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IMP I OPTICAL ASPECT SYSTEM 

by 
E. John Pyle 


Goddard Space Flight Center 


INTRODUCTION 

The problem of attitude or aspect determination is the problem of defining the angular relation­
ship between two coordinate systems, one fixedin a reference space and the other fixed in the space­
craft. There are six degrees of freedom associated with a general coordinate system, with respect to a 
reference coordinate system. Three of these concern the translational motion of the center of mass of 
the spacecraft, which is a problem in orbit and trajectory calculations. The remaining three degrees of 
freedom deal with the rotational motion of the spacecraft about its center of mass. The measurement 
of this rotational motion is called “aspect determination.” 

A body spinning in free space has most of the properties of a gyroscope; if a spin is imparted to a 
spacecraft at the time of injection into orbit, it performs like a gyroscope while traveling in free space. 
An aspect system included in the spacecraft assembly gives the orientation of the spacecraft’s spin axis. 
Since there are three degrees of rotational freedom of a rigid body associated with aspect determina­
tion, the instrumentation in the aspect system must be capable of measuring at least three parameters. 

This paper discusses the IMP I Aspect System; Figure 1 is an overall block diagram. The param­
eters measured are the elevation angles-with respect to the spin axis-of the sun, p, and the earth, 6 ;  
the order of observation; and the fraction of one spin period between the observation of each. Addi­
tional information such as the position of the spacecraft with respect to the two observed references is 
required; this is available from earth-based observations. 

The order of observation and the fraction of a spin period between observations can be measured 
on board the spacecraft. These may be derived from a knowledge of the exact times that a specified 
reference plane crosses the solar and terrestrial disks. These times must be related to some known time 
standard; these relationships must be remembered, encoded, and presented to the transmitter. Two 
sensors will be used to determine the angle between the spin axis of the vehicle and each of the two 
references. Since the sun, for practical purposes, is a point source to the sun sensor, the vector from 
the spacecraft to the sun is an axis of symmetry. This means that the locus of the spin axis is a cone 
whose axis is the sun vector and whose half-angle /3 is the angle measured by the sun sensor, that is, the 
angle between the spin axis and the sun vector. In order to calculate the position of the spacecraft’s 
spin axis, a measurement must be made with regard to another reference-the earth. The aspect system 
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Figure 1-System block diagram. 



therefore will contain an earth sensor, sensitive to visible light, with a narrow field of view mounted so 
as to scan 90 degrees from the spin axis. Information from this sensor will lead to the calculation of 
the angle between the spacecraft spin axis and the vector from the center of the earth through the cen­
ter of gravity of the spacecraft. This vector, also, is an axis of symmetry, and the locus of the spin axis 
is a cone whose axis is this earth-spacecraft vector and whose half-angle 6 is the angle calculated from 
earth-sensor information. Hence the spin axis must be at one of the points of intersection of the two 
cones (see Figure 2). An unambiguous solution is obtained when the two other parameters measured 
on board the spacecraft are taken into account. 

The Spin Synchronous Clock (SSC) is a digital system that generates a time-based clock signal 
synchronized to the spin rate of the spin-stabilized spacecraft. The basic function of the device is to 
generate 2" (where n = 7) pulses per spin period. These pulses divide the spin period into 2" - 1 equal 
time intervals plus one remaining interval, which may be slightly greater or smaller than the other in­
tervals. To accomplish this function the SSC receives a high-frequency signal fo = 25.6 kHz from the 
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Figure 2-Relationship between the spacecraft spin axis and the intersection of the two 
locus cones. 
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spacecraft encoder. The command pulse defining the rotational period is generated in the optical-
aspect electronics and fed to the SSC. 

ASPECT SENSORS 

The energy emanating from a celestial body can be detected by sensitive measuring instruments. 
The optics, fields of view, and other characteristic parameters of these sensors are predicated on the 
energy source selected and the particular sensor application. 

Attitude can be derived from the spin-axis orientation relative to any number of celestial objects. 
A minimum of two objects (sun and earth) is necessary to  completely specify the spin-axis attitude of 
the spacecraft. The sun can be treated as a point source, whereas the earth’s angular subtense varies as 
a function of relative sun position and closeness of the detecting instrument. 

Digital Solar Sensor 

The digital solar sensor (Figure 3) measures the angle of incident sunlight with respect to  the sen­
sor Z-axis and expresses this angle as a digital number. The incident sunlight, passing through a slit on 
the top of a quartz block, is screened by a gray-coded pattern on the bottom of the block to illuminate 
or not illuminate each of the photocell detectors. The angle of incidence determines which combina­
tion of photocells is illuminated. The solar sensor also includes a command slit, which is mounted 
perpendicular to  the gray-coded reticle. If the sensor is rotated about a vertical axis along the com­
mand slit, the field of view of the two slits will sweep over a solid angle. When the plane containing 
the command slit passes across the solar disk, one or more of the photocells will be illuminated. The 
time that this illumination occurs provides a measurement of the azimuth angle of the sun. The par­
ticular combination of photocells that is illuminated provides a digital measurement of the elevation 
angle of the sun in sensor coordinates. 

The digital solar sensor has features that make it more desirable than the analog types of solar 
sensors: (1) It is not subject to errors introduced by earth shine, (2) there are no components that can 
drift, (3) no in-flight calibration is required, (4) the weight is small, and (5) power is needed only to  
drive the output load. 

Earth-Horizon Detector 

The horizon detector consists of a simple telescope and lens. The detector element is a photo-
diode, which is placed at the focal point of the lens. The field of view of the horizon detector is a pen­
cil beam approximately 1 degree in diameter. If the detector is mounted at an angle, y, from the spin 
axis of a rotating Spacecraft, the field of view of the detector will traverse the surface of a cone whose 
half angle is equal to y. When the field of view scans the discontinuity caused by the sunlit earth 
against the dark background of interplanetary space, this detector generates an output signal. This sig­
nal, after amplification, is differentiated to form pulses at its leading and trailing edges. The informa­
tion contained in the relative position of these pulses to  the command slit’s crossing of the sun provides 
a measure of the inclination of the spacecraft zenith vector to the spin axis. 
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Figure 3-Schematic representation of a digital solar sensor. 

ASPECT-SYSTEM ELECTRONI CS 

Solar-Sensor Electronics 

The solar-sensor output consists of 10 channels of sun information. Nine of these contain angular 
information; the 10th contains time-occurrence or azimuth information. 

Amplification of the output signals of the nine angular information channels produces a positive 
voltage when the channel is excited, i.e., when sunlight is incident on the detector (see Figure 4). 
These amplified signals are then placed in storage and, at the proper time, shifted through an inverter 
to the spacecraft encoder. 

The amplified azimuth information, referred to as the “solar command pulse,” occurs when the 
sun is in the field of view of the sensor command slit. The width of this pulse is a function of the spin 
rate and the command-slit field of view. This is undersirable; to eliminate these effects on pulse width, 
a centered sun pulse is generated at the midpoint of the solar command pulse (sun-centering module). 
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Figure 4-Solar amplifier module 16-173. 



The logic that generates the centered sun pulse also produces the transfer (load) pulse, which stores the 
sensor's angular information (aspect module C). 

The centered sun pulse is used to measure sun time and spin period. Sun time is the interval be­
tween a known spacecraft encoder function (C24) and the following centered sun pulse. Spin period 
is defined as the time interval between two successive centered sun pulses. 

Earth-Detector Electronics 

The earth detector is a light-sensing device that detects the gradient between the sunlit earth and 
outer space. The sensing element is a photodiode having a response that peaks at 1 micron. As the 
spacecraft rotates, the detector's field of view sweeps over a cone. At certain points in the orbit, the 
scan of this detector successively crosses the horizons and/or terminator of the sunlit earth. When this 
occurs, the detector produces an electrical signal. This signal is fed into a high-input-impedance ampli­
fier, i.e. ,earth-amplifier module (see Figure 5). Subsequent electronic processing shapes this signal 
into positive pulses occurring at each intercept of the earth's horizon and/or terminator. The same 
processing electronics eliminates any solar information that might be caused by the earth detector's 
viewing the sun. 

The information contained in the relative position of these earth pulses to the centered sun pulse 
is used to compute the spin-axis earth angle, 6. The relative position of the earth and sun pulses are 
contained in two measureable quantities: earth time and earth width. Earth time is defined as the in­
terval between the centered sun pulse and the earth pulse that defines the start of an earth scan. The 
second interval is the time between the two earth pulses, corresponding to the apparent width of the 
sunlit earth. 
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Figure 5-Earth-amplifier module 16-175. 

7 




Measurement of Aspect Parameters 

The quantities measured by the aspect system are those already mentioned: 

(1) Spin period. 

(2) Sun time. 

(3) Earth time. 

(4) Earth width. 

(5) Spin-axis sun angle. 

As previously mentioned, the three parameters necessary for attitude determination are (1) p, the 
spin-axis sun angle, (2) 6, the spin-axis earth angle, and (3) the fraction of a spin period between ob­
serving each. 

Spin-axis sun angle p is measured directly by the solar sensor; its digital representation is placed in 
storage. 

Spin-axis earth angle 6 must be computed from the relative position of the sun and earth (see 
Appendix D). This information is contained in the five quantities measured by the aspect system. 

The fraction of a spin period between the observations of the two reference sources (sun and 
earth) can be determined from knowledge of the spin period, earth time, and earth width. 

Encoder Interface 

The spacecraft encoder’s interface with the aspect system places certain restrictions on the meas­
wing, processing, and storing of aspect data. 

The encoder samples the aspect data once every C24 period, T,,, = 81.92 s. The encoder cir­
cuitry supplies the storage accumulators for the interval measurements, i.e., sun time, spin period, 
earth time, and earth width. Since the nominal spin period for the satellite is 12 s, the gates to these 
accumulators must be controlled so that repeated data are not fed into them; i.e., only one measure­
ment of a particular interval time is made in 8 1.92 s. 

To satisfy this timing restriction, the leading edge of C24 is differentiated and used as a synchro­
nizing signal by the aspect system. The occurrence of this signal is used to initiate a series of events 
that provide only a single measurement of each of the above-mentioned time intervals in the 8 1.92-s 
encoder-controlled period. 

The gating of the sun-time accumulator is controlled by a flipflop that is reset by the centered 
sun pulse and set by the aspect synchronous signal. Hence, for the time interval between the aspect 
synchronous signal and the first centered sun pulse, this flipflop enables the accumulator and allows a 
1.6-kHz signal to be counted. Repeated occurrences of the centered sun pulse only serve to keep the 
flipflop in the inhibit state. 
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A two-stage counter, reset to zero by the aspect synchronous signal (aspect sync), controls the 
spin-period accumulator by generating an enable signal between the first and second centered sun 
pulses following reset. To prevent further generation of this enable signal during the C24 period, the 
input to this counter is inhibited following the second centered sun pulse. When the accumulator is 
enabled by its gate, a 1.6-kHz signal is used for a counting source. The trailing edge of this enable sig­
nal is also used to control the transfer pulse which sets the angular information from the solar sensor 
into the storage register. 

The earth-time and earth-width accumulators are controlled by another two-stage counter. The 
first stage, which controls the earth-time accumulator, is reset by either the aspect sync or the earth's 
leading-edge signal. The second stage is reset by either the aspect sync or the earth's trailing-edge sig­
nal and controls the earth-width accumulator. 

The action of this counter is initiated by a selected centered sun pulse. This pulse is generated 
once per C24 period by the first centered sun pulse following both the aspect sync signal and the earth 
amplifier signal. Hence, the data from the second earth scan in the C24 period is used to control the 
1.6-kHz counting signal for the earth-time and earth-width accumulators. 

The spin-axis sun-angle information is shifted out of its storage register once per C24 period by a 
series of shift pulses controlled by the encoder. The timing of these shift pulses is such that they occur 
well after the aspect system's generation of the transfer (load) pulse. 

The above discussion was based on the encoder operation in its low bit rate mode (400 bps). The 
effect of the high bit rate mode (1600 bps) on the aspect data is simply to read out the same data four 
times in the C24 period. The added readout supplies no new data, since the C24 period generating the 
aspect sync signal does not change. 

Figure 6 shows in detail the timing for aspect parameters. 

SPIN SYNCHRONOUS CLOCK ELECTRONICS 

Logic Functions 

The basic function of the Spin Synchronous Clock (SSC) is to generate 2" (where n = 7) pulses 
per spin period. These pulses divide the rotational period into 2" - 1 equal time intervals plus one re­
maining interval which may be slightly greater or smaller than the other intervals. To accomplish this 
function, the SSC receives a high-frequency signal fo of 25.6 kHz from the spacecraft encoder and uses 
the centered sun pulse generated by the aspect system to define the rotational period of the spacecraft. 

The SSC includes the following components: a pulse generator; counters CoyC,, C,, C,, and C,; 
a storage register; a comparator; and pseudo-command circuits. 

Generation of the basic control functions for the SSC is provided by two counters, C, and C,, 
and associated decoding gates. These basic control functions are as follows: 

(1) C, inhibit signal-an inhibit voltage that prevents counter C, from changing its contents dur­
ing transfer. 
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Figure 6-Aspect parameters; timing diagram. 

(2) C, transfer pulse-a pulse that transfers the contents of counter C, into a storage register. 

(3) C, reset pulse-a pulse that resets counter C, to zero following the transfer pulse. 

The leading edge of the centered sun pulse (command pulse) resets both counters to zero, indicat­
ing the start of a rotation period. Counter C, performs the frequency division on the f, signal to gen­
erate the flsignal (fl = fO/2" = 25.6/128 = 0.2 kHz = 200 Hz). The block diagram, Figure 7, shows 
the logic for the three basic control functions and the fact that the input to C, is a gated function of 
one of the intermediate stages of C,. The gating insures that the basic control functions occur only 
once each spin period. Use of an intermediate stage of C, as the input to C, merely provides reset and 
transfer pulses of convenient duration. The only restriction is that these control signals be completed 
before the first count of f, enters the interval counter C,. 

Upon the occurrence of the transfer pulse, the storage register accepts and retains the information 
from the interval counter C,. Another counter, C,, along with the storage register, provides the inputs 
to the comparator. When the contents of the storage register and counter C, are identical, the com­
parator generates a pulse. In a given spin period, the pulses generated by the comparator become a 
clock signal synchronized to the spin period. These pulses, along with the command reset pulse (com­
mand pulse), are used to reset counter C,. Hence, they must be such that their action does not cause 
the loss of an focount. This condition determines the pulse widths of the comparator-generated 
pulses and the command reset pulse; i.e., the command reset pulse is the leading edge of the centered 
sun pulse. 
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The pulses generated by the comparator constitute the input signal to output counter C,. Hence, 
decoding counter C, provides information as to the instantaneous pointing direction of a point on the 
spacecraft. 

During the rotation period, counter C, should reach a count of 2" (i.e., 128) and then be reset to 
zero by the command reset pulse. 

If a command reset pulse does not occur after 2" (ie., 128) counts have been accumulated, the 
pseudo-command generator is activated, and the counter C, overflows and starts accumulating counts 
again. When C, next reaches 2" (i.e., 128) counts and a command reset pulse has still not occurred, 
the pseudo-command generator produces a pseudo-command signal. This action continues, with a 
pseudo-command signal being generated every time C, reaches 2" (i-e., 128) counts. The occurrence 
of the command reset pulse causes C, to be reset to zero and the pseudo-command generator to be 
deactivated. Hence, the output counter C, will wait one spin period following the loss of the com­
mand reset pulse before generating a pseudo-command signal for every 2" pulses from the comparator. 

System Performance 

The SSC divides the spin period into 2" sectors. To accomplish this, it uses the information in 
the storage register as the basic interval to be sectored. An investigation of the accuracy of this infor­
mation will lead to an evaluation of system performance. 

Consider the representation of the spin period by interval counter C,. This information may have 
a total error of minus one count of f,. This follows directly from the division process performed in 
the generation of the f, signal. Since any division process can generate both a quotient and a re­
mainder, the C, representation can differ from the true spin period by the amount of this remainder. 
This means that if the spin period is not an integer multiple of T ,  = l/f,, the contents of C, will be 
less than the spin period. This difference can be as small as 1 or as great as 2" - 1 counts of fo. 

Another consideration not previously mentioned is the interaction between the C, inhibit signal 
and the f, signal when spin period is measured. This effect may cause an extra count to be placed in 
counter C, if the inhibit signal occurs at a time when the f, signal is a "1 ". This occurs when the con­
tent of counter C, is greater than one-half its capacity;i.e., when the last stage of C, is a "1". 

The combined effect of these two considerations is to incorporate a round-off error into interval 
counter C,. If the remainder of the division process is less than 1/2, the interval counter contains only 
the number of counts of f, that occurred during the spin period. If the remainder is equal to or greater 
than 1/2 of f,,the interval counter contains a count greater by 1 than the number of counts of f, 
sampled during the spin period. Hence, the error in the interval counter has been translated from a 
count of -1 to a count of +1/2 off,.  The total error in C, as a function of the remainder in C ,  is 
shown in Figure 8. Thus when the remainder is less than 1/2 of flythe output counter attains a 2" 
count before the next SSC command pulse. The maximum value of this time lapse is equal to T,/2. 

Another factor affecting system performance is the variation in two successive spin-period inter­
vals. This variation may result either from a jitter effect of the onboard instrument's generating the 
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Figure 8-Total error in C, as a function of the remainder in C,. 

command pulse or directly from the motion of the spacecraft (precession). Since the operation of the 
SSC is based on the assumption that two successive spin periods are equal, this spin-period fluctuation 
has a one-to-one effect on system performance. However, this effect simply reduces the accuracy of 
the location of the sector pulses in a given spin interval. 

A companion factor to the above short-term fluctuation is the long-term loss of the command 
pulse. This effect is taken into account in the operation of output counter C,. Counter C, operates in 
such a manner that, if the command pulse does not occur after 2n pulses, the counter will continue to 
count until either 2n+1counts have been registered or the command pulse occurs. When 2n+1counts 
have been accumulated, the associated circuitry generates a pseudo-command signal. This signal resets 
continuous counter C, but does not update interval counter C,. Therefore, the system waits one rota­
tion period following the loss of the command pulse before generating a pseudo-command signal at the 
last known spin-period interval stored in the storage register. Hence, for a long-term loss of the com­
mand pulse the system continues to operate, but with the last known spin-period measurement. 

Sector Determination: Location and Width 

In order to define the location in a given spin period of a specific sector region, a reference sys­
tem must first be considered. Let the reference system be based on the 360 degrees of rotation in a 
spin period. (See Figure 9.) Then, each pulse generated by the comparator and defining the end of a 
sector region is separated from the previous one by 360/2ndegrees ofi-otation. Hence, in this reference 
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system, the 2" sector pulse occurs coincident with the command pulse, and the width of each sector is 
360/2" degrees. 

The actual SSC generates sector pulses based on the spin-period representation present in the 
storage register. Hence, these sector pulses match the ideal reference system if, and only if, the re­
mainder of the division process is equal to zero. In all other cases (where the remainder is greater than 
zero), the sector pulse generated by the comparator circuitry in the actual system is shifted from the 
reference system location by 

for R <2"-l 

I." -2tITok~ , for R Z 2"-l 

where 

2" = number of sector pulses in a spin, 
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To = l/fo = period of the fo signal, 

R = remainder (1 <R <2" - l), 
and 

k =numberofthesector(l ,2,3,  ...2"- l,2"). 

Now examine the case for R < 2"-l, the case when the remainder is less than 1/2 of f,. The stor­
age register contains a time representation of the spin period which is less than the actual value. Hence, 
the interval being divided into 2" sectors is equal to the true spin period minus the time represented by 
the remainder (see storage register in Figure 7). Let 

N = number of counts in interval counter C, . 
Then, 

(2"N + R)To = true spin period , 

2" TON= time representation of spin period by storage register , 
and 

To = V f o .  

Therefore, each sector pulse is generated slightly before the location of its corresponding ideal refer­
ence sector pulse. This effect is accumulative and results in the 2" th sector pulse being generated ToR 
seconds before the 2" ideal reference sector pulse. Since each sector pulse resets continuous counter 
Coythis counter will have obtained a value of R counts when the command pulse occurs. 

Hence, if the first sector is defined as the time interval between the command pulse and the next 
pulse generated by the comparator, this results in an effective "dead time" between the end of the 
2"th sector and the start of the first sector in the next spin. That is, 

dead time width = RTo 

sector width = NToIR <2n-1. 

Therefore, the time between the 2"th sector pulse 2nd the first sector pulse in the next spin will in­
clude the dead time and have a value of (N + R)To. 

When R > 2n-1 the information in the storage register represents the true spin period plus the 
effect of the inhibit signal adding a count to the interval counter C,. This increases the contents of 
counter C, by 1;so N is replaced by N + 1. 
We have 

(2"N + R)To = true spin period 
and 

2"(N + l)To = time representation of the spin period by storage register . 

Hence, it is the quantity 2"(N + l)To that is divided by 2". This results in each sector pulse being gen­
erated by the comparator slightly after its corresponding ideal reference sector pulse. Again this effect 
is accumulative and the 2"th sector pulse should occur a (2" -R)To time interval after its ideal refer­
ence sector pulse. This time is also after the command pulse which resets both the continuous and 
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output counters. Hence. the system will reset before the generation of the 2" th sector pulse. Hence, 
the comparator will generate 2" - 1 pulses in a given spin period. That is, 

dead time width = (2" -R)To 

sector width = ( N  + l)To IR >2"-l . 

Again, the dead time width is included between the 2" - 1 sector pulse and the first sector pulse in the 
next spin. This internal, referred to as the width of sector 1,will have avalue of [2(N + 1) - (2" -R)]To .  

Hence, the location of each sector pulse and the width of each sector can be determined from 
knowledge of the spin period and remainder values. 

Operating Range: fo.2", and Spin Rate w Z  

The operating range of the SSC is determined by the relationship between fo in Hz, 2", and the 
spin rate of the spacecraft w, in rpm. As previously mentioned, the division process can generate both 
a quotient and a remainder. The effect of the remainder is to shift the sector pulse from its reference 
location. The maximum shift occurs in the 2" sector and has a value of RTo. Hence, if R is greater 
than the number of counts that represents the spin period in interval counter C,, the shift caused by R 
may be greater than a sector width. Therefore, one constraint on the relationship between fo,2", and 
spin rate is that the number of pulses in interval counter C, be equal to or greater than remainder R .  
We have 

R,, = 2" - 1 
and 

Nic >2" , 

where Nic is the number of pulses fed into interval counter C,. 

Since the number of pulses Nic fed into the interval counter C, is a result of frequency division 
by 2" , the minimum number of pulses Nid fed into frequency-divider counter C, must satisfy 

Nid2 2"Ni0 , 

where Nio is the number of pulses out of counter C,. Therefore, 

N .  = 
spin period - 60fo 

id TO ' 

Nid  = Y 

Nid 2 2"Ni, 2 22" , 

60fo 

->22n, 
O Z  
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and 

A further constraint on the operating range of the SSC is that the number of pulses into the inter­
val counter, Nic,must not exceed its capacity. Thus, 

2k = capacity of interval counter C, (k= 17) , 

Ni,<2k , 
and 

Nio<2k , 
and, since 

Ni dNio<-
2" 

and 

we have 

60fo 
2" -< 2k 

and 

Consideration of both constraints yields 

22n0, 2"+kwz 
<fo<­60 60 

System Output Signals 

The comparator generates the basic clock signal synchronized to spin rate. As previously men­
tioned, this signal is subject to the effect of the remainder value, which causes noncoincidence of the 
2nth (i.e., 128th) pulse and the command reset pulse. Therefore, logic is provided to delete the 128th 
pulse from this signal and replace it with the command reset pulse. This results in the basic clock sig­
nal's having coincidence of the last pulse and the command reset pulse, independent of the remainder 
value. It is this coincident 128-pulse signal that is sent to the experimenter. (See Figures 10A and 10B.) 

The output of each stage of output counter C, is also available to all spacecraft systems. Separate 
buffering is supplied for each actual interface, and a special interface exists between the SSC and the 
spacecraft encoder. 
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Appendix A 

THEORETICAL CONSIDERATIONS OF ASPECT DETERMINATION 

Energy and Momentum Considerations 

In the solution to the problem of force-free motion of a rigid body, a point on the body can be 
defined in terms of the body-fixed axes, x,y ,  and z. For the purpose of defining the orientation of 
the body fixed axes relative to nonrotating reference axes, X ,  Y,  and 2, Euler introduced three inde­
pendent angles, @, 9,  and 8. These Eulerian angles are shown in Figure A-1 and are defined by three 
successive rotations performed in a specific sequence. The sequence is started by (1) rotation of the 
initial set of axes X ,  Y ,  and Z ,  counterclockwise about the Z-axis through an angle 4, producing the 
intermediate set of axes, ,$',q', and {' (Figure A-la). (2) Next, this intermediate set of axes is rotated 
counterclockwise through an angle 8 about the .$'-axis,producing a second intermediate set of axes, .$: 
q,and { (Figure A-lb). The .$'-axis is also called the line of nodes. (3) Finally, axes .$,q,and { are ro­
tated counterclockwise about the {-axis through an angle 9, forming axes x,y ,  and z (Figure A-1c). 
Hence, the Eulerian angles, 4, 9, and 8, completely describe the orientation of the x,y ,  z coordinate 
system.with respect to the X ,  Y ,Z coordinate system. 

A mathematical method of representing the rotations described above and based on the matrix 
representation of an orthogonal transformation is given in Appendix B. 

Now let the X ,  Y ,Z coordinate system define an inertial space. Assume a rotating spacecraft situ­
ated in this inertial space where the momentum vector, L,of the spacecraft is orientated along the 
Z-axis of the defining coordinate system. Let the x,y ,  z coordinate system be aligned with the three 
principle moments of inertia of the spacecraft, I,, 12,and I , .  Hence, the x,y,z system is fixed in the 
rotating spacecraft. The instantaneous values of momentum about axes x,y ,  and z are, respectively, 

Figure A-I-Euler's rotation angle. 
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and 

where ax,my, and wzare the respective instantaneous values of angular velocity about axes x, y ,  and 
z. 	 The respective instantaneous values of the momentum pxJpy ,pz  and the angular velocity ax,ay, 
azabout the x, y ,  and z axes can be expressed in terms of the momentum vector (see Figure A-2 and 
Appendix C): 

px = L sin 6 sin $ , 

p y  = L sin 6 cos $ , 

p ,  = L cos e 
ox= 6sin $ sin 6 + 8 cos $ , 

aY= 6cos $ sin 6 - 8 sin $ , 
and 

0, = f j c o s e + \ t .  

64-41 

(A-5) 

(A-6) 

(A-7) 

(A-8) 

(A-9) 

Substitution of Equations A-4 through A-9 in Equations A-1 through A-3 yields 

px = L  sin $ sine=Il(4sin $sin 6 +$cos  $1 (A-10) 

(A-1 1) 
and 

(A-12) 

Multiplying Equation A-10 by sin $ and Equation A-1 1 by cos $ and adding the results gives 

cos2 $1 . (A-13)L sin 6 = ( I ~-1,)4 cos $ sin rl/ + Q, sin 6(1, sin2 + I ~  

Z z 

Figure A-2-Components of angular momentum and velocities. 
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Multiplying Equation A-10 by cos 9 and Equation A-1 1 by sin J/ and subtracting the results gives 

o = 6COS J/ sin 9 sin e(I, - I ~ ) +&I, cos2 J/ -t sin2 9)  . (A-14) 

If the spacecraft is assumed to be dynamically balanced about the z-axis, then I ,  = 12. Making 
this assumption and substituting in Equations A-13 and A-14, we obtain 

L = 1~6, (A-15) 
and 

rlB = o (A-16) 

Since I ,  # 0, e must be zero; it follows that 8 is independent of time. Substitution of Equations A-15 
and A-16 in Equation A-12 yields 

p ,  = 1,6, COS e =1~(6, COS e + &) . (A- 17) 

Solving for &, the angular velocity of the spacecraft about the spacecraft z-axis, we obtain 

$/=
( I ,  -I,)$ cos e 

(A-18)-

I3 

Solving for 6,the angular velocity of the spacecraft z-axis about the momentum vector OF,  more 
precisely, the angular velocity of the line of nodes, we obtain 

(A-19) 

Let us refer to 6 as precession rate and $/ as the spin rate (to be distinguished from the apparent 
rotation rate of the spacecraft with respect to a fixed external point). (Note that by Equation A-9, 
w, = $/ when 6, = 0.) This apparent rotation rate has an average value of 6+ $/.The precession cone 
half angle is 8, and the rate of change of the precession cone half angle is 0. If 11/13< 1, 8 tends 
toward zero, and the precession coning will damp out in time. Since it is usually desirable for the sat­
ellite to rotate about the z-axis, most spin-stabilized satellites are balanced so that the z-axis coincides 
with the largest moment of inertia. The rest of this text will deal only with this case, resulting in the 
fact that 8 = 0. It should not be assumed that zero precession implies that 6goes to zero. Equation 
A-19 states that when 8 = 0, then 6= I3$//(I1 -13). 

Equations Determining Spacecraft Aspect 

Figure A-3 shows the spacecraft momentum vector relative to the sun and zenith vector on the 
celestial sphere (which is centered at the spacecraft’s center of mass). The zenith vector is defined as a 
vector from the earth’s center through the spacecraft’s center of mass. The earth’s center is located on 
the celestial sphere at(RA, + 180) and (-Dz),where RAZ is the right ascension and Dzis the declination 
of the zenith vector. The great-circle arc from the sun to the zenith vector is 1). Applying the laws of 
sines and cosines to the spherical triangles in Figure 3, we write the equations for the values of 1) and 
the angles L 1 and L3 as 
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CELESTIAL NORTH 

Figure A-3-Spacecraft momentum vector relative to the sun and the zenith 
vector. 

cos 1) = sin D, sin D, + cos D, cos D, cos (RA, - R A , )  , if 0 <1) <180" , 

cos p - cos q cos 6 
c o s L l =  

sin q sin 6 ' 

sin p sin L2 
sinL1 = sin q ' 

sin D, - cos q sin D, 
cos L3 = ­

sinqcosD, ' 
and 

sin (RA, -RA,) cos D, 
sin L3 = 

sin q , 

where p is the angle between the sun and the momentum vector (spin axis) and 6 is the angle between 
the zenith and momentum vectors. Using the above values of L 1 and L3, we can derive the right as­
cension RA, and declination D, of the momentum vector: 
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sin D, = sin D, cos 6 + cos 0,sin 6 cos (L3 +L1), if 90" <DL G 90" , 

COS 6 - sin D, sin D,  
cos (RAL-RA,) = COSD, C0SDL ' 

sin (RAL-RA,) = 
sin(L1 +L3)sin6 

Y
COS DL 

and 
RA, = RA,+ (RA, -R4,). 

Therefore, to derive the right ascension and declination of the spacecraft's momentum vector, we 
must know several quantities. The right ascensions and declinations of the zenith vector (RA,, 0,)and 
the sun (RA,,D,) are accurately known from earth-based information, whereas p, 6, and L2 must be 
determined on board the spacecraft. From Figure A-3 it is clear (since apparent rotation rate is 6+ $) 
that 

L2 = (4+ $)At ,  k 180" , (A-20) 

where At, is the time required for the reference plane to move from the sun to the earth's center. 
Therefore, it is the measurement of p, 6, and (4+ $)At ,  that the aspect system must perform. 
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Appendix B 

MATHEMATICAL REPRESENTATION OF EULERIAN ROTATIONS 

Any vector N in the X ,  Y ,2 coordinate system, written in column form, may be transformed into 
the lf,qf,(' system by the application of the rotation matrix D: 

N,  cos@ sin@ 0 N,  

Nqf = D  N ,  = -sin@ cos@ 0 N ,  

Nsf  NZ 0 0 1 Nz 

N E  1 0 0 cos@ cos@ 0 N X  

Nq =CD o cos8 sin e -sin@ cos@ 0 NY 

Ns o -sine :os e 0 0 1 NZ 

Finally, application of the rotation matrix B produces the N vector transformed to the x,y ,  z coordi­
nate system: 

Nx N,  cos $ sin $ 0 1 0 0 cos@ sin@ 0 N,  

Nu = BCD N ,  = -sin $ cos $ 0 0 cos8 sin8 -sin@ cos@ 0 N ,  . 

Nz NZ 0 0 1 0 -sin8 cos0 0 0 1 Nz 

obtain 

COS $ COS @ - COS 8 sin @ sin $ COS $ sin @ + COS 8 COS @ sin $ sin $ sin 8 

A =  -sin $ cos @ - cos 8 sin @ cos $ -sin $ sin @ + cos 8 cos @ cos $ cos $ sin 8 . (B-1) 

s ines in@ -sin e cos @ cos e 
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cos @ cos $ - sin @ cos 8 sin $ -sin $ cos @ - cos 8 cos $ sin @ sin 8 sin @ 


A - I =  sin + cos $ + cos e cos @ sin \I, -sin JI sin @ + cos 8 cos 9 cos + -sin 8 cos 4 . 

S i n 8 s i n $  sin 8 cos $ cos 8 
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Appendix C 

MOMENTUM AND ANGULAR VELOCITIES 

Momentum 

Consider the momentum vector L of a rotating spacecraft oriented along the Z-axis of the X ,  Y ,Z 
coordinate system. (See Figure A-2a.) Writing the momentum vector as a column vector in the X ,  Y ,  
Z system, we have 

L =  


Hence, transforming the momentum vector to the x,y ,  z coordinate system, we obtain the instantane­
ous values of momentum about the x,y ,  and z axes. Denoting these values as p x ,  p,, ,and p z ,  respec­
tively, we have (because A is defined as in Equation B-1) 

L sin I) sin 8 

= A L = A  L cos I) sin 8 

L cos e 
Therefore, 

p ,  = L sin I) sin 8 , 

p y  = L cos I) sin 8 , 
and 

p ,  = L cos 8 .  

Angular Velocities 

Consider uo= d4/dt = 6 as vector directed along the Z-axis (see Figure A-2b). Writing 4 as a 
column vector, we obtain 
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0 

$ =  0 .  

i 
Then, expressing 6 in the x, y ,  z coordinate system we have 

o 	 i X  o i s i n  $ s i n e  
@x 

o = $y = & = A  0 = $cos$sinO ; 
@Y 

@Z i 6 cos 8I 
thus, 

w = $ s i n $ s i n 8 ,  
@X 

0 = $ c o s $ s i n 8 ,  
and @Y 

w = $ c o s 8 .  
@Z 

Next, consider we = de /dt  = e as a vector directed along the line of nodes. Writing e as a column 
vector in the X ,  Y ,Z system, we have 

e cos f#l 

e =  es in9  . 

0 

Transforming this vector to the x , y ,  z system, we have 

o 	 OX e c o s 4  ecos  $ 
OX 

w = ey = A ~ = Aesincp = - e s i n $ .  
eY 

' z  0 0 oe, 

Thus, 

w = 8 c o s $ ,  
ex 

w =-&in$, 
and eY 

o 	= o .  
ez 
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Finally, consider w,,, = d$/dt  = $ a vector perpendicular to the plane containing the line of nodes 
and the x-axis and directed along the z-axis. Hence, 

Now, combining the x, y, and z components of 6,$, and e, we establish a relationship between the 
angular velocities ox,my, and wz and the rate of change of the Euler angles: 

ax= 6 sin $ sin e + e COS $ , 

and 
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Appendix D 

CALCULATION OF 6 

The information contained in the relative position of the detector output pulses to the command-
slit crossing of the sun provides a measure of 6,the inclination of the spacecraft zenith vector to the 
spin axis. Consider the celestial sphere shown in Figure D-1 with the spacecraft located at the center 
of the sphere. The arc length X, is the smaller of the two possible great-circle arc distances from the 
sun to the horizon. From spherical trigonometry it follows that 

cos X, = cosp cosy + sinp sin y cosA . 

There are two values of X, that satisfy this equation. This ambiguity can be removed if the magnitude 
of angle A is taken into account: 

If a - A > O ,  then O < X 1 < n .  

If r - A < O ,  then n < X 1 < 2 n .  

If r - A  = 0 ,  t h e n X , = p + y .  

Angle A corresponds to the relative position of the earth's horizon with respect to the command-slit 
crossing of the solar disk. Hence, X, is uniquely determined, and 

sin x, = JG2-q. 

Now, applying the cosine and sine laws of spherical trigonometry to the triangle containing the angle 
X,, we have 

cos p - cos XI cos y
COSX, = sin x,sin y 

and 

sin x2= sin p sin -X ,  
sin A 

Therefore, X, is also uniquely determined. 

Let re equal the mean radius of the earth and h be the height of the satellite above the earth (see 
Figure D-2c). Then, 

re
sinp=-re + h  (0 <p <90") y 

33 



Figure D-I-Celestial sphere representation of the single horizon solution for 6 

and, from Figure D-I, 

-cos 7)- cos X ,  cos p
cosX3 = sinx,  sinp 

Again there are two values of X ,  that satisfy this equation. Also, from Figure D-1, 

X4=2a-(X,  + X , ) ,  

and X4 has two possible values corresponding to the two values of X3.  Also, 

cos 6 =-cos p COS y - sin p sin y cos X ,  (0 <6 < 180°), (D-1) 

and 6 is doubled-valued. 

The information contained in the spacing of the horizon-detector output pulses and the relative 
position of the earth’s center from the sun provide alternate methods for 6 calculation. 
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Figure D-2-Definition of variables for the two horizon solution for 6.  

Referring to Figure D-2b and considering the plane containing EA and EC, we have 

- EB cos- TE E A ’  

where Ata is the time between horizon pulses, and TE is the rotation period. From Figure D-2, various 
other relationships can be derived: 

E B = E D + D B ,  (D-3) 

ED = OE tan (90 - 6) , where OE = OA cos y = OH cos y , 03-41 

OGDB = 
COS (90 - 6)  ’ where OG = OH cos p , 

EA = OA sin y =  OH sin y , 
and 

ED = OH cos y tan (90 - 6) . 

35 




From Equation D-5, 

DB = 
OH cos p 

cos (90 - 6) -
Hence, from Equation D-2, 

Thus, from Equation D-2, 

Then, from Equation D-6, 

Therefore, 

that is, 

Let 

and 

Then, 

OH cos p
EB = OH cos y tan (90 - 6) + 

cos (90 - 6)  , 

cos p rata 
OH COS cot 6 +- = OH sin y cos -

sin 6 T E  

rata 
sin 6 cosy cot 6 + cosp = sin 6 sin y cos- ; 

TE 

rat, 
cos y cos 6 + cos p = sin 6 sin y cos- . 

T E  

d = c o s p  , 

E = c o s y ,  

rata 
f = sin 7 cos -. 

TE 

d + E  cos 6 = f sin 6 = f,/w. 

(D-10) 

(D-11) 

(D-12) 

Squaring both sides, we have 

d2 + 2 ~ dCOS 6 + e2 cos2 6 + f 2  cos2 6 - f2  = 0 , 
or 

(e2 + f2)  cos2 6 + 2ed cos 6 + (d2- f2) = 0. 
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Thus, 

that is, 
-de f f,/w

cos 6 =-
E 2  + f 2  

Figure D-2 represents a spacecraft rotating with no precession. An earth-horizon sensor is 
mounted y degrees off the spacecraft z-axis so as to sweep over a cone which cuts the earth horizons at 
A and C. The inclination 6 of the momentum vector to the subsatellite zenith vector may be ex­
pressed in terms of spacecraft elevation y and horizon-pulse spacing. To summarize, we have just 
proved that 

-de k fJE2 + f 2  - d2 
cos 6 = , if 0 < 6  < 180°, (D-13) 

E 2  + f 2  

where 

d = cos p ,  

E = cos y, 
and 

f = sin y cos (nAt,/T,). 

Also, from Figures D-1 and D-2, 

P = sin- [ rE/( rE + h ) ] ,  

Ata = horizon pulse spacing, 
and 

TE = rotation period. 

Information giving the value of 6 is also contained in the relative position of the horizon pulses 
to the command-slit crossing of the sun. On the spacecraft, the earth horizon sensor has a pencil field 
of view located y degrees from the spacecraft z-axis in the plane of the command slit. If the spacecraft 
is spinning so that 8 = 0, horizon pulses will be symmetrical about the instant when this plane crosses 
the center of the earth (see Figure D-3). The center of the earth is located on the celestial sphere at 
(RA, + 180") and (-D,)(see Figure 12), where RAZ is the right ascension and D, is the declination of 
the subsatellite point zenith vector. The great-circle arc from the sun to the earth's center on the celes­
tial sphere is 180" - q. The time midway between horizon pulses minus the time the command slit 
crosses the sun is Atc. The relationship between 6 and Atc can now be written from the spherical tri­
angles in Figure D-3. 

The angle between 180" - 6 and p is L2, i.e., (6, + $)Atc, as is used in Equation D-14, below. 
Since 6, + $ = o,= 27r/T, this angle can be expressed as 2nAtc/T; this is how it appears in Figure D-3. 
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Figure D-3-Relationship between At, and 6. 

Thus, we have 

cos (180" - g )  = cos p cos (180" - 6)  + sin p sin (180" - 6) cos [($ + $)At , ]  ; (D-14) 

therefore, 

cos g = cos cos 6 - sin sin 6 cos [($ + $)At , ]  . (D-15) 

Solving for 6 gives 

(D-16) 

where 

r = -cos g, 

s = -cos p, 
m d  

p = sin p cos [($ + $)At , ] .  

Also, from Figure A-3, 

cos g = sin 0,sin D,+ cos 0, cos D,cos (RA, - R A , ) ,  if 0 <g < 180", (D- 17) 

where 

0, 
= declination of subsatellite zenith, 

D, = declination of sun, 


RA, = right ascension of subsatellite zenith, 


RA, = right ascension of sun. 

and 
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Appendix E 

SCHEMATIC DIAGRAMS FOR ASPECT SYSTEM 
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Figure E-2-IMP optical aspect: aspect module A 16-183. 
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Figure E-3-IMP optical aspect: timing 16-183. 
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Figure E-4-IMP optical aspect: sun centering module 16-185. 
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Figure E-6-IMP optical aspect: timing 16-188. 
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Figure E-7-IMP optical aspect: aspect module C 16-189. 
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Figure F-1-IMP optical aspect: SSC function generator. 
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Figure F-3-IMP SSC, second section. 
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Figure F-6-IMP optical aspect: SSC 16-150. 
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Figure F-7-IMP optical aspect: SSC 16-151. 
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Figure F-8-IMP optical aspect: SSC 16-152. 
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Figure F-9-IMP optical aspect: SSC 16-153. 
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Figure F-10-IMP optical aspect: SSC 16-154. 
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Figure F-11-IMP optical aspect: SSC 16-160. 
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Figure F-12-IMP optical aspect: SSC 16-161. 

9042 



-- m 

0 
 <1 +VOLTAGE 

RESET COMMAND 
PULSE I 

I 
1 A >  ljcrsl 

W IN8 8 >  

1 A 
R2 J 9 K  

Figure F-13-IMP optical aspect: SSC 16-162 
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Figure F-15-IMP optical aspect: SSC 16-171. 
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Figure F-17-IMP optical aspect: SSC 16-190. 


