- A PREPROCESSOR FOR A RF/AL-TIME DIGITAL COMFPUTER

s
c”
¢

Richard Lee Bulle
B.S. Phys. University of Tulsa, 1963

A Thesis Submitted to the Faculty of
School of Engineering and Applied Science
of the George Washington University in Partial Satisfaction
of the Requirements for the Degree of Master of Science

February 1971

Thesis directed by
Janmes Dean Harris, Ph.D.

Professinne” Lecturer in Engineering

N¢1-213035
(Atcesmqgr\t«am - &%’)

(PAGES) (CODE)
X" (4 JO o8
(NASA CR OR TMX OR AD NUMBER) (CATEGORY)

-

FACILITY FORM 607

S e
g WS

i A
i I

P«“ﬁ{.iﬁ}%~\n 1}— ,.»*’ x

k]
¢ P_s#ﬁ"

|

IV NS - % e
bk T f”?ﬁ{*‘ if’iﬁf"ﬂf “‘j i" -

- "
T b Dty Caryos,- R Py
\

ABSTRACT

One of the major functions of the National Aeronautics and Space
Administration's Langley Research Center Computer Complex is to provide
computational support for real-time flight investigations. For pur-
poses of efficiency, several resl-time application programs operate
concurrently in a single Control Data Corporation 6000 series computer.
To perform "man in the loop" digital simulation requires that the
computer operates as part of a closed loop, time critical system where
precise problem solution rates must be guaranteed in order to maintain
the integrity of t'.e solution.

For ease of operation and programing, a real-time digital simula-
tion supervisor (supervisor) was written to interface between a Fortran
simulation program and the real-time system. T provides all the
real-time 1nput/butput control, timing and synchronization, commnica-
tion, control and other system functions unique to real-time operations.
To maintain the flexibility and computational speed needed in real-time
simulstion, sﬁpervisor was written as a series of interdependent
subroutines that are loaded with each real-time program. [his provides
the programer the option of using only those features of the system
that he needs. In addition to superwvisor, there are two other subrou-
tines that are used by most simulation programs; They provide integra-
tion and the capability of displaying, changing and recording on a

typewriter the value of problem varisbles.

it

.....

pdfen
_.;&F@,
Al

o
o]

7; Lo g

E SR
4

PO .C N PtL

]

,&i

S
IR

G

k]

Ry

! ﬁr;"x % T T A

TR
A l’

Ls
=
%
&
L
:
.
s
K

Py
[L 2

Fe ’
vt oE s

"'11‘."7%41 r]

S e
T

&
W

[

ki

LM

5
P

o g T, T

r it gt

The objective of this project was to develop a real-time digital
preprocessor (preprocessor) that would minimize the programing involved
in writing a real-time simulétion by providing a meta language to Fortran.
The preprocessor would parse this meta language and develop a real-time
Fortran program. This would allow the programer to communicaté to the
preprocessor his real-time requirements in a unified manner and place
the burden on the preprocessor to write all the subroutine calls neces-
sary for real time.

A brief description of the software and hardware necessary to
support digital simulation is presented. The present method of writing
a real-time prograﬁ and a new method using the preprocessor are compared.
The.Syntax, Semantics and Pragmatics of the preprocessor's language are
defined and discussed. The implementation of the preprocessor is discussed
and in the appendixes the complete syntax, a flow chart of a major sub-

routine and sample input and output programs are included.

iid

e @

S
R 0

:a.,’-\.\\: éﬁ& . M—P‘M‘zj @

I R O St TP Y RN J) _ i)
X % # = Wiy é_y‘\: B4 V%Lﬁ?‘—‘h_w{,ﬁ), -/; " w;,‘ ﬂ}f"e‘"ﬁ fé-‘@: g %\‘_&u\‘ :‘:}ﬁ; o f“""\%h’.‘ in ?*;1 e :

A e e A

T

g N T,

"‘.v"l,"{"w,;:f’, {,;”

vl

Z s B S I .
[P T Z—"ﬂ‘\ i

! z'?’-frff :

V"T"ﬁ?!’

e T tRE ST

-

R TR R S P

v
= Are sl Ry
= Pac

ABSTRACT.

- ACKNOWLEDGMENTS .
LIST OF FIGURES .
LIST OF SYMBOLS .
Chapter

I. INTRODUCTION

TABLE OF CONTENTS

IT. REAL-TIME COMPUTING SYSTEM.

ITI. CHARACTERISTICS OF THE PREPROCESSOR .

IV. REAL-TIME PRFPROCESSOR IANGUAGE .

V. IMPLEMENTATION OF THE PREPROCESSOR.

VI. CONCLUSION.

APPENDIX A

DESCRIPTION OF THE REAL-TIME DIGITAL STMULATION

SUPERVISOR .

APPENDIX B

APPENDIX C -~ RTPL SYNTAX

APPENDIX D

APPENDIX E

APPENDIX F - PREPROCESSOR

APPENDIX G
BIBLIOGRAPHY

TYPICAL ERROR DIAGNOSTICS.

FORTRAN DECLARATIVE SYNTAX .

SAMPLE INPUT AND OUTFUT PROGRAMS .

SUBROUTINES .

FIOW DIAGRAM OF THE CVAR SUBROUTINE.

iv

Page

ii

vii

15

ko
k5

53
Sk
61
63
69
T2

Hian
4‘5”"‘? Py

L

AY
Ed

:
;

-~
(]

ACKNOWLEDGMENTS

The author wishes to thank Mr. Joseph W. Young of National Aero-
nautics and Space Administration, Langley Research Center for his
advice and guidance in establishing the guidelines for a real-time
preprocessor, and his advice concerning the research that followed.
The author would also like to thank Dr. James O. Harris for his advice

and guidance in preparing this thesis.

"
)

e

o e e d’d’)};ﬁ;ﬁt’. PRy .:ﬁ*' qi.gg*ﬁ;& .

k3

-y

B
(S El L '}

-3

Fann

L2

,@:‘.&“’.’?3«3

o - .
4 2 LR) f‘% - .
f B i ?L_'W, o ood N R s “vf?;‘q

aﬁﬁﬁﬁﬁﬁ

F 2

~

P :
",1,‘.({"""“% i ,'g,;g».;».i?‘;iz

PRI

Fleging

LIST OF FIGURES

IRC digital computer complex.

Real-time simulation system .

Program control station . . .

Program Control Console . . .

Computer organization with real-time digital simulation

Block structures

Symbolic program

vi

Page

11

40

s g et
RO e =
gt

v,

X
=

>

VIR

T
ks

g

Sty yﬁd 5
.

e

1 a

i

2

‘*.‘.J'.%'

il iBagr

Hyaze s
e A
L

! W’v‘“"uj{?ﬁm{a;:‘**ﬁ’“s

R T R

T, aheshy

”
G

.
¢]

3

e, S e

ADC

R

ADCON

ADDIS

SE Pk

BNF

W
¥

CDC

CRT

R S~
® %o

DAC

DACON

DADOS

v "fu-ﬁ':'w{\"‘;gg' ‘[’-"’?—: #"’; \;"

IC

LRC
RCT

RTPL

RTSS

SKED

LIST OF SYMBOLS

Analog to Digital Ccnverter

Analog to Digital Controller

Analog to Digital and Discrete Input System .

Backus Naur Form

Control Data Corporation

Cathod Ray Tube

Digital to Analog Converter

Digital to Analog Controller

Digital to Analog and Discrete Output System
Initial Condition

Langley Research Center

Requested Computer Time, also called Maximum
Computer Time

Real-Time Preprocessor Language
Real-Time Simulation System

Real-Time Scheduler

vii

“Fel,
e S

FET

At ',".E“
i*“§%$¢*%

B

T SNV SN N
LREENEE, g soet el LA N

R

A

3

< il 36 5

A @A@M

R RS e
3

SCRY

RIS

: fa.. . A
e ¥ ;'3'&:%’“}.“.’49-@15::-:; 2357 e

- i, e b Y

=

L ;\&%ﬁ‘ R s T TP, ":;:‘,4 N

o

L3 3 :":{

.
ey
g

ssg o,

-

CHAPTER I
INTRODUCTION

One of the major functions of the National Aeronautics and Space
Administration's ILangley Research Center Computer Complex is to provide
computational support for real-time flight investigations. For purposes
of efficiency, several real-time application programs operate con-
currently in a single Control Data Corporation 6000 series éomputer.

To perform "man in the loop" digital simulation requires that the
computer operates as part of a closed loop, time critical system where
precise problen solution rates must be guaranteed in order to maintain
the integrity of the solutionm.

For ease of operation and programing, a real-time digital simula-
tion supervisor (supervisor) was written to interface between a Fortran
simulation program and the real-time system. It provides all the real-
time input/output control, timing synchronization, communication,
control and other system functions unique to real-time operations. To
meintain the flexibility and cpmputational speed needed in real-time
simulation, supervisor was written as a series of interdependent sub-
routines that are loaded with each real-time program. This provides the
programer the option of using only those features of the system that he
needs. In addition to supervisor, there are two other subroutines
that are used by most simulation programs. They provide integration
and the capability of displaying, changing, and recording on a type-
writer the value of problem variables.

1

N

The result of this approach is that a program must contain many
subroutine calls. The bad feature of this is that much of the informa-
tion is repeated in several calls.

The objective of this project was to develop a real-time digital
preprocessor (preprocessor) that would minimize the programing involved
in writing a real-time simulation by providing a meta language to
Fortran. The preprocessor would parse this meta language and develop
a real-time Fortran program. This would allow the programef to
communicate to the preprocessor his real-time requirements in a unified
manner and place the burden on the preprocessor to write all the sub-
routine calls necessary for real time.

; A general description of the hardware and software necessary for
feal-time simulation will be presented. The features of the preprocessor
will be explained and the characteristics of the meta language described.

A sample progrsm will be used to convey the saving that the preprocessor

can provide the programer.

CHAPTER II
REAL~-TIME COMPUTING SYSTEM

In the winter of 1965, Laneley Research Center was operating an
analog computing facility. Most of the problems that were being solved
on these computers consisted of man in the loop simulation problems.
The vehicle that was being similated was usually some aircraft that
could be represented Ly a set of first and second order, noﬁlinear,
differential equations. By means of a similated cockpit connected to
the analog computers, a pilot would "fly" the mathematical model. The
simulated flights would be recorded on eight channel strip chart

recorders or two axis plotters.

During the same winter, it was decided that Langley Research Center

could use digital computers to handle the same‘type probiems. The
influence of the analog computers is evident in the hardware and soft-

ware of the resulting digital computer complex.

System Hardware
The real-timg digital complex consists of four Control Data
Corporation 6000 series computers and associated subsysteme as shown
in figure 1. When the system is in operation, several of these sub-
systems may be actively connected tc one computer. The exception to
this is that only one simulation subsystem or data recording subsystem
may be attached to a computer. This means that a real-time simulation

may be processing with batch, interactive CRT system and remote

S Bk N

*xa7dwoy g9qndwo) TBRTSTq U -°T1 aandty

.lm.l |<l |—
WHLSASHNS WHLLASHNS
NOILVINNIS NOILVINNWIS
T R) ,
NI LSAS9NS WHAILSASH(:S TV IHJIIHAd
UL vdRLs WZLSASHNS
DNIAH00HY TYNINTHL HNISSIAO0Hd
yind LD
VIVa T LOWHA uonvd

)

I+

1

1

1

DNTHOLIMS SSIODV

]

—T

SH0SSHEO0dd
TVHIHdIHId
0T

|

1

SY0SSHO0dd
TVIIHAIYEd
0T

0099 JUO

‘WO (LI9 09) ATET

‘WEIW (LIS 09) MTET

0099 0ad

1

il

SY0SSHD0ud
TVEAHdTHHd
0T

"WaW (II€ 09) NTET

0099 04O

SY0SSdo0dd
TVIAHdTHAd
ot

‘WIW (LI 09) JS9

00%9 0ad

-

1

Hoi
EH 1 .

R it

WA

A\

terminal problems. It is in this .nvironment that the computer system
must guarantee the solutions of the simulations.

To perform digital similation, “wo special Real-Time Simulation
Subsystems (RTSS) are employed to perform inputting and outputting of
analog and discrete signals and time synchronization. TFigure 2 depicts
one such system. FEach RTSS consists of an Analog-to-Digital and
Discrete Input System (ADDIS), a Digital-to-Analog and Discrete Output
System (DADOS), a real-time clock and interval timer, and several
control stations. The elements of DADOS are a set of digital-to-analeg
converters, a set of discrete output channels and a Digital-to-Analog
Controller (DACON). ADDIS is the complement of DADOS with the addition
of differential amplifiers, sample and hold amplifiers and analog
multiplexers attached to the inputs of the analog-to-digital con-
vezrters [l:l .

The program control station provides the person, who is operating
a similation program, the means to interact with the digital computer
to obtain the results desired [2] . Each program control station as
shown in figuie 3 consists of a simulation console, a CRT contr -l
console, and a typewriter for displaying short messages. Both eight
channel strip recorder and two axis recorders can be connected to the
station for recording purposes.

Figure 4 illustrates the control panel ¢f the program control
console. Each panel contains a set of switches which are discrete
inputs to the computer progrem. These discretes can be further sub-

divided into function sense switches, mode control switches and

. PR i
‘0 . TP - L T
UT e, ‘.A,,,.us,*_x?:.._} BN ERZER e R TR AN C R I

R 2 TR S e S o .
T e R I e R it L e
ROKICA A R S A TR

g
AN

‘wa3 843 UOTFIBTNWIS JWL-TSI -°2 aInd1g

SNOILIONNS 3D 1AY3S

SNOMLYILS
TOYINGI
WvY490dd

3134351G 096

Q0IVNY 261

|
i

T

SNOILONMA IWIL-Tv3Y]

vV

NOI1Ng1yisida
T13INVd HOlvd
31343510 /9CTIVNY

(SOava)
W3ISAS
1Nd1N0 31342514
anv
90I¥NY-04-TVLIOIa

d3IWIL TVAYIINI
NV
A307J IWIL-TYIY

J

I

———

=\

e —d

SIS !
JOLVINWIS !

{
uowsy L

31349510 096
JOTWNV 08

B

| <
L= J

(S1aav)
W3ISAS
1NdNi 31349S 10
aNv
Wii210-01-90TVNY

[«

43INdWO0D
S31Y3S 0009

: . b e R SR TR e e
, . \ Y PR
LN T L PR SN ;.w,l L ")

Vol o 12
Pula s 147 44

*®

7
. °.' - ~ . Y B N \. . . ‘
I = : N .)) s : -
A - . : . ’ 8
o N . c ks - - .-S
1 d .T . ‘. ‘ - S -
< LA (o) - . .9 : '_o‘
- N e , ' ¢ s d)
='l\ N ‘\.‘ ’ . ey ’ 8 *
- . o . \l
o S : ‘ . 0 ol
k
. £
e) R) : ') 'o -
' : . . ® ™ L
‘.] ot
s - . " i - h
. ‘ . (]
3
) - - i ’ I . ’
. ' . , - .
e ‘ .*J-‘" . o 2 . -
' . . 4 ¢ ‘e R * . .
] IR .
\ o . N
. = ' ' \ -

. .:...-_.a....-;—.

x.maaa., e,
o \QP.:F -x . -
rd o
£ ™ 4 .
. L. S LA . t 3 .
- &
e g 21 F
- ————— - -
L - s e = *
, ~ ~ -, -~ -
3 Y [- [- .
\V *
~-
. [4
v e % - -
H e
TS g
i - ok
- [T
- 5.
“
i
. K
Y
. H

*@TOSUO) TOJJUO) WBIBOIJ —-'# SINITA

4

i

P
T, 558

g e, 1 T S

R e

data entry keys. The function sense switches can be used by the
programer as logical variables to control and modify the real-time
prograr:. These discretes might be used to switch from one set of
initial conditions to another or to switch the sign on one of the
terms in the equations of motion. The data entry keys are used in
conjunction with the decimal display unit. The keyboard is used to
address problem variables, and their values will appear on the display
unit. By continued manipulation of the keys and the use of.one function
on the mode switches, the value of the variable can be changed. The
mode control switches include three modes, reset, hold, and operate
and several functional operations that are unique to real-time simula-
tion. Some of these functions are retrieval of .eal-time data and
zeroing the DAC's and discrete outputs. The modes and furctious will
be explained in the next chapter. Also on the console, there are
analog input devices in the lower right corner of the control panel.
These handset potentiometers are connected to ADC input channels and
can be used to continuously change the wvalue of problem variables.
This continuous changing of a value, sometimes referred to as
twiddling, is most valuable in parameter studies where a value needs
to be adjusted ard the trend in the solution observed. On the left of
control panel are lights that are driven by logical discrete output
channels. The light can be programed to indicate the status of certain
operations or that some event has occurred.

The CRT system is being used as an integral part of simulation.

At present, it is being used to make on-line code modification of a

-
rﬂ ey BN
R

o an® 3y R
2
g, ;

=

T of;.«, et g

10

source program, display two axis plots of problem variables, display
and modification of central memory, operating registers and the

instruction counter and the advance of program's solution by one

computer word at a time which may execute up to four computer instruc-
tions. The latter two uses of the CRT system are extremely useful in

debugging a small portion of a program.

Real-Time Control

Figure 5 shows part of the internal computer organization which is
employed to support digital simulations. The CDC 6000 series computers
are multiprogramable. This feature is implemented by setting up control
points. Bach control point is assigned a starting address and a length.
No memory fetches or stores will be executed outside this established
area and if one is attempted, the program will be aborted. In
figure 5, there are three real-time simulation programs running con-
currently on control points two, three and four, while the rest of the
computer is processing batch programs. Due to the increased demands
on the computer's time while running real-time programs, the monitor
in peripheral processor number zero was not sufficient. An additional
monitor was written and resides in control point zero. Control point
one contains scheduler (SKED) which is the software program that
processes all the requests for timing and simulation resources. Two
other resident programs are ADD and DAD. D/D resides in a dedicated
peripheral processor that is connected to the Digital.to-Analog
Controller (DACON) through a dedicated data channel. DAD is the soft-

ware that implements the data flow. ADD, in addition to handling the

—
4

*UOTHBTNWLS

S€0L
HOLVH

¢ 90r INLL TV

Z dOof FWLL Tvad
¢dd

T 90L IWLIL TV

adIs
1d0

XHOWAN TVHLNZD

Te31T31Q SWIL-T82Y Y3 TH woryezIusdag Jandwo) -°G aandtg

a

XUONAN ‘TVHINID

HOLINOW dd

TVSIHAINAd

data flow for ADDIS, handles the timing information obtained by scheduler
and implements +the timing schedule.

The essence of real-time computation consists of a problem receiv-
ing inputs from the outside world at time t;, integrating problem
varisbles to to, and waiting until t,. At tp, the problem transmits
outputs and receives inputs. This predicting ahead by integration and
waiting, permits the system to synchronize inputs and outputs to the
real world. The real-time clock and interval timer put out pulses that

cause the input and output data to be transmitted at the precise time.

The Real-Time Scheduler

A real-time program contains control cerds that reflect the pro-
gram's needs for ADC's, DAC's, discretes, problem frame tim¢, and
maximum coﬁputer time per frame. The problem frame refers to the time
between pulses of the interval timer. The maximum computer time refers
to the amount of computer time required to complete one t. > step of
the independent varisble. After a real-time program has been compiled
and is executing, a call to real-time digital simulation supervisor
(supervisor) is made. After supervisor performs s.ue necessary
functions, the control is transferred to scheduler. The scheduler
determines if the hardwere requested, ADCO's, DAC's and discretes, is
available. If it is availeble, the hardwere is assigned. Scheduler
develops a timing schedule based on the timing requireme:ts of the
programs currently in real time and the new program being vrocessed.

The scheduler develops this timing schedule by determining a common

*

’

13

frame time and simulating the central memory timing algorithm. If é
%

there is enough time to satisfy the maximum computer time requested by L
the new job, the new schedule will be implemented and the system will g
return control to supervisor and the new problem will be in real time. i,
The Real-Time Digital Simulation Supervisor j

The real-time sjimulation supervisor, as stated in the introducticn, ;,.

is a set of subroutines that perform special functions for a real-time {
program. These functions are:
1. Real-time system initialization. ::

2. Real-time timing control. x,

5. Real-time central memory input/outpu’c control. ”

L. Control after time synchronization was lost. *

5. Mode control. ﬂ

6. Sforage and retrieval of real-time data. 1

T. Print output control.

8. Error recovery and diagnostics.

9. Compatibility with batch Jobs. "

A further explanation of these features can be found in appendix A. T
3

¥

Integration Subroutine

Another aspect of real-time simulation that differs from the needs

of batch processing is integration [h] In batch processing, the
integration algorithms contain additional featwes to drive the rounding
error to the lower part of the computer word and usually provides some

estimate of the truncation error. For the majority of simulations,

Ty PRy W R

13

LT

v:;'.-}’ *Yai“‘i"'«‘“!"'i'@»ﬁ N

o ET e e
»

15

frame time and simulating the central memory timing algorithm. TIf
there is enough time to satisfy the maximum computer time requested by
the new job, the new schedule will be implemented and the system will

return control to supervisor and the new problem will be in real time.

The Real-Time Digital Simulation Supervisor
The real-time simulation supervisor, as stated in the introduction,
is a set of subroutines that perform special functions for a real-time
program. These functions are:

1. Real-time system initialization.

2. Real-time timing control. i
3. Real-time central memory input/output control. .
L. Control after time synchronization was lost.
5. Mode control. e,
6. Storage and retrieval of real-time data.
7. Print output control. i
8. Error recovery and diagnostics. lg;
9. Compatibility with batch jobs. *§4
A further explanation of these features can be found in appendix A. %i
Integration Subroutine %?
Another aspect of real-time simula*lion that differs from the needs §;
of batch processing is integration [ﬁ]. In batch processing, the %~

integration algorithms contain additional features to drive the rounding
error to the lower part of the computer word and usuelly provides some

estimate of the truncation error. For the majority of simulations,

v

LA

By He) R?;:,pw “

8

. ,;
BNt LS A

R
iy

Ty

A e

1 .
iy, 4 “.n.,,‘ Ly g R om0

- -

14

the data is usually accurate to only a few places. Therefore, the four
integration algorithm were written for real-time programs. These
algorithms do not have an estimate of truncation error, only the basic
integration formulas were pr.gramed. This approach was taken to
minimize the computer time and it was left up to the programer to
insure the accuracy of his solutions. The name of the subroutine is

IGRATEL and it will be discussed later.

% CHAPTER ITI

A

g CHARACTERISTICS OF THE PREPROCESSOR

Z, Before the preprocessor can be discussed, the present method of

Fi‘ writing a real-time program is presented. The new method of using the

preprocessor 1s discussed followed by a description of the features of

the preprocessor.

Present Method of Preparing a Real-Time Program

As Langley Research Center's real-time facility was becoming

established, some variables received a Fortran name that became
accepted and used by most people. An example of this is DAC's. DAC
is the Fortran name of an array whose values are cutputed to the real
world through the digital-to-analog converters. As the real-time
programs were wi'itten, the similarities among the Jobs were noticed.
To ease the programing burden, sets of Fortran cards were prepunched

and made aveilable to all real-time programers. These sets of cards

;

2

.
E

contained many of the calls to supervisor that were necessary, but for

RUE SN

some variables a Fortran name had to be assumed. The assumed Fortran

variasble name was usually & reasonsble abbreviation of the complete

e 2R LAt

name. This means that a programer can write a real-time program
leaving out parts of the real-time structure and using the ‘supplied

: cards to complete the program. Since these cards are in the programers
deck, he can change any of the assumed Fortran names to a name more

s pleasing. For example, a programer may prefer "TIME" instead of "T"
to represent time, the independent variable in the integration formule.
15

16

New Method
In lieu of obtaining a set of prepunched Fortran cards, a programer
can write his real-time program without any real-time subroutine ce’ls
by using the real-time preprocessor's ueta language, 17PL. The pro-

gramer can specify his real-time requirements in a rlear, uniform, and

succinct manner. Some resl-time programs mey require the use of some
additional real-time subroutine calls because of some special need.

Some of the real-time structure and subroutine calls that the -5

WHR - Are
B

preprocessor generates are absolutely necessary for a program to run in

4
LN

real time, and some of the other structures and calls are options of

Lo ned alihibn., et
|

the programer. The philosophy of the preprocessor is to generate the
necessary structures and calls everytime the preprocessor is used and
to generate the other structures and calls only if certain constructs
are present in the input progrem. The prc;rocessor makes use of
default words and conditions. The preprocessc: has a symbol table cI
veriasbles that it needs to genevate the Fortran code. Some of the
constructs in RTPL determine the Fortran symbol to be useic as certain
variables. If these constructs are nissing, then the preprocessor
uses the default words. DAC is the Fortran default word for digital-
to-analog converters. Certain conditions are defavlted if the corres-
ponding constructs are¢ missing. These default words and conditions
should not be confused with items the preprocessor considers necessery.
For example, integration is an option that the programer must define
by a particular construct in RTPL. If an injegration construct is

present and if the independent variable and the magnitude of the =tep,

g I e LR IR

1@’1 LSS

-

B g

17

that the independent variable is incremented, are not defined by two
o :r constructs, then the preprocessor will use the Fortran default

variable name, "T", as the independent variable and "32/1024" as the

step size.

Features of the Preprocessor
The preprocessor performs four tasks for the programer:
1. Parsing Fortran declaratives statements.
2. Interfacing with supervisor and other real-time subroutines.
5. Macro generation.

4. Error diagnostics.

Since RTPL is a meta language to Fortran and the preprocessor
output is Fortran, the syntax of RTPL constructs is closely related to
the syntax of Fortran. Therefore, the preprocessor needs a list of
arrays and lists of variables that are typed real or integer before
the preprocessor can properly parse the RTPL constructs. The pre-
processor can obtain the information for the lists from parsing the
declarative statements written in Fortran. The preprocessor does not
need the programer to include any variable in a declarative statement
that wouldn't be needed in a normal Fortran program.

Before the actual interface can be understood, it is in, >rtant to
have a cleer understanding of what basic interface must be present to
solve ordinary differential equations. To illustrate this, a problem

is posed:

Problem — to solve the differential equation,

f,,,;_g’z:;]g_ '_t-q%.'— PR A

18
¥+ 20wy + Wy = F

where

uve
l
©
Ny
£
0

005, F = 5 Sin 51.-;
The initial conditions are

t=0., 0., 0; ¥

"

-5., 0, 03 ¥y =0., -1., 0
Obtain time histories and printouts of F, y, and y.

The elements of this problem can be categorized as initialize constants,
set initial conditions (IC's), calculate derivatives, provide digital to
analog output for recording, integration, save real-time data and modify
IC's. In solving ordinary differential equations there are three phases
or modes, setting the integrated variable equal to their IC's (Reset),
integrating the variables (Operate), and maintaining current valves of
integrated variables (Hold). These modes are present on current large
analog computers and were implemented for ILRC's digital simulations.
In the reset mode, the integrated variables must be set equal to their
IC's. Because the IC's must be changed for each run, a call to the
display subroutine is useful. In the operate mode, the derivative
equations must be executed, real-time data saved for later printout,
integration and calculating values for DAC's. The hold mode must not
irclude the setting of IC's, integration, or data storage. By adding an
eight channel strip recorder to the DAC's, and initializing the constants,
all the requirements of the problem are met.

In order to make the problems more controlleble, IRC has included

more code in each mode. There is one group of Fortran code that includes

19

derivative equations, DAC equations, and a call to display. Each mode
passes through this code. Fcr the above example, the reset mode needs

to set IC's, and the operate mode needs to save real-time data and inte-
grate in addition to the group of Fortran code. The hold mode can consist
of only the group of code. .

The interface with the real-time subroutines consists of the sub-
routine calls and any declarative or flow control that is necessary to
sustain the call. The calling sequence to IGRATEl contains no argument
list. The input areas are established by a labeled cormon. Also, the
integration algorithms are multipass. This means that the derivative
equations must be executed with intermediate values of the dependent
variables. The execution is managed by a flow control parameter. 1In
discussing subroutines, a Fortran statement wil; be preceded and followed
by the high set mark, '. Also, the actual parameter lists will be repre-
sented by 'LIST' regardless of the length of the list. This means that

'CALL ARCTAN (X, Y, Z)' would be represented by 'CALL ARCTAN (LIST)'.

Interface With Supervisor

The preprocessor is capable of generating 11 subroutine calls to
supervisor and two common statements. These 13 statements can be
classified into four groups: Block control, recorded data management,
commnication, and real-time initialization.

Block Control.- 'CALL RESET (LIST)'
'CALL HOLD (LIST)'
'CALL OPERATE (LIST)'

'CALL OPTION (LIST)'
'CALL LOSTIME (I,IST)'

A real-time program can be subdivided irto several blocks acccrding
to different functions. Calculation of IC's cculd be in one block while
evaluations of derivatives could be in anuther block. Each block is
preceded by a CONTINJE card and followed by a RETURN, and both of these
statements must have a statement number. Then by passing these statement
numbers to the supervisor, the supervisor can write a Jump to itself in
the return location and jump to the location of the continue. The block
is executed and a jump to the supervisor is made. This technique is used
to thread the blocks according to the different modes and functions (the
threading is similar to the way lists are thresded). A call to super-
visor identifies a mode or functior and the pairs of statement numbers
for each block. These statement numbers indicate which blocks must be
threaded to form the complete code structure for the mode or functions.
The modes have already been explained. Print eétablishes blocks that
are used in printing out date that was recorded while the problem was in
operate. The supervisor takes the stored data and returns it to central
memory, a set of data at a time. After a set of data has been restored,
supervisor transfers control to one of the print blocks and in this block
the programer has a write statement with a format specified. After the
write, the program transfers control to the supervisor. This restore
and print is alternated until all the data is exhausted. Option and
lostime are functions that have only a single block associated. The
option block is executed when the option made control switch is depressed

and the lostime block is executed when a program exceeds the maximum

Qe

o &0 *4;

S da

whe

Vi b 0

R

BT e N e

2OER f et

N

143

Ay

LR s e

21

compute time specified on the control cards. The contents of these
two blocks are left up to the programer.
Recorded Data Management.- 'CALL RTROUTE (LIST)'

'CALL READOUT (LIST)®
'CALL RECORD (LIST)'

Fortran write statements with a format specified use up an exces-
sive amount of computer time when compared to other Fortran statements.
For real-time recording an alternate method was implemented that saves
the data during real-time computation and writes the saved vﬁlues with
a format specification in a nonreal-time computational mode. While in
the operate mode, the wvalves of the variables to be recorded are copied
from their central memory locations into a buffer. The contents of the
buffer is then copied to a special disk file. In the print block and

with the aid of supervisor, the contents of the disk file is restored

"to central memory and the program performs writés to a real-time file.

The call to RTROUTE informs the supg;visor of the symbolic Fortran name
for the resl-time file. The argument list Of READOUT contains the names
of all the variables that shall be recorded. The position of Record is
used to indicate where in the operate mode the saving of data is to be
implemented and argument of the call indicates the frequency at which
the data is to be saved. If the argument were 32 and if the computer
were cycling through the operate mode 32 times per second, then the
first, 3%rd, 65th, etc., passes would be saved and these points would

occur every second.

"-w.;; FAAESR S A

Faeird

SR R N

Ay 2

RE PR

L 1

"J“Ff'h'*f\‘?}h e

STRERTL gl nT N 0T s

EASEREY 6

22

Communication.- 'CALL INOUT (LIST)'
' COMMON / INOUT /LIST*
' COMMON /MASKS /LIST!

These three Fortran statements provide communication between the
real-time program and supervisor. Inout informs suvpervisor of the
addresses of the symbolic names and numbers of ADC's and DAC's.that the
real-time program needs to be converted. COMMON INOUT is used by super-
visor to locate the central memory locations for discrete inputs and out-
puts. COMMON MASKS establishes the central memory locations for some
masks. Supervisor creates the mask for the real-time program because it
uses the discrete words in a packed form. This packed form means that
each bit represents the status of a discrete channel, and one discrete
word represents 60 channels. The programer can obtain the status of a
discrete input or set the status of a discrete‘output by using the
logical operators, "OR" and "AND" with a mask on a discrete word.

Real-Time Initialization.- 'CALL READY'. READY is an entry point

to a subroutine that initializes the real-time system. This call causes
the supervisor to activate the scheduler. When control is returned to

the real-time program the control point is operating in resal-time.

Interface With Display
'CALL DATABLX (LIST)'
'CALL XDSPLAY (LIST)'
'CALL DSPLAY'
'"CALL TYPVAR'
Display is a subroutine with several different entry points that
permits the value of problem varisbles to be displayed on the display

unit, changed by the ch nge switch (one of the mode control switches)

25

and recorded by the typewriter. Each entry point of the subroutine is
called by the name of the entry point like the-entry point was a separate
subroutine. The DATABLX call indicates to display the symbolic name and
length of arrays that will be displayed. The XDSPLAY call indicates
where the status of the data entry keys can be located. DSPLAY is the
name of the entry point that does the actual displaying and changing of
variables. The call to the TYPVAR entry point causes messages sbout the

present and past values of the displeyed variable to be typed.

Interface with IGRATEl
' COMMON / INTCOMM /L. IST"
' COMMON / INTINTR /LIST"
'CALL IGRATEL!

IGRATEL is a subroutine that contains four multipass integration
algorithms. The labeled common block INTCOMM, contains the names of all
the variables that are necessary for integration. The necessary vari-
ables are independent varisble, dependent variables, derivatives, time
step, integration flow parameter and the number of variebles to be
integrated. The labeled common block, INTINTR,provides storage for all
intermediate velves of the dependent variables. For some integration
algorithms, the derivatives are calculated in a separate subroutine
that the integration algorithm can call as often as necessary. For real-
time simulation the derivative equations are embedded in the main program.
The flow control paremeter whose default Fortran name is 'INT' is used
to iterate through the derivative equations and a call to IGRATEL until

the algorithm is complete. A flow control flag whose default name is

%
E

e ‘ﬁmﬁ\":;‘rﬁ o p o’ "::\(7;’"]

ey

L

R

ok

'FLAG', is used to recalculate the value of the derivatives and DAC's

prior to the DAC's value being output to the real world. The reason
that the derivatives and DAC's must be recalculated is that the integra-
tion is predicting to the time when the DAC's are output. Therefore,
these equations must be recalculated with the integrated values corre-

sponding to the upcoming output time.

Macro Generator
Since Fortran is not a very convenient language for macros, the
effectiveness of the macro generator in the preprocessor is curtailed.
The macros are not recursive. No statement numbers are permitted and
all formal parameters must be preceded and followed by two "$"'s. More

informetion is contained in the next chapter.

Error Diagnostics

When a program is being debugged, one of the most important aspects
is the machine to man commmnication of errors. Some of the typical
problems with debugging facilities are error messages that aren't clear
or precise in identifying the prdblém. Most everybody has encountered
a syntax error in a Fortran compiler. Some of these errors are very
difficult to detect. Another problem in some compilers is that there
appears to be different levels of compiling, and the later levels are
not examined until earlier levels are correct. This means that several
recompilations must be made to debug a program. The structure of do
loops are not examined by the Fortran compiler at IRC until after all

syntax errors are removed.

If a system is hard to debug, then a lot of man-hours will be wasted
due to poor design. The preprocessor contains many error diagnostics,
and every effort has been made to make them precise and clear. Some of

these diagnostics are in appendix B.

= % P DO S
y ,tm:y,@g;yg:! I = L

N
a7

<
e g

Lowds o s :
S Bl ryme e

g

5 S

...,:§»~

P,

B
RO N

-, %

i)
b TERNLER S

Y

o

CHAPTER IV

REAL-TIME PREPROCESSOR LANGUAGE

RTPL is a meta language to Fortran; that is, the preprocessor
translates a RTPL statement into tables and files and converts this
information into Fortran statements. To describe the language, three
aspects of it will be presented: syntax, semantics and usage. Since
these three aspects are dependent on each other, the order ia which they
are presented is arbitrary. Tt would be well for the reader tc review

the first aspect after all three aspects have been covered.

SYNTAX

With the growth of so many programing languages, the uses and
advantages of a well defined syntax is generally accepted by people
in the computing field. Since Fortran was designed and implemented
before the importance of syntax was recognized, it and all its later
versions do not have a well defined syntax. The most difficult feature
of Fortran that makes it hard t» specify a syntax is the quantization
that is everywhere present in Fortran. This quantization is usually
Cue to implementation and not to any specific concept in the Fortran
specifications. On the IBM TO94 a Fortran variesble has a maximum
length of six characters which filled the word. On the CDC 6000 series
computers a Fortran variable can have up to seven characters and the
rest of the computer word is used for systems information. In both of
these examples, the quantization was due to implementation.

-

2b

27

There has been some notable work in defining the quantization of
Fortran. "Report on the Algorithmic Language Fortran II" by Rabinowitz
expressed thc syntax of Fortran II in a modified Bacus Naur Form [5:]
Rabinowitz added the meta operator Fl[m,ra which meant that the
syntactical unit to the left of F, must appear at least m times
but not more than n times. Meta Tanguage and Syntax Specification"
by Walter H. Burkhardt uses a quantization approach and adds level
numbers E6] . Burkhardt uses the two meta operators $ and to denote
the minimum and maximum number of times the syntactical unit on the
right can be repeated respectively. The level numbers are more useful
in defining the syntax for syntax directed compilers than syntactical
names. Another report, "A Syntax-Directed Fortran Statement Checker"
by Susan S. Hoffberg and Max Goldstein, uses only the meta operator
T ["{] . The meta operator indicates the maximm number of times that
the syntactical uni. to the left of the operator can be repeated.

This report on RTPL uses the BNF meta linguistic symbols with the
additional operator Tn. Also, level numbers have been assigned to each
syntactical unit in the left portion of the definition. The level
numbers make the syntax more usable by people because the definitions
of syntactical units are placed in ascending order for easy reference

by level numbers. The meta-linguistic symbols and meanings are:

Symbol Meaning
= is defined to be

| or

TR T

P L0 S M L

(no symbol) concatenation

1n. zero to n repetitions of (the syntactical uwait on the
right)

< > defines a syntacticel unit

<m,0 > level number m ani syntactical name O

b null syntactical unit

The definition of a defauited integer variasble is presented below:

< i, nonzero digit > :: = 1|2|3|%|5[6|718}9

<2, digit > :: = O|< 1, nonzero digit >

< 3, real letter > :: = AlB|c|plE|FlciElP RIS IT Wiviwlxltlz

< L4, integer letter > :: = I|J|K|LM|N

<5, non O letter > :: = < 3,real letter >|< L, integer letter >

< 6, letter > :: = <5, non 0 letter >|0

< 7T, alphenumeric character > :: = < 6, letter >|< 2, digit >

< 8, default integer variable > :: = < L4, integer ietter >16.

< T, alphanumeric character >

The first statement would read, "A nonzero digit with a level number 1
is defined tobe a 1 or 2 or 3or Y or 5or 6 or T or 8 or 9." The
syntax of Fortran declarative statements is presented in appendix D.
If BNF is rot familiar, reference 8 contains a very good presentation
of BNF to define ALGOL 60. On pages 4 to 6 in reference 7 there is a
very good discussion of syntactical definitions. The syntactical

defintion of a default variable would be, "A default integer wariable

with a level number 8 is defined to be an intezer letter, level

29

number 4, with zero to six repetition of an alphanumeric character,

level nuwnber T7."

Semartics
There are thres types of RTPL s*tatements that the preprocessor
will parse and store the information in tables. They are biock, non-
block, and macro statements. The nonblock and macro statements will be
represented by an operator followed by one or more operands: OPERATUR
(OPERANDI, OPERAND2). The block statements will be represented by BNF.
Block Statements -
'BEGIN < block nasme 2 >'
'"DISCONTINUE < block name 1 >'
'COITINUE < block name 1 >'
'END < block name 2 >!

where < block name 1 > :: = RESETIHDLD'OPERATE|PRINT
< block name 2 > ;: = < block name 1 >|DECLARATIVE |INTTIALIZE |oPTTON

IOSTIME

A RYPL program consists of a Program name card, a series of blocks
and an End card. The Program name and End cerds are valid Fortran
cards. Each block is composed of a beginning block indicator, a string
of T'ortrsn code or RTPL code or both, and an ending block indicator.
Fach block can be classified into one of three clas.es. Class 1 contains
uniblock types, class 2 contains multiblock typee and class 3 contains
a single, two block type. Figure 6 depicts one type of block from each
class. Fach block indicating statement in RTPL consists of a beginning
cr ending word followed bty a word that names th2 type of block. TFor

example, 'BEGIN OPTION' indicates that the block type is OPTION and it

-.:“ L

R4

|

{l

L

AR

),
o

| L]%q;:_{; 4
USRI TS
T 719 475 FP 00 ¢ angy 1

. i
L ST

S T
§ |2

PR
f

’i‘ ie T
L

CLASS 1
BEGIN DECLARATIVE

Fortran and RTPL
code

END DECLARATIVE

CLASS 3
BEGIN FRINT
-

Fortran and RTPL
code

DISCONTINUE PRINT

r -

Fortran and RTPL
code

s
CONTINUE PRINT

-

Fortran and RTPL
code

END PRINT

CLASS 2
BEGIN HOLD
-

Fortran and RTPL
code '
L J
DISCONTINUE HOLD
QONTINUE HOLD

Fortran and RTPL
code

-

DISCONTINUE HOLD
CONTINUE HOLD

Fortran and RTPL
code

END HOLD

Figure 6,.- Block Structure

30

31

is a beginning block indicator. For class 1 blocks, only the words
BEGIN and END can be used as beginning and ending words. For class 2
blocks, the first block must use BEGIN and DISCONTINUE, the last block
must use CONTINUE, and the intervening blocks, if any, must use
CONTINUE and DISCONTINUE as beginning and ending block indicators. TIf
there is only one block of class 2, it will use the block indicators
for class 1. Class 3 blocks, which there are only two, are like the
first and last block of class 2. Another difference is that the two
class 3 blocks can have Fortran code between them. Class 1 consists
of the following types: DECLARATIVE, INTIALIZE, OPTION, LOSTIME.
RESET, HOLD, OPERATE comprise the class 2 blocks. Print is the only
member of class 3. The meaning and usage of these blocks will be

explained later.

Nonblock Statements
There are five types of nonblock statements. They are: integra-
tion, display, recording, conversion equipment and communication. Each
one of these types will be discussed in detail. In the representation
of the RTPL statement the default words are inserted for the sake of

clarity.

Integration
'"TIME INTERVAL (32)'
The symbol, '32', is an integer constant that defines the number .

of l/lOthh of a second that the independent varisble will be stepped

32

during each integration step. To run in real time this integer must
agree with the problem frame time specified on the control cards. A
problem can run two to one fast by setting this operand equal to twice
the number on the control cards.

'SET INTEGRATION (T,H,INT,NEQ, ISCHEME,DERINT)'

The above Fortran symbols are the names of the variables in the
list of the common labeled 'INTCOMM'. The resulting Fortran statement
would be: 'COMMON/INTCOMM/T,H, INT,NEQ, ISCHEME,DERINT(2,10)) if there
were 10 variables to be integrated. The symbol, 'T', 1is the name for
the independent varieble, time. The symbol, 'H', is the name of the
step size of the integration. 'INT' is the symbolic name of the flow
corn..rol parameter used to iterate the derivative equation for multi-
pass integration. The symbol 'NEQ' is the nawe of the variable that
contains the number of variables to be integrated. 'ISCHEME' is the
symbolic name of the variable that indicates which integration algorithm
will be used. The symbol 'DERINT' is the name of a two by NEQ array
that contains the values of the integrated variables and their
derivatives.

' INTEGRATION BUFFER (INTERN)'

This statement establishes a symbolic neme for : five by NEQ
array which is used to store intermediate values of the independent
variables during a time step by the integration algorithm. If there
were 10 variables to be integrated £he resulting Fortran statement
would be: 'COMMON/INTINTR/INTERN(5,10)'. The storage area is passed to

the integration algorithm by means of the labeled common.

N 1 o

35

'SCHEME (1)°

The symbol, 'l', is an integer constant or variable that indicates
which integreation algorithm will be used.
' INTEGRATE (OP1,0P2,0P3)"

This statement defines the symbol name for the dependent wvariable,
its derivative and its initial condition. OPERAND1 is the variable
name, OPERAND2 is the derivative name and OPERAND3 is the name or

value of the initial condition.

Display
'CHANGE NAME (TABLE)'
"CHANGE INTEGER NAME (INTEG)'
'CHANGE LOGIC NAME (T06IC)!

The symbols, TABLE, INTEG, LOGIC are the names of three arrays
whose value can be displayed and changed by the subroutine DSPLAY.
Values in TABLE are displayed in a floating point form. Values in
INTEG are displayed in a fixed point form. A special floating point
type code is used for displaying LOGIC variable.

'CHANGE (OP1,0P2,...,0P199)"'
'CHANGE INTEGER (OP1,0P2,...,0P99)'
'CHANGE LoGIC (OP1,0P2,...,0P99)'

Variables that are to be displayed can be equivalenced to an
elenent in TABLE, INTEG or LOGIC depending on the type of variable.
If the variables are equivalenced, then the Fortran symbol name can be

used in the real-time program and the position in the arrays can be

used to displey and change the Fortran variable. The operands in the

'Twmi“r«: b

4 nag

X

3

above statement are the Fortran s;mbol names that are to be equivalenced
to the elements in the th =e arrays.
'SCANNER (OP)'

The symbol, 'OP', is an integer constant or variable name which
determines how often the decimal display unit is incremented when the
Scan‘switch on the control panel is depressed. The operand indicates
how many problem frames must pass before the element in the display i:c
incremented. If tﬁe computer was running at 32 problem frames per
second and 'OP' was equal to 32, then every second the next element in

the display arrays would be displayed.

'"DISPLAY VA#IABLES (VARCHNG,ITYPE,IVARBUF,FSlh,lh,FSl5,15,F816,16,ENABLEY
All of the operands except the fifth, seventh and ninth are
Fortran variable names. The fifth, seventh and ninth operands are
small integer constants. 'VARCHNG' is a symbolic representation of a
logical flag that is set true by DSPLAY whenever the value of a variable
is changed. This flag is used to call TYPVAR which is a subroutine that
types out the past and present value of the variable that was changed.
ITYPE is the name of a variable internal to DSPLAY. IVARBUF is the
symbolic representation of the array. This five element array contains
information ebout the present and past values of the variable being
changed. 'FS14', 'FS15', and 'FS1T7' are the symbolic representations
of three functions associated with the display unit. '1b4', '15', and
116' are small integer constants that indicate which function switch will
activate the three functions respectively. There are two automatic type

functions other than the automatic type out of variables as they are

[
-~

R Eal S E

LRy s

-

*

(}4« ¥ ?‘1“?,@,“..;* o «.‘V-’;',;‘Q«‘-! j», wi““\?‘ .

R B NT LS SR
PR N i Bet] Ms‘!"‘-‘!

TRl S

AR 2 T
F s.'.fﬁ 21 3"‘,\:?‘ .

% . N
s

)

changed. The first function causes printout of every variable as it

is displayed. The other function works in conjunction with the scan
switch. Every time a new variable is displayed in the scan mode, its
value will be recorded by the typewriter. This feature permits a quick
means of recording & group of variables that ordinarily would not need

to be recorded. The two features are as: :iated with logical variables

FS14 and FS15. FS16 is associated witt o modes of displaying variables.

If FS16 is true, then the display unit . spleys variables stored in
arrays. If FS16 is false, then any variable in tiac .=al-time program
can be displayed. This form of addressing takes several steps to set

up the address of the variable to be displayed or changed.

Recording
'RECORD (OP1,0P2,...,0P64)"

This statement contains the Fortran symbols of the variables and
array elements that will be recorded while the real-time program is in
the Operate mode.

'REAL TIME FILE (MF)'

'MF' is the Fortran symbol name of the REAL TIME FILE onto which
the program will write data in the Print blocks.
'"RECORDING FREQUENCY (32)'

'32' is an integer constant that determines how of'ten the real-
time variables will be stored. The RECORD entry point of supervisor is

called every problem frame but data will be saved on every '32'nd

problem frame, that is, the first, 33rd, 65th passes.

LU -2

i W] el e BT T

¢

-

4

Conversion Equipment

"ADC NAME (ADC)'
'"DAC NAME (DAC)'

'ADC' and 'DAC' are the Fortran symbol names for analog-to-digital
and digital-to-analog converters.
'ADC (OP1,0P2,0P3)"

'DAC (OP1,0P2,0P3)'

These statements are used to scale ADC's and DAC's. The first
operand is the varisble name, For 'ADC', OPERAND2 is a signed blas and
OPERAND3 is a scale factor. For 'DAC', the meaning of the second and
third operands are reversed. The following two examples of a RTPL state-
ment and the resulting Fortran statement are:

RTPL ADC (ALPHA,-100.,.01)

FORTRAN ALPHA = (ADC(1)-100.)¥.01

RTPL DAC (BETA,SCALE,+BIAS)

FORTRAN DAC(1) = (BETA*SCALE)+BIAS.

'ADC SKTP (OP)'
'DAC SKTIP (OP)'

The operand is the integer numver of ADC's or DAC's that are to be
skipped. This is necessary because the ADC and DAC statements do not
have an index as.ociated with the statements and the preprocessor
assigns & number each time an ADC or DAC statement is encountered.

The skip statement provides a means to not use certain ADC's and DAC's.

-

SRS SR I

37

Communication
'"DISCRETES AND MODES (REMOTE,IDIS,ODIS,TYPIO,TYPTPE,FLAG)'
This statement defines six Fortran variable names for use in the
real-time program. The first three operands pertain to the discretes
and mode control. 'IDIS' and 'ODIS' are the discrete input and output

arrays. The supervisor normally obtains the status of the mode control

switches by decoding IDIS(1). By calling subroutine MODEREM, supervisor

will decode REMOTE instead of IDIS(1). This reature provides mode con-
trol from a source other than the mode control switches. By calling
MODENOR, the supervisor will return to using IDIS(1). 'TYPIO' is a
four word buffer that supervisor uses to store messages for the type-
writer. 'TYPTPE' is the typewriter's unit number that was requested to
be assigned to the real-time program. 'FLAG' is the logical flow para-
meter that is used to recompute the derivative équations and DAC equa-

tions one time after the integration step is complete.

Macro Statements
"BEGIN MACRO < Fortren variable name > (OP1,0P2,...,0P100)"
'END MACRO < Fortran variable name >'
'CALI, MACRO < Fortran variable name > (OP1,0P2,...,0P100)"
The BEGIN statement defines the name of a macro and its formal

parareters and commences the definition of the nemed macro. The END

statements terminate the definition of the macro. The CALL MACRO state-

ment causes the macro named to be fetched from the macro definition

file and to be expanded with actual parameters replacing formal

38

parameters. A macro can have up to 100 arguments or as little as

none. The macro body will be discussed in the next section.

Usage

This section will cover the pragmatic aspects of the language.

Card Format

The card format consists of an R in column 1, colums 7 to T2
are free field and columns T3 to 80 can be used for sequencé tags. The
preprocessor never tries to decode columns 2 to 5 and T3 to 80. The
free field from columns 7 to 72 means that an RTPL statement can
commence anywhere to ihe lefé of colum 6 and to the right of column T3
with as many blanks as desired by the programer. If one card is not
sufficient for the RTPL statement, the statement can use up to 19
continuetion cards. A continuation card consists of an R in column 1
and a nonblank character in column 6. The same free field applies to

continuation cards.

Program Structure

An RTPL program must contain a Program name cerd, a declarative

block, an initiaslize block, at least one block for each of the modes and

en End card. In addition to the sbove required structure, a program can
have up to seven blocks of each mode, two Print blocks, an OPTION block
and a LOSTIME block. The declarative block must contain any Fortran

declaratives that are necessary followed by nonblock or macxo definition

statements. Any statements other than a comment will be detected by the

ks

T3

Py

SR . W
e v;—%@-‘ T SR

2% el

R AF

EPN

o

I
o
¥

P

¥
5

fpaiN
"
-

29

preprocessor as an error. A set of macro definition statements consists
of a BEGIN MACRO, a Fortran macro body and an END MACRO. All other
blocks consist of valid Fortran statements, and macro calls, and other
block indicators. PFigure T contains a symbolic real-time program. It
should be noted that one block of Fortran code is in blocks of all
three modes. This is a valid structure.

As a general rule there is no particular order for nonbleck RTPL
statements. There are some statements that establish arrays and their
position with respect to all other statements of the samz type is
important. CHANGE, CHANGE INTEGER, CHANGE I1OGIC and RECORD statements
are examples of this. Also ADC, DA, ADC SKIP and DAC SKIP statements
determine their position in the ADC array and DAC array. Integrate also
establishes a specific order for the DERINT array but the order usually
is of no consequence to a programer.

The Print blocks are unique because Fortran code is permitted
between the two blocks. For convenience, the blocks will be referred
to as sections. The first section is the code in the first block. This
section is executed once every time the Print switch is turned on. e
second section is the code between the two blocks. This section is
iterated until all the stored date is exhausted. The third section is
the code in the last block and ! is also executed once. The first
section should contain a write to the REAL TIME FILE which identifies
the data in the form of a header. Section 2 should contain a write
to the REAL TIME FILE of all the data saved. Section 3 can he used

to perform any postprint processing. If the programer prefers to

Rl
ni

et et

e ¢
e € TR

P
v%‘:il .
i
ey

Ygﬂ

Ly

RES BN BN B :
I

1
1
i

3R EEEL.

LR

3

L

ey ‘«b"e'f 1

[

», f
¥ oo L
N m LT N R

Lo

PROGRAM THESIS(INPUT,OUTPUT)
BEGIN DECLARATIVE

Fortran and RTPL code}

END DECLARATIVE
BEGIN INITIALIZE

Fortran and RTPL code}

END INITIALIZE
EEGIN RESET

Fortran and RTPL codo]
BEGIN HOLD

Fortran and RTPL code
BEGIN OPERATE J

Fortran and RTPL code
END RESE® J
END HOLD

DISCONTINUE OPERATE
CONTINUE OPERATE

“oriran and RTPL code]

END OPERATE
END

Figure 7,- Symbolic Program

T,

-

L1

have his header appearing with the Jdata, then section 3 may be left

_empty and the writes in section 2 can contain the header and data

information.

As stated vefore, the macro definiticn siatements consist of &
REGIN MACRO ne&me, Fortran statemerts. and an END MACRO neme. The Fortran
statenents have all the formal peramet2rs surrounded by a pair of $'s.
The code cannot contaln any statement numbers.

Apperdix E contains a sample input program that wacs preprocessed.
The output program is the contents that was produced in Finel. It
should be noted that the preprocessor used statement numbers in the
9CG,000 range fcr the bl -h stetement numbers. This range of statement
numbers are prohibited from use by the programer.

Ail errors that the preprocessor detected will be flagged and a
dfagnostic will app2ar in the error directory. It there are prcgraming
eviore, the inmt file will be printed wit™ all statements with errors
flagg. :. 150, the error directory will be printed. %The error directory

will contain a diagrostic for each error encountered.

e

CHAPTER V

TMPLEMENTATION OF THE PREPROCZSSOR

The preprocesscr has four functional units; they are: a Fortran
parser, a RTPL parser, a Fortran generator, and a macro generator.

Trese functional units are not separate algorithms but are intertwined
throughcut the treprocessor's code. The Fortran parser decodes Fortran
declaratives and stores the symbols of arrays and rewl and integer
variables that were typed for use by the RTPL parser. The RTPL parser
decodes the RTPL statements and stores the information in tables for use
by the Fortrei generator. The Fortrun generator writes Fortran code on
Temp. a *%emporary file, as a result of the information stored by the
RTPL pars.r. 'The micro generator nas two phases of operation, macro
definition &nd macro expansion. The macro definition phase consists

¢? writing the macyo body and a macro text consisting of the macro

name and 4 list of formz. parameters on tne macro definition file. The
macro e:pansion consists of locating the macro in the definition file,
replecing formel perameters with :>tual parameters, adjusting the Fortran
code:, and writing the expanded macro on Temp.

The preprocessor passes through the input file only one time. The
preprocessor reads a card and insnmects it one character at a time. Ornce
the card image is parsed it will be d‘scarded or written on Temp. After
the Fortran End card is detected, the preprocesror copies the contents
of the Temp file to ¥inal, ins~rting the necessarv supervisor calls to

establish blocks for the modes and certain functionals. Any remaining
4o

S

N o

- ‘
AP I
s TS -

i

e B,

b3

subroutine will be copied to Final. After the preprocessor is finished,
Final can be compiled and executed as a real-time program. Because
continuation of RTPL statements is permitted, the preprocessor, if the
syntax is not complete on one input card, will read the next card. The
preprocessor tests the nt card to detemine if it is a valid continu-
ation. If it is a continuation card, the preprocessor will continue to
parse the syntax. If it isn't a continuetion or a comment card, then the
previous card has an invalid syntax. The previous card will be flagged
as invalid and a detailed error message will be entered in the Error
Directory. If the card was a comment, the nex’ card will be read and
checked as before.
The first card of an RTPL program must be a Fortran Program name

card. If it isn't, the preprocessor will write a diagnostic and try

to decode the first card as any other card. The input card is tested
to find out if it is arn RTPL statement, a Fortran comment or another
Fortran statement. Comments are copied from input to Temp. There are
severa} types of Fortran statements. If the macro definition switch is
true, the input information is written in the macro definition file.

If the declarative block switch is trve (indicating a declarative

block is being processed) the string of code will be parsed. If neither
switch is true, the card is tested for en End card. If not, the card
image would be written in Temp. If it is, the end processing mentioned
earlier would be executed. If the card was a RTPL statement, the pre-
processor tries to parse the string as a block statement. If it isn't,

it is parsed as a nonblock statement. If the nonblock parsing fails, tlhe

.._
L ¥ T
ek

]
N

}
k4

L
i

a \'b_.‘, 9

el

N
!

«‘ < \.
Sode i TV L I
9ﬁbgﬁd§%w‘w§‘
TR - A PR R

- W‘i-_i_"‘._ﬂ.’:i:‘ e ke

' s ls.1

S
S

- N e
% 3kl }:ﬁ.m“p‘ﬂ; N "ﬁvﬁ<l.~_¢A‘zu“%5} EER

e R

-4

il

statement is flagged as an error and a diagnostic is written. If the
noablock parsing succeeded, a subroutine is called to parse the
operands. If the block parsing succeeds, then statement numbers are
stored and the proper Fortran CONTINUE or RETURN statement is written.
The macro statements are handled as a set of the block statements. If
any MACRO BEGINS or ENDS are detected, the macro definition switch is
switched true or false respectively. If a CALL MACRO is detected, a
subroutine is used.to handle the expansion.

Appendix F contains a list of all the subroutines that are used by

the main program of the preprocessor.

Ry i ' . et ; ‘o ¢ ’
‘ﬁ‘i&;’ e oo e

»
4.
L]

|
&k

W

L

&t

3

b
" e

] f . L.},“-::.

o ‘_ﬂ-'i‘ .

o R,

IS PR PR Er - S

et e B

CHAPTER VI
CONCLUSION

The objective of this research was to design and implement a
computer program that would accept a Fortran program with a few non-
fortran statements as input, decode the nonfortran statements, and develop
a real-time program. Through the nonfortran statements, the programer
would explain his real-time requirements in as simple form as possible.
There was to be no infringement on the programer's freedom in program-
ing his problem, yet he should be freed as much as possible from routine
coding and bookkeeping information.

These objectives were adequately met by the preprocessor. The
operator form of statements is easy to understand and to use. The
supervisor required a block structure for the modes and associated
functions. This block structure was easily extended for declaratives
and initialization processes and provided good definition of where to
insert the Fortran code generated by the preprocessor. The macro
capability, defaulted names of variables and diagnostics will save many
hours of programing, coding and debugging of a problem. It also means
that meny system changes cen be implemented through the preprocessor
and the programer's deck will not be disturbed.

Since this preprocessor will be used by ma.y people, from time to
time changes will be made to the program to enhance its features and to
meet new needs. At the present, plans are being made to extend;the
macro capebility and to provide a print package similar to the ones

o

45

e

dag

.
,{'.
P
g
%,
3
.":‘-‘
K]
=4
2
et
3
=
RS
\»n .
-
By
-
-
-
3]

46

found in continuous system simulation languages. For the print package,
the variable name and some Hollerith string would be passed tc the
preprocessor. The Hollerith string would be used as a header and the
variable name would be used in a write statement with a fixed format.
This continual development will keep the preprocessor current of the

needs of the computing facility.

APPENDIX A
DESCRIPTION OF THE REAL-TIME DIGITAL SIMULATION SUPERVISOR

The following material is taken directly from reference 3, pages
12 to 17. - i
The supervisor is a set of subroutines integral to each simulation
job. The supervisor performs all real-time input/output control,
timing synchronization, commnication and control, and other related
functions that are system dependent. This allows the simulation
program to be coded in Fortran with little regard to the computer
interface with the real-time world.
The real-time digital simulation supervisor must perform the
following functions: |
A. Real-Time System Initialization
B. Real-Time Timing Control
C. Real-Time Central Memory Input/Output Control
D. Control After Lost Time Synchronization Interrupt
E. Mode Control
Reel-Time Data Storage and Retrieval

Print Output Control

m e o

Error Recovery and Diagnostics

I. Batch Job Ccmpatibility

LT

-~

9 SRR B IR 15 BB 0) PGS Pram wrr e avees

oa

o

A. Real-Tim- System Initialization

When a real-time job enters the computer system, the only special
characteristic that it has is the priority. Once the job begins to
execute, it runs like a high priority batch job. Through a series of
initializing calls, the simulation applications job communicates cer-
tain real-time data that is required for real-time operations. At this
point, the supervisor must communicate to the operating system infor-
mation for execution of the real-time portions of the Job.

The supervisor must commﬁnicate to SKED the addresses where the
ADC, DAC, discrete, real-time clock, and other real-time information
for this job reside. The supervisor must construct an interrupt table
to the real-time monitor. 1In addition, the supervisor must set up
internal flow control, data afeas, and perform other functions nec-

sary to prepare for real-time operation.

B. Real-Time Timing Control

A real-time simulation job mey execute in one of two states. It
may execute in real time, where strict time synchronization is held
and real-time responses are calculated. It may also execute in non-
real time where time synchronization is not maintained and the Jjob
executes like any high priority batch job. A real-time simulation Job
may change readily from 1eal time to nonreal time or vice versa. The
supervisor must perform the necessary monitor functions to perform the
transition described. The supervisor must also perform the necessary

system functions to guarantee time synchronization while the Jjob is

A B 3. S50 R R ket SN, St ORI I 157 3006 £ a0 iR+ e AR S48 ek ney S 5 8 S D ot welhs e s

~

1
R M R A T IONP I NI I rsvs 185 1ok« W6 E Ly - 3

-~

y
"
?

Al

49

operating in real time. The supervisor also computes the maximum CPU

time per frame for programer information.

C. Real-Time Central Memory Input/Output
The supervisor controls the transmission and distribution.of
input/output from the RTSS. ADC's and DAC's are packed four channels
per word and the supervisor provides the pack/hnpack capabilities so
that these quantities appear in normal floating point numbers in the
Fortran program. Discretes are packed 60 per word and may be
unpacked into normel Fortran logical variaebles if that mode of oper-

ation is selected.

D. Control After ILost Time Synchronization Interrupt

A simulation job requests of the system two time increments that
are pertinent to real-time execution. The firét increment requested
is frame time--this is the time tetween sampies ard defines the itera-
tion rate. The second is reguested compute time. Since more than one
similation can use a computer, each simulation must have an allotted
time slice in which to compute a response. This time slice is the
requested compute time (RCT). |

In order to preserve time synchronization of all real-time Jobs,
the system guarantees that no job will be allowed to compute more
than its allotted RCT per frame for that Job. When a Job does attempt
to exceed the RCT, a lost time synchronization interrur* is issued by

the real-time monitor and the central processor is given to another

LR T N N LR

e oot AR B APt P o i

bz A e et M 520 AR 0 e T EHERRS S » S 00 4 R v SO E5511
=

E N

- .

RORTTE &

job. It is the task of the supervisor to control and coordinate
activity of a simulation after lost time synchronization interrupt
occurs. A more detailed discussion of lost time execution is given

in a later chaypter.

E. Mode Control
The process of real-time digitial simulation requires an inter-
active man-machine control cepability. By using the mode control
keyboard, a simulation programer is able to control the flow and
functior of his program. This manual controi is called mode control
and is interpreted and coordinated by the supervisor. A detailed
description of mode controls an&.implementation follows in a later

section.

F. Real-Tine Data Storage and Retrieval

During the course of a simulation, it is necessary to store
information about the simulation such as values of state variables,
external disturbances, and event status for later analysis. Because
of real-time simulation timing constraints, Fortran input/output cannods
be accomplished during reel-tire operation. It is also infeasible in
a multiprograming system to have extensive stcrage of data in central
memory. Therefore, it is the task of the supervisor to control and
coordinate the storage on disk of data generated during real-time
operation, without interfering with the timing and synchronization of

the simulation.

o Beoig

e BT pe Mt it e s

e Py

51

G. Print Output Control

With the standard batch opcrating system, information to 1
printed is routed to the printer only after the job has completed
all processing and has left the system. The supervisor by'spegial
communication with the operating system, can route information directly
to the line printer upon command without relinquishing the central
processor. This allows the programer to supplement the analog data

on recording equipment with printed data at his request.

H. Error Recovery and Diagnostics

During the execution of a program, many different errors can
occur. The supervisor must provide the error recovery and diagnostics
necessary o maintain the integrity and effectiveness of a real-time
situlation Jjob. In a batch environment, when an error occurs, the job
aborts. ¥n real time, because of the large quantity of resources
(i.e., computer, A-D conversion equipment, cockpits, etc.) and person-
nel required, it is beset to capture the error ard allow the programer
the chence to fix the program, if possible, and to continue operation.
It is desired that the programer not be required to provide for ell
contingencies, e.g., if the solution goes .nstable, the supervisor
will trap the error, allowing the programer to access his stored data

and to reset and to tegin anew.

[S e derp s

A}

IR TP = T U .

i ST et - oINS B WLy - .

LR S B AR - SR S mmmkﬁcu\..“@,

-

EaS Y

TS R

ST L R - Byt

¥

g

gy

I. Batch Job Compatability

Real-time digital simulation is expensive in terms of machine
resources and execution time. Therefore, it is undesirable to ¢
computations in real time when it is not necessary, such as during
early coding checkout and purely analytic stpdies where real-time
input ard control is nc: needed. An additional requirement of the
supervisor is the capability of operating the simulation job as a
real-time job or as a normal batch job with minimum chexnge necessary

for the program.

RS TP IV TN I i I =)

3
j
g
:
%
:

-

+ ot
H

RTINS N A T G B St

s yuft Ty
i ‘ﬁﬁ"\‘-’% o
- BT AL

Tee 3w T F .

PR A

=

The following error diagnostics are a few of the typical diagnos-

tics that may appear in the Error Directory due to programing errors.

CARD NO.
CARD NO.

CARD NO.

CARD NO.
CARD NO.
CARD NO.
CARD NO.
CARD NO.

CARD NO.

THE FIFTH OPERAND ON CARD NO. 2 IS INVALID
CARD NO. 2 IS AN INVALID COMMON STATEMENT

THE PRINT BLOCKS ARE NOT COMPLETE

1
g

APPENDIX B

TYPICAL ERRCR DIAGNOSTICS

1 IS THE FIRCT CARD AND IT IS NOT A PROGRAM NAME CARD

2 IS AN INVALID BEGIN CARD

2 IS NOT THE FIRST BEGIN PRINT

2 IS A CONTINUE HOLD THAT IS NOT PRECEDED BY A DISCONTINUE
2 IS GREATER THAN THE SIXTH CONTINUE PRINT

2 IS GREATER THAN THE 19TH CONTINUATION CARD

2 HAS AN INVALID MACRO NAME

2 HAS AN ARRAY WITH FOUR SUBSCRIPTS

2 CONTAINS ‘a variasble name' FOR TABLE WHICH EXCEEDS ITS SIZE

&2 s

APPENDIX C

RTPL SYNTAX
< 1, nonzero digit > :: = 1|2|3|4|5|6{7I8|9
<2, digit > :: =0 |< 1, nonzero digit >
< 3, real letter > :: = AlBlcIDIEIF|GIEIP QRIS ITIUlvVIViXiYZ
< k, integer letter > :: = I|JT|K|L|M|N

<5, non-0 letter > ::

< 3, real letter >|< I, integer letter >

< 6, letter > :: = < 5, non-0 letter >|0

< 7, alphammeric character > :: = < 6, letter >|< 2, digit >

< 8, default integer varisble > :: = < 4, integer letter >16.

<T,

alphenum. c. >

< 9, octal digit > :: = ol1|2|3[%|5161T

< 10, octal constant > :: = 0 < 9, 0. digit ><9, 0. digit >

< 9,0. digit >< 9, 0. digit >< 9, 0. digit >< 9, 0. digit >T1k.

<9
<11 >
<T
<12 >
<7
<13 > ::
<7’
<1k > ::

<6,

0. digit >
= < 6, letter > < T, alphanum. c. > < 7, alphanum. c. >
alphanum. c. > < 7, alphanum. c. > < 7, alphanum. c. >

= < 7, alphanum. c. > < 6, letter > < 7, alphanum. c. >
alphanum. c. > < 7, alphanum. c¢. > < 7, alphanum. c. >
= < T, alphanm. c. > < 7, alphanum. c¢. > < 6, letter >
alphanum. c. > < T, alphanum. c. > < 7, alphanum. c. >
= < T, alphanum. c. > < 7, alphanum. c. > < 7, alphanum.

letter > < 7, alphanum. c¢. > < T, alphanum. c. >

5k

(e

P g g e

g wer

G i

BB

25

<15 > :: =< T, alphanum. c. > < T, alphanum. c¢. > < 7, alphanum. c. >
< 7, alphanum. c. > < 6, letter > < 7, alphanum. c. >
<16 > :: =<7, elphanum. ¢. > < T, alphanum. c. > < 7, alphanum. c. >

< 7, alphanum. c. > < T, alphanum. c. > < 6, letter >

<17T>:r =< >k 12>k 13>k >k 15>k 16 >
<18 > :: =0<17 >

<19 > :: =015. < T, alphanum. c. >

< 20> :: =<3, ¥Yeal letter >16. < 7, alphanum. c. >

< 21, default real variable > :: = < 18 >l< 19 >|< 20 >

< 22, integer varisble > :: = < 21, d. real var. >|< 8, 4. int. var. >
< 23, real variable > :: = < 8, d. int. var. >|< 21, d. real. var. >
< 24, varisble > :: = < 22, int. var. >|< 22, real ver. >
olrl2|3|4|5]6

1<25 >

<25 >

<26 > 3

< 27, small integer constant > :: = < 1, nonzero digit >|< 26 >

<28>:: =1

<29 > :: = 0|1|2]3

<3% >:: =01

<3 >:: =0

< 32> 1 = ofr|2)3l4isl6lT

<3 >: =0

<> =2<28><29>5<HN >N >LC<R>LB>

<35> = <2, digit >th. < 2, digit >
< %, subscript constant > :: = < 3 >l 35 >

<3T> =25

56

<38 >:: =o0[1[2|3|4]5]6 |7

<39 >:: =0|1|2|3|4|5]6

<bo>:: =0|1|2|3k

<41 > =of1|2|3lki516

<k >::=0

<43> :: = 012131451617

<> ::=0n)2|3[4l5

<45 > :: = 0|12

<b6>:: =0[1]2|3

<hkr>::=0

<8 > :: =0[1|2|3

<lh9 > :: = 012|354

<50 > :: = 0[1]2

< 51> :: =0]1|2|3

<52> :: = 0|L|2|3|k

< 53> :: = 0]1|2|3|+[5|6]7(8

<5k > =0)1|2|3|4|5]|6]7

<55>:: =<37T></P><h><h><h2><E3>< >
U5 ><UES>S<KUT><<UI>CH0><KB5L><52><55>
< 54 >

<56 > :: =<2, digit >116. < 2, digit >

< 57, integer constant > :: = < 55 >|< 56 >

<58 > :: = bT15. < 2, digit >

o7

<60 > :: =bMm< 2, digit > .tn. < 2, digit > where m+ n = 15
< 6L > :: = <58 >K 59 >|< 60>

<62, sign > :: = + | -

<63> :: =<2, digit > 12. < 2, digit >

< 6Lk >:: =<62, sign >|b

<65>:: =<64><63>

]

< 66, exponent part > :: =< 65 >|E< 65>

< 67, real constant > ::

1l

< 61 > < 66, exp. part >

<68>:: =, < 3%, subscript con. >
<69 > :: = < %, subscript con. > 12 < 36, subscript con. >
<T0>:: = (<69 >)

< T1, real array > :: = < 23, real var. >|< 23, real var. > < 70 >
< T2, integer array > :: = < 22, int. var. >|< 22, int. var. > < 70 >
< 73, array > :: = < T1, real arr. >|< 72, int. arr. >

< T4, signed real variable > ::

< 62, sign > < 23, real var. >

< T5, signed real constant > :: = < 62, sign > < 67, real con. >

< 76, integer variable or constant > :: = < 22, int. var. > |

< 5T, int. con. >
< T7, real variabie or constant > :: = < 23, real var. >|< 67, real con.>
< 78, veriable or array > :: = < 23, real var. >|< T3, array >
<79 > :: = BEGIN|END | .
< 80 > :: = < 79 >|CONTINUE | DISCONTINUE
< 81 > :: = DECLARATIVE |INITIALIZE |OPTION |LOSTIME

<8>::=2<T9>< 8>

< 8%> :: = < 8 > PRINT

< 84 >

<8 > ::

<8 > ::

< 80 > HOIDT 1. OPERATE

= < 80 > OPERATE

< 87, block

< 88 >:

<89 >:

<90 >
<91>
<92 >
<93%>
< 9% >

<9 >

e
e

statements > :: = < 32 >|< 83 >l< 84 >|< 85 >|< 86 >
<24, var. > |,

< 24, var. >199. < 88 >|v199. < 88 >

CHANGE LOGIC (< 89 >)

, <24, var. >

<24, var. >17100. < 91 >

BEGIN MACRO < 24, var. > (< 91 >)|BEGIN MACRO < 24, var. >

CALL MACRO < 24, var. > (< 91 >)|CALL MACRO < 24, var. >

-
=

< 96, macro

a7 > ¢
<98 > 1

<99 > ::

< 100 >
< 101 >
< 102 >
< 103 >
< 104 >
< 105 >
< 106 >

< 107 >

END MACRO < 24, var. >

statements > :: = < 93 >|< ok >|< 95 >

» < 23, real var. >|,

< 23, real var. >1199. < 97 >|bT199. < 97 >

CHANGE (< 98 >)

, < 22, int. var. >|,

< 22, int: var. >199. < 100 > [6199. < 100 >
CHANGE INTEGER (< 101 >)

, < T8, var. or arr. >

< 78, var. or arr. >T64. <103 >

:: = RECORD (< 104 >)

:: = ADC NAME (< 23, real var. >)

:: = DAC NAME (< 23, real var. >)

S TOPPEIE e e RSN AU v

29

< 110 > :: = CHANGE NAME (< 23, real var. >)

< 111 > :: = REAL TIME FILE (< 24, var. >)

< 112 > :: = INTEGRATION BUFFER (< 24, var. >)

<113 > :: = SCANNER (< 76, int. var. or con. >)

< 114 > :: = TIME INTERVAL (< 76, int. var. or con. >)

< 115 > :: = RECORDING FREQUENCY (< 76, int. var. or con. >)

<116 > :: = < 23, real var. >,< 23, real var. >,< T7, real var. or con. >

<U7T>:: =, <16 >

<118 > :: =< 116 >1220. < 11T >

<119 > :: = INTEGRATE (< 118 >)

<120 > :: = ADC SKIP (< 57, int. con. >)

<121 > :: = DAC SKIP (< 57, int. con. >)

<122 > :: =< Th, 8. real var. >|< 75, s. real con. >

<123 > :: = AIC (< 23, real var. >,< 122 >, < T7, real var. or con. >)

<12k > :: = DAC (< 23, real var. >,< T7, real var. or con. >,< 122 >)
<125 > :: =<2k, var. > |Db
<126 > :: =< 27, small int. con. >|b

< 127 > :: = DISPLAY VARIABLES (< 125 >,< 125 >,< 125 >,< 125 >,< 126 >,
< 125 >,< 126 >,< 125 >,< 126 >,< 125 >)

<128 > :: = < 23, real var. >|b

<129 > :: = < 22, int. var. >|b

< 1% > :: = SET INTEGRATION (< 128 >,< 128 >,< 129 >,< 129 >,< 129 >,
< 125 >)

<131 > :: = MODES AND DISCRETES (< 125 >,< 125 >,< 125 >,< 125 >,
< 125 >,< 125 >)

60

< 132. norblock statements > :: = < 90 >|< 99 >|< 102 >|< 105 >[< 106 >|
< 107 >|< 108 >|< 109 >|< 110 >|< 111 >|< 112 >|< 113 >|< 11k >|
< 115 >[< 119 >}<120>{<121> K 123 >|< 124 > 127 >|< 130 >|< 1% >

< 133, a formal parameter in the body of a macro > :: = $$ < 24, var. > $$

The preprocessor does not parse Fortran statements except Fortran
declaratives and formal parameters in the body of a macro cdefinition.
The syntactical definition of formal parameters is stated above and

-

appendix D contains the definitions of Fortran declarative

1
]
1
%%
!

-

B

"%-" §1m ’-‘:MQ‘F‘ ’1{'43‘{'5}'1' Pt

APPENDIX D

FORTRAN DECLARATIVE SYNTAX

The following syntactical definitions are taken from the RTPL

syntax:

< 2, digit >,< 24, var. >, and < 70 >

< 201 > :: = COMPLEX |DOUBLE |PRECTS ION | DOUBLE |REAL | INTEGER | LOGICAL

< 202,

< 203,

<204k > 3

<205 > s

< 206,
< 207,

< 208,

TYPE NAME > :: = < 201 >|TYPE < 201 >

array > :: =< 24, var. > < 70 >

< 24, var. > < 203, array >

, <20k >

list T> 12 =< 204 >7. <205 > *
type statement > :: = < 203, array > < 206, 1list T >

common identifier > :: = < 2, digit >T 6. < 2, digit > |

< 24, var. >

< 209,
< 210,

<2,

T.

< 212,
< 213,

< 21k,

*Number of times the syntactical unit can be repested is unspecified.

common label A > :: = b'//

common unit A > :: = < 209, common label A > < 206, 1list T >

blank common statement > :: = COMMON < 210, common unit A >
< 210, common unit A >

common lebel B > it = / < 208, common identifier > /

common unit B > :: = < 212, com. lsble B > < 206, 1list T >

labeled common statement > :: = COMMON < 215, common unit B >

60. < 213, common unit B >

61

i

. <A hath

($Y

<215 > 2 =, < 20%, arr. >

< 216, 1ist D > :: = < 203, array >1 . < 215 >

RER THRE R - SR R VIPRISRRIVBING V

< 217, dimension statement > :: = DIMENSION < 216, list D >

et

&8

o~ Bsiblphaidnad 0B Sl a et

APPFNDIX E

W g s s

SAMPLE INPUT AND OUTPUT PROGRAMS

3

A sample program in RTPL and the resulting Fortran real-time

program has been included to illustrate the use of RTPL.

B . 4 s it bt AW 3 R S N B

R 3 ia

6l

INPUT PROGRAM

PROGRAM YDDN (INPUT=201,0UTPUT=201)

BFGIN DECLARATIVE

IMTFGRATE (PST«PSIDToPSI0sPSIDPSIDDSPSIDO)
CHANGF (PST0«PSIN0sAsBey)

CHANDE (ANSWFR]1 ¢ ANSWER?)

CHANGFE INTFGFR (N)

CHANGE LOGIC (FLAGsFLAG2)
ANC(FORCEle=e19,06)

ADC(FORCF2e+1.333+,001)

DAC(PSTsele=,3)

DAC SKIP (5)

DAC(PSIDeo794+D)

RECORD(T4PSIoPSIDIPSINDsAWB)

BFGIN MACRO ROOTS(DsFoeFsUsV)

POS = LF.

NFG = .Fo.

FEVEE=FHETTHERFE8=4 , *BSDES*SSFSS

$EUSS=1.

IF(SIGN($51)$%,58VE8) ,GT.0) POS=,T,

IF(SIGH SFUTS+S8VES) JLT,0) NEG=.T.

IF(POS) S5USS=(=SSFES+SORT(S8VES))/(2,%98DSS)
IF(PNS) $EVES=(-$SESS-SORT(SEVES))/ (2.%#33NSS)
IF (NEQ) $%U$%=0 T
IF (NEOQ) $8V $%=0 : '

END MACRO ROOTS :
END DECLARATIVE 1
BEGIN INITIALIZF

VDOV OVVIVOVTDOVDOD

p1oes

i

¥
£

e

po b o lb s

Ce#sus SECTION Do CONSTANTS AND INITIAL PARAMETERS i

1 FORMAT (1HISX4HTIME 91 7X3HPST18XTHPST DOT+14X9HPST D
1 DOT912Xe1HA$20X1HRB)
~ 2. FORMAT (6F21.8)
3 FORMAT (F10.2)
= 2
S.?201R75
2.57392
8.3333
12
PS10 = 0.2
PSINO = 0,0
T0 = 0,0
R END INITIALIZE.
R REGIN RESET

SOD>Z

Ce#sse SECTION E. INITIALIZATION OF INTEGRALS

« T e

65
T =710
R CALL MACROD ROODTS (A«RGCoANSWFR] « ANSWER?)
R RFGIN HOLD

Coeas SFECTION F, HOLD CONTROL
R BEGIN OPERATE
Cousnt SECTION G. OPERATFE LOOP

PSINDT PSTD

PSIDD =A#SIGN(1,04PSID)#PSID##N - B&SIN(PSI) + FOR
1CE]1 = FORCF2#SIN(PSI) .

TARLE(S) = 7

TABLE (A) = PST

FEND RESET HOLD

DISCONTINUE OPERATE

CONTINUE OPERATE

END OPFRATE

BFGIN PRINT

DVDDVDVVDD

Ce#ns SECTION H. PRINT CONTROL

WRITE (MFe1)

DISCONTINUF PRINT

WRITE(MF +2) ToPSI+PSIDPSINDyALR.
CONTINUE PRINT

END PRINT

BFEGIN OPTION

VD0 P

Cawse SECTION 1. READ CONTROL

READ 3.A
R FEND OPTION
END

o G L ATAOE i vsnt s a RIS A i s s L AN D Bt e iy 4 S0

(W
b A1

66 ;

OUTPUT PPOGRAM

PROGRAM YDD (INPUT=201,0UTPUT=201)

COMMON /INTCOMM /ToeHeINTeNEQy ISCHEME«NERINT(24+2)
COMMON /INTINTR/ INTERN (Se 2)

FQUIVALENCF (DERINT(141)ePSI) e (DFRINT(241)PSID) s (DF
IRINT(1e2)ePSIN) o (DERINT(242)sPSIDND)

COMMON /MASKS/TMASK (A0) oFMASK (60)

LOGICAL LOGIC

DIMENSION TARLE(8)« INTFG(1)+LOGIC(2)

LOGTICAL VARCHNGoFS144FS15+FS16,ENARLEoMSI
FQUIV*LENCF (TARLF(1)+PSI0)e(TABLE(2)+PSIDO)» (TABLE(
13)9A) o (TARLE (4) oB) o (TARLE (7) s ANSWFER1) o (TABLE (8) 9 ANSW i
2FR2) j
FQUIVALENCF (INTEG(1)eN)

EQUIVALENCF (LOGIC(1)oFLAR) 9 (LOGIC(2) +FLAGZ)
DIMENSION ADC(80)+DAC(180)

COMMON /INOUT/ REMOTFIDIS(16)+0DIS(16)9TYIO(4)
DIMENSION TVARBUF (5)

CALL RFSET (90001S+90007S)

CALL HOLD (30002S+¢90007S)

CALL OPERATF(900035+900085+¢90009S5+90010S)

CALL PRINT(90011S+90012S¢90013S+490014S)

CALL OPTION(90015S+90016S)

CALL READOUT(6+T+PSTI«PSIDsPSIDDeA,R)

CALL RTOUTF (MF) .

CALL INOUT(ADC9?9DACH7)

CALL DATARLX(TARLEsB«INTEGe19LOGICe29sANCs2eDACH 74101
1S¢16.0D1S416)

CALL XDSPLAY(IDISsODIS«VARCHNGy ITYPE«IVARRUF ¢FS16)
CALL NM21B(6LTYPTPE)

ISCHEME=]

NEQ=2

H=32./1024,

FLAG=,F.

[T e T e

ceones SECTION D. CONSTANTS AND INITIAL PARAMETERS

1 FORMAT (1HISX4HTIME917X3HPSTI¢18XTHPST DOTe14X9HPST D
1 DOTel?Xel1HAI20X1HA)

2 FORMAT (6F21.8)

3 FORMAT (F10.2)

N =2

A = 5,201R75
B = 2.,5739?
C = 8,3333

N = ,12

PSI0 = 0,2

'IPSIDO s 000

R NG BT T AL T A S

4 e g T 0w

< VPR g s

90001

Caonse

90002

Connn

98003

90004

Chans

67

T = 0,0
CALL RFANDY
CONTIMUE
INT=0
PST=PST0
PSIN=PSIND

SFCTION F, INITIALIZATION OF INTEGRALS

T = T0

POS = oFo

NEG = LF,

ANSWER?=B#R=4 ,A%(C

ANSWER1=],)

IF (SIGN (ANSWER] ¢ ANSWER2) «GTe0.) POS=,T.
IF(SIGN(ANSWERchNSVERE).LT.O.) NEGSQT.
IF (POS) ANSWER1=(=-B+SQRT (ANSWER2))/(2.%A)
I1F (POS) ANSWER2=(=B=SORT (ANSWER2))/(2,.%A)
IF (NEG) ANSWER1=0,

IF (NEG) ANSWERZ2=0,

CONTINUE

SECTION F. HOLD CONTROL

CONTINUE

FORCE1l = (ADC(1)=,1)#%#,06
FORCE2 = (ADC(2)+,333)#,001
FS14=INIS.AND.FMASK (46)
FS1S=INIS.AND.FMASK (47)
FS16=INIS.ANDFMASK (48)
MS1=IDIS.AND,FMASK(17)
CONTINUE

SFECTION G, OPERATE LOOP

PSINT = PSID

1CF1 « FORCF2#SIN(PST)

PSIDD = =A#STGM{1,04PSID)#PSIN®#EN « BH#SIN(PSI) ¢ FOR
TABLE(S) = 7

TABLE (6) = PSI

IF(INT.GT, l\ GO TO 20006

DAC(1) = FSi*el)=o3

DaC(7) = (PSID’.?)*D

IF(FLAG) GO TO 90005

IF(INTS.AND,TMASK (22)) CALL SCANNER(32)

CALL DSPLAY

IF(MS1) GO TN 90n0N7

IF(VARCHNG) CALL TYPVAR

IF (ENARLF JAND,FS1S) CALL TYPEVAR
FNABLF=«NOT,FS15

IF(FS144AND. (IDTS,AND,TMASK(14))) CALL TYPEV‘R

h“‘:"‘ Foat? M) }} “
, .|5.u.“-n:lsﬁ.’§\qﬂa ol .o
L -'A't

o vt
VT -

R
i

W

Canhit ..
i 1

AR S B S 22 AN T T ¥ AL TR

90007
90NOR
90009

90006

98005
%0010
90011

Coans

90012
90013

90014
90015

Coune

90016

RFTURN
RFTURN
CONTINUE
CALL RECORDI(
CONTINUE
CALL IGRATF1]
IF(INT.GT.1)
FLAGono

GO TO 90004
FLAG=.F.
RETURN
CONTINUE

SECTION H,

WRITE (MF,1)
CONTINUE
WRITE (MF«?2)
RETURN
RETURN
CONTINUE

SECTION I,
READ 3.A

RETURN
END

372)

GO TO 90004

PRINT CONTROL

TePSIsPSIDWPSINDeASB

OFAD CONTROL

(R T O

- S v B

RO g
3 e

b A s a -

APPENDIX F

PREPROCESSOR SUBROUTINES

The following subroutines are used by the preprocessor in develop-

ing a real-time Fortran program. Their name and function are listed.

Name

BLA

CCON

CEND

CMACRO

COMPARE

CPRONAM

CRECORD

CSMINT

Function

to remove blanks from a string of Fortran code in Hollerith
form and write the modified code in Temp, the temporary
output file.

to parse a string of input code to determine if the string
contains an integer constant, floating point constant.

to parse a string of input code to determine if the
string is an End card.

to fetch a macro from the macro definition file, parse the
operands of the macro call, replace formal parameters
with actual parameters, clean up the Fortran code, and
write the expanded macro on Temp.

to compare two strings, one with one character per word and
the other with 10 characters per word.

to parse a string of .nput code to determine if the string
1s a program name card.

to write the subroutine calls to RECORD.

to parse a string of input code to determine if the string

contains & small integer constant between one and 16
exclusively.

69

e s W RE

B e e SN

R T

1 B CRRPNROIPINIBSIT . £ S, e e TR SR

70
Nanme Function
CVAR to parse a string of input code to determine if the string

contains a variable, a real variable, an integer vari-

able, an array, a real array or en integer array in
Fortran.

DFEREQU to write equivalence statements to equate integrated

varisbles to the array in common INTCOMM (DERINT array).

INTEQD to write equivalence statements to equate intéger vari-
ables that will be displuyed to the display integer
array (INTEG array).

IOGEQU to write equivalence statements to equate logical vari-
ables that will be displayed to the display logical
array (LOGIC array).

PACK to remove blanks from a string of Fortran code.

PARSED to parse Fortran declarative statements.

The following subroutines are used to parse operands of RTPL
statements. For these subroutines the name and corresponding RTPL

statements will be listed.

Subroutine RTPL Statements

SUB1 DAC

SUB2 ADC

SUB4 CHANGE

SUB6 RECORD

SUBT SCHEME, ADC SKIP, DAC SKIP, TIME INTERVAL

ot

Subroutine

SuB8

SuUB12
SUB13%
SUBLS
SUB19
SUB20
SUB22
SUB25

T1

RTPL Statements

ADC NAME, DAC NAME, CHANGE NAME, REAL TIME FILE,
CHANGE IOGIC NAME, INTEGRATION BUFFER, CHANGE
INTEGER NAME.

SCANNER, RECORDING FREQUENCY

INTEGRATE

CHANGE IOGIC

CHANGE INTEGER

SET INTEGRATION

DISPILAY VARIABLES

MODES AND DISCRETES

APPENDIX G
FLOW DIAGRAM OF THE CVAR SUBROUTINE

The CVAR subroutine is used to detect all variables. TFlags and
parameters are passed to the subroutine to indicate if the routine is
to try to detect:

a variable,

a real variable,

an integer variable,

an array,

a real array, or

en integer array
using the syntax of RTPL or Fortran depending whether the preprocessor
is parsing a RTPL or Fortran statement. This subroutine is called with
a pointer indicating where to start operating on the input string. The
subroutine takes the first character and performs a series of tests on
it to determine what it is. The routine operates on each consecutive
characters until a valid name is detected. Once a variable or an array
name 1s located, the subroutine checks the declarative tables that the
Fortran parser generated. If a valld variable or array is detected, the
answer is set true and the Fortran symbol 1s passed to the program that
called CVAR. 'ENCODE' and 'DECODE' are Fortran statements that perform
a transfer and modification of the contents of memory to another loca-
tion in memory. They are used form words out of a string of characters

(ENCODE) and to convert a symbol into a string of characters.

T2

[=oAL o T AR T A S
SEEENRIAS

N R -

iy
PRt

‘f

R

p | R e 1

}

3

The following flow chart uses the following symbols:

Symbol

<

‘\\} CONTINUE

-
‘

Meaning

Fortran code

Test, usually an if statement or a larger
group of code, bottom point is a false
transfer, and either side points are
true transfers.

DO loop

Starfing or ending point of a subroutine

Continuation point in flow chart. The
symbol, al, indicates how to connect
a point on one page to a point on
another page.

ﬂ‘iwf - 23 [V o N

g T

s

Ky

T a3 N TR

A T,

START

FORTRAN
DECLARATIVES

+

FORMAT
STATEMENTS

'

INITIALIZE
ALL VARIABLES
AND CONSTANTS

DO 1 CHARACTER INDEX =
STARTING POINT,ENDING

POINT _
.

SET AB EQUAL TO
THE ITH SY#BOL IN
THE INPUT STRING

IS

~ ABEQUAL TO
~§ BLANK
INCREMENT
CHARACTER
COUNT

7

;
It
i
’
N
?a
£
.
B
v
o
3
J
]
T

HAS
AN ARRAY BEEN

DETECTED

IS
CHARACT~-
ER COUNT LESS THAN
MAXIMUM NUMBER

ALLOWED '

WRITE l
Dncnosnc ,

TORE AB
IN LIST

d)

T

,
g §

L Menioion, Wi S0 e < e R B

IS
AB
NOT THE FIRST

IS :
AB THE PROPER
LETTER TO BEGIN -

THIS TYPE o .
WORD

IS
AN ARRAY
BEING TESTED

76

L1 A

:u ‘ﬂw&"%‘ .'rf!

e

WRITE
ERROR
MESSAGE

ooty a0t

AN ARRAY BEEN
DETECTED

\r

(s

!
e R
r

fia

ey

M- S . 1 N
ST R I T e e gt)
’ v ‘%"'MWMWMWH Newp g o

A

ENCODE LIST INTO A
WORD TO FORM A FOR-
TRAN VARIABLE NAME

IS
TYPED
VARIABLE FLAG
FALSE

IS

VARIABLE'S
NAME IN DECLAR-
ATIVE TABLES

l—'.l»! .

s "\’Qg&f;x?"- . ﬂ‘.‘u}f‘,@,, 3

Vpe

BT | RPN

P

- et

Rl

R L R I

@-— -

ENCODE ARRAY'S
NAME INCLUDING

n("

TEST FOR
A CONSTANT

SUBSCRIPT

9

'.w-wwgif;;_a,_ B

ey ey

BRI

TR o g R Npal £ a e

RO e

)
)

TOO MANY -

SUBSCRIPTS _

ONLY
LOOKING FOR
ARRAY'S NAME

DECODE
CONSTANT

v

ENCODE NAME
AND CONSTANT

T

SUBSCRIPTS
NOT
FINISHED

R

WRITE
ERROR
MESSAGE

<

CONTINUED

e

ot

[e

g

IR Ll L e e T

Ry yay, Zeviw TFRE T

IS IT AN
RTPL STATEMENT

IS
IT A COM= .
MENT

WRITE
COMMENT
IN TEMP

TN WY WO

. ARSI MR ORI wfn DR (U £ P55+ AR T A O A et (75 o RIS B5es 1 % T 3 7=

IS
IT NOT A

CONTINUATION
CARD

IS
IT LESS
THAN 19TH CON-
TINUATION

WRITE
ERROR
MESSAGE

N |

RESET
STARTING
POINTER

83

SRt cx gy e

B I e I B

B e - T

1.

7.

8.

BIBLIOGRAPHY

Eckhardt, Dave E., Jr.: Description of Langley Research Center
Computer Complex and Special Features for keal-Time Simulation
Applications. Paper presented at the Tistern Simuwlation Council
Meeting, Hampton, Virginia, September 26, 1968.

Cleveland, Jeff I., II: Description o Software Features for
Program Control. Paper presented at the Eastern Simulation
Council Meeting, Hampton, Virginia, September 26, 1968.

Cleveland, Jeff I., II: A Real-Time Digital Simulation Supervisor.
Thesis for George Washington University, April 1970.

rawford, Daniel J.; and Cleveland, Jeff I., II: Real-Time Digital
Simulation Cooperative Programing Guide. Internal manual for
National Aeronautics and Space Administration, Langley Research
Center Real-Time Simulation Facility, February 1969.

Rabinowitz, I.: Report Algorithmic Language Fortran II. Communi-
cations of the ACM, vol. 5, no.6 , June 1962, pp. 327-337.

Burkhardt, W. H.: Metalanguage and Syntax Specification. Communi-
cations of the ACM, vol. 8, no.5 , May 1965, pp. 304-305.

Hoffberg, Susan S.; and Goldstein, Max: A Syntax-Directed Fortran
Statemen: Checker. Courant Institute of Mathematical Sciences,

January 1968.

Brever, Hans: Dictionary for Computer Languages. London Academic
Press Inc., LTD., 1966.

’fg
2
j
3
j
,§

