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DYNAMICAL ERROR ANALYSIS IN ORBIT DETERMINATION SYSTEMS

ABSTRACT

In this report, a method is described in which the overall error or
uncertainty involved in spacecraft trajectory determinations is used to
define a time dependent error bound for the coordinates of the spacecraft,
The differences obtained by comparing tracking data with theory reflect
errors or uncertainties in the Hamiltonian of the system, and in turn
form atype of Canonical ensemble considered in statistical physics. Such
considerations then allows one to derive a set of virtual forces that ac-
count for the uncertainties in the Hamiltonian which give rise to the cal-
culated differences from the true orbit.
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DYNAMICAL ERROR ANALYSIS IN ORBIT DETERMINATION SYSTEMS

I. INTRODUC TION

There has been much interest recently concerning error analysis of space-
craft trajectory systems. Error analysis can be defined as the ability to describe
the effect of inherent uncertainties of an overall trajectory determination system
on the computational accuracy of the system. There are several sources re-
sponsible for the presence of such uncertainties, the most important being due
to the inability to correctly describe the physics of the problem. Hence, the
mathematical modelling of the forces involved, and the physical data that is used,
provide at best only a good starting point for calculation of an orbit. In addition,
the type and quality of the observational data introduce further complications.
The usual method of handling such matters is to perform what is called an orbit
improvement or differential correction over many revolutions of an orbit, by
comparing computed with observed data of the spacecraft and 'correcting' or
updating the initial conditions of the differential equations of motion. Here then,
the observed data obtained by the tracking systems is considered to be the true
or correct orbit data. In reality, the accuracy of the observational data will
depend upon the tracking system that is employed. Even after fitting the orbit,
the post convergence residuals do not account for uncertainties in coordinates
of the tracking sites. Most important, even though the constants of integration may
be determined well, the accuracy of the calculated orbit will still depend upon
the accuracy of the orbit generator (Reference 1).

In this report, a method is described in which the overall error or uncertainty
involved in trajectory calculations is used to define a time dependent error bound
for the coordinates of the spacecraft.

II. CONSIDERATIONS OF STATISTICAL PHYSICS

Let a system be characterized by a set of generalized coordinates and their
equations of motion. In the canonical form we have,

dPK =-
0 K=1,	 f

d t	 1c 
9K

(2.1)

d q 	 a H
d 	 P

K

1
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where 14 is the Hamiltonian function. In the theory of gases, statistical thermo-
dynamics introduces the notion of phase space in which the whole gas is repre-
sented by a single point with coordinates p and q (Reference 2). Associated with
any physical system, is an ensemble of points in phase space, each of which
represents a different possible state for the system. This set of points is the
Gibbs ensemble and each representative point moves along a curve according
to the Hamiltonian equations. It is assumed that such a curve is uniquely de-
termined by a complete set (q o i , ... , poi , ...) of initial conditions and there-
fore these orbits can never intersect. In addition, the points of the Gibbs ensemble
contained within a closed hypersurface can never pass through that hypersurface
if the surface moves according to Equations (2.1). When special symmetries are
present such as when energy is conserved, each representative point is forced
to move on a hypersurface or ergodic surface. An important form for the density
of representative points, corresponding to thermodynamic states is the Canonical
ensemble and is given by

p (E) =; e ( 'P- E)/0 ,	 (2.2)

where q and 0 are two constants characterizing the distribution. This ensemble
admits an energy fluxuation in the system (0 - l ), corresponding to a set of non-
interacting ergodic surfaces in phase space among which the phase point moves.
From this, the expectation value of any observable A is then given by

<A> .	 A At d r,	 (2.3)

	

where d r is a volume element in phase space. We shall return to this point in a	 i
later section.

In a recent article, (Reference 3) it was shown by similar statistical consid-
erations, that by relating the angular momentum to a quantity defined as the
virial parameter through a derived quantity called the Vector Density Function,
it is shown that for any conserative system, the periodic variations of an orbit,
and consequently the cross track error, will time average to zero.

In this report, we shall attempt to describe the motion of the system point
or phase point between ergodic surfaces by letting the energy fluctuation of the
Canonical ensemble now describe an 'energy fluctuation' of our orbit system due
to the many sources of error inherent in it, that is, since a correct Hamiltonian
is not presently possible because of the many difficulties described above, the

2
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system point will be said to occupy any position on any of the 'ergodic surfaces'.
These ergodic surfaces then represent energy fluxuations arising from all un-
certainties. We only know the position described by (2.3) above given as the most
likely by the orbit generator. At this point, we try to make use of observational
data which is compared with our carrespcmding calculated data to define uncer-
tainty on a predicted basis for the orbit system, in terms of our 'Canonical
ensemble.'

III, FUNDAMENTAL EQUATIONS

Corresponding to a path described by an artificial earth satellite, the system
poi,rt will describe such a conic section in phase space governed by equations
(2.1). 'Fluxuations' in the motion of the system point and hence the computed
orbit can then be described by the following time derivatives of the orbital ele-
ments (Reference 4),

  2
d 	 2 (.9 3)'	 (1 _ (! 2) 1'2 [R' v s i n v t- T' t V e cos v]
d 	 p

ci e	 a 	 2
ci t 	 (1 .- e 2)1'2 [r' sin v 4 T' cos v 4 T' Cos E]

d S	 2 )^S__(1 =- S) r W' co s {f

d t 	 a)1 '2 
(1	 e2)1 '2

df 3
	 r V si n yr,

d t	 (1.c a S) 1 '2 (1 - e 2 ) 1 2

ci , 
,2 	 1

___. __ _. _._. __-	 [a R'	 S (1 . e 2 ) cos v
( i t	 c' (x^ a S) 1 '2 (1 — e2)1''2

-2T'a	 ecosE)sinv

-T'ae f-S- (1 - e COS E) COS v sin v

r a e (1 f COS P) W' fl- - S sill V1

k 
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[- . 2 r R'	 (,2)1 '2
ci	 (I ,,	

I1
([ t	 (,. 2 ,, i ) 3 2 	 a)1 2	 <i t	 ri t^

3 1 d
.^ 2	 a	 (i tt (	 - ^^^'

(3.1)

where E, v , and y' , are the eccentric anomaly, true anomaly, and argument of
latitude respectively.

The parameters R', T', and W' are defined as the components of tota l. forces
acting on the orbit in the radial, tangential and normal directions. In the spirit
of the above discussion, we now consider that these force components are not
real but virtual, that is, these forces are responsible for the ' energy fluxuations'
or spread of the ergodic surfaces in phase space. In other words, the computed
orbit has deviated from the true or observed orbit because of the presence of
these virtual forces. It is our task to determine them, and once this is accom.-
lished, the change in time of the six orbital elements can be obtained from equa-
tions (3.1), which in turn are then inserted into the Vinti orbit generator to
produce corresponding changes in spacecraft coordinates, ±AX, ± nY and ±"' Z.
The plus or minus signs indicate a coordinate bound, or error bound in the
ordinates as functions of time, since they derive from an error or uncertainty
in the energy or Hamiltonian of the system.

At this point, we now assume that these errors reflected as virtual forces
are described in terms of changes of the eccentric anomaly with time, that is,

R' - R F

T' T E
	 (3.2)

W' ^: W E

where R, T, and W are coefficients to be determined. Now Kepler ' s law states,

M - n (t +/3d - E - e sin E, 	 (3.3)

where 1 is the Vinti parameter related to the time of perigee passage.
Differentiating,

I

Li
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c! F.	 i`i	 1 2 1 1 - 3  2

	

t	 Cos I?)	 (Vl,4 , cos V)

Using this, equations (3.2) become,

(3.4)

T'	
1:  1 2 a-3 2	 c32 qR

(1 - v cos F)	 (I t2

• T i ll 2 f1r3 2	 (12 qT

( 1 - c' cosk')	 (I t2

L 1 '2 a- 3 '2	 (
12 qW

( 1 -e COS E)r (l t2

(3.5)

per unit mass, where the q R, q , and qW are taken to be displacements along the
radial, tangential, and normal directions to the orbit. Therefore,

cj2gT 	 cos)

d t2 ^,1 `2 a -3 '2

X12

^, ...	 q 	 (1 - C Cos F)

r^ t2	 X1,'2 a-3'2
(3.6)

(12 qW	 )W=	 (1-ecosr,.

d t2	 1 '2 a-3 '2

In order to determine q T , q R , and q W , we refer to Figures 3.1, 3.2, and 3.3.
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Figure 3.1

Here,

q z ;,- q R sin

(3.7)
qx q 

R COS 
COS 

3

q
y	

q 
R COS	 ^

s i n f'3

where , ^ is the geocentric latitude, and =3 is the Vinti parameter associated

Nvith the geocentric longitude of the node.
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Figure 3.2

qz°gT sin I

q  - q  COS I cos `r3 + 2
	 (3.8)

2

q  = q  C OS I sin (433 + 2 )

R

where I is the inclination of the orbital plane.
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(3.9)

x

Here

qZ - gw cos I

qX	 r1 w s ill I c o s ,'33

qy .. qw sill T sin `33

r
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Now surnming all of the individual q x , q v , and q z and identifying them as x, y, and
z inertial respectively, we have,

/cnS !" co 'S	3 , c0S T c0S j;lr t	
r; x3	 '
	 Sill'	 COS /'13 q1	

1
t

,2

Y	
F cos ''	 in ^`{3 , cos I S i lll—

/ ^r
* J 3	 Sin I sin 11%

qT1

z^	 sin 0, sin I, cos I qW

or simply,

X q 

y = X
q 

z qW

(3.10)

(3.11)

Inverting,

q 	 x

q 
	 m g-	 y	 (3.12)

qW	 z

Since the inertial coordinates are known functions of the orbital elements (Reference
5), we have that the coordinates q R , q  and q W are also. As a result, Equations
(3.6) can then be expressed in the form,

(I - e CO SF) `'2qT d a ^i 	 qT
(D2 ^T	 d^'%	 d2

t33

^1 2 -3 2	 ; a 2 <j t (

(1,9 2

 t2 D a	 ^?^32	 rl t	 d t2 -a,8

9
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R (1^- a cos F)	 ' 2 qR (! a	 <1 2 a "qR

N I '2 a-3 '2	 1 ^2 c1 t	 d t 2	 'ja

(1 - e cos E)	 (12 qW r # a 	 cl2a	 `,qWW _ _	 _	 ._._ E ._...—	 +	 (3.13)
A l '2 a- 3 ^2	

^2	 c1 t	 r1 t 2	 c) a

The right hand sides of equations (3.13) are functions of R, T, and W, so that we
have,

T = f (.R, T, W)

R - g ( R , T, W^	 (3.14)

W h (R, T, W)

a system of transcendental equations where the unknowns are located on both the
left and right hand sides. By examining equations (3.13) it is seer, that each
quantity is known in terms of R, T and W. For example, substituting equations
(3.2) into (3.1) we have,

d 	 a3) 1./2	
2 1/2	 d 

dt =2^--1 	 (1-e)	 EResinv+T+Tecos v] dt
µ!

d e_ a 1;'2 1- e2 cos F

d  -
	 1 - e2 R

/^	 1 -e cos IF,

X

+T cos E+T
(cosE -e) d 
1-ecosE d 

'	 d S 2 y5 (1 S) r W cos (v + 132) d 
d t	

(Aa) 1 12 yrl--_ e 2	 d t

10
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cl. "3 	 - a (1	 e cns 	 ci!'
ci t 

	 s i n v co s "2 + CO s v s it, 2
t.,a S(1 - c'2i 	

(1t

2 r	 (' F,

d t^	 (_ .7 rr )3 '2	 (t	 1 2 ') t
1

11--̂2 c1 i `2 + ^- S ci 2 - 3 d  (t

	

(1, t 	 cj t J 	2 ^t Tt

1
dt	

C SaR(1 -e2) cos^
e ,^ ^' S ((1 - e2)

-2Ta i-S- sin v + 2 T a e FS COS E sin v

-Tae FScos y s+nv+Tae 2 FScosF Cr) sv Sill v

+ a e I1. -^	 tip' cos ''2 si.n v + a ('V"i • S sin ;̂ 2 cos v

dE- a e 2 1 r S W cos 2 s i n v -- c^ v 2 ^ S W s i n ;`?2 c o s v] 
d t	 (3.15)

Differentiating again with respect to time we have,
{

(12 a _ 2 e

- e cos F)3

1/2 a-3'2
[R (co sE-e)

cj	 t 2	 (1 (1-ecosE)

- T	 e2 sin F] - sin E [e R 1 ---e2 sin E
^2

T+Te (cos F-e)]1

'	 11

ti
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(1 2 e	 Y1,./2 1 - e2	 1
CR

d t2 a (1 - e cos E) 3 aV2 (1 - COS F)

+(1 - e 2 ) TsinE - TsinF(1 - e COS F)2]

- esin EI.R J1-e 2 sinE+T (co s	 e)

+ T cos E (1 -- E cos E)]

(12S 2 SS ( î W fl- - e 2	 X1/2
--	 e s i n E co s tp

d t 2 	 a (1 -^e cos E)	 (1 - e cos E) a3/2

1	 ((1 - e 2 ) s in F cos /3Z
(1 - ecosE)

R	 + (1 - e2 ) 1/2 (cos F -- e) sin /32)

-e Cos 0 sin E

d 2 83 -	 1	 ^1,i2
esinFsin^i 1-

dt 2 ~a S(1-P^)(1-e Cos F)	 (1-ec^sE)

1 g 2	 2
[cos i3	 1 - e (cos F, - e) - (1 - e 2 ) sin '82 sin El

µ

	

	 _	 _

a3/2 (1 - e cns F,) 2

d2 13 ^ 	 d2 ^	 d2
x_1/2 a3l2 Il e^	 2 f S2	

r^3

d t 2	 d t 2	 d t2

•	 12
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(12^2 _
	 ^	 _ e 2 1 2 a i n F
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a v ^^^^5 !^i c 0 S . `2 I1 R • ' e 2 (COS F •- (')

(1 -- e coss F,) 2

S Wsin ; '2 sin  .F { 1 -- c' 2 )

(1 - e cos F)2

a e 2 r^_
.Y..

S W cos z2 rl	 e 2 (cos F. -^ e)

^^	 (1 e cos E) 2

a (12 r S W sin 'i2 sin F (1 - e2)

0. e COS E)2

sin F	 - a R F(1 -- e 2 ) 2 sin E

a2(1-e COS E) 2 -̂S	 o2)	 (1- e Cos E)2

c

2 TY—S a	 e2 s in F 2 T FS a e ii-- e2 cos F s in F.•
(1 e cos E)	 (1-e COS E)

Tae S sinF, (co sE--e)	 -e2

T a e 2 Erns F sin E (cos F.. - e)
(1	 .. a cos E)2

a  -S; Cos'r52 sinF	 1 -e2
(1- e COS E)

a  1-SWsin,' 2 (co sE- e)
(1- e Cos E)



m	 I

n

•

It 0 2	 W Co, 2 Sill

c Cos F)

( 12 V j-- W Sill
2 
(COS

e cos E)

From equations (3.12) we have that,

q 
R,	 'o x

41/

q,

	

X- 1 	 Ily

qW 1	 z

I

(3.16)

(3.17)

where t = 1, . . . , 6 denotes a, e, . . . , 
X3
3 . Here ^ XIA , ) y/a-t, and '3z/V,

are given in Reference 6, or if one wishes to bypass calculation of the right

ascension, by differentiating equations (15), (16), and (17) of page 34 of Reference
5, which give,

a x	 XP	 d,u	 (p2 + C2)1,'2	 H
-A ,t 

i
_

 A72 + C2

X [cos Q sin 's' + s,,n 
(a3 ) H3 

(1 	 S) 1.'2 cos	
nC3 2I ]H

+	
I 

c os  Q co s 	 + s in Q s gn a	 S)1/2
,a P 

i I	 3)

; I

(H
2 

+ H3 sin ip) 
1- - 

sin Q sgn (a3 ) (1 _ S)I/2

-
H2
1]
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1	 , H 2 H3^x	
-}
	 + Si 11 ^^°x	 _ FI I	 rc o S J, S i 11 S 1

1 1 1Li

stin ( r x 3 ) (1 
- S)1 "2 

(H2 +- H 3 Sin "11) 1 Cos S^
H2

1

1	 (H2 + H3 S i ll /)
+ i) 3i 2 sgn ((x3 )	 Si11 S7

H 1 (1 — S)1'2

y :;. y _.^ 	 2	 2 1' 2
4	 2	 + (F ^)	 H1

F'	 + C	 (I). 

x [SillQ, Silt It,' - sgn (rx3 ) H 3 (1 - S)1'2 C OS Yf COS

H2
1

a H,

D

ISin

	
COS 

11J -
 COS

	 S^;n (a3)(1 - S)1"'2
1,! i

1	 sgn (rx3) (1 - S)1t2
x (H2 + H 3 s i n y>) _ +	 Co S P

H 21]	
H1

H 2
x	 + sin1 93 + H 1 	 C0 	 in y^

sin Q sgn ( a3 ) ( 1 - x)V2 (H2 + H3 sin '1) 1
tj i

1	 (fit + H,1
 s i n ')

3i 2 sgn (a,3 )	 Cos

H1 (1 •- S)1'2
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and

z+r^'+f

	

t^	 r1	 r1 ^`

where i 1, 2 9 3, and` 3i ; 0 for i= 1, 2, and one for i 3. For 14, 5,

ax X
-) 

2

	

G3^^. + 
(t'2 + C 2 ) 1 ' 2	 - Ii 1 `^ ^'

P2 + c	 ►

x COS Q sin ' 1	 1!2

x COs ^j, 1 sin	 H1 .`^ sin Si cos

	

Hi	 d ^'t

d

(3.17)

i

+ sgn ( a3 ) (1 - S) 1,'2 H2 +H 3  sin ^l cos Q
H2

1

r y	
p 

+ (p2 + C 2 ) 1/2 - II c^ ^i
1	 p2 + C2 a ^i 

x [sin 0 sin	 - sgn ( a3 ) [13 (1 - S)1.12

r

x cos 1 Cos S2 + f( 	 [Cr.) S  cos}
H 2	 1 a^^

1

and //
- sgn ( a3 ) (1 --S)1/2 IH 2 + H3 .Sgn 	cos sl

Hi

	

aZ	 a77	 ap
	 (3.18)

w
	 1	 ^	 y
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X	 ,?2 y	 .2

Y, r.ry2	 0 (3.20)

10

6

For i = G,

X,	 -- y, ^' Y	 X .` I Z
'	 , J	 ^,	 0

	

4	 4

To complete the right hand side of equations (3.13), we now can obtain ,^2 XI) -^2
'12y/0 2 and ^j 2 Z /,+ t? by either differentiating the first partials given by

Reference 6, or by differentiating equations (3.17) through (3.19) again. For
example, from (3.19) we have,

For i H 1, 2, 3,

p2 } F C 2	 %' j f	 2 { 6C 2 	 ±3t',2
i	 4

X	 )2	

2 1 ,2) 1a
(F	 1 C 2)

	(f2 ^ C2)i `2	
t

X [COS S2 sin d'	 ^,2 cos
t sgn ( 3 ) H 3 (1-S)	sin1iH2

1

^i HI 
cos Q cos ^^ + sin O sgn (fx3 ) (1	 S)1'2

,.

x (H2 + H3 sin +f) 
12	

s in 0' sgn ( a3 ) (1	 S)1'2

H

x 1 DH 	 'aH3	 s^

H1
	 ^,` +sin	 ,'- _ H 1	 cos ° sin Q

t 1

18
=E,
at

W
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sgli ( a3 ) (1 - S) 1 2 (H2 t 113 sill ,t=) 1 cos
lit

1	 (112tH3sin,)

H 1 (1 _ S)1'2

t!2f (^ 2 i (.2)1 ?,	 HI ._. 
^ 

"e I(,

q ti Sl into + sin (rz3)
rj ?

,

x H3 (1 - S)1,1'2 cos >4"^1: sin	 _ H 1	 ' cos tp cos SI
H2

1

HI 1 sgn (a ) H (1 ^ S) 1'2 cos y' sin Qra:{,	 H3	

3

1

-• si n g sin	 _r	 i sgn ((f3) H3 (1 	 S)1 2
r t,	 112

S l 	H3X CO  f coos tz	 - sgn( a.3) — (1 S)1 2

112

62 H1
x sin Q sill `̂ `  + ----- cos Q cos qx

,

+ sin Q sgn ( a3 ) (1 - S) 1 ' 2 (H 2 + H,1 sin ^b)
H2

+ , ,`	 cos Q sin s - , - s in Qc os tp
^i
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-1 c os 4( 1.	 s Qn ( ex3) ( 1 - S) 1 '2 (H2 + H3 s i n /,) 1
i	 H2

1

1 + sin g sin ( 3 ) (1 - S)1'2	 H2	 r̂  H3

(W2
 + sin

1	 '

(H + H sin qi) c)H
+ H 3 co s qj a 	 _ Z  2 ___3 	 1

cos 	 sgn ( a3 ) (1 - S)1 2 H	 + sin, a 3

- sin Q sgn ( a3 ) ( Z - S)1/2	
aH

- 
H2	 ail	

aH

at?	

aH_
+ sin	

ads
1

1
[!2 

H2	 a	 a H3 	 a2 H3

+ H 1 a,^2 
+ cos	

^a^	
+sin

1 

2	 aHH a ^	 1 d11 cos qj sin Q + sgn ( a3 ) (1 - S)1 21	 ^2 +	 a •^.

x (H2 + H2 sin ^) 1 COS 0
H2

1

- H1 
a 

Ios ^ cos S2 ^^ - sin Q sin
 -a

a ^+ sgn ( a3 ) ( 1 - S)112 
a H2

ae. + a

Hs
 a-^. 

sin qj + H3 cos ' 
ae.

1	 1	 i

}
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1	 (H2 + H3 s i n ^)	 ,
x — cos	 --- --,1 -- 

Hi	
_ ._ 

H2
1

2	 to H
cosS H

3	 t) "	
( 2 +H s in :,^R )

H3

SP,n ( fx )
3+ d 3 i(H2 

1

., - 
S)1,'2	

co s S^	 - N
	 3

	

(	 2 4, H si n 4G)
1

	

sin Q 6H 2 	 H+ --..	 ^	 + cos ^%^	 ^ H ,;. sin ^	 3
H

	

^ ,, •̂ i 	 "	 31	 1	 t
i

2 ^ 	 sin S l (H2 + H3 sin ^/^)	 (3.21)
H 1	 j`i

r	 and similarly for ) 2 y/a ? , and 0 2 zh 4.? , For i = 4 9 5, we have from equations(3.18),

	

)2x	
c^X	 ^^1 + X^^	 ^2N

	

?	
i p + C2 , p2 + c 2 a ^21

1

N2
+	 "	 a )(1 + 2 ,02 ) +	 _ H	 4^

(P2 + c 2 )	 ^'^;	 (r02 + c2)1,/2 II dpi

xos Q sin ^ + sgn ( a3 ) H3 (1 - c)1/2 	 cos L`j si
n

Cc

	
S^

L	 H2
1

- H1 k I sin Q cos y.' + sgn ( a3 ) ( 1 - S)1!2

21
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x (112 * H3 S i ll l/1) 1 Cos

Hi

2 [2
+ 0)2 + C 2)1/2 - H1 d	 cos Q sin + sgn ( a3)

a ^?
L

x H3 (1 - S) 1/2 cos ^ 1 sin S2 - H 	 [co s ^b

	

Hi	 1 a ^i

x Cos Q Q - sin q s in 0
a t;

sgn (a3) H3 (1 - S) 1/2 cos 0 Cos ^2 
asl

H2	 a ;

H	 a- sgn ((X3 ) 3 (1 - S) 1/2 sin Q sin q
Hi	 a^i

a H1 1- 
a^L H3 

sgn ( a3 ) H3 (1 - S) 1/2 cos sin S2

1

aHl a^--	 sin ,Q cos qi + sgn ( a3 ) (1 - S)1/2

x (H2 + H3 sin	 cos
H2

1

- H 1 a2 Q IS in S? cos + sgn (o.
3) (1 - S)1/2

a ^e? 

G.
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x (H 2 f H 3 s i n r/r) 1 Cos S l^

	

H 2 	 Ji

M H	 ^Sr, 
cis Sl sin	 {S1	 '^,^1	 ! --	 sin 0 sin {

	

A	 L	 1

+ sf,n ( ,x3 ) (I °- ^) i"2	 -sin ^1, `
^ S l (H2 + H3 s in

H2
i	 1

	

CCU s S^	 H 2	 c H
3 	 f^

{	 _	 s in q^ F Cos	 ^1

(H2 + H3 s in qj)	 D H1
- 2

3
	 Cosa

lii	 a ^i

and similarly for 2y/- T. ? and ^ 2 Z/^) ,^?. The method for computing the co-
ordinate error bounds can now be defined, since the right hand side of equations
(3.13) are known in terms of R, T, and W.

^V. ALGORITHM

The procedure for computing coordinate bounds is as follows:

1. Enter into equations (3.15) an estimate for R,T, and W based on space-
craft geometry and nominal orbit conditions, in units of Newtons-force. From
past studies, a good initial estimate for a Vinti solution of a Relay II type orbit
would be about 10 -7 Newtons for R and W, and approximately 10 -6 Newtons for
T since the tangential forces and in-track position errors are usually larger
(References 1).

2. The corresponding z^ a, .'1 e, ... , ^ ",3 are used in the Vinti orbit generator
to produce equivalent coordinate differences -A X i , ^ Y i , and A Z j , where i refers
to the observation.

w

(3.22)

r

ti
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3. For any given tracking data such as radio direction cosine for example,
a corresponding , L i and A M1 can be determined, which also can be called com-
puted residuals.

4. If the 'true' residuals obtained by comparing theory with each observation
are denoted as R, and R M , then the standard deviation of fit is given by

^?	
r1- y^
	 C"^)^+ (L1 M i )^^	 (4.1)

^- 1

where Al. i and AM, are the differences between true and computed residuals,
or (A f, i - R L ) and (L1 M, - R M) respectively.

5. We wish cr to be arbitrarily close to zero. If our criterion is not met,
we return to equations (3.13), insert our initial estimates for R, T, and W into
the right hand sides and compute a new set of R, T, and W on the left. These
new or iterated values are entered in the equations (3.15) again, and steps (2)	 ry
through (4) are repeated.

6^ This process is continued until a self consistent solution is found for
the system of equations (3.13) which allows 7 to be smaller than some pre-
assigned, arbitrary, positive number. It is these values of R, T, and W that
are accepted and used in conjunction with the set of equations (3.15) together
with the Vinti orbit generator to then produce a set of corresponding error
bounds as functions of time, that are given as X(t) ±0 X(t) 9 Y(t) t ,!^Y(t), and
Z(t) ±A Z(t).

24



V. FLOW DIAGRAM
R.

Ti

w;
T, R, W

(EQUATIONS 3.13)

i
^i

VARIATIONAL
EQUATIONS

(3,15)
NO

YES
4

VINTI
ORBIT GENERATOR

X (t) ± A X (t), X (t) ± o X (t)

Y	 Y(t),Y(t) ±oY(t)

Z (t) ± o Z (t), Z (t) ± 0 Z (t)
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VI. CONCLUSIONS

.Equation (2.3) can now be considered as follows; Although an integrating
anomaly equivalent to temperature is not immediately clear for this classical
system, the most likely or expectation value; for a coordinate will depend upon
the form of the Hamiltonian in the ensemble. As a result, if the probability
density p contains the Vinti Hamiltonian, then the most likely values of the
spacecraft coordinates are those generated by the Vinti program. In addition,
the size of the error volume (± X) (E:'1Y) (fAZ) or 21 A X# j A Y I J AZ ) that
bounds these most likely values are also determined by the Hamiltonian. If all
interactions were known exactly, then obviously, the size of the cube or error
volume would shrink to a point, namely that determined by the Hamiltonian, and
the most likely values would then be the exact values for all time.

This same analysis, it is felt, may be applied to spacecraft trajectory sys-
tems in the pre-launch phase. A set of virtual forces R, T, and W can be de-
termined by selecting and applying tracking data in this program particular to
certain classes of orbits. The error bounds or volume produced can then be
classified as nominal.

The interest at present is to interface this program with the existing Vinti
orbit determination system and to apply it to several satellites of current

4	 interest.
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