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ABSTRACT
 

Two concepts of satellite to satellite tracking are studied by means of 

simulated least squares solutions for parameters describing the gravity 

field. The first concept uses the range rate between two satellites near 

together in very low orbits. In the second concept, a constellation of very 

high geostationary satellites track a single satellite in a very low orbit. 

The experimental results indicate that better resolution of the gravity 

field can be obtained from two very low satellites. However, satisfactory 

results can also be obtained When a high geostationary satellite tracks the 

low satellite. The latter concept is recommended, since it also offers 

several operational advantages. A single low satellite is shown to be 

sufficient, although more resolution might be provided by using several 

satellites at different inclinations. The amount of gravimetric detail that 

can be resolved depends directly on the altitude of the low satellite. The 

minimum feasible altitude is considered to be 200 Ion, and from this 

altitude features as small as squares 200 km on a side may be resolved. 

Because of the loss of detail with altitude, satellite to satellite 

tracking cannot replace surface gravimetry for extremely detailed local 

surveys of areas smaller than 200 km squares. However, it can effec­

tively fill the gap between the very detailed information obtained from 

surface gravimetry and the broad scale information obtained from conven­

tional satellite gravimetry. Satellite to satellite Doppler tracking promises 

to refine our knowledge of the gravity field both by performing fairly 

detailed surveys of ocean areas and by surveying the gravity field on a 

global basis. 
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1. INTRODUCTION 

Since the advent of the space age, scientists engaged in satellite 

gravimetry have produced a series of progressively more accurate and 

more detailed global models of the earth's gravity field. These models are 

usua-lly published in the form of a list of coefficients (C.., S..) in the spher­

ical harmonic expansion of the gravitational potential, 

v GM ay' (C,, cosmX + S,, sinmX) P, (sinp),
 

r n 
 r 

since this form is the most suitable for the computation of satellite motion. 

In this sense, one model gravity field is said to be more detailed than 

another if it contains tesseral coefficients of higher degree and order. The 

most detailed gravity field presently published is the SAO C 20.5 field, which 

constitutes a major part of the Smithsonian Astrophysical Observatory 1969 

Standard Earth [Gaposchkin and Lambeck, 1970]. This field is complete 

through degree and order 16, with some isolated coefficients to degree 22. 

The Naval Weapons Laboratory has formed a larger gravity model containing 

450 coefficients, although the coefficients of this field have not been published 

[Anderle, 1970]. This field, designated NWL 9B, is complete through' degree 

and order 19, with some coefficients up to degree 26. 

The steady improvement in the accuracy of modern gravity field models 

is due to improved tracking accuracies as well as the gathering of data 

from satellites of different inclinations. This improvement has been 

accompanied by a rise in the goals of satellite gravimetry. The most 

important need for gravity field models in the last decade has been for use 

in predicting satellite motion. Ideally, the parameters describing the 

gravity field should be sufficiently accurate that the error arising from this 

source in predicting the position of a satellite at a future epoch should be 

smaller than the certainty with which the position of the satellite at the 

future epoch can be measured. Although this goal still seems to be out of 



reach, modern gravity field models can fulfill most practical satellite 

position prediction needs. Probably the most stringent requirements on 

satellite position prediction are imposed by the needs of satellite navigation. 

This application requires that the position of the satellite be immediately 

available to the navigator at the time he measures some function of his 

position relative to it, even though the orbital elements of the satellite may 

have been determined by semi-permanent ground based tracking stations 

some 24 to 48 hours previous. The process of updating the orbit from the 

epoch of its most previous determination to the epoch at which the satellite 

is observed by the navigator requires knowledge of the gravity field, or at 

least the low order zonal and tesseral coefficients.. Simulations by Anderle, 

et al. [1969] indicate that the effect of geopotential terms above the 12th 

degree and order on a satellite at a height of 600 nautical miles are 

generally less than 30 meters during a 24 hour period. As the time span 

increases or the altitude decreases, the prediction error caused by neglected 

terms will increase. Comparisons performed by Douglas and Marsh [1970] 

using GEOS-I and GEOS-il observations indicate that even with the best 

available gravity models, the satellite position is uncertain by 50-100 meters 

for heavily observed 5-6 day arcs. This is the precision with which a 5-6 

day orbit can be fit to the data. The prediction capabilities of the various 

models investigated are considerably worse. The best fits of the observed 

data about orbits predicted from earlier observations were obtained with the 

SAO 1969 Standard Earth model, which gave rms errors of 100-150 meters 

for a 6 day prediction of GEOS-I and errors about three times as large for 

a five day prediction of GEOS-Il. Comparisons reported by Wong and Prislin 

[1970] indicated substantially the same estimates for the precision of orbit 

fits to 6 day arcs using available gravity models. 

A second requirement for accurate gravity models is imposed by the 

scientific goal of geodesy of determining the shape of the geoid. The sim­

ulations performed by Anderle, et. al. [1969] indicate that the geoid height may 
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be computed with an error of less than 10 meters from a gravity model trun­

cated at degree and order 12. An analysis by Rapp [1967] indicates that the 

ims error in geoid height committed by neglecting terms in the geopotential of 

degree higher than 12 is about 4 meters. The geoid computed from the SAO 

1969 Standard Earth gravity field parameters is estimated to be accurate to 

three meters in most areas [Gaposchkin and Lamnbeck, 1970], although it may 

be somewhat less reliable in areas where no surface gravity data were avail­

able [Gaposchkin, 1970]. 

Future requirements of satellite gravimetry are discussed in'the report of 

the Williamstown Conference [Kaula, 1969]. Oceanographers will require a 

determination of the geoid to an accuracy of 10 cm, together with orbit 

determination capabilities allowing the computation of satellite altitude accurate 

to 10 cm. These accuracies will allow the measurement of the pelagic sea 

state with comparable accuracies by satellite altimetry. These requirements 

are at least two orders of magnitude beyond present capabilities. Further­

more, they appear to be beyond the capabilities of any land based satellite 

tracking system in the foreseeable future. It is expected that pulsed laser 

systems capable of tracking the range to a satellite with an accuracy of 10 

or even 5 cm will ultimately be available. However, even this accuracy of 

satellite tracking will not allow the determination of terms in the harmonic 

expansion of the geopotential above degree 22 or so with the present satellites 

which are equipped with laser retroreflectors [Gaposchkin, 1970]. The reason 

is that the position of a satellite, at least at altitudes normally used for 

geodetic satellites, is just not sufficiently sensitive to the high order terms in 

the gravity field. This does not rule out the possibility that the velocity 

of a satellite might show significant variations of short time duration due to 

these high order terms. It is not unreasonable to expect that a satellite's 

velocity might show variations that cannot be determined by position measure­

ments, in the same way that the slope of the geoid exhibits some rather 

large scale variations within small areas, while the geoid itself appears to be 

a fairly smooth surface, at least on a large scale. 
3 



Several combinations of satellite determinations of the gravity field 

with surface gravimetry have been published [Kaula, 1966a; Rapp, 1969]. 

Since the satellite data contributes most strongly to the low degree terms, 

the contribution of the surface gravimetry is most significant in the higher 

order terms. For instance, the satellite data used in computing the para­

meters of the SAO 1969 Standard Earth was sufficient to give a strong 

solution only for terms in the geopotential through degree and order 12, 

as well as some higher degree terms which produced resonant effects; the 

extension of the field to degree and order 16 was possible only by the 

inclusion of terrestrial gravity data [Gaposchkin and Lambeck, 1970; 

Gaposchkin, 1970]. On the other hand, the reliability of the potential coeffi­

cient information implied by the surface gravimetry is somewhat suspect 

because of the large areas that still remain gravimetrically unsurveyed. There­

fore it is still desirable to measure the high order - short wave length components 

of the gravity field on a global basis by satellite methods, and to use the 

surface gravimetry to provide an independent check on the satellite 

determination. 

If ground based tracking of satellite position will not be able to mea­

sure the high order terms of the geopotential, then the computation of 

gravity field-models by this method must eventually end, and new methods 

of sensing the gravity field must be sought. Of the new methods currently 

being discussed, both .satellite to satellite- tracking and satellite to ocean 

altimetry can provide better refinement of the geopotential than can earth 

tracking of satellites [Lundquist, 1970]. 

Of these two methods, the concept of satellite to ocean altimetry has 

been developed in far more detail. The procedures by which such data 

might be used to determine the shape of the geoid have been considered by 

several investigators. Hudson [1970] describes a procedure in which the 

slope of the geoid is measured along the sub-satellite track by using the 
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rate of change of the measured altitude. This requires that the radial 

velocity of the satellite be independently known with an accuracy commen­

surate with the altitude measurement, which can be provided with present 

orbit determination methods and gravity models [Weiffenbach, 1969]. The 

concept described by Lundquist [1967] involves treating the altitude data 

as any other satellite tracking data and solving the geoid determination and 

orbit determination problems simultaneously. These procedures identify 

the mean sea level surface with the geoid,.- However, the mean physical sea 

surface is not an equipotential surface; stable departures of the mean sea 

surface from the geoid exist because of such factors as currents, variations 

in temperature, and variations in salinity. Whereas the height of the geoid 

above a mean earth ellipsoid can reach 100 meters, the maximum separa­

tion between the mean sea surface and the geoid is on the order of 10 

meters [Kaula, 1969, p. 3-2]. In areas where sufficient measurements of 

temperature, pressure, and salinity exist, it may be possible to correct 

for up to 90% of this variation. Thus it is reasonable to identify the mean 

sea surface with the geoid if the accuracy of the altimeter measurement is 

on the order of one or a few meters, and so use the altimeter to map the 

geoid to this accuracy. However, oceanographers hope ultimately to use 

satellite altimetry to map the relief of the ocean with an accuracy of 10 cm. 

[Kaula, 1969, p.2-2, p. 3-2]. This will require that the geoid be known to 

the same accuracy, and that the geoid determination be independent of the 

ocean relief measurement. For this reason, the ability of satellite to 

satellite tracking to provide refinement of the gravity field deserves careful 

consideration. 

1.1 	 The Concept of Satellite to Satellite Doppler Tracking-

Although the use of one satellite to track another is a simple extension 

of the usual concept of tracking satellites from the ground, there has been 

very little discussion in the literature of the kind of information that might 

be obtained from such a system. The use of satellite to satellite tracking 

in orbit determination was mentioned a decade ago [Baker, 1960]. More 
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recently, the possibility that such tracking might be used to refine our 

knowledge of the gravity field has been discussed by Wolff [1969], and 

in [Kaula, 1969]. 

Although one satellite could conceivably track another by any of the 

means that have been used for ground based tracking of satellites, the most 

practical choice appears to be a two-way Doppler system. The necessary 

weight limitations rule out optical and pulsed laser systems since these 

systems require precise pointing. The Doppler equinment appears to be 

preferable to range measuring systems because it is both simpler and can 

be built to produce higher relative accuracy. Furthermore, small variations 

in velocity are more directly related to small variations in gravity than are 

variations in position. Therefore, the measurement of the range rate 

between two satellites by Doppler equipment is the only tracking mode 

considered in this study. 

The concept proposed by Wolff [1969] employs two satellites in exactly 

the same circular orbit, with one following the other at a distance of 100-200 

miles. Since they are near together, both satellites are affected in approx­

imately the same manner by the low degree - broad scale components of 

the gravity field, so that the range rate between the two satellites is 

insensitive to these components. Conversely, the intersatellite range rate 

is most sensitive to features in the gravity field smaller than the inter­

satellite distance. Wolff proposes using the relative velocity of the two 

satellites as a direct measure of the difference in their kinetic energy, 

relating this in turn to a difference in potential energy and finally to a 

difference in gravitational potential. Since both satellites are assumed to 

follow precisely the same orbit, the difference in gravitational potential 

between the two satellites can be regarded as a difference in potential at 

different points on one of the orbits. Thus, the result of a single pass 

is a profile of values of the gravitational potential on a sphere whose 
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radius is that of the orbit. A series of such profiles will enable one td 

draw a contour map of the values of the potential on this sphere. 

This concept was examined in some detail in the studies described in 

Chapter 2. These studies showed that although the observation that variations 

in the range rate of two satellites close together in the same orbit reflect small 

features in the gravity field while remaining insensitive to large scale features 

is substantially correct, other parts of the theory involve assumptions that can­

not realistically be fulfilled. Specifically, the validity of several of the mathe­

matical manipulations depends on the assumptions that both orbits are precisely 

the same and precisely circular, assumptions that cannot possibly be realized 

in practice. 

The concept of satellite to satellite tracking contained in the Williams­

town report [Kaula, 1969] is quite different. Instead of two satellites in the 

same orbit, this report envisions one satellite in a low orbit that can be 

tracked by any of a constellation of three satellites in high geostationary 

orbits. This report recognizes the extreme importance of putting the low 

satellite into as low an orbit as possible, since the effect of small features 

in the gravity field falls away rapidly with increasing altitude [Needham, 

1970, p. 6 3. Thus the .oncept includes an air drag sensing system and 

compensating thrusters. Such a system not only extends the lifetime of a 

low satellite, but also enables the satellite to follow an orbit unperturbed 

by air drag [Lange, DeBra, and Kaula, 1969]. The use of a drag free 

satellite thus immediately removes the problem of the solution for the 

parameters describing the gravity field being affected by unmodelled forces 

due to air drag and solar radiation pressure. On the other hand, the 

weight of the thruster fuel required to maintain a drag- free orbit is 

considerable, especially at altitudes below 200 km. A graph depicting the 

trade off of required propellant with orbital altitude and eccentricity is 

shown in the Williamstown report [Kaula, 1969]. From this graph, a 

perigee altitude of 200 km was chosen as the lowest that could be reached 

with reasonable satellite lifetime. This minimum perigee altitude places 
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an effective bound on 	the resolution of the gravity field that can be obtained 

with satellite to satellite tracking. 

The three geostationary satellites are spaced equidistant in longitude 

(1200 apart), so that the low satellite can be tracked at any point in its orbit by 

at least one of the three. In addition to measuring the range rate to the 

relay the range 	 data to thelow satellite, the geostationary satellites rate 

ground. The use of geostationary orbits for the high satellites affords two 

important advantages over other configurations. Not only is at least one 

to track the low satellite at any time, but they 	alsohigh satellite available 

may be tracked from the ground by permanently pointed antennas with high 

described in the Williamstown report includesaccuracy. The concept 

monitoring of the position of the three geostationary satellites with perma­

long baseline interferometry equipment.nently pointed laser 	and very 

The main disadvantage of the system described 	above is that only the 

in the gravity field.low satellite is significantly perturbed by variations 


This means that the range rate measured by this system will contain the
 

as the small
effect of large scale 	variations in the gravity field as well 


are While the
scale variations that of primary interest. range rate
 

same
expected between two satellites slightly separated in the orbit is only 

rate between aa fraction of a meter per second, the range high geo­

stationary and a low minimum altitude satellite may be several thousand
 

-meters -per second. Althoigh the effects of the differences in orbital
 

terms in the geopotential
parameters and the effects of the low order can 

be separated mathematically, the use of geostationary satellites to track 

minimum altitude satellites provides a far less direct measurement of the 

of the gravity field than does the use of two satellitesfine structure 

close together. Furthermore, if only one satellite is in a low orbit, the 

range rate accumu­effects of fine detail in the gravity field on the are 


in the low orbit these effects
lative, whereas if both satellites are same 

largely transitory. This means that the configuration of two satellitesare 
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in the same low orbit is more capable of discerning detail in the gravity 

field than is the configuration of one minimum altitude satellite tracked by 

geostationary satellites. This phenomenon is discussed in more detail in 

Chapter 5 . 

The major advantage of a satellite to satellite Doppler system is that 

the measurement can be made with far greater accuracy than the range 

rate can be measured by ground based stations. The main reason for this 

is that both satellites are above the troposphere, so that tropospheric 

refraction effects are eliminated. Ionospheric refraction effects are also 

somewhat lessened, although the radio link between a high geostationary 

satellite and a satellite at a minimum altitude of 200 km will traverse 

90% of the ionosphere [Kaula, 1969, pp. 2-29]. Therefore, the determination 

of ionospheric refraction will still be necessary. This will be done by 

comparing the Doppler shift on two different frequencies, in the same 

manner as it is done for ground to satellite Doppler measurements 

[Weiffenbach, 1967]. The accuracy estimate for the satellite to satellite 

range rate measurement contained in the Williamstown report is 0.3 to 1.0 

mm/sec with present technology, with an accuracy of 0.03 to 0.05 mm/sec 

eventually being possible [Kaula, 1969]. In most of the simulated solutions 

contained in this study, a standard deviation of 0.05 mm/sec is used to 

form the weights for the range rate equations. 

Although the Williamstown report contains a great deal of discussion of 

the instrumentation that could be used in a satellite to satellite tracking 

system, very little is said about how the data might be reduced and 

analyzed. It is assumed that information concerning the gravity field of 

the earth can be extracted from the tracking data gathered by such a system 

for two reasons: 

(1) Since the position of the geostationary satellite is constantly 
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monitored, the use of these satellites to track the minimum 

altitude satellite provides the same kind of information as 

tracking data taken at fixed known locations on the ground. 

Thus, given sufficient accuracy in all components of the 

system, ephemerides of the low satellite may be assembled 

and analyzed for the effects of irregularities in the gravity 

field. 

(2) 	 Scientists at the Jet Propulsion Laboratory have demon­

strated an ability to determine features in the lunar
 

gravity field by analyzing Doppler tracking data of lunar 

orbiters [Muller and Sjogren, 1968a and 1968b]. Since a 

very high satellite tracking a very low satellite presents an 

analogous situation, there is no reason why similar analysis 

should not resolve features of the earth's gravity field. In 

fact, the current interest in satellite to satellite doppler 

tracking appears to have been stimulated by the detection of 

the features in the lunar gravity field ascribed to "masconst". 

The main purpose of this study is to answer the questions of how sat­

ellite to satellite range rate data might be reduced and analyzed, and what 

As discussionresolution of the gravity field might be obtained. shown in the 

above, there are several variable parameters to be -considered in defining 

a satellite to satellite Doppler tracking system: 

(1) 	 Are better results obtained if a very high satellite tracks 

a very low satellite, or if both satellites are in low orbits? 

If both satellites are in low orbits, must they be in pre­

cisely the same orbit or is some variation in their relative 

configuration desirable? As previously mentioned, maintaining 

both satellites in precisely the same orbit is clearly impossible. 

10 



The discussion in Chapter 5 will show that some variation 

in the relative configuration of the two low satellites is 

desirable. 

(2) 	 What should be the altitude of the lower satellite ? This 

depends on the amount of detail to be measured, and the 

minimum feasible altitude of 200 km discussed above 

places a limit on the amount of resolution that can be 

obtained.
 

(3) 	 Is it necessary or desirable to have more than one low orbit? 

If so, are orbits of different inclinations necessary? Both of 

these questions are answered negatively. 

(4) 	 How accurate must the measurement of the range rate between 

the satellites be? Is it also necessary to track the low 

satellites from the ground? If so, how accurate must this 

tracking be ? The assumed satellite to satellite range rate 

accuracy of 0.05 mm/sec has already been discussed. 

Ground tracking of the low satellites is necessary to provide 

some geographic location to the gravimetric phenomenon 

being observed, but the simulated experiments discussed in 

Chapter 5 show that highly precise tracking from the ground 

is neither necessary nor desirable. 

(5) 	 What data rate of range rate observations is desirable ? The 

projected accuracy of 0.03 to 0.05 mm/sec contained in the 

Williamstown report isbased on 10 second averaging of the 

Doppler signal, so that the data rate cannot be faster than 

one range rate measurement every ten seconds. The 

simulated solutions discussed in Chapter 5 show that 'a data 

rate of one range rate measurement every 30 seconds provides 

satisfactory results. 

11 



1.2 Gravity Field Representation 

In order to discuss resolution of the gravity field in a specific manner, 

it is necessary to specify some method of representation of the gravity 

field. If the gravity field is represented by the spherical harmonic series 

meansfor the geopotential, then obtaining more resolution obtaining the
 

reasons
coefficients of higher degree terms. However, there are several 

why the spherical harmonic series is not considered appropriate to represent 

the detailed structure of the gravity field. For instance, each spherical 

harmonic coefficient is an integral over the total mass distribution of the 

anomaliesearth. If some phenomenon of the gravity field, such as gravity 


coefficient
or gravity disturbances, are observed, the spherical harmonic 


must be expressed as the integral over the whole earth involving this
 

phenomenon. The measurement of range rate between two satellites is
 

in the direction ofessentially a measurement of the gravity disturbance 


the line joining the two spacecraft. If the gravity field is represented by
 

over earth must
the spherical harmonic series, then data taken the whole 


included in each solution, and each solution is necessarily a global
be 


the harmonic series representation is a global repre­solution. Because 

sentation, it does not allow for local variations in our knowledge of the 

gravity field; i.e., it is not capable of reflecting the fact that we may know 

areas.some phenomenon of gravity much better in some areas than in other 

This indicates that it would be more appropriate to represent the gravity 

field by .some-kind- of local representation such as the value of some 

gravity field in some conveniently sized blocksphenomenon of the anomalous 

or on the geoid. The main advantage of a local on the surface of the earth 

smallerrepresentation is that the blocks in some areas can easily be made 


amount of detail available for those areas.
to reflect the greater 

The most familiar phenomenon to use is the gravity anomaly, since this 

is commonly used by geodesists and geophysicists. The gravity anomaly is the 

final purpose is the computation of geoidmost appropriate quantity if the 


On the other hand, the
undulations according to Stokes' Formula. 
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use of gravity anomalies for computing satellite orbits is quite cumbersome', 

since it is necessary to compute the derivatives of Stokes' function in each 

block at each step of the integration [Obenson, 1970]. However, despite the 

cumbersomeness of the formulae, the computer time required to compute an 

orbit from a spherical harmonic series containing a given number of coefficients 

is about the same as the computing time required when the accelerations are 

computed from the same number of mean gravity anomalies [Kaula, et al., 1966, 

p. III. D. -I-]. The use of a fictitious surface layer has been propoled by Koch 

[1968] as an alternate representation of the earth's gravity field. If the anom­

alous gravity field is represented by a fictitious surface layer whose surface 

density produces the disturbing potential, then the formulae for the disturbing 

acceleration acting on a satellite are far simpler in form than those in the case 

of gravity anomalies. Thus, the representation of the gravity field by the density 

of a fictitious surface layer may represent the best compromise between the 

needs of the geophysicist and the needs of the orbit analyst. 

Another argument against using the spherical harmonic series to repre­

sent the gravity, field in detail is that the number of coefficients required is 

just too great to be practicably feasible. The number of coefficients con­

tained in a spherical harmonic series complete through degree and order 

(n, a) is (n + 1)2. A simple computation shows that the number of equal 

area blocks required to cover the earth is also about (n+1)2 if the side length 

of each block is 180/n degrees of arc. Since the shortest wavelength 

contained in the spherical harmonic series is 360/n degrees, it is reason­

able to say that a block representation represents approximately the same 

amount of detail as a spherical harmonic representation if the side length 

of the blocks is equal to the half-wavelength of the highest degree term in 

the spherical harmonic series. This does not imply that the two repre­

sentations are mathematically equivalent by any means, but it is intuitively 

obvious that if the gravity field has a strong component of wavelength 

360/n degrees, this component will be well represented by blocks whose 
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side length is 180/n degrees. 

The advantage of using a block representation rather than a spherical har­

monic series in which the number of coefficients is approximately the same as 

the number of blocks is that it may not be necessary to consider all the blocks. 

if the satellite altitude is not too high, it may be possible to compute the 

anomalous acceleration acting on the satellite by considering the parameters 

gravity field in only a few blocks in the vicinitydescribing the anomalous 

of the sub-satellite point. Ideally, we would like to have a representation 

of the anomalous gravity field such that the disturbing potential at any 

altitude depends only on the parameter describing the block directly under 

the satellite. No known set of functions is able to afford complete direct­

ness of representation, although some quantities afford more than others. 

A comparison of the directness of representation afforded by representing 

the anomalous gravity field by mean gravity anomalies and that afforded by 

mean surface densities is discussed in Chapter 3. In the computation of the 

disturbing potential or the gravity disturbance at satellite altitude, the direct­

ness of the representation by mean surface densities is slightly greater than 

the directness of the representation by mean gravity anomalies, which is 

another way of saying that the influence of distant zones is smaller in the case 

of mean surface densities [Heiskanen and Moritz, 1967, p. 242]. 

If a method of representation of the gravity field is fairly direct, then 

the anomalous acceleration acting on a satellite depends on only a few 

blocks or a few functions; conversely, the anomalous acceleration experi­

enced by the satellite when passing over an area can then be used to solve 

for the parameters describing the gravity field in this area independently 

of other areas. This means that if a fairly direct method of representation 

is used, every solution for parameters describing the gravity field need 

not be a global solution. If the motion of the satellite is observed only 

when the satellite is over certain areas, then it is possible to solve for 
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the parameters describing the gravity field in those areas without the 

solution being too greatly influenced by the neglect of the unmodelled 

effects of the gravity field in other areas. Thus, if the gravity field is of 

especial geophysical interest in some area, such as an ocean trench, it 

should be possible to examine the structure of the gravity field in that area 

by heavily observing the satellite as it passes over the area. 

The importance of the ability to solve for only some parameters at a 

time, somewhat independently of other parameters, cannot be stressed too 

strongly. The description of the global gravity field in f x t equal area 

blocks requires over 40,000 parameters, and no scientist has the resources 

to perform simultaneous solutions for this many unknowns as a matter of 

routine. From this viewpoint, the spherical harmonic series is the worst 

possible representation of the gravity field; every solution for the coeffi­

cients must include data gathered on a global basis and must include all 

the coefficients as unknowns. The description of the anomalous gravity 

field by the mean density of a surface layer in blocks, or by mass 

concentrations distributed in a regular grid, are probably the best from 

this viewpoint, since these methods provide more directness of representa­

tion than others. An attempt to describe the gravity field by a new method 

using a novel set of functions and affording great directness of representa­

tion has recently been described by Lundquist, et al. [1970]. 

The fictitious surface layer was selected to represent the gravity 

field for the simulations described in Chapter 5. The properties of such 

a representation are examined in more detail in Chapter 3, and an 

algorithm incorporating the concept of a fictitious surface layer is de: 

scribed in Chapter 4. 
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2. 	 THE RANGE RATE BETWEEN TWO SATELLITES 

CLOSE TOGETHER IN LOW ORBITS 

If two satellites are put into the same circular orbit in a purely cen­

tral force field, the distance between them will remain constant and the 

rate of change of this distance will remain always zero. As soon as the 

orbit is changed from circularity, or as soon as the satellites are per­

the range rate between the satellites willturbed by a non-central force, 

depart from zero. However, the behavior of this range rate is not well 

known. 

To study the behavior of the range rate, an extremely simplified 

force field of the earth was representedsituation was simulated. The as 

a dominant central force plus the attraction of a single point placedmass 

earth in the plane equator. The masson the surface of the of the 

assigned to this point mass was 10- earth masses. A single orbit at 

an altitude of 1700 km was numerically integrated in this force field. 

so that the orbit would beThe initial conditions of this orbit were chosen 

perfectly circular in the absence of perturbing mass. Since both the orbit 

and the disturbing mass lay in the equator, the situation could be viewed in 

were assumed to be traveling in-this orbit,two dimensions. Two satellites 

the second passing a given point 25 seconds after the first, and the range 

rate between the two satellites was computed. The constant time delay of 

25 seconds corresponds to a linear separation of about 175 kIn. 

The range rate between the two satellites for slightly over one revolu­

tion is shown in Figure 2. 1. Two of the range rate may beT components 

discerned. First, there is a periodic component whose period coincides 

appearssuperimposed on the first component is a pattern which only 

with that of the orbit. This component is indicated by the dashed line. 

The amplitude of this component appears to increase secularly. Secondly, 

when 

the satellite passes over the disturbing mass. This pattern can be seen 
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clearly when the first component is subtracted from the actual range rate 

(Figure 2.2). It consists of an accelerating rise from zero to a sharp 

peak, followed by a fast drop to a negative extremum, followed by a 

return to zero. Since this pattern characterizes the range rate during the 

period the satellites are passing over the point mass, it may be called 

the characteristic signature of a point mass. Characteristic patterns for 

point masses and plate shaped masses are discussed by Kane [1969] for 

the case of a lunar orbiter tracked by Doppler equipment from the earth. 

0 

time 4 

Fig. 2.2. Characteristic Signature of a Point Mass in the
 
Range Rate Between Two Satellites
 

The characteristic signature shown in Figure 2.2 may be' given an 

explanation that appeals to intuition by considering only the in track com­

ponent of the disturbing force. As the two satellites approach the point 

mass with zero relative velocity, both are attracted and the velocity of 

both increases. However, the first satellite, being nearer to the 
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attracting source, is attracted more strongly. Its velocity increases faster 

than that of the second satellite, causing a net positive range rate as the 

distance between the satellites increases. The difference in the in track 

components of the attraction becomes more pronounced as the satellites 

approach the source, causing an acceleration in the graph of the range 

rate. When the two satellites approach within a few hundred kilometers 

of the attracting source, the in track components of attraction rapidly 

become equal again, so that the range rate reaches a maximum and ceases 

to increase. When the first satellite is directly over the attracting source, 

the horizontal component of the force with which it is attracted goes to 

zero; the forward velocity of the second satellite is still being increased, 

so the range rate between them is decreased. After the first satellite has 

passed the attracting source, its forward motion is retarded; the second 

satellite is still being attracted forward, the difference of the in track 

accelerations is sharply negative, and the net range rate rapidly falls to 

zero and becomes negative. After the second satellite has passed several 

hundied kilometers beyond the attracting mass, the in track accelerations 

again become equal and the range rate is at a negative extremum. From 

that point on, the second satellite, being nearer to the attracting mass, is 

more strongly retarded, so that the range rate tends to increase, eventu­

ally returning to zero. 

The radial component of the force exerted by the attracting mass must 

also be considered. The effect of this force is to pull both satellites down­

ward, increasing their velocity and increasing the eccentricity .of the orbit. 

Even if the initial conditions are selected so that the orbit is initially 

circular, the disturbing mass will cause the orbit to become eccentric. 

It is impossible to maintain a precisely circular orbit in the presence of 

disturbing forces, so that eccentricity of the orbit must be expected. The 

eccentricity of the orbit used to generate the range rate shown in Figure 2.1 

was initially zero, but after one revolution, it had increased to 0.000004. 
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The increase in the eccentricity may have both long period and secular 

terms. 

The periodic component of the range rate, on which the characteristic 

signature is superimposed, is caused by the eccentricity of the orbit. The 

growth in the amplitude of this component reflects the increasing eccentricity. 

Since the angular and linear velocities of the satellites are greater at 

perigee than at apogee, the constant time difference of 25 seconds must 

correspond to a larger linear separation at perigee than at apogee. This 

means that the separation of the two satellites must increase from apogee 

to perigee, as shown by a positive range rate. Similarly, the negative 

range rate from perigee to apogee indicates a decrease in the distance 

between the two satellites. 

Since the total energy is constant along the orbit, the difference in 

gravitational potential at the positions of the two satellites is the negative 

of the difference in their kinetic energies. Within the small range of 

velocities considered, the kinetic energy difference is linearly related to the 

linear velocity difference, which is very nearly the range rate between the 

two satellites. The difference in gravitational potential at the positions of 

the two satellites is shown (with the sign changed) in Figure 2.3. Compar­

ison with Figure 2.1 shows that the difference in gravitational potential is 

directly proportional to the range rate. 

The analysis by Wolff [1969] suggests that the range rate is also direct­

ly proportional to the rate of change of gravitational potential along the 

orbit, so that the actual potential may be obtained (except for a constant of 

integration) by integrating the range rate along the orbit. In this highly 

simplified example, this relationship is very nearly true. The actual grav­

itational potential along the orbit is shown in Figure 2.4. The slope of 

this graph is very nearly directly proportional to the potential difference 

in Figure 2.3 or to the range rate in Figure 2.1. The dominant component 
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in the graph of the potential is caused by the eccentricity of the orbit, as 

evidenced by the minimum at apogee and the maximum at perigee. The 

increasing amplitude of this component reflects the increasing eccentricity. 

The presence of the point mass is evidenced by a small "bump" in the 

graph, indicating a "bump" in the gravity field. 

The component due to the eccentricity may be identified by its period 

and removed. The remaining component contains the "bump" and approxi­

mates a profile of the gravitational potential along an arc of a circle whose 

radius is the mean radius of the orbit. 

Similar simulations were performed for several more complicated 

situations, again using two satellites in exactly the same orbit but using 

several point masses. The.range rate computed for an orbit perturbed by 

three point mass is shown in Figure 2.5. The periodic component due to 

the eccentricity is more difficult to identify than in the case of a single 

perturbing mass, although the signatures of the point masses are still quite 

evident. In this case, the range rate was again found to be directly pro­

portional to the derivative of the gravitational potential along the orbit. 

The signatures of the point masses again correspond to "bumps" in the 

potential field, so that a circular profile of the gravitational potential may 

again be formed. 

The relationships discussed above suggest the possibility of using many 

profiles to construct a contour map of the gravitational potential on a large 

sphere. However, these relationships appear to break down when the two 

satellites are in orbits -that are almost, but not exactly, identical. Figure 

2. 6 shows the range rate between two satellies in slightly different orbits 

in the presence of 3 point masses. The two orbits are chosen such that 

the two osculating orbits are perfectly circular at the initial epoch, and the 

satellites are initially separated by 200 km. By the time the second satel­

lite reaches the position occupied by the first satellite at the initial epoch, 

its elements have been slightly perturbed, so that the orbits are very 
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slightly different. The characteristic signatures of the three masses are 

still evident in Figure 2.6, although somewhat distorted. The periodic 

component caused by the eccentricity of the orbit is difficult to discern. 

The difference of the gravitational potentials at the respective locations of 

the two satellites is shown in Figure 2.7. The horizontal line is drawn at 

-3.3 m 2 /seC2 , which is the difference of the energy constants of the two 

orbits. 

Although Figure 2.7 resembles Figure 2.6, the two graphs are clearly 

not scaled versions of one another. The relation between the linear veloc­

ities and kinetic energy still holds, so that the difference in gravitational 

potential in Figure 2.7 is a scaled version of a graph of the difference 

between the linear velocities of the two satellites (not shown). However, 

measurement of the range rate cannot adequately produce the difference in 

kinetic energy. The reason for this may be easily explained. The vector 

velocity of each satellite may be resolved into components in the direction 

of, and perpendicular to, the line joining the two spacecraft. If the perpen­

dicular componentg are not nearly equal, then a significant amount of the 

difference in linear velocity is not measured by the range rate. Detailed 

analysis of the velocity vectors showed this to be the case for these two 

simulated orbits. 

The relation between the difference in the gravitational potentials and 

the actual potential along the orbit also breaks down when the two orbits 

are not precisely the same. Figure 2.8 shows the gravitational potential 

along the path of the first satellite in this example. The graph for the 

second satellite (not shown) is quite similar. The "bumps" in the potential 

field caused by the point masses are quite evident, and the effect of the 

eccentricity can be readily discerned. However, the function shown in 

Figure 2.8 is clearly not the integral of the function shown in Figure 2.7. 

Several points of discrepancy may be discerned; the most noticeable is the 

span from 2000 to 4000 seconds, where the potential difference is negative 
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but the actual gravitational potential is increasing. Thus, the relationship 

that held for two satellites in precisely the same orbits no longer holds 

when the orbits are slightly different. 

The example above shows that although a simple relationship exists 

between the potential and the range rate when both satellites are in pre­

cisely the same orbit, this relationship breaks down in two places when the 

orbits differ slightly. It is reasonable to expect that the relationship would 

break down still farther if a more complicated potential field, such as that 

of the actual earth, were considered. Since two satellites cannot be kept 

in precisely the same orbit, it is not reasonable to expect that the range 

rate between two orbiting satellites can be used to map the actual potential 

field of the earth directly onto a sphere. 
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3. THE POTENTIAL OF A FICTITIOUS SURFACE LAYER 

Through the analysis discussed in the previous chapter, it was seen 

that satellite to satellite range rate does not provide a direct measure of 

the potential at the satellite position. Therefore, the possibility of mapping 

the gravitational potential function on a sphere by measuring profiles of 

its values was discarded. Since the measurement does not lend itself to 

the direct production of a contour map of the potential, a mathematical 

representation was felt to be more appropriate. A mathematical repre­

sentation, either by a spherical harmonic series or by the values of some 

function of gravity in some convenient sized blocks, also lends itself 

to statistical analysis, which is quite difficult for functions represented 

empirically by contour maps. The number of parameters used to describe 

the gravity field mathematically depends on the detail that can be resolved. 

On the other hand, a satellite to satellite Doppler system will provide for 

more measurements of range rate than would be needed for uniquea 

solution. Therefore, the classical method of least squares, long the 

favored approach of geodesists, was deemed to be the most appropriate 

method of data reduction and analysis. 

Using this method, it is necessary to write the observed quantity, the 

range rate between the -satellites, in terms of the unknowns of the problem, 

which in this case would be the orbital elements of each satellite together 

with the set of unknowns describing the gravity field. This relationship is 

then linearized around approximate values of the unknowns to provide a 

linear observation equation. An algorithm for forming and solving these 

equations is described in the next chapter. 

For the reasons discussed in Chapter 1, it was felt that a simulation of 

a solution for a global description of the gravity field is not necessary. The huge 

number of unknowns involved in global solutions make such solutions impractical. 
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Neither were sufficient computer resources available to this investigator 

to simulate a series of global solutions. Furthermore, should range-rate 

data between satellites become available, the analysis of the data will 

involve using the data taken over a localized area to solve for the param­

eters describing the gravity field in that area. Thus, it was felt that a 

local representation of the gravity field by s6me phenomenon in blocks 

should be used, and solutions should only be simulated for localized areas 

containing a reasonable number of blocks. 

The parameter chosen to represent the anomalous gravity field was the 

mean density of a fictitious surface layer. Although the use of gravity 

anomalies in blocks might be a preferable representation for geodesists, 

it was felt that the obtainable resolution of the gravity field could be 

equally well demonstrated with either method. The fictitious surface layer 

representation was chosen because it affords slightly more directness of 

representation and much simpler formulae for orbit integration than does 

the gravity anomaly representation. The fictitious surface layer is also 

of some geophysical interest, since it is likely that the small features of 

the gravity field are caused by anomalous mass distribution in the crust. 

Thus, a pronounced feature of limited extent in the fictitious surface layer 

will probably indicate a real excess or deficiency of mass near to the 

physical surface. 

3.1 The Density of a Fictitious Surface Layer 

As is conventional in physical geodesy, the total geopotential function is 

split into a normal potential and a disturbing potential, 

W=U+T. 

The function U is the potential of a level ellipsoid which contains the same 

mass as the earth M, has the same second order spherical harmonic coef­

ficient J., has the same potential as the. geoid Wo , and rotates with the 
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same angular velocity as the actual earth wC. This function can be mathe­

matically described either in closed form or by a series of even degree 

zonal spherical harmonies whose coefficients are completely determined by 

M, J 2 , Wo , and W . The disturbing potential T can be represented as 

a series of spherical harmonics, as a function of gravity anomalies theon 

geoid, or as the potential of a fictitious surface layer, etc. 

If X is the density of a ficititious layer spread on the surface S, then 

the potential of this layer is 

T = jf - dS (3.1) 
S 

where G is the gravitational constant and -&is the distance from the point 

where T is evaluated to the integration element dS. It is convenient to 

let the parameter which describes the surface density be denoted q, where 

(P = Gx. Then (P has the same units as acceleration and gravity, and it 

is convenient to state its value in milligals. Thus, a value of qp of one 

milligal corresponds to an actual surface density of about 1.5 x io4 grams/ 

cm 2 . The expected order of magnitude is about the same as that of the 

gravity anomalies g. This may be seen at once from the formula 

[Heiskanen and Moritz, 1967, p. 303] 

1 +3 -N
V (- g+ Y ) (3-.2) 

where Y here denotes a mean value of normal gravity (979.8 gals), R is a 

mean radius of the earth (6371 In), and N is the geoid undulation. Since 

N/R is of the same order of magnitude as A g/y, the second term in 

parentheses is of the same order as the first, and p is of the same order 

as A.g. In fact, in many areas the second term in parentheses is some­

what smaller than the first term, so that the expression Ag/27r is a fair 

approximation to pq. Since the geoid is a rather smooth surface, at least 
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when viewed in large areas, and A g is a very rough function showing large 

and rapid fluctuations, a contour map of the function q will contain the same 

pronounced features as a contour map of Ag. 

A better approximation of the range of values of qp to be expected 

can be found by computing the variance of P according to the method 

described in [Heiskanen and Moritz, 1967, Chapter 7]. Using the Stokes' 

Equation for the geoid undulation, 

N R j g S(49dcr,
41r 7 

the surface density is expressed in terms of gravity anomalies alone as 

27qp = Ag + 8jfA gS ()da. (3.3) 

Here a denotes integration over the unit sphere and S (0) is the Stokes' 

Function. Expressing the Stokes' Function in spherical harmonics 

[Heiskanen and Moritz, 1967, p.71 leads to 

+3 n-28rp Ig 2'n' 1 Ag(4, a) P.(coso) sin0 da do 

ni n - 1 

where Ag, is the nth degree term in the spherical harmonic expansion of
 

Ag, i.e., Ag =Z Ag.. Thus,
 

2 n=2 ( 2(n1) ) n=2 2(n- 1) g
21 = L (I +2 ( 1 )Ag, =~Z Ag,, 

The variance of (p is defined to be 
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=MVar [] [p I 

3 ( 2n+1 2n+ 
14 22(n- 1) ) 2 (-l) g.­

~- -( KM [iAg AgeI-

4=2 n-= n 

where the operator M denotes the mean value taken over the entire earth. 

Because of the orthogonality of the spherical harmonics, 

M (tAg nA = {ou if n"n 

where c. is the nth degree variance of the gravity anomalies. Thus 

1 ( (.2n+1 2 
va t p~ =- 41 f__ 2n-2) c* (3.4) 

The difficulty in evaluating this expression is that the degree variances 

of the gravity anomalies are not well known. Although lists of degree 

variances of the gravity anomalies have been published by several inves­

tigators, the agreement between the different.lists is not good. Further­

more,, the published -lists indicate- that the degree variances decay quite 

slowly with increasing degree. Using data from Kaula, Pellinen [1970] has 

found that the degree variances for degrees 3 through 15 are adequately 

represented by the formula 

. c =120 n"a mgal2 

if it were, the expressionThis formula cannot be valid for all n; 
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c, = V arAg3 

would not converge, implying that the rms point value of the gravity 

anomalies is not finite. However, it is reasonable to assume that the 

actual decay of the degree variances is represented by a formula of the 

-form 

where a is slightly greater than unity. If such a decay law is valid, 

then the series in (3.4) converges, although very slowly, and several 

hundred terms may be needed in order to evaluate it to even two 

significant digits. 

Equation (3.4) may be approximately evaluated by using known values 

of the degree variances for low degrees and Pellinen's formula for high 

degrees. Thus, 

2n+a1 2 I 2 A n- a 

2n+1 n 2 '+1 

The second sum may be approximated by 

f(2n+lI rad 
dN+l 2n-2 A1 

A F N+1 9 N+I 9 + 1(1(N+1)Lae 1 4 N + 3s~~ 
N -i) 4L-(i-1Nk=0 (a+k)(N+1). 

for u > 1. A set of degree variances of the gravity anomalies through 

degree 16 corresponding to the .1969 SAO Standard Earth gravity field is 

given by Gaposchkin and Lambeck [1970, p.72]. Using these values 

16 2n+1 2 

a-, c=402 mga 
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For the approximation of the higher degree variances by the formula 

- o,c = An Pellinen [1970] obtained the parameters A = 227, a = 1.15 from 

an analysis of the autocorrelation of actual gravity data. Using these 

values 

M 2n+l 
E -) 1 c. 1013 mgal2 

n=17 2n-2' 

Substituting these values into equation (3.4) yields 

Var[p0} 35.8 mgal, 

so that 

rms [o] t 6.00 mgal. 

This is the rms of point values of p. The rms mean density parameter 

for a block can be expected to be somewhat smaller. 

The rms [ Ag] for mean gravity anomalies in various size blocks are 

given by Moritz [1963]. The simple formula 

rms ~ 21- rmsfg 

may thus be used to gain an idea of the expected values of p for various 

sized blocks. Such a set of values is given below. 

Block Size rms t3 

10 X i 4.6 mgal 

20 X 20 3.9 

50 x 50 3.1 

100 X 100 2.6 
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3.2 Directness of Representation of a Fictitious Surface Layer. 

The property of directness of a representation of the anomalous 

gravity field means that the anomalous acceleration experienced by a 

satellite is fairly directly related to the parameters describing the 

gravity field in the few blocks in the vicinity of the sub-satellite point. 

If a representation has this property, then the anomalous velocity of 

each satellite and the range-rate between the satellites are also directly 

related to these parameters. More important, the dependence of the 

range rate on the parameters describing far away blocks will be 

negligibly small, so that these parameters may be neglected in the 

mathematical model relating the range rate to the gravity field. Thus, 

directness of representation is the same as the problem of the influence 

of distant zones in the upward continuation of gravity disturbances. 

Table 6-1 in [Heiskanen and Moritz, 19671 shows that the influence of 

distant zones is somewhat less in the case of a surface layer represen­

tation, by gravity anomalies. - The influence of distant zones on the 

disturbing potential in the cases of these two representations may also 

be compared. If we represent the disturbing gravity field by mean 

gravity anomalies in blocks, the disturbing potential is 

T Dk 41T kT = Z TI, = Z Ag. S(r, k 

where S(r, 0) is the extended Stokes' function and Acr k denotes the area of 

block k in solid angle. If we use a mean value of R = 6371 km, then an 

anomaly of one milligal in a block of unit area will contribute 5.07 S(r, 4k) 

37
 



m2 /sec 3 to the disturbing potential. Similarly, if we use the same 

blocks but represent the gravity field by a surface layer, the disturbing 

potential is given by 

T =R2 3 't(r,4k) A" 

Since qt 6g as a crude approximation it is reasonable to compare 

a block in which p = 2L mgal to a block in which Ag = 1 mgal. The 

x 10 6 /lt(r, 0k)contribution of such a block to the total potential will be 64.6 

for Z in meters, and T in m 2/sec 2 . The factors f, (r, 4)) = 5.07 S(r, 4) 

and (r, 0 ) = 64.6 x 10 6/t(r, 0) thus describe the sensitivity of thef2 

potential to distant when the gravity field is 	 represented by gravityzones 

anomalies and a surface layer respectively. These two functions are plotted 

r = R (earth's surface) in Figure 3.1 and for an altitude of 200 In infor 

Figure 3.2. These graphs show that the sensitivity of the disturbing potential 

to distant zones is slightly less in absolute value in the case of the surface 

layer, except for the areas around 4 = 400 and 4, = 1200 where the Stokes 

function passes through the abscissa. This is true both at the earth's sur-

In the area within 150 of the sub-satelliteface and at 200 km altitude. 


point, where both factors are large, the f2 factor corresponding to
 

the surface layer representation falls off slightly more quickly. Further­

more, this factor remains small, while the Stokes' function grows again in
 

value. Unfortunately, neither function falls quickly 	to zero and remains
 

the desired property.
negligibly small, so that neither method really has 

Thus, the neglect of far away blocks is never completely justified, since 

the neglect of these blocks will always bias the solution for the near blocks 

can be established through numer­to some extent. The extent of this bias 


ical experimentation. If the two satellites are close together, then it is
 

that far away blocks will affect both satellites in
reasonable to assume 


no net on
approximately the same manner, thus producing almost effect 


the velocity between them. For this reason, the effect of far away blocks
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Fig. 3. 1. Values of the Scaled Stokes' Function
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was not investigated numerically. Inthe simulations described in Chapter 5, 

solutions were made only for the blocks in the vicinity of which the satellite 

was tracked. This neglect of far away blocks should not invalidate the basic 

conclusions as to the resolution of the gravity field that can be obtained 

from satellite to satellite Doppler tracking. 

3.3 	 Transformations Between a Fictitious Surface Layer and Other 

Representations. 

Since the fictitious surface layer is not a common representation of the 

gravity field, it is desirable to be able to transform the fictitious surface 

layer into other representations, such as spherical harmonic coefficients or 

gravity anomalies. The transformation to gravity anomalies is especially 

important, since any solution for the gravity field made from satellite to 

satellite range rate data should be compared to independent information 

obtained from surface gravimetry, where possible. A transformation 

equation, applicable to a surface layer spread on the regularized geoid to 

a spherical approximation, is [Heiskanen and Moritz, 1967, p. 303] 

Ag = 	 217 (p- 3R LO dcr. (3.5) 

If the fictitious layer is distributed on the physical surface of the earth S 

instead of the geoid, then [Heiskauen and Moritz, 1967, p. 302] 

3 	 + r2 2 )- r dS (3.6) 
S 

where rp = R + hp , r = R + h, hp is the height of the computation point 

on the surface of the earth, h is height of the integration element dS, 

and fP is the slope of the surface S at the integration element d S. This 

equation yields the gravity anomaly at the physical surface of the earth, 

i.e., the difference between actual gravity on the geop passing through a 

point on the surface and the normal gravity at the corresponding point on 
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the spherop that has the same potential. This equation also contains a 

spherical approximation. 

It may also be desirable to transform the surface layer representation 

into a spherical harmonic series representation. This is especially true if 

a global gravity field described in terms of a- fictitious surface layer is to 

be adjusted to fit the known low order terms of the gravitational potential. 

By definition, the attraction potential of the surface layer on a particle P at 

the coordinates (pp , Xp, rp) is 

T (4pp, Xp, rp) = dS 

where 

S(r, + p - 2prpeCo5 ) 

pXrp) 

S 

rp 
i dS(Po"X, P) 

0 
Fig. 3.3 Geometry of the Particle P and the Integration Element dS. 

The function 1/t may be expanded in Legendre polynomials as 

I/t, = I1 M r )
U2

P (cos) 

where cos = sin~ ifl' " + cosqp; cosq cos (X - ,). By the decom­
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position theorem for spherical harmonics 

n
 

P. (cos4) = E hm (cosmX. cosmX + sinmXp sinmX) Pm, (sin.'.) P, (sinP" ) 
,=O
 

hum = (2- 6 0.) (n+n)i 
where 

Substituting this formula into the equation for 1/&, and that equation into
 

(3.7), yields
 

T(Dp prp rp U=0 M=O S r cosmX P m (sinp)dS cosmXp Pm(sinq)
T(•, X_1 r) Z S LhimSS~ ( 

4 hum JIP(2) sinmX Pn (sinp')dS sinmXp Pnm (sin 1p) j 

On the other hand, the disturbing potential is conventionally written in terms 

of spherical harmonics as 

GM 'a n [Aai cosm 

0T (9% X1 , = = mq.ri,) E L; os 

+ As" sinmXp j Paul (sin~p 

denote the difference -between the- coefficients in the totalHere ACu, AS 


geopotential function W and those in the normal potential U. Identifying
 

the coefficients of the spherical harmonics in the two expressions for T
 

shows that
 

ACu hum Sd cosm X-Px(sinq)dS
-GM f ( a )(i

(3.8) 

A~um = hm dSSN a) sinmX Pm (sinP)GM 'P 

S 
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These expressions are completely rigorous :and valid for any surface S. 

An approximate inversion of (3.8), by which the density parameter P may be 

expressed in terms of the spherical harmonic coefficients, may also be obtained. 

If the surface S on which the density is distributed is approximated by a 

sphere of radius R, and we consider R F a, then 

ACnm I =r J ( osm I 

Furthermore, the values of p can be expanded in a series of surface 

spherical harmonies on this sphere and the function D can be expressed as 

a sum of these harmonics, i. e. 

(p, X) = SF (qo cosmX +Ps sinmX) Pm (sino) (3.10) 

where the coefficients are given by 

(C"ln (2n+ 1) rcosmX1 
LsI = u 4r ' sinmxX5 Pnm(sinl) da (3.11) 

Identification of this with equation (3.9) above yields
 

P Cnm (2n+ 1) GM AC(3
 

15uSn 4iv i {Asutt
 
Thus 

a1 ­

=SEp, (c cosmX +Op sinmX P,, (sin )
=O C= Sum 

2n+1I GM un 6S.. sinmi) P., (singp')
24Wr m (AC., cosmX + 

(n + 1) Tn. (3.13) 

where T. is the nth degree term in the disturbing potential. Finally 

cp cp D- (n +) T, (3.14) 
21r R =3 
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expresses the density of the surface layer in terms of the spherical 

harmonic coefficients of the disturbing 	potential. This equation is appli­

cable to the geoid or the ellipsoid to a 	spherical approximation. 

3.4 A Layer Spread on the Surface of 	the Earth. 

The 	disturbing potential can be produced by a fictitious layer spread on 

anany coutinuous surface, such as the geoid, ellipsoid, a sphere, or the 

physical surface of the earth. Of these, the physical surface of the earth 

provides the most satisfying interpretation, since the potential and the 

down to and on the surfaceattraction of such a layer are continuous 

[Heiskanen and Moritz, 1967, p. 7]. Thus, such a surface is capable of 

producing the anomalous attraction measured at the surface of the earth 

by gravimeters, as well as the anomalous attraction experienced by 

satellites, without any mathematical complications. The only difficulty is 

that the geometric shape of the physical surface is not completely known 

until the shape of the geoid is completely known. However, the major 

sur­features of the geoid are known. Since the geoid is a rather smooth 

face, the model of the geoid derived from a modern gravity field model 

expressed in terms of spherical harmonic coefficients probably does not 

differ from the actual geoid by more than a few meters. If such a model 

is truncated at a low degree and order, such as degree 4, most of the 

major features of the geoid will still be present [Koch, 1968]. If the SAO 

1969--Standard Earth gravity field is truncated at degree 12, and the 

truncated expression is used to generate a geoid map, the resulting map 

is practically indistinguishable from that obtained from the full model at the 

normal, 10 meter contour interval., This 	suggests that such a truncated model 

could be used as an approximation to the 	geoid. If the topographic heights are 

added to this surface, a good approximation to the physical surface of the earth 

can be described. 

This also suggests a somewhat different definition of the normal and dis­

. turbing gravity fields. Let 
W =U/ + T' 	 (3.15) 
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where U is given by a spherical harmonic series cut off at degree N 

N 
GM r E (Cm, cosmX + Snm sinmX) Pm (sinp)r ~ m~o 

+ r, Cos' P (3.16) 

and the finction T generates the rest of the potential. Since the low 

degree coefficients are well known, U may be considered a known 

function. Quantities computed from the function U' form what is called 

a "spherop reference system" by Needham [i970]. Since the surface 

U = W. approximates the geoid much better than any ellipsoid [Koch, 1968], 

the potential contributed by the function T' must be much less than the 

potential generated by the conventional disturbing potential T. Thus, it 

would appear that the density of the fictitious layer would be much less 

if the layer is used to represent T than if it represents T. Since the 

main purpose of satellite to satellite tracking is to provide refinement of 

the gravity field, not to redetermine the low order coefficients, this 

partitioning of the gravity field was chosen. This partitioning means that 

the unknown density of the surface layer, when converted into spherical 

harmonic coefficients by equation (3.8), must not yield any non-zero 

coefficients of degree N or smaller. This observation imposes (N + 1)2 

constraints on the solution for the density of the fictitious surface layer. 

The partitioning of the gravity field given by equation (3.15) was 

observed in the algorithm described in Chapter 4 and in the simulated 

solutions described in Chapter 5. The new normal potential U is con­

sidered known, while the unknowns describe a surface layer that gives 

rise to the new disturbing potential T . Reference orbits are generated 

using the normal potential U rather than the conventional normal potential 

of a level ellipsoid. 
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3.5 Practical Computations with a Fictitious Surface Layer. 

In practical computations, the fictitious layer is represented by blocks 

in which the density is constant. The density assigned to a block is theo­

retically the mean density of the surface layer in that block. The inter­

case of gravity anomalies, sincepretation is only slightly different from the 

the mean. However,there is no real surface layer of whose density to take 

if the density of the fictitious layer were computed from gravity anomalies 

by equation (3.4), then continuous values could be assigned to the surface 

layer wherever continuous values of gravity anomalies are measured. 

Ifthe density is constant within a block, th&L. all formulae involving 

of the density can be converted to finite sums. Specifically,integrals 

the disturbing potential is given by 

T = Fj Pk j- dSk (3.17) 
k
 

where the sum is taken over all the blocks and the integral is taken over 

the area of the kth block Sk . This integral is especially troublesome. 

Unless the distance of the satellite from the block is very much larger 

than the dimensions of the block, the quantity 1/, cannot be treated as 

constant within the block. In some cases this integral may be evaluated 

analytically, especially if the portion of the surface contained in each
 

a It is
block is sufficiently small that. it--may -be approximated by plane. 

also possible to evaluate this integral numerically by dividing each block 

into some number of smaller blocks and assuming the value of- 1/ to be 

constant within each sub-block. The error of approximation of this " 

approach again depends principally on the ratio of the dimension of the 

sub-block to the value of V [Needham, 1970]. For the algorithm described 

in Chapter 4, this integral was always evaluated by dividing the block into 

four sub-blocks, so that 
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DkA 4 1=. (3.18) 

where ASk is the area of the kth block and t lk is the distance from the 

computation point (Xp , yp, zp ) to the center of the ith sub-block of the 

kth block (Xk, Yik , zik)• The disturbing force at the computation point 

due to the surface layer is then computed as 

V T (x , yp,, zp) = -s 4Jk ASk E z Yp Y- . (3.19) 
k 4 i =1 ik P - Z ik 

The error of this approximation may be the cause of most of the numerical 

error detected in the simulated solutions described in Chapter 5. 

The specification of the surface S enters these equations through the 

area ASk and the coordinates (xik, Yik, zik). The coordinates of a 

point on the geoid may be found approximately by computing a value of 

rlk such that U (r ik, o ,i k ) = W. The spherical coordinates of a 

point on the physical surface are then (r + hik, rpk, Xjk) where hk is 

the topographic height of the point with spherical coordinates 'Pik, Xi. 

The topographic heights may be obtained from maps or from lists such 

as [Kaula, et. al., 1966] or [Strange and Woollard, 1964]. Inthe 

simulated solutions described in Chapter 5, the topographic heights were 

ignored and the fictitious layer was defined to be spread on the surface 

U = W0 . This is permissible for a study in which no real data is 

available, but a fully developed data reduction process should consider the 

topographic heights. The simplification was made in order to reduce the 

computational effort, and it in no way invalidates the conclusions about the 

resolution of the gravity field that can be obtained with satellite to satellite 

tracking. 
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4. 	 AN ALGORITHM FOR SIMULATING AND ADJUSTING 

SATELLITE TO SATELLITE RANGE RATE DATA -

The algorithm described in this chapter simulates least squares 

solutions for the parameters describing the gravity field from satellite 

to satellite range rate data. Since the orbits of the two satellites cannot 

be considered perfectly known, the orbit elements of each satellite for each 

orbit also enter the algorithm as unknowns. However, these are considered 

nuisance parameters of no particular interest. The observed quantities are 

the range rate between the satellites and the position of each satellite. In 

practice the position of a satellite is not observed directly; rather, some 

function of position, such as the range or direction of the satellite from one 

or more tracking stations on the surface of the earth, is observed. Rather 

than make any assumption about the mode of tracking from the ground, the 

algorithm assumes that all three components of the satellite position are 

observed, and thus generates three observation equations for each simulated 

position observation of each satellite. In the simulations described in 

Chapter 5, a low weight was purposely assigned to the satellite position 

observations to reflect the probability that not all components of position 

would actually be observed, and that the observations would be made from 

ground based tracking stations whose geocentric position would not be known 

with certainty. The weights may be varied, so that. a solution based only on 

the range rate data, with no ground based tracking data whatsoever, can be 

simulated by assigning zero weight to the position observation equations. 

Although many forces physically act on a satellite, only gravitational 

forces are considered in this section. Thus the force acting on the satellite 

is represented as the gradient of the gravitational potential of the earth V, 

F = VV 

It is 	assumed that the small luni-solar and non-gravitational forces could 
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be added to the algorithm as needed should actual satellite to satellite 

range rate data become available. 

As discussed in section 3.4, it is convenient to partition the total 

potential into normal and disturbing parts V = U + T. Here the symbols 

V and U denote the same quantities as W and U' respectively in section 3.4, 

except.that the potential of the centrifugal force is not included. Thus these 

symbols apply to an inertial, rather than an earth fixed coordinate system. 

Again the normal potential is represented by a truncated harmonic series, 
GM N a n
 

rr r i=o
U = (-) 'Z(C. cos mX +S,, sin mX) P,,(sin4) (4.2) 

where 0 denotes the spherical latitude, Xthe longitude, and r the radial 

coordinate. The second part is the disturbing potential T, which is repre­

sented as the potential of a surface layer spread over the surface of the 

earth. The advantage of this partitioning is that almost all of the potential 

is put into the normal potential U, and the disturbing potential T is quite 

small at all points. This means that.a reference orbit generated using only 

the normal potential approximates the actual orbit, and the approximation is 

sufficiently good that the differences can be represented as linear variations. 

Since the principal unknowns of the problem are the parameters describing the 

mean density of the surface layer in some convenient sized blocks, a value of zerc 

may be used as an approximate value of the mean density in all blocks, and the 

resulting observation equations are sufficiently linear that the final adjusted 

values of the parameters may be obtained in a single iteration. A considerable 

saving of labor is achieved, since the surface layer may be completely 

neglected in all computations leading to the generation of the reference 

orbit and the partial derivatives. 

The algorithm has two functions. First, the "true" orbits of both satellites 

are integrated numerically for a specified period of time. A disturbing 

potential represented by a fictitious layer is specified, and the integration 

takes into account the attraction of both the normal and disturbing compo­

nents of the field. The range rate between the two satellites is computed 

49 



and 	recorded at desired intervals during the integration, and these quantities 

then simulate the observed range rates. The positions of both satellites 

are also recorded at suitable intervals to simulate position observations. 

The second function is to form observation equations for each observed 

quantity. These observation equations are then solved by the least squares 

algorithm, and the densities of the surface layer specified in the first step 

are recovered. The elements of each orbit for each satellite may also be 

recovered, along with the variances 'and covariances of all recovered 

quantities. 

The algorithm assumes that both satellites are in low orbits and are 

If one of theconsiderably perturbed by the attraction of the surface layer. 

satellites is in a high geostationary orbit, its orbit will not be significantly 

Both the computed orbit for the high satellite andaffected by this attraction. 


the coefficients of the observation equations will reflect the fact that this
 

effect is insignificant, so that the algorithm is applicable in either case.
 

4.1 	 The Integration of the Orbits 

The integration of the orbits presents far fewer difficulties than the 

computation of the observation equations. Let X denote the three components 

of the position vector and X denote the three components of the velocity 

vector of the satellite in an inertial coordinate system. Then the acceler­

ation is given by
 

F = VV = VU + VT (4.3)
 

The components of VT are given in an earth fixed doordinate system by 

equation (3.19) and may be transformed to the inertial coordinate system by 

a simple orthogonal linear transformation. The computation of the compon-

The use of these equations forents of VU is described in section (4.23). 


direct numerical integration is the Cowell method. It requires a step size
 

that is up to 10 times shorter than that used in the Enke method, which
 

utilizes an elliptic reference orbit. However, the computing time per step 
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is about 50% less in the Cowell method, and rectification of the reference
 

orbit is not necessary. The Enke method is most suitable for near
 

elliptic orbits, such as orbits far from the earth, and for situations in
 

which a long step size is desirable, such as problems in which the
 

satellite ephemeris is only needed at widely spaced intervals [Conte, 19623.
 

The Cowell method is chosen for the case of satellite to satellite tracking
 

because at least one of the satellites is quite near to the earth and is
 

considerably perturbed, and because the positions and velocities of the
 

satellites are needed at fairly close intervals so that the range rate may
 

be computed.
 

The three second order differential equations (4. 3) are transformed to
 

a form suitable for numerical integration by setting
 

.-­
so that
 

-dtY =~ =(j)=F(Y, (X) (Pk) (4.4)
 

This represents a system of six first order equations. The first three are
 

linear and the last three are non-linear, so that the whole system is non-linear
 

and homogeneous.
 

These equations may be numerically integrated by any standard method for
 

The method chosen for these studies uses the modified Hamming
such systems. 

fourth order predictor corrector equations [Hamming, 1969]. These equations are 

[Ralstonincorporated in a detailed integration algorithm described by Ralston in 


and Wilff, 1960, Chapter 8]. The algorithm includes a fourth order Runge Kutta
 

starter. The method is considered stable, and provisions for controlling
 

the local truncation error by changing the step size are included. If the
 

weighted sum of the estimated local truancation errors for all the equations
 

in the system is greater than a preset tolerance, the step size is halved. If
 

the estimated error is still greater than the tolerance, the step size is
 

halved again, up to a total of ten halvings. If the estimated error is less 
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than one fiftieth of the tolerance, the step size is doubled, except that the 

step size is never made larger than the initial step size. 

If p is the distance between the satellites, then p = IX1 -X2 I, where 

the subscripts identify the satellite. The observable quantity is then 

=p (i:I]k2)(XI_(4.5) 
P 

which is the projection of the relative velocity vector onto the relative 

position vector. To compute the range rate at some epoch the positions 

and velocities of both satellites must be available. To ensure that this 

will always be so, both orbits are integrated simultaneously. Thus two 

systems of the form (4.4) are integrated together as a larger system of 

12 equations. The initial step size is chosen equal to the desired interval 

'between range rate observations. If the step size is halved by the integra­

tion algorithm, then the positions and velocities of the satellites are made 

available at some epochs for which a simulated observation is not desired, 

and are ignored. The interval at which the positions of both satellites are 

recorded as simulated position observations is some integer multiple of the 

initial step size. Thus no interpolation between integration steps is per­

formed. 

4.2 The Observation Equations 

Since the orbits are integrated in the Cowell form, the natural choice 

for the orbit elements is the set of components of the position and velocity 

vectors at the intial epoch, X, =_X (t0 ) and E Xk (to ). The observed range 

rate between the satellites is written functionally in terms of the unknown 

parameters as 

(t) = (X.1, X, Xo 2 , k.2, ; t) (4.6) 

The coefficients of the observation equations are the partial derivatives of 

with respect to each of the unknowns, evaluated at time t with approximate 

values of the unknowns. The range rate p (t) depends explicitly only on the 
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positions and velocities of both satellites at time t. The constant term 

in the observation equation requires an approximate value PN of the 

range rate, computed from approximate values of the unknowns. 

=For either orbit, let YN0 (XNo, XN O ) denote a set of initial epoch 

elements that approximate those of the unknown real orbit, and let ON K 

denote a set of values for the mean densities that approximate the unknown 

real values. By the discussion at the beginning of this chapter, all the (OW 

are taken to be zero. Thus the force function in the gravity field character­

ized by the 4PK is simply the gradient of the normal potential U; the disturb­

ing potential T is identically zero. Let an orbit be integrated in this normal 

field with initial epoch conditions YNO. The position and velocity components 

of this nominal orbit are denoted by YN - (XN, km). The range rate p (t) 

depends explicitly only on the positions and velocities of both satellites at 

time t, so that the computed observable PN (t) is obtained by evaluating (4, 5) 

with the elements YN (t) for each satellite. 

The position and velocity elements of the first satellite at time t depend 

in turn on the epoch elements for that satellite (X. 10 as well as on the 

mean densities in blocks of the fictitious surface layer CoK. Thus 
FA()= Fi,( +_ m _ (4.7)
6XX (t) X1 ()+ p (t) X(t 

with similar equations for the other sets of initial epoch unknowns k.1, Xo2, 

and X0 2. Also, 

K pXI(t) , (K + Xl (t) (PK 

+ +iet (4.8) 

The sets of partial derivatives ', etc., where the explicit reference 

* to time t is dropped, are obtained by differentiating equation (4. 5), 

- .?c ­"a IX (X 
p 2X2 ) 

_ p.6X 
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wk, P 

ab2 = Fix,ax ­
a- = (4.9) 

a% -ax1 

The matrix of partial derivatives
 

11 1 X 6X

Iax ax X 

- = = (4.10) 

is called the state transition matrix. It describes the transition of a 

differential variation of the initial epoch conditions from time t to time t, 

i.e., 
=6Y 65( = (D 6 :\Xo6/ 

x X0 

Such a matrix exists for each of the satellites. Their elements are needed 

in the equations of the form (4.7). The matrix of partial derivatives 

ax. 

w 11=(4.11) 
a.t] W2 

is called the parameter sensitivity matrix. It describes the effect of a 

differential variation in the parameters (PK on the orbit, 

=6Y W&64K. 

Such a matrix also exists for each of the orbits, and their elements are 

needed to evaluate equation (4.8). The net effect of variations in all the 

parameters describing a single orbit is given by 

=6Y (6Y, + W68,K. (4.12) 

These equations may alsp be viewed as a linearization of the equation 
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Y = Y (Y., (p) by a Taylor series expansion truncated at the first degree, 

YY + 
y _b= 

YbyY + (Y-YNo) 60K (4P-K0K). 

This identifies the variations 6Y and 6Y, in (4.12) as the differences 

between the real elements of the orbit and those of the iominal orbit. It 

also makes it clear that the partial derivatives are to be evaluated along 

the nominal orbit. 

Variations may also be taken of the equations of motion (4.4), 

d 
(4.13)

dt (6Y) Gay 

where 

YI
 

6f (Y)
5(P k 

are matrices of partial derivatives which are also to be evaluated along the 

nominal orbit. Substituting (4.12) into the variational equations (4.13) 

yields 

d d ­

d_4 6 Y,+ d W6K = GcD6Yo+GW& +H6 DK-

This must hold for all variations 6Y. and (pK, which implies the following
 

two matrix systems of differential equations:
 

d = d, (4.14)
dt 

dW GW+H. (4.15)
dt 

The elements of the matrices G and I depend explicitly only on the ONK 

and on the elements of the nominal orbit, so that they are implicitly 

functions only of the independent variable, the time. Thus the matrix 

system (4.14) is linear and homogeneous and the system (4.15) is linear and 

non-homogeneous. Since at the initial epoch t. we must have 6Y (t) = 8Yo, 
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the initial conditions for (4. 14) are D (t) = I, the identity matrix, and the 

initial conditions for (4. 15) are W (t0 ) = 0. The total set of equations to 

be integrated is now 

YN {f(YNo ONK) 

d-- 4 lG W + H ("6W(IG4 (4.16) 

with initial conditions 

(Y) 

The set YN contains six elements, (P contains 36 elements,- and the number 

of elements in W is six times the number of parameters OK that describe 

the disturbing potential. It is interesting to note that all of the equations 

are linear except the second group of three in the set Y,; however, 

this is sufficient to make the whole system non-linear. 

If, in the case of satellite to satellite range rate tracking, both 

satellites are in low orbits and are significantly perturbed by the 

disturbing force, it might be necessary to integrate a system of the form 

(4. 16) for each satellite. The simultaneous numerical integration of two 

such systems is certainly possible, and this approach was numerically 

tested during the design.of the-algorithm. However, the requirement for 

computer core memory becomes a limiting factor if the number of param­

eters (PK is large, and it is worthwhile investigating other methods of 

obtaining the P and W matrices. 

4.21 The State Transition Matrix. The transition matrix P is some­

times referred to as the matrizant of the orbit, or of the matrix system 

of linear differential equations (4. 14). Strictly speaking, the transition 

matrix is the matrizant of the matrix of coefficients G. This terminology.. 

corresponds to an integral representation of the state transition matrix which 
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is interesting but not especially useful [Schwarz, 1967]. 

Another alternative is to consider the fact that the transition matrix 

consists of partial derivatives, and thus can be obtained by numerical 

differentiation. In addition to the nominal orbit, six other orbits are 

integrated, each of the six corresponding to a small variation in one of 

the initial conditions. The differences between the elements of these 

orbits and those of the nominal orbits are variations of the elements. 

The ratios of these variations at any time epoch to the variations -in initial 

conditions approximate the partial derivatives (4. 10). Since each of the 

six variational orbits involves six coordinates, it is necessary to integrate 

36 equations in addition to the nominal orbit, which is the same number 

that would be involved were the differential equation (4. 14) for D inte­

grated directly. Furthermore, considerable numericalexperience is 

necessary to determine the proper variation in initial conditions to use. 

The numerical differentiation approach may be used also in the case of 

the parameter sensitivity matrix W, and the same remarks on its use 

apply. 

A third alternative is to use a state transition matrix computed for an 

orbit simpler than the nominal orbit. This usually means that the desired 

transition matrix is approximated by the transition matrix that belongs to 

the Keplerian elliptic orbit having the same initial conditions as the nomi­

nal orbit. The transition matrix for an elliptic orbit can be written explicitly 

as a function of time in a form involving only elementary functions, so that a 

considerable saving of effort may be achieved. On the other hand, - experience 

is required to judge the conditions under-which the approximation is satis­

factory. For considerably perturbed orbits near the earth, the approxima­

tion will only be satisfactory for a small fraction of a revolution. 

The direct numerical integration of equation (4. 14) was selected as an 

appropriate method of generating ( for this algorithm. This integration is 

now. examined in greater detail. 

As mentioned previously, equation (4. 14) is formally a linear differential 
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equation, since the matrix G depends only on the independent variable 

(time), and not on the dependent variable 4D. However, the dependence 

of G on t is not explicit, but implicit through the state variables YN, 

which are in turn functions of time. Since the equations of motion are 

integrated numerically the matrix G cannot be written as a continuous 

function of the time. Instead, discreet values of G can be computed only 

at those epochs for which values of the state variables YN are computed. 

Because of this property, the step sizes used in integrating 6 = G 4' 

must be identical to (or integer multiples of) the step sizes used in 

integrating the nominal trajectory. Otherwise, it would be necessary to 

interpolate in the ephemeris of the trajectory for each epoch for which a 

value of G is desired. In order to avoid the need for such interpolation, it 

is convenient to integrate the transition matrix along with the trajectory, 

letting the accuracy required in the trajectory determine the step size. 

This means that the equations for the trajectory and the transition matrix 

are integrated together as one large system of non-linear differential 

equations, and the advantages that might be taken of the fact that the 

equation for (P is linear are neglected. On the other hand, the same 

block of coding is used for integrating both the trajectory and the transition 

matrix, resulting in a saving of machine time and space. Another possible 

objection is that there is no control on the local truncation error in the 

integration of the transition matrix; howeveri the variational equations are 

generally better behaved than the trajectory equations, and usually need not 

satisfy as stringent accuracy requirements [Riley, et al., 1967]. There­

fore, the step size selected for the integration of the trajectory is almost 

always also appropriate for the integration of the transition matrix. These 

remarks also apply to the differential equation for the parameter sensitivity 

matrix W. 

The 6 x 6 matrix G may be expressed in terms of 3 x 3 submatrices by 

considering the definitions of Y and f (Y) in equation (4.4). Thus 
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bf (Y) N XG 
GY 6 (X, X) 

Since only gravitational forces are being considered, the acceleration 

depends only on the position elements X and is independent of the velocity 

elements X. Thus 

2X X 0 (4 17 

-x-1) (4.17)ax ao 

where 
=G 6 ( (4.18)bX
 

The detailed computation of the G matrix as a function of the state variables 

Ym is shown in section 4. 3. 

4.22 The Parameter Sensitivity Matrix. Asnotedearlier, it is possibl 

to integrate all three groups of differential equations (trajectory, transition 

matrix, and parameter sensitivity matrix) together as a single non-linear 

system of equations. On the other hand, it is also possible to express W 

as a definite integral, and evaluate it for any given time by an appropriate 

method for numerical integration of definite integrals. The definite integral 

expression for W is arrived at by expressing the solution as the sum of 

complementary and particular integrals, which is the standard method for 

solving non-homogeneous linear differential equations. The homogeneous
 

system of equations corresponding to the non-homogeneous systenf (4. 15)
 

is d
 
GW.-tW 

This is the same as the differential equation for I), so that the complemen­

tary solution is 

W(t) = (t) W(W). 

The matrix W (t0) bears the burden of the constants of integration. In the
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case of the parameter sensitivity matrix, these are W (t,) = 0. The 

Green's matrix of the system is cD (t) 4 -1 (T), aid the particular integral 

is given by 

Adding the complementary and particular integrals and using the initial 

=conditions W (t) 0, the complete solution is 

W (t) = (t) 4- ()H(7-) d T (4.19) 

The property that makes the use of this expression desirable is that 4­

can be expressed easily in terms of 4', considerably simplifying the 

integrand. The development below follows that of Danby [1962]. An entirely 

different development leading to the same results is given in [Warner and Nead, 

1965). 

Using the partitioning indicated in equation (4. 10), write 

and = r= 
Pa S0(4 J3 Y 

With G (0 I) 

the following differential equations may be extracted from equation (4.14): 

= , 0 1 (t.) = I, 

4= P2 (t.) = 0, 

q3= G 1 , S(t.) = 0, 

G+ =Gt, P4(o= L 

Differentiating the first two equations with respect to time and substituting 

into the second two equations yields the second order differential equations 

p= G (p, Q1(t.) = I, 1 (t.) = 0;
 

(= Gq(, C2 (t.) = 0, I(t.) = I.
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Also, differentiating r cp = t - (D= I with respect to time 

= o. 

Substituting = q3) and solving for r, 

tP + rG = 0, 

i = -rG. 

Extracting submatrices from this equation and using the initial coniditions 

r (t.) [(t.)I1 = I, the following system is obtained: 

72 = -72G, Y (t.) = I, 

=
% = - G, y(t) 0, 

=-y Y3 , y(t.) = I. 

Since the force acting on the satellite is derivable from a scalar potential 

x = and (G)=- = V Thus (G)ij = (G)jj andfunction V, =bx-"l GI 6nxj 2)xi axj' 

G = G ; i.e., the G matrix is symmetric. Using this property and trans­

posing the first and third equations yields 

i = G T 

j -Gy4T. 

Differentiation of the second and fourth equations gives 

i, = -V2, 

vs =-, 

and after substitution, 

-%T-- -Gy2, 

- : = -G-y4. 

Changing signs and indicating initial conditions, 

(-5 2) = G(-y2), (-y2T(t)) = 0, (-,J(to)) =y1 (to) = I; 
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4 = GvZ, Y4 (to) = I, y4(to) -yz-(to) = 0. 

Since (-y) satisfies the same differential equation as (%, and both have the 

same initial conditions, the two matrices must be identical; i. e., 

-T 	 =P2 ,
 

-pTor 2 =-

Similarly, yv must be identical to 9pl, or y4 = (D . 

yj = -2 T= (pTThen 

Vs 	 -9 J- T-_and 	
= 

Finally, collecting the results 

T(4.20)r = 


A further simplification of the equation for W may be made by noting 

that
 

kO 0 (4.21)
-6(X,H Fif(Y) X) 
d9(K 	 bX 1 Hj 

where H = af(X) (4.22) 
'60K 

ThenVH= 	 2-,~ (4.23) 

The 	computation of the elements of the H matrix is discussed in section 4. 3. 

The final expression for W in (4. 19) is 

IW,(t) oI(t) 02(t)) T(4)24) ) dr)1=(2" P~) t 	 (=rH r (.4 

The 	evaluation of the integral in this equation presents some interesting 

problems. 

Methods for the evaluation of definite integrals require that the integrand 
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be evaluated at certain epochs over the total interval of integration. 

However, the elements of the H matrix are functions of the trajectory, and 

the epochs at which values of D are computed also depend on the trajectory. 

Thus the integrand may be computed without interpolation only at those 

epochs for which a point on the trajectory is computed. This is in turn 

controlled both by the selection of the initial step size and by the action 

of integration module, which may adjust the step size to control the local 

truncation error in the computation of the trajectory. 

It is desirable to evaluate the definite integral along with the numerical 

integration process. Let '(t) denote the integral in (4.24) and let %'Q(T) 

denote its integrand. Assume that the integral T(ti-.) has been computed 

and stored in the computer. Also assume that qf'(t.- ) has been stored 

and is available. Now let the numerical integration proceed another step 

to t,, so that YN (ti) and 43 (t1) are available. The desired value of 'l'is 

then 

)+ St r) diTt' (4.25)
j1 

If the parameter sensitivity matrix for time t, is desired, it is easily 

evaluated as W (t) ct (t1) 4, (t1); otherwise this computation is ignored. 

Equation (4.25) is most easily evaluated by the trapezoid rule: 

Denoting T (ti) by 'i± 

T = Vi- + - 1 + 4I11 (ti--ti) (4.26) 

The use of this equation in the algorithm was numerically tested. For the 

step size being used to integrate the orbit, it proved to be insufficiently 

accurate, leading to an accuracy of only one or two significant digits in the 

observation equation coefficients. 

Simpson's rule provides a significant increase in accuracy over the 

trapezoid rule. Suppose that the integration has proceeded an even 

number of steps to time ti, and that %-s, VI -2, and P'- have been 

computed and saved. Then N'I may be computed from YN (ti) and cP (ti). 
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Further assume that the last two steps have been of the same size, so 

that h = t1 - t1_1 = ti-1 - ti- 2. Then Simpson's-rule- states 

qf = Tj - + -- j-' 2 + a2p"i (4.27)[a1 + aNP'] 

where a, = 1, a = 4, and as = 1. This can easily be worked into an algorithm 

that assures that the current value of 'I is always available: If the number 

of steps is odd, Simpson's rule cannot be applied and '1,(t) must-be com­

puted using the trapezoid rule. After the next step, the number of steps is 

again even. The integral computed by the trapezoid rule is subtracted and 

the integral over the last two steps is computed by Simpson's rule and added. 

Since the value of i has been incremented by one, the value of T computed 

by the trapezoid rule is now denoted 'l-1. If only the most recent value 

of 'I' is saved, 

= a - + (a + a (4.28) 

The only problem with this algorithm occurs if the step size is changed. 

Let h = t!_- - tl_2 and g = ti - ti..-1I If the step sized is halved h ='2g, and-if 

it is doubled 2h = g. Simpson's rule is not strictly applicable, since it 

requires that the two intervals be equal. However, it is possible to perform 

an integration having some of the properties of Simpson's rule. 

Simpson's rule may be derived by computing the area under the parabola 

that passes through three points whose abscissae are equally spaced. Thus 

the rule is exact if the function being integrated is indeed a polynomial of 

degree ,two or less. The surprising thing about this rule, and the property 

that accounts for its popularity, is that the coefficient of the third derivative 

vanishes in the error term, so that the error depends on the fourth deriva­

tive [Conte, 1965]. Thus Simpson's ruleis exact even for a cubic poly­

nomial, even though only three points are used. 

A modified Simpson's rule may be obtained by computingthe area under 

the parabola that passes through three points whose abscissae are not equally 

spaced. If this is done, the coefficients in equation (4. 27) are given by 
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9 27 27= 
al", a9 -- , as = 0 in the case h= 2g; and by a, 0, a2 = 27 
_9 

a 3 - in the case 2h = g. These modified rules do not have the 

advantageous error property of the regular Simpson's rule, so that some 

accuracy may be lost when the step size is changed. On the other hand, 

experience indicates that the step size Is only seldom changed, so that 

the regular Simpson's rule is used for ahhost all steps. These modified 

rules are still more accurate than two steps using the trapezoid rule. 

This part of the algorithm is completed by allowing for a change in 

step size. The algorithm detects a change in step size and selects the 

appropriate value of the coefficients a,, a2 , a3 for use in equation (4.28). 

Tests performed with the algorithm in this form indicated that satisfactory 

values could be obtained for the elements of W with the step size selected for 

the orbit, although these values were not as accurate as those that could be 
obtained by direct integration of the differential equation (4. 15) for the param­

eter sensitivity matrix. The coefficients obtatied by the two different methods 

generally agreed to about five significant digits. The advantages of using the 

algorithm based on the definite integral expression for W are that it is more 

efficient in terms of both computer time and computer memory space. 

4.23 The F, G, and H Matrices. At each step of the integration, it is 

necessary to compute the force per unit mass F =- I= f (X,(p4,), as well 

as the matrices 

G = af6 X and H = 6(P 

For the integration of the nominal orbit, the force vector is the gradient 

of the normal potential U. This function is expressed in terms of the earth 

fixed spherical coordinates (X, * r), while the components of the force 

vector in inertial cartesian coordinates, are needed. The two coordinate 

systems are related by . rcoscos(X+)] 

y = rcos Tsin(X+6) (4.29) 

z = rsinW J 
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where 0 denotes the Greenwich sidereal time. Applying the chain rule for 

partial differentiation, F is obtained by, 

F = VU-= (X, Tr) (x,y,z) 

A greater compactness of notation is achieved by using component notation. 

if the symbol x denotes an element of the set (x,y, z) and the symbolThus, 


y denotes an element of the set (X,@, r), the force may be written
 

(4.30)= VJU =- U _UF± 6y3 'axj 

over sub­where the summation convention is used to imply summation 

arescripts which appear twice. The components of the vector ­

ru. (IAn =r 

doi;o r M=uo= 

GMN nfn
 

6 E (n+1) % [CcosmX+ SsinmX] P~m(sinO)
 

r n=r M=-­

are easily obtained from geometrical considerationsThe components of 73xi
 

or by differentiation of (4.29). Arranged in matrix form they are
 

sin(X+ cos (X ) 0
 

r cos 
 r cost 

sin4cos (X + 6) sin 0 sin(?.+8) COS (4.32) 
r r r 

cos 4cos(X+ 6) cos bsin(X+ ) sin 
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--  

In the same notation, the components of the G matrix are 

Gij = Fj = U x-Y a2U p + yk62, 

ax3 ax1 ax3 aYka6YP ax1 a6X 6Yk aX1a6xJ 

82 
The most difficult term to evaluate in this expression is 6 since,3 

this is a triply subscripted quantity, containing 27 elements, only eight of
 

which are zero. However, a better expression for the components of G
 

may be obtained by using the tensor calculus. The components of the
 

force vector are the covariant components of a tensor, and the elements
 

of the G matrix are the components of the covariant derivative of the
 

force. Thus these elements must transform from spherical to Cartesian
 

coordinates as a doubly covariant tensor. In spherical coordinates, the
 

components of the covariant derivative of the force are given by
 

62U { s I ! 

aypbY,yp kJ by, 

where {pS} is the Christoffel symbol of the second kind. Although the
 

Christoffel symbol is also a triply indexed quantity containing 27 elements,
 

only nine of these elements are non-vanishing, and even the non-vanishing
 

elements are simple expressions. This tensor transforms to Cartesian
 

coordinates by the transformation law
 

_a_2% f q anU6U 7y3kY 
" -a =qkaYpaYk tp kJy. ) ax axj, 

where iq ] denotes the Christoffel symbol in Cartesian coordinates. SinceLi P' 
the Christoffel symbols in Cartesian coordinates all vanish, this reduces to 

2 Uba bU U4 (4.33) 
ax ax3 (ayyk Ltpskly') ax, ax 
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In the spherical coordinates (X, 0, r), the non-zero Christoffel 

symbols are 

{12} = {21} = - r 

11} coso in 0, 

2 31 3 2) r 

cosa,=131 -r 

r.
{ 21 

The elements of - are given by
aYk bYp 

2
ax r-r Z1M r~ M=O C . o0M S .sin mX] P.. (sin 4) 

a 2 GM N (In ndP,.(i
GM Zs m [-C.. sin mX-' S., sin mX]dh,(i) 

axb r r/ M=o d4) 

b2 GM N ( )'LIIr --- 7 D (n+7)) Z. [-Cnsinmx+Sn..cosmx] P .(sin)),
2
axaFr r = M= 

u NM (a) n+n d2 P (sinn 

r = r m=o d 02
 42 
N dP,. si
b2U GM U 

6 Z (n+l) iaT Z [CncosmX+ SnsinmX] dP(sint) 

a"n UNa2U GM 

be = - r,7(n+l)(n+2 ) Y) [cnmcos mX + Ssinm] P. (sin4).
 

The Legendre functions are evaluated recursively. Initial values are 

given by 

P..(sin4) = 1, 

P1.(sin) = sin4), 

P11(sin) = cos4). 

For the Legendre polynomials, the recursion relation is 
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P, (sin 0) = [(2n - 1) sin 0 P, 1 (sin) - (n- 1) P-a(sin b)]/n n 2. 

For the associated functions, 
Sn 2, 

P..(sino) = P..2, .(sin 0)+(2n-1) Cos 4 P_ 1,, M-1 (sin ) m~i. 

where the first term on the right side is defined to be zero for m>n- 2. 

For the derivatives, 

d P,. (sin $d P., M+i (sin)- m tan Pn (sin)-

where the first term on the right side is defined to be zero for m>n - 1. 

sThe second derivative &-d 02 may be evaluated in terms of Pn and 

d by using the differential equation satisfied by the Legendre associated
de
 

functions, 

(1tan) - 2­

d 02 d 0 _ cos 0 j 

The computational form of F is given by (4.30), and the computational 

form of G by (4. 33). The full expression for G also contains terms of the 

form 2 . However, since the disturbing potential T is linear in the 

(AK, these terms are also linear in the (PK. And since the Q K are all zero 

in the gravity field that generates the nominal orbit, all of these terms 

vanish. 

In the generation of the "true" orbit used to simulate actual data, a 

8T.
 
term V, T = --- is added to the components of force obtained by (4. 30).

6xL 

This is given in terms of earth fixed rectangular coordinates by (3.19). 

The computational form in inertial coordinates is then 
vT = = )T Z 1 

RS Pk A Sk (%(9)XXm). (4.34)'aXk 4 71Ik-

The matrix Rs(@) is the orthogonal rotation matrix which effects a rotation 

of the coordinate system around its third axis through an angle 6. The 

coordinates X are those of the satellite in the inertial coordinate system, 
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R 3 (@)X are the earth fixed coordinates of the satellite, and Xk are the 

earth fixed coordinates of the center of the ith subblock of the kth block. 

The distance Zis computed from the difference in the earth fixed coordinates 

of the satellite and the subblock. 

Since the normal potential U does not contain the density parameters Pk, 

the matrix H may be obtained immediately by differentiating equation (4.34), 

af X)2 T-i4 1 

Hf=-) - 2 T = -R 3 (-6) ASk% E (R(e)X-Xik)" (4.35)60k = X6 0k 	 4=1ti 

4.24 Forming the Observation Equation. The total system to be 

integrated simultaneously by the predictor-corrector process consists 

of 84 differential equations: six elements of the orbit and 36 elements of 

the transition matrix for each of the two satellites. The initial condition 

for each of these 84 quantities is set up, the NIrmatrix for each satellite 

is initialized to zero, and the numerical integration is begun with a step 

size equal to that used in generating the simulated data. The functions to be 

integrated are given by equation (4.4) for the trajectory and (4. 14) for the 

transition matrix for each satellite. After each step of the integration the 

H and V'matrices are computed and the ',I/matrix is updated to the current 

epoch, using equation (4. 26) if the total number of steps is odd and (4. 28) 

if this number is even. 

The file of simulated observations is then examined for a simulated 

observation at the current epoch. Since the simulated observations are 

formed at intervals that are multiples of the initial step size, the epoch 

of an observation will always be reached after an integral number of steps 

during the integration of the nominal orbits and transition matrices. When 

real 	data is processed, this will not generally happen, and an algorithm 

designed to process real data will need to invoke some kind of interpolation 

procedure in order to obtain values of Y., P, and V" for each- orbit 

corresponding 	to the time of the observation. 

If no simulated observation is found, the integration proceeds on to the 
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next integration step. If an observation is found,then the W matrix for each 

satellite is evaluated by equation (4. 24) in the form W = - DI!. For a 

range rate observation, a computed observable PN is computed by evalu­

ating (4.5) with the elements of the nominal orbits YN (t). This is sub­

tracted from the "observed" -b to form the constant term in the observa­

tion equations. The partial derivatives of the range rate with respect to 

the elements of each orbit are computed by (4. 9). The coefficients of the 

observation equations are formed by combining these with the elements of 

the parameter sensitivity matrix in equation (4. 8) and with the elements 

of the transition matrix in (4.7). The coefficients are arranged in a row 

matrix so that the observation equation can be written 

A 6 0k + B1 6Y0 1+ B2 6Y0 2 = P-Pw (4.36) 

where A j I, 

F 

LaYolA :La X01  -ki' 

B2 - Fh = a2 
L a Y0 2  LaX0 2  aX 0 2 

If an observation of the position of one of the satellites is found at the 

current epoch, then three observation equations are formed, one for each 

coordinate. Assuming that the first satellite is observed, the three obser­

vation equations are 

W(c + 4u 6Yo= x - xN (4.37) 

The matrices W11 and 'lk are obtained from the first three rows of the 

W and cZmatrices for the first satellite. The coefficient of 6 Yo2 is zero. 

If the second satellite is observed, all quantities refer to the second satel­

lite and the coefficient of 6 Yo is zero. 
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All observation equations of the form (4.36) or (4.37) are recorded for 

later adjustment in a simulated solution. 

4.3 The Energy Integral. 

A useful check on the numerical integration of the orbits is provided 

by the energy integral. The classical form of the energy integral for 

time independent potentials is 

1v2 
v - V = constant 

where v denotes the velocity and V the potential. However, this equation 

can be used only if there are no longitude dependent terms in the geo­

potential, since longitude dependent terms cause the potential to vary with 

time; i.e., although the potential is a function only of position in earth 

fixed coordinates, the earth rotates with time so that in inertial coordinates 

the potential is a function of both position and time. In this case, the 

classical integral is not valid, and the appropriate tool is the Jacobi inte­

gral [Hotine and Morrison, .1969]. 

The Jacobi integral is simply derived as follows. Again, let V denote 

'the gravitational potential and let W denote the potential of gravity, obtained 

from the gravitational potential by the addition of the potential of centrifugal 

force, 

W V + (k2 +2 y ) 

where w is the angular velocity of the earth. If X' denotes the time 

derivative of the position vector with respect to a basis that is rotating 

with the earth, and it denotes the time derivative of the same vector 

with respect to a non-rotating basis that is instantaneously coincident with 

the rotating basis, then 

t = -X+ a XX 
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where a is the angular velocity vector of the earth. In either celestial or 

earth fixed coordinates 

If Qi is considered to be constant (which is very nearly true), the relation 

between the accelerations is 

X" + 2Q x X'+ o x (0 x X). 

By Newton's third law, the acceleration in inertial coordinates X is equal 

to the force per unit mass, which is the gradient of the gravitational poten­

tial V, so that 

X" VV - 2QxX'- QX (flxX). 

The second term on the right is the Coriolis force and the third term is 

the centrifugal force. The usual form of the equations of motion in earth 

fixed Cartesian coordinates is obtained by moving the Coriolis term to the 

left hand side of the equation and resolving this vector equation into its 

components in earth fixed coordinates, taking account of the definition of 

x" 2-wy + Ox, 

y+2wox -y+a V &)eY 

,, 6V
 
z = 

This set of equations may also be written in terms of the potential of 

gravity W as 

X + 2al X X = VW. 
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X 

The Jacobi integral is obtained by taking the inner product of this equation 

with X 

Xll. Xl = VW X. 

Since W is a function only of position in earth fixed coordinates, VW 

is the total time derivative of W. Thus 

X X d (X" X' VW X' dW 

Xt dt 

Integrating, 

!X,• X, = W +c. 

Substituting X' - x X, this becomes3 Xl 

.k- (a XX). :k +!(axx) = w +c. 

Writing this in terms of the inertial position and velocity components yields 

S(i 2 + r + • 
- (x - yk) + 1 (x2 + Y2 =W + C, 

or 

-V - (x - y)= constant (4.38) 

which is the Jacobi integral. 

The quantity (4.38) is computed at each step of the integration of the 

simulated "true" orbit and the nominal orbit for each satellite. Although 

this quantity is different for different orbits, its constancy for any one 

orbit serves as a useful check on the accuracy of the numerical integration 

process.
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4.4 	 Solution of the Observation Equations. 

The observation equations are collected together and solved in a 

conventional least squares adjustment. Since the simulated observations 

do not contain any observational errors, it should be possible to obtain a 

solution that satisfies all the equations, at least to the extent that the linear­

ized form of the observation equations is valid. Since the parameters used 

to generate the simulated observations are known, the differences between 

the recovered parameters and these "true" parameters provide a measure 

of the numerical error of the algorithm. 

All of observation equations arising from a single pass of the two
 

satellites may be collected together and written as a single matrix equation
 

=A, 64PK + B,j1 YI + B2j 6 Y LY (4.39) 

where the subscript j is attached to denote the jth pair of orbits. The gravity 

field unknowns are common to all orbits, but a new set of orbit unknowns
 

is introduced for each pass of each satellite. Weights are introduced for
 

each observation equation by inverting the assumed variance for the corre­

sponding observation. These are arranged in a diagonal weight matrix Pj
 

for each pair of orbits. The normal equations are written in partitioned
 

form as
 

NOT, N2 .. .N 0 6Zoa 	 ... o 

Nj 0 N2 . . . 0 	 (4,40) 

NT 0 . , 6Z~ 

where
 

BS 4T P3 Aj

3 

N4j 	 AjT P3 B3 
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Af Pj Lj,ri ;D 

= T P, Li , 

and 

Since the orbit unknowns are not of any particular interest, they may be 

eliminated from the system of equations. The resulting reduced normal 

equations are written 

N 6K K (4.41) 

where 

N = R -SN K1NRT 

K = K - Nj RV K 

This equation is solved for the gravity field parameters &qK. The inverse 

of the coefficient matrix N is the covariance matrix of these parameters, 

and it furnishes the uncertainties of the parameters and the correlations 

between them. From these statistics, from the conditioning of the normal 

equation coefficient matrix, and from the numerical error of the solution, 

it is possible to make a qualitative judgment as to whether observations of 

the type used can successfully resolve the components of the gravity field 

characterized by the PK. 
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5. THE SIMULATED DATA AND SOLUTIONS 

The algorithm described in the previous chapter was coded for machine 

computation in FORTRAN IV language. Several series of simulated solu­

tions were performed on the IBM 360/75 computer of The Ohio State 

University. All computations were performed in double precision arithmetic. 

The normal gravity field used for all computations was the 1969 

Smithsonian Standard Earth [Gaposchkin and Lambeck, 1969] field trun­

cated at degree and order (12, 12). This field represents most of the infor­

mation that may be obtained from ground to satellite tracking data alone, 

without the addition of surface gravimetry data [Gaposchkin and Lambeck, 

1969; Gaposchkin, 1970]. The reference ellipsoid and other parameters 

associated with this gravity field were also used in all appropriate compu­

tations. A contour map of the geoid was produced using the full list of 

harmonic coefficients, and this map served to define the geoid height, when 

needed.
 

The fictitious surface layer was spread on the surface defined by U = Wo, 

which closely approximates the geoid. The topographic heights of land areas 

were not considered, since they were not pertinent to the purpose of the 

study. Block sizes of 5 0 X 50, 2' x 20, and 1ox 10 were used to de­

scribe the density of the surface layer. None of the solutions considered a 

global surface layer spread over the entire earth. The largest area con­

sidered covered roughly the area of0 the contiguous United States and the 

Caribbean, described by 92 50 × 5 blocks. Smaller areas were used 

when solutions for smaller block sizes were considered, so that no solution 

involved more than 100 parameters describing the gravity field. The den­

sity of the surface layer outside the area being considered was assumed to 

be zero. No allowance was made for these neglected areas in simulated 

solutions, and the possibility that the effect of such areas might bias the 

solution was not considered. 
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A series of passes over the area being considered was generated for 

each of the assumed gravity fields. Satellite altitudes of 700 km, 300 km, 

200 km, and 100 km were used, the choice depending on the block size 

used to describe the gravity field. In each case, satellite to satellite 

range rate and satellite position observations were simulated, observation 

equations were formed, and a solution for the unknown parameters describing 

the gravity field was performed. 

Initial step sizes of 32 and 16 seconds were used for the integration of 

the orbits and the partial derivatives, depending on the density of obser­

vations desired. The tolerance and the weights used to control the local 

truncation error during the integration process were selected to provide an 

estimated global error of less than 1 meter in position and 1 x 10-4 meter 

per second in velocity. This corresponds to a numerical accuracy of about 

eight significant decimal digits in all quantities. Examination of the con­

stancy of the energy integral discussed in Section 4.3 indicated that accuracy 

in this many significant digits was maintained. For passes at an altitude of 

700 kim, a step size of 32 seconds was sufficient to maintain this accuracy. 

For passes at lower altitudes, the integration module selected a step size 

of 16 seconds, regardless of the initial step size. 

The weights assigned to the different kinds of observation equations 

were varied, although the weight of the satellite to satellite range rate 

observation was most often formed from an observational standard deviation 

of 0.05 mm/sec. The predicted range of accuracies for this type of obser­

vation is 0.03 - 0.05 mm/sec [Kaula, 1969], so that the figure used is 

slightly on the conservative side. 

Several tests were performed to assure that the linearized observation 

equations were valid for the range of values of orbit unknowns under con­

sideration. Since the "true" set of values of the unknowns was known, 

these values could be substituted into the linearized observation equations. 

If these values satisfied the linearized observation equation, at least within 
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the uncertainty assigned to that type of observation, then the equation was 

judged to be satisfactorily linear for that set of values. The tests indicated 

that the linearized observation equations were valid for mean densities of 

the surface layer of 10 to 15 mgal, variations in initial epoch position ele­

ments of several hundred meters, and variations in initial velocity elements 

of several tenths of a meter per second. This indicated the validity of 

integrating the transition matrix with the same step size used to integrate 

the orbit, as well as the validity of the algorithm used to generate the 

parameter sensitivity matrix. It also indicated that, with the expected 

values of the unknowns, a solution can be reached in a single iteration. 

The algorithm used to solve the reduced normal equations was the LU 

algorithm [Conte, 1965, p. 178], modified specifically for symmetric 

matrices [Uotila, 1967, p. 27]. Computer storage space was reserved only 

for the upper triangular part of the matrix of coefficients. With this stor­

age restriction, symmetry must be maintained at each stage of the reduction, 

so that pivoting can take place only on the main diagonal. L e., whenever 

two rows are interchanged, the corresponding columns must also be inter­

changed to maintain symmetry. It was noticed that if the matrix is posi­

tive definite, then the ratio of the maximum to the minimum pivot element 

provides a good indicator of its condition. This number can be shown to be 

directly related to the M-number of Turing [Faddeev and Faddeeva, 1963, 

p. 125]. This condition number was used in conjunction with the covariance 

matrix of recovered parameters to judge whether a given set of observa­

tions was capable of resolving the mean densities of the surface layer in a 

given set of blocks. 

The potential represented by the surface layer can also be represented 

by spherical harmonic coefficients by equation (3.8) in the form 

A" 2 - 6s, S ' s AS(n-rn)! .(fJ~JOOw' rcon An
ASam GM (n +m) ! k ik 4 
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where (Pik , 0 , Xk) are the spherical coordinates of the ith sub-block 

of the kth block. Were the values of the density computed in blocks 

covering the whole earth, we would expect the A C= , ASm to all be zero 

for (n, m) less than (12, 12), since the low order components of the 

gravity field are contained in the modified normal potential and not in the 

modified disturbing potential. However, this is not true when only a por­

tion of the earth's surface is considered. Nevertheless, values of ACm 

and ASnm may be computed from assumed values of the 0k , and these 

equations may then be used to impose linear constraints on the Pk during 

the simulated solution. This procedure may be interpreted as expressing 

the condition that the values of the potential coefficients below (12, 12) are 

not to be changed. This condition will insure that the surface layer within 

-and outside of the area under consideration will not give rise to any neW 

terms in the disturbing potential of degree 12 or less. 

Since the potential coefficients of degree and order (12, 12) and lower 

were assumed to be perfectly known, it would have been possible to impose 

132 = 169 linear constraints on the values of the mean densities. However, 

the largest solution involved the unknown mean density in only 100 blocks. 

Since the imposition of the larger set of constraints would have completely 

overridden the observational data, and would have masked the ability of 

the observations to separate the effects of the densities of neighboring 

blocks, these constraints were not exercised. 

5.1 Preparation of Assumed Gravity Fields. 

5.11 Method of Preparation. Although any assumed gravity field would 

serve equally well for a simulation study, it was decided to use the gravity 

field as it is actually known from terrestrial gravimetry, since this would 

best represent the magnitude of the irregularities we hoped to detect, and 

would also demonstrate the conversions involved in transforming between 

different representations of the gravity field. The terrestrial field is 

usually represented by mean free air gravity anomalies referred to the 
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International Gravity Formula, while the representation desired was the 

mean densities of blocks of a surface layer; therefore, a transformation 

from gravity anomalies to surface layer densities was necessary. 

The anomalies are assumed to be referred to an ellipsoid of flattening 

1/297 inherent in the International Gravity Formula. Since the 1969 

Smithsonian Standard Earth is used to represent the normal field, it was 

first necessary to convert the gravity anomalies into this system. The 

parameters used in the 1969 Standard Earth are [Gaposchkin and Lambeck, 

1970, p. 8, p. 49, p. 64] 

GM = 3.986013 X10 km/sec2, 

a = 6378155 m, 

1/f = 298.255. 

The first two parameters were used by Kozai in his solution for the zonal 

terms of the gravity field [Gaposchkin and Lambeck, 1970, p. 8], as well 

as in the solution for the tesseral terms. The value of GM was originally 

obtained by the Jet Propulsion Laboratory and was the value used to scale 

the earlier SAO C6 system [Lundquist and Veis, 1966]. Together with a 

-value of the rate of rotation of the earth w = 0.72921151467 x 10­

radian/sec (assumed known), the above values are sufficient to determine 

the other constants of the gravity field. It is stated [Gaposchkin and 

Lambeck, 1970, p. 49] that the value of 1/f = 298.255 corresponds to 
=Kozai's 1969 value of J2 1082.628 x 10-'. However, this is not pre­

cisely true: using the other parameters the value 1/f = 298.255 implies 
= - ,J2 1082.6392 x 10 while J2 = 1082.628 x 10- implies 1/f = 298.2565. 

Thus, the ellipsoid a = 6378155 m, 1/f = 298.255 is not precisely a mean 

earth ellipsoid. The value of 1/f = 298.255 appears to have been obtained 

from Kozai's 1967 solution for zonal harmonics [Lundquist, 1967b]. 

The values of equatorial gravity and the potential on the geoid corre­

sponding to the above parameters are 
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^Y = 978.0291 gal, 

W = 6263681.1 kgal meters. 

These values are well within the uncertainties of other recent determinations 

[Rapp, 1966], and thus may be assumed to define the actual earth. The 

equipotential ellipsoid a = 6378155 m, 1/f = 298. 255 then has the same 

mass and rotational velocity as the actual earth, the same potential as the 

geoid, and is a volume ellipsoid [Mueller and Rockie, 1966]. The formula for 

normal gravity on this equipotential ellipsoid is 

= 978.0291 (1 + .0053025 sin2 p - .00000585 sin2 2 p) gal. 

The value of equatorial gravity in the International Formula was obtained 

from an analysis of gravity values in the Potsdam system, which is known 

to differ significantly from the absolute system [Heiskanen and Moritz, 1967, 

p. 152]. Therefore, gravity measurements used to compute gravity anom­

alies with the International Formula should be in the Potsdam system; 

similarly, gravity measurements should be in the absolute system if the 

gravity formula above is used. The gravity anomaly in the International 

system is 

Ag, = g - 7, 

where g denotes measured gravity in the Potsdam system reduced to the 

geoid, and Y is normal gravity computed from the International Gravity 

Formula. In the SAO 1969 Standard Earth system, the gravity anomaly is 
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AgSAO = gA- YsAO -	 +(gA g)' (VsAo - Y) 
0 0 	 0 

where gA Q is measured gravity reduced to the geoid in the absolute system, 

and ysAO is normal gravity in the SAO system computed by the gravity 

formua above. The term (g - g) is the Potsdam correction, and the 
0 0 

of the two 	 aterm (YSAO - t) is the difference gravity formplae. Using 

value of -13.7 mgal for the Potsdam correction yields 

Ags 0 = Ag + 6.2 - 13.7 sin2 (mgal) 	 (5.1) 

for the conversion of the 	gravity anomalies. 

a block of the surface layer may then be obtainedThe mean density of 


from
 

I (Ag+ jN) 	 (5.2) 

mean geoid height in thewhere A. is the mean gravity anomaly and N the 


A surface layer with this density generates the total disturbing po­block. 

surface layer is intended totential in the conventional sense. However, the 


represent only that portion of the disturbing potential that corresponds to
 

of degree higher than 12. Thus, it is necessary to remove that
terms 
between the potentialdensity distribution which gives rise to the difference 

and the potentialrepresented by the spherical harmonic series of degree 12 

of a level ellipsoid. The density distribution corresponding to the conven­

co­
tional disturbing potential is expressed in terms of spherical harmonic 


efficients by equation (3. 14)
 

1 n (2n+1) T . 
47rR o 

Thus the modified density is
 
12m
 

- - E= (2n+1) T, (5.3) 
4irR a=o 
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where the spherical harmonic coefficients of the 1969 Smithsonian Standard 

Earth are used to compute the Tn. The q * are the density parameters for 

which solutions were simulated. They are simply denoted by o elsewhere. 

5.12 The Gravity Fields. Four assumed gravity fields were prepared 

in the manner described in the previous section. Mean free air anomalies 

referred to the International Formula were converted to the SAO system 

by equation (5. 1). The corresponding density was computed by (5.2) and 

the effect of the (12, 12) field was removed as in (5.3). The values of the 

geoid height used in (5.2) referred to the SAO ellipsoid a = 6378155.0 m, 

1/f = 298.255. They were read from a contour map generated from the 

full set of SAO gravity coefficients. The four gravity fields are described 

below. 

A. A set of 92 50 x 50 blocks in the vicinity of the United States 

and the Caribbean. This area was chosen because terrestrial gravity 

anomalies have been densely measured within it, and the actual roughness 

of the field is represented by their rapid variation. The mean free air 

anomalies for these blocks were taken from [Heiskanen and Moritz, 1967]. 

These are shown in Figure 5.1, and the geoid heights are shown in Figure 

5.2. The corresponding values of the density parameters are shown in 

Figure 5.3. 

Figure 5.4 shows the mean values of the density parameters after the 

(12, 12) portion of the gravity field was removed by equation (5.3). These are not 

a great deal smaller than the values in Figure 5.3, which somewhat 

contradicts the assumption that the dominant part of disturbing potential is 

given by terms of degree 12 and lower. On the other hand, this may also 

be interpreted as reflecting the roughness of the true gravity field, since 

the irregularities of 50 x 50 blocks cannot be absorbed by harmonic anal­

ysis in which the shortest half-wave length used is 150, corresponding to 

the 12th degree terms. 
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B. A subset of set A, consisting of 24 5u X 50 blocks between 250 

and 500 north latitude and 2300 and 2550 east longitude. 

C. 	 A set of 100 10 X 10 blocks between the limits 35' -- 45' north 

-latitude and 240° 2500 east longitude. Free air gravity anomalies for this 

area were taken from [Strange and Woollard, 1964] and ate shown in Figure 

5.5. The corresponding values of the density parameters, after removal 

of the (12, 12) portion of the gravity field, are shown in Figure 5.6. As 

expected, the gravity anomalies and density values show a much greater' 

variation than in the case of the larger blocks. 

D. The gravity anomalies and geoid heights used to generate set C 

were meaned together into 25 20 X 20 blocks. The free air gravity 

anomalies are shown in Figure 5.7; and the corresponding density 

parameters, after removal of the (12, 12) portion of the gravity field, 

are shown in Figure 5.8. 

5.2 Sensitivity of the Range Rate to the Density of the Surface Layer. 

The coefficients in the observation equations describe the sensitivity of 

the measured quantity to each of the unknown parameters. By plotting 

these coefficients on a map, one may identify the effect of each block on 

the range rate between the two satellites. This was done first for two 

satellites separated by 200 km in the same orbit at an altitude of 700 km. 

The partial derivatives with respect to the mean values of the density param­

5° eter in the 92 × 50 blocks (SetA) were computed for a point near the middle 

of the pass. These sensitivity coefficients are shown in Figure 5.9. They 

describe the effect on the range rate between the satellites of a block in which 

the density parameter is one mgal. The sensitivity is zero in the block beneath 

the two satellites; it reaches a positive maximum about 700 km in front of their 

position, and a negative extremum about 700 km behind their position. When these 

sensitivities are evaluated for several points along the same orbit, the most 

noticeable phenomenon is that the pattern shown in Figure 5.9 follows the 
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At whatever point the partial derivatives aresatellites along the orbits. 

evaluated, an area of maximum positive sensitivity is found a short dis­

tance in front of the position of the satellites, and an area of maximum 

short distance behind their position. Further­negative sensitivity is found a 

line drawn through the satellite'smore, the sensitivity is zero along a 

The sensitiv­position and perpendicular to the ground path of the orbit. 

of this line are almost always negative and those in front ofities in back 

the line are positive. If the sensitivity coefficients are plotted as a function 

a block lying on the ground path of the satellite, the typicalof time for 

sinusoidal signature discussed in Chapter 2 is obtained. The effect of the 

surface layer in blocks far from the ground path of the orbit remain small 

throughout the pass. Furthermore, the magnitude of the positive and nega­

tive maxima remain fairly constant at about 0.05 mm/sec. This means 

the range rate of a block on which the densitythat at this altitude the effect on 

parameter is one mgal and which lies on the ground path of the satellite is equal 

to the expected noise level in the measurement. Thus, the accuracy of the de­

from this altitude cannot be expected to betermination of the parameters 


observations are used. On
much better than one mgal, unless a great many 

the other hand, only a few blocks have significantly large sensitivities, and 

among these blocks sensitivities of the range rate to the values of the param­

in two neighboring blocks are significantly different. This meanseters 


that this type of observation should be well able to separate the values of
 

the density in neighboring blocks.
 

For purposes of comparison, partial derivatives were also evaluated
 

of one low satellite tracked by a high gedstationary
for the configuration 


was in the same 700 km high orbit used for
satellite. The low satellite 


and the 50 X 50 blocks were again
both satellites in the previous case, 


used. The sensitivity coefficients for this case are much larger, as shown
 

in Figure 5.10. In the case of two satellites in the same low orbit, the
 

far away blocks affect both satellites in approximately the same way, and
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thus have little net effect on the range rate between them. While a single 

low satellite tracked by a high satellite approaches a block of positive density along 

the ground path of the orbit, the surface layer in that block continually attracts 

the satellite, thus increasing the velocity toward the block. After the satellite 

passes, it is pulled back and its velocity tends to decrease. However, the 

satellite has also been pulled downward into a lower orbit during the entire 

pass, which serves to increase its velocity. The net effect is an accumula­

tive increase in velocity which is steepest during the time the satellite 

approaches the block and levels off as the satellite passes the block. How­

ever, this means that the blocks that have the greatest effect on the range 

rate are those far back on the ground, path of the orbit, not those in the 

vicinity of the satellite position. Furthermore, all blocks very far back 

on the ground path will have approximately the same large effect on the 

range rate. This means that two satellites in this configuration cannot be 

expected to separate the values of the density in neighboring blocks as 

efficiently as the two satellites in the same low orbit. On the other hand, 

the densities in neighboring blocks can be separated by using orbits of 

different inclinations, or a combination of ascending and descending passes. 

Furthermore, the larger values of the sensitivity coefficients means that 

the uncertainties of the recovered values for the density of the surface 

layer should be smaller when this configuration is used. 

To test the effect of the altitude of the satellite partial derivatives 

were evaluated for two satellites separated by 200 km in the same orbit 

300 km high. In this case, the pattern of the sensitivity coefficients was 

the same as when the satellites were 700 km high. However, the magnitude 

of the two maxima along the ground path of the orbit was two to three 

times as large. This suggests that the sensitivities are approximately 

inversely proportional to the altitude of the two satellites, at least for this 

range of altitudes. 
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5.3 Experimental Solutions Using Simulated Data. 

Several series of solutions were run to test the effects of the config­

uration of the satellites, the relative weighting of the different equations, 

the rate at which observations are taken, and the density of observational 

data. These solutions were designed to answer the questions raised in 

Chapter 1. 

5.31 Experiments with 700 km High Orbits. The first series of 

solutions used the gravity field described by 92 50 X 50 blocks. Obser­

vations of range rate and position were generated at intervals of 32 seconds 

for nine passes of a pair of satellites separated by 200 km in the' same 

orbit at an altitude of 700 kIn. All passes were arcs of a circular orbit 

with an inclination of 800, and all were ascending passes. The first 

three solutions tested the effect of the relative weighting of the range rate 

and position observations. 

Solution 1.1 used weights based on standard deviations of 0.05 mm/sec 

in range rate and 100 m in all components of position for both satellites. 

The uncertainties of the recovered values of the density parameters were quite 

large, ranging from two to 20 mgals. Since the largest value of the density pa­

rameter in any block was 7.2 mgals, this was judged an unsatisfactory solution. 

For Solution 1.2, the standard deviation of the position observations 

was decreased to 10 m in each component. This significantly decreased the 

standard deviations of the recovered parameters, the largest uncertainty in 

any block being 4.6 mgals. The correlations between neighboring blocks 

was smaller and the conditioning of the normal equation matrix was better 

than in the previous solution. This showed that satellite position observa­

tions significantly add to the solution if the tracking accuracy is sufficient 

to determine satellite position to 10 meters. However, the numerical 

errors in the recovered parameters were excessively large,reaching 21 

megals in one block. 

This solution appeared to indicate that position observations with an 
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uncertainty of 10 meters contain about the same information as satellite to 

satellite range rate observations with an uncertainty of 0.05 mm/sec. Were 

this so, the use of satellite to satellite tracking would be unnecessary, 

since future ground based tracking equipment utilizing pulsed laser systems 

will be able to determine satellite position to much better than 10 m. 

Therefore, a third solution was run utilizing only the position observation 

equations. This solution was overcome with numerical error, so that all 

significant digits were lost. This means that the matrix of coefficients of 

the reduced normal equations was, so poorly conditioned that a solution was 

not possible with the algorithm used, which indicates that the position obser­

vations alone were not capable of resolving the gravity field in 50 X 50 

blocks. 

One cause of the large uncertainties and correlations in the first two 

solutions appeared to be a lack of sufficient data. The number of range 

rate observations was only slightly greater than the total number of gravity 

field and orbit unknowns. Furthermore, the spacing between the ground 

tracks of the orbits was about twice the width of the blocks. Therefore, 

five more ascending passes and seven descending passes were added to the 

data set. Each block was then traversed by the ground path of at least 

one pass. The pattern of these passes is shown in Figure 5.11. With a 

data rate of one observation every 32 seconds, at least two range rate 

observations were made over each 5° X 5' block. 

Solution 1.4 utilized this larger data base. The weights were based on 

observational uncertainties of 0.05 mm/sec in range rate and 100 m in 

position. This solution was a significant improvement over those obtained 

with the smaller data set. The uncertainties of the recovered values of 

the density are shown in Figure 5.12, and the numerical errors in the 

solution are shovn in Figure 5.13. Comparison with the "true" values of 

the density in Figure 5.4 shows that these uncertainties are still much 

larger than the values of the parameters to be recovered in many of the 

98 



50 

i VC.' 

4, ... AiI T
1
40 3 

>-'\., ---, .. . . 1 


35
 

-W'1 - (1N
2S0 v 7 


5t 2 f kt29[VP 2 520A 020 23 10 K 


Fig.~ ~ ~5.1.Ptenoassat70k liueoe hesto x5 lcs
~ 



50 

45 
0.1 '-o. 4 0.5 -0. 0.7 -0.7 0.6 -0. 4 

-
- -- 3 0.4 -0.3 0.20 

40 
0.1 0.0 0.1 -0.1 -0.1 0.2 -0.2 00.00 3 0.1 0.0 

35­

0.0 O.0 -0.1 0.0 0.0 -0.1 0.1 0.0 -0.1 0.1 0.0 0.0 

o 30 

0.1 -0.1 0. --0. 0 0.0 -0.1 0.1 -0.1 0.1 O0.1l 0.1 -0.1 

25 
0.0 0.1 0.3 -0.3 0. 

_ 
0.2 
_,_ _ 

0.2 
_,_,-,_ 

-0. O).12 0.0 
_ 

20 

0.0 0.1 -0.2 1 -0.1 _1%1 C 1 '-.-, 

" 

0.0 0.0 0.0' " -,0.1 0.0 0.1 -0.3 0.3 0.0 0.0 

10
230 

-
235 240 245 

0.0 

250 

0.1 -0.1 

255 260 

0.1 

265 

0.0 

270 

0, 0.0 
' 

275 280 

0.0 -Qv 
' 
285 

>0.1 

290 
I 

295 
"--

300 

Fig. 5.13. Solution 1.4. Numerical errors in recovering density parameters in 50 x 50 blocks (mgals). 



50; 

1,4 -2.3 3.3 3.5 3.7 4.0 3.9 4O " . 4.0 4.1 3.6 Ar--4,3n 

1.0 1,1 1.9 2.5 2.7 2.8 2.8 2.9 2 -2 3.0 3.0 2.9 1.9 

40 -­

1.0 o 1.4 2.1 2.2 2.2 2.5 2.4 2.5 2.3 2 1.3 

35 ­

1.0 1.3 ,1.7 1.7 1.8 2.0 2.0 20 1.9/" 1.8 1.1 

0.6 1.0 1 1 1 '12 1.6 1.7 15 1.5 1.0 

25 - N - - I 

1.0 1,2 .4 5 1.4 5 

0.7 1.1 1.2- -J.2 1.2 -T1.3 1.2 1.3 1.1 0.7 

10- - 1 1 1" 

230 235 240 245 250 255 260 265 270 275 280 285 290 295 300
 

Fig. 5. 12. Solution 1.4. Uncertainties of the recovered values of the density parameter in 5O x5" blocks (mgals). 



blocks. The numerical errors are also larger than the "true" values in 

many cases, that this solution cannot be judged completely satisfactory.so 

However, the condition number of the coefficient matrix and the correlation 

successfullycoefficients indicate that the effects of neighboring blocks are 

The correlation coefficient between a block and its neighbor onseparated. 


the east or west ranged from -0.70 to -0.90. If one block intervenes
 

between the two neighbors, the correlation is about +0.50. The correlation 

between a block and its neighbor to the north or south ranged from -0.20 to 

error+0.25. The numerical errors in Figure 5.13 also indicate that the 

in the recovered density in a block is significantly correlated with the 

error in a block to the east or west, but fairly independent of the error 

in a neighboring block to the north or south. Although the uncertainties of 

the recovered parameters are large, the successful separation of neighboring 

blocks indicates that a satisfactory solution could be obtained if more data 

were used.
 

Figures 5. 12 and 5.13 also show a significant edge effect, with both the 

uncertainties and the numerical errors increasing toward the center and 

toward the north. The northward increase may be due to the fact that the 

extended somewhat farther to the south than to the north of the areapasses 

under consideration. However, this same pattern was also evident in other 

solutions using different sets of passes. A more satisfactory explanation 

may be that the blocks in the north are somewhat smaller in area, so that 

their effects are somewhat harder to separate. 

5.32. Experiments with 300 km High Orbits and Various Weights. A 

second set of simulated solutions was run to confirm and extend the results 

of the first series. In order to economize on the computer time required 

to run the simulations, a subset of 24 of the 92 5' X 50 blocks was used 

to describe the gravity field. Ten passes of a pair of satellites separated 

by 200 km were generated. Five ascending and five descending passes 
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completely covered the area under consideratidi. All passes were arcs of 

a circular orbit with an altitude of 300 km and an inclination of 800. The 

lower altitude and denser coverage were expected to result in improved 

solutions. 

Solution 2.1 confirmed this expectation. The weights for this adjust­

ment were generated from standard deviations of 0.05 mm/sec for range 

rate observations and 100 meters for position observations. The uncer­

tainties of the recovered parameters are shown in Figure 5. i4 and the 

numerical errors are shown in Figure 5.15. The correlations between 

the recovered values of the density in neighboring blocks is described by 

the typical correlation pattern below. 

1.0 -0.70 0.40 

0.25 -0.22 0.11 

0.30 -0.20 0.10 

This pattern is interpreted by imagining the number in the upper left 

hand corner to be the correlation of a block with itself. The number in 

the first row and second column is the correlation of a block with its 

immediate neighbor to the east or west, and the number in the first row 

and third column is the correlation of a block with another block in the 

same latitude when a third block intervenes between them. Going down the 

columns describes correlations of a block with other blocks to the north 

or south in the same manner. These correlation coefficients are not com­

puted for any particular block, but are typical of all the blocks. The 

actual correlation coefficients for any particular block may vary as much as 

±0.10 from these numbers. 

The correlation coefficients for this solution show that neighboring 

blocks are fairly well separated, although there is still a significant negative 

correlation between blocks neighboring to the east or west. The pattern of 

the numerical errors in the solution also reflects the negative correlation 
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between blocks immediately neighboring to the east or west and the positive 

correlation between blocks neighboring to the north or south. The uncer­

tainties again show a definite edge effect, and an unexplained tendency to 

increase toward the north. The matrix of coefficients of the reduced 

normal equations was judged to be quite well conditioned, and altogether 

this solution was judged to be satisfactory. 

The effect of different weightings of the observation equations was 

further tested. The standard deviation of the range rate equations was 

held at 0.05 mm/sec, and three solutions were run in which the standard 

deviations of the position observations were 10 m, 500 m, and 1000 m. 

The effect of this variation of the weights was extremely small. Between 

the extremes of 10 m and 1000 m for the standard deviations of the 

position observations, the uncertainties of the recovered parameters in­

creased only by about 0.01 mgal and the numerical errors decreased by 

about the same amount. The condition of the normal equation matrix and 

the correlation coefficients showed almost no change. Another solution was 

run in which one satellite was assumed to be tracked with an accuracy of 

100 meters and the other with an accuracy of 200 m. The results of this 

solution were practically identical with those of the solution in which both 

satellites were tracked with an accuracy of 100 meters. These solutions 

conclusively demonstrate that the accuracy of ground tracking of the two 

satellites has little effect on the solution. Precise tracking of the satellites 

from the ground would therefore be completely unnecessary. 

Three more solutions tested extreme values of the weights. When a 

standard deviation of one meter was assigned to the position observations, 

the solution was overcome with numerical error and meaningless numbers 

were obtained. This also occurred when a weight of zero was assigned to 

the range rate observations and a standard deviation of ten meters was 

assigned to the position observations. These two experiments show that 

the position observations alone are not capable of resolving the components 
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of the gravity field, and if they are given too high a weight they may 

numerically overwhelm the range rate observations in the computer and 

ruin the solution. Therefore, precise tracking of the satellites from the 

ground is not only unnecessary, but also undesirable. 

Finally, a solution was run in which the position observations were not 

used. This solution also broke down, showing that the position observa­

tions are necessary. In conclusion, it appears that the gravinetric infor­

mation is contained in the range rate observations; tracking of the satellite 

positions is necessary to assign a geographic position to the phenomenon 

being observed, but contributes little else to the solution. 

5.33. Experiments with 300 km Orbits and Various Configurations of 

the Two Satellites. Another series of simulations was designed to investi­

gate the effect of varying the relative positions of the two satellites. 

Orbits at an altitude of 300 km were again used, but the configuration of 

the two satellites was varied. First the distance between two satellites in 

the same orbit was varied and the sensitivities of the range rate to the 

density of the surface layer in the 24 50 x 50 blocks were examined. 

When. the satellites are brought closer together than 200 kin, the magni­

tude of the maximum sensitivities decreases. This is because even blocks 

near to the subpoints of the satellites affect both satellites in approximately 

the same way, with no net effect on the range rate. When the distance 

between the two satellites was increased to 600 kIn, the magnitude of the 

maximum sensitivities also increased. However, the pattern also began to 

widen out somewhat, so that the separation of the effects of neighboring 

blocks was not quite as sharp. 

Observation equations were also generated for the case when the satel­

lites are close together in the same orbit plane, but one orbit is slightly 

higher than the other. The range rate between two satellites in this 

configuration was also found to be sensitive to the density of the surface 

layer. However, the observed range rate is primarily in the along track 
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direction rather than the radial direction even in this case, since the lower 

satellite tends to catch up with and pass the higher satellite during the pass. 

Thus, the observation equations generated by two satellites in this configu­

ration are similar to those generated by two satellites in the same orbit. 

Finally, observation equations were generated for two satellites in 

different orbital planes passing over the area under consideration at an 

altitude of 300 km and roughly 500 km apart. Because of the convergence 

of the two orbits, the actual distance between the two satellites varied 

from almost 600 km to near 300 km during a pass. The rate of change 

of the distance between the two satellites is also quite sensitive to the 

perturbing influence of the density layer in this case. Furthermore, the 

pattern of the sensitivity coefficients is quite different from the case of 

two satellites in the same orbit. 

It appeared that the use of Lwvo satellites in this side by side configu­

ration might help separate the effects of blocks neighboring to the east or 

west. Three passes of the two satellites in this configuration were gener­

ated and added to the data set used in Solution 2.1. The adjustment of 

these observations showed that the new passes did indeed help to separate 

the effects of neighboring blocks. The uncertainties of the adjusted density 

parameters were all under 0.2 mgal, and the matrix of normal equations 

was very well conditioned. The correlation of a block with its immediate 

neighbor to the east or west ranged from -0.14 to -0.76, with most of 

these correlation -coefficients clustering around -0.45. All other corre­

lation coefficients were below 0.30 in absolute value. Thus, a consider­

able improvement was obtained by adding only three new passes to the 

data set used in Solution 2. 1. 

Several conclusions may be drawn from the results of this set of exper­

iments. First, it is not at all necessary that both satellites be in exactly 

the same orbit; some variation in their relative configuration is not only 

permissible but (highly) desirable. However, the distance between the two 
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A range of 1/2 to 2 timessatellites should not be too small nor too large. 

the size of the blocks to be resolved appears to be a reasonable guideline. 

Second, it is not necessary to have orbits of different inclinations. 

a single pair of satellites in low orbits at high inclinations could sur-Thus, 

vey the gravity field of the entire earth. 

Third, even making some allowance for edge effects, it appears that 

the Doppler measurement between two satellites in 300 km orbits can very 

50 blocks. Furthermore,effectively separate the gravity field in 50 X 

of the density parameter in these blocks can be determined tothe mean values 

accuracies of better than 0.2 mgals, which corresponds to an accuracy of 

about one milligal in mean gravity anomalies. 

In order to be sure that these conclusions would still hold for a larger 
50 X 50

of the two low satellites over the 92 
set of 18 passesarea, a 

300 km high with an inclination ofblocks was generated. All orbits were 

800. 	 Seven ascending passes and five descending passes had the configu­

200 to 600 kmn. For six ascend­ration of one satellite behind the other by 

Ing passes the two satellites were in different orbital planes, traveling side 

by side on slowly converging orbital paths between 300 and 600 km apart. 

Range rate and position observations were again simulated every 32 seconds, 

so that at least two observations were taken over each block. These 

observations were adjusted with a standard deviation of 0.05 mm/sec 

assigned to the range rate observations. The uncertainties of the recovered 

density parameters in 50 x 50 blocks are shown in Figure 5.16. 

are as low as those obtained in Solution 2.1 (FigureThese uncertainties 


5.14), and, in most cases, are significantly smaller than the parameter to
 

which they apply (Figure 5.4). The numerical errors in recovering the
 

density parameters were all below 0.2 mgal in absolute value, -and
 

most Were below 0.1 mgal. The correlation between neighboring blocks
 

varied considerably, but the pattern shown below is fairly representative.
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Fig. 5. 16. Solution 3. 1. Uncertainties of the recovered values of the density parameter in 50 X 5Q blocks (mgals). 



1.0 -0.60 +0.20 

+0.40 -0.30 +0.20 

0.40 -0.30 +0.15 

a block and its immediate neighbor toThe correlation coefficients between 

east or west varied from -0.03 to -0.86; however, most of thesethe 

were between -0.30 and -0.70, indicating a goodcorrelation coefficients 

separation of neighboring blocks. The normal equation matrix was well 

judged to be satisfactory. This confirmsconditioned, and the solution was 

the conclusion that doppler measurements between two satellites in 300 km 

50 x 50 blocks.high orbits can effectively resolve the gravity field in 

5.34. Resolution of 2XX 20 Blocks with Orbits'200 km High. The 

next series of experiments utilized the gravity field described by the mean 

values of the density parameter in 20 X 20 blocks (Figure 5.8). 

A series of orbits passing over the area under consideration at an alti-

Each of the orbits was again circular withtude of 200 km was generated. 

set of orbits included both ascending andan inclination of 800. This 


km in some
descending passes, with one satellite behind the other by 200 

the side by about 200 kn in others. Observations of rangecases and to 

rate were generated every 32 seconds. 

Since observations of the positions of the satellites do not contribute 

significantly to the solution for the parameters describing the gravity field, 

of this type were formed only every 128 seconds. The stan­observations 

dard deviation assigned to the range rate observations was 0.05 mm/sea,
 

and that assigned to the position observations was 100 m. This data was
 

used to solve for the values of the density parameter in 20 x 20 blocks, and
 

the solution was designated Solution 5.1. The uncertainties of the recovere( 

errors are shownparameters are shown in Figure 5.17 and the numerical 


The "true" values of these parameters are shown in
in Figure 5.18. 


Figure 5.8. The uncertainties of this solution are about 10 times larger
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50 X 50 blocks was resolvedthan those obtained when the gravity field in 

This indicate that the rangefrom a satellite altitude of 300 kin. appears to 

resolve the gravity in X 20rate observations cannot field tarameters 20 

blocks from this altitude. However, the other statistics indicated a quite 

equation matrix wassatisfactory adjustment. The condition of the normal 

quite good, and the correlation coefficients indicated fairly good separation 

of neighboring blocks. A typical pattern is shown below. 

1.0 -0.80 +0.45 

-0.60 +0.40 -0.20 

-0.35 -0.20 +0.10 

There was little variation among the correlation coefficients, and the actual 

correlation coefficients for a particular block were within 0. 1 of the number 

shown in the typical pattern in all cases. Since neighboring blocks appeared 

to be reasonably well separated, this solution was judged to be marginally 

could be improved bysatisfactory. It was assumed that the uncertainties 

using more data. 

an adjustment in two ways. ObservationsAdditional data can improve 


which contain new geometrical information help to separate the unknown
 

as
parameters. Observations containing the same geometrical information 

the old observations will contribute only statistical information; they will 

reduce the uncertainties of the recovered parameters but not the correlation 

coefficients. 

For a satellite in a circular orbit at 200 km altitude, a data rate of 

one observation every 32 seconds corresponds to a rate of about one 

means that only a single observationobservation for every 20 of arc. This 


To test the effect
was formed over many of the blocks in this data set. 

of additional observations, the set of ten orbits was integrated again, but 

were formed every 16 seconds, resultingthis time range rate observations 

in a set containing twice as many observations and at least two observations 
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over each of the 20 X 2 blocks. The adjustment of this set of data was 

designated Solution 7. 1. The uncertainties for this solution are shown in 

Figure 5.19 and the numerical errors are shown in Figure 5.20. The 

uncertainties are very slightly less than 1//-2 times the uncertainties 

obtained in Solution 5.1 (Figure 5.17). An improvement by this factor 

would be expected even if the original observations were merely repeated 

without adding any new geometrical information to the data set. Further­

more, the condition number of the normal equation matrix is only slightly 

better in Solution 7.1 than in Solution 5.1. Similarly, the added obser­

vations lead to only a very slight improvement in the correlation coefficients. 

Thus, it appears that the higher data rate of one observation every 16 

seconds does not significantly help separate the effects of neighboring 20 X 20 

blocks. For the same reason, higher data rates will not make possible the 

resolution of smaller blocks. 

A simulation was performed in this series to test the way the algorithm 

means the effect of the disturbing gravity field into 20 X .20 blocks. The 

assumed values of the parameters in the 25 20 X20 blocks were the means of 

corresponding values in the set of 100 10 X 10 blocks which covered the 

same area (Figure 5.6). The smaller blocks more accurately describe the 

gravity field, since they can represent smaller features. Thus, orbits 

integrated using the disturbing potential based on the 100 10 X 1° blocks 

more accurately represent the actual motion to be expected of real satellites. 

For this experiment, data was generated from orbits integrated with the 

10 x 10 blocks, but the unknowns of the adjustment were the values of the 

density parameters in the 20 X20 blocks. If the algorithm meaned the effects 

of the disturbing gravity field properly, then the recovered values should be 

the same as when the 20 X 20 blocks were used to generate the simulated 

•data. 

The ten orbits used in Solution 5.1 were integrated again, this time 

with the gravity field represented by 10 x 10 blocks. Simulated observations 
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Fig. 5.20. 	 Solution 7.1. Numerical errors in the recovery of the density 

parameters in x 2 blocks (mgals). 
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of range rate were again formed every 32 seconds. Observation equations, 

in which the gravity unknowns were the values of the density parameters in the 

20. X 20 blocks, were then formed. The adjustment of this data was 

designated 	 Solution 6.1. Figure 5.21 shows that the uncertainties in this 

Sincecase are identical to those obtained in Solution 5. 1 (Figure 5.17). 

the coefficients of the observation equations are the same in both cases, 

the correlation coefficients are also identical. Figure 5.22 shows the 

difference between values of the parameters in 20 x 20 squares obtained 

from this solution and those of the "true" gravity field obtained by meaning 

the values in 10 x 10 blocks. These errors are significantly larger than 

those in Solution 5.1 (Figure 5.18), and in many cases the numerical error 

is larger than the uncertainty associated with the same block. This demon­

strates that the way the algorithm means the effects of the disturbing grav­

ity field is indeed a significant source of error. In any solution utilizing 

real data this will therefore be a serious cause of concern. 

5.35. Solutions Involving a Low Satellite Tracked by a High Geo­

stationary Satellite. The discussion of the patterns of the sensitivity coef­

ficients in Section 5.2 indicated that the configuration of a low satellite 

tracked by a geostationary satellite might not be able to resolve the gravity 

field as efficiently as two low satellites. To test this possibility numer­

ically, ten orbits were integrated with the satellites in this configuration, 

using the gravity field described by the 25 20 X20 blocks. The orbits for 

the low satellite were the same as those used for both satellites in 	simu­

lating the data for Solution 5.1. Thus, the low satellite passed over the 

area under consideration at an altitude of 200 km in an orbit with 	an 

inclination of 800. Both ascending and descending passes of the low satel­

lite were used, and each block was traversed by the ground path of at 

least one pass of the low satellite. The geostationary satellite was placed 

in the equator at a longitude of 2400, in the nieridian of the western 

boundary of the area being considered. Thus, the range rate was measured 
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a direction inclined between 450 and 550 to the trajectory of the low satel­

lite, so that both along track and radial perturbations were measured. 

Range rate observations were generated every 16 seconds from these 

orbits, and position observations were generated every 128 seconds. 

Standard deviations of 0.05 mm/see were assigned to the range rate obser­

vations and standard deviations of 100 m were assigned to the position 

observations. The adjustment of this set of data was designated Solution 

8.1; the uncertainties and numerical errors are shown in Figures 5.23 and 

5.24. The uncertainties of the recovered values of the density parameters in 

this case are only very slightly larger than those obtained in Solution 7.1 

(Figure 5.19), which used the same amount of data but from two satellites 

in low orbits. A typical correlation pattern is shown below. 

1.0 -0.80 +0.50 .-0.35 

-0.75 +0.60 -0.40 +0.25 

+0.50 -0.40 +0.30 -0.15 

-0.30 +0.25 -0.15 0.10 

The correlation pattern is extended to a four block by four block square, 

since the correlations approach insignificant values more slowly in this 

case. These correlation coefficients indicate that the separation of neigh­

boring blocks is slightly worse than is the case with two satellites in low 

orbits. As further evidence of the slight worsening of the solution, the 

absolute magnitude of the largest correlation coefficient is slightly larger 

and the condition of the normal equation matrix is slightly worse than in 

the corresponding case with two low orbits. However, despite the slightly 

weaker solution, this experiment does indicate that satisfactory results can 

be obtained with the configuration of two satellites discussed in the Williams­

town report Kaula, 1969]. 

The concept of satellite to satellite tracking described in the Williamstown 
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Fig. 5. 23. Solution 8. 1. Uncertainties of recovered values of the density 
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Fig. 5.24. 	 Solution 8.1. Numerical errors in recovered values of the
 

density parameters in 20 x 20 blocks (mgals).
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report includes three high satellites in geostationary orbits, placed along 

the equator 1200 apart. With such a configuration, the low satellite wiIlbe 

visible to two of the geostationary satellites during much of its orbit. To 

test this concept, a second geostationary satellite was placed in the equator 

at 00 longitude, and simulated range rate observations were generated for 

the same ten passes of the low satellite used in the previous experiment. 

These observations were added to the set of observations from the first 

high satellite, resulting in a set of data twice as-large as that used in 

Solution 8.1. It was expected that these new passes would contain signifi­

cant new geometric information and would help to separate neighboring 

blocks in the same way as two low satellites side by side in slowly con­

verging orbital paths. However, this was not the case. The uncertainties 

were smaller than those in Solution 8.1 (Figure 5.23) by a factor of 1/"[2, 

since the data set was twice as large; however, the improvements in the 

magnitudes of the correlation coefficients and in the condition of the 

reduced normal equation matrix were very slight. This indicates that a 

single high satellite, tracking twice as many passes, could resolve the 

gravity field as well as two high satellites. 

The effect of varying the weights of the different observations was also 

tested for the configuration of a single low satellite tracked by high geo­

stationary satellites. The assumed accuracy with which the lower satellite 

is tracked was changed to 200 m, and the accuracy with which the geo­

stationary satellite is tracked was increased to 20 m. This corresponds to 

the situation in which the positions of the geostationary satellites are 

constantly monitored by ground based Very Long Baseline Interferometry 

and laser equipment while the orbits of the low satellite are only lightly 

tracked with radar. No significant change in the solution or any of its 

statistics were found when this weighting scheme was used. This, again, 

demonstrates that the gravimetric information is contained in the range 

rate measurement, and the position observations contribute little to the 
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solution for gravity parameters. However, if the geostationary satellites 

are precisely tracked for other purposes, this precise tracking will not 

overwhelm the range rate information and degrade the solution for the 

gravity parameters. Although this did occur in the case of two low satel­

lites, the positions of the high geostationary satellites are almost completely 

insensitive to the perturbing effects of the surface layer. Thus, precise 

knowledge of the positions of high satellites cannot affect the solution for 

gravity parameters as can precise knowledge of the positions of low 

satellites. 

5.36 Attempts to Resolve the Gravity Field in 10 x 10 Blocks. All 

the previous numerical ex> riments indicated that the size of the smallest 

block that can be resolved epends almost linearly on the altitude of the low 

satellite. In Solution 1.4 (Figure 5.12), 50 x 50 blocks were resolved from 

orbits 700 km high. Although the uncertainties of the recovered values of the 

density parameters were fairly high, the successful separation of neighboring 

blocks indicated that a satisfactory solution could be obtained by adding 

more of the same kind of data. In Solution 5.1 (Figure 5.17) 20 x 20 

blocks were successfully resolved from orbits 200 km high. 

Attempts were made to resolve the gravity field in 10 x 10 squares 

from the 200 km altitude, using both the low-low and the high-low configu­

ration of the two satellites. The uncertainties of the density parameters 

recovered in these solutions are quite large, on the order of several 

hundred milligals. The normal equation matrices are also quite poorly 

conditioned, indicating weak solutions. These solutions were judged to be 

unsatisfactory. 

In an attempt to find the altitude from which 10 x 1 blocks can be 

resolved, a series of passes was integrated with the low satellite at the 

unrealistically low altitude of 100 kIn. The solution obtained with the low 

satellite at this altitude was still quite weak. The uncertainties of the 

recovered density parameters are on the order of 10 milligals. The 
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correlation coefficients are quite large, with many coefficients as large as 

0.90 in absolute value. Furthermore, the correlation between two blocks 

falls off slowly with the distance between them, so that a recovered density 

in a block is still significantly correlated with that in another block which 

is four or five blocks away. These indicators show that the gravity field 

in 10 x 10 squares cannot be successfully resolved even from 100 km 

altitude ­
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6. SUMMARY AND CONCLUSIONS 

The experiments described in the previous chapter provided answers to 

the questions posed in the Introduction. 

First, slightly better results may be obtained when a minimum altitude 

satellite is tracked by another satellite in nearly the same low orbit than 

when a cluster of geostationary satellites performs the tracking. On the 

other hand, solutions obtained by using the cluster of geostationary satel­

lites are satisfactory, and this concept does offer several economic and opera­

more, they can relay the measured Doppler 

tional advantages not afforded by the use of two low satellites. Since the 

high satellites are stationary, they can be tracked continuously. Further­

count directly to the ground, 

thus obviating the need for data storage and delayed readout. The orbits 

of the high satellites are uneffected by air drag, so that only the low satel­

lite need be equipped with a drag compensation device. The lifetimes of 

the geostationary satellites may be quite long; thus a single constellation of 

high satellites could conceivably be used to track several generations of 

minimum altitude satellites with short lifetimes. Finally, the configuration 

utilizing the geostationary satellites can perform many functions other than 

tracking the low satellites; the total concept of such a system is discussed 

in the Williamstown report [Kaula, 1969]. Because of these several advan­

tages offered by this concept, the configuration of three geostationary 

satellites tracking a minimum altitude satellite is recommended. 

If two satellites in low orbits are used, it is not at all necessary that 

efforts be made to maintain the circularity of the orbits or to maintain 

both satellites in precisely the same orbit. In fact, some variations in 

the relative configuration of the two satellites is desirable, since it adds 

significant geometric information to the solution. The only restriction on 

the relative configuration is that information is lost if the two satellites 

are too near together or too far apart. If geostationary satellites are 
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used to track the minimum altitude satellite, then variation in relative 

configuration of the satellites can be achieved if more than one high satel­

lite is used. However, the use of a second high satellite did not appear 

to add significant geometrical information to the solution. Variation in 

the relative configuration of the satellites can also be achieved by using 

several low satellites in orbits of different inclinations. Although this 

possibility was not investigated, the patterns of the sensitivity coefficients 

suggest that the use of different inclinations would add significant geo­

metric information and help to separate the gravity parameters in neigh­

boring blocks. On the other hand, it is not necessary that several orbits 

of different inclinations be used, since the results obtained with a single 

low orbit are satisfactory. 

The amount of gravimetric detail that can be resolved depends directly 

on the altitude of the low satellite. Even with a drag compensation device, 

the minimum altitude at which a satellite can remain in orbit for the length 

of time necessary to survey the gravity field on a global basis is about 

200 km. From this altitude features in the gravity field as small as 20 x 2 

blocks may be resolved. This is true both when the minimum altitude 

satellite is tracked by another satellite in nearly the same low orbit and 

when a high geostationary satellite performs the tracking. With a density 

of data of about 2 observations for every block, the uncertainties of the 

recovered values of the density parameters in 50 X 50 blocks were about 

one to three milligals when the low satellite was 700 km high. About the 

same range of uncertainties was obtained with about the same density of 

data when 20 x 20 blocks were resolved from an altitude of 200 km. The 

10 x 10 blocks could not be satisfactorily resolved even from an altitude of 

100 kIn. This suggests that the maximum altitude from which the effect 

of neighboring blocks can be separated is a function of the block size, but 

is not always exactly equal to the block size. A suggested curve- giving the 

tradeoff between altitude and block size is shown in Figure 6. 1. 
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Fig. 6. 1. Approximate Maximum Altitude From Which 

the Gravity Field Can Be Successfully Resolved, 

as a Function of Block Size. 

Data rates of one observation every 32 seconds and one observation 

every 16 seconds were both successfully used to resolve the gravity field 

in 20 X 20 blocks from 200 km orbits. This indicates that the 10 second 

averaging of the Doppler signal, necessary to -achieve an accuracy of 

will provide a rate of data sufficient for sur­0.05 mm/sec in range rate, 

veying the gravity field. In addition, a sufficient number of passes should 

be tracked so that the ground path of the low satellite traverses each of 

the blocks at least once. 
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The choice of a fictitious surface layer to represent the gravity 

field in these simulations was made purely for convenience. It is expected 

that the same results would have been obtained had gravity anomalies or 

gravity disturbances been used. Neither were the modifications of the 

conventional definitions of the normal and disturbing potential necessary. 

Comparison of Figures 5.3 and 5.4 shows that removal of the (12, 12) 

portion of the gravity field reduces the density of the fictitious surface layer 

only slightly. Therefore, the inclusion of the (12, 12) portion of the gravity 

field in the modified normal potential offers no real practical advantages. 

The conventional normal potential of a level ellipsoid could have been used 

just as effectively in these experiments, and the conventional definition 

would have allowed a much faster integration of the orbits and the partial 

derivatives. The experiments described here could have been- performed 

just as effectively had a fictitious surface layer spread on the ellipsoid, 

rather than the surface of the earth, been ,specified. However, the use 

of the surface of the earth is more satisfying from a theoretical stand­

point. 

All of the simulations described involved short passes over a small 

portion of the earth's surface. The results that might be obtained from a 

global solution utilizing orbital arcs of several revolutions were not inves­

tigated. The most important factor affecting the resolution of the gravity 

field was the altitude of the low satellite, and it was shown that the 

possibility of resolving 20 x 20 blocks depends on the possibility of main­

taining a satellite in a 200 km high drag free orbit. It is entirely possible 

that the same resolution might be obtained if the position of a sitellite in 

such a low orbit were precisely tracked from the ground over a very long 

arc of many revolutions. Although the study by Gaposchkin [1970] indicated 

that this resolution is not possible from the altitude of the present satellites 

which are equipped with laser retroreflectors, it may be possible from an 

altitude as low as 200 km. 

125
 



Several incompletely solved problems remain in the algorithm discussed 

in the previous chapters. The most important is the effect of the unmod­

eled gravity field outside of the area under consideration. The neglect of 

the effect of the rest of the world outside of the area of interest will 

undoubtedly alias the solution for those parameters that are considered. 

However, routine computations with many thousands of unknowns are clearly 

impractical. This problem will not be completely solved until a local 

method of representation, more direct than the fictitious surface layer, 

is found. The theoretical work described in [Lundquist, et. al. 1970] offers 

some hope in this direction. In themeantime; it will be necessary to use 

localized areas for routine processing of satellite to satellite Doppler data. 

Solutions for the parameters describing the gravity field in localized areas 

can be used effectively for data screening. They can provide valuable and 

realistic information on the detailed structure of the gravity field in a 

local area of interest if they are constrained by independent knowledge of 

the low order components of the gravity field and by surface gravimetry. 

When carefully screened satellite to satellite range rate data providing 

global coverage becomes available, it will be reasonable to attempt a 

solution for a global description of the gravity field. 

The effect of perturbations other than those caused by small features 

in earth's gravity field have not been considered at all here. Luni-solar 

perturbations are always present to some extent; although they are small, 

it may be necessary to account for their effects in the data reduction 

process. If two satellites in low orbits are used, the sun and moon will 

effect both in the same manner with no net effect on the range rate. How­

ever, a geostationary satellite revolves in an orbit a tenth of the way to 

the moon, so that it would certainly be affected by the moon differently 

than a minimum altitude satellite. 

Even more critical is the extent to which a drag compensation device 

will be able to maintain a satellite in a purely gravitational orbit. In its 
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most elementary form, the air drag sensing system consists of a small 

unsupported proof mass contained in a small cavity at the mass center of 

the satellite. The external shell of the satellite shields the proof mass 

from air drag and radiation pressure, so that the proof mass follows a 

purely gravitational orbit. The sensing unit detects the motion of the rest 

of the satellite relative to the proof °mass, and thrusters adjust the motion 

of the satellite to follow that of the reference proof mass. Deviations 

from a purely gravitational orbit occur only because the proof mass may 

be slightly perturbed by the sensor, by gradients in the local magnetic 

field, by mass attraction of the satellite, and by many other phenomena 

[Lange, DeBra, and Kaula, 1966]. The problem of most pertinence to the 

measurement of range rate is the possibility that the satellite will have 

some .velocity relative to the proof mass. The satellite must move relative 

to the proof mass in order for the air drag to be sensed, and this relative 
motion must proceed at some velocity. Although this velocity will certainly 

be quite small, it could certainly reach a magnitude comparable to the 

projected noise level of 0.03-0.05 mm/sec in the range rate,and thus 

produce systematic errors in the range rate measurements. Therefore, 

the relative velocity of the proof mass and the main body of the satellite 

must be carefully considered in the design of the drag sensor-and compen­

sation device. 

Another incompletely solved problem is the identification of the source 

of numerical error in the algorithm. Numerical errors were evident in 

all the simulated solutions, since the original values of the unknowns were 

never recovered to better than two or three significant digits. This was 

not considered a serious cause for concern, since the numerical errors 

were always smaller than the uncertainties associated with the same para­

meters. Several sources of numerical error may be suggested. Among 

these are (1) the roundoff and truncation errors involved in numerically 

integrating the differential equations for the orbits and the transition matrices, 
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as well as the error in numerically evaluating the definite integral for the 

parameter sensitivity matrix; (2) the numerical evaluation of integrals of 

the form I Y/d S; (3) the linearization of the observation equations; and 

(4) roundoff error accumulated in the solution of the normal equations. The 

fact that the observation equations were tested and found to be satisfactorily 

linear within the range of values expected suggests that the last error 

source may be a principle contibutor. This is not unexpected, since the 

solution of a large set of simultaneous linear equations almost always 

involves a considerable accumulation of roundoff error. 

A closely related problem is the way in which the algorithm means the 

effect of the surface layer in a block. The experiment described in Section 

5.34 showed this to be a serious cause of concern. This problem appears 

to be related to the numerical evaluation of the integrals of the form 

j :l/ds. When 10 x 1" blocks were used to integrate the "true" orbit, 

the accelerations of the satellites were computed by summing the forces 

exerted by each of these blocks. However, the sum of four of these forces 

is not the same thing as the force exerted by a 20 x 20 block whose 

density is the sum of the four densities in the 10 X 10 blocks. The 

difference between the two forces leads to significant numerical errors in 

the solution. It appears -that simple schemes for computing the mean effect 

of a block can only be used if the distance from the satellite to the block 

is much greater than the dimensions of the block, but in that case the 

observations will not be able to separate the effects of neighboring blocks. 

Therefore, it will be necessary to compute the mean effect of a block by 

schemes more sophisticated than evaluating functions at the midpoint of a 

block or even at the midpoints of four sub-blocks within each block. 

The minimum altitude of 200 km implies that the use of satellite to 

satellite Doppler tracking cannot be expected to resolve blocks smaller than 

20 X 20, or features in the gravity field smaller than 200 kn on a side. 
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This means that satellite to satellite tracking cannot replace surface 

gravity surveys. However, as a global surveying system, it can greatly 

increase our knowledge of the global structure of the gravity field. Global 

knowledge of the gravity field in 2' X 2' equal area blocks will provide as 

much information as. a spherical harmonic series complete through degree 

and order (90, 90). The accuracy with which the gravity field in 20 x 20 

blocks can be determined depends on the accuracy of the range rate 

measurement. With the projected tracking accuracy of 0.03-0.05 mm/sec, 

and with a sufficient number 'of observations, it should be possible to 

determine the parameter describing the fictitious surface layer to an accuracy of 

one milligal. In terms of mean gravity anomalies in 20 x 20 blocks, this 

corresponds to an accuracy of about six milligals. This is considerably 

better than the accuracy with which the mean gravity anomaly in a 20 X 20 

block can be determined by measuring surface gravity along a single pro­

file through the block, even when the least standard error method of inter­

polation of gravity anomalies is used [Moritz, 1963]. The accuracy with 

which the shape of the geoid can be determined from satellite to satellite 

Doppler data will depend to a large extent on the correlations between 

neighboring blocks as well as the accuracy with which the gravity field is 

determined in a single block. However, improved knowledge of the gravity 

field in 20 X 20 blocks should help to achieve the goal of geoid determinations 

approaching the 10 cm accuracy required by oceanography. Thus, satellite 

to satellite Doppler tracking can considerably refine our knowledge of the 

gravity field, both by performing fairly detailed surveys of local ocean 

areas and by surveying the gravity field on a global basis. Because of the 

great potential of the method, development of both the instrumentation and 

the data reduction techniques should receive continuing attention. 
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