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TBEORETICAQQWORK

Personnel
R. W. Thresher has completed his work on the contract and has received

his Ph.D. No student is presently employed on the theoretical portion of

the work.

Progress

The computer program has been run several times for the case of uni-
form loading on the crack shown in Figure 1. Stress intensity factprs.have
been computed for values of D ranging from D = 0.0 to D = 0.7 and for values
of A/T ranging from A/T = 0.0 to A/T = 0.85.

The results of these computations are presented in Dr. Thresher's
thesis, a copy of which is attached. TFigures 6, 12, 13 and 14 present
stress intensity as a fugction of position along the crack border. TFigure 15
presents the back surface magnification factor as a function of A/T. Com;

parisons of theoretical and experimental work are shown in Figures 16 and

EXPERIMENTAL WORK

Personnel

A master's degree candidate has been hired 1/2 time to work on this

port:ion of the research.

Progress

Testing has continued on the width effect. In excess of 60 data points

have been added to the data presented in the last report. Figures 2 through



11 show all the width effect data taken to date. The hollow points show
the most recent data while the solid points show the data presented in
the last report.

The apparent K (AKIC) in Figures 2 through 11 is still defined as

ic

- [ma
e = MOV g

Now that enough data are avilable, a new apparent KIG will be defined,

namely

P L]
AR, = Mleo’v 2
as was discussed in the last report. This new apparent KIC will be used
to compute width effect correction factors.

In the last report it was mentioned that the width effect may have
influenced some of the depth effect data. It appears now that this is
not the case since the depth effect specimens were purposely made with
large values of W/2C. The following criterion were applied to the depth
effect data:

invalid if

W/2C £ 4,0 and a/2C

v

.30

W/2C £ 2.0 and af2C

IA

.30

This xesulted in eliminating only four of the total depth effect data

points.
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ABSTRACT

A SURFACE CRACK IN A FINITE SOLID

A solution to the problem of a circular crack partially
embedded in a solid of finite thickness is presented. A super-
position and iteration technique is used to determine the stress
intensity factor numerically. The stress intensity factor is
determined as a function of position around the crack front for
a variety of crack depths and thicknesses. The results of this
study are compared to experimental data for a semi-elliptical
surface flaw in a brittle material.

In addition, a solution for the partially ;1osed Griffith
crack is presented. This formulation leads to a closed form
solution for the stress and displacement on the plane of the crack.
A method for finding the open crack length is presented, The
problem of pure bending which closes one end of the crack is solved

and the stress intensity factor is calculated.

Robert Wallace Thresher

Department of Mechanical Engineering
Colorado State University

Fort Collins, Colorado 80521
August, 1970
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INTRODUCTION TO THE THESIS

The present form of fracture mechanics started with the work
of Griffith in 1920 (1). The essence of Griffith's work stated that
a crack will propagate if by doing so it can lower the total energy
of the system. The stress analysis used by Griffith to caleulate the
stored elastic energy was taken from the work of Inglis (2) for an
elliptic heole in the center of an infinite plate, where the minor
axis of the ellipse was allowed to approach zero.

Another step toward the present theory of fracture mechanics
was made when Irwin (3) pointed out that for metals the Griffith-type
energy balance must be between the stored strain energy and the surface
energy plus the work done during plastic deformation. Irwin also
noted that for most engineering materials the work done against sur-
face tension is small compared to the plastic work.

The Irwin-Griffith energy balance for a crack would appear as
shown in Figure 1. As the crack size increases the stored elastic
energy decreases and the amount of plastic work necessary to propagate
the crack increases. However, the stored strain energy decreases at
a faster rate and therefore creates an unstable situation when the
crack is larger than a certain critical size.

In 1957 Irwin (4) showed that the strain energy release rate
is related to the stress intensity factor K; ,‘ﬁhere the stress inten-

sity factor can be defined as



Ry = Linit /278 o
§+>0 =0

for the situation illustrated in the bottom half of Figure 1. Since
the strain energy release rate and the stress intensity factor are-
related, it is permissible to talk about a critical stress intensity
factor. The critical stress intemsity factor is the value of the
stress intensity factor at which unstable crack propagation occurs.
The critical stress intensity factor, which is called the fracture
toughness, hdas been shown by experimgnt {(5) to be a material property.
The fracture mechanics failure criterion states that a crack will

propagate if K; 2 K;. , where K is the fracture toughness.

IC
To determine whether a cracked component will fail in a given
lcading situation, one must have the fracture toughness for the
material in question, and an elastic stress analysis from which to
calculate KI . For example, consider a two-dimensional crack of
length 2a centered in a large plate loaded with a uniform tension
0 . The plate is a brittle material which has a fracture toughmness of
550 psi ¥in . A stress analysis is performed to obtain Gxx on x =0,

from which the stress intensity factor is calculated. This computation

glves

KI = gvrma

The fracture mechanics failure criterion states that this plate will

fail when

o¥ma > 550

This equation gives the maximum allowable load ¢ £for a given crack

length 2a . For most engineering materials the fracture toughness is



wgll documented. The difficult part of the prob;em'is the stress
analysis. Solutions to some of the more common problems can be found
in the literature (5). However, many important problems are still
unsolved. For example, surface cracks are very often seen in structural
components, but only limited analysis has been performed on this type
of crack.

. The purpose of this thesis is to solve two problems in linear
elastic fracture mechanics to obtain the stress intengity factor,
Part I presents the solution for a surface flaw in a finite thickness

plate. Part II presents the solution for a two dimensional through

crack in which the applied load closes one end of the crack.



INTRODUCTION TO PART I

The three dimensional analysis of cracks started im 1945 with
the work of Sneddon (6), who solved the problem of the circular crack
in an infinite solid, where the crack was opened by a constant pres-
sure, The corresponding problem for the elliptical crack in an
infinite solid was done by Green and Sneddon in 1960 (7). More recently,
Kagsir and Sih (8, 9) solved the embedded elliptical c*ack for a pre-
scribed shear, and later for a linearly wvarying normal pressuxe., The
problems of an embedded hyperbolg and an embedded parabola were solved
by Shah (10). 1In addition, Shah solved the embedded elliptical crack
for a normal pressure loading specified by a restricted polynomial (11).

Only limited analytical work has been done. on surface crack:
problems., 1In 1962 Irwin (12) using the solution of Green and Sneddon
estimated the stress intensity factor for a semi-elliptical crack in
the surface of a half space. In 1965 Smith (13) 'solved the semi-
circular crack in the surface of a half space, where the crack surface
was loaded with an arbitrary normal pressure. In a continuation of
Smith's workf Smith and Alavi solved the problem of a circular crack
embedded in a half space (14) and the problem of the circular crack
only partially embedded (15, 16).

Tﬁe work contained herein is an extension and a refinement of
the work of Smith and Alavi. It is the purpose of this portion of the

thesis to present the solution to the partw-circular crack in a finite



thickness solid. The work centers around determining stress intensity
factors for circular flaws embedded an arbitrary depth into a plate

of finite thickness.



CHAPTER I

THE SURFACE FLAW PROBLEM

1.1 The Problem Statement

Coﬂsider a circular crack embedded only part way into a plate
as i1llustrated in Figure 2. The problem is to determine the stress’
intensity fact&r as a function of § for a variety of depths D and
A/T ratios under uniform tension loading.

Again referring to Figure 2, the boundary conditions may be
stated as follows:

1. All normal and shearing stresses must vaniéh on both the

front and back surfaces. |

2., On the plane g=0:

(a) o = - P(r,0) inside the crack.
. 2z, _q
" (b) Uz = 0 outside the crack.
-
() 7 = T = 0 all 2z=0.
rz 2=0 6z 2=0

The solution to this problem will be superimposed with a solution
having a normal stress + P(r,8) dinside the crack to arrive at the

boundary condition czzi = 0 1inside the crack.
2=0 '



1.2 The Solution Method

The solution method which will be used is the Schwarz alter-

nating technique (17). In this particular case the technique consists

of using two elastic solutions coupled with an iteration procedure

programmed for the digital computer to solve numerically for the stress

intensity factor as a function of position along the crack border.

The solutions used in this procedure are:

1.

The circular crack in an infinite solid where the crack
surface pressure is prescribed in the form of a Fourier
series;

Stress in a half space due to pressure and shear on a

‘rectangular portion of the half épace boundary.

The iteration procedure works as follows:

1.

The crack pressure, prescribed in the form of a Fourier

‘geries, is applied to the crack surface. For the case of

simple tension, a constant pressure is applied to the
crack surface, Solution 1 is used to calculate the result-~

ing stress in the solid at the desired location for the

_front surface,

Séresses at the location of the front surface are removed
using solution 2. This is accomplished by dividing the
front surface into many small rectangles and applying
"freeing" stresses to each rectangle which are equal and
ppposite to the stresses at the center of the rectangle as
Eomputed by solution 1. This freeing of the front surface
produces a residual stress on the crack surface, which is

computed using solution 2,



3. The negative of the stress residual on the crack surface
is approximated with a Fourier series gnd_this lo;ding is
‘then applied to free the crack surface of stress. ’ Solution
1 is again used to compute the stress on the front surface.

4. B8teps 2 and 3 are repeated until the residuals become

negligible,

As the iteration continues, the stresses due t6 each step are
also computed for the back surface and collected in a running sum.
After convergence with the front surface has been obtained the iter-
ation is ané between the crack and the back surface, while & running
total of residuals is kept on surface 1. This whole procedure is then
repeated until residuals are negligible..

The elastic solution for the circular crack in an infinite
solid will be deﬁeloped in Chapter IT and the solﬁﬁidn for a.reétangle

on the surface of a half space will be discussed in Chapter III.



CHAPTER II

THE CIRCULAR CRACK IN AN INFINITE SOLID
SOLUTION 1

2.1 Boundary Conditions

Consider an elastiec solid with a circular crack of radius "a"
located on the plane 2=0 which is opened by normal pressure P(r,0).
The crack and coordinate system are shown in Figure 3. The boundary

conditions for this problem may be written as follows:

(a) o = - P(r,0) for 0<r<a (2.1.1a)
zz
%=0
t) U =0 for r > a (2.1.1b)
z
2=()
(c) T =1 =0 (2.1.1ec)
21300 9%|z=0
@ o >0 as xy>e (2.1.14)

In addition, only normal crack pressures symmetric with the piane

z2=0 willlﬁe considered.

2.2 The Potential Formulation

The three dimensional forxm of the Navier equations can be

written

2 =
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For the special class of problems where the shearing stresses

are zero on the plane

the Navier equations:

=0 the following potential formulation satisfies

= 3, g2 - qyp 320
Ur + (8 bz 9rdz
- 139, g2 z 3%
Ug = Toe+t & -1 T35
2
u, = -2 304 (g2 -1, 22
z a9z 372
2 _ 2(1 - V)
where B = ZETZTTESS
provided that vz ¢=20 « This formation is

and Zerna (18).

(2.2.2)

presented by Green

Using Hooke's Law the stress components in terms of the

potential function ¢

Yy

+

Q
Il
|

ZZ

2(82-2) L& 4 2% 42

are easily found as
ar?

az2

322 ar

2¢a2-1) 2 -2 4 2g2-1)

r? 30%95z

2(B2-1) ffii-+ 2(B%-1)z 8%

9z2 323

2(g2-2) 220 4 5 228 4 5(p21)p 200

ar2sz

3%
2 362

z 3%

T 9rdz
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- 2@ 2y 2 % _ 2%
o = ¥ 5e6 T 271 L 555y 2 38
2 2 3%¢
- 2(8°-1) = 753,
Y
3
T = 2(B2-1)z -8
rz drdz?
3
Ty, = 2(8%1) % A (2.2.3)
2 T 30522

The displacements in (2.2.2) have been nondimensionalized through
division by "a', the crack radius. The stress has been nondimension-
alized with respect to the shear modulus.

From the form of the potential formulation it can be seen that
the boundary condition (2.1.1c) is automatically satisfied while

boundary conditions (2.1.l1a) and (2.1.1b) on the plane 2=0 reduce to

3%¢ _ _P(x,0)

for 0gr<a (2.2.4a)
322 2(82 fd 1)
%% = 0 for >0 (2.2.4b)

2.3 The ﬁotential Function

To satisfy the mixed boundary conditions of (2.2.4a) and

(2.2.4b) the potential function, ¢ , will be assumed in the form

N £ (5

¢ = ] cos (n6) D7 5 (Ex) %5 ar (2.3.1)
n=0 3 n
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This potential function clearly satisfies the boundary condition (2.1.1d),
since both Jn(Er) and e—zg tend toward zero for large r and =z .
The reméining boundary conditions to be satisfied are (2.2.4a) and

(2.2.4b), which after substirnrion for ¢ may be rewritten as

P(r,0) _ }Z‘ '
—_—t = cos (nB) J Ef (&) J (Er) dE {2.2.33)
2(R2-1) n=0 A n n
for r<1l
N oo
0 = [ cos (@8) J £.(&) J_(Ex) d& (2.3.2b)
=0 A n n ‘

fop r>1
To find the unknown function fn(g), the function -P(r,e)lz(gh—l)

will be expanded in a Fourier cosine series as fbllows:

N
P(x,0) X B {r) cos (mB) (2.3.3)
2(R2-1) n=0 "

where the Fourier coefficients Bn(r) are given by

i
1
B.(z) = ———o P(r,8) d¢
° 27 (82-1) -0/-
and - i (2.3.4)
1
B (xr) = w——e. P(r,08) cos (nB) 48
» w(B%-1) f

0

Now the boundary conditions (2.3.2a) and (2.3.2b) may be further

simplified to give the following set of dual integral equations:
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Bn(r) = f gfn(g) Jn(gr) 13 (2.3.5a)
0 for 0<r<1l
0 = f fn(g) Jn(!-;r) dE& (2.3.5b)°
0 for r>1

The solution to these dual integral equations for the unknown function

fn(g) , due to Busbridge, is given by Sneddon in (19) as

. 2E - - : ol
£ (@) = 1/ f n?2 J_ ., (En)dn f B_(np) &— dp
n ki 4 ntk A n ‘/ﬁ

(2.3.6)

2.4 The Function fn(g)

In order to reduce the complexity of the iﬁtegrations required
to determine fn(g) , the function Bn(r) will be expanded in the

power series

B() = ] cPrF (2.4.1)

where Cnp = constant, Substitution of this representation for Bn(r)

into (2.3.6) and performing the integration on p gives

1

P
- L PyP % bt
£8) = - pzo,gn HP g 'O[ n" ¥ I g (En)dn, (2.4.2)
where
r [pHot2
aP - L 2 (2.4.3)

=1
3
'N
I:
[#%]
e
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To this point the solution development has followed the work of Smith
"and Alavi (15), who expaéﬁed the Bessel ﬁunction. Jn+%(£n) in a power
series which was then integrated term by term and substituted into

the potential function ¢ to obtain a series solution for the stress
components. Because the series solution did not coﬁverge for
r2+2z%<1 » they were forced to developra closed form solution for
small 1 and ‘z . The main drawback with the closed form solution
was that iptrequired a considerable amount of h;nd computation to
complete the required integrations. Even then it took a significant
amount of computer time to calculate numerical vé}ues,foy the stresses,
As a result of these difficulties, Alavi's solution isrlimited to
three terms in both the Fourier series {2.3.3) ané_the power serids
(2.4.1). iIn order to extend the solution to include more terms in the
Fourier series and power series, a numerical integration scheme was

devised.

Watson (20) gives the integral representation for Jn+%£gn) as
1

Substitution of this integral representation into equation (2.4.2), and

then substitution of equation (2.4.2) into equation‘(2.3.l) giveg the

result

N cos (nB) v PP
¢ = z n+l z Cn Hn s
n=0 72 T(n+l) p=0

1 1 0
f f P2 (1_t2)%4edn f €% J_(£rye oIt g
0 1. 0 (2.4.5)
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The last integral in (2.4.5) has the value

s jal
f £ 5 (et T (2n+1)r
0 25T (a+1) [ (z~-ine) 24

Substitution of equation (2.4.6) into eguatlon (2.4.5) gives

cos (mB) T'(2n+l)
n=0 7 22" [T(a+1)12 p=0

¢ =

where
11 pptot2 (1-tH"
I(a,p) = ff ! dean
2, 2.(2n+1)/2
021" [ (z~int)“+r-} -

2.5 The Stress Components

2 @ad1) /2

(2.4.6)

Cn? Hn? o I(n,p)

(2.4.7)

(2.4.8)

To determine the stress components, the equation (2.4.8) for

I(n,p) must be substituted into the equations (2.2.3), which gives

the following integrals to be evaluated:

11
_ W
FIQ) = f f (zarD)7z 4tdn
o -1 @
11
y = — N
FI(2) = ff Gaay7s dtdn
o -1 Q
11
_ W
FI(3) = ff _—————Q(2n+5)/2 dtdn
0 —=1

(2.5.1)

(2.5.2)

(2.5.3)
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1 1 .
_ W(z-int)
FI(4) = f Féjl—z dtén (2.5.4)
g -1
1 1
_ W{z-int)
FI(5) = ff Qﬁﬁ:‘—g)_ﬁ dtdn {2.5.5)
0o -1
1 1
_ W(z-int) _
FI(p) = ff Q(2n+7)]2 dtdn -(2.5.6)
0o -1
1 1 )
_ W{(z=-int) .
FI(7) = ff W dtdn (2.5.7)
0 -1
1 1 .
FI(8) = ff Z_E%'}f drdn (2.5.8)
0 -1
where
W np+n+2(l_tz)g
and
Q = [(z-int)? + x?}

A computer prdgram was written to integrate the FI{l) through Fi(S)
integrals numerically whenever they occur. The integration formula

used was a 12th order Newton-Cotes closed t&pe formula (21). Even with
this high order formula, a very fine mesh was reqﬁired for small 'z and
r <1, 1In addition, the integration accuracy deteriorates with increas-
ing n . However, despite these prohlems the iﬁtegrals could be
calculated to 3 digit accuracy for =z as low as .2 for r < 1, and

for n and p as high as 5, The only drawback in going to smaller
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z and larger n , is that the required computer time tends to increase
very rapidly. No integration problems were encountered whem r > 1 ,

even for z=0., The stress components may be written as follows:

N P
- P,P._n
o, = X A(n) cos (mB) E Cn Hn r SRR (2.5.9)
n=0 p=0
N P n
Ogg = L A(n) cos (@8) ] c?uP " 500 (2.5,10)
n=0 p=0
N P o o oa
T = - L A(m) sin @8) } CFH Fr skO (2.5.11)
n=0 p=0
) N P o oon
T, = L A cos m8) } cFH"r SRz (2.5.12)
: n=0 =0
_ N B oo
Toz = = 1 A() sin (ud) Z C, H  r sz (2.5.13)
n=0 p=0
where
SRR = = Cl « FI(7) + Cl4 « FI(2) + C2 « FI(1)
- C3 « FI(1) + C4 + FI(3) - C5 = FI(4)
4+ C6 » FI(5) + C7 + FI(6) (2.5.14)
880 = - Cl - FI(7) + Cl4 « FI(2) - €2 « FL(L)
- C8 » FI(2) + C5 =« FI(4) +C9 « FI(5) (2.5.15)
'SRO =  C2 « FI(1) - C10 « FI(2) - C5 « FI(4)
+ Cl1 « FI(5) (2.5.16)
SRZ = Cl2 » FI(7) - C13 + FI(8) - C15 » FI(2)

+ C16 » FI(3) (2.5.17)



and

s6z

Aln)

Cl
c2
C3
C4
C5
C6
c7

c8

.C9

610
Cl1
12
C1i3
Cl4
Ci5

Cli6
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Ci2 » FI(7) =~ Cl15 * FI(2)

['(2n+1)
v 22 141y 32

2(B2-2) (2n+3) (2n+1)
2n(n-1)/r*

2(2n+1)?

2(2n+1) (2n+3) 2
2(p%-1)zn(n-1) (2n+1)/r*
2(p2-1)z(2n+1) % (2n+3)
2(32-1)z(én+1)(2n+3)(2n+5)r2
2(2n+l)

2(R%-1)z(2n+1) (20+3)
2n(2n+1)

2(8%-1)zn(2n+1) (2n+3)
2(R*~1)zn(2n+1) (20+3) /r
2(B2~1)z(2n+1) (20+3) (2n+5)
2(82-2) (2041)
2(B*~1)zn(2n+l)/r

2(B2-1)z(2n+1) (20+3)r

(2.5.18)
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The equations (2.5.9) through (2.5.13) together with the
integrals given in equations (2.5.1) through (2.5.8) give the stresses
near a circular crack in an infinite solid. Due to the problems ﬁith
the numerical integration procedure for small =z the special solution

for z=0 and r < 1 will be presented in the next section.

2.6 The Solution for 2=0 and r < 1

The stress components for the special case 2z=0 have the form

2 2
o = - 2(g2-2) 34 ,,3% (2.6.1)
T z=0 9z2 ar?
3% . 2236, 2 3% -
P 322 T T p2 gp2
- 223% _ .23
Tro| ., T o%e0 5 8 (2.6.3)

The potential function itself becomes

i
N P
¢|z=0 - 3 cos (nd) Z CPHP fnp+3/z dn x

n=0 V2~ p=0 D

. d
f T g & T (ED) 7‘5_ (2.6.4)
0 3

while ﬁ is given by

922 |2=0
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N P x
% - § cos (n)  cPyl? f Pt an %
2%} o ™0 Y2 p=0 T T

o

f g% 3L En) J_(Er) & (2.6.5)
0

To determine the stresses on the plane 2=0 , the integrals involved
in these two expressions must be evaluated.

The infinite integral in equation (2.6.4) is a Weber-Schafheitlin
discontinuous integral. Abramowitz and Stegun (21) give the value for

this integral as

f Ju(at) .;v(bt) i o
5 t

LY I,[]!+v—)\+1]
2 . [}y-\)—?\ﬂ PoVMEL L bZ]
o - 3 ] H]
2X av A+l T (vl) T[H v;ﬁ+1] 271 2 2 a2

for 0<b<a,A>-1 and (utv-2+l) > 0 , or

-
a" r[ W;Ml Av-A+l  pev-Adl a?

T : 3
ZA pH A+l T (u+l) r[v—g;lfl] 21 2 2

for 0<a<b, A>-1 and (utv-A+l) > 0

where the function 2F1 (a,b3;c3z) is the Gauss hypergeometric

series (21).
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The infinite integral of (2.6.4) becomes

ag

f ToalEM T 0 & =
+% =
2 n n E

r’ T(ntk)
VT 0 P nt1)

s For 0<r<mn, and

A ] LatsrI(sr) ey’
/f'rn+1 T s=0 T'(nts+az) s!

for 0<nN<r,
(2.6.6)

Substitution of equation (2.6.6) into equation (2.6.4) gives

oo = 1 2G0T oy
2=0 =0 /T p=0 n n

p it o 2
f n1:)4-3/2 Z I'(nts+5)I'(s+%) | n 8 n
n+1 <=0 T'(nts+3m) 8! |2
0

1
+ nPH’Z[ r” T () ] dn (2.6.7)
! ™ rna1)

Interchanging the integration and the summation in equation (2.6.7) and

proceeding to evaluate the next integral gives

N P
¢|z=0 _ E cos {(nf) X Cnp an fp+2 BT (n,p)
n=0 vZ p=0

1

————— n pt2
+ ['(nt%) / (p-nt2) (x'-r* ") for p-ntl # -1
+1

-~ ™ log (r) T for p-mtl = -
(2.6.8)
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where
oo

_ T (ntsty) T (s+h) .
BI(a,0) = ) Tiavets )T (oFD) (atpiZt) (2.6-9)

Equation (2.6.8) together with (2.6.9) give the value of ¢ on the
plane z=0,

To find 23%¢/9z2 2=0 ° the integrals in equation.(2.6.5) must
be evaluated. A careful examination of the infinite integral in
equation (2.6.5) shows that it does not exist. Howevér, the form of
the infinite integral can be changed by integrating the finite intégral

on TN by parts. The basic differentiation formula for Bessel functions

can be used té show that
-nt%s

d n o _ -ntk

Py {_'"""g I %.(En)} =M Jn,a.(in) (2.6.10)

The integral on 1 can be rewritten to give

1 1
' f nP+ee T4y (Edn = - f mPretly
0 0
- gL Edan 1 (2.6.10)
Integratiné (2.6.11) by parts gives
1
[ Eman
0.
3 ® L ok
n-% n

- 5 + (p+nil) { —g~ Jn_%(gn)dn (2.6.12)
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Substitution of equation (2.6.12) into the expression (2.6.5) gives

N P
_a_ii - . z COSs (ne) z C 2 H P ¢
22| o m=0 V2 p=0 % P

1 oo
(o) [ e [ Ea e 3 @na
0 0

(=]

f I 48 I (E)dE } (2.6.13)
0

As was expected, these integrals are also special cases of the Weber-

Schafheitlin discontinuous integral and can be evaluated to give

[++}

f /EJn_%(g) J (xB)ag = o for 0<r<1 (2.6.14)
"0

J[.YE-Jn_%(En? Jn(rﬁ)dﬁ = 0 for 0<r<n (2.6.15)
0

A W
AT

for r>n>0.

f B3 LGN I (zE)aE =
0 . (2.6.16)

Because the solution developed in 2.5 is perfectly acceptable for z=0
and r-> 1, the solution in .this section will be developed only for

the case r < 1 . With this restriction, 3%¢/3z? ,o0 DAy be written as
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2| . ) s @O 7 cpghp
922 Hn0/2_ pOnn
2 = =|
2=0
T
pin
(p:n+l) 2 " dn for r<1 .
r/moy ) (2.6.17)

After performing the final integration, 32¢/8z2|z takes the form

=0
2 N P
¢ =y s @)y iy cPr?P x
922 2= n=0 2 p=0 non
é . A
YT for nip =0
411[112"["2] >IEO:I'.' r<1 .
:—P-—--I—l-—--—-—- - P for ntp # 0 -
- [ 2 } y (2.6.18)

The stress components for the plane 2=0 can be calculated by
substituting the equations (2.6.8) and (2.6.18) into the equations

(2.6.1) through (2.6.3).

¥ cos (n0) t
Orr = 1 —a ) CnPHPrP %
z=0( n=0 p=0 "
f
/5 for nip =0
BT (n,p) (p+2) (p+l) - (B2-2)T
an for ntp # 0

A

r‘ — —
f'(:+§§1(1;451)1+2) [n(a-1)r" P2 - (p+2) (p+1)]7

; for p-n¥l £ -1

- —ﬂrI(‘r(;f)g)‘ **2 [n(a-1) log(r) + 2n - 1]

L (2 .6 .19) for P-n+1 = -1 J
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5 - % cos (nb) § cPgP P «
88| _ L T 4 *n Tn
zZ= n=0 p=0
-
T for nip =0
< (pn®+2) BT(n,p) - (BZ-1)w
an for nip # 0
\
> N
7w (o) [n(l—n)rn_P—z + nz—p—Zl g3
I (ntl) (p-nt2) for p-ntl # -1
+ < 4
- ET%%;%)—) ™2 [n(1-n) log (r) +1]
- for p-ntl = -1
IR
(2.6.20)
N P
ol - o= 1 SRLD§ Py PP L apu) B,
20  n= p=0 -
T I'{nt+%) n n-p-2
S D ey [ @D)r - p~1]1 for p-ntl # -1
+
RO n(m-Dllog () + 1] for p-ntl = -1
(2.6.21)
= - 0 (2.6.22)
z= z=(

Equations (2.5.9) through (2.5.13) together with equations

(2.6.19) through (2.6.22) constitute the complete circular crack

solution.
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2.7 The Stress Intensity Factor

The stress'intensity factor KI is defined by

K. = Limit 278 O'Z (2.7.1)

I §+0 21 2=0
where 6 is the distance from the crack tip and Gzz is the normal

stress on the plane of the crack. Substitution of Gzz into equation

(2.7.1) yields

N P
K = 26(8*-1) E cos @) } cPuP (2.7.2)
n=0 p=0

This method of calculating K, was first used by Smith (13).

2.8 Summary

In éﬁapter 11 the problem of the circular crack in an infinite
solid has béen formulated and solved. Section 2.5 presents the stress
components-in the form of a double series. Some of the required
integratioﬁs must be performed numerically and the§evare given in
equations (2.5.1) through (2.5.8). Section 2.6 presents the stress
components fgr the special case 2=0 and .r < 1., This special case
had to be solved separately because of problems with the numerical
integration procedure for smalil =z . Section 2,7 pfesents a method for
determiﬁiqg the stress intensity factor for an arbitrary normal pressure
on the crgck'surface.

The solution presented in this chapter can be used to calculate
the stresses surrounding a circular crack in an infinite solid, when

the crack surface is loaded with a normal pressure approximated by a
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truncated Fourier-power series. The Fourler series conitaing terms up
to cos(50) , while the power series includes terms up to r* . iIn
addition, a direct method of calculating the stress intemnsity factor

due to this loading has been presented.



CHAPTER III
THE HALF SPACE SOLUTION

SOLUTION 2

3.1 The General Problem

In section 2.2 1t was explained that solution 2 would be used
to calculate the stress on the crack surface produced by freeing of
the front and back surfaces during the iteration ﬁrocedure. Figure 4 -
is an illustration of how the front and back surfaces are arranged for
this procedure. The following paragraphs describe how this portion of
the procedure functions.

After the stresses at the center of each rectangle have been
computed using solution 1, solution 2 is used to calculate the stress
on the crack surface produced by the freeing process. To accomplish
this the crack surface is represented as a circular array of points
and the stress at each of the array points is calculated by summing
the stresses.produced by each individual rectangle of the front surface.

The f;eeing stress which produces a stress G,, on the crack
surface also produces stresses on the back surface. This 1s handled
by considering each back surface rectangle one at a time and summing
the stresses produced by freeing each of the front surface rectangles,
Here again, the stress calculation is made for the center of each
rectangle. The calculations proceed in an identical manner for iter—

ation between the back surface and the crack.

28
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To save computer time, the stress calculations between the
front and back surfaces are made only after an iteration cycle between
the crack and one surface has been completed. For example, if three
iterations are to be performed between the front surface and the crack
then the freeing stresses for each iteration are accumulated in a
running sum and the back surface residual stress is calculated only

once.

3.2 The Solution for Ome Rectangle

For any given rectangle the problem reduces to finding a
solution for a semi-infinite solid when the rectangle on the boundary
is subjected to uniform normal and shearing stresses. This basic
problem has a rather long history and was once called the "problem of
Boussinesq and Cerruti,” A potential formulation for the problem is
presented in Love's "A Treatise on the Mathematical Theory of Elas-
ticity"™ (22)., Later, inm a paper (23) Love presents the solution for
the case of constant normal stress. Much more recently Smith and Alavi
presented tﬁe solution for the case of constant she;ring stresses.
Since the solution is rather involved and adds little to the under-
standing of this work, the solution will not be reproduced here. TFor
a more complete discussion of this solution and its gpplication to
similar problems in fracture mechanics see references (13) (14) and
(15). The formulas given by Love (23), and by Smith and Alavi (15)
were programed for the digital computer so that wherever the freeing

process was required these subroutines could be used.



CHAPTER IV

THE COMPUTER PROGRAM

4.1 The Program Logic

This section gives a description of how the computer was
programmed to use the two elastic solutions to solve the surface flaw
problem. The essence of the material which will be given here wa;
previously presented in section 2.2, .However, at that point it was
intended as an introduction to the solution method rather than a
description of how the solution was obtained.

A plock diagram of the computer program is shown in Figure 5.
The number to the right of a block is the statement number in the main
program where that block operation takes place. Although the block
diagram does not give all of the details of the program operation, it

does present the basic program logic.

4.2 Program Checkout

To.insure that the program had no computational errors, a
variety of test cases were run. For example, the circular crack
solution was checked by comparing the results of this program with the
closed form solution of Sneddon for the special case of a constant
crack pressure. In addition, the program was checked against Alavi's
selution for a crack pressure described by three terms in the Fourier
series. In both cases the comparison was accurate to at least three

digits.
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The overall results of the program were checked against the
results of Smith (13) for the case of semi—circu}ar crack, and against
Alavi's results (14) for the cases D=,3 and D=.4 , The comparison
with Smith is shown in Figure 6. The difference in results for 6/9m
near unity is about 5%Z. Most of this difference can be attributed to
the fact that the front surface grids were not- the same. Smith used
over 500 rectangles on the front surface while this study used 184.
rectangles for the first iteration and 62 rectangles for subsequent
iterations. The close agreement between these two studies tends to
indicate that the iteration procedure is not very semsitive to the
surface gfid used. The comparison with Adavi'!s fes@ilts was not plotted
in Figure 6 because of the close agreement. For the case D=.3 the
results were almost identical, and for D=.4 , Alavi's results were

about 2% higher than the results of this study.

4.3 Surface Grids

As mentioned above, two different front surface grids were
used. In all cases the 184 rectangle grid was used for the first
iteration, and the 62 rectangle grid was used for the following iter-
ations. It w;s possible‘to use Sneddon's closed form solution to
calculate the front surface stresses on the first iteration because
the crack pressure is constant. Sneddon's closed form solution computes
stresses at a much faster rate than the numerical method of Chaptef II.
For this reason, a finer grid could be used witho@t excessive computer
time. When sneddon‘s closed form solution was used, the run time was
about 200 seconds for this iteration. In additiom, it is highly

desirable to perform the first iteration as accurately as possible



32

since the stress intensity factor changes by the larggst a@ount on the
first iteration. For example, Smith found that for the semi-circular
crack the stress intensity factor changed by 14% as a result of the
first iteration and by less than 3% on the second iteration. The 184
rectangle grid is shown in Figure 7, and the 62 rectangle grid is
shown in Figure 8 and Figure 9,

The'fack surface which has 32 rectangles is shown in Figure 10.
The back surface is always located outside of the crack and never
intersects the crack surface. For this reason the back surface is in
a region of 16ﬁ stress gardients, and a fine mesh is not required.
Smith and Alavi (15) calculated the stress intensity factor dug to a
free surface located outside of the crack surfaceiusing 64 rectangles
on the frée surface. To check the 32 rectangle grid some of the cases
presented by Smith and Alavi were rerun. The difference between the

results was virtually zero.

4.4 The Fourier Series for Crack Pressure

The crack pressure is approximatéd by a Fourier serles in the
0 direction and a power series in the r direction. See equations
{(2.3.3) and (2.4.1). As ﬁreviously mentioned, the ecrack surface is
represented as an array of points where the crack fésidual stress has
been calcﬁlated at each of these points. The Fourier coefficients are
determined by numerically integrating over the érray's 19 anular
divisions f&f each of the 7 radial divisions, then a least-square curve
fit is performed to obtain the power series coefficients of equation
(2.4.1). Terms of up to cos (50) were included in the Fourier series

and terms up to r' were used in the power series.
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In order to realize the benefit of the 184 rectangle grid, and
the closed form solution for the first iteration,.the stress intemnsity
factor must be calculated with maximum accuracy. '~ The equation for
stress intensity factor (2.7.2) shows that this can be accomplished
by increasing the number of terms in the crack pressure series, For
this reason the Fourier series used terms up to cos (100) -and the
power seri;s included terms up to r® for calculating the stress
intensity factor due to the first iteration. This improved approxi-
mation of the crack pressure was not used to coﬁpute the stresses for
the next iteration, because the circular crack solution can only handle
terms up to cos (50), This means that after the first iteration the
crack pressure was approximated with a Fourier-power series containing
terms up ;; cos (56) and r' . This less accurate approximation for

the crack pressure is considered adequate because the second iteration .

changes the results by less than 3%.



CHAPTER V
RESULTS

PART I

5.1 General Remarks

For all of the results contained herein the iteration cycle

was as follows:

ll

3.

One iteration was performed on the front surface using the

184 rectangle grid of Figure 7. The stress intensity factor

.was calculated using 11 terms in the Fourier series and

6 terms in the power series.

A second iteration was performed on the front surface using
the 62 rectangle grid of Figure 8 and Figure 9. The
pressure. distribution was approximated with 6 terms in the

Fourier geries and 5 terms in the power series., The stress

" intensity factor was calculated using this same series.

For the cases D=0, .3, .53, .7 the iteration cycle was
stopped at this point to give the solution for the cilrcular
crack partially embedded in a half space.

For D= .2,l.4, .6 the iteration cycie continued with

two iterations between the back surface and the cr;ck using

the grid of Figure 10. The Fourier series contained 6

terms and the power series had 5 terms.
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4., The iteration cycle continued with one additional iter-

ation on each surface and then stopped.

It is possible to approximate the semi-elliptical surface fiaw
with a partially embedded circula; crack. This can be accomplished
several different ways, but in this work the comparison will be based
on matching the curvature of the ellipse to that of the circular flaw
for the same crack depth A", This comparison is shown in Figure 1l.

This approximation will be used later to compare the results of this

study with experimental data.

5.2 The Results

Figure 6 shows the stress intensity factor for the éartially
embedded circuiar crack. The calculated points through which the
curves avre drawn indicate an increasing tendency to wiggle with in-
creasing D. This would be expected since KI is approximated by a
truncated Fourier series and as D increases emax decreases, and
therefore the lower order harmonics have less effect. The curves
show the anficipated trend of decreasing stress int;nsity factor with
decreasing crack depth. The trend of decreasing stress intemsity
factor wifh increasing e/emax for higher D values is not unexpected.
Smith (24&) noteé the same trend for the semi-elliptical surface flaw.

It would be dangerous to put too much faith in the results for afemax
near unity because this region is one of high stress gradients due to
the singulaéity at the crack tip., In addition, tﬂe gurface grid in
this region_is'relatively coarse. The comparison of the D=0 case

for this study with the results of Smith (13) also tends to indicate

an increased error in this region. However, the area of greatest
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interest is near 6=0 , because this is the point at which the maximum
stress intensity occurs for most crack geometries.

Figure 12 through Figure 14 shows the effect of the back sur-
face for D wvalues of .2, .4, and .6 respectively, The results show
the expected trend of increasing stress intensity factor as the back
surface moves closer to the crack tip.

Figﬁre 15 is a plot of the back surface intensification factor
plotted as a function of D and A/T . This factor i1s defined as

5

Mt = (KI at A/T = 09 for 86 =10 (?.2.1)

The real test of an analytical study is a comparison with
experimental data. This comparison 1s presented in Figure 16 and
Figure 17. The data was taken from the work of Larson (25). The
material used in Larson's work was a brittle epoxy into which semi-
elliptical surface flaws were placed, The comparison between the ex~

perimental data and the theory is excellent,



CONCLUSION TO PART I

The problem of the circular crack partially embedded in a
solid of finite thickness has been solved. The stress intensity factor
has been determined for a variety of depths, D, and A/T ratios under
uniform tension loading. During the course of the solution a numerical
integration technique was devised to calculate the stress in the
neighborhood of a circular crack where the crack surface is loaded by
a normal pressure P(r,0) which can be specified by a Fourier-power
series in which terms up to cos (58) and r" are retained. In
addition, the stresses on the plane of the crack have been determined
in closed form.

The stress intensity factor has been determined as a function
of position around the crack front for the crack embedded a depth D,
where D ‘varied from 0 to .7 and for A/T ratioé from 0 to .85. The
results indicate that for deep cracks the back surface can raise the
stress intensity factor by as much as 30%. These results are compared
with experimental data for semi-elliptical surface flaw cracks. The
comparison has been made by matching the curvature of an ellipse to
that of the part-circular crack for a given crack depth A. The ex-
perimental data scatter about the theoretical result; and give a good
compariscn.

Although all of the results presented here have been for the

special case of Poisson's ratio equal to .25 the program is set up in
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such a manner that other values of Poisson's ratio can be used. In
addition, the program is not restricted to the Speciél case of uniform
tension. Any loading which can be approximated with the truncated

Fourier-power series can be run with the program.



PART II

INTRCDUCTTON

Thgre are solutions to many two dimeng;onal crack problems in
linear elastic fracture mechanics (5). These solptions generally in-~
volve the requirement that the loading causes the crack surfaces to
move apart.'~19 this portion of the thesis a solution for a two
dimensional through crack is presented in which the requirement of
crack surface separation has been relaxed. This type of fracture
problem does_not appear to have been discussed to ény:great extent in
the literature. Burniston (26) has solved the pértially closed
Griffith crack for the case where the crack is closed at its center.
However, a:crack which is closed at one end is of more practical
importance;-since this could occur with a crack 16cated in a bending
field. A typical example of this situation is shown in Figure 18.

Conéi&gr the specific problem 6f a cracﬁ located at the center
of a pure bending. stress field. For this case the existing theory can
be used to obtain an upper and lower bound for the stress intensity
factor. The upper bound is found by loading the crack shown in

Figure 18 with the linear load P'(y) = a,a

o ~ alb » where «; is the

bending load intensity in psi/in. For this loading the stress intensity
factor can be calculated using equation 33 on page 37 of reference (5).

This computation gives

3
KI = §-ula° ?ﬂao
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A lower bound for the stress iﬁtensity factor can be icund by assuming
that the crack of Figure 18 is open over one half of its length. The

lower bound for the stress intensity factor is given by

1 .3 oo
K 2 eve— e DA A
I a7 %2 ' 00

The upper and lower bounds differ by a factor of 2 ¥Z . 1In Chapter 9
this problem will be solved using the theory presented here and it wiil
be determined that the actual stress intensity faé#ar is about 80Z of
the upper bqund.

Ié is the objective of this portion of the thesis té Qéteémine
the stress £ntensity factor for a partially closed GFiffith crack
subjected to a general load specified by a polynomial. This solution
will be restricted to the case where the crack has only one open

reglion.



CHAPTER VI

THE PROBLEM

Congider an infinite two-dimensional, linear elastic, homo-
geneous, isotropic material which has a through Griffith crack. The
loading on the material is specified in the form of a polynomial such
that the crack opens only once. The problem gecmetry is shown in
Figure 18,

The boundary conditions for this problem may be written as

follows:
1. Oy = 0 inside the open portion of the crack;
x=0
U = 0 outside the open portion of the crack;
- jx=0
T = 0 all along =x=0 since only symmetric
XV |x=0 loads will be considered.

2. Tor large x and y all stresses must approach the
loading stress P'(y).

3. The stress at the closed end of the crack is finite.

A classical approach to this type of problem is to remove the
crack and solve the resulting elasticity problem, Then a second
problem is formulated such that when these two problems are super-

imposed the solution to the original problem is obtained.
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Figure 19 illustrates how this technique is used to solve the
problem of the partially clesed crack. Problem A is the problem which
results from removing the crack from the original problem. In the
sketch of problem B it can be seen that the loading - P(y) is
applied to tl}e area where the crack is to be located. In problem A,
+ P(y) 1s the stress at this same location so that superposition then
gives the boundary conditions of the original problem.

Problem A is a typical elasticity problem and can be solved by
many different methods. Problem B is a mixed boundary value problem

and its solution will be developed in the next_chgptér.



CHAPTER VII

THE MIXED BOUNDARY VALUE PROBLEM

7.1 Boundary Conditions

The boundary conditions for the mixed boundary value problem

can be stated as follows:

a. o = - P(y) for |y] < a (7.1.1a)
x=0

b, U = 0 for |y| > a (7.1.1b)
x=0

c. T = 0 for all =x=0 (7.1.1c)
EY |x=0

d. Uij +0 as x+® (7.1.1d)

e. On an intuitive basis, the boundary condition at the closed

end of the crack is

KI = Limit V2m(y-a) o = 0 (7.1.18)
XX
y*a x=0
This supposition is easily verified by considering the alternate
possibilities: Suppose that KI < 0, then calculation of the crack
opening displacement shows that the crack surface has deflected through
itself, which is impossible. Suppose that KI > 0, then from the

definition of stress intensity factor the stress Uxx >0 at x=0 and
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y=a, which is also impossible because the physical crack extends past
y=a and cannot support a tension stress. The only remaining alternative

is that KI = 0. The problem geometry i1s illustrated in Figure 20.

7.2 The Potential Formulation

For the case of plain strain the Navier .equations take the

form
2y 4L __ 3 [ BV _
VU + 055y o Bx+3y} 0
2 1__ 2. jav 3vl _
Vv + T-vy 3y 3% + By:} = 0 (7.2.1)
where U = displacement in the =x direction
V = displacement in the y direction
v = Poisson's ratio.

For the class of problems in which the shearing stresses vanish at all

points on the plane x=0 the following potential formulation satisfies

Navier's equations (7.2.1).

2
U =222y gy x 20

ax?
v = %3+ (82-1) x 3—2% (7.2.2)
>4
62 = 2(1-V)
(1=29)

Provided that ¢ satisfies V2Z¢ = 0
The above displacements U and V have been nondiménsionalized with

respect to the crack radius "a".
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Using Hooke's law the stress components in terms of the poten-

tial function ¢ are found to be:

-2«32—1>32¢f+2(32-1>xEai

Gxx =

ox ox

2 3.
o = - 2(R%-1) % | 2(R%-1) x ¢ (7.2.3)
- ¥y ax? ax?

) 3
T o= 2(p-1) x 2%
xy ax2dy

These stresses have been nondimensionalized through division by G ,

the shear modulus.

The boundary conditions (7.1.l1a&b) now 'take the form

2

3% _ _P(y) ly| < a (7.2.4a)
Bx? 2(B%-1) '

%‘{L -0 ly| > a (7.2.4b)

The boundary condition (7.1.1lc) is automatically satisfied by the

potential formulationm,

7.3 The Potential Function

To satisfy the mixed boundary conditions of equations (2.2.4a

and b) a potential function will be assumed in the form
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= L f fég) cos (&y) R d& +:__L_ %
2(8%-1) = 2(g*-1)

j B—gl sin (Ey) o5 at (7.3.1)
0

Potential functions in this form have been used by Sneddon (27) to
solve related problems in fracture mechanics. From the form of ¢ it
is clear that Laplace's equation is satisfied, and that for large ‘x
values oy 4 tends toward zero,

Substitut;ion of the above ¢ function into t:.he boundary con-

ditions (2.2.4a and b) gives the following set of integral equations:

P(y) = f«‘; £(E) cos (&y) di
0

+ f’é g(&) sin (Ey) d€ , |y| s a (7.3.2)
0

co

0 = ff(E) cos (Ly) d§
0

+f g{(&) sin (Ey) dE , |y| >a . {7.3.3)
0

Now if P(y) 4is divided into a symmetric and an anti-symmetric functionm,

the above integral equations may be rewritten as.a pair of dual integral

equations.
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The symmetric portion gives the following set of dual integral

equations:

P_(¥) fa £(£) cos (&y) &€ , |y| s a (7.3.4)
0

o
It

ff(g) cos (Ey) d€ , |y] > a (7.3.5)
0 .

where Ps(y) is the symmetric portion of P(y). .

The anfi—symmetric portion gives the pair of dual intégral

equations:

P = fE g(E) sin (&y) € , |yl 2 a (7.3.6)
: 0
0 = f g(€) sin (&y) dE , |y| > a (7.3.7)
5 _

where Pa(y) is the anti-symmetric portion of P(y).
The solution to the above dual integral gquations, due to
Busbridge, is given by Sneddon in (18).

The relationships which give £(£) and - g(§) are

a n
P_(p)
2 S8
£(€) == nJ, (&n)dn —dp (7.3.8)
¥} i!- o 1(- 63“:";;
a A N
pP_(p)
g(&) =% f J, (EM)da f _"A?i—__z dp (7.3.9)
-p
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With the functions f(§) and g(ﬁ} known, thé potential
function ¢ is completely determined except that "a", the open-
portion crack length is still unknown. To determine "a", the boundary
condition K, = 0 at the closed end of the crack (2.1.le) will §e
used. HowéGer, this will not be done until after the O, Stress

cémponent has been computed,



CHAPTER VIII

THE STRESS AND DISPLACEMENT

8.1 The Stress and Displacement Functions

To determine the stress and displacement on the plane x=0
the functiong £f(£) and g(&), (7.3.8) and (7;3.9), are substituted
into the pétential function ¢ and then the formulas (7.2.2) and
(7.2.3) are used to célculate the stress and displaéément. This

computation gives

e f{f; fn 3 (En) dn x
x-O 0

T p ()
f —S——dp} £ cos (Zy) d&

j{% faJl(«‘;M dxf frzﬁ(—g-)-;dp}‘x
0 0 o Aot S
£ sin (Ey) dg for l¥y| > 2 (8.1.1)
and
0 x=0 i 2(82-1) [{% 'o/-n ot "

B )
f = dp} cos (Zy) d&
0



N a
B2 f {2 ;5
- — -~ (EX) dh X
2¢2-1) ¢ " ‘0[ 1 '
Ao P, (p) '
‘0/‘ K__;——:Tz' dp} sin (*EY) dE (8.1.2)

for |y| <a
Before the above integrations can be completed the form of the loading
function P(y) must be known. To make the integrations as simple as

possible the loading function will be assumed in the form of a poly-

nomial.

8.2 The Loading Function P(y)

The loading must be specified as some fuaction in the x,¥y
coordinate system of Figure 18. However, the loading is known only in
terms of some material reference frame. For this problem the material
reference frame is located at the center fo the physical crack and is
designated x', y' in Figure 18. In terms of the #', é' coordinate

- gystem the loading function may be written as

4K
P(y') = o, + oy’ tay' +.o. .oy
K n
P(y') = X o y' {(8.2.1)
h e
n=0

From Figure 18 it is clear that

y' o= vy - (e - a)

With this relationship the loading function may be written in the

form
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PG = L B,V (8.2.2)
n=0
h g = % (n) n~m 8.2
where T L o \m (a - a, ) (8.2.3)

and (E) are the binomial coefficients.

Now the loading function may be broken into an even and an odd

function to give
: ! Zm ‘
B + B0 = ] Byt mz Bop-1¥ (8.2.3)

where H+l is the number of even terms in the loading function and J

is the number of odd terms.

8.3 Integrated Form of the Stress and
Displacements

Now that the polynomial form of P(y) has been established the
expresslon for stress and displacement can be determined. Denoting the

second term of .equation (8.1.1) by "I" and then rewriting it gives

ﬂ[h:

a A -}
fdl f p,-_-——P © % f £ sin (&y) J,(EA) dE (8.3.1)
% 1 - [
0 0 0 )

Making use of the relationship

d
S ,E0] = - 3,ED E (8.3.2)

The infinite integral may be rewritten as
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a A o
pE_(p) dp
f dx f 5 > {- d%'( f J,(EX) sin (Ey) dE}
0 o 0 .

(8.3.3)

=HN

Watson- (20) gives the value for this infinite integral, which is a

special case 'of the Weber-Schafheitlin integral, as

o

1
J (EA) sin (&y) df = —~mmtm—e for A <y (8.3.4)
-0/._0 /y2_k2

Substitution of this result into equation {(8.3,3) gives

A
2;‘ Ad A pr(p)dp ( )
= = 8.3.5
From equation (8.2.4) Pa(p) can be written

J
R = ) By, ot (8.3.6)
m=1

Substitution of Pa(p) into (8.3.5) gives

AN

a J 2m
02 iz 2:32 2m—-1 2 2
0 ) m=1 A

The last integral in (8.3.7) has the value

A

f /———zp = %—E————iﬁﬁﬁi ¥, w1 (8.3.8)
VA2 - p

0
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Substitution of this result into the expression (8.3.7) results in

the term
a

d 2mtl
= mzl BZm-l T (m+1) { (YZ_;\z)a/z di (8.3.9)

Using a similar procedure on the remaining terms in equations

(8.1.1) and (8.1.2), it follows that the stress on the plane =x=0 is

given by
- fo2og?
o = B, Yo ¥y -a,
o B ix=0 yz---a2
H 2 :
+ L 7 g L@ n®™? gn
/T m=1 2m I'(m+1) . (yz_‘.ag)Sla
J ’ a.
+ L1y g I kit 1)
S I A O N
for ]y! > a
O 0 = P(y) for |y| < a (8.3.10)

and the displacement on the plane =x=0 is given by the expression

a -
y = AW { 7 g, L) [ o
x=0 VT wm=0 Zm T'(wtl) v vx2-y?

a

2m-1
I (mt+%) X
+ ) B, _ yf dx} for |y| < a
el 2m-1 T'(m+l) d /xz—yz

U = 0 for |y| > a (8.3.10)
x:
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The following three integration formulas will be used to

obtain the final expression for stress and displacement:

a
+ -
[ 2w - e T @y 2k gy
v JXZ”y?. k=0 [ 2<m_k)+l]
for m2 0
2 om-1 m-1 2 2 m—k-1
X _ 22 m-1y (a“-y“) 2k+1
¥y N xz_yz dx = a -y kzo ( k ) [ 7 (m—k) -1 ] y
y ’ ' (8.8.13)
for mz2 1
a ' ' . 1k
f x-2m+l dx = aZ(m‘l-l) + (2m+1) = (%) (-1)
. 3 k)41
(y2-x%) /2 2 fy?-a? y koo L2(mtk)+l]
[(y%az)m"k"‘% gt yzm] (8.3.14)

for m >0

Now the stress on the plane x=0 can be written as

= B,y  —=~+y ] B a
=0 - yzﬁ/y;?-—a? { ° al n=1 Zn Tm+l)

J ) H
[ (m+s) 2m-1 _ 1

+ m§1 Bom-1 Tl 2 } Bo + = mzl By X
T (o) n (%) D" 2 sum-k+k 2k 2m
I'(m+l) (2utl) kZO [2(m-k)+1] [(Y -a%) y -y ]

3 n (F) D

s 1 7 . e G E )

b Pmel T Ty L T2@RH]
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[(yz—az)m'kﬂ; v - yzm] for |yl 2a

and o = P(y) for |y| <a.

=0

The displacements take the form

2 2.~k 2k
U . Qv /az_y—z{ IZ{ g Lty "z‘ () @Dy
*=0 /i w0 2 T 0y’ r2@ek)H]
. - 2 2 .m-k-1 2k+l
T N R & et
pe1 207l D@D o, [2(m-k)~1]
for Iy[ £a
and U = 0 for |y|] > a
x=

8.4 The Qpen Crack Length "a"

The only remaining unknown is the open crack length "a". To

determine Ma" the last boundary condition, K. = 0 at the closed end

. I
of the crack (7.1.le) will be used. This condition may be written as

Limit v2n(y-a) g

¥y + a =0

i
[}

(8.4.1)

To simplify the equations the stress will be written in the following

symbolic form:

H(y) + G(¥)} (8.4.2)
xx|x= ‘/g’:a—
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where
/i H T 2m-1
HO) = By’ Ty 1 By Tom o
a m=1
J T (m+%) 2m-1
m . ) g
+ Z Bra-l T(mil) 2 (8.4.3)
mn=1 )
and
k
H n (B} (-1)
- g+t T () (&) &0
6 = - Bt mgl Bon T@ery (22D kZO 2]
[ m-k+ks  2k-1 Zm] 1 :
(y2-a®)" T T Ly +—" )} B, . X
- ST omel 2!11‘1
m o (-1)k
T(ubk)  (2mH1) (k)
I'(mt+l) y %=0 [2(m~k)+1]
: [(yz__az)m-kﬁ; g2 y2m] (8.4.4)
With the substitution of the symbolic form for Ok into the
boundary condition (8.4.1) the following requirement ‘results
=
2
Limit v2ul{y-a) §° Vi y© vytal H(y) + ¢y =0 (8.4.5)
y*ra y-a

Careful examination of equations (8.4.3) and (8.4.4) shows that both
H(y) and G(y) are finite at y=a. Therefore, to satisfy equation

(8.4.5) H(y) must be factorable into the form

H(y) = (y-a) Q) (8.4.6)

If H(y) 1is factorable into the form shown in equation (8.4.6) then
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B J
_ 'm+s) 2m T(mts) 2m-1 _
B@) = .mZO Bom T@i) & m§1 Bom-1 Ty &

(8.4.7)

and the open crack length "a" is found to be one of the roots of the

equation H(a) = 0,

8.5 Admissible Roots

Some of the roots of H(a) = 0 are not admissible as wvalues
mn_iu

for "a". TFor example, complex roots have no physical meaning. Refer-

ring to Figure 18, the following statements can be made:

1. One real réot on [0, ao] and, or one real root on
[0, -ao] is allowable. Tﬁis restriction must be imposed‘
because the initial formulation was made assuming that
the crack opened only once.

- 2. Roots where |a| > |ao| have no physical interpretation.

3. Complex roots have no physical- interpretation.

The solution to the partially closed crack is now complete,
however, one additional point will be investigated before proceeding

to an example.

8.6 Slope at the Closed End of the.Crack

For the Penny shaped crack, Emery and Smith (27);found that
when KI = 0 ‘the slope of the crack opening shape was zero at the

crack tip. Similar results can be expected here. This can be written

in equation form as
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0 (8.6.1)

In this section it will be shown that this conjecture is true.
The first step is to take the derivative of U with respect

to y . This computation gives

U = R({y) + ,/3_2_3,2 dR(y) (8.6.2)
oy x=0 za.z-y2 dy

where
Ry = 0§ g Iewm 3R (ay®" "
y '_ /T om0 2m T (mtl) *=0 [2(m~k)+1]

- o m—k-1 2k+1
4 (o) % T (mt) mil (") @y
A mel 2m-1 T'(m+l) %= ‘ [2(m-k)+1]
(8.6.3)

The next step is to examine the behavior of (8.6.2) as y approaches

"3", Since the second term of (8.6.2) goes to zero this leaves

U

55 = Limit {__X_} Limit{R(y)} (8.6.4)

1};:2 v+ a az—y2 v > a

It can be demonstrated that

H
(1-v) T(ts) 2m
Limit R(y) = B
yl-‘;-a ¥ '/1}—‘ { g 2m F(m'l"l)‘a

-

+

T (mi%) . a2m"1} (8.6.5)

m§1 Bom-1 T(mHl)
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However, the term in brackets is H(a) which is known to be zero. By
summing out R(y) in equation (8.4.35 it can be shown that R(y) is'a
polynomial in y . Now if the polynomial R(y) is equal to zero at
y=a, then R(y) d1s factorable into the form R(y) = (y-a)B(y) .

Hence, the Limit (8.6.4) can be rewritten and evaluated to give

& = Lipit W) yGa) gy - g (8.6.6)
y §§0 y+a VT Valey?

This shows that for a loading function P(y) in the form of a polynomial,

if KI = 0 at y =a , then 3U/3Y|x=0=0 at y=a.,.



CHAPTER IX

AN EXAMPLE PROBLEM

9.1 The Problem of Pure Bending

Consider a bending problem where the applied load, P'(y), of

Figure 18, has the form

Pl (y) Py ao + aly (9.1.1)

For this applied load, the loading function P(y) of section 8.2 is

giveﬁ by
P(y) = B, + By (9.1.2)

where, from (3.2.3)

™
u

o + ul(a - ao) (9.1.3)
B, = a (9.1.4)

The open crack length "a" is found by substitution into (9.4.7)

which gives

a - d
(o 0 o)

a = % (9.1.5)

a,

For the spécial case of pure bending, o = 0, and then a = 2/3 a -
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9.2 The Stress and Displacements for Pure Bending

To find the stress and displacements on the plane x = 0
requires substitution of Bo and B, into equations (8.3,13) and

{(3.3.16), This substitution gives

i?l 8,

. ,
o e B (——— - 1) £ o ( yP-a? + L - 2{y] )
XX\ 0 o fFa? 2 yP-aZ
(9.2.1)
ut - A2 @ +8, 1) : (9.2.2)
== &

Great care must be taken to use the correct sign-for the terms which
result from the anti-symmetric loading. To calculate the influence of
an anti symmetric term for y < 0 , y is replaced with }yl and then
each anti-symmetric térm is multiplied by minus one. Equations (9.2,1)
and {9.2.2) have been setup in rhis manner.

Figure 721 is a plot of the stress on the plane x=0, This is
the stress for the mixed boundary value problem of Chapter VII, which

is illustrated in Figure 20.

3

Figure 23 shows the stress which results from the complete
problem as shown in Figure 18. This is the final result for the

original problem posed in Chapter VI.

4,3 The Stress Intensity Factor

Substitution of the stress (9.2.1) into equation {(2.7.1) for

stress intensity factor gives

: /2 8 |yl vam y?
K, = Limit UM - SO 8, (9.3.1) .
¥+ a vYyta #;35
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for ao =0 , then

‘ a 27 a a 2'n‘a0
KI =, 3 3 * al-?r 3 {9.3.2)

Then at the closed end of the crack KI = 0 and at the open end of

2 2m a, -

The stress intensity factor given in equation (9.3.3) is about 80% of

the crack

the upper bound which was calculated in the introduction to Part II.



CONCLUSION TO PART II

A formulation for the partially closed Griffith crack has been

presented.

The resulting mixed boundary value problem has been solved.

The following results have been obtained:

1. A closed form solution has been obtained for the stress

and displacement on the plane x=0. In addition, a
criterion for determining the open crack length "a" has
been presented,.

These results show that for the closed end of the crack
the requirement that the stress intensity factor be zero
also requires that the slope of the crack opening shape
be éero at that point.

To demonstrate the use of these results the problem of
pure bending which closed one end of the crack has been

solved.

The general form of the results which have been presented here make it

possible to solve an entire class of fracture problems where the crack

is forced closed at one or both ends.
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CONCLUSION TG THE THESIS

The surface crack has often bgen found to cause the failure of
structural components; however, as previously mentioned, only limited
analytical -work has been done on this problem. This is the first
analytical study of a surface crack in a solid of finite thickness.
The results of this study can be directly applied to the fracture
analysis for brittle materials. This is accomplished by calculating
the stress intensity factor from the results presented in Figure 6
and Figure 15. -

The design engineer attempting to design against a fracture
failure is likely to select a material which is very ductile. In that‘
case plasticity effects would be significant and the results of this
study would not be applicable. However; the results of this study
together with‘an experimental program would make it possible to
deterﬁine the plasticity effects. The results of the expefimental
program could take the form of a plasticity correction factor which
would be applied to the elastic stress intensity factor of this study.

For‘two dimensional cracks the size of the plastic zone around
the crack tip has been estimated using the elastic énalysis. This
has been ac;omplished by determining the region in which the elastic
analysis indicates that yielding has occurred. 1In a similar manner,
the elastic anélysis presented here could be used to approximate the

yield zone for a surface crack in a finite solid.
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Based on the success of this study it would seem worth while
to use this same iteration procedure with the elliptical crack solution
(11). In this way, the semi-elliptical crack could be studied directly.

The solution which has been presented for the partially closed
Griffith crack extends the theory of linear elastic fracture mechanics
to include a new class of p;oblems. The solution here makes it pos-
gible to solve the class of problems where the leading closes a portion
of the crack. The problem of pure bending which closes one end of the
crack is the most common example of this situation. Although the
problem of pure bending is the only example which has been worked out
here, many different types of problems can be solved with the solution
presanted. The solution is general because the loading on the crack
surface is represented in the form of a polynomial. For example, a
thermal stress problem could be solved by approximating the crack
surface stresses due to the thermal loading with a polynomial. Then
this polynomial would be used as the loading fumction in the analysis.

The general sclutions presented in this thesis represent a
significant advance in the theory of fracture mechanics, The results

presented here are directly applicable to a wide class of problems,

which up to this point have had no analytical solutiomns.



66

ENERGY

]

PLASTIC ENERGY

|
|
1

g CRACK LENGTH
INSTABILITY

TOTAL ENERGY

ELASTIC STRAIN ENERGY

CRACK TIP

Figure l.--Irwin~Griffith Energy Balance
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Figure 2.--The Circular Surface Flaw
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e

Figure 3.--The Circular Crack in an Infinite Solid
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Figure 5.--Block Diagram



l.4 71

1.2¢%

=}

THIS STUDY

= |
I : )
- B iy S —&) D
13 o
f 4 A D
S & ot
.84 . V—_‘——-*“*Te;nhﬁsﬁﬁﬁ\\ﬁ>
3 D
®
D
6+
A g . e . 4 |
0 1/6 2/6 3/6 4/6 5/6 6/6
0/9

max

Figure 6.--The Stress Intensity Factor for the Partially Embedded Circular

]
L)

1]
oW

Crack

1L



72

'
3.
G
2. =
F
1. - E G
.5
D
0 <+ s  — - yp
|
; 1.0
B 2.0 3.0
C
A
BLOCK RECTANGLE SIZE
Length yp x Length zp
A 05 x .05
B .l x .05
C .1 x .075
D i x .1
E 2 X .
¥ 57 x
G 1. x 1.

Figure 7.--Front Surface Grid (184 Rectangles)



73

zp
A
3.
2.
1.
4
04—t
I
O /5 1.0 l

2.0 3.0

SEE FIGURE 14

Figure 8.--Front Surface Grid (62 Rectangles)

o yp



'

—p P

Figure 9.--Front Surface Grid (Detail)

YL



75
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Figure 19.--Superposition
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Figure 20,--The Mixed Boundary Value Problem
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NOMENCLATURE FOR PART I

Stress Components
Displacement Components

Crack Pressure
Crack Depth
Thickness

Shear Modulus
Poisson Ratio
Lamé’ Constants
2L - v)/ (1 ~ 2v)
Potential Function

Fourier Coefficients
Power Series Coefficients

Bessel Function of the first kind of order v

r( REEZ po R,

Stress Intensity Factor

bepth of Circular Crack

Circular Cylindrical Coordinates
Rectangular Cartesian Coordinates
fistance from the Crack Tip

Crack Radius



ij * ‘i3

P'(y)

P(y)
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NCMENCLATURE FOR PART II

Stress Components

x Displacement
¥ Displacement
Length of Open Portion of the Crack

Physical Crack Length

Load on the Infinite Space
Load on the Crack Surface
Poisson Ratio

2(1 - v)/(1 - 2v)

Shear Modulus

Potential Function

Symmetric Portion of P(y)

Anti-symmetric Portion of P(y)

Loading coefficients fqr the Polynomial P'(y)
Loading Coefficients for the Polynomial P(y)

Bessel Function of the first kind of order Vv

-Stress Intensity Factor

Two Dimensional Rectangular Cartesian Coordinates

Distance from the Crack Tip
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