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ABSTRACT
 

This final report is submitted in compliance with the requirements of
 

NASA Manned Spacecraft Center Contract NAS9-9909. This report covers
 

the 12-month period of effort'from 12 August 1969 to 12 August 1970.
 

Described in this report are the engineering and performance specifi­

cations obtained for a Solar Wind Mass/Charge Spectrograph and a Solar
 

Wind Direction Indicator.
 

The spectrograph developed in this program is a miniaturized double­

focusing instrument designed to demonstrate the feasibility of measur­

ing photographically the mass/charge number composition of the solar
 

wind with a high degree of resolution and sensitivity. The unit is
 

primarily designed to measure mass/charge numbers in the range 1.5 to
 

4.7; however, it is not limited to this range.
 

The direction indicator is a self-contained instrument which has been
 

designed to demonstrate the feasibility of determining attitude with
 

respect to the flow direction of an incident ion beam over a range of
 

0.250 within an accuracy of 5 percent. The instru­angles from 150 to 

ment can provide an Apollo astronaut with the capability of adjusting
 

the roll and pitch of the spacecraft within ±0.5
0 of the solar wind
 

mean direction.
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SECTION I 

SPECTROGRAPH ENGINEERING SPECIFICATIONS
 

Table 1-1 presents the parameters and aberration coefficients which form
 

the basis for the instrument design. A complete explanation of the
 

symbols and notation used is given in the Appendix.
 

Figure 1-1 shows a simplified schematic of the spectrograph. 

The components of the spectrograph are mounted on an aluminum flat plate
 

-. 	 with dimensions 10 in. x 18 in. This plate in turn is mounted upon a 

subplatform structure containing two worm gears, accompanying drive 

screws, a ball joint, and two flexible cables all of which apparatus 

provides the means necessary to finely drive the spectrograph platform 

in either the elevation or azimuth angle directions. The entire assembly 

mounts inside a 12 in. diameter ante-chamber with the flexible cables
 

connecting to drive shafts which lead to the outside through vacuum
 

mechanical feedthroughs.
 

Figure 1-2 shows the top view of the spectrograph. Positioned at the
 

forward left corner of the platform can be seen the ion signal monitor
 

sensor which is a grid-grid-plate construction with the center grid at
 

a retarding potential for electrons. The output from this sensor is
 

fed into a Keithley electrometer.
 

Immediately to the right of the sensor is an ordinary camera shutter 

with a cable attached for tripping the shutter. This is activated from
 

outside the vacuum system. The shutter mechanism provides the means for 

controlling the ion beam to the object slit of the spectrograph.
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Table 1-1 

DOUBLE-FOCUSING MASS/CHARGE SPECTROGRAPH DESIGN PARA1METERS 

Dimensionless Physical Parameters Aberration Coefficients 

c = 1.00 A = -1.06 
u 

n = 0.91 A = 0.0011 

Oe = 70.95 AY = -1.02 

Om = 102.00 A6 = -0.0039 

= 4.92 A = -1.52 
uu 

el= -39.00 A = -0.70 ua 

I = -0.060 A = -0.63 

I " = 0.050 A = 3.59 

re/r = 0.749 A = -2.19 

*3D 0.311 A = 1.39 cry 

= 0 A 8 = 0.0075 

= 0.010 A = 0.62 

ft = 0.286 A 6 = 2.13 

K" = 0.010 A66 = -0.47 

L = 0.294 A 1.01 
e vv 

*L = 1.126 Av = 1.44 m 

Sense = Opposit A = 0.15 

*Multiply by 3.937 to obtain linear dimensions in inches.
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Figure I-I. Double Focusing Mass/Charge Spectrograph Schematic 
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Top View of the Spectrcsraph
Figure 1-2. 




The object slit consists of adjustable razor blade edges. The center
 

of the slit is at the height of the center line of the spectrograph
 

which is 1.875 in. 

The frings field shield at the entrance face of the electric sector is
 

located 1.100 in. from the object slit, along the line-of-centers.
 

The object slit and fringe field shield mounts can be clearly distin­

guished in Figs. 1-3 and 1-4. The slit of the fringe shield is con­

structed,identically to that of the object slit, except the width is
 

0.075 in.
 

- 1 Next, the electric sector with its adjustment mounting can be seen.
 

This gold-plated unit is positioned with its entrance face parallel to 

the fringe field shield. These two units are separated by 0.075 in. 

Figure 1-5 describes the dimensional detail of the sector which has a 

spherical contour on the' inner plate surfaces. The mounting mechanism 
does not appear in Fig. 1-5.' This mechanism permits a variety of ad­

justments, translational, angular, and gap separation, in order to
 

achieve the rather delicate alignment.
 

Following the sector is another fringe field shield at the output face 

identical to the one at the input face. Spaced 0.090 in. from this shield 

is another identical slit except that it is electrically insulated from 

ground. This comprises the accelerator unit. This unit can be clearly 

seen in the photograph of Fig. 1-3. 

The accelerator looks along the line-of-centers into the magnet entrance
 

face which is spaced 1.120 in. from the fringe field shield. The accel­

erator plate and the magnet entrance fringe field shunt are located in
 

that spacing. Figure 1-6 describes the inhomogeneous field, low intens­

ity magnet which was used throughout the experiments. All surfaces ex­

cept those of the magnet material are gold-plated. A high intensity
 

magnet (to extend mass/charge range) of approximately 2860 gauss at the
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center line with essentially the same structure is shown in Figs. 1-7 

and 1-8. The mounting fixture for the magnet (not shown in Fig. 1-6) 

provides for a fine adjustment parallel to the plane of the accelerator 

slit in order to align the magnet onto the line-of-centers. Adjacent 

to the-exit face of the magnet is the exit fringe field shunt. The 

minimum width of the pole faces was determined from computer solutions
 

that provided plots of the trajectories of mass/charge numbers differ­

ing from the mean value by +20 percent but entering the magnet with the
 

same energy. The pole face width can accommodate these extreme
 

trajectories.
 

The line-of-centers intersects the film at the experimentally deter­

mined position of 4.900 in. from the exit face of the magnet. An ion
 

beam is caused to exit the magnet and shunt into a field free tube
 

which extends to the film plane.
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Figure 1-7. View of Inhomogeneous High Intensity Magnet Showing
 

Entrance Shunt (2860 gauss at the centerline)
 



0 
4% 

p. 

4­

{I 	 , I 

. I L -

Figure 1-8. 	 View of Inhomogeneous High Intensity Magnet Showing
 
Exit Shunt (2860 gauss at the centerline)
 



SECTION 2
 

SPECTROGRAPH PERFORMANCE SPECIFICATIONS
 

2.1 I-AGING CHARACTERISTICS AND RESOLUTION
 

Figure 2-1 provides a picture description of the ion beam formed by a
 

0.004 inch object slit as the beam moves through the spectrograph. The
 

pictures were obtained by positioning strips of film at the specified
 

locations.
 

The object slit was aligned normal to the incident ion beam; however,
 

it was found that a lower intensity component of the beam was being
 

scattered asymmetrically into the slit at an angle of approximately 0.50.
 

This might have been caused by the beam collimator located between the
 

source and the spectrograph. The effect can be seen in the beam image
 

as it enters the electric sector wherein a very dark line is accompanied
 

by a lighter line to one side. The beam intensity at the object slit
 

13 
was nominally 2 x 10- A/cm2 and images (1), (2), and (3) in Fig.
 

2-1 were each exposed for a three-minute period. The images (4) were
 

each exposed for a twenty-second period. The image (2) is widened
 

primarily due to energy dispersion and shortened as the result of axial
 

focusing. The curvature of that image is also due to the spherical
 

field of the electric sector. In (3) the effect of axial focusing is
 

most clearly seen. The three images of He+ in (4) were obtained by
 

maintaining the incident beam energy constant (2375 eV) and simply vary­

ing the accelerator voltage in the steps 1690, 1700, and 1782 eV. This
 

did not require any change in electric sector potential since the
 

accelerator folipws that sector.
 

The images in (4) of Fig. 2-1 provided the data for determining the
 

mass dispersion of the magnet calculated from a He+ mass of 4.003 amu
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Entering Magnetic Sector. Image Focal Plane
 

Figure 2-1. Beam Trace Through Spectrograph
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and a D2 mass of 4.030 amu. It was found that the separation of two
 

masses differing by 0.01 amu is 1.01 millimeters. Since the magnet
 

radius is 100 millimeters, then the dispersion is precisely A in
 

table 1-1 for which a design value of 1.02 was determined in excellent
 

agreement with that obtained experimentally.
 

The lines shown in figure 2-2 were obtained by changing the accelerator
 

voltage in increments of 10 eV ranging from 1690 to 1800 eV, inclusive.
 

The exposure time was twenty seconds each line. As in figure 2-1 (4),
 

the incident beam energy was maintained at 2375 eV. The incremental
 

steps in accelerator voltage produced a shift in the position of the
 

He+ line which would have been observed it the mass had been changed
 

by 1 part in 656. It should be noted that the design resolution curve
 

for a 0.004 inch object slit width given in figure 5 of EOS Proposal
 

964 predicted a value of 650 for a 1/4 degree acceptance half-angle.
 

• +
 

Figure 2-3 shows lines of H2 which has a mass/charge number of 2. The
 

reason for the appearance of a double line is not understood. Figure

1-13 2
 

2-4 was obtained with a beam intensity of 2 x 10 A/cm for 20
 

seconds.
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Figure 2-2. 	12 lines of He in 10 eV Figure 2-3. H2 lines with energies
 
increments - range 4065 (left to right) 8317,
 
to 4175 eV, demonstrates 8237, 8157 eV
 
resolution of 656 with
 
0.004 inch object slit
 

Figure 2-4. 	Demonstrates effectiveness
 
of image intensification in
 
mass spectrography (using
 
channel multiplier device)
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.2.2 SC.7 PHOTOGRAPHIC FILM 

The Kodak-Patbe' SC.7 film which is being used is manufactured in France.
 

This film is the most ion-sensitive emulsion available. Its superior
 

sensitivity results from the centrifuge method by means of which the
 

-emulsion is deposited thereby allowing a minimum use of gelatin.
 

-_2.2,i HANDLING CHARACTERISTICS
 

The film is produced in strips of 35 rmm by 180 imn. The emulsion has not
 

been observed to peel or flake either before or after its use. The
 

film strip does buckle significantly when placed in vacuum; however,
 

this is completely prevented by holders which lock the strip along the
 

long edges. Further, the buckling can be removed by simply soaking the
 

film in water for a minute or so after which it becomes very pliable.
 

SC.7 film is extremely pressure sensitive which requires that it be
 

handled carefully so as to avoid touching the emulsion surface. Many
 

attempts to process the film have resulted in a procedure which has
 

proven to be adequate. Processing is carried out in a closed plastic
 

box which is constantly flushed with dry nitrogen in order to eliminate
 

any significant oxygen atmosphere. The absence of oxygen appears to
 

result in a higher transmission background. A 15-watt lamp with a
 

Kodak B-9 filter is located four feet from the working platform. Tem­

peratures ranging from 200 to 250C have been satisfactory. The process­

ing steps that have been found to be most consistent in results and yet
 

simple are as follows:
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a. 	 Soak in distilled water to render film specimen pliable
 
(Z minutes).
 

.b. Develop in Ilford D-19 for 1 minute 54 seconds, translating
 

the film (or rotating a beaker) slowly during this period.
 

C. 	 Immerse in distilled water stop (no specific) for 15 seconds,
 

C. 	 Fix in Kodak rapid fixer for 1.5 minutes, translating the
 
specimen (or rotating a beaker) slowly during the period.
 

e. 	 Rinse in stagnant distilled water, three separate washes.
 

It should be noted that the SC.7 film must be handled in either safe
 

light or no light conditions at all times prior to completion of fixing
 

step. Also, the developed portions of the film consist of a powdery
 

layer, a portion of which can be rubbed off. To prevent this, Kodak
 

recommends a lacquer application which will essentially seal the surface.
 

2.2.2 SENSITIVITY
 

In the EOS Technical Proposal 964 a derivation was presented in order
 

to predict the detectable levels of ion flux for the SC-7 film. In
 

Fig. 9 of that proposal calculations were made to determine the flux
 

required to produce a clearly visible image.
 

Experiments have been performed to measure the minimum detectable 

integrated flux of 5 kilovolt helium ions. A barely detectable image 
5 22was obtained at an integrated flux value of 3.2 by 10 ions/cm . This 

is to be compared with the predicted value from the curves of Fig, 9 

(EOS 	Proposal 964) of 4.8 byd105 ions/cm2 for singly ionized heliuml.
 

The development of an image intensification technique, deferred any
 

further investigation of minimum detectable levels.
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%2.3 IMACE INTENSIFICATION
 

An attempt-to detect integrated flux levels of magnitudes below the
 

capability of SC.7 film alone has resulted in the development of an
 

image intensifier-film technique, the effectiveness of which has been
 

demonstrated with success as evidenced by an ability to detect any ion
 

mass at integrated flux levels extending to below 500 ions/cm
2
 

A schematic of the concept is shown in Fig. 2-5. It consists of a
 

channel plate electron multiplier interposed between the incident ion
 

beam and the film. Figure 2-6 is a photograph of a demonstration unit.
 

The channel plate is a Bendix Spiraltron Bundle Model 5205X.
 

Ions incident upon the channel plate produce secondary electrons in the
 

unit channels of which there are 1530 distributed over an area of 0.2
 
2
 

cm in the Bendix device. The secondary electrons are accelerated to­

wards the opposite terminus of the channel producing more secondaries
 
61
 

to the extent that electron gains in excess of 10 can easily be
 

achieved, depending upon the voltage (nominally 2500 volt) across the
 

device. Therefore, an incident ion will produce a spot on the film
 

which is the shape and size of the unit channel. In the present in­

stance, the unit channels are 0.003 in. in diameter. Figure 2-4 was ob­io-13 2 
tained with a beam intensity of 2 x 10 A/cm2 for 20 seconds through a 

0.004 slit placed in front of the unit of figure 2-6. The background
 

counts correspond to the rate of 10 per second.
 

The most obvious advantage of this technique is that it can detect on
 

film flux intensities in the particle counting range. For example, a
 

channel plate - film detector was exposed for 10 milliseconds to a 5
 

kilovolt helium ion flux of 3.6 by 10 ions/cm -sec. The area of film
 
2
 

exposed was 0.025 cm . The result was the formation of nine spots dis­

tributed over the exposed area of the film, each spot having the con-tour
 

of the unit channel. One spot, located outside the exposed area, was
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Figure 2-6. Demonstration Channel Plate-Film Detector Unit
 



identified as a noise count. 
The nine counts obtained in 10 milli­

seconds over 0.025 cm2 amounted to an instantaneous current density of
 
-
5.8 by 10 15 amp/cm which correlated well with'the average current
 

-15 
density of 6.8 by 10 amp/cm 2 as measured by a grid-collector sensor
 
input to a Xeithley electrometer.
 

A second very important advantage of the channel plate - film detector
 
is that the film only sees electrons of fixed energy. Therefore, the
 
detector.is rendered insensitive to the mass, charge, and energy of the
 
incident ion provided the ion is sufficiently energetic to produce a
 
secondary electron in a unit channel. 
 Particle energies in the solar
 

- wind are adequate for this purpose. 
Thus the necessity for calibrating
 

the film is eliminated.
 

A third feature takes advantage of the fact that the image has the shape
 
and size of the unit channel. This can be a very important method for
 
discriminating between an image resulting from only a few counts and
 
'other background that might be on the film.
 

In order for this image intensification technique to be useful in high
 
resolution mass/charge spectrography it will be necessary to obtain
 
channel plates of much greater density, or, specifically, a channel
 

center-to-center spacing of 0.0005 in. which would allow a spatial
 
resolution close to 0.001 in. 
 The plate dimensions should be approxi­

mately 4 in. by 0.36 in. by 0.050 in.
 

* 2.4 THE ELECTRIC SECTOR
 

The energy dispersion (D) of a spherical electrostatic analyzer is
 

given by the equation:
 

d sin Te 
)D = (l -cos + r e r 

e 
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where
 

ye is the sector angle
 

d is the distance from the sector output
 

r is the sector mean radius of curvature
e 

Therefore the trajectories of two particles having energies that differ 

by the energy deviation (or fractional energy change) 8 are separated
 

by a distance 6 r D at the position d.
 
e 

Measurements of current transmission at the exit fringe field shield
 

slit as a function of helium ion energy were made as shown in Fig. 2-7.
 

The potential across the sector plates which were separated by 00110
 

in. was 199.7 volts applied as a positive and a negative potential
 

such that the center of-the sector gap was at ground. The position of
 

the exit fringe field shield slit was 0.075 in. from the sector bound­

ary. The slit width was 0.075 in. Therefore, d = 0.075 in., and
 

6 reD = 0.0375 in. Since re = 2.949 in. and Pe = 710, the 

equation above gives D = 0.698. It follows then that 6 = 0.018 

which is in excellent agreement with the measured value at half maxi­

mum in the curve of Fig. 2-7. The analyzer constant, i.e., the ratio of 

incident energy to sector potential, is 11.9.
 

The current detector was then replaced by film strip to determine the
 

pattern at the exit slit for the beam with energy deviation 0.018.
 

The radial spread was measured to be 0.055 in. That is, the beam
 

originating at a 0.004 in. object slit was moved from center by this
 

amount at the sector exit due to the 1.8 percent change in energy.
 

The helium ion flux intensity used in these experiments was approxi­

mately 106 ions/cm2-sec.
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2.5 THE ACCELERATOR
 

This unit is an innovation in spectrograph design. The accelerator
 

has two functions. The first is to provide a means of 'tuning' the
 

particle energy such that the trajectory will coincide with the central
 

orbital path in the fixed magnetic field. The second is to more or
 

less collimate the beam since it would be ideal to have a perfectly
 

parallel beam entering the magnetic sector..
 

With a negative potential of 5000 volts applied to the accelerator
 

electrode, the effects of collimation were clearly evident when the
 

image radial spread of 0.030 in. at 1.150 in. from the exit slit was
 

compared with that of 0.055 in. at the exit slit position without an
 

accelerating field.
 

For optimum image focusing, it was found that a ratio of accelerator­

voltage/incident energy equal to 0.72 was desirable.
 

2.6 THE MAGNETIC SECTOR
 

It is necessary to maintain the magnet at the same potential as the
 

accelerator plate in order to preserve-focusing conditions. The insula­

tion used to float the magnet must be capable of withstanding 10 keV in
 

vacuum because the slightest breakdown can produce light flashes in the
 

insulation which in turn can result in exposure of the film. The Delrin
 

bushings that support the magnet structure on the mounting fixture were
 

found to be inadequate in preventing high voltage arcing so the mounting
 

fixture feet were changed to plexiglass. Even with the plexiglass con­

siderable care had to be exercised in removing any traces of oil or
 

grease (e.g. resulting from the hands) from the insulation.
 

After prolonged periods of testing the spectrograph in the vacuum ante­

chamber, the performance of the instrument with respect to image quality
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found that oil vapor from the diffusion
would deteriorate. It was 


pump was depositing upon the pole faces of the magnet and evidently
 

cau~ing a build-up of surface charge. Flushing alcohol over the pole
 

faces was sufficieht to restore the original image quality.
 

2.7 THE VELOCITY TUNER
 

The design of the velocity tuner consists of a parallel-plate energy­

per-unit-charge analyzer with dimensions 6 in. long, 2 in. vide, and
 

located in
1 in. plate separation (H). The input and output slits are 


the same plate and are spaced L = 4 inches apart. The analyzer con­

stant is given by the simple expression L/2H = 2. Therefore the
 

incident-energy-per-unit-charge, Uo /Ze of an ion flux can be determined
 

by:
 

U /Ze = 2Vtuner 

is the voltage across the analyzer plates.
where Vtuner 


A test model was fabricated with gold-plated mirror finishes for the
 

electric field bearing surfaces. A phosphor-coated glass slide was
 

placed over the output slit as a beam sensor. The tuner model was
 

mounted in a glass vacuum system in such a manner that the orientation
 

of the input slit with respect to a collimated electron beam could be
 

adjusted externally. By controlling the energy of the electron beam
 

and the voltage across the analyzer, the analyzer constant was verified
 

well within required accuracy.
 

*The energy-per-unit-charge resolution (A) for the.analyzer is given by:
 

2 s 2
 

A = sec2Q(sin2a + rcos2) 
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where s is the width of the input and output slits and a is the beam
 

incident angle measured with respect to the 450 direction from the
 

normal. For ' less than approximately 10o , A cah be given with suffi­

cient accuracy by:
 

s
 
= 2 L
 

In the test model, s = 0.25 inch, a rather large slit opening, and a
 

was negligible thus giving a resolution A of 6 percent.
 

The velocity tuner was designed to detect the hydrogen component of the
 

solar wind, adjusting the tuner voltage until a maximum hydrogen ion
 

current could be detected at the output slit. -This tuner voltage would
 

then provide the reference for selecting the spectrograph voltages.
 

2.8 SPECTROGRAPH TUNING CRITERIA
 

Given an incident ion energy per unit charge, U., the electric sector
 

voltage V for 0.110 inch plates separation will be
e 

UvO 0V 
e 11.9
 

wherein V is applied across the sector plates with a precise center­e 

tap to ground. 

For focusing at the film plane, the energy W of the ion beam entering 

the magnetic sector must be 

k 2--W , M/z 
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which is sufficiently close approximation for rough tuning;' however,
 

it is not exact because the magnet field is inhomogeneous and the
 

exact expression pertains to a homogeneous field. In the expression,
 

k is the magnet constant and M/Z is the mass/charge number. The magnet
 

constant for a homogeneous field is calculated by
 

22
 
B r 


homo 
 6 0)
 

where r' 10 cm is the central path radius of curvature. Therefore,
 
m 

the high intensity inhomogeneous magnet, B = 2860 gauss along the
 

central path, has the approximate value, k = 41.
 

For the 1830 gauss magnet used in the present instrument, k = -16.31
 

was found experimentally (in close agreement with the design value of
 

15), therefore,
 

W 16.31 (kilovolt) 

Also,
 

1 = U +V o a 

where, V is the accelerator voltage. Then
 
a 

16.31
 

a M/Z o 

The voltage Va can be varied slightly to shift the image position
 

along the film plane.
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For optimum image quality it has been experimentally determined that
 

Va = 0.72 U0a Combining this with the previous equations renders
 

the'following tuning criteria for a given mass/charge number:
 

9.50 
U = M/Z (kilovolt) 

0 .9 

V = 0.798 (kilovolt)
 

6.80
 
V- = M/Z (kilovolt)
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SECTION 3 

DUAL QUADRANT SOLAR WIND ATTITUDE DETECTION SYSTEM
 

The purpose of the Solar Wind Attitude Detection System (Solar Wind
 

Direction Indicator) is to display on a suitable device the orientation
 

of the spacecraft in pitch and roll angles relative to the direction of
 

maximum solar wind flux.
 

Assuming the aperture of the spectrograph is I degree, it is desirable
 

to orient the spacecraft within ±0.5 degree for both orientation angles.
 

Additionally, the indicator is required to display the relative degree
 

and direction when misaligned.
 

The instrument designed to accomplish this task consists of three major
 

items: two flux sensors, an electronics package, and a display device.
 

In the description of the feasibility model which follows, the input
 

circuitry, electronics, and display will accommodate only one orienta­

tion angle since this is sufficient for the purpose of demonstration.
 

3.1 SYSTEM OPERATION
 

Detector currents ihduced by the incident solar wind flux are converted
 

into proportional voltage variations by electrometer amplifiers, E1 and
 

E2 as illustrated by the system block diagram, Fig. 3-1. Rezeroing
 

circuits are included for periodic electrometer offset compensation.
 

These voltage outputs are further conditioned to optimally drive the
 

dual inputs of an analog divider network.
 

The analog divider dividend input signal is the result of a single
 

quadrant output modified by an amplitude range factor (-AEI). The
 

divisor input signal is the result of the sum of both quadrant outputs 

modified by the same amplitude range factor [-A(E 1 + E2 ) 3 
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Automatic ranging circuitry, monitoring the resulting sum of both
 

electrometer outputs (E1 + E2 ), maintains high signal input levels to
 

the'analog divider with the objective of maximizing its accuracy. The
 

resulting divider output voltage is a ratio independent of solar flux
 

intensity variations, yet sensitive to detector attitude voltage
 

variations.
 

A level shifting circuit converts the unidirectional divider output
 

voltage levels into bidirectional levels suitable for driving the
 

logarithmic amplifier circuit.. The logarithmic amplifier provides the
 

range compression necessary for continuously monitoring solar wind atti­

tude displacement errors from 150 down to within 0.250.
 

A'zero center meter monitors the bidirectional output voltage varia­

tions of the logarithmic amplifier. It is adjusted for a maximum atti­

tude deflection error indication of +15°. A'range switch was included
 

.
to provide scale magnification for attitude errors within ±2.5
0
 

Variable intensity and attitude error simulation circuitry were included
 

to facilitate system checkout and calibration.
 

Following are detailed descriptions of the individual circuits previ­

< ously discussed.
 

< 0 
Q: I-c o u, 3.2 ELECTROMETER AMPLIFIER 
<La 

A Keithley Model 301 operational amplifier was selected as the basic
 

amplifier for the electrometer. The selection was based on its low
 

input noise and offset capabilities, as well as its high input resis­

tance characteristics. The complete electrometer in its final form
 

is shown in Fig. 3-2.
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Figure 3-2. Simplified Schematic of the Electrometer Amplifier 



Fractional feedback was selected to allow the use of superior tempera­

ture coefficient resistors as well as to provide a means of bandwidth,
 

control with practical values of capacitors. The output voltage of
 

the amplifier in this configuration is related to its input current,by
 

the following equation:
 

A (Rf +RA RB
 

Ea in fRRA 
 R
 
+R A+ A B 

LRin (RA + A B 

where:
 

A = Amplifier open loop gain
 

R. = Amplifier input resistance
in
 

when:
 

Rin >> RA. RB, or Rf
 

Rf >> RB 

RB >> RA 

A > 50 

then: 

EO in IiA-

An equivalent transresistance of 2.5 x 10 ohms was selected to pro­

vide maximum amplifier output commensurate with maximum design flux 

density. The 100 megohm feedback resistance has a temperature 
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coefficient of 80 ppm/0C, restricting variations in transresistance to
 

less than 0.5 percent over the operational temperature range.
 

A detailed noise analysis of the electrometer was performed, resulting
 

in the following relation for its output noise voltage:
 

2i+ 22 
R R 2 n + 1 2
 

EB A IB RA S n f
 

where:
 

IA = Thermal noise of RA
 

IB = Thermal noise of RB
 

- If = Thermal noise of Rf 

-I = Detector noise
 
s 

In = Amplifier input current noise 

E = Amplifier input voltage noise
n 

Zs = Detector impedance 

Substituting values into the above equation revealed that the dominant
 

contribution of noise was from the amplifier input voltage noise source.
 

This result was instrumental in determining the point of bandwidth control
 

for the electrometer. The measured quiescent output noise of the electrom­

eter was less than 5 mV rms, in agreement with the analytic value deter­

mined from the above relation.
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The electrometer bandwidth was 
limited to within 50 Hz as a compromise
 

between system dyniamic response and noise. The gain and phase char­

actaristics were empirically measured resulting in the curves 
of Figs.
 

3-3 and 3-4. The stability of the electrometer is reflected by its
 

110 degree phase margin,
 

3.3 REZERO CIRCUIT
 

Electrometer offsets due to drift are compensated for by the rezero
 

circuit Of Fig. 3-5. The rezero circuit is basically a sample and hold
 

circuit consisting of a high quality, low leakage 10 pfd mylar capacitn
 

and a low gate leakage insulated gate field effect transistor.
 

The capacitor initially charges up to the electrometer output offset
 

level and is inverted, when switched to the rezero position, transfer­

ring the inverse offset potential to the input of a source follower
 

circuit. The source follower output is attenuated by an amount equal
 

to the fractional feedback ratio and applied to the positive input of
 

the electrometer.
 

Although the rezero 
circuit is capable of rezeroing the electrometer
 

output to within five millivolts, and retaining this offset for over
 

an hour, the amplifier offset should be sampled approximately every
 

20 minutes in order to insure low drift offset levels.
 

3.4 RANGE CONTROL
 

The accuracy of the analog divider module deteriorates rapidly with
 

input voltage levels below 4 volts. Increasing the system gain at low
 

flux levels reduces these inaccuracies. The range control circuit
 

detects and increases system gain when flux levels drop below a pre­

scribed value.
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The range control circuit shown in Fig. 3-6 consists of a voltage level
 

comparator 'driving a voltage translator circuit. The comparator, a
 

differential amplifier, was designed with approximately one volt of
 

transition hysterisis to provide range overlap, reducing transition
 

instability. The upper level transition point occurs at 5.5 volts,
 
8 ions
equivalent to an intensity level at approximately 2.75 x 10 22sec
 

The lower level transition point occurs at 4.5 volts, equivalent to an
 
7 ions


intensity level of approximately 2.25 x 10 cm22 -sec.Thsacmo
. his accommo­

dates the expected range of hydrogen ion flux intensities in the solar 

wind. 

The voltage translator circuit converts the comparator 4 volt logic
 

level output into voltage excursions capable of controlling field effect
 

transistor switches. These switches are used to alter the resistive
 

feedback values of signal chain amplifiers.
 

3.5 "LOG AMPLIFIER
 

The alignment resolving capability of the system is enhanced by the
 

logarithmic amplifier. Its logarithmic transfer characteristic was
 

specifically designed to increase system sensitivity for input voltage
 

levels approaching zero, with zero voltage indicative of perfect
 

alignment,
 

The log amplifier of Fig. 3-7 is basically an operational amplifier
 

with its feedback resistance shunted by bidirectional transistor
 

logarithmic elements QLl and QL2' These logarithmic elements are
 

designed to operate at zero collector to base voltage, effectively
 

eliminating the collector to base leakage components. The bias ele­

ments, QBI and QB2 keep the logarithmic element operational by pro­

viding bias current through isolation amplifiers AB '
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The log amplifier input voltage is related to its output voltage by
 

the following relation:
 

-R. Lo 1B f h116 e°')]

R f-- 0 .01 e0+21 R Sini-in 

where:
 

I Current in bias element Q

BB
 

T = Absolute temperature 0K 

The resulting empirical transfer characteristic is given in Fig. 3-8.
 

3.6 INTENSITY AND ANGLE SIMULATOR
 

Verification of system calibration and operability is provided by the
 

intensity and angle simulator. It is designed to generate voltage
 

levels equivalent to flux intensities up to 5 x 108 ions and to
 
cm2_-sec
 

simulate angular deviations up to +15 degrees.
 

A simplified schematic diagram of the simulator is shown in Fig. 3-9.
 

Intensity voltages derived from a ten-turn potentiometer are transferred
 

to a summing ,amplifier where they are combined with an inverse fraction
 

of their value, resulting in the differential value of the combination.
 

The resulting outputs at E! and E2 ard therefore always complementary
 

fractions of the intensity voltage. Unequal fractional output values
 

represent an angular deviation, capable of continuous adjustment up to
 

10 degrees. A deviation of 15 degrees must be switched in. The phase
 

inverting switch at the output enables the simulation of maximu-m in­

tensity at either detector.
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The simulator outputs correspond to expected electrometer amplifier
 

outputs and therefore the electrometer amplifier outputs are not in-7 

eluded in the test. The application of simulator voltages to the system
 

is performed by a switch on the front panel.
 

3.7 SYSTEM POWER SUPPLY
 

The system power supply is basically a saturable transformer base
 

driven dc converter with a nonsaturating dual secondary output trans­

former. A bridge rectified, capacitance filtered, center-tapped sec­

ondary provides the drive for the positive and negative 15 volt regu­

lators. A voltage doubler on the remaining secondary winding produces
 

a 200 volt retarding screen potential which will be used to prevent
 

solar wind electrons from reaching the input signal collectors.
 

The 15 volt outputs are capable of supplying'100 mA with a load regula­
tion better than 0.05 percent. Figure 3-10 is a simplified schematic
 

of the system power sup.ply.
 

3.8 SUMMARY
 

Figure 3-11 shows the detailed schematic of the dual quadrant solar
 

wind attitude detection system. Figure 3-12 is a photograph of the
 

instrument. This feasibility model was 
developed using commercially
 

available components. Although a system accuracy within 5 percent
 

resulted, an instrument with a rating better than 2 percent would be
 

possible with selected and flight-tested components.
 

Improvements such as replacing the 1 percent analog divider module
 

with one rated at 0.1 percent or better and the addition of at least
 

one more amplitude range level, insuring optimum analog divider accur­

acy, could be incorporated.
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Figure 3-12b. Solar Wind Direction Indicator
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Temperature compensation circuitry would be included in the logarithmic
 

amplifier and rezeroing circuits. If necessary, the electrometer out­

put noise level could be reduced further by almost a factor of two
 

within the same design limitations.
 

The size and weight of a flight instrument would be minimized with the
 

use of integrated circuits wherever possible. Critical circuits, such
 

as the electrometer amplifiers, the logarithmic amplifier, and, if
 

necessary, the analog divider circuit would be designed with high
 

quality selected discrete components.
 

The variable intensity and attitude error simulation circuitry could
 

become part of the ground support equipment allowing further weight and
 

size reduction of the flight instrument.
 

The meter selected for the feasibility model was for demonstration
 

purposes only and would be replaced by a high quality dual pointer
 

flight tested unit.
 

The ion flux collector for the direction indicator has been designed.
 

This unit (two required for the flight instrument) will be wedge­

shaped with a 300 angle and with each wing of the wedge consisting of
 

a two-grid-and-plate assembly. The grid arrangement will retard solar
 

wind electrons and also contain photon and ion-induced secondary emis­

sion electron currents within the collector such that these currents
 

will not appear as a signal component. This is accomplished by ar­

ranging the potentials wherein the center grid is biased negative
 

with respect to the plate and input grid, thereby confining the non­

signal currents to closed grid-grid and grid-plate loops. The addi­

tional 200 volt output from the instrument power supply will be used
 

as the source of retarding potential.
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An ion flux collector used to test the instrument in the facility is
 

shown in Fig. 3-13. Excellent correlation between angle simulation
 

and orientations with respect to the ion beam was obtained.
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* SECTION 4
 

TEST FACILITY
 

] 4.1 ION SOURCE 

Figure 4-1 shows a schematic of the electrQn bombardment ion source
 

and associated electronics. This source was adapted from a standard
 

bombardment ion engine. An important change required the replacement
 

of the beam forming electrode by a plate with very small orifices in
 

order to reduce ion current and restrict gas flow from the source.
 

Also the extractor electrode was modified. Collimation is accomplished
 

by passing the ion beam through an electrically isolated rectangular­

shaped metal liner which is placed co-axially with the source. The
 

location of the liner is shown in Fig. 4-2.
 

The ion source electronics consists of the following power supplies:
 

0 to 15V, 0 to 30A (cathode heater) 

0 to 36V, 0 to 5A (magnet) 

0 to 60V, 0 to IA (arc) 

0 to 300V, 0 to 0.15A (accelerator) 

The ion energy supply is an Electronic Research Associates Model
 

TH5K-15L, which has a variable output of 0 to 5 kV, 0 to 0.OSA with
 

a line and load regulation of 0.01 percent or 50 mV, whichever is
 

greater. This potential is monitored by a John Fluke Differential
 

Voltmeter with an accuracy of 0.02 percent.
 

All of the ion source electronics except the ion energy supply and 

differential voltmeter are located in a console at the source end of 
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the 5' x 12' vacuum chamber. The ion energy supply and monitoring
 

voltmeter, are located in the dark room for easy access during
 

experiments.
 

Typical operating parameters for a helium ion current density of
 

2 x 10"13 A/cm 2 at the far end of the chamber are:
 

cathode heater - 20.5A 

magnet - 0.8A 

arc .current - 25 microamperes 

arc voltage - 60V 

accelerator - 100V 

Ap (due to gas flow) - 7 x l0 " torr 

4.2 VACUuM SYSTEIS
 

The 5' x 12' chamber has six 10-inch oil diffusion pumps, each capable
 
of a 4000 liter/second pumping speed. Operating pressures are in the
 

-7
10 torr range with liquid N2 trapping of condensibles under gas load
 
conditions. Typical operation on two diffusion pumps with refrigera­

-
tion trapping is 4.0 x 10 7 torr increasing to 1.2 x 10-6 torr with
 

-7
the ion source operating (Ap - 7 x 10 torr). 

Figure 4-3 shows the chamber and control console. Also the ion source
 

installation and associated electronics can be 
seen in this photograph.
 

Figure 4-4 provides a view of the diffusion pumps and the dark room
 

which houses the ante-chamber and spectrograph electronics.
 

The ante-chamber is a 12" x 30" horizontal cylinder attached to the 

end of the 5' x'12' chamber separated by a 6-inch gate valve. The ante­
- 7chamber has an independent pumping system capable of the 10 torr range. 

This chamber, which is used to house the spectrograph (see Figs. 4-5 and 

4-6), can be repeatedly opened to atmosphere and reduced to 10- 6 torr 
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APPENDIX
 

THEORETICAL CONSIDERATIONS
 

PROCEDURE
 

Transfer matrix methods for calculating trajectories are well known in
 

optics and have been applied to electron optics. The application of
 

these methods to electrostatic and magnetic deflectors has been gaining
 

increasing recognition in recent years. Consequently, they are par­

ticularly adaptable to the study of double-focusing mass spectroscopic
 

instruments. The transfer matrices used in this study were taken from
 

References I through 5.
 

Essentially, the transfer matrix approach is a method of ray tracing.
 

For example, in the case of ion optics an element (e.g., an electric
 

or a magnetic sector) is represented by a transformation (transfer
 

matrix) which gives description to an ion beam which has traversed
 

the element. In order to effect such a description,the ion beam is
 

represented by a vector,the components of which are formed by the
 

entrance slit dimensions, entrance angular spread, and the deviations
 

in mass/charge ratio and energy. The total transfer matrix which de­

scribes the path of an ion beam from entrance slit to photographic plate
 

is the product of as many as 11 individual matrices. Among these are
 

included the important effects of the fringe fields of both the electric
 

and the magnetic sectors and the effect of changing the sense of the
 

beam deflection.
 

After the total' transfer matrix (one each for radial and axial deflec­

tions) has been obtained, then the mass/charge dispersion, the inagnifica­

tion, and the first and second order aberration coefficients can be
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identified. The axial aberrations are usually not considered past first
 

order but'the radial aberrations are calculated to second order and
 

sometimes estimated to third order. In the present study, third order
 

angle coefficients were included, and were assumed to have values 10
 

times that of the corresponding second order coefficients. The instru­

ment resolution is calculated from elements of the total radial transfer
 

matrix.
 

SIGNIFICANT ELE2NTS OF THE TOTAL RADiAL SECOND ORDER 
TRANS FER MATRIX 

The total radial second order transfer matrix contains 289 elements of
 

which only 17 are used in a determination of the resolving power of the
 

instrument. These are given the notations as follows:
 

Au , A , A A, A A ,A Y, Au6 , A , A, A1 Ayy, Ay6 

A6, AW, AvP , AP
 

where a and D are the radial and axial half-angles, respectively. The
 

quantities y and & are the mass/charge and energy deviations, respec­

tively, defined as follows:
 

u =1u [l+6 (1) 

((hZ) = 'z) [l + y) (2) 

where
 

U - particle energy per unit charge 

U
O 

- particle energy per unit charge for central ray 

(-1/ Z) - particle mass/charge number 

(11/Z) - particle mass/charge number with energy per unit 

charge U. 
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The radial and axiaf displacements of the paraxial ray from the central 

ray are urm and vr where r is the radius of curvature of the central 

ray. in the main magnetic field. 

The most important of the 17 elementg listed above are identified as
 

follows:
 

A - magnification 

U 
A . - first order radial angle aberration coefficient 
A6 - first order energy aberration coefficient 

A 
Y 

- mass dispersion coefficient 

A - second order radial angle aberration coefficient 
A - second order radial angle-energy aberration coefficient 

A66  - second order energy aberratirn coefficient 

A - second order axial angle aberration coefficient 

The third order coefficients of interest are:
 

A - third order radial angle aberration coefficient 

A - third order axial angle aberration coefficient 

SIGNIFICANT ELEMENTS OF THE TOTAL AXIAL TRANSFER MATRIX 

The axial transfer matrix first order elements are usually the only
 

ones of interest and are denoted by:
 

A - magnification
V 

A - first order axial angle aberration coefficient 
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INPUT PARAITERS
 

The.matrix elements are very lengthy, complicated functions of the
 

input parameters. These parameters are given below:
 

P " magnetic sector angle 

(Pe electric sector angle 

D (separation between the electric and magnetic sectors) 
x /rm 

I' parameter describing electric fringe field (input side) 

I" parameter describing electric fringe field (output side) 

If 
I" 

-

-

parameter describing magnetic fringe field (input side) 
parameter describing magnetic fringe field (output side) 

S - angle between the central ray and the n6rmal to the 
input ideal field boundary of the magnetic sector 

et - similar to e" except refers to the output ideal field 
boundary of the magnetic sector 

o - parameter describing the inhomogeneity of.the main 
electric field 

n -

-

parameter describing the inhomogeneity of the main 
magnetic field 

[reciprocal radius of curvature of electric sector 

-
boundary (input side)] x r 
[reciprocal radius of curvature of electric sector 

boundary (output side)] x r 

Rt - [reciprocal radius of curvature of magnetic sector 

boundary (input side)] x r 

R" - [reciprocal radius of curvature of magnetic sector 
boundary (output side)] x r 

r e - radius of curvature of central path in the main 
electric field 

rm - radius of curvature of central path in the main 
magnetic field 

sense - determines the relative deflections 
magnetic sectors 

in the electric and 
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COMPUTER I'U3TIIODS
 

A computer program was written to evaluate the radial and axial transfer
 

matrices for the complete system. This merely required doing a series 

of matrix multiplications, each matrix being the.transfer matrix for a 

given region (i.e,, fringing field region, electric sector region, etc.). 

Due to the rather large dimensions of the radial matrices (17 x 17), the 

evaluation of the complete radial transfer matrix required about 23 sec­

onds on the CDC-3100 computer. The first row of this radial matrix then 

determined the image slit width (for a given object slit) in terms of the 

15 parameters describing the system: c, , (Pe) ' e', e",If , It, 
a W 

re/r D, Q', Q", R', R", and INVERT. . The first row of the 2 x 2 first 

order complete axial transfer matrix rendered the image slit length.
 

Several cases were run this way in a sort of trial and error approach
 

to finding a good set of system parameters, and it also served as a 

means of checking out the program for possible coding errors. Once the 

program was debugged, it was changed into a subroutine to be used by yet 

another bigger program.. The purpose of this new program was to try and 

find a combination of the input (system) parameters that would result in 

an improvement over a set of "initial guess" parameters. The program
 

operated as follows: An "error" function, ERROR, was invented. It
 

essentially indicated the radial aberration of the image slit due to
 

particles of incident angle (a) and energy deviation energy (6). Thus:
 

ERROR (c, n, Ye'e, e', e", re/r, ID, Q', ", , R", INVERT) 

2 
(c2Aa) 2 + (2&bA 6)2 + (6

2A66) + (26A6)2
(2aA .)2 + 


where the A's are the first row matrix elements of the complete radial 

transfer matrix. The values of cy and 6 were both arbitrarily set at 0.1. 
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The problem was now to minimize the ERROR function with respect to the 

various input parameters. (Actually, the parameters c, n, and IrVERT 

were maintaihed at constant values and only the remaining 12 parameters 

were allowed to vary.) To find a minimum of a function, one merely 

computes the gradient of the function and then starts stepping backwards. 

This- is exactly what was done. The 12 quantities: 

a(ERROR) b(ERROR) 6(ERROR) 
20'e ' 0 'I 73m 

were calculated. Then, the components of the normalized gradient were 

computed: 

b (ERROR) 

- , p = e, m . . , R".
(V ERROR) 12 2 

p~~ Z r (ERROR)] 

An initial step size of 1.0 was chosen and this amount was "stepped off" 

in the direction of the negative gradient. (Note: this step was taken
 

in 12-space; not on each parameter; consequently, each parameter changed
 

by considerably less than 1.0 per step,) 
 After each step the gradient
 

was again re-computed to determine the direction in which the next step
 

should be made. This process continued as long as the value of ERROR
 

continued to decrease. Then, when a step in the direction of - V(ERROR) 

finally resulted in "going uphill", it was reasoned that a minimum had 

been overshot. So, the step size was reduced by a factor of 10 and the 

search continued at this smaller step size.
 

This above process was to continue until the step size became less than 

a certain value (about 0.001), at uhich point the minimum of the ERROR 
function would be claimed and the search would be over. 
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Unfortunately, things did not work completely according to' plan. After

the first "over-shooting" of the minimum with a step size of 1.0 it

would seem plausible that by reducing the step size to 0.1 the minimum

should be over-shbt again within about ten steps at most. This never

happened. Instead the step-off would continue in units of 0.1 well

past the expected 10 iterations. It is difficult to say just how long

this step size would continue to last since the time estimate of the

program would always be exceeded, even when more than 1 1/2 hours w7as

allowed. The main problem with the program was the amount of time it

took. Since each evaluation of a gradient required an evaluation of the

complete transformation matrix 12 times (one for each parameter) , the

time required for just one iteration step was almost 5 minutes! How-

ever, a later feature of the program allowed any of the parameters to be

held fixed while the rest varied. This helped to increase the iteration

frequency, although no minimum as such was ever found within the 99 min-

utes of time allotted per computer run.

RESOLUTION CLOSE TO THE CENRAL RAY POINT AT THE I -lGE PLANE

Resolution (R), as described in Fig. 1, is defined as follows:

R = (/Z or L (3)6(11/z) 2y

This is the resolution which can be obtained close to the central ray

point of the image plane and is given analytically by the following

expression:

0.5 r AR =m Y
2 2 2 3 ,3

S'A + r r2oA + 6 o' + 2o'6Ao, + 6 A66 + + 2u A + 2.1 A^ "U m a 6 (ICY'.' 01 _P

*(4)
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where the values of all coefficients are taken as absolute. That is, 

minus signs are ignored. Tie S' (=2ur ) is the vidth of the entrancem 

slit.(object). It should be noted that the length of the entrance
 

slit is 2v r
 om 

Ideally, the best instrument design would be one for which all the 

aberration coefficients (except A and A ) vanished simultaneously. 

As can be seen in Eq. 4, it is desirable for A to be as large as 

possible, and A to be minimized to less than unity. 

DOUBLE-FOCUSING CONFIGURATIONS
 

The aberration coefficients for about 650 configurations were calculated.
 

Most of these were slight modifications of a set of initial conditions
 

on the parameters. In no case were the coefficients pertaining to a
 

and 6 made to assume insignificantly small values, simultaneously.
 

During the study, values of the coefficients were observed to range
 

-5
from 10 to over 100." Figure 2 shows the notation scheme of design
 

parameters.
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