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A LINEARIZED APPROACH TO CHEMICALLY GENERATED

I
	

WAVES IN A DILUTE, ISOTHERMAL ATMOSPHERE

PART I

ANALYTICAL TREATMENT

INTRODUCTION

Waves in a stratified fluid under the influence of gravity appear to have

been initially discussed by Burnside (1889) and Love (1891). Both authors treated

an incompressible fluid. Gortler (1943) used schlierin photography to show

experimentally that disturbances in an incompressible stratified medium under

the influence of gravity propagate along characteristic rays. Lamb (1908)

treated a compressible, adiabatic, ideal gas whose density is stratified by gravity.

Since the original contributions by Burnside, Love and Lamb there have been many

theoretical papers on various types of gravity waves. Reasonably up-to-date

treatments of the subject may be found in Eckart (1960) and Yih (1965). However,

gravity wave theory is currently undergoing an active phase of development

and contributions are being added to the literature at a rapid rate.

Recent experimental data from the earth's atmosphere and oceans have

greatly stimulated interest in gravity-acoustic waves. Gossard (1962) has ob-

served gravity waves in the troposphere. Hines (1960) has shown that internal

atmospheric gravity waves may account for many of the phenomena observed
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in the lower ionosphere, and gravity waves have been observed in the thermo-

sphere by Newton et. al., (1969) and Harris at al., (1969).

It seems to be generally agreed that gravity waves are generated in the

troposphere, then propagate upwards. Thus Gossard (1962) has observed

gravity waves near the earth's surface and Eberstein (1970) has illustrated

the development of gravity waves between 30 km and 1,60 km.

The simpler forms of gravity wave theory treat propagation through an

inviscid, non-conducting gas, while more sophisticated theories Include effects

of heat transfer, viscosity, and high altitude phenomena such as ion drag. How-

ever, the effect of chemical reactions does not seem to have been adequately

considered to date.

Between the troposphere and the thermosphere there ara several regions

where important chemical reactions take place.

First, there is the ozonosphere between approximately 15 km and 45 km,

with peak ozone concentration at about 35 km. Ozone mole fraction is in the

order of parts per million (Mitra, 1952).

Between 60 km and 96 km there is Nitric Oxide (Pearce, 1969). The mixing

ratio for Nitric Oxide is also in ppm.

V
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Betwoen 90 km and 120 km molecular oxygen dissociates into atomic oxygen.

The dissociation ratio, o being 3 x 10-8 at 90 km and 0.998 at 120 km (Mitra,

1952). The oxygen is no longer a truly dilute reactant since its mixing ratio is

20%p.

The major chemical systems are tied to the absorption of ultra inlet radia-

tion from the sun, and are thus having a dawn and dusk dependence. 'There is

also a dependence on solar activity.

Large storms and such phenomena as aurorae may also be simulated by a

chemical type heat release.

In what follows, an initial study is made of chemically generated waves in a

dilute, isothermal atmosphere. Simplifying assumptions are made to make the

mathematics more tractable

2. Governing Equations

The continuity and momentum equations (cf. Shere and Bowhill, 1969) are

not affected by .the chemical reaction provided that the state variables are given

the extended definition:

P =- P(p, T, a)

where P. p , T and a denote pressure, density, temperature and degree of

advancement of the reaction, respectively. 'These equations are in tensor

notation:
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P-Lp a u i	 U	 (2.1)
Dt	 a xi

I	 t

and

	

Du i 	 ap	 a";

	

P Dt	 p9i - axi	 axi	 ( i	 1 + 2 )	 (2.2)

where

a	 aU^	 2	 auks
i + ^ -- -T i -J-7tk JL

We denote time, space variable (x2 vertical), velocity component, gravitation

vector component, viscous stress tensor, dynamic viscosity and the Kronecker

delta by t, xi,  u i, g i g O'j i , µ and 8 i; respectively. We also take g, = - 98i2

and we define D/Dt to be the total or Eulerian derivative.

In order to develop the energy equation, it is necessary to consider the

thermodynamics of the system. The derivation of the equation of state parallels

the work of Liepmann and Roshko (1957, p. 29) and the derivation of the reaction

rate equation parallels the work of Eberstein (1966). The following discussion

applies to the reaction

J + AB	 A + B + J

where J is an inert element. We assume that each component of the mixture is

a perfect gas. The mixture, however, is not a perfect gas. The partial pressure

of the ith constituent is
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P	 -: m l p R T	 (2'3)

where Ri _ A/Wi with 'A the universal gas constant, W i the molecular weight,

and m , the mass fraction of ith-component. Letting a be the fraction of AB

dissociated, n i the number of moles of ith component, and no the total number

of moles when a = 0,

	

n AB	 110 X0 (1	 a)

	

nA	 no Xo U

	

n B	 no X o a

nJ _ (^i - Xo ) no

where Xo is the mole fraction of AB when a - 0. Summing yields

^:n i = n o ( 1 + a X o ).

P = R(a)pT

R(a) = :R/M

(2.4)

(2.5)

where :R is the universal gas constant, and M is the mean molecular weight,

given as:

M	 I W   + x  ( WAB - W j )J/ 1 + a Xo
L

It follows that

R(a) = R(0) (1 + a Xo)
	

(2.6)

The reaction equation is as follows:

Dn AB/Dt = - kFCT) 
nVB	

k  ( T )	 V	 V	 (2.7)

5



where

N L ni

and k is a rate constant. In determining (2.7) it has been implicity assumed that

all molecules present may act as an inert element with equal collision effective-

ness. Substituting (2.4) into (2.7) yields

Da	 Xo a2
Dt	 [Pkr ( T)/M] 1 ` a - (K(T)P/M) C1 Xo a]	 (2.8)

where

	

K("T)	 .:F

1.	 and M is the mean molecular weight

For chemical equilibrium, the rate equation reduces to

1--a- P	 Xo
a2	 K  1 +a Xo

where use was made of the equality

K P
K	 =	 Kc =RT

_.
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In atmospheric problems the reactant fraction is generally small, and it

will be assumed that X. -^ < 1. It follows that a X 0 < < 1. The rato equation

may thus be simplified to give:

nor	 _	
ff	 l

Dt (2.9)

The energy equation is now developed in the usual manner (cf. Liepmmin

and Roshko, 1957, p. 185+). Summing the rate of change of the internal, kinetic

and potential energy yields

>^ + 2 U. U. + 1 1 9 x 2 dV

V

f
A	

2 pU
i Ll i 	 2) Ll , n , dA

- fPn j ui dA +	 ui (Yi j dA +	 K 
aT
aXl n i dA 

(2.10)

A	 A	 fA

where n, is the ith component of the unit normal of the closed surface 0, V is

the volume of 0 and A the area; a is the internal energy per unit mass and K is

the coefficient of thermal conductivity.

By applying Gauss' theorem and substituting the continuity and momentum

equations into (2.10), we obtain
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De	 aui	 a",;	 0	 aT	 (2.11)

	

P Dt	
_p ax ► * ' i ax	 ^ ^'< ax,/

We now use the first law of thermodynamics, h = e + P// , and the continuity

equation to obtain

	

Dh	 DP	 `l u i	 r7	 a T

	

P^	 `^l i ax .	 a^.. K7-X)	
(2.12)

In a reacting gas mixture the enthalpy depends on the temperature and the

degree of reaction, i.e.

h = h (T, a)

The rate of change of enthalpy per unit mass is then given by:

Dh C DT	 Da
Dt r	 P Dt ' Xo B Dt

(2.13)

where B is the enthalpy of reaction and CP is heat capacity. For an endothermic

(exothermic) reaction, B is positive (negative). Both the enthalpy of reaction

and the heat capacity have a weak temperature dependence, and an even weaker

pressure dependence. For simplicity both C P and B will be assumed constant

throughout this paper.

Eliminating h between (2.12) and (2.13) one obtains the enthalpy equation

in the corm:



Dp aui

Dt + p ax.
(2.15)

F	
DT	 Ca	 DP	 `^"^	 r'1	 r7T	 (2.14)

	

P Dt + 
XG 

D Dt	 Dt t ' k ax k t ax;	 axi

To summarize, we have found the system

Dpa u i	 (2.1)
Dt	 P ax. _ 0

^.

	

Du	 ^)P	 r3 `r^ i	 (2.2)

	

P Dt	 Pgi - ax i t ax i

P	 P R (a) T	 (2.5)

Da	 k  (T)

Dt	 ja	 M	 1 - a	 (2.9)

DT	 Da _ DP	 o1i i	 a	 a T

^` C P Dt ; X o pD Dt	 Dt	 ` ° ii ax i +axi K axi	
(2.11)

The dependent variables are P, p, T. u i , and a; the independent variables

are t, x i . The quantities k F , K, c  and B are known parameters of the system,

Xo is a small (known) parameter.

For the remainder of this paper we assume that the atmosphere is inviscid

and nonconducting. Hence, the governing equations are
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Du 	 (2.16)a
Dt	 X, ► 	 a X

P	 f' RT	 (2.17)

 )

D _ ^^ M 
1 -

( 2.18)

 P
PCP Dt *r AO B F^ Dt	 Dt	 (2.19)

3. Nondimensionalization of the Governing Equations

Since mathematical operations are performed on pure numbers it is proper

to non-dimensionalize the governing equations.

Some of the non-dimensionalization is almost trivial, as shown immediately

below:

	

R'	 R/R(0)

	

C P ' 	CP/R(0)

P	 P/p*

	

M 	 M/M*

k F ' - kFp*/M*608

	

K'	 Kp* /M*wB

10
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where R(0) is the gas constant for Fr , p, and the starred reference level is at

the bottom of the reaction zone. , B is a base frequency.

t 

X M

where H is scale height

T'	 R(0) T/a)B2 u2

B'	 B/wB 2 H 2

g'	 1 1	

g 
/Ha)B 2

P, N pfp* 0 . 8 2 H2

It is seen that in the primed system we have

p' - p' R' T'

In general, the .ion-dimensional system of governing equations looks very

similar to the dimensional system.

The quantity C,1 H2 is proportional to the energy contained in a wave

oscillating with the base frequency, and having amplitude equal to a pressure

scale height. The quantity Hc)B2 is a measure of the acceleration experienced

in such a wave. Since such acceleration must be less than that due to gravity

we would expect g' > 1.

One may estimate the magnitudes of the non-dimensional parameters.

Taking a scale height of 6 km and a base period of 5 minutes, one obtains

11
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(a;B H) 2 h. 1.6 x 108 cm2 /seC 2 - 3,74 calories/gram

and

9'	 3.5
&)B2 H  261 cm /sec t , giving T, ,, 3.5

Further, taking B = 34.4 kcal/gmole, M = 48g/gmole, one obtains B' - 200.

4. Asymptotic Development

The non-dimensionalized system of equations will be expanded about the

parameter X o , i.e., we expand each dependent variable in a power series of

the form:

00

f(t, X, Z ) - L f( N ) ( t, X, Z ) X 
0 

N	 (4.1)

N=U

where higher order terms may be dropped as X U 0. This expansion limits

the validity of our results to dilute fluids, such as the atmosphere. Other ex-

pansions (of. Lax, 19571 can be obtained by inserting a small parameter into

the initial conditions. These expansions may, for example, be used to study

the generation of gravity waves by tidal waves.

Assume that the atmosphere is initially stratified, quiescent, and bounded

below by the earth, i.e., we define an initial-boundary value problem with initial

conditions:
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T(0, x, z)	 To	 T.

u i (0, X. z)	 0	 (i r 1, 2)
(4.2)

P( 0 , x, z)

a(0, x, z) --	 0

and boundary condition:

	

u2(t, x, 0)	 0

Using the equation of state to eliminate P from (2.18) - (2.19) and substituting

(4.1) into the resultant system yields the zero-order solution

T ( ° ) (t, x, z) = T o = To

u l ( ° ) (t, x, z)	 -	 0
(4.3)

P (o) (t x, z) = e-Z

a ( ° ) (t, x, z) = 1 - exp [-k F P ( ° ) t]

Defining T (1) = T (°) T(1) i P(1) = P(o) P(1) and a(1) = a ( ° ) a(1)

we get the first order system

au1 1 >	 aP(1)	 aT(1)

at + T o	 + T o ax	 - 0	 (4.4)

P	 ^^a at ( 1.) 
+ To 

8,0 ( 1)
1 (o T (1> + To aaz l	- T° 

-3a(0)
az	

(4'5)

+ Toa(° )

aP ( 1)	 au 1 ( 1 )	 au 2 ( 1 )
at	 + ax	 + a 	 U2(1) - 0	 (4.6)
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-	 aat l)	 1 a^t 1) + uz(1)	 : _^ as o>	
(4.7)

y	 a

a(t ) a( o ) 4, ^x(1) Kati0 )	 ^.	 r( 1 ) (p(o)i a(o))
	 (4.8)

where

(
B
To r 1 ) .

Equations (4.4) - (4.7) form a linear system of four partial differential

equations in four unknown functions. The system is inhomogeneous. The solu-

tion of (4.8) for a (1) is needed only for the calculation of second order terms.

Since we determine only the first order terms in this paper, we will neither

specify I' M nor solve for a (1) .

Dropping the (1) subscript or superscript and eliminating we obtain the

equation

a 2 a 2	 a2	 a2	 a	 2

	

at e at 2 	C2 ax2 
_ 

C2 aZ 2 + C2 az	
y 

2 1 C4 a x
a 

2IT f (a(o)) (4.9)
y 

where

f(a( o )) - - (-y- 1) 13 at2 a 2 ^To .a2 - T
a2

o a 2] a(o>

	

at	 ax 

	

_	 a3a(0)	 a2aO)
( y - 1 ) B a t 2 a Z + 0/ ')To2 a x2 (4.10)
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and

0	 y To

After (4.9) is solved, the other dependent variables can be determined by

the equations

a2 0 1 a 2 T	 aT	 a2 a(l)

ate	 T o az	 Y- 1 at e 	 T o az + To T	 ate	 + 1oa(o) (4.11)

au,	 _ 02 P 	 -F	 1	 a 2 T	 1 OT . * 
C^ at

(2-
az

a	 W 1a
 1 ( o>	 (4.12)

ax	 at az	 y-- 1 at az	 y-- 1 at 

and

a 	 1 0 	 aa(o)
u2 F - y _ 1 -t - ^	 t	 (4.13)

Now define

	

0(t, x, z) =_ e -Z/2 T (t, x, z)	 (4.14)

The above definition allows the temperature perturbation to grow expo-

nentially with altitude without a corresponding growth in 6.

Substituting the definition of 0 into (4.9) yields:

(92

	
a a _ C2 p2 + 42 6 _ C2 ( s^ 1) a 22

	 e - Z / 2 f (a)	 (4.15)
at	 at	 y	 ax

f(a (o) ) was defined in Equation (4.10).
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The dispersion equation of (4.15) is:

X 
t4 - 

C 2 ^ x2 + k Z2 
j 4 / X t2	 t(.^, - 1) Ca ly1 \ x2 - 0	 (4.16)

where X, is the wave number of I.

For a discussion of dispersion relations and how Case are obtained from

partial differential equations reference is made to Courant and Hilbert, es-

pecially p. 588.

5. Solution of the First-Order System

From (4.4)-(4.6) and the initial conditions (4.2) we deduce that

d(0, x, z) = 0
	 (5.1a)

of (0, x, z) _ - (y - 1) T3k f e- 3z/2	 (5.1b)

Conditions for Ott and Ott t at t = 0 can be determined by differentiating (4.4)-

(4.8) appropriately and analyzing the resultant system or by integrating (4.15)

and applying the physical requirement that B (t, x, z) must remain bounded w3

t , co. The negativeness of et (0, x, z) means that the atmosphere initially

cools, which is in correspondence with the endothermic reaction chosen.

Since the inhomogeneous parts of (4.5)- (5.1) do not depend upon the hori-

zontal space variable, neither does the solution. Thus (4.15) reduces to

r

4
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r̀I 2
	

(5.2)

where

MI - I	 rg2`"d t 2 -C 2 r7 2_,aZ 2 1 C 2 A .
	 (5.3)

It is worth noting that the initial conditions and the alpha dependence chosen

are such as to imply the relevance of only one space dimension. Ot, , t C initial

or boundary conditions would require that the second space dimension be kept.

Integrating (5.2) with respect to time twice,

3z
M ( ] = w(t, z) = k F (y - 1) ^kf (- + Bt 2 ] .' - 2Bt} exp - T + kFtc_ Z (5.4)

subject to initial conditions (5.1).

The inhomogeneous part of (5.4) is the effect of the chemical reaction. For

a realistic approximation to the atmosphere, the inhomogeneous part of (5.4) must

be multiplied by a suitable weighting function, since the chemical contribution

only extends over a finite altitude regime. We also note that at each fixed

altitude the driving force must tend asymptotically to zero in the Poincare

sense as t - oo .

The assumptions used in this paper are also suitable for a multilayer ap-

proximation of the atmosphere. In this case we would consider either an initial-

boundary or pure boundary value problem for (4.15). The x-dependence may not

generally be eliminated for this case.
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The solutim i of (5.1)- (5.4) is obtained by superposition. We choose a suitable

function ti, (t, z) which satisfies the initial conditions and is damped in time.

For example, set

t y, (t, z) " - (y - 1) k f ^ e-}2 to a -3x/2	 (5.5)

Observe that (5.1) is satisfied and

M [1)	 2 ti%`2 C (ry - 1	 k f 
e- V'2 • e- 3z/2

Since M C is a linear operator, (5.1)-(5.4) may be reformulated as

(:I(t, Z) - 01 ( t , Z) + 02 (t, Z )	 (5.6)

where 02 (t, z) satisfies

	

M [^)(t, Z)] Z-'w(t, z) - 2V2 C(^ - 1) Bk e e-'%2 t  C— 3z/2 	 (5.7a)

and

6)2 (0, Z) -'- ^)2. t (0, Z) = 0 .	 (5.7b)

The solution of . (5.7) for 02 (t, z) is known [ cf. Lamb, 19091 and is given by

t
©2 (t, Z)	 W(t, z; T) dT	 (5.8)

0

where

tC-TC

W t Z; T -	 '	 t C - TC 2 - 7?	 T Z	 d7l (5.9)+
fo

18
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and

Q(1) z	 r	 i'O, z	 X2(12
	

(5.1,0)

with

z	 N' (^ , z } — 2	 r-^, k f X1 -.'2 to t ,-3z 2

Although (5.5) and (5.8)-(5.10) provide an exact solution of (5.1)-(5.4), this solu-

tion is complicated and yields quantitative information only through , 1 L mertcal

calculations. The results of these calculations are given in the following sections.

A solution of (5.1)-(5.4) can also be obtained using series techniques. The

result is a somewhat rapidly convergent infinite series whose terms involve

products of powers (- k f t e') "  and Young's functions [Young, 1912 ), a special

case of Lommel functions. Since the series was not used to obtain physical

results, it is not presented here.

From (4.12)-(4.13) we deduce the first order terms:

T(t, z) ^ 0/20(t, Z)

aT
u 2 (t, z) - -	 at y _ 1 + 8 dz

fz

z

 
S

where z is at the earth surface and
S

t	 au^

p(t, z) -
	

IU 2 - az 
dt

0

The numerical solution and appropriate physical applications are discussed in

Part H.
19
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