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EFFECTS OF SURFACE CATALYSIS ON HEAT TRANSFER TO

SHUTTLE ORBITERS
| by

* Howard A. Stine

Abstract

The aerothermodynamic environm:i.m generated during much of the shuttle
orbiter's entry flight consists of a flow of atoms .nd molecules. Oxygen
is completely atomic and nitrogen is partly atomic and partly molecular.

Two kinds of interactions of atoms with the shuttle surface are reviewed.
First, the catalytic efficiency of the surface can change the incident heat
transfer rate by factors of from two to three, depending upon whether the
surface is chemically inert or chemically active, over the enthalpy range of
peak heating. A corresponding surface radiation equilibrium temperature
change of about 240° is calculated to be possible. Second, although infor-
mation is scarce, indications are that oxidation rates of metals under attack
by oxygen atoms can be one to two orders of magnitude greater than those
corresponding to attack by oxygen molecules.

Substantial improvement in shuttle operational capability, survivability,
and longevity evidently can accrue if interaction of atomic oxygen with the
shuttle surface can be suppreseed.

INTRODUCTION

The Space Shuttle Orbiter is designed for many returns to earth along
lifting entry trajectories that will limit the magnitudes of the incident
aerodynamic heat transfer rate to those that will allow large areas to be
cooled by radiation.! Along the trajectories to be flown, the zone of maxi-
mum aerodynamic heating will be encountered at altitudes between 175,000 and
250,000 ft.?, where air density is such that the chemical reaction of
dissociation of the air molecules into atoms on passing into a zone of high
temperature will usually go to ccmpletion over large areas of the vehicle.

. On the other hand, dissociation will not always be followed by equilibrium
recombination of the atoms into molecules in zones of lower temperature.
Under these circumstances, the catalytic efficiency of the shuttle skin has
important effects on the magnitude of convective heat transfer loads imposed
on the vehicle,
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Chemical reactions of dissociation and recombination are influenced
not only by variations in the local "inviscid" flow in the neighborhood of
the vehicle, but also by the dissipative and diffusion processes that take
place in the boundary layers. In particular, as is well known, when altitude
is increrased from 200,000 ft. to 300,000 ft. and for speeds neay satelliite
velocity, the flow in a shock layer and around the flanks of a blunt body
will be largely dissociated, but the chemical recombination rate will vary
from near equilibrium (recombination time fast compared to flow timeg to
completely "frozen" (flow time fast compared to recombination time).® At
the higher altitudes, the controlling chemical reaction is that of dissocia-
tion behind the shock wave structure, but at the lower altitudes it is the
recombination process in the boundary layer.3:* 1In the latter case, the
energy of dissociation will not appear in the gas as sensible heat, for all
practical purposes, unless three atoms participate in the so-called '"homo~-
geneous'" recombination process, a raire event when the gas density is low.
However, the third participant in the recombination process need not be a gas
atom, and a "heterogeneous" recombination reaction an be triggered by the
presence of a solid surface such as the vehicle wall. Heterogeneous reactions
are thought to be promoted on the surfaces of ablating materials, fcr example,
and the net result is that the convective heat load in a "frozen flow" ablation
situagion is not noticeably different from that to be expected in an equilibrium
flow.

On non-ablating surfaces, such as those contemplated for major areas of
the shuttle orbiter, laboratory experiments have shown that, given the circum-
stances of frozen dissociated non-equilibrium, it is possible to realize
significant reductions in the heat transfer rate to walls of low catalytic
efficiencys, that is, to surfaces that suppress heterogeneous recombinations
of air atoms. Here, catalytic efficiency is defined as the ratio of the number
of atoms that recombine on a surface per unit area and per unit time to the
total number of atoms that strike the surface per unit area and per unit time.
On an inert surface, for which the catalytic efficiency is zero, it has been
estimated that heat transfer can be as little as 1/3 of the equilibrium value.’
On the other hand, it is also possible in such flows to trigger excursions in
heat transfer rate above the equilibrium Value, as when a frozen flow over a
surface of low catalytic efficiency encounters an area of high catalytic
efficiency.8

The purposes of this note are: (1) To review some of the known effects of
surface catalysis on convective heat transfer rate in shock layers, (2) To
determine the extent of dissociated flow that might be expected over a shuttle-
like configuration, and (3) To estimate the implications of non-equilibrium
phenomena on the design of thermal protection system for the shuttle orbiter.

Little to be said is new, and this note represents principally a survey
of research information on surface catalytic effects in non-equilibrium flows
that might prove of value to shuttle operational capability, survivability,
and longevity.
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Catalytic Surface Heat Transfer Effects at Stagnation Points

A considerable body of literature, containing results both experimental
and theoretical, has been generated during the past decade on the subject of
surface catalytic effects upon stagnation-point heat transfer in frozen flows.
Although differences of opinion exist as to the exact physical mechaniam
whereby recombination of dissociated gas atoms occurs at a solid wall, 9,10,11
it is abundantly clear from experiments that surface material and surface
condition can have interestingly large effects on heat transfer at a stagnation
point. S5s6s12

One such eet of experiments, unpublished data collected in arc-heated,
chemically-frozen flows by Lewis A. Anderson of Ames Research Center, is shown
on figure 1. This figure is a plot of stagnation-point heat transfer rate
parameter against total enthalpy potential, and shows data taken on various
stagnation-point calorimeters for the diatomic gases nitrogen and air. The
calorimeter surfaces consist either of the material silicon dioxide (actually
silicon monoxide is vacuum deposited on a metal surface, but it rapidly
oxidizes to silicon dioxide) which has little tendency to promote recombination
reactions, or the material nickel, which strongly promotes recombinations. In
no case was the calorimeter surface temperature allowed to exceed 1000°K.

Figure 1 shows that the heat transfer to the nearly non-catalytic surface
S$10, increases with enthalpy at a much lower rate than does that to the
catalytically~active nickel surface once the gas dissociation threshold of
about 3-4 x 103 BTU/1b is exceeded. Over the enthalpy range of shuttle peak
heating (5,000 - 12,000 BTU/1b), the nickel surface absorbs heat at a rate two
to three times that of the silicon dioxide surface,

Should such effects persist for large distances downstream of the stagna-
tion point, these data suggest that large gains in performance of the shuttle
thermal protection system could be realized were the panel system nearly non-
catalytic. They also show that these benefits depend sensitively on enthalpy
and that meaningful ground-based tests of thermal protection systems designed
to have low catalytic efficiency must be carried out in facilities that can
operate at enthalpy levels in the range from 8,000 to 14,000 BTU/1b.

Catalytic Surface Heat-Transfer Effects on Afterbodies

An interesting series of experiments was carried out by Sheldahl and
Winkler® to explore the effects of discontinuities in surface catalytic
efficiency on heat transfer that had previously been anticipated on theoretical
grounds by Chung, Liu and Mirels.l!3 The experimental results, which inciden-
tally illustrate that catalytic effects are not phenomena confined locally to
the vicinity of the stagnation point but can occur well downstream, are
summarized on figure 2.
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The test bodies, hemisphere-tipped cylinders, were fitted either with
noses of high catalytic activity (copper) or with noses of low catalytic
activity (silicon dioxide). Similarly, interchangeable cylindrical after-
bodies of the same two surface materials were provided. Heat-transfer tests, 1
limited to wall temperatures less than 1000°K, were carried out on the
cylindrical afterbodies in an arc-heated stream of dissociated nitrogen at
stagnation enthalpies that averaged about 12,000 BTU/1b with the results
illustrated in figure 2.

Figure 2 shows, first, that with the all-copper body of high surface
catalycity, the afterbody heat transfer rate distribution is not far from
that which would be predicted for an equilibrium flow about a hemisphere-
cylinder. When, however, the nose of siiicon dioxide was substituted for
the copper nose, the heat transfer rates on the copper afterbody increased
by 50%. Note that the afterbody heat transfer vates in all cases are normal-
ized with respect to a (constant) equilibrium value at the stagnation point
go that the indicated differences in levels are real. This heat transfer
rate increase, due to the recombination of the surplus of atoms carried over
the afterbody in the chemically inert flow from the nose, was expected, on
theoretical grounds, to die out towards the equilibrium value a few body
radii downstream of the discontinuity, but the experimental evidence® indicates +
that the region of augmented heat transfer rates persists farther downstream
than theory would predict. These data suggest that, in frozen boundary layers,
discontinuities in surface catalycity from low to high values can lead to higher
local heating loads downstream than might be expected on the basis of equilib-
rium estimates.

3.

When the afterbody of silicon dioxide was employed behind a nose material 4’
of either Cu or S510,, the afterbody heat transfer rates were consistently some ;
60% lower than the equilibrium rates, as illustrated in figure 2. Actually, !
the test with the catalytic (copper) nose shows a slightly lower heat transfer

rate distribution than that with the non-catalytic (silicon dioxide) nose, but
the decrease is small. This experiment shows that a silicon dioxide surface

is highly effective in suppressing atom recombination under a frozen, laminar
boundary layer and suggests that non-catalytic surfaces are of potential ’

importance in reducing heating loads to the shuttle orbiter.

Shuttle Orbiter Environment

The shuttle orbiter as presently conceived is an airplane-like configura-
tion such as is illustrated on figure 3. It is designed to return to earth
through the entry corridor shown on figure 4. During the portion of its
entry where the heat transfer rates, and thus the surface equilibrium tempera-
tures, are the highest (i.e., the altitude range between 270,000 ft. and 175,000
ft., on figure 4), the free stream Mach number, M_ (figure 3 ), is estimated
to range from 24 down to about 18. Angles of attack, a, can vary from about
60° to about 20°, depending upon the entry trajectory to be flown. During the
course of the entry, the local Mach numbers adjacent to the lower surface, ML’
can vary from 3 to 15, and the local Mach numbers adjacent to the upper surface,
M,, can vary from perhaps 30 to 15. It is these local Mach number conditions;
along with the corresponding local flow history; the local state conditions of
pressure and temperature; transport properties of viscosity, thermal conductivity,
and diffusion coefficient; and the rate processes of dissociation and recombina-
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tion; that determine whether or not the boundary layers are out of chemical
equilibrium and thus can respond to surface catalytic effects. Obviously,
a very wide spectrum of local conditions can be expected.

The intent here is not to evaluate the specific states of local flow
non-equilibrium for a specific shuttle orbiter configuration such as that
shown in figure 3 throughout its entry profile, nor will an attempt be
made to determine which of many alternative entry profiles will yield the
most advantageous conditions of dissociation for permitting surface tempera-
ture reductions over catalytically inert walls. Rather, the point of view
will be taken that specific examples for simple steady flow fields can serve
to illustrate, at least qualitatively, the effects of surface catalycity on
heat transfer rate with the anticipation that these phenomena will have
application in alleviating thermal loads on the entering shuttle orbiter.

In keeping with this intent the complicated flow field over the shuttle will
be idealized to that over a slightly blunted, two dimensional flat plate at
arbitrary angle of attack. ,

It is obvious that the flow over a blunt flat plate at sufficiently high
angle of attack can be likened directly to the shock-layer - dominated flows
alluded to in discussion of figures 1 and 2. At low-to-moderate angles of
attack the situation is not as clear. Certainly, very near the nose, the
shock layer concept will hold and the flow will be dissociated and frozen.
Well downstream of the leading edge, however, the local flow field will be
increasingly encroached upon by an outer flow that has passed through a pro-
gressively weaker oblique shock wave that might not produce dissociation.
Thus, the embedded, dissociated flow generated by the shock wave at the nose
can be expected to become diluted by the adjacent, cold undissociated gas.
This is not to say, however, that dissociation and recombination reactions are
not important for flight at low angles of attack. Rather they will now occur
mainly in the high temperature regions within the boundary layer. This
situation is illustrated in the two parts of figure 3.

Figure 5a is a map of the equilibrium, dissociated mass fraction to be
expected behind the shock wave on a sharp flat plate at various angles of
attack and flight velocities for altitudes between 200,000 and 250,000 ft.

The figure shows that the shock wave will dissociate 30% or more of the air

at velocities above 20,000 ft/sec. and angles of attack greater than 45°.
However, interestingly large dissociation fractions (~ 20%, corresponding to

an oxygen population of atoms) are not to be expected in the shock layer at

the velocity of peak heat transfer rate at angles of attack less than about 34°.

The dissociation that might be expected to occur as a result of viscous
heating in the boundary layer can be estimated in the following manner. For
flow over a cold flat plate at low angles of attack, where the edge enthalpy,
hg, 1s small compared to the flow enthalpy, Vé/Z, shear work will predominate
over diffusion and conduction in determining the boundary layer temperature
profile. Thus, assuming negligible longitudinal velocity gradients and enthalpy
gradients, the boundary layer velocity and enthalpy profiles will be related by
Crocco's integral, provided that Lewis number and Prandtl number are both set
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equal to unity.l“ With the Crocco relation, the peak boundary layer enthalpy
can be found for a fixed wall enthalpy, angle of attack, and altitude and for
a range of flight velocities with the aid of cabulated state and flow para~
meters for equilibrium air.!5+1€ The equilibrium dissociated fractions
corresponding to these calculated enthalpies are related to flight velocity
and angle of attack as shown in figure 5b.

Figure 5b shows the dissociation fraction that can be generated by
shear work in the high enthalpy region of the boundary layer after sufficient
boundary layer run for the dissociation reaction to reach equilibrium. Here
one sees that completc oxygen dissociation is expected down to angles of
attack of 20° at the velocity of peak heating. The length of boundary layer
run required to attain the plotted dissociation levels depends mainly upon
the dissociation rate coefficient, which is in turn highly dependent on
boundary layer density and temperature. To accurately determine the dissocia-
tion fraction as a function of length of run, rather complicated calculations
are necessary for each flight condition,17518,19

Calculations suggest, however, that dissociation relaxation will go to
completion after from 10 to 60 feet of boundary layer run at shuttle £light
conditions near peak heating, depending upon the altitude.!? It also should
be pointed out that the calculated magnitude of the dissociated fraction that
can be generated in the boundary layer is very sensitive to the assumed values
of Lewis number and Prandtl number.!® A precise calculation of dissociation
fraction is thought to require numerical techniques in which these parameters
can be treated as variables within the boundary layer.}®

Chemical State of Boundary Layer Along Entry Corridor

Figure 6 is an altitude-velocity plot that summarizes the three domains
where the boundary layer in the local flow generated by & sufficiently strong
shock wave can be characterized variously as being either chemically frozen,
chemically reacting, or in chemical equilibrium. The boundaries are
admittedly fuzzy and depend upon flight attitude and the portion of the surface
one chooses to examine. The boundaries shown correspond to flight at angles
of attack above about 30° and to areas on the lower surface from the leading
edges to between 10 and 50 feet downstream. The boundaries were estimated
independently by Mr. Warren Winovich and Dr. Chul Park of Ames Research Center,
and are adaptations and extensions of estimates reported previously. 752

At altitudes above about 275,000 ft. dissociation of the free stream by
the shock wave proceeds 8o slowly that it may not go to completion for many
hundreds of feet downstream. Also, if the shock wave structure is so weak
that dissociation temperatures are not reached in the shock layer as when fly-
ing at low angles of attack where dissociation takes place in the boundary
layer, obviously the zone of reacting boundary layer can engulf the entry
corridor.
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Effects of Surface Catalytic Efficiency on Radiation
Equilibrium Temperature

To evaluate the possible benefits of surface catalytic effects to the
shuttle orbiter, radiation equilibrium temperature distributions along a
flat plate at angle of attack in a frozen hypersonic air flow were calculated
for several (constant) values of surface catalytic efficiency, even though
it is known that catalytic activity is a function of temperature.

The computations, carried out by Dr. Chul Park of Ames Research Center,
incorporatc thc assumptions of equilibrium dissociation through an oblique
shock wave, 5 frozen inviscid local flow, laminar boundary layer with diffusion
of species, and constant surface emissivity of 0.6. One of the results is
shown on figure 7 for a free-stream velocity of 22,000 ft/sec., and altitude
of 240,000 ft., an angle of attack of 55°, and various values of catalytic
efficiency.

Four curves of wall temperature versus length Reynolds number are shown
on figure 7. The upper one corresponds to a fully catalytic surface, and
represents the case where all air atoms that strike the surface are recombined
into molecules. For the next lower curve, the catalytic efficiency is assumed
to be 1073, a value representative of a metal oxide such as Al,03 that is
impervious to atomic oxygen and nitrogen and one notes that now the surface
temperature is consistently reduced some 50°C (90°F) below the equilibrium value.
When the catalytic efficiency is further reduced to 10”4, which means that only
one recombination occurs per 10,000 atom impacts, the radiation equilibrium
temperature is lowered an additionnl 80°C for a total reduction of about 130°C
(234°F). A value of catalytic efficiency as low as 10™* is probably within
practical reach, since glassy materials such as pyrex, vycor, and uartz are
reported to exhibit values near 107" at temperatures up to 700°K.2! Materials
with significantly lower catalytic efficiencies than 10™" are not known,
apparently. Happily, as figure 7 further shows, little additional reduction
in surface temperature would appear possible at this flight condition even
with a material having an inert surface.

Although this result applies to a laminar boundary layer, the same
incremental surface temperature reduction is expected in a turbulent layer,

although the absolute temperature would, of course, be higher.

ATOMIC OXYGEN ATTACK ON METALS

One of the hazards of flying within a cloud of oxygen atoms is a possible
increase in oxidation rates of metals as compared to the rates in molecular
oxygen. Unfortunately, little work has been done on this phenomenon at the
background pressures and temperatures characteristic of shuttle entries, nor
has the effect of growth of the oxide layer been taken into account, except
for one instance wherein oxide formation on a nickel-chromium alloy under
attack of oxygen molecules has been treated as an ablation process.?2 Results
from a set of experiments to study attack of atomic oxygen on a refractory
metal are shown on figure 8.
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Figure 8 shows the oxidation probabilities measured b’ Rosner and
Allendorf23 for molybdenum when attacked either by atomic oxygen or by
molecular oxygen. At surface temperatures expected for the major portion
of the shuttle orbiter [ <1300°K (1900°F)], one sees that attack by atomic
oxygen is 1-1/2 orders of magnitude more likely than attack by molecular
oxygen. Although data for nickel, chromium, columbium, etc. are not avail-
able, it is probable that a similar state of affairs will exist for these
elements. Thus, it may prove mandatory to provide inert coatings to
metallic portions of the shuttle skin to prevent its rapid deterioration by
atomic oxygen. If such a coating were also non-catalytic, the heat load
due to atom recombination could also be suppressed.

Concluding Remarks

An attempt has been made to review some of the known effects and con-
sequences of non-equilibrium flow phenomena that can be expected to be
encountered by the entering shuttle orbiter. It has been concluded that
the oxygen in the atmosphere will be largely dissociated over most of the
vehicle throughout the high-speed portion of its entry corridor. The
possible advantages that will accrue to the thermal protection system if
atomic recombination on the surface could be suppressed were outlined, and
examples were given of effects of surfacc catalytic efficiency on heat
transfer rate and surface temperature. Finally, an example of the grossly
increased oxidation probability for metals attacked by atomic oxygen, as
opposed to attack by molecular oxygen, was discussed.

Much has been left unsaid in this necessarily brief survey, and many
questions remain to be answered on the subject of non-equilibrium flows,
For example, the whole problem of non-equilibrium chemistry in a turbulent
boundary layer remains to be solved, although qualitatively the same kinds
of phenomena are expected as occur in laminar layers. Nor has anything been
said about non-equilibrium effects in regions of separated flow such as will
exist over the upper surfaces of the shuttle. Although much work has been
done on the mechanism of surface catalysis, it has all been aimed toward
increasing catalytic activity., Very little is known about the subject of
"non-catalysis", and what property is required of the lattice structure of a
material surface to render it inert to attack by foreign atoms and molecules.
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