1969). An alternative, and
 

correct, inference is that osl is not a good measure of the type of
 

fluctuations studied by Brlaga et al..
 

The above result illustrates the dangers of using variances to
 

describe wave like fluctuations. The variance actually tells little
 

about the nature of the high frequency fluctuations. In fact, the
 

variance can be very large even if there are virtually no waves present,
 

if there happens to be one discontinuity present.
 

Burlaga et al. (1969) inferred that microscale fluctuations are
 

generated locally. Belcher and Davis (1971) suggested that microscale
 

fluctuations are generated by non-local properties such as stream
 

structure.
 

5. Relation of Fluctuations to Bulk Speed of the Solar Wind.
 

solar wind can best be organized and understood in reference to the
 

bulk speed. Here we shall attempt to relate fluctuations and waves
 

to the bulk speed. Unfortunately, little has been published on this as yet.
 

Neugebauer and Snyder (1966a,1967) and Davis et al. (1966) showed that
 

the 3-hour variances of the magnetic field from Mariner 2 were sometimes
 

appreciably larger than average at the leading edge of high speed
 

streams, i.e. where the bulk speed increases. The interpretation is
 

that the fluctuations are abnormally large there. As pointed out earlier, it
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is not clear what physical characteristics a really measures. Moreover, the
 

magnitude of B also increases at positive bulk speed gradients, so it
 

is not clear that the relative level of activity, a/Bis unusually
 

high threre. (As shown by Belcher and Davis, there is a strong correlation
 

between 7 and B.) Nevertheless, it is probably true that the power
 

levels are unusually high in the interaction regions. Figure 28 from
 

Burlaga et al. (1971) compares the power in the longitudinal and
 

transverse fluctuation in an interaction region with that just outside
 

the interaction region. The power is an order of magnitude higher in
 

the interaction region. Belcher and Davis give some examples of the
 

greater disturbances in B in interaction regions. They
 

state that the largest Alfvenic fluctuations are found in interaction
 

regions, but it is not clear how they identify Alfven waves in an
 

interaction region where B fluctuates appreciably. In
 

any case, no matter how one measures the fluctuations, it is generally
 

true that the magnetic field is highly disturbed in the interaction
 

regions, both compressive and transverse fluctuations being present.
 

Belcher et al. state that there is no discernable pattern of
 

association between the presence of aperiodic Alfven waves and high
 

speed streams or sectors, i.e., p is not related to the large scale
 

structure of the solar wind. However, Belcher and Davis offer the inter­

esting hypothesis that the largest amplitude "pure"r aperiodic Alfven
 

waves are found in high speed streams and on their trailing edges.
 

This might be due to an association of such waves with high temperatures,
 

since T is related to V (e.g. see Neugebauer and Snyder, 1966b; Burlaga
 

and Ogilvie, 1970a).
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The lowest wind speeds are probably relatively free of magnetic
 

field fluctuations, although the evidence to support this is rather
 

meager. Belcher and Davis state that Alfven waves in low speed
 

regions have smaller amplitude and are "less pure" than elsewhere.
 

The intervals of low fluctuation intensity in Sari and Ness were
 

associated with low bulk speeds.
 

In summary, the relation between fluctuations and bulk speed is
 

poorly understood, but the meager results which have been published
 

suggest the following working model. There are large fluctuations
 

in B at positive gradients, presumably representing inward and onward
 

propagating transverse and compressive waves generated there. There
 

are transverse waves in the high speed streams and on their trailing
 

edges whose intensity is proportional to the proton temperature. They
 

may be remnants of a wave heating process near the sun (Alfven, 1947;
 

Parker, 1963; Burlaga and Ogilvie, 1970a Hartle et al. (1970); Belcher
 

and Davis, 1971; Barnes et al. 1971). Between streams, where the
 

solar wind is in its base state in which there is presumably little
 

or no wave heating beyond 2 R0 (Burlaga and Ogilvie, 1970.a, Barnes
 

et al. 1971) wave-like fluctuations in B, but not discontinuities,
 

might be essentially absent. Again, this is a tentative working model,
 

and further work is needed to substantiate it. (See Figure 29). 

Hundhausen (1970) discusses some of the problems with the Hartle-Barnes
 

model.
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6. Variation with distance from the sun.
 

The only report of changes in the characteristics of
 

fluctuations (as measured by power spectra) with distance from the
 

sun is that of Coleman et al. (1969) based on Mariner 4 measurements
 

over the distance 1 to 1.43 AU made in the period Nov. 28-, 1964 to
 

July 14, 1965. The basic result is shown in Figure 30 which gives
 

the ratio of the power at 1.43 AU [Pi (A)1 to that at 1 AU, Pi (A)]I
 

-2k
" 
as measured by k, where [PA)]2 / [Pi (A)], = (1.43) The
 

positive k's imply a decrease of power with increasing distance from
 

the sun. The decrease is seen in all components and at all frequencies
 

6
in the range 10- to M0-2Hz. The power in the magnetic field
 

intensity decreases appreciably less rapidly than the power in the
 

components. Thus, the ratio of power in the compressive fluctuations
 

to that in the transverse fluctuations increases with distance from
 

the sun. In other words, the compressive mode tends to become dominant
 

and the Alfven mode less significant as one moves away from the sun
 

and earth. This assumes that the observed variations are not temporal changes.
 

Coleman et al. (1969) report that the average field intensity
 

-1.25

decreases as (r/ro)- . This decrease is more rapid than that 

of the square root of the power. Thus, the magnetic field becomes
 

increasingly disturbed and disordered as one moves from 1 to 1.4 AU.
 

This result tends to support models of cosmic ray propagation which
 

postulate a diffusing shell near the earth and beyond (Lust and
 

Simpson, 1957; Burlaga, 1969).
 

Figure 30 shows that the power in the fluctuations in B0, normal
 

to the ecliptic plane, decreases more rapidly than that in the ecliptic
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plane components, BR and B
 

If the compressional oscillations studied by Coleman et al. (1969)
 

are related to 3 as the microscale fluctuations studied by Burlaga
 

et al. (1969), then one would expect the power in these fluctuations­

to be maximum just beyond the orbit of Mars (See Figure 31). The
 

'figure indicates the corresponding shell should extend somewhat
 

farther outward from Mars than inward toward the earth, unless other
 

effects associated with the spiral angle, T, or sound speed ratio, S,
 

become important. This hypothesis also implies a decrease in the
 

power in compressional oscillations as one moves from earth to Venus
 

(A point which could be tested with existing data), and it implies
 

that this power would be very small at the orbit of Mercury and closer
 

to the sun (A point which will be tested in 1973 and 1974 when the
 

MVM and Helios spacecraft are launched.)
 



IV. Summary
 

There are numerous tangential discontinuities in the solar wind,
 

more or less evenly distributed between .8 and I AU. The discontinuity,
 

surfaces are separated by F.01 AU and are probably appreciably bent
 

and curved on that scale. They tend to be aligned along the spiral direction,
 

but the orientation changes from on surface to the next. There is
 

generally no obvious pairing, so it is more appropriate to say that
 

the solar wind is discontinuous than to say that it is filamentary.
 

Filamentary forms do sometimes occur, however. Most discontinuities
 

are characterized by changes in the magnetic field direction with
 

little or no change in the magnitude. When the magnitude does change,
 

there is usually a corresponding opposite change in the plasma density.
 

Rotational discontinuities may occur at the rate of sl/day, corresponaing
 

to separations s.25 AU. Belcher and Davis (1971) and Smith et al.
 

(1970) suggested that rotational discontinuities occur at the rate of
 

1 per hour, but they gave no evidence for this. The observations
 

discussed by Burlaga (1970) and by Siscoe et al. (1968) suggest that
 

tangential discontinuities are present every day. The failure of
 

Belcher et al. to observe tangential discontinuities is probably due to
 

the fact that they used 5 min averages (or longer) and mesoscale plots,
 

which would tend to obscure any microstructural discontinuities that were
 

present.
 

Sinusoidal waves are very seldom seen in the solar wind, but
 

random fluctuations seem to be the rule. These fluctuations are best
 

described by power spectra when there is little damping of them. The
 

principal contributers to the power are probably 1) Alfven waves,
 

2) fast waves, 3) static structures in which B and n are anticorrelated,
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and 4) discontinuities. Discontinuities dominate the power spectra
 

occasionally in the range F5xl0 "4 to --102cps, but usually they probably
 

make only a small contribution. Usually the power in B is only a
 

fraction (<.3) of that in the components, and fluctuations in V are
 

often correlated with the fluctuations in B. This has Belcher and
 

Davis (1971) to imply that Alfven waves are the principal contributers
 

to the typical power spectrum. Coleman has pointed out that pure
 

Alfven waves are
 

never present for periods of 12 hrs or more, since there is always
 

appreciable power in B, and he suggested that the compressive fluctuations
 

are due to fast waves. The relative contribution of fast waves and
 

static structures to the power in B remains to be determined, however.
 

Little is known about the relation of discontinuities and fluctuations
 

to the large-scale structure. There is evidence that discontinuities
 

show a sector-dependent north-south asymmetry, and they are not
 

associated with positive bulk speed gradients. It has been suggested
 

that fluctuations can be related to the bulk speed, having the largest
 

amplitudes when the speed is high and decreasing amplitudes with decreasing
 

speeds. This hypothesis fits in nicely with the idea that the fluctuations
 

originate in the region close to the sun which heats and accelerates
 

the solar wind. But a comprehensive study of the relation between power
 

levels or wave amplitudes and bulk speed has not yet been made. There
 

appears to be more than average power in both transverse and compressional
 

oscillations at positive bulk speed gradients, presumably due to the
 

collision of a high speed stream with slower plasma, but the fluctuations
 

generated in this way do not propagate away from the interaction region.
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There are also isolated "patchesr of enhanced, high frequency
 

transverse and compressional fluctuations which are correlated with
 

, some of which might be due to local instabilities.
 

Very little is known about the radial dependence of discontinuities
 

and fluctuations. No significant radial dependence of discontinuities
 

has been observed between .8 and 1 AU. A relative increase of
 

compressional fluctuations from I to 1.4 AU has been suggested, and
 

might be related to an increase with P. Basically, however, the
 

question of radial dependence will not be answered until observations
 

from deep space probes are available.
 

Briefly, the current situation is that we now know more or less
 

how to interpret B(t) in terms of hydromagnetic structures. The
 

next step will be to analyze discontinuities and power spectra for
 

extended periods of time, to relate these results to the larger
 

scale structure of the solar wind, and to identify the origin of these
 

structures.
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-FIGURE CAPTIONS
 

Figure 1 Filament discontinuities. F is the magnetic field intensity 

in 0 and cp are the solar ecliptic latitude and longitude 

of B. The field is plotted versus universal time. 

Figure 2 Directional discontinuities. Three examples of directional 

discontinuities are shown by the vertical lines. Note the 

small changes in c) and the gradual changes in a) and b) 

which are not directional discontinuities. 

Figure 3 Simple discontinuities and other types. Simple discontinuities 

are shown in a), spiked discontinuities in b). 

Figure 4 "Sufficiently sharp-crested Alfven wavesr. The time scale 

is -­l0 min. The dots show the components of B in RTN 

coordinates (Belcher and Davis, 1971). The corresponding 

velocity components are shown by the horizontal lines, 

normalized to give the fits shown here. The density is 

shown by the horizontal lines at the bottom. 

Figure 5 If most directional discontinuities were rotational, then 
B 


the distribution of AV./Qi, where Qi l.li
Q.~l
8 (-


be peaked at +9. The fact that it is peaked at 


B
 
2i
)fnwould
 

zero implies
 

that most directional discontinuities are not rotational 

discontinuities. 

Figure 6 

Figure 7 

Change in magnetic field intensity across simple 

discontinuities (left) and directional discontinuities 

(right). 

Distribution of u for directional discontinuities 



Figure 8 Distribution of magnitude changes (a) and w (c) for simple 

discontinuities. 

Figure 9 Distribution of time intervals between successive 

directional discontinuities. 

Figure 10 Probability of finding a simple discontinuity in any time 

interval r. 

Figure 11 Distribution of the vectors B xB /IBxBI
-12 -Qi--2! 

discontinuities. 

for directional 

Figure 12 Distribution of current sheet normals associated with 

simple discontinuities. 

Figure 13 

Figure 14 

Average normals for "probable tangential discontinuities" 

and "rprobable rotational discontinuities". 

Changes in n associated with changes in tB j across 
discontinuities. 

Figure 15 Average separation of directional discontinuities. 

Figure 16 Multi-spacecraft observations of discontinuity surfaces. 

Each panel describes one surface. Each dot represents 

the portion of a spacecraft. The earth is at the origin 

and units are earth radii. The line segments are ecliptic 

plane intersection of the discontinuity surface, compiled 

from n = BxB2 / BxB. The surface first passed space­

craft 1, then spacecraft 2, and finally spacecraft 3. 

Figure 17 Simplified view of 3 discontinuity surfaces and magnetic 

fields between them illustrating how a .05 AU segment of 

the solar wind might look (see text). 

Figure 18 "Filaments" in B . 



Figure 19 Directional discontinuities and filaments. The directional 

discontinuities are marked by arrows. How would one 

divide this interval into filaments? 

Figure 20 Correlation between V and BR. Thirty percent of the time 

the correlation coefficient was >.8 in the period.June 

14 to Nov. 21,196T. 

Figure 21 Aperiodic Alfven waves. The density N, bulk speed VR, 

magnetic field components BR' BT, B and magnetic field 

intensity are plotted versus time'on a scale of 12 hours. 

Figure 22 Correlation coefficient and BR versus time. The anti­

correlation indicates outward propagating waves during 

the period shown here. 

Figure 23 2Microscale fluctuations and relation to = 17nkT/B 

Burlaga et al. considered only two extreme conditions -

very quiet (b) and very disturbed (a) on a scale of 1 hour. 

The very disturbed periods show large, 'rapid' fluctuations 

in both the magnitude and direction of B. The very quiet 

periods occur when P is small, the very disturbed periods 

when 0 is large, 

Figure 24 Mariner 4 power spectra showing relative power in the 

magnetic field intensity BA and components. N is the 

direction normal to the ecliptic, R the radial direction 

and T in the direction of the earth. 

Figure 25 The magnetic pressure PB and thermal pressure Pk tend to 

be anticorrelated on a scale of .01 AU, tending to keeP 

the total pressure PT constant on the scale, even though 



PT changes on a larger scale. The anticorrelation suggests 

static features. These will contribute to the power 

spectrum of B. 

Figure 26 Discontinuities may dominate the power spectrum. The 

observed power PR equals the power PT computed from the 

observed discontinuities for the period indicated. Thus, 

the discontinuities alone can account for all of the power 

at this particular time. 

Figure 27 The observed power spectra for the period discussed in 

Figure 26. The slopes are -2, as predicted for discontinuities. 

Figure 28 Power inside and outside an interaction region. The left 

panel shows power in fBI, the power in the right panel 

shows power in one of the ecliptic plane components. The 

top histogram in each panel is the power in the interaction 

region. 

Figure 29 Hypothetical model of relations between the waves and 

fluctuations and the bulk speed. 

Figure 30 Ratio of the power densities at 1.4 AU and 1 AU, as 

paramatrized by k (see text). 

Figure 31 Variation of P with distance from the sun, relative to 

at earth. The spiral angle and (p/P11)1 /2 are also shown. 
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Figs. 6 (top) and 7 (bottom). Short segment of data showing variations of a single com­
ponent.Various types of discontinuities are shown in Figure 6: (a) simple discontinuity, (b) 
spiked discontinuities, (c) spike, (d) double spike. Figure 7 shows current sheet associations: 
(a) double spike on a simple discontinuity, (b) multiple discontinuities, (c)jump-ramp asso­
ciationj (d) box-like structure characteristic of a filament transition. Time between vertical 
lines 5 minutes on all figures. 
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