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ACOUSTIC SCATTERING BY A F OROUS ELLIPTIC CYLINDER

WITH NONLINEAR RESISTANCE

By

William Edward Zorumski

ABSTRACT

Equations for high intensity acoustic waves are derived from the

general equations governing a compressible isotropic Newtonian flaid.

The integral conservation laws of continuum mechanics are used to

determine a general set of laws, similar to shock wave relations, which

describe the interaction of these waves with thin porous sheets of

material. A special case of these laws, where the velocity normal to the

sheet is continuous and the pressure drop across the sheet is a nonlinear

function of the normal velocity, is used to study acoustics problems with

nonlinear material effects. Numerical, approximate, and exact solutions

are obtained from the one-dimensional problem where two regions are

coupled through a porous sheet with nonlinear resistance.

Solutions for scattering from a thin rigid porous elliptic cylin-

drical shell are found in terms of Mathieu functions. When the acoustic

resistance of the shell is linear and constant, the scattering problem

reduces to an infinite set of linear equations for the coefficients of

the velocity expansion on the cylinder. Coupling terms in these equa-

tions are given by integrals involving Mathieu functions which are

evaluated by exact methods. A special case of variable linear resistance

is found where the infinite systems uncouple so that closed form

solutions may be found for the velocity coefficients. Computations are
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made in the intermediate frequency range, where the wavelength is of the

same order of magnitude as the major axis of the cylinder. Tabulations

of the scattered and dissipated energies are given for various cylinder

eccentricities, resistances, incidence angles, and frequencies. A

perturbation solution is given for scattering from a cylinder with

slightly nonlinear resistance. This solution is used to obtain the

scattering of intense saw-tooth waves from a cylinder with nonlinear

Y	 resistance.
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I. INTRODUCTION

The idealized problem of scattering from a porous cylinder origi-

nates from the contemporary need for methods to reduce noise from

aircraft turbofan engines. In reference 1, Marsh has shown that a

I	 practical method for reducing discrete-tone noise from turbofan

engines is to install "broad-band resonators" inside the engine

nacelle. Because of considerations of weight, safety, and endurance,

these resonators are usually made of thin porous sheets of material

(either metallic or fiberglass-plastic) whAch are fastened to a

compartmented wall. The cavities behind the porous sheet are usually

about one-quarter wavelength in depth, since this gives good absorbing

qualities.

In general, the greater ',he exposed area of porous material,

the more sound is absorbed, so that engine designers must look for

ways to alter the engine geometry to increase this area. Of course,

this must be accomplished without upsetting the basic flow field

within the engine, which presumably has already been optimized on a

performance basis. One approach to this problem has been to install

thin porous double-walled radial spokes or circumferential rings in

the engine. The optimum size (from the acoustical viewpoint) of

these devices is not known, but it is reasonable to assume that their

dimensions are of the same order of magnitude as the wavelength of the

dominant tone. In cross section, such a spoke or ring would sppear

roughly as an ellipse. This suggests that their qualities may be

1
3=
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evaluated by studying the two-dimensional problem of scattering from

a porous elliptical cylinder.

Measured data in a typical engine indicate that the acoustic

intensity is of the order of 160 dB. This corresponds to a pressure

fluctuation of about one-hundredth of an atmosphere. There is some

debate among investigators as to whether this intensity is in

the linear range (where the classical wave equation is valid) or in

the nonlinear range (where some more exact set of equations must

be used). The fact is that this question may not be answered in

terms of a statement about acoustic intensity. Acoustic equations

are perturbation equations of the general Newtonian fluid equations,

and each problem must be ,judged on its own merits as to whether it is

a linear or nonlinear problem. As evidence of this, several important

papers on nonlinear acoustics are mentioned here, although no attempt

is made to survey this area of research.

In one of the earlier papers (omitting Lord Rayleigh) Fay (ref. 5)

obtained a Fourier Series solution to the one-dimensional wave

equation in an unbounded medium. His equations considered a nonlinear

compressibility law (adiabatic) which causes wave peaks to travel

faster than wave troughs. A viscosity term in the equations limited

the shape from continued steepening. He concluded that there is no

completely stable wave, but that there is a "nearly stable" wave

whose shape changes gradually. In reference 6, Fubini gives a

solution to a nonlinear one-dimensional problem which, like Fay's,

has nonlinear compressibility, but which does not consider viscosity.

•
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His solution, which is given as a series of Bessel functions,

predicts that a discontinuity will form in the wave. More recently

Blackstock (ref. 4) has generalized the work of Fay and Fubini. His

work shows that the Fubini solution is valid near the soi:rce, and

the Fay solution is valid far from the source. Using a weak-shock

approach, Blackstock has obtained a general solution which is also

valid in the transition region between near and far field. The

perturbation approach has been used by Coppens and Saunders in

reference 7 to obtain a finite-amplitude standing wave solution in

a rigid-walled tube of finite lervth. Experiments made by them

confirm theoretical computations for second and third harmonics of

the fundamental wave. Reference 8 is another example of the use of

perturbation equations for nonlinear equations. In this work, Maslen

and Moore investigate strong transverse waves in a circular cylinder.

The surprising thing about their investigation is their prediction

that strong transverse waves will b-^• shock free, in contrast to the

plane wave case where shocks form.

Isakovich, in reference 9, presents a discussion of a

Sturm-Lioville problem obtained from the one-dimensional wave equation.

He also concludes that second-order terms in these problems will

always be bounded.

For the reader intersted in surveying the area of nonlinear

acoustics, the book by Morse and Ingard (ref. S), and Beyer's survey

in Chapter 10 of Mason's "Physical Acoustics" (ref. 2), are

recommended as a place to start. i
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The nonlinearity which arises from the boundary conditions of the

problem (rather th !.n from the governing differential equations) will be

the focus of attention in the present work. This nonlinearity is a

characteristic of the porous material. It must be mentioned, nowever,

that no time will be spent in detailed consideration of flow and wave

motion in the porous media. This is a complex subject in itself, but it

has been developed to a fairly refined state, primarily through the

efforts of Biot (refs. 10 and 11). In the following discussion, only

very thin sheets of the porous materials will be considered, so that

their properties may be characterized by functions which represent the

changes in flow parameters from one side of the sheet to the other. The

situation here is analogous to shock wave equations, where relations are

obtained for computing the discontinuities in flow parameters at the

shock wave.

The problem of interaction of '-ow with screens or grids is

important in a number of applications. For example, references 12 and

13 consider flows tihrough grids of heat exchangers. Screens are used 	 =2

for smoothing flows in wind tunnels (refs. 14 and 15), and for
r

protecting aircraft engines (ref. ld). These studies were primarily

concerned with evaluation of a pressure loss coefficient. Reference 17

is an analytical and experimental study of a strong wave interaction with

a wire grid. In this re3earch, Center studied a centered rarefaction

wave as it impinged on the screen. He assumed:
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(a) quasi-steady flow near the grid

(b) no heat transfer in the fluid or between the grid and fluid

(c) effect of grid represented by a drag coefficient which
depends only on Mach number

With these assumptions, good agreement was found between theory and

experiment.

The theory of dimensional analysis suggests that the drag

coefficient used by Center should depend on both the Reynolds and the

Mach number. Careful steady flow investigations by Yates (ref. 18)
I

and by Pinker and Herbert (ref. 19) have experimentally confirmed

this fact. These authors measured coefficients for flows (inside

the porous screens) varying from laminar, through turbulent, to

choked flow. both investigations show a dependence on Reynolds'

number, but the strongest dependence could be associated with Mach's

number, which is apparently why Center's assumption was adequate in

his problem.

All of the research on screens mentioned above was concerned

with Mach numbers which are fairly large compared to those found in

acoustical work where a "large" Mach number would be of the order of

0.1. Work in acoustics has concentrated on perforated plates, or

more specifically, on plates with a single perforation, that is, an

orifice. Also, almost all work in this area has been carried cut

using impedance ideas. These ideas originated in discrete electrical

ani mechanical systems and are limited to linear, steady-state

problems. In spite of this, the tradition in acoustics has been to
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account for nonlinearity by a modification of the impedance concept,

which results in a quasi-linear theory.

In 1935, Sivian conducted an experimental investigation of

the impedance of an orifice (ref. 20). He concluded that the reactance

of the orifice was only slightly dependent on amplitude (of an

incident sound wave), but that the resistance increased with amplitude.

Sivian's work was followed by Ingard in reference 21, who concluded

that resistance increases and reactance decreases with amplitude.

Bies and Wilson made an unsuccessful attempt in 1957 (ref. 22) to
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resolve differences between the work of Sivian and Ingard. Also in 	
f

1957, Thurston, Hargrove, and Cook (ref. 23) made the first investi-

gation of coupling between waves of different frequencies due to

the nonlinear behavior of an orifice. Their study was of steady

flow (zero frequency) coupled with a single harmonic wave.

Reference 24 is a recent investigation of the same coupling

phenomenon by Ingard and Ising. No investigations have been made

to date of coupling between one or more nonzero frequency waves

striking an orifice or other resistive element with nonlinear

characteristics. Such investigations would be nearly futile if the

empirical quasi-linear impedance approach were used, because of the

infinite number of amplitude and frequency combinations which can

occur in a nonharmonic wave.

In reference 25, this writer and Parrott presented an acoustical

theory for thin porous sheets which, like Center's (ref. 17) work,

used a shock-type relation for the screen. This work was the first
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break with the traditional impedance approach in acoustics. Experi-

mental work (ref. 25) confirmed that the theory was useful. In this

dissertation, a rational derivation of a general acoustic theory for

thin porous sheets will be given. Solutions for one-dimensional

problems will be obtained from this. Next, the two-dimensional

problem of scattering from porous strips and elliptical cylinders

will be treated.

The literature on diffraction is extensive. The reader interested

in this should consult the important review article by Bouwkamp

(ref. 26). This survey reviews more than 500 papers published between

1940 and 1954. The application of Mathieu functions to diffraction

problems is discussed in Bouwkamp's article. Briefly, Mathieu's

functions may be used in the study of diffraction (or scattering)

from elliptic cylinders. His article indicates that research prior

to 1954 was limited to the studies of the strip or slit (cylinder

with eccentricity 1). This problem has also been studied with an

integral equation formulation (ref. 3).

Since Bouwkamp's review, several papers have been published

which deal with cylinders having eccentricity less than 1. In 1963,

Yeh discussed the problem of a penetrable strip in terms of a

Mathieu function series (ref. 27), and Barakat (ref. 28) made a

study of the elliptic cylinder with various eccentricities. Barakat

considered the exterior problem using the classical Dirichlet

(sound soft) and Neuman (sound hard) boundary conditions. This work
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made use of recently computed tables by Barakat, Houston, and

Levin (refs. 30 and 31). These tables are appropriate for

scattering problems in the low-to-medium frequency range. Following

Barakat's work, Burke and Twersky (refs. 29, 32, and 33) began

investigations using low-frequency approximations.

In reference 29, Burke considered the problem where there is

cylinder composed of fluid with a density different from the media

in which it is immersed. Boundary conditions at the surface of the

elliptic cylinder were continuity of normal velocity and of pressure.

His paper, like the one by Yeh (ref. 27), considered the coupled

interior and exterior cylinder problems. The analysis of this

problem resulted in an infinite set of algebraic equations for the

scattered waves. Burke indicated the connection between truncating

these sets of equations and low-frequency approximations. His

solution gave the far-field scattering amplitude to the sixth power

of the wave number, and the near-field (internal and external) to the

third power. Termn in the truncated equations could be evaluated

either from the previously mentioned tables of Barakat, Houston, and

Levin, from Wiltse and King's tables (refs. 34 and 35), or from

computations based on known expansions of the Mathieu functions in

terms of the other tabulated transcendental functions.

The classical text on the theory of Mathieu functions is

McLachlan's work (ref. 36). The beat introduction to the subject,

however, is probably Arscott's excellent book (ref. 37). The

notations are the same in both books, which greatly simplifies
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collateral study. Arscott's proofs of the basic theorems and

McLachlan's profusion of derived equations, expansions, and

identities form a good combination. For the more sophisticated

reader, Meixner and Schafke's (ref. 38) work is available, and brief

summaries are given in references 39, 40, 41, and 42. Some tables

are also given in reference 40, but reference 42, the National Bureau

of Standards Table, is the most extensive table available, being an

extended edition of reference 41.

6
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II. DETIVATION OF EQUATIONS AND BOUNDA2Y CONDITIONS

2.1 Acoustic Wave Equation

A derivation of the wave equation may be found in a large number of

papers and texts (refs. 2 and 3). The pertinent equations are rederived

here in order to clearly define the range of variables for which they

are valid, and to add continuity to this work.

Since acoustics is only a restricted part of the field of fluid

mechanics, the equations are derived by a straightforward parameter

perturbation of the general equations governing a compressible

isotropic Newtonian fluid.

The general equations for a kinetically and calorically perfect

gas with constant coefficients of viscosity and conductivity are

as follows:

P = ART	 (1)

T + 
(Pgi ) ,i = 0	 (2)

P Dtl = -p , i + 3 gj,j i + ,gi,jj	
(3)	 r

P 
(q2

2 +CpI)^+ P (q2 + CpT f qi i = atC/
2̂ 

- 3 µ [gk,ygi],i + µ [( gi,j + gj,i )gj],i + KT,ii	 ( )

6

10
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Since Orly small fluctuations of the fluid state are to be

considered, the ambient pressure, density, and temperature,

PO, po, and To , respectively, will be used as reference quantities.

A reference length and time are also needed, and for these the

reciprocals of circular frequency co, and wave number, K, will be

used.

Thus, denoting dimensional variables by (*)'s, and dimensionless

ones by (x) I s, the following set of dimensionless variables is

introduced:

x* _ x (5a)K

t* = t (5b)
W

qi = K qi (5c)

p* = Pop (5d)

P* = pop	 (5e)

T = TOT	 (5f)

A few remarks about the above quantities are needed here. The

frequency range of interest is of the order of 10 3 Hz, perhaps

100 Hz to 10,000 Hz. Correspondingly, the wave lengths will vary

from 35 cm to 0.35 cm and the wave numbers from 0.2 cm -1 to 20 cm-1

C
— will be roughly the speed of sound, or about 350 meters/sec.
K/

Thus, qi is a Mach's number, and will be quite small. p is the
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pressure fluctuation in atmospheres, which is also assumed to be very

small.

The reference pressure, density, and temperature will be chosen

to satisfy the perfect gas law.

Po = PORTO
	

(6)

i

r

The dimensional equations will now be converted to dimensionless

variables. Equation (1), with the condition of equation (6), is simply

p = P T	 (7)

The continuity equation is of the same form as before, namely

ap + a(pgi) = o	 (8)

at 6 T

Equation (3), the momentum equation, contains two parameters

after the changes of variable.

–	 _	 2–	 2

P ^i = _ K2Po aP + K2p(

13

a 
q + aql(9)

Dt 2po ax i pow 	 axj axi axi axi

The energy equation also brings in two additional parameters.

After transformation it is

 CPTo	 a	 po

p(L2+ 
w 2 T +	 P^+-^q = 	 2

at	 ( K)	
axi	

( K)	
i	

po (^^ 
at

+ pK	
- 2 a aqk+ a 	 +	 +°

2T
— qi	 q

Po/w)	

3 aXi 6–	
axiI(L

3^i ax 	
Po\^K/

3 ax i 3–xi

(lo)
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Consider the set of parameters which appear in the transformed

equations (7) through (10). They are

po ,
	 K , CpTo , and KKTO

Po	 Po K (Kl 2	 Po(K)33

The first term,	 pro 2 , is approximately 1

Po \ K)	
7'

This is a first order term. The second is an inverted Reynolds number.

2rt

	

Po(
c )	 / Poc !1\

	

K J	 I\ 	 µ J

This number is of the order 10 -6 for the wavelengths of interest

in air, so that it may justifiably be called a small quantity.

CPTo
is roughly 3 for air, so it must be considered a first-order

( 
K)2

term. K KT0 3 varies from about 0.03 x 10-4 to 3 x 10-4 1 the larger

Po (Tl /

value corresponding to the larger wave number, or frequency, thus it

may be considered to be a small quantity. Using the dimensionless

groups discussed above, the following quantities are defined:

po	 - 1	 Kµ	
_E
	 (11a ,b)

cu
Po(`K) 2 7	 P o( K	 NRa

CpTo	KKT
( K` 2	 PO( K` 3
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The new quantities defined in equations (11) may now be thought

of as of order 1. If E is not chosen smaller than 10 -4 , NRa will

be roughly 1 or greater, and k will be roughly less than 3.

Asymptotic solutions for equations (7) through (10) may be

found in the form

p 1 + Epl + E2 ^2 +	 (12a)

P	 1 + E1 1 + C
2—
P 2 +	 (12b)

T 1 + ETl + E 2 +	 (12c)

qi — 0 + Egil + E q12 +	 (i2d)

Substituting these asymptotic expansions into the governing

equations gives the desired sets of first and second order equations.

This is a routine procedure except for equation (10), the energy

equation. Here, it must be noted that the leading term in the

temperature expansion gives a large reference energy level. Because

of the continuity equation, this term drops out of the energy

eauation. This can be accounted for by substituting ET 1 + E2T2 into

the energy equation, that is, by using a relative temperature.

If this is not done, the resulting prediction would be that the

speed of sound is FRT, instead of the correct value of )RT.

Keeping this in mind, the governing first and second order asymptotic

equations may be found. They are as follows:

pl - (Pi 
+ Tl ) = 0	 (13a)

is

i
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apl + agil _ p	 (13b)

at	 axi

agil + 1	 = 0	 (13c)
at"	 r aXi

Cp 
aTl _ 1 6i, = 0	

(13d)
C)t	 7 at

p2 - (P2 + T2 ) = 0 (14a)

3P 2 	agi2  a(pigil)+
(14b)_

at	 axi axi

ag12	 1 
aP2 = 6q ii

+agil
- Pl

	
_	 _1 1	 a q ,il	 + a2gi1 (14c)+ _

at	 7 Ox,
- q,jl

axi	 at	 NRa 3 axj axi ax; ax;

_	 aT	 ap2	 1 a(Tigil)	 a (PlTI ) _	 agil
a2Tl

Cp

_ _ C
p

_	 + + qil	 _ (14d)
at	 at ax i 	 at at axi axi

The first order set of equations (13) may now be manipulated to

obtain wave equations.

Since Cpl =	 7 (15)
7 - 1

the equation

-I _ 7 6—P,(16)

	

at	 at

is a direct result of the perfect gas law and the energy equFtion.

With this, we may find the wave equation

a2 ( pI' P1, 71 ) - a2(pl^Pl?Tl)
-	 (17)

ax i axi	 at2
and

	

agi l 	- _ l apl	
(18)

	

at	 > axi

6
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2.2 Porous Sheet Equations

A form for a set of equations which relate pressure, velocity, and

t:mperature (or density) on opposite sides of the thin porous sheet is

suggested by the integral form of the laws of mechanics. The integral

mass, momentum, and energy equations may be written in terms of the

dimensionless variables in equations 2.1(5) as

	

aP dV + f Pn igidS = 0	 (1)
R at	 S

a(Pgi)_	 poni —	 K	 2

JR at dV +v S n
j Pgigj + P ^ 2 P + P 

^ 3 n igk,k -n j (qi, J+g^,1J dS = 0
O( K)	 O( K)

(2)

and

_ 2 _	 _ ( _	 2 _ _\	 P

J
a 

^P ^q + CVT^ dV + J nigi P - + CVT) +	 0 2 p dS
R ^t L	 S	 2	 po( K}

K	
I	 YR'i'P

o w 'L3gk nigi+n^(gi,J+gJ,i)gi - 	 ^r^o3 niT,i dS	 (3)
JJ	 )S Po( K	

^ ^.'^/

Consider a control volume which encloses the fluid flowing inside an

element of the porous sheet, as shown in figure 1. The dimensionless

thickness of the sheet, h is much less than 1. The control volume

is fixed with respect to the sheet, which may be moving with a

velocity, Vi . Since the control volume encloses only the fluid, and

not the solid, the surface integrals extend over the interior

wetted surface of the solid, and over the faces of the element where



h

x3

1'

V ^

1

X1
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X,

Figure l.- Flow through porous element.
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fluid is passing through. The velocity of the fluid may be

expressed in terms of a relative velocity as

	

q i = Vi + vi	()

Since the flow parameters will vary greatly from point to point

within the porous element, they will be broken into average (over

an area) and fluctuating parts. The average of a quantity is

defined as

= IQ dAAf

where A is an area whose size is small compared to a characteristic

length of the problem, but large enough to give a meaningful average.

The fluctuation of a quantity is then

	

Q ,= Q -Q
	

(6)

(5)

In this problem the integrals will be taken over the faces of the

control volume shown in figure 1.

The volume integrals in equations (1), (2), and (3) give time rates-

of-change of mass and momentum and energy stored inside the control

volume. These integrals and the surface integrals on the right side

of the equations cannot be evaluated analytically. About all that

can be said is that they are of two types: One with a time derivative,

and one without.

The surface integral in equation (1) may be written as
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2 ^	 ^	 ^	 ^
Pn igi dS =	 PniVi dS + h - CP(Vl + vl) + (P Vl)] -CP( Vl + vl)+ (P'Vl]

S	 Sint	 `	 h	 o

	

+ similar terms for faces 2 and 3 of element	 (7)

Consequently, the mass equation can be represented by the form

D^P(Vl+ v1)] = h a ^p(V2 + v2 )] + ^P(V3 + v3 )] + aMl + M2	 (8)
6X2 	67x3	 at

where

	

A CP( Vl + vl)] = P(VL + vl )I - P( Vl + vl)I_	 (9)

	

o	 h

The first group of terms or the right of equation (8) represents

flows in the plane of the sheet. The time derivative arises from the

previously mentioned volume integral, and the last term, M2, includes

the integral over the internal wetted surface and terms like (PIv').

Similar forms are suggested for the momentum and energy equations, namely

^
^ P(Vl + vl)( Vi + vi) + sli P 1 = 6L li + L2i

y J	 at

+ h t[^(V2  +V2 )(Vi + vi ) + P +
asI

p(V3 +v3 )(Vi + vi) +
]7J	 L	 7 3 	)

and

r	 ^ 2	 aE
DIP(V1

 +vl)^ °2 v +CvT + (Vl + ^Vl)2 = 6t1 +E2
7

_	

C(	

^)2 _ ^
+h(

;X2

a P(V2+v2) V+v +CJ) + (V2+v2)i
2 7

+ a P(v3 + V3 ) V 2 ")2 + c^T^ + (V3 + v3 )'	 (11)
ax	 7 J3 C



(12)

(13)

(l^+)

(15a)

(15b)

(15c )

(15d)

P
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The functions M, L, and E must be evaluated experimentally

in terms of the average flow parameters. Once this is done,

equations (8), (10), and (11) give the necessary relations between

flow parameters on either side of the porous sheet. Since the

equations involve ';he velocity of the porous sheet, this quantity

must either be specified or accounted for by adding appropriate

equations for the motion of the sheet, such as plate or shell

equations.

For the balance of this study, the porous sheet will be

considered to be fixed. Cross-flow terms will be neglected since

the sheet thickness is small.

With these conditions the sheet equations become

t,	
aM
— 1 + M2

at

P
aL

li + 
L2iA Pv lvi + 811

[	 7	 at

and
,.2	 _ ..	 aE

A vĈ2 + CvT / + v1 1 = at1 E2

The average flow variables at each face of the porous sheet are

assumed to equal the acoustic variables, that is

p = P^

P = P,

T=T,

and

vi = qi
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Using these equations and the asymptotic expansions 2.1(12),

equations (12), (13), and (14) become

E Orgll] = as + M2 + o(E 2 )	 (16)

a
sliE 

A r-1^ =
L li + L21 + 0 ( E2 )	 (17)L y	 at

E 2 L ICvTlgll + gllpl = 	 + E2 + 0 ( E3 )	 (i8)
 7	 at

A limited amount of experimental work (ref. 25) indicates that

Ml and M2 are of order E 2 . The energy terms can only be of order

E 2 and, since the left side of (17) has the 
bli 

factor L11 and L21

must be of order E, while L12, L13, L22, and L^ 3 are of order E2.

L11 was found to be proportional to ill, and L21 is a function of

Mach number with a slight dependence on Reynolds number which can be

relegated to the second order spot. Consequently, for acoustics

problems involving thin porous sheets of material, the boundary

conditions at the material become

Arg11] = 0	 (19)

E AC 1] = Em 2SU + L P 
CEgll]	

(20)

at

Here, m is a constant ani i^sP is a nonlinear function.

I
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III. ONE-DIMENSIONAL PROBLEM

3.1 Pressure Drop Function

Little has been said to this point about the origin of the

parameter E. It could be associated with a forcing function, but in

riany acoustics problems, these do not appear explicitly. In this paper,

it will be associated with a nominal sound pressure level.

The sound pressure level, or intensity, in decibels, is defined as

SPL = 20 L0910	
p	

(1)
0.0002 dynes/cm2

In terms of the dimensionless pressure, this becomes

Eypopl
SPL = 20 Log10	(2)

(0.0002 dynes/cm2 )

or

SPL = 20 Log10(1010 Epl ) - 3.0	 (3)

In order to make the dimensionless pressure vary from 0 to 1, E

may be chosen as some convenient power of 10 to give the correct SPL

range. Table I shows the correspondence between SPL and E when the

dimensionless pressure is one.

The nonlinear pressure drop function in equation 2.2 (20) depends

on E. If that equation is diirvide

ll

d by E, all terms must be of order 1.

The pressure drop term is p̂ `-E ^ 1J . Figure 2 shows a typical plot of
E

this function for several values of E. Each curve shown may be

22

0
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s

TABLE I.- CORR^SPONDENCE OF FLUCTUATION MAGNITUDE TO

SOUND PRESSURE LEVEL

SPL, dB E

-3 10-10

17 10-9

37 10-8

57 10-7

77 10-6

97 10-5

117 10-4

137 10-3

157 10-2

177 10-1

197 1
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Figure 2.- Pressure drop functions for typical material.
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approximated fairly well by a straight line. This does not mean that

the nonlinearity is small. The slopes of the approximating lines in

figure 2 vary from about 0.2 to 3.0 so, if this slope is thought of as

an effective acoustic resistance, it must be concluded that the variation

in resistance is large. Nevertheless, the fact that some straight line

approximation is possible may permit perturbation methods to be used.

3.2 General Equations for Two Coupled Regions

In equations 2.1((17) and (18)) and 2.2 ((19) and (20)), let

U = qll ,	 (la)

_ pl
p Y

m = PA,	 (lc)
Y

and

AP =

	

	 (ld)
Y

The one-dimensional wave equation is then satisfied by

CO

U = X 
(une -inx + vneinx )eint	 (2)

n=-.w

00

p =	 (une-inx - vneirix)eint	
(3)

n=-ou

In equations (2) and (3), u n a_id vn are complex constants with

un = (u-n)	 (4a)

i

r
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vn = (v-n)	 (4b)

Each term with coefficient un represents a right-moving harmonic

wave, while the v n terms give left-moving waves.

Consider the two regionj shown in figure 3. In each region there

may be a periodic solution which is given by equations (2) and (3). At

the sheet, there are the conditions

	

Ul = U2	 (5)

i
aU

Pl - P2 = PA at + c	 (6)

and at the extreme ends of the regions there are general impedance-type

boundary conditions

Pln - ZlnUln + P 1	 (7a)

p2n = Z2nU2n + P2n	 (7b)

Here the subscripts l and 2 indicate the region while the subscript

n indicates the harmonic.

If equations (2) and (3) are substituted into (5) through (7) and

use is made of the orthogonality of complex exponentials, there results

uLne-inxl _ vineinxl = Z
ln[ulne

-inxl + vineinxlJ + P
1n	 (8a)	

-

uln + 'In = u2n + v2n	 (8b)
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CO

1 r n _ant OP
(uln - vin) - (u2n - v2n) = 2n _ n 

e	
E 

e

M=_00

+ inpA(uln + vin)

(ulm + v lm )e imt dt
	 3

(8c)

u2ne-inx2 _ v2ne1nx2 = Z2n 1u2ne-inx2 + v2neinx2I + P 2	 (8d)

3.3 Approximate Methnds of Solution

The above equations are an infinite set of nonlinear algebraic

equations. They may be specialized to simulate a variety of situations.

For example, if P2n = 0, and Z2n = 1, the region 2 will contain only

right-moving waves. This simulates an infinite region where no waves

are reflected. If Z2n is infinite at xp = n/2, a rigid wall is

simulated. The solution to these equations may be approximated in a

variety of ways.

They are difficult to work with numerically, however, because in

any iteration process, the integral term must be evaluated a large

number of times as the iteration proceeds. In spite of this, the

following technique has been successfully used to obtain numerical

solutions.

3.3.1 Steepest Descent Iteration (ref. 43

If an initial estimate for the solution is made, that is, uln,

u2n , and v2n are specified, then equations 3.2 (8) may be used

to compute the nonhomogeneous terms, Pln, P2n . The problem solution

is then given by the minimum of the function

CO

S = X (IPln - PlnI2 + (1	 P2nI2)	 (1)

n=-w
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A steepest descent technique was used for locating the minimum of

equation (2C). This method amounts to following the gradient of the

potential fuznction, S, during the iteration. The reader interested in

further details of the method may find tl^em in reference 43.

3.3.2 Collocation Method

The integral which causes numerical difficulty may be eliminated

by adopting a different criterion (ref. 44) for satisfying the pressure

drop condition.

For brevity, we introduce the notations

V n = uln + vin = u2n + v2n	 (1)

and

^Pn _ 
2x ^^ e-int	 E	 Vme_nt dt	 (2)

—^	 E
In=—oo

In terms of these variables, equations 3.2 (8) become

APn = ZnVn + Pn 	(3)
r

where

r
Zln cos(nxl) + i sin(nxl )	 Z2n cos(nx2 ) + i sin(nx2)

Zn	
cos(nxl) + iZ ln sin(nxl) 	cos(nx2) + iZ2n sin(nx2)	

- inPA

(4)

and



Pn

	

Pln	
P2n	

(5)
cos(nxl) + iZl, sin(nxl)	 cos(nx2 ) + iZ2n sin(nx2)

In equation (3), the Opn are the complex Fourier coefficients of

the steady flow pressure drop, Op. Note that the inertia term from

equation 2.2 (20) is included on the right of equation (3). To satisfy

the pressure drop law continuously would require that

^P(EV(t))
op (t) _	 (6)

E

An approximation to the condition (6) is to use a least-squares

criterion at discrete points in time, that is, use the minimum of the

function

N-1	 2
pP^EV(tn)^

S =  ̂(AP(tn) -	 E	 (7)

n=0

to approximate the problem solution.

The instantaneous pressure and velocity are given in terms of their

Fourier coefficients by

L	 L

Op(t) 
= 7 

Apkeikt^	 V(t) = 7 Vkeikt	
(8), (9)

	

k=-L	 k=-L

whe re

0 < L < N
2

30
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I

Evenly spaced intervals are taken in (7), so that

	

to = 2n
	

(10)

so that the potential function, S becomes

L	 2rnikn

^IV'-1 L	 21T	 DP	 Vke N
ikn 

S	
(ZkVk + Pk )eN	 (K=-L

	

- 	
(11)

n=0 k=-L	
e

A powerful computational algorithm, known as the Fast Fourier

Transform, has been developed for working with the sums which appear

inside equation (11). Details of this are available in references 45

through 48.

Simeonov's metrod (ref. 53) or the steepest descent procedure could

be used to minimize the function given in equation (11) with respect to

the Fourier coefficients, Vn. When this is done, however, a summation,

which is analogous to the integral in equation 3.2 (8c), must be made

repeatedly during she iteration process. This may be avoided by using

equation (6) to solve for the velocity at N discrete points in time,

tn.

The inversion of equation (9) gives

N- 1	 _ 2ninm

Vn = N
	

V(tm)e	 N	 (12)

M=O

i
I

S

4-
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Using this result with equations (3), (6), and (8) gives

N-1	
OP{tV(t )^

EGnmv( tm) + P( tn) =	
n	

(13)

m=1

where

L	 2nik n-m

Gnm = N 7 Z ke	 N	 (14)
k=L

and

L	 2nikn
P(tn) _	 Pne N

(15)

k=-L

The solution of the nonlinear algebraic equations (13) satisfies (6)

at a finite set of times. Tc satisfy the pressure drop relation con-

tinuously would require an infinite set of equations. The advantage of

(13) is that the transform of the nonlinear function does not appear.

A variety of techniques may be used to solve (13). Since it gives the

minimum of (7), which is zero, the steepest descent procedure, or

Simeonov's method of descent could be used, or a technique of successive

approximations might be a feasible method of solution. A disadvantage

of this set 3f equations is the need to invert the array Gnm, which

may be a very large order matrix.

3 . 3 . 3 Linearized Perturbation Equations

The data shown in figure 2 indicate that the pressure drop function

may be written as
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1

OP CE 311]
E	 - Rg11 + 

sr[gll]

R, T, and b each depend on the parameter E. For purposes of

analysis, 8 is taken to be a small parameter which is large when

compared to E but smell compared to one.

s= «1
	

(2a)

(1)

R = 0(1)	 (2b)

rrgll] = 0(1)	 (2c)

Using equations 3.2 (8) again, and assuming a power seliea sclution

in terms of the parameter 8,

uln — uln ) + 8uln ) + (3a)

v— vl(On ).j. 6v(' ) + (3b)in

u2n — u2n>+ 8u2n ) + (3c)

and

v2n - v2n ) + 8v2n ) + (3d)

gives the zeroth and first-order linear power series equations

u (0) -inxl - v^^inxl = Zln [u( )e-inxl + v(0) 	 + Pin (4a)

u(0) + v( 0) - u (0: + v (0)In	 In -	 2n	 2n (4b)

I



6

('In - vj°) ) - (u^O) - v^O)) = (R + inpA )(uJO ) + v^O ) )(4c)

u(20)e-inx2 - v20)einx2 = Z, I(0)e-inx2 + v2O
) e 1nx2 + P2n (4d)

uin ) e-inxl _ vin)einx1 = Zln u(1)e-inxl + v(l)einx 	 (5a)

U(I) + v (l) = u(1) + v(1)	 (Sb)In	 In	 2n	 2n

(uln ) - v1n ))	 (u2n) - v (l) ) 	 (R + inp.A)(uln) + vin))

	

+ I ^I( e-int P[V(0) (t)] dt	 (5c)
2n • -jr

u(1) e -inx2 -
 v2n )e1nx2 = Z2n u2n)e-inx2 + v(l)e1nx2	 ^5d)

The advantage in this approach is apparent. Solving each set of

linear equations is a trivial matter. The integral term which causes

computational difficulty in an iteration scheme must be evaluated only

once to obtain the nonhomogeneous part of the first-order equations.

There is a danger in using this method in that the choice of e will not

rgive a solution such that qll varies as expected. For example, in

figure 2, when E = 10 -2 it is assumed that qll will have a maximum

value of I.C. When E = 10
	 ) max should be about 0.4. It is

possible to extend this reasoning to obtain an iteration scheme based

on power series equations.

3.4 Exact Solutions

In terms of the notation introduced in equation 3.2 (1), the

one-dimensional wave equation is

34

r
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a2U a2U	 (1)

c)t2 ax2

and

6U	 cep	
(2)

2t _-ax

The classical solution (ref. 49) to (43) is

	

U=f(t-x) +g(t+x)	 (3)

Figure 4a depicts a problem where an incident wave, f l , is reflected

from a porous sheet which is backed up by a perfect absorber. At the

porous sheet, we use a special case of the pressure drop law, with

PA = 0.

	

pl -p2 =	 F
EU^
	

(4)

The acoustic velocity is continuous at the sample and there is only

a right moving wave behind the sample.

	

f1(t) + 91 ( t ) - f2 ( t ) = 0	 (5)

I^IPCWI (t) + 91 ( t )) J

	

fl(t) - gl (t) - f2 (t) =	
e	

(6)

Let



(a) 

(b) 

II (t-x) 

"\7 > 
/i gl (t+x) 

<~ 

Speaker 

Perfect absorber 

Sample 

Rigid plug 

Figure 4.- Waves reflected from a porous sheet with nonlinear 
resistance. 
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then, by subtracting (5) from (6) and adding 2f l(t) to each side of

the resulting equation, it may be shown that

02 (fl (t) + gl (t)) = 2fl( t )	 (8)

gl( t ) = - fl( t ) + P2- 1 (2fl(t))	 (9)

The exact solution, given by equation (9), depends on the possibility

of inverting thefunction 0 2(U). This presents no practical difficulty.

Since	 EU] must be constructed from experimental data, there can be no
E

loss in accuracy by directly const:^ucting the inverse function, 021,

from the same data.

For the problem depicted in figure 4b, the equations which govern

the transmitted and reflected waves are

	

fl(t) + gl(t) - f2 (t) - 92(t) = 0	 (10)

f2(t - w) + 92(t + w) = 0	 (11)

^ Ê ( f1( t ) + gl( t : )^
fl (t) - gl (t) - f2(t) + 92 (t)	 E	 (12)

The incident wave, f, is considered to be g 'ven. Equations (10), (11),

and (12) may be used to eliminate f 2 and 92 to give an equation

for gi. First adding and then subtracting equations (10) and (12) gives

f2(t) = fl ( t ) - 1 AP[E(f l(t) + gl(t))]	 (13)
2	 E

1 `„ Lt(fl (t) + gl(t))]
92(t) - 

gl(t) + 2	 E	
(14)

fi



(17)

(18)

6

38

Substituting these equations into (11) gives

	

fl (t - w) + gl(t + w) - –	 —
1 ^ [C(fl (t - W) + gl(t - W))]

	

2 	 E

	

1 Qp [E(fl (t + W) + gl(t + w ) )]	

(15)

	

+ 2 —	 E	 = 0

Since (15) holds for all values of t, it must hold at t - w and

t + w, thus

1 ^[E(fl(t) + gl(t) )]

	

fl(t) + gl (t + 2w) - 2
	 E

+ 1 LP [E(fl(t + 2w) + gl (t + 2w))] = 0

2	 E

	 (16)

1 OP[,7 (f 1(t - 2w) + gl(t - 2`"' ) )]
fl (t - 2w) + gl (t) - –

	

2	 E

1 ^ [E ( fl(t) + gl ( t ))]

	

+ 	
= o

2	 E

Adding (16) and (17) gives the identity

fl (t) + gl (t) + fl(t - 2w) + gl(t + 2w) = 0

Let fl(t) have a period equal to 4w, then

	

fl(t) + gl (t) = - (f l (t + 2w) + gl (t + 2w))
	

(l9)

Now, if 
0`[EU] 

is odd, then substituting (19) into (16) gives
t

rc
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AP [E ( fl( t ) + gl(t))]
fl(t) + gl(t + 2w) = -	 E	 (20)

Latting t go to t - 2w in (19) and substituting into (17) gives

^'P[E(fl(t) + gl(t))]
fl (t + 2w) + gl (t) = -

E	
(21)

Adding and subtracting fl(t) in (21) gives

E	
+ ( fl( t ) + gl( t )) = fl ( t ) - fl ( t + 2w) (22)

Now, if

Pl(U) 
_ ^P EEU] + U

E

the exact solution for the reflected wave is

gl(t) = - fl(t) + pll [fl(t) - fl (t + 2w)]	 (24)

In the general case, where the backing is not a perfect absorber,

or where the rigid wall is not exactly 1/4 wavelengths away, the waves

behind the sample are related by the convolution integral

it
92 (t) =	 G (t - T)f2 (T)dT = G*f2	(25)

?i

where

(23)

r

00

G(t - T) = n

	

Zn(0) ein(t T)	
(26)

n=."

1 + 

Zn
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and Zn(0) is the acoustic impedance in the backing cavity, evaluated

at the sample. Thus, in general, the problems of wave reflection from

a porous abscrber with nonlinear resistance depends on the solution

of the set of nonlinear functional equations (10), (12), and (25). No

general theory exists for the solution of functional equations, although

a number of examples are discussed in the bock by Aczel (ref. 50).

A numerical approach to their solution gives equations like 3.3.2 (13),

that is, large sets of nonlinear algebraic equations.
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IV. SCATTERING FROM A POROUS ELLIPTICAL CYLINDER

4.1. Coordinates, Governing Equations, and Boundary Conditions

Figure 5 shows the elliptical cylinder coordinates which will be

used in this section. These coordinates are define by

x = h cosh E cos Ti	 (1)

y = h sink sin rj	 (2)

	

As shown in fi_gurP 5, curves with 	 = constant are ellipses with focal

points at x = ± h. Curves where r, = constant give hyperbolas with

focal points which correspond to those of the ellipses.

Let 
q
ll = nigi and denote a unit normal to the elliptical cylinder

by n i . Then the governing equations are

	

alp	 = 
62p	

(3)
6x  axi 6t2

aqi -
	

ap	
(4)at - 6xi

,^, [n igi] = 0	 l`>)

^[p]- 
P a( nigi ) + ILP[Eniq^]	

(6)
A at	 `-

When these conditions are expressed in elliptical coordinates,

they become

a2 + ^2P = 2k 2 (cosh 2t - cos 2^) a 	(?)
6^2 6.^2	 3t 

T2-k7-(-Cosh 2t - cos 2 T1) at

41
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f = Constant 
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Figure 5.- Elliptical coordinates. 
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6q,I
	 -1	 )p

	

2	 Ja^	
2k (cosh 2t - cos 21)

	

' ' D d 0
	 (10)

Iqt Op[Eqt]

	

Here, qt is the velocity along a curve	 constant, ^o denotes

the surface of the porous cylinder, and

	

k = h	 (12)
2

4.2. Derivation of Solutions to Mathieu's Equation

We seek a periodic solution to equation 4.1(7) of the form

cc

P(^ ' ^ ' t ) = Y Pn(t'O 
e int	 (1)

n==-co

For these solutions the wave equation becomes

32	 a2Pn +
	 pn + (nh) 2 (cosh2 E - cos t T )Pn (^, Tl) = 0	 (2)6^2	 6.2

and the velocity is related to the pressure by

0C

	_1 	 aPn e int
q ^ _	 (3)

2k2 (cosh 2k - cos 2^) n=-- 	
in

cc

q^	
2	 1	 a 

n 
eint	

(4)

2k (cosh 2^ - co= 2TI) n =-0C

The singular terms in equations (3 ) and (4) require that

po (t,n) - constant. Although these terms add a small circulation

and divergence to the flow field, they will be omitted for the

remainder of this discussion,

I

I

l
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Separable solutions of equation (2) are of the form

Pn(^,') = *' (0 0" (0	 (5)

Inserting this form into the wave equation gives

0n ' (^)+( b - sn c os2 0 0nW =0	 (6)

and- (b - sn cosh2 ^) *,(e) = 0	 (7)

where	 an = n2h2	(8)

For the development of the theory of Mathieu functions, the

notation of the National Bureau of Standards Tables, reference 42,

will be used since later computations are to be based on these tables.

The method of derivation is that which Arscott gives in his book

(ref. 37)•

4.2.1 Circumferential Fourier Series Solutions

In equations 4.2(6) and 4.2(71, which are called Mathieus

equation and Mathieu's modified equation, b is a separation

i
constant which depends on sn . For 0n ( 1 ) to be periodic, b will

take a set of va-ues. To ea.nh of these values, there corresponds

an independent solution. These solutions form a complete orthogonal

set.

Arscott has given a clear and rigorous proof that these solutions

are of the form

00

Se2r (sn,'l) _	 De2kr) cos 2kT ; be2r ( s n)	 (1)

k=0

t
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Se2r+l(( 
2r+1)

sn,0	 De(2r+	 cos(2k+1)^ ; be
`r+l (sn)	 (2)

k=0

00

(3)So2r+l (sn ) ^ ) = 	 Do 2,&+l
(2r+1) 

sin(2k+1)^ ; bo2r+l(sn)
k=0

2r+So2r+2 (s n,' ) =	 Do((-r+2) sin(2k+2)^ ; bo2r+2 (sn ) 	( )
k=0

In equation 4.2.1(4) we have deviated slightly from the NBS

notation by using the subscript (2r + 2) instead of 2r. This

allows the summation to extend from o to oo in all cases.

Functions and coefficients with the same numerical value are still

as defined in the NBS tables. Note that the even functions include

the letter "e" in their symbols, and the odd functions use the

letter "o." Methods of evaluating the coefficients De, Do, and

separation constants, be, bo are given in the NBS tables. The

coefficients are normalized according to the condition

Ser( sn,°) = 1	 (5)

dSor

	

d1Tj=o = 1	 (6)
'1 

This normalization gives the orthogonality conditions

r 2n

J S2 i • ( sn, Tl) Som(sn, Tl)d^ = 0	 (7)
0

2n	 ro, m # r

J Ser( sn, Tl) Sem( sn,^l)d^l = t
Nr,	

(8)
0 	 m = r

2n	 o, m # r
J	 Sor(snyfl S '^m( sn,f) dT =	 (9)

0	 (Nr, m = r

I
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4.2.2 Radial Besse: Function Product Solutions

To generate the radial solutions for the modified Mathieu

equation, use may be made of the formula

2n

	

*n (O = Cn f	 Gn(t,'O On( TNTI	 (1)
0

It may be shown that the function given by equation (1) satisfies the

modified Mathieu equation if Gn(t,j) is any solution of the wave

equation and Onh) is any of the periodic solutions of Mathieu's

equation.

Appropriate kernels for equation (1) are the cylindrical waves.

To get these, the wave equation is transformed into polar coordinates

where it is

62Gn r,0

^
a r c3C*n ( r , A) 1 + 1 2	 + n2 Gn (r,6) = 0	 (2)
ar	 6r	 J	 r	 69

where

x = r cos A	 (3)

y = r sin 0	 (4)

Equation (31) has the solutions

cos
Gn(1,0) = x(1,2)(nr) sin TO	 T - 0,1,2,...	 (5)

I^

In reference 51, Watson gives a proof of Graf's addition theorem

for Bessel functions, which is	 r

ff	

0	

r
HT(cu) sin\T^J 	 HT+m(Z)Jm(z) sin (MO)	 (6)

m=-cc
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In this formula

cu =	 Z2 + z2 - 2Zz cos e	 (7)

w cos	 = Z - z cos A	 (8)

M sin	 = z sin 9	 (9)

If we let

0 = 2^	 (10)

Z = Isn e t	 (11)

2

z = - f2n e	 (12)

then

and

T = nr (13)

cos 6 = cos cos Vr	 - sin , sin Vr (14)

sin A = sin , sin Vr + cos , cos (15)

i

1 ffHT(nr) sin(,*) =T (-1)mHT+m^^^, e^)Jm( 2  e-t) sin \2m,)	 (i6)
M---00

Equations (6) and (16) hold for Hankel functions of the first or the

second kind.

Although any solution of the wave equation serves as a kernel

for equation (1), it is possible to obuain trivial solutiLns.
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Nontrivial solutions are found by selecting ker;iels which have the

same !period as the generating solution, O n , and which are even or odd

as ^n is even or odd.

Corresponding to each of the circumferential solutions, 4.2.1(1)

through 4.2.1(4), there are the radial solutions

He 2r (sn,k) =
r 2n

C2r J1	 Ho(nr)Se2r(sn,q)dq;
0

be2r( sn) (^7)

2n

He2r+l( S ii.P E) = C2r+1 f	 Hl(nr)
0

cos 6 Se2r+l (sn , ^ )d^; be2r+l(sn) (18)

H0 2-r+l (Sn E) = d2r+1

2n

J	 Hl(nr)o
sin 0 S02r+l (sn,^ )d^; b02r+l( sn ) (19)

Hoer+2 (Sn, E) = d2r+2

r, 2n

J	 Hl(nr)0
sin 26 So2r+2(sn0 )dn; bo2r+2(sn) (20)

In these equations, Hankel functions of the first or second kinds

may be used, so that the complex conjugates of these expressions are

independent radial solutions. By using the trigonometric identities (14)

and (i5), Graf's addition theorem (15), and the expansions for the 	 I

i=

periodic Mathieu functions, the radial solutions are reduced to the series

a

He2r( Sn,^) = D(-1) 
r

r 	X (-1) mDe(2r) Hm ( 
2n 

e t)Jml^ e - ; be2r(sn)

°	 m=0

(21)

He2r+1(Sn^ 0) _ (-1)r 1
► L (..1)mDe +11) Hm+l( 	e')Jm(	 e-)

Del
	 m=0

+
	 2 e^ Jm+l ^ e -^	 be2r+1(Sn)	 (22)
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r (2r+1)	 •
Ho 2r+1 (sn,F)	 Do) ^^ (-]-)mDo2m+1	 ^Lm+l(	 cJm(1	 e-^)

	

1	 m=0

`' n

	

- Hm (^ e  Jm+1(	 e-) ; bo2r+1(sn)	 (23)

CO

Hoy	 sn,0 _ (-1)r n	 (-1)mDo(2r+2)
	 ^`^1 J (^

r+2 ( 	Do	 =2m+2[Hm+2 2 	l m ` 2	 11
	2 	 m=0

	

- HR 	e^ J 	 e	 bo2r+2(sn)	 (24)

	

s_
1 ( 2	 m+2 (Fn 2

Equations (21) through (24) are the rLlial solution which will be

used for later computations. Since the comple.: conjugates of those

solutions are also solutions, these equations each give two

independent radial solutions. To distinguish these we add super-

scripts such as He 
(1) He (2)

Asymptotic expansions for the radial solutions with large

arguments may be found from the known expansions for Hankel functions.

In reference 52, Hildebrand gives the formula

t i
(1, 2)

	

2	 x - 
(2p+l)g

	

H	 (X) _ 	 e	 L	 2
p	

( )	 ^ ^x	 ( 5 )

With this formula and the values of the Bessel function at
r

the origin

it	 p = 0

	

Jp(o)	
coil p	 0	

(2F,)

the asymptotic formulae for radial solutions may be shoa-n to be

I
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He (1, 2) s	 ti-1)^ ^+ iL2I' e
t
 -J2r	 ( n'^ ) 	-	 (27)

e^

1 n Q _ 3n

Be
2r+1 (ly2) ( sn,t) _	

-1 
r et 1 2 

e	
(28)

JqY et

Ho	 S
2r+1	 ( n it)	 e	 (24)

^
gin̂ —el

Ho	
(1'2) s
	

_ ( -1 )r+l f i r- Sn e^ - n]
z.02r+2	 (P ' )	 (^ )

	

e^ 

e	 4

2

Derivatives of the radial solutions may be found by differentiating

equations (21) through (24) and using the Bessel Function identities

for derivatives

HP(x) = Hp -l (x) - P Hp( x )	 (31)

Hp( x ) = -Hp+l(X) + P Hp( x )	 (32)

The general separable solution for pn (t,^) may nov be given as

a

Pn , T1) 	 A+(1 ) He ksn ,^) + ^r )II r )(s n-9	 Ser(sn,^)
LL_ tlll,^r D

	

+ B^r)Ho^1)(sn,^) + B^r ) Ho^2) (sn ,t)j Sor(sn, T	(33)

pn(9,1) and p(-n)(t,T]) must be conjugate functions in order for

p(t,^,t) to be real. This r_ondltion introduces the following constraints

on the undetermineO.coeffici'znts of equation (33)
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A(nr	 (Anr))	 (34a)

Al= (Anr)) 	 (34b)

n = 1, 2, 3	 .

B(1) 	 (B (2) )	 (54c)-nr	 nr

B(nr = (Bnr))	 (34d)

Equations (34) show that it is sufficient to determine the complex

coefficients for positive values of n only.

Substituting (33) into 4.2(1) and using the asymptotic foinula for

the radial Mathieu functions gives a far-field pre.:sure formula

so	 CO
^- 	 -1 r	

A(1) e
i[n(ke'+t)-A _rI

^	 nr
n=-a r=0	 e

2

(2) -1[n(^e^-t)-9,11	 r	 i[n(ke^+t)-grj
• Anr e	 J Se r('1) +[ (r ) e

• B
( 2) -i[n(k-'-t)-9rl

e	 J Sor h )	 (351
nr

wn e re

A, r even
9r

3n r odd

This equation c1parl ,y shows that the coefficients A (2) and B(2) must
nr	 nr

be associated with diverging waves, while A W and Bnr ) are

associated with converging waves.

0.
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It is often convenient to work with the real and imaginary parts of

the radial solutionc. In reference 42, these are defined as

Pe^l) (s n,t) = Jer (sn,t) + iNer (sn ,t)	 (36)

Ho W (s n,^) = Jor (sn,t) + iNor(sn,t)	 (37)

The Wronskian of these solutions may be shown to be equal_ to 1.

Therefore

JerNer - NerJer = 1	 (38)

and

JorNor - NorJo, = 1	 (39)

for all values of 	 sn, r, and E.	 (40)

Finally, it may be seen from equations (21) to (24, ) that Jer

and Jor are even and oddfunctions, respectively. Ne r and Nor,

however, are neither even nor odd.

4.3 Interior Cylinder Problem

The pressure within the cylinder is given by substituting

4.2.2(33) into 4.2(1)	 F

oc	 a

P1(^,'l,t) -	 C r ) He^l) + A^r)He^2)]Ser

n=-« r=0

+ [Bnr ) Ho^l) + B^r ) Ho(2 ] Sor e
int	 (1)

:t

0
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In order for the pressure and its gradient to be continuous on

the x-axis (t = 0).

i(p O , rl, t ) = pi ( 0,-9, t )	 (2)

and

1(0 % t) _ -aP (0.-T't) 	 (3)
aE	 at

By using the orthogonality equations of the complex exponential and of

the circumferential Mathieu functions, conditions (2) and (3) may be

shown to be equivalent to

A l̂) = A^r)

B(1) = B(2)
nr	 nr

Let the velocity normal to the surface of the cylinder be given

by the expansion

00	 00

Y(UnrSer N + vnrSor(rl))eint

q (^ ,Tl,t) = 
n=-m r=0

^ o

2k2(cosh 2to - cos 2T)

If equations 4.2(3) and (1) are used to compute the velocity at

the surface and the result is equated to the expression in (6), then

two relations are obtained for the An. and Bnr coefficients.

(4)

(5)

(6)

i

N^
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2Anr )Je r '(s I,,^o) _ -inUnr	 (7)

2Bnr ) Jor l (sn,t o ) _ -inVnr 	 (8)

By using equations (4), (5), (7), and (8) to eliminate the coefficients

Anr and Bnr from equation (1), we obtain

}_. DO	 W

in 4r (t)Unrser h) + anrVnrsor(Tl) eint
	

(9)
n=- r=0

where

i	 Jer(^)
-anr	

Jer(to)	
(10)

and

i	 Jor ( O	 11)pnr	
Jor(^o)

4.4 Exterior Cylinder Problem

Consider a periodic wave which is moving in the positive sense 	 =

along the line

x + iy = R e la	 (1)

This wave may be expressed as

a

.r	
P(t,'l,t) _	

Pn ein(t-R)	
(2)

n=-cc

The normal distance from the origin to a point on the wave is given by
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R = x cos a+y sin m	 (3)

or

nR =	 (cosh ^ cos ^ cos a + sinh ^ sin ^ sin a)	 (^+)

It is desired to represent this plane wave in the form of

equation (63), thus we write the tentative expansion

r
e-inr =	

[E (1)+ E(2)He(2 

J 
Se + [F (i) Ho (i) + Fo (2) Ho (2) So	 (5)nr r	 nr r J r	 nrr	 r	 r] r

r=0

The orthogonality conditions on the periodic Mathieu functions

yield simultaneous equations

Nr [E(')He(l)H 	 + E(2)He^2)	
2n

 

e-inRSe
r(^) d '	 (6)

0

N	
(^ 2n -inR

So	 (7)r F(1) Horl) + F(r2,)Ho^2)^ =
J	

e	 r(Tl)d'1
C	 0

The exponential term in equations (79) and (80) satisfies the

wave equation, and since R is invariant when a and ^ are interchanged

62 e-inR	 62 e-inR	 (8)

aa2	
a^2

Therefore, the integral term in (6) satisfies both Mathieu equations

d22 + (ber - sn cost a ) y = 0	 (9)
da

and

x

f^

I,

d Z
- 	 (ber - sn cosh2 E) y = 0	 (10)

d^
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Similarly the integral in equation (7) would satisfy equations (9)

and (10) if be r was replacea by bor. Now, since the integrals satisfy

the separated equations, they must be proportional to products of the

solutions of these equations. Also, the integrals are periodic in it,

so the product solutions must have this periodicity. Consequently,

11(2
e

- inR
Se r('1) dTl = PerSer( a )Jer(O	 (11)

0

fo

2n -inR	 4a
 e	 Sor (^l) del = PorSor( a) Jo r(E )	 (12)

Jer(t) and Jor(t) are given as series involving only Bessel functions of

the first kind, which is why the combinations in (11) and (12) are

periodic in it.

To evaluate Pe r set m = 0 and develop the left sides of

equation (11) in a Bessel function series by using the series definition

of ser, and the integral definition of the Bessel function (ref. 51).

2n
Jn(Z) _ 1	 eiZ cos 0

cos n9 dA	 (13)
2nin 0

Then evaluate this equation for large values of t by using the

asymptotic formulas for the Bessel functions, equations 4.2.2(27)

through 4.2.2(30).

The result is

Per = (-i)r fFg
	

(14)

To evaluate Por, first differentiate equation (12) with respect

to a. Then proceed as above to obtain the result
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Por = ( -i•) r 8n
	

(15)

We may now use equations (11) and (12) with equations (6) and (7)

to solve for the expansion coefficients in equation (5). They are

E(1) Y (2) _ (-i) r 8n Sera)

	nr = Enr	 2Nr

F ( 1 ) _ F ( 2 ) _ ( -1) r^ PorSor(a)

nr	 nr	
2N r

Thus the elliptical wave representation of the plane wave is

00

e-inR = 8nr= (-i)r Se^^ Jer(t)Serh) + SoN
r

(a) Jor(O Sor(^l)^	 (18)C

The expansion for elnR is simply the conjugate of equation (18).

The pressure in the exterior of the cylinder is

o^	 a

po(E,Tl,t) _	
(
141)He^l) + C^r)He^2)^Ser

n=- r=0

+ C^r)Ho^l) + Dnr )Ho^2)̂  Sor eint
	

(19)

Since the external pressure field is composed of outward-traveling

scattered waves and the incident plane wave, it may be seen, by

comparing (19) to 4.2.2(35), that

(16)

(17)

C(l) = D
( l )
 = 0, n = 1,2,3	 (,20)
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Therefore

(
[Cnr)2)

	

,^^^--	 Se (a)
Pn(t ' ,)

	

	 Her( t
) + (-i) rUt^n Pn N	 Jer(") Ser h )

r=0
r

	

[ (2)Ho
2	 Sor.(a)

+ D^ )(^) + ( - i) r 1^8n Pn	 N ,	 Jor.(t)1 So'h 	 (21)
	r 	 J

Since the normal velocity is continuous at the cylinder surface,

equations 4.3(6) and (21) may be used to solve for Cnr ) and D^r)

( 2 )	 -1	 r	 Ser(a)Cnr = ( 2)	 inUnr + ( -i ) 8n pn	
Nr	

Jer.(^o )J
	

( 22 )
Her (to) 

D^r ) =	
2	

inVnr + (-i) r 8n Pn 
Sor(a) 

Jor(t ° )^	 (23)
Hor. ( to)C	 r

The external pressure field is found by substituting (21) through

(23) into (19) to obtain

«	 CO

Po (t ) T Jl t)=	 in Eanr(^ )UnrSer( Tl ) + PoorVnrSOr(^l)]
n=-« r-0

i
+ Pn ["IenrSer h) + 00nrSor h )1 e int	 (24)

where

ao -

 He (2)(E)

nr	 (2),
(25)

Her	 (to)

p° 
= H4 2 ))
 (26)

nr	 (2),

Hor	 (go)
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6

i(-i) r 8n Ser(a,)
S2enr =

NrHe^2)'(t0)

i(-i) r rB Sor(CO
Qo

nr =	 )

Nr 'Ho 2 '(to)

For negative values of n, the conjugates of equation (25) through

(28) are used in the pressure equation.

4.5 Porous Cylinder Problem

The interior and exterior solutions have both been given in terms of

velocity no=°mal to the cylinder surface, that is, in terms of the

coefficients Unr and Vnr • Equation 4.1(11), which relates pressure

drop and velocity at the cylinder, will now be used to obtain equations

which deterAne these coefficients.

The pressure drop may be found from the interior solution,

equation 4. 3(9), and the exterior solution, equation 4.4(24). When

these are used with 4.1(11), it becomes

00	 CO

(l
inaLnrUnr + Fen ] Serh) + ^inOnrVnr + Fonr̂  Sor(^ ) eint

n==-w rL=0

^i^ (t 0 ,'1, t )	 cp
= p^	

+ E q^^	 (l )at 
where

am = °fhr ( ^o ) - Qnr(to)	
1	 (2)

Jer(sn,to)He^2)'(sn,to)

am = Onr (to) - 
01 ( to)  =	 1	 (3)
nrJort(sn,to)Hor2)'(sn,to)

(27)

(28)

t

i
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Fenr = PnPenr (to)	 (4)

and

Fonr = Pnilionr (to )	 (5) 

Since	 q,	 is given in terms of	 ljnr 	and	 Vnr	 by 4 .3(6), equation (1)

may be used to solve for these coefficients.	 The solution of this

equation is the fundamental problem for finding the scattering from a

` porous cylinder.	 By applying the orthogonality relations for the complex

exponentials and Mathieu functions, equation (1) may be reduced to

infinite sets of nonlinear algegraic equations.

0'NZ(imamZUmZ + Feml ) = imPA Y MZrUmr
r=0

 2n2n 12v

	
e imtSz

Z( Tl)^{q t( Tl, t )} dpi dt	 (6)
0	 0

and
00

Nl(imOmZVmZ + Foml ) = imPA	 NZrVmr
! r=0

2n	 2n

+ 2n f	
f	 e -imtS- 1 (9)^(tq jdq dt	 (7)

r 0	
0

where

. 27T	 SeZ(TI)Ser(j)dTl
M	 (8)Zr -

--
0	

2
2k (cosh 2to - cos 2TI)

2n	 Se Z(TI)Se r(Tl)dTl
-^ Nlr - f	 (9)

0	 2k2(cosh 2^0 - cos 2TI)
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In equations (6) and (7), it must be noted that all Mathieu functions

and parameters in the m th equation depend on the parameter sm

(eq. 4.2(8)).

4.5.1 Power series Equations for Porous Cylinder

As in the one-dimensional problem ; let

Rq t + ST'(q^)	 (1)
and

qt— q(0) + 5q(1) +
(2a)

U tinr U(0) + 5UO) +nr	 nr 2b(	 )

Vnr V(0) + 5V(1) (2c)nr	 nr

then	 q ( 0)	 is given by

cc	 CO
N(0)Ser('1)	 + V^O)Sor(1l))eint

„= -a r=0 20(cosh 25 0 - cos 2rj)

With these changes, equations 4.5(6) and 4.5(7) are converted into

Nl1ima	
IUml) +\

Feml ) / _

m

(R + 'MOA )	 Mtr(sm)U(7)
MT (4)

r==O

N Z' (impm ^VMz	 + Form /	 =

a

(R + imp 	 N1. r(sm)V( , (5)
r=0
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In equations (k) and (5) the forcing terms are

Fe (0) = Feml 	(6h)
m2

Fo (0) = Fo	 (61,)

	

mZ	 Ml

(1)	 1
21[ r 21t -imt	 )r r f i1'

Fe ml
	 JO,'2nNl

= -	 J	 e	 Sel(sm,'?,• q̀	 ( 11• )) dt dri	 (7a)
0

and
21t 2n

Foi
l)

_-	 ^nNi JO l	
e-imtSoi.(sm,rl): (gjO)(^I,t) dt d^	 (7b)

The power series approximac.iori thus reduces the problem to the

solution of infinite sets of linear algebraic equations. The solution to

+hese equations are easily approximated by truncating them to obtain

finite sets of equation p . Solving the zeroth-order equations involves a

matrix inversion and use of the forcing function which depends on the

incident plane wave. The first-order solution uses the same inverse matrix

and a forcing function which depends on the zeroth-order solution

(eq. (7a) and (7b))•

In Appendix A, the integrals M ir and N lr are evaluated, and it

is shown that these integrals are zero unless both Mathieu functions in

the integral have the same period. Equations (4) and (5) thus divide

naturally into four sets of equations; one set for each type of

circumferential Mathieu function.

a

N22(imam,21Um,21 + Fe m,21) = Zm	 M21,2rUmJ2r	 (s)

r=0

f
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0.

(l) ( C")N2 Z+]. (imc^n,, 2 Z+IUm,. 2 Z+1 + Fe , 2 Z+l) -  	 U(m r+1YK2 z+l,,2f+l,2

N2 Z+1 hmam, 2 Z+1^r^(^ 2 Z+l + Fo(j)   Z+l) = Ztn 	N2 Z+1, 2r+1V(m, 2r+1	 (10)

r=0

a

(imPm,2Z+2vmj ,,2Z+2	
(j)	 )	 T

N2l+2     	 + Fom, 2 Z+2 = Ztn 	r'2 Z+2, 2r+2V(m; r+2	 l 11)

r=0

where

:fin = R + impA 	(12)

Equations (8) through (11) are four infinite sets of linear equations.

Their solutions may be approximated by truncating the sets to obtain a

finite number of equations (ref. 54).

4.6 Variable Linear Impedance

There is a remarkable cast	 variable material properties where

eq.aation 4.5(1) may be reduced to uncoupled sets of equations. Note

that if

PA = p^ 2k2(cosh 29 - cos 2^)	 (1)
i

and

'^"P (E qt) = R' 2k 2 (cosh 2t - cos 2TI) qt,	 (2)
G

then the procedures described in 4.5 would result in the solution

Unr _	
Fonr	 (3)

Zn - inanr

V	 _	 Fori2.
	 (4)

nr	 ,4 - inanr
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where

Zn = R' + inpA	(5)

4.7 Dissipation and Scattering Formulas

Once the velocity at the cylinder surface is obtained, the pressure

or velocity at any point may be computed. Some other quantities of

interest are the incident power, the scattered and dissipated power, and

the far-field rms pressure. The derivation of these formulas is tedious,

but routine, and only final results are given here.

The projected width which the oncoming plane wave "sees" is

w = h 2(cosh 2^ - cos 2 a.) , 	 (1)

and the power •;hich would pass through this width due to the plane wave

alone is
cc

PI=2w X IPn 12
	

(2)

n==1

The power of the outgoing waves alone is

a

PG = 2 ^ r	 IC^r)I2 Nr(sn) + ID()12r 	 Nr ( sn )	 (3)
n=1 r=0

The rate of energy dissipation within the porous material is

W

Pd = Y ^ 

I
nanr IUnr 1 2 Nr (sn) + inpnrI Vnr1

2 Nr(sn)
n=-  ^0 

+ FenrU-nrNr (sn ) + FonrV-=Nr(sn)1	 (4)
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at large distances from the cylinder where t = y >> i, the rms pressure

is given by

22Ps(V^, T1)^	 (-1)rrCn^2r_2)Se2r_2(Sn,^l)+ iC^^^r_l)Se2r-1(sn,Tl)

n=1 sn r=1	 L

(2)	 (2)
+ iDn(2r_l) So2r_l( sn) T ) - Dn(2r) So2r (s n ,^]1

2)112

  (5)

t

I
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V. RESULTS AND DISCUSSION

5.1 Linearized Perturbation Theory

Measured data for the pressure-drop function for a typical sample of

material are shown on figure 6. For comparison, straight lines repre-

senting acoustic resistances of 0.20, 0.66, and 1.0 are also shown. Each

linear resistance curve may be thought of as an approximation to the

n == -
material characteristic for a given sound intensity. This intensity is

related to the value of E. By referring tc table I, it can be seen that

the data of figure 6 are applicable for intensities in the 130 - 160 dB

range. On figure 2 , these data are plotted on a linear scale for three

values of E. Since the parameter 8 characterizes the deviation of the

pressure drop function from the linear curve, it may be seen from this

figure that S may be taken as ^FE.

In other words, for E < 10-2, S may be thought of as being large
	 0

in comparison to E, but small compared to 1. This amounts to saying

the material nonlinearity becomes important before nonlinearity in the

wave equation. However, there is no point in adding a 8 2 term to the

i
power series equations for the material without also considering

nonlinearities in the wave equation. Since the equations as derived in

section 2.1 depended on E being greater than 10- 4 , there is a definite

intensity range where the equations presented herein are valid. In terms

of the decibel scale given in table I, this range is from about 120 dB

to 160 dB. The complete theory could be d_-^scribed as having "zeroth order

wave equations with first order linear boundary conditions in the

kilohertzian region." This theory is the one used to develop the

66
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Figure 6.- Pressure drop function for typical fiber glass
plastic porous material.
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one-dimensional equations in section 3.3.3 and the two-dimensional

equations in section 4.5.1.

5.2 Nonlinear Perturbation Theory

If the nonlinear pressure-drop function in 2.2(20) is not expanded

in terms of the parameter S, the theory then has zeroth order wave

equations with nonlinear boundary conditions. Since the boundary

conditions 2.2(19), 2.2(20) are accurate to E 2 , the solutions with this

theory should be comparable to solutions with the linear perturbation

theory described in section 5.1.

The one-dimensional problem depicted in figure 4(b) was used to

compare the theories and methods of solutions. After obtaining the exact

solution, the problem was solved numerically by the steepest descent

procedure of section 3.3.1. A third solution was obtained by the linear

perturbation equations of section 3.3.3.

The first harmonic of the velocity at the sample as given by the

three methods of solution is shown on figure 7. The values of E given

correspond to incident wave intensities of 137, 151, and 157 dB. The

decrease in velocity amplitude with intensity is due to the general

steepening of the curves on figure 6. This is called increased acoustic

resistance. Of course the actual velocity increases with E, since the

first term in 2.1(12d) has E as a multiplier.

The "exact" and perturbation solutions correspond very well for the

lowest value of E and separate somewhat for larger values. Since the

error in both solutions is of order E 2, this separation is to be expected

and confirms the earlier statement that the perturbation solution should

7
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be limited to E < 10-2 . The correspondence between the steepest descent

numerical Drocedure and the other solutions verifies this method, however,

it seems to be no more accurate than the simpler perturbation procedure.

For problems other than the special one considered above, the "exact"

solution is not available and a choice must be made between the numerical

and perturbation method of solution. Since it is far easier to use, the

perturbation technique seems the logical choice where it is valid.

5.3 Evaluation of Mathieu Functions

5 . 3 .1 Coefficients and Periodic Mathieu Functions

Although the coefficients for the periodic Mathieu functions are

tabulated over the range of s used in this paper (ref. 42), it was

easier to program the computer to use the characteristic values to

compute these coefficients than to read and interpolate the tables of

coefficients. me method given by Blanch in reference 55 was used for

this computation. Results were checked against -Lhe tables of coefficients

and were found to check to eight significant fi&ares. With this method

of computation it is also possible to obtain the coefficients for s > 100

(which are not tabulated) from the tables of characteristic values for

large s (s > 100) which are given in reference 42. With the coefficients

available, the Fourier series in section 4.2.1 could be used for

computation of the periodic solutions.

5.3.2 Radial Mathieu Functions

The evaluation of the radial Mathieu functions depends on computing

the Bessel functions, Jn and Yn. The Bessel functions of the first
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kind were computed by Abramowitz's method, reference 56. In this method

a unit value is assigned to J k , where k is large compared to the

argument of the Bessel function, Jk+l is taken as zero and then back-

ward recurrence is used to find Jn for n < k. The normalization

condition is then used to adjust the magnituc:e of the J ns . Yo is

obtained from its series representation in terms of Jn, Yl is found

from the Wronskian, and the rest of the Yn's are found by forward

recurrence. Bessel functions computed by this method were accurate to

nine or ten significant figures for the range of arguments used.

Since there is little tabulated data available on the radial

Mathieu functions, these were calculated by two different methods. The

Bessel function product series given in section 4.2.2 were used and the

series given by equations 3 .03, 3.04 , 3 .15, and 3.16 in reference 42

were used for comparison. The latter series involve Bessel functions

with argument (NFs cosh 1). Each series was checked at the origin (t=0)

against the ,joining factors which are tabulated in reference 42. Also,

each series was checked against the table of Barakat, Houston, and Levin,

reference 30, and against the tables by Blanch and Clemm, reference 57,	 I

for s = 4. This was the upper limit (on s) of the available tables and

the lower limit on s for this study.

The radial functions of the first kind were the most difficult to

evaluate. The product series for Je 0(4,0) checked against the NBS

tables to seven significant figures. However, this accuracy decreased to

one significant figure for Je 6 (4,0), and functions of higher order could

not be computed by this method. The accuracy of the product series for

the Je(s,t) and Jo(s,t) functions increased with s. Je 0 (100,0) was
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accurate to nine figures, and Je 14(100,0) retained a two figure accuracy.

ThP Besse! function series proved to be a superior method for com-

puting JP an:: Jo. Je0 ( 4,0) was given to seven figures by this method.

Although this was not an improvement over the product series it was fo,uid

that Je6(4,0) was accurate to six significant figures, which was an

improvement of five significant figures over the product series. Jeg(4,0)

was accurate to five significant figures, but Je 10 ( )L ,0) had only one

significant figure and Je 12 (4,0), Je14 (4,0) could not be computed. The

accuracy of the Bessel series for Je r (s,0) also improved with increasing

s. Je0(100,0) was accurate to six figures, and Je 14(100,0) was accurate

to eight figures. Note that the higher order functions are more accurate

than the lower order functions .,hen s is large. This turns out to be

a very important property, since, in the scattering problem, the low-

frequency (s=4) solutions require only the lower-order terms for

convergence. The higher frequency solutions (s=100) require more terms,

but it is no problem to compute these for the large values of s.

The radial functions of the second kind were computed by the product

series. Ner(4,0) and Nor(4,0) were accurate to eight significant figures

for 0 < r < 15. The accuracy of the product series for Ner(s,0) and

Nor(s,0) decreased with s. For example, Neo(100,0) was only accurate

to three significant figures. Ne 14(100,0) had six figures accuracy; a

loss of only two places.

The accuracy of both methods of computation improved with distance

from the origin. This was established by comparing the results of each

series and assuming that, if they were the same they were correct.

i
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Larger values of t correspond to smaller values of cylinder eccentricity

thus it is generally easier to evaluate the radial functions on a nearly

circular cylinder than on a nearly flat cylinder.

In the problem of scattering from a porous cylinder, the product

series were used to evaluate the functions of the second kind and their

derivatives. The Bessel series were used to find the functions of the

first kind, and the derivatives of these functions were found from the

Wronskian relations 4.2.2(38,39)•

The magnitude and phase of the complex radial Mathieu functions,

Her and Hor, could be computed to eight significant figures for s=4,

and six figures for s=100. This is somewhat surprising in view of the

above discussion of the accuracy of the functions of the first and second

kinds which are, respectively, the real and imaginary parts of the complex

function. Luckily, it turns out that the inaccurate part of the complex

number is much less in magnitude than the accurate part, so that the

complex representation of the number is fairly good throughout the range

of S.

5.3.3 Evaluation of Coefficients and Integrals

The evaluation of the coefficients in the scattering equations of

section 4.5 depends directly on the evaluation of the Mathieu functions.

The coefficients given by 4.5(2,3) are only as accurate as the derivative

of the radial function of the first kind. As noted in the previous

section, this could be computed to five significant figures for s=4 and

orders up to eight. At s=100, the function of the first kind could be

determined to six figures for all orders, but the function of the second

I
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kind cuuld only be obtained to three figures for the lower orders. Since

the Wronskian was used to solve for the derivati ve, the derivative is

limited to three figure accuracy. Improved accuracy for this derivative

may have been obtained (at s=100) by differentiating the Bessel series for

the function. Note that the accuracy problem is associated with the

waves within the cylinder. The coefficients for the exterior field,

4.4(25,26), may always be found to six significant figures.

The nonhomogeneous terms, 4.5(4,5) may be computed to six significant

figures since they involve only the complex radial functions and the

periodic functions. The normalizing factors; Nr and Nr are computed

from the coefficients De r, Dor and so are accurate to eight figures.

Computation of the coupling coeffici2nts, Mgr and Nlr is

discussed in appendix A. The series presented there were used to

evaluate these. The integrals, I2m, were computed to eight significant

figures to obtain eight-figure accuracy for the coupling terms.

The nonhomogeneous terms in the first-order perturbation solution

were computed by numericaiJ.y taking the double Fourier transform of

P (qt(^,t)) in equations 4.5.1(7a,7b) and expressing the periodic functions

in +Iiese equations by their Fourier series so that term-by-term integra-

t:on could be used to find Fe Wa nd Fokl) . The accuracy of this was

checked by solving a linear problem by two methods. The problem where

' (Eq t ) = q,, r(q t ) = 0, was first solved. In the second method,

(Eq t) = 0.9g t , and r(q^ = O.lg t was used. Since the two problems
E

are physically identical, the solutions must correspond if the ninerical

work is correctly programmed. It waE sound that the solutions dial match

to two significant figures, which is what should be expected for 6=0.1.

f
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5.4 Scattering from a Porous Cylinder

5.4.1 Linear Boundary Conditions

In order to get some general information about the effects of

different parameters, solutions were first obtained with linear boundary

conditions. Focal distances, h, of 2, 4, 6, 8, and 10 were used to

determine the effect of frequency. These values correspond to cylinder

lengths of about 1/2 wavelength to over 3 wavelengths. Solutions were

made for acoustic resistances of 1, 2, and 4. The angle of incidence was

varied in 300 increments from 00 to 900, and the radial coordinate, ^,

was taken as 0.2, 0.4, and 0.80. Tables II through VI give the ratios

of scattered and dissipated power to incident power for these cases.

The ratio of scattered power to incident power, SR, varied from

about 0.04 to over 1.0. It was a minimum for grazing incidence and maxi-

mum for normal incidence and increase. monotonically with resistance.

As the resistance becomes infinite, the SR must approach the value for

the hard cylinder. A computation was made for the case of the hard

cylinder to check against the work o, -3rakat, reference 28. It was

noted that the values agreed for normal incidence but differed by a

factor of 2 for grazing incidence. Although it has not been possible to

find the reason for this discrepency, a possible explanation could be the

errors which are apparent in table I of Barakat's paper.

The ratio of the dissipated energy to the incident energy, DR, must

have a maximum value between R=O, FLnd R=-. The DR depends on the

product of the pressure drop and velocity at the cylinder surface. For

zero resistance, the pressure drop is zero, and for the infinite
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TABLE II. - SCA'l'I'ERED AND DISSIPATED POWER RATIOS, h = 2.0 

R 1 2 4 

~ a. SR DR SR DR SR DR 

0 0.039 0.545 0.094 0.751 0. 158 0· 771 

30 0.146 0·599 0·304 0.635 0. 474 0.542 
0. 2 

60 0.294 0.713 0.601 0.762 0. 946 0.629 

90 0.376 0·721 0·744 0·770 1.179 0. 654 

0 0.115 0.663 0. 233 0.820 0· 349 0. 788 

30 0.176 0.694 0·371 0·792 0· 583 0. 695 
0. 4 

60 0.275 0·799 0·583 0.860 0·936 0·704 

90 0.316 0.828 0.661 0.869 1.609 0. 697 

0 0.202 0·750 0. 415 0·922 0.659 0. 851 

30 0,236 0·730 0.479 0.866 0.764 0· 771 
0.8 

60 0·321 0. 635 0. 612 0. 695 0. 938 0.586 

90 0·375 0·553 0.681 0.570 1.008 0. 470 
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TABLE III. - SCATTERED AND DISSIPATED PWER RATIOS, h = 4.0 

R 1 2 4 

~ a. SR DR SR DR SR DR 

0 0.050 0. 585 0.122 0.860 0.218 1.03 

30 0.161 0.647 0·375 0·797 0.617 0·763 
0.2 

60 0·312 0·762 0.654 0.827 1.069 0. 697 

90 0.365 0.803 0.740 0.824 1.154 0. 653 

0 0.138 0.693 0.298 0.927 0. )~83 0· 956 

30 0.202 0·703 0.437 0.872 0.742 0.828 
0.4 

60 0.342 0.655 0.666 0.707 1.038 0.606 

90 0.414 0.597 0.765 0.604 1.139 0.498 

0 0.255 0.639 0.505 0.803 0.808 0.801 

30 0.289 0.619 0.565 0.7'28 0.892 0.694 
0.8 

60 0.324 0.674 0.642 0.744 1.005 0. 652 

90 0·392 0.543 0·718 0.569 1.069 0. 499 



TABLE IV.- SCATTERED AND DISSIPATED POWER RATIOS, h = 6.0 

R 1 2 4 

~ a. SR DR SR DR SR DR 

0 0.065 0.581 0.161 0.846 0.288 0.984 

30 0.165 0.670 0·395 0.852 0·732 0.835 
0.2 

60 0·320 0.758 0.666 0.815 1.072 0.674 

90 0·390 0·747 0·760 0·773 1.165 0. 621 

0 0.181 0.590 0·377 0.728 0·599 0.697 

30 0.236 0.628 0.496 0.754 0.828 0·717 
0.4 

60 0·358 0.637 0.695 0.685 1.076 0.592 

90 0.376 0·722 0·740 0·742 1.137 0.596 

0 0.272 0.607 0.540 0·738 0.865 0.743 

30 0.291 0.632 0.584 0.734 0·932 0·700 
0.8 

60 0.340 0.637 0.661 0·713 1.031 0.649 

90 0·377 0.599 0·706 0.661 1.074 0.605 
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TABLE v. - SCATTERED AND DISSIPATED P~'ER RATIOS, h = 8. 0 

R 1 2 4 

t a. SR DR SR DR SR DR 

0 0.0692 0.454 0.171 0.636 0.308 0·710 

30 (1 ,174 0.663 0.415 0.842 0·773 0.829 
0.2 

60 0·359 0.667 0.708 0.716 1.109 0.611 

90 0.440 0.609 0.814 0.596 1.207 0.469 

0 0.122 0·509 0.267 0.704 0. 467 0·773 

30 0.261 0.596 0·531 0.713 0.869 0·704 
0.4 

60 0.343 0.689 0.682 0.748 1.072 0.638 

90 0.424 0·591 0.785 0.585 1.165 0.466 

0 0.188 0·546 0.411 0.700 0·726 0.738 

30 0·301 0.596 0.594 0.692 0·945 0.671 
0.8 

60 0·337 0.637 0.660 0·713 1.033 0.648 

90 0.340 0.658 0.668 0.724 1.042 0. 637 
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TABLE VI.- SCATTERED AND DISSIPATED POWER RATIOS- h = 10.0 

R 1 2 4 

~ CL SR DR SR DR SR DR 

0 0.085 0.554 0.200 0.807 0·354 0.978 

30 0.186 0.631 0.432 0.795 0·790 0.795 
0.2 

60 0.384 0·595 0.737 0.615 1.131 0·520 

90 0.429 0.648 0.800 0.664 1.200 0.548 

0 0.193 0.582 0.414 0·735 0.688 0.756 

30 0.256 0·587 0·533 0.694 0.885 0.656 
0.4 

60 0·374 0.601 0·721 0.630 1.106 0.530 

90 0.381 0·717 0.748 0·739 1.150 0.596 

0 0.289 0.563 0.578 0.650 0·920 0.634 

30 0.304 0.601 0.608 0.686 0·971 0.648 
0.8 

60 0.345 0.635 0.680 0.689 1.064 0.608 

90 0.338 0·716 0.687 0.766 1.087 0.647 
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resistance the velocity is zero, while the pressure differential must

remain finite. It may be seen from the tables that the optimum resistance

is usually around 2, except for grazing incidence on a thin cylinder where

it is near 4. This large value of optimum resistance is a surprising

result, since in one dimensional problems, a resistive impedance of 1

gives the maximum absorption. For thin cylinders, the DR was an

increasing function of the angle of incidence for R=1, and a decreasing

function of the angle for R=4. Another interesting result is that the

maximum value for the DR is just slightly larger than one for grazing

incidence on a thin cylinder. Thus, it may be concluded that the maximum

percentage of energy which can be removed from sound propagating in a

duct is equal to the percentage of duct area blocked by the splitter

rings and spokes.

In the case of normal incidence, the dissipation by an elliptic

cylinder should be roughly comparable to the dissipation by infinite

parallel planes of porous material. If the length of the minor axis is

held constant while the major axis is made large, then two sides of the

cylinder will become nearly straight and parallel. This comparison is	 I

illustrated by figure 8. The data on this figure are for t=0.2 which

corresponds to a cylinder whose major axis is roughly five times the

minor axis. Dissipation ratios for the use of normal incidence are

plotted against h, which may be interpreted as a frequency-parameter.

The curves on figure 8 give the ratio of dissipated to incident energy for

parallel planes whode spacing is equal to the cylinder's minor axis

length. The maximum and minimum dissipations occur at very nearly the

same frequencies for both the cylinder and parallel planes, and the
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maxima have nearly the same values. Data for grazing incidence are also

shown on figure 8, however, instead of the DR, the ratio of energy

dissipated to the energy in the normally incident wave is shown. This

emphasizes the fact that only about one-fifth as much energy is

dissipated from the grazing wave as from the normally incident wave.

Again the maxima and minima occur at frequencies which correspond to the

normal incidence case, which indicates that the minor axis length is the

critical dimension for grazing wave energy dissipation. The maximum

dissipation occurs when the minor axis is about 1/4 wavelength.

5.4.2 Nonlinear Boundary Conditions

It has been shown in reference 5 that high intensity waves tend

toward a sawtooth form at large distances from the source. Because of

this, the sawtooth has been used. to illustr^_te high-intensity waves

scattered by an elliptic cylinder. A five-term series approximation to

the sawtooth wave was used, which gave five time harmonics of the

fundamental frequency. Figure 9 shows the far-field rms pressure

patterns for the linear solution and the first order power series

solution for a grazing wave.

The value of E was 10-2 , which corresponds to a sound intensity of

about i60 dB. With this intensity, it can be seen from figure 2 that an

acoustic resistance of 1 should be used for the linear solution.

Figure 9 shows that the principle effect of the nonlinearity has been to

increase the scattered pressure. This change in scattering should be on

the order of 10 percent, since S is 0.1. The curves on figure 9 are

consistent with these conditions. The largest difference occurs near

If
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Figure 9.- Grazing incidence scattering of a sawtooth wave.
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the sideline, with an increase of about 50 percent at TI =850 . Figure 10

shows the amplitude of the velocity as a function of position on the

cylinder surface for the grazing incidence case. The peak velocities

occur at the ends of the cylinder, where their value is about 0.95. This
}

shows that the choice of E and the resistance was realistic since the

velocity varies between 0 and 1.

Also shown on figure 10 is the maximum deviation of the actual

pressure drop from the pressure drop predicted by the linear resistance.

Since it is always less than 0.2, it may be regarded as a perturbation.

Again, this ,justify's the use of the power series technique for this

problem.

Far-field pressure patterns for the normal incidence case are shown

on figure 11. Although the only difference between this case and the

previous one is angle of incidence, the large deviation between the

patterns suggests a violation of the assumptions necessary for power series

analjsis. An inspection of the velocity amplitude at the surface for this

case reveals that it has been underestimated by an order of magnitude.

Consequently this solution is not valid. A better estimate of the true

nonlinear solution would require a value of E of 10-1 , but this is

beyond the applicable range of this method, as was pointed out earlier.

Thus, a solution for a 160 dB wave may be found for grazing incidence,

but solutions must be restricted to lower intensities for normal

incidence.
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VI. CONCLUDING REMARKS

Integral conservation theorems have been used to derive a set of laws

which govern the discontinuities in mass, momentum, and energy flows at

a thin sheet of porous material. Each of these laws involve two unknown.

functions which must be evaluated experimentally. The simplest reasonable

approximation to these general laws is made by assuming continuity of

normal velocity at the porous surface, and a pressure discontinuity which

is a nonlinear function of only the normal velocity. Since this pressure

drop is a function of normal velocity, it may be found from a simple

steady-state test. It is useful to approximate this nonlinear function

by a linear function whose slope depends on the intensity. Deviations

from this curve may be represented by a parameter which also

depends on the intensity. This approach has been shown to be useful for

intensities up to about 160 dB.

The spectral analysis formulation of a one-dimensional problem

results in infinite sets of nonlinear equations. These may be soi;ed by

an optimization procedure, such as the steepest descent method, for

arbitrary nonlinearity or by power series techniques for small nonlinearity.

The power series technique is also useful when it is combined with a

q>>asi-linear approximation to the actual nonlinear function.

The temporal formulation of the one-dimensional problem results in

a nonlinear integral equation. Numerical approximations to this integral

equation again give finite sets of nonlinear algebraic equations to be

solved.

88
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Two exact solutions of the one-dimensional problem may be found.

These solutions are for a porous sheet mounted in an infinite tube and

for a sheet with a .rigid quarter-wavelength backing. Both solutions are

given in terms of the inverse of a nonlinear algebraic function.

The exact solution for scattering from a porous elliptic cylindrical

shell with linear acoustic resistance may be found in terms of Mathieu

function series. Coefficients of these series must be found by inversion

of four infinite matrices. Elements of these matrices depend on integrals

of the periodic Mathieu functions and on the radial Mathieu functions.

Series expressions for the integrals have been found. The Mathieu

functions may be evaluated in terms of known trigonom-_iric and Bessel

function series. By use of highly accurate modern computers, it has been

possible to evaluate these functions for a range of parameters where no

tables are available. Thus, it has been possible to present results for

a range of frequencies where only formal solutions exist in previous

literature.

For a special case where the acoustic resistance is a certain

function of position on the cylinder, the infinite matrices reduce to

diagonal forms, so that simple closed-form expressions in the series

solutions are available.

It has been possible to obtain numerical results inside the cylinder,

and outside of the cylinder in both the near-field and the far-field.

Near-field solutions have been used to obtain the power dissipated in the

porous shell.

The power series method has been used to obtain approximate solutions

for scattering from a cylinder with nonlinear acoustic resistance. It
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has been shown that there may be significant differences between the linear

and nonlinear solutions at high intensities.

The exact solution for scattering from a cylinder with large non-

linearity depends on solving doubly-infinite sets of nonlinear algebraic

equations. It has been found that computer-time for a power series

solution is roughly 100 times as large as for a linear solution. Because

of this, it is impractical to solve the problem of large nonlinearity in

the spectral domain until more efficient computational programs can be

developed.

i
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IX. APPENDIX

.i
Evaluation of Coupling, Coefficients

The integrals defined in equations 4.1+(8) and 4.4(9) may be evaluated

by expanding the radical in the integrand in a series and then integrating

term by term. The integrals to be considered are

2	 2n	 Se Z ('1) Ser(' )dT
l^tr	 h, 0
	 2(cosh 2t o - cos 2 TI)	 1)

and

	

1  2n	 SoZ(^)Sor(Tj)d^
Ntr = —

2

J
	(2)

h 0	 2( cosh 2t o - cos 2 , )

The radical in the integrund of equations (1) and (2) may be

represented as a series of Gegenbaur polynomials. Rainville (51) gives

the generating function definition of these polynomials as

M

	

(1 - 2xt + t2 ) v =	 C

	

(x)tn	(3)
Y n

n=O

The denominator of equations (1) and (2) may be written as

[2 ( cosh 2t o - cos 2 ^ )] -1/2 = Ce 2to (l - 2 cos 211 a-` to + e_4'O Jj -1/2	 (4)

Therefore m

	

C2(cosh 2to - cos 2^] -112 = e 
-to	

Cn/2(cos 2^) e -2nto	 (5)

n= C
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The Gegenbauer polynomial in equation (5) may he given as (ref. 51,

^. 283)

,1/2( cos, 2,^) = n WkW	
cos 2(n - k)r^

n-k	 (6)

c o.
11	 Y	 k! (n - k)!

k=0

Equations (5) and (6) combined give the desired expansion for the

radical

a	 n 1 	cos 2(n - kh^
?(cosh 2t 0 - cos 2*)] 112 = e -to	 e-2nto ^ ti)\2 k\

r
 n-k

Y	 k! (n - k)'
n=0	 k=0

(7)

Fro;n equation (7), it may be seen that the integral

2n	 cos ml d^
IM	 (8)

JO	 2(cosh 2to - cos 21)

is zero for all odd values of m, consequently, the only integrals which

it is necessary to evaluate are of the fon-

I	 = r 21t	 cos 2mj d ,9	 (9)

J 0	 cosh 2t 0 - cos 2^)

Substituting equation (7) into equation (9) gives 	 3

cc	 r^l (^)l	 a
I2m - e- 

to
	 e 2n^O n

	 2
L(2'/n-k	 cos 2(n - 2k)TI cos 2m*j do	 (10)

n=m	 k=0	
p

01 m+2p / 1 1 /r'	
lJl	 2aI2 = e-(2m+1) 

to >	 k	 ^m+2n-k ) f cos 2(m + 2p - 2k)I cos 2m, dTj
L	 k! (m+2p - k)! 0
P=O k=0

(11)
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In equation (11), nonzero terms occur only when k = p or k = p + m,

therefcre,

a	 1	 1

	

-(2m+1)^o	 (?)p(2) p+m	 -4pto
I	 = 2n e	 e	 (12)

P. (p + m):
P=O

Since the factorial terms in equation (12) form a decreasing aequence,

the error due to truncating the series is

	

E < (2)N(2)N+m	
e_ 4(N-1)^o

(13)

N: (N + m): 4to

A relative measure of the error is obtained by taking the ratio

of (13) to the first term in the series for I2m.

E	
<[(2m, + 1)(2m + 3).	 .(2m + 2N - 1) 

e 4(N-1)^o	
(14)

rel	
(^ + 2)(2m + 4). . .(2m + 2Nl) 14t

0

Since the first term in the inequality (14) is always less than 1,

-4Eo(N-1)

Erel < 4^	
(15)

U

Then if

	

Erel	
)-P	

(16)

and

^o = 10 -R	(17)

an estimate of the number of required terms is

N > 10"(P F R)	 (18)
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Thus, for eight significant figures (P = 8), 90 terms are required

for to = 0.1, and 1000 terms are required for to = 0.01. With N

determined by (18), we put

I	 2n e-(2^i
+1)to 

N 

\2iP(%+m e_ pro	 (19)
P! (p + m):

p=0

Once the integrals I 2 are evaluated, they may be used to evaluate

the integrals in equations (1) and (2). First, consider the product of

the Mathieu functions in the integrand of equation (1). If se  and

ser both have period n, their product may be written as
cc	 cc

Se 2LSe2r

	

	 De(
2L

 ) De 
(22r) 

cos 2krj cos 2jj	 (20)
 ^' T 2k	 j

k=0 j=0

cos 2k^ cos 2jTj = I cos 2(k - j)^ + 2 co s 2(k + j)TJ

Note that each term in the series is an even multiple of ^.

Consequently,

	

M2L,2r = h Y, 7 De2kL) De2jr) ^2 ik
- .i I + I2(k+.i )^	 (21)

L,
k=0 k=0

The product of Mathieu functions with different periods gives a

series whose terms are all odd multiples of ^. It was noted in

equation (8) that the integral of the-e terms is zer^, therefore,

M2L+1,2r = 0	 (23a)

M2L, 2r+1 = 0	 (23b)
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The product of even Mathieu functions with period 2n is

W W

	

( 2I^t-1)	 ( 2r+1)Se2L+l,Se2r+1=	 ^De2r+l	 De2j+l	 cos (2k + 1)^ cos (2j + 1)^	 (24)
k=0 j=0

Therefore

W a

M2L+1,2R+1 - h 7	 De2k+l	 De2^+1
1)(I21k -,if 2 I2(k+j+1)	

(25)
k=0 j=0

A similar evaluation for integrals involving odd Mathieu functions

gives

CO

N
2L+1 2r+1	

2 

y ^ 

Do (2L+1) Do(jr+l)C

l21
k -j l - I2 (k+,j+l)1 	

(26),	 h	 2k+1	 2'+1	 /J
k=0 j=0

W W

N	
_ 2	 ^ Do(2L+2) Do 	 - I2(k+j+2))	

(27)2L+2,2r+2 - h
	 2k+2	 2j+2 I\	 2	 11
k=0 j=0
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