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ABSTRACT
 

Orbiting astronomical observations have the potential for making 

observations far superior to those from earth-based mirrors. In order 

for this performance to be realized, the contour of the primary mirror 

must be very accurately controlled. A thermally activated system for 

correcting symmetrical distortions in space telescope mirrors has been 

evaluated. This system utilizes thermally induced elastic strains to 

correct axial distortions in the mirror. The relation between axial 

distortion and thermal inputs was determined by a finite difference 

solution of the equations for thin elastic shells. 

The use of this technique was demonstrated analytically on a 

beryllium paraboloid. This mirror had 10 equally spaced thermal inputs. 

Distortions due to an acceleration-type loading were shown to be correcte4 

to well within the required accuracy. Axial temperature gradients 

resulting from the application of the thermal inputs to the rear surface
 

of the mirror were shown to be quite small. 



ACENOWLEDGMENTS
 

,The author would like to express his gratitude to the Natibnal
 

Aeronautics and Space Administration for their support, and to Dr. E. T.
 

Kruszewsk4 pfrLangley Research Center and Dr.. J. Taylor Beard of the 

University of Virginia for their guidance during .this investigation. 



TAELF' C' CCMaItTES 

CHJTDR PAGE 

2 ...:.i.t. . . .T. . . .k. . .
 

I , C. .iP. .i.L:. . . . .f . 4
 

fl,-st--ipbir-n of' Ttlamzocr ..... . k.
 

Te v2n Actdive OPbics .. 7
.Systen ......... 


iT. TI R11AL A'LYS3 q. ..... 12
 

DI3scription ,,f Iiraoc Gec.raby . 12
 

Tnt.e-'l 'is-.peratuce Disbribution 18
 

bloid voltion . . ............ 34
 

Dihlibuted ThenA~l rrutE . . ..
 

V. M2U)JTS . . 51MID DISGJSSIO • . 

Vi. CflCLUSIITS ... ...... ............... 59
 

RK2TFXR7 Wp'1 .* 6o
 

AIIYCCD-l A -. P1(4 flT, (C ThTER T0G AM TO CLIBUAT-S TilE &R9jfy,.
 

et'-AT2 T2MP2RAT4] DISTRT-gTIOIf :N A CMq2JTLAR
 

DT'c . ......... .............. .. ... 66
 

.,T'PW0 B - DIqfl'Aj CM5,UPJEI& P1!.OG?'J24 To IPWA2 TUlE
 

iZ2XIB.hIrC XA-,TRJX C TO OATA1I JTE STflTESS
 

1T-kTRZ{K .......... * 68
 



LIST OF TABLES 

TABLE PAGE
 

-,I. Primary Mirror Material Properties ...... . 62
 

II. 	 Calculated Valuesof the View Factor and Heat Flux at
 

EachtControl Point.i .- 63
 

III. Flexibility MatrixO .	 . . 64
 

IV. Stiffness Matrix [K] 	 . 65
 



elastic Obhiztas (Fo~e eqj. (61))
 

sep ration conctrvt (see eqs,. (1) aria
 

1' rbjsantz ratio
 

reetsngifl v coordinaWe zyzt&'., 9 is frJlo& ' the 
eiSWA oft ehe l 5 G is xavorvej2 flcn the 

cxrcmf~erence, :,nJ t 1i pdca9l to the Sllrl 
urfoze 

KatidiontL distneo to thc loeaticn of contrcol paint 11 

P radial cwnrdinate 

Pn Mdinl t'he Irexation .C ccz&a.oi p.Ointditwin,.t tu 	 n 

P.Aradius of diC u-vare i3l-i thexr.n iifkUt 11; -nplied 
(see Fig. 8) 

noi-ml sLreases in thn shell 
. 04 

Stefan-Boltzoana emtant, 1.715 X 10- 9 BbqX/hr ftc-.R 

I 	Icolmrn iiatrtc of tV 6r'Lfl inputs 

arngvlaw 	 coordinate, a'r~le bstuven wirror axia a~nd 
eaditts of cu)v, +,te (smo Fig. 12) 

otarstjio V hLB1tl ofAL (e raloidaiUq.bCI nrte'e 

angle 1)eiz:.zrt noitzd to iYCOIar 4iuz uu,11 line 
cosneci-il' :rr and tielecop~ yoct (s~s Yin 9) 

http:ccz&a.oi


CHAPTER I 

INTRODUCTION
 

The resolution of ground-based optical astronomical observa­

tories is limited by atmospheric turbulence. To minimize the effects 

of turbulence, many observatories are located at relatively inaccess­

ible areas atop tall mountains. Even at these locations the very best 

telescopes seldom have a resolution better than 0.3 second of arc. 

In space, telescopes would be limited only by the diffraction limit 

and, therefore, large mirrors (10in. dia.) should be able to resolve 

0.03 are second at 5,000 angstroms (Ref. 1). Also, space telescopes 

will be able to view portions of the spectrum not currently available
 

for observation due to atmospheric absorption.
 

The National Aeronautics and Space Administration is currently 

investigating the problems associated with the operation of large 

(120 in. dia. aperture) space telescopes. Several studies of space
 

telescopes have been conducted and are reported in References 2, 5,
 

and 4. These studies have defined the scientific objectives of a
 

space telescope and outlined some of the major problems involved in
 

its design and fabrication. All of these studies have recommended
 

the use of a Cassegrain optical system which requires a paraboloidal
 

primary mirror. In order for the optical system to have the desired
 

resolution) the contour of the primary mirror must be maintained to
 

within 2 microinches of the design value (Ref. 3). If this accuracy
 

cannot be maintained, the resolution of space telescopes will be
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degraded relative to their potential capabilities and their performance 

may be less than that of ground-based observatories. 

Two types of primary mirrors have been proposed for use in space 

telescopes. The first type is a passive mirror which would be designed 

to retain the proper contour without correqtion for the life of the
 

telescope. This mirror would consequently be rather massive and may 

impose a severe weight penalty on the launch booster. The second con­

cept is known as an active optics system and utilizes a thin mirror 

which is permitted to deform moderately under operational loads. 

Distortions in the mirror would be monitored and analyzed by a figure 

error sensor. This sensor would activate a cqntrol system to apply 

correction Loads which would remove the distortions. 

One active optics system utilizing precision jacks to provide 

corrective loads has been investigated analytically. This analysis has 

been experimentally verified using a thin deformable mirror 30 inches 

in diameter (Ref. !5). However, this system requires either a very
 

stiff back plate for the jacks to react against or a determination of
 

the coupling between the back plate and the mirror. Also, this is an
 

electromechanical system and is relatively complicated for space use.
 

Another type of active optics system that has been suggested utilizes
 

thermal inputs to provide the corrective distortions. Elastic strains
 

introduced by differential heating would be used to force the mirror
 

to assume the proper contour.
 

The object of this investigation is to develop a technique for
 

determining the relation between deformations parallel to the mirror 
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axis and the thermal inputs necessary for error correction in such a 

system. Thermal inpus in the form of a prescribed temperature distri­

bution were considered to be applied to the rear surface of the mirror. 

In order tq illstra-e the feasibility of such a technique, a cosine­

type temperpature profilq was considered for the loading. The axial 

tempertre gradient introduqea in the mirror due to front surface
 

radiation loss wps shown to be small. The relation between the mirror 

distortions qa4 the thermal inputs was obtained by a computerized finite 

difference solution of the elastic shell equations. The relation was 

expressed in the form of a flexibility matrix. The thermal inputs 

necessary 4o correct distQrtion at specific control points were deter­

mined by inverting the flexibility matrix to form a stiffness matrix. 

An example of the thermal inputs necessary to correct distortions due 

to ap acceleration-type loading is shown. 



CHAPTER II 

THERMAL CONTROL SYSTEM 

Description of Telescope
 

The space-telescope model selected for this analysis is a pre­

liminary design of the type discussed.in Reference 3. A sketch of 

this model is showm in Figure 1. The hsic telescope configuration 

consists of two large cylindrical shells which are attached to the 

telescope cabin. The cylindrical shells enclose the main optical 

elements - the primary and secondary mirrors., Attached to the outer 

shell is a system of doors that prxevents sunlight from failling on the 

optical system during maneuvers. The inner shell is a thermal shield 

which reduces solar heating loads on the primary mirror. -All optical 

imaging devices and sensing instruments are contained in the telescope 

cabin. This cabin 1ill also provide tie necessary environment for 

manned support. One significant departure from previously designed 

space systems is that the telescope must be capable of continuous 

operation for several years. Therefore, the telescope must receive 

manned support from a docked or nearby space station. 

The telescope has a Cassegrain-type optical system with a 

focallength-to-aperture diameter (f/d) of 30. The primary mirror is 

a short-focal-length (f/d = 4) paraboloid, while the smaller secondary 

mirror is a hyperboloid. If this optical system could be fabricated 

with perfect geometry it would image a point source, such as a star, 

in the focal plane as a bright central disc (Airy disc) with 
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Figure I.- Sketch of an orbiting space telescope. 
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surrounding diffraction rings. The Airy disc would contain approxi­

mately 85 per cent of the incident energy with the remaining 15 per cent
 

scattered in the surrounding rings. However, due to fabrication errors 

in the mirrors, operating loads and inherent absorption losses, the 

energy in the central disc will be reduced and the resolving power of 

the telescope may be severely limited. If the distortions in the 

optical system are such that 68 per cent of the energy lies in the 

central disc with 32 per cent i="the diffraction rings the'system is 

operating at the Rayleigh criterion for resojlation. An analysis of the 

optical system for this diffraction-limited operation was cbnsidered in
 

Reference 3. This analysis estimates that the primary mirror will. 

require a surface contour having distortions less than .97 microinches 

(1/10 wavelength at 5,000 angstroms) from the design paraboloid. In
 

addition a root-mean-square surface accuracy of 0.37 microinch (1/.3 

wavelength at 5,000 angstroms) will be rpqiiired.
 

It was noted previously that distortions in the optical system 

may be produced by operational loads. Other sources of distoition may 

include (1) the introduction of elastic strains in changing from an
 

earth gravity environment to a zero gravity space environment, 

(2) relaxation of residual strains introduced during the fabrication of 

the mirror billet, (3) relaxation of residual strains-introduced by 

machining and polishing operations, and (4) plastic strains introduced 

by launch and environmental loads.
 



Thermal Active Optics System 

In order to maintainthe mirror contour within the required 

accuracy, a technique to introduce correctiye'distortions may be
 

necessary The technique envisioned in this analysis for correcting
 

mnrror distortions is to apply thermal inputs to the rear surface of 

the mirror. These thermal loe4s will induce elastic strains which will 

deform the mirror surface to the desired, paraboloidal contour. A 

sqhematic diagram of a thermal active optics system is shown in 

Figure 2. Distortions in the primaryr mirror are detected by the figure
 

error sensor using interfprometric techniques. These errors are in the 

foun of fringe patterns and must be interpreted to determine the size 

end direction of the distortion. This interpretation is performed by 

the analyzer and phase detector at fixed control points on the mirror 

surface, The analyzer will also calculate the amplitude of the con­

trolled temperature source necessary to correct distortions at the
 

control points. The function of the control system is to apply the 

desired inputs, thereby reducing the distortions at the control points 

to (or below) the acceptable level. 

A sketch illustrating the pontrol points and location of the 

thermal inputs is shown in Figure 3. The thermal inputs are in the 

form of controlled back surface temperature distributions. The radial 

and circumferential location of the thermal inputs, In addition to 

their size, may vary. It is only necessary to determine the influence 

pf the thermal inputs at speci4ie control points on the surface. 

7 
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Figure 2. - Schematic of' thermal active optics system. 



Figure 3.- Sketch showing control points and location of 
thermal inputs on rear surface of telescope mirror.
 

Most practical structures, including the telescope mirror dis­

cussed in Reference 5 have been shown to exhibit approximate linear 

behavior. In order to determine the influence of the thermal inputs, 

it was assumed in this analysis that the thin paraboloidal shell 

behaves as a linear structure. Thus the influence of thermal inputs 

can be analyzed using linear theory. One advantage of such a struc­

tural theory is that it permits the application of the principle of
 

superposition. This principle states that stresses and deformations
 

produced in a structure by a set of loads in combination can be obtained
 

by adding the stresses and deformations produced by each load acting
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separately. Therefore, the distortions at the control points may be
 

expressed as a function of the applied thermnal inputs by the following 

equations: 

a1= cJiJ~ i + ciT2+ c 3T53 + O1,4T + . .. nn 

62= 21Ti + c2 2T2 + c23T3 + c24T4 + . - n (1) 

bn = cnlT1 + cn2T2 ' cn3 T3 + cn4T4 + . - . ennTn 

The coefficients (ci4) specify the contribution due to an increase in
 

temperature from each therpal input (Tj) toward the distortion (8i) at 

the control point (i). These equations mEy be written in the more con­

venient matrix notation as
 

I5I = [c] I1 (2) 

The square matrix [C] is generally called the structure flexibility 

matrix and the component terms are deflection influence coefficients, 

The thermal inputs necessary to correct mirror distortions can 

be expressed by inverting the flexibility matrix and multiplying by he 

measured distortions. 

I = [I[x] IF1 (3) 

where 

[Kc] = [C] -1 



In order for the active optics system to perform properly it is 

necessary to accurately determine the coefficients kij for each 

control point and store the coefficients in the system analyzer. 



CHAPTER III
 

THERMAL ANALYSIS
 

Description of Mirror Geometry
 

No firm design of the space telescope has been fQrmulaed. The
 

technique developed in this investigation is applicable to any thin
 

telescope mirror. The example shown in this and subsequent sections
 

illustrates the use of this techrique.
 

A sketch of the mirror used in this analysis is shown in
 

Figure 4. The mirror is a thin paraboloidal shell having a diameter
 

of 120 inches and a focal length of 480 inches. Since no firm design
 

of the telescope has been formulated, certain assumptions concerning
 

the mirror geometry were necessary. For example, the diameter of the
 

6" 

polnt 

480' 612 

Figure 4.- Sketch of telescope mirror.
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center hole will depend upon the telescope optical system and manu­

facturing considerations. The hole was assumed to have a diameter equal 

to one-tenth (12 inches) the diameter of the mirror. In the weightless 

environment of space, only a very thin reflective surface would be 

necessary for the primary mirror. However, practical considerations
 

of manufacture will require the mirror to be sufficiently thick to with­

stand grinding and polishing in a gravity environment. For this investi­

gation, the thickness of the mirror vas one-hundredth (1.2 inches) of 

the diameter (Ref. 7). The thickness was assumed to be constant in 

both the circumferential and meridional directions. 

Metal mirrors are ideally suibed for thin one-piece construction 

because they have high stiffness-to-weight xatios. Beryllium has one of 

the highest stiffness-to-weight ratios of any structural meta2 ,nd is 

currently being considered as one of the prime candidate mateo'als for 

telescope mirrors (Ref. 8). The paraboloid shoun in Figure 1iwas con­

sidered to be fabricated L.,m a hom,jgor.Jenu a~n'1 tsotropic billet of 

beryllium. The properties of the beryllimi material for this mirror 

are shown in Table I.
 

The mirror was restrained at the outer rim by a ,ystem which 

accommodates only symmetrical loading about the mirror axis. This 

support system restrains the mirror only in the axial direction and is 

usually referred to as a hinged support 9n rollers. A sketch of the
 

support condition is shown in Figure 5. This system is similar to a 

three-point tangent-bar mountil suspension considered in Reference 3.
 

The systems are similar in that 'both will accommodate differential 
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JJ 

t 

Figure 5o Sketch of mirror cross -ection illustrating 
boundars conditions. 

radial expansion between the mirror and support structure without 

introducing loads in the mirror. No restraints were applied at the
 

central cutout portion of the mirror.
 

For the illustration of the thernIal active optics system, 

symmetrical distortions of the prImary mirror were considered. Sources 

with a controlled temper4turp distribuion were selected to provide the 

thermal inputs. The controlled sources were applied to the rear 

surface of the mirror. In orqer to simplify the problem, only steady­

state distortions were examined, Theretore, the results of this study 

are applicable only if observations are made after steady-state
 

conditions exist. 
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Ten equally spaced stations along the meridian of the mirror 

were selected as the control points. The location of these stations 

is shown in Figure 6. The points wsre separated by a meridional dis­

tance of 5-.404 inches. Ten control points were considered to be a 

sufficient number to demonstrate this technique. The use of more 

control points would only have generated a larger matrix of influence 

coefficients and would have added little to the demonstration of the 

technique. For an actual control systea, a larger number of heaters 

may be desirable to increase the control capability. No control point 

was located at the periphery of the shetl because of the axial restraint 

imposed by the boundary condition. A thermal input at that location, 

however, would influence the distortion at the other control points. 

The thermal inputs applied by the strip heaters to the rear
 

surface of the mirror were assumed to have the form
 

Tn 4 (5)
 

0 - >4 

A sketch of this thermal input applied at a control point on the mirror
 

surface is shown in Figure 7. Thermal inputs of this form were selected
 

because they can be represented by a concise mathematical expression.
 

Also, these inputs should be relatively easy to simulate experi­

mentally since they produce no severe radial gradients. It should
 

be noted in the figure that the thermal inputs were applied to one-half
 



5.404" typical
 

i1 3 4 5 6 
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1.9" -6, 

Figure 6.- Sketch of mirror cross section showing location
 
of control points.
 

l 



= A [/2 + cas A12 

Tn c4 > A/4 

Figure 7.- Thermal inputs applied at control points along rear 
surface of mirror.
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of the interval represented by the control point. This permits a
 

spacing between the strip heater?. 

The thermal inputs of Figqre 7 were used at every control point 

except station I (see Fig. 6). A4 station 1 a slight modification of 

the thermal iput was used. Only th! right half of the distribution 

shown in Figure 7 was applied and the interior of the hole was assumed 

to be insulated. 

Internal Temperature Distribution 

The temperature distrbution indicated in equation (5) was 

applied to the rear surface of the mirror at each control point. The
 

application of this axifly symmetric thermal input wll result in 

two-dimensio,ial heat flow wthin the mirror interior. Therefore, the 

interior temperature of the mirror (;) will be 

Tm = T(J(6) 

where, 9 is the meridional coordinate and is the normal to the 

neutral surface. This temperature distribution must be determined in 

order to evaluate the effect of the thermal inputs in reducing mirror 

distortions. The internal temperature distribution could be signifi­

cantly affected by the radiation heat loss from the mirror front sur­

face. In order to evaluate the front surface heat loss at each control 

station, a thermal model of the telescope was examined. This model is 

shown in Figure 8. The mirror was represented by a flat circular disc. 

A disc was considered to be a good approximation because the mirror is 
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Figure 8.- Thermal model for calculation of axial heat loss.
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a very shallow paraboloid with an edge to center depth of approxi­

mately 1.9 inches. The temperature of the mirror and thermal shield 

are 4070 R and 3900 R, respectively, and are assumed to be constant 

over the surface. These temperatures are based on a preliminary heat­

transfer analysis reported in Reference 3. The interior of the thermal 

shield was coated with lampblack which has an emissivity of 0.96. The 

purpose of this coating is to eliminate stray radiation from falling 

on the telescope optics and introducing noise in the observations.
 

Also, the secondary mirror .nd support struts were omitted from the
 

model because the area was considered small.
 

The front surface radiation emitted by the mirror will be
 

= aamA,.Tj. 4 (7) 

where the emissivity and absorptivity are considered equal since the 

mirror and thermal shield are at approximately the same temperature. 

The mirror temperature is not 'considered to be significantly increased
 

by the thermal inputs. The radiation from the thermal shield that 

strikes the mirror is
 

Qs- m= a s Ts4AsFsm (8) 

where F., is the view factor and represents that portion of the
 

energy emitted by the thermal shield which is intercepted by the
 

mirror. Neglecting reflections, the net heat loss from the front
 

surface of the mirror is equal to the radiation emitted by the mirror
 

(caATm4 ) minus the radiation absorbed by the mirror from the thermal 

http:aamA,.Tj
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shield (sTs4 AsFsm • am). This is expressed in equation form by the 

following relation: 

Q - amAmTt - oasTs4AsFsmam (9) 

In or4er to calculate the beat loss from the mirror i will be necessary 

to evaluate the view factor (IT.) relating the radiant emission from the 

thermal shield which goes directly to the mirror. Since view factors 

are generaly difficult to calculate due to involved integrals, simpli­

fying relations are often sought. In order to determine the view factor
 

between the thermal shield and mirror (F..), it will be related to the 

view fqctor between the mirror and open port (Fmp) whibh can be readily 

evaluated. 

Since the mnrror, heat shield, and opening at the ed of the
 

telescope (port) effectively form an enclosure and the disc does not
 

radiate to itself,
 

F + F =13 (10) 
mp
ms 


Using this equation and the reciprocity relation 

Assm= A Fms (ll)
 

the view factor Fsm caz} be determined. By equation (11) 

m =mFms (12)
 

sm As
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Substituting for Fis from equation (10) 

Fsm l - Fmp) (13) 
sm 
 -As
 

Replacing F., in equation (9) by equation (13) yields 

Q = Amam[Tm4 - Ts4 as(l - 1rmp] (14) 

In order to solve equation (14), .t is necessary to determine the view 

factor P" A sketch of the geometry is shown in Figure 9. From this 

sketch end the definition of the view factgr (Ref. 9), we have 

cos/f mscos4p dAdAm (15) 
m I *2 5b2 

wzhere
 

Cos *m = Cos p (16)
 

and
 

b 4L2 +'(Pjj _%p)2 (17) 

Substituting the above equations into equation (i) and also substitu­

ting for d% gives the following equation:
 

''0 aep (18)
AmFmp =f[m+f 2rm-8% d 

' L2u: L9p
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-,,-----8o" dm dp 
da. 

L =430" b 

m 

60". 

Figure 9.- Sketch of geometry to determine view factor. 
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Integrating this equation over dP and de and substituting 
p PI
 

L = 430 in. yields the following integral over the mirror area:
 

AmFmp fJ 1.849 x 105 Pm(80 - Pm) 

1.849 x 10 + (8o - Pm)A 1.849 x l05 + (80 - Pm)2
 

Only the heat loss from the front surface at the control points 

is of interest. Each control point represents a small portipn of the 

total mirror area. Therefore, since Am is small in relation to AV
 

equation (19) gives the view factor Fmp directly in terms of the
 

mirror radius where it is to be evaluated. Therefore, 

1.849 x 1O5 + Pm( 8 0 - Pr)Fm =1 + 
2 1.849 x lO5 + (80 _ Pm) 2 

1.849 X 105 + (80- rPm)

+ PM. an-l/8 0 -Pm + tani( Pm7] (20)
L3It 430/ \hSJI 

All terms necessary for evaluating the heat loss (eq. (14)) are 

now known. The calculated values for the view factor and the heat flux 

(Q/Am) at each control point are shown in Table II. The view factors 

are quite small and do not vary significantly with the location of the 

control point. Since the heat flux is directly proportional to the 

view factor, it is also quite small. 
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The temperature gradient at the mirror surface can be determined 

using the Fourier heat conduction equation 

dT 

Simplifying this equation,
 

dT (22)
 

An examination of a typical temperature gradient (control point 5) 

indicates that
 

aT =1.86l x iO-4 R/in. (25)
 

This is a small temperature gradient due to the view factor and the 

high thermal conductivity of beryllium. Since the temperature gradient 

at the mirror front surface is small, this boundary may be assumed to be 

insulated (dT/d%: t = 0) when determining the interior temperature 

distribution. Several nonmetallic materials, including ceramics and
 

glasses, are also being considered for mirror fabrication. These
 

materials have a very low thermal conductivity and therefore would have 

a larger temperature gradient at the mirror front surface. 

The interior temperature distribution was examined by applying 

a thermal input of unit amplitude to the flat circular disc. A section 

view of the disc illustrating the coordinate system and thermal input 
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is shown in Figure 10. The thermal input is applied over the interval 

Pt. The front surface is thermally insulated due to the low-temperature 

gradient discussed previously. It should be noted that the conditions 

considered in this analysis are somewhat different from those shown 

in Figure 7. The thermal input is applied to the circular disc from 

-the center outward, whereas the actual telescope would have the central 

portion removed. The solid disc was chosen because it should have 

little effect on the internal temperature distribution and the finite­

ness condition at the center (discussed later) readily permits evalua­

tion of constants necessary for the solution of the differential 

equation. 

N T (p,C) = A(1/2 -1/2 cos Pt/ 

/ 
/ 

/\
/\ 

/ 

Thermal Insulation 

Figure 10.- Sketch illustrating the coordinate system and 
boundary conditions for determining the temperature 
distribution in a circular disc. 
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The general differential equation for an axisymmetric steady-state 

temperature distribution in a circular disc is given below (Ref. 10): 

+ - -+ 62T- 2T 13T - = 0 (24) 

The boundary and finiteness conditions applicable to this
 

problem are
 

T(O,t) is finite (25)
 

6TI =0 insulated front surface (26)

2) t=t
 

T(P,o) = A- cos 2op (27)
(2 2 %/IT 

Therefore,
 

=0 (28)

PI P=Pt 

The finiteness condition (eq. (25)) results from physical limitations 

on the temperature at the center of the disc. It was noted that the 

disc was chosen instead of an annular ring because the finiteness 

condition simplifies the solution without significantly modifying the 

problem. The second boundary condition (eq. (26)) has been discussed 

previously. Equation (28) can be shown directly from the imposed 

temperature distribution given as equation (27). The equation for the 

applied distribution (eq. (27)) is different from equation (5); however,
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the actual thermaj input is the same. The governing differential 

equation (eq. (24)) can be solved by the separation of variables
 

technique. Assume a produqt solution 9f the fqn
 

T(P,t) = R(P)Z(t) (29) 

Substituting equation (29) into equation (24) and performing the 

indicated differentiation yields the relation 

" 
1 2E 2. RE 


R - + 1 7 - - (3o)
 

Sinee the left-hand portion 6f the equation is independent of and
 

the equivalent right-band member is independent of P, bpth sides must
 

therefore be independent of t and P and may be set equal to a
 
2
 -
constant 


1 + R2 _ (31)
 

1 6PZ 2
7- = (32)
 

Equation (31) is a Bessels equation. The solution to this equation is
 

a Bessels function of the second kin4 of order zero. Equation (32) is
 

an ordinary linear differential equation whos9 solution may be obtained
 

using cperator techniques. The solutions to both equations are given
 

in equations (33) and (34), respectively.
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R C=je(? P) + c2Yo(Ap) (33) 

+C 4 e Xz=C 3 ex' (3) 

The temperature may now be determined from the product of equa­

tions (33) and (34). 

T R(p)Z(t) = EcJ( AP) + C2YoeACP)103 e + C4 e (35) 

The constants will be determined by imposing he boundary and finiteness 

conditions. The first condition requires that C2 = 0 because the 

limit Yo (?p) ' -4 -. Redefining and combining constants, the temperature 

may be expressed as
 

T = eCI(A T C2 e-)'Jo%(?) (36)
 

Partial differentiation of equation (36) with respect to t aiid
 

imposing the boundary condition of equation (26) yields the following
 

relDtion between constants Cl and C2 where t denotes the mirror
 

thickness.
 

C1 = C2 e2Nt (37) 

Therefore,
 

T = 2Jo(AP)[eAt 2?\t + e'k] (38) 
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The separation constant 7% may be defined by the fourth boundary 

condition 	given in equation (28).
 

TCa7%Jl(\pt)[~2t + e] 0 	 (39)" IP=Pt 

The only way this equation may be satisfied without having a trivial
 

solution is for
 

7 %jl( t) = 0 	 (40) 

which yields the following first four values for N:
 

Ao =0
 

3.8317
 
A, Pt
%(41) 

2 = 7-0156 
Pt 

A 10.173
 
3 Pt
 

The general solution of the equation must involve the sum over all 7
 

and may be written as
 

T = 2Co + 	 j CnJo( nP)[enI-2)nt + e - "n] (42) 

n=l 

The above equation specifies the interior temperature distribution of a
 

flat circular disc with the front surface insulated against heat losses.
 

The relation is complete except for determining the constant C which 
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may be defined using the imposed temperature distribution. By examining
 

the distribution over the interval from 0 to Pt and noting the
 

orthogonality relation, the constants can be determined from equations
 

defined in Reference 11. From the reference, the constants are
 

0= 1 f'ot 

Co J PT(PO)dP (43) 
t 0 

n2net (44)CnBn(1Sn 1+ e- J PT(PO)Jo(k0)dP 

Pt,
 

0
 

where n 1,2,3,4,.. 

Substituting A COS 2 for T(P,0) into the equation 

for C., that constant can be found to be 

A (46) 

Performing the same substitution, C. may be found to be
 

O= A f Pt P(cos 2P)Joo(?nP)dP (47) 

where Bn is given in Reference 11 as
 

Bn ' (48)TL~o (- t 



32 

Therefore, substituting C0 into equation (42) and Bn into equa­

tion (47), we have
 

T=-+ Z cnJoQ n)[2n(lCat) + en] (49) 
n1
 

-A _nP 2 
tPF ]J ? p)d (50) 

n t +ptLo.p] 2 0et
 

The integral in equation (50) for C cannot be evaluated directlyn 

but must be found graphically or numerically for each value of 

A computer program to evaluate both equations (49) and (50) was written 

in the Fortran 2.3 programing language and is included in Appendix A. 

The Gauss quatrature method was used to evaluate the integral in 

equation (50). The com~uter program was utilized to determine the 

difference between the applied back surface temperature and the tempera­

ture of the interior as a function of radius. The first 20 terms in 

the series of equation (49) were used. 

The results of these calculations for a unit amplitude indicate 

that the maximum temperature difference is 0.0160 and occurs along the 

axis of the disc. The temperature difference as a function of radius 

for 0.5 and = 1.0 is shown in Figure 11. It should be noted 

that the maximum temperature difference does not occur at the same 

location as the maximum thermal input. 
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Figure 11. - Temperature difference through a circular disc as a 
function of radius.
 



CHAPTER IV 

THERMAL INFLUENCE COEFFICIENTS 

-Paraboloid of Revolution 

The distortion influence coefficients relating the thermal input
 

and the distortion at the control points will now be determined. Several
 

techniques for determining these coefficients are available. One method 

which has been employed for the force active optics system is the finite 

element teghnique (Ref. 12). This technique consists of dividing the 

mirror intQ small interconnected elements of finite size. The deforma­

tions of the mirror are determined at the points of connection called 

nodes. The method used in the present investigation is the finite
 

difference technique in which the governing differential equations are 

solved by approximating the derivatives by finite differences between 

nodes. Either technique may be used to determine the deflection
 

influence coefficients. Once the deflection influence coefficients
 

(cij in eq. (1)) have been evaluated, a flexibility matrix for the 

control points can be formulated, The amplitude of the thermal inputs
 

necessary to correct mirror distortions can be expressed by inverting
 

the flexibility matrix. 

The equations governing the linear behavior of thin shells of 

revolution are well known and may be found in References 13 and 14. 

The basic equations will be shown here to clarify this analysis. The 

mirror was considered to be fabricated from a homogeneous and isotropic 

material and only static symmetrical distortions are of interest. The 

34
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geometry and coordinate system for a paraboloidal shell are shown in
 

Figure 12. Any point in the shell may be located by specifying its
 

coordinates (, ). The origin and positive direction of the coordinates
 

are indicated on the figure. The meridional coordinate is denoted as ,
 

the circumferential coordinate as e, and the normal to the tangent plane 

is indicated as . The neutral surface is chosen so that 

I tE dt= 0 (51) 

where the integration is through the thickness. This permits a variation
 

in the modulus due to temperature changes to be considered. The modulus
 

of the beryllium used in this analysis was considered to be constant;
 

therefore, the neutral surface will be the middle surface of the shell.
 

The principal radii of curvature Re and Rj are written in terms of P
 

and as
 

Ro P (52) 

d2 

These relationships can bq defined using the usual parabolic relation­

ship between the radial and axial coordinates.
 

p2 = 4fy (54) 



- - y 

focal 

length 

Figure 12. - Paraboloidal surface geometry, end coordinate system. ON' 
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Utilizing the definition for the length of a differential eleient
 

d9 janCI 2 + dya (55) 

we can obtain 

d_ 1 (56) 
d9 Pp-) + 

from which the radii of curvature can be shown to be 

2Re 44f2 p (57) 

2 + p2)3/2B1 = (-)x (4f (58) 

A shell element indicating the positive directions of the membrane 

forces per unit length, transverse forces per unit length, and loading 

per unit area is shown in Figure 13(a), The moments per unit length
 

are given in Figure 13(b) and the positive directions of displacement 

and rotation are shown in Figure 14. The equilibrium equations for any 

isotropic shell of revolution loaded axisymmetrically are shown below
 

(Ref. 15). 

NN8 7- : = VM 0+ q 

(59)
 

=\ ME - P - PNi+ +~Pei
=iq EelR 37g 
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q Qe E 

N
 

(a) Stress resultants and loads. (b) Moment resultants.
 

Figure 13.- Shell element with stress resultants, stress 
moments and loads applied in the positive sense. 

\e 

Figure 14.- Shell element with displacements and rotation 
indicated in the positive sense. 
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The transverse shear forces have been eliminated by using the moment
 

equilibrium equations.
 

The displacements and rotation of the midplane surface are 

relabed by 

h +- (60) 
ug 

The membrane strains are expressed in terms of displacements by 

ug ,w
 

9 R (61) 
UB p w 

=E -- 69 R9' 

The distortions due to bending are given by 

A 1 

(62) 

Neglecting the effects of stresses normal to the shell and
 

assaming surface normals to the neutral surface remain normal after 

defomation, the stress-strain relations are given by the following 

equations:
 

6+ tKg = E + MT 

(63)
 

E 



ho; 

The stress-strain relations along with the definition of the stress and 

moment resultants 

%~ fg d M t acrd () 

No a8 d~ M9 faedt 

and the relation 

f Edt = 0 ~i 

yield the following relations: 

N -VN e +fEmT d 

C - _ _ _ _ _ _ 

f E aS 

NO - vNg +fFT d 

(65) 

Mt- +f .T dvM

fj
6 

2Ed 

MO- VME +f r d 

Ke = _ 

f t2Ed 
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Equations (59) - (62) and (65) constitute a set of 11 equations relating 

11 independent variables. By combining these equations, a set of three 

second-order differential equations in terms of meridional and axial 

displacements (uj and w) and meridional moment resultant (Me) can be 

obtained. 

The three second-order differential equations are subject to
 

restraints applied along the boundary of the shell. The boundary 

conditions and mirror support system were discussed previously and are
 

shown in Figure 5. The periphery of the shell will not 'upport a 

moment M due to the hinge. The sum of forces in the radial direction 

equals zero, as do the axial displacements. The positive direction of 

forces and displacements at the outer/boundary are shown inFigurel5(a). 

The equations used in describing this boimdary condition ae as follows:
 

M= 0 

W 008 c - u sin ( = 0 (66) 

Q sin cp+ N cos ( =0 

The central cutout portion of the mirror was unrestrained. 

Therefore, no resultant forces or moments can be accommodated at this 

boundary. The positive direction of forces and displacements at the 

inner boundary are shown in Figure 15(b). The equations used to 

describe this boundary condition are as follows: 



/ 

NRR 

a. Outer boundary b. Inner boundary 

Figure 15.- Sketch illustrating the positive direction of the forces 
and displacements at the boundary. 
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N 0 

N 0 (67) 

As noted previously, diffractionliited operation of a telescope mirror 

requires that axial distortions of the primary mirror be kept within a 

tolerance limit of 2 microinches, The relation between axial distor­

tions and the distortions along the shell meridian and normal to the 

shell meridian may be seen in Figure 16. These distortions are related 

by the equation
 

8 =-wcosq -u sincp (68)
 

Therefore, the axial distortion at any point is directly related by the 

coordinates of the point and the deformation of the shell meridian. One 

finite difference solution for the linear behavior of shells of revolu­

tion has been programed by Schaeffer for the digital computer and is 

presented in Reference 16. Using this program, a digital computer will 

calculate stress and moment resultants and displhcements for thermal 

and force loading varying along the meridian of the -shell. 

Distributed Thermal Inputs' 

An analytical model of the telescope mirror was developed using 

the finite difference solution of the shells equation from Reference 16. 

Utilizing this analysis, the distortions due to the application of a
 

unit thermal input at the control point of interest was determined.
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Figure 16.- Sketch showing axial shell distortion. 

Thermal inputs at all other control points were zero, This is shown 

below in equation form. 

a1 = ClT 1 + 012T 2 + 13T3 + , . InT n 

F)2 C21T 1 + c22T2 + c23T3 + . *2nT n 

55 =c31 T1 + c32T2 + 33T3 +. . nTn 

n = CnlT1 + Cn2T2 + cn3T3 + cTMTn 
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Assume the control point of interest is number 1. If we assign T1 an 

amplitude A 1 and T2,T3,... ,T, an amplitude A 0, then 

82 = CPI 

83 C31 
 (69)
 

8 n = Cnl1 

By applying a unit amplitude at each control point separately, each 

column of coefficients may be determined.
 

The analytical model used in this analysis has the capability of 

accommodating 502 control points along the shell meridian. A large 

number of control points is desirable because it increases the accuracy
 

of the active optics system. However, since the flexibility matrix 

must be inverted in order to determine the stiffness matrix, the number 

of stations may be limited by the inversion routine. The inversion of 

large matrices is time consuming even for the best digital computers
 

available. The accuracy of the inversion is limited by the behavior 

of the original matrix. One way to avoid this is to allow the thermal 

input to span several points in the finite difference analysis. The 

midpoint of the thermal input may be selected as the control point for 

correction by the figure error sensor in the active control system.
 

The thermal inputs necessary for the correction of any given distortion,
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is therefore the amplitude (A) of the same distribution used to deter­

mine the flexibility matrix.
 

Structures subjected to concentrated force loading have symmetri­

cal flexibility matrices. Linear transformations with real symmetric 

matrices dominate the study of deformations of elastic media. Therefore, 

it is of interest to examine the flexibility matrix formed by distributed 

thermal inputs. Matrices generated by concentrated force loads are
 

symmetrical because of the reciprocity theorem. This theorem states 

that for linear structures a force Fi acting through a displacement 

caused by force Fj does the same amount of work as force Fj acting 

through a displacement caused by force Fi. This can be expressed in 

equation form as 

Fi(cijFj ) Fi(cjiFi) (70 ) 

and, therefore,
 

cij = cji (71) 

Since the coefficients of the flexibility matrix form a symmetrical
 

array, the inverse or stiffness matrix must also be symmetrical. The 

basis of the reciprocity theorem lies in the fact that the total energy 

stored in an elastic system is independent of the order in which the 

loads are applied. This is also true of elastic systems deformed by 

thermal inputs. Therefore, the systems are analogous and for concen­

trated thermal loads the flexibility and stiffness matrices are 

symmetric. 
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For distributed thermal inputs, however, the flexibility matrix
 

may not 	be symmetric. In order to examine the flexibility matrix formed 

by distributed loads, we will now examine the case for a simply supported 

beam. A continuous beam with concentrated loads applied along three 

control points is shown in Figure 17(a). The deformation at any station 

along the beam may be determined from the following equations: 

[ol °C12 013 ..... n -Tl 

82 e21 c22 c 23  024 .... '2n T2 

83 	 c31 32 c33 c34 ..... 03n T3
 
= (72) 

8n Cnl Cn2 Cn3 cn4 ..... .nn 'n 

If only 	the deformations under the loads are of interest, the equation 

can be simplified to (since T1 ,T 3,T 4, etc. = 0) 

82 	 c22 025 c28 T2
 

05c52 055 c58 T5 (73)
 

8 	 82 C8 5 088 T8
 

The application of a distributed load of unit amplitude on the 

same beam wide enough to cover several stations is shown in Figure 17(b). 

The deformations at control points 2, 5, and 8 due to the distributed 

load at 	stations 1, 2. and 3 are
 



=Tmax 1T2 T5 T8 

ii :II 

74 ''0'22n-AA4 2 ' 4 i 1 2 

a. Beam with concentrated loads b. Beam with distributed loads 

Figure 17.- Sketch illustrating elastic beam with applied loading. 
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62 = cal(K) + e22(1) + c23 (K)
 

85 = CJ(K) + c52(1) + c53 (K) (74)
 

68 = 
c8 1 (K) + c82(1) + c83 (K) J
 
where K is a constant less than 1. If a distributed load of this 

form is always applied, the amplitude of the distribution may be denoted 

as T. If the deformations at points 2, 5, and 8 are the only control 

points of interest, a new equation may be written as follows: 

5 -[C5l() + 52(C) :+: [ ] [ ] ]51(75) 

ec881 (K) + 082(1) + c83(K)] [ E 8i 

The second column of coefficients for control point 5 due to the same
 

load applied at stations 4, 5, and 6 is shown in the following equation: 

2 rEa~(K)+c 2 2 (1)+c23(K) [c24 (K)+c2 5 (l)+c26(t]l [ ] T21 

85 5 L e( 1 ) c5 2 ( l )+ 53 (K )5 [ K) c 5 5( ) c 6() 6 ] ]5 T 

88 Lcl(K) +c82 (l)+ c8 a ) [c%(K)+ 8 5 (1)+ 6 (K] [ ] 8 

(75) 

The above equation indicates that the matrix of coefficients for the
 

distributed load is not symnericalt For example, 

c5 1 (K) + 052(1) + c53 (K) / c24 (K) + e25(1) + c26 (K) (76) 
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because even though 

052 C25 (77) 

the remaining coefficients 

c51 + c53  c024 + c26 (78) 

are not necessarily equal. 



CHAPTER V
 

RESULTS AND DISCUSSION 

The thermal influence coefficients for the primary telescope 

mirror were determined using the computerized finite difference solution
 

of the elastic shells equations. Ten control points equally spaced 

along the meridian of the primary telescope mirror were selected. The
 

thermal iniputs were considered to be applied by sources with controlled 

temperature distributions located on the back surface of the mirror. 

The thermal gradients in the interior of the mirror were neglected
 

since they were shown previously to be quite small0
 

The axial distortion due to the application of each symmetrical 

thermal input is shown in Figure 18. These curves illustrate the dis­

tortion due to the application of a thermal input of unit amplitude at 

each control point. The location of each control point is indicated 

on the figure. The distortions are a maximum at the inner unrestrained
 

boundary (except for control point 7) and decrease uniformly to zero
 

at the axially restrained outer boundary. Maximum distortion is 

obtained by thermal inputs located at control points 4 and 10. It was 

noted previously that mirror distortions must be maintained to within 

2 microinches in order for the telescope to operate at the diffraction 

limit. The distortion created by a unit thermal input at control 

point 10 is over 300 times the allowable level. The large change in 

distortion between control points 9 and 10 as opposed to the relatively 

small change for points 3 and 4 indicates that this arrangement of 

51 
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Figure 18.- Axial distortion due to applied thermal input. 
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Figure18.- Coficluded. 



control points may not be an optimum selection. For a thermal active
 

optics control system, more control points at the outer region of the 

mirror should be investigated. Therefore, an examination of a control
 

system based on equal annular areas as opposed to equal meridional 

increments may be desirable.
 

The deflection influence coefficients were determined from the
 

digital data used to plot the curves shown in Figure 18. By examining 

the distortion at all control points due bo a unit thermal input at each 

control point each column of coefficients in the flexibility matrix was 

determined. These coefficients are shovm in Table III. This matrix was 

inverted using the Jordan method which has been programed for the
 

digital computer. The Jordan method is a library subroutine known as 

MATIV and is available in the Langley program library. The program 

written to utilize this subroutine is listed in Appendix B. The stiff­

ness matrix resulting from this inversion of the flexibility matrix is 

given in Table IV. These coefficients give the amplitude of the thermal
 

input necessary to correct a given set of axial distortions at the
 

control points. In addition to the amplitude of the thermal input, we
 

can also determine the accuracy of the amplitude of the thermal input
 

necessary for diffraction-limited operation. This accuracy is given by 

the product of the minimum contribution (minimum coefficients Kj ) and 

the maximum tolerable error. An examination of the stiffness matrix 

+
indicates that the minimum contribution is 9.19659 X 10 . The maximum
 

tolerable error for diffraction-limited operation was noted previously
 

to be 2 microinches. Therefore, the amplitude of the thermal input must 
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be controlled to less than
 

+ 2  -A = 9.19659 XlO 2 X 10- 6  1.8 x lO 3 R 

In order to illustrate the use of the thermal active optics 

system, the distortions due to an acceleration-type loading were 

examined. The axial distortion due to a O.Olg static acceleration load 

was determined using the computer program of Reference 16. The axial
 

distortion as a function of radius for this loading is shown in 

Figure 19. Also indicated on the figure is a sketch indicating the 

shell loading and positive direction of the distortion (8). For this 

relatively light loading, the axial distortion exceeds the tolerance 

limit indicated on the figure by a factor of about 25. In order to 

correct this distortion, it will be necessary to introduce a distortion 

of equal magnitude and opposite sign by use of thermal inputs. The 

amplitude of the corrective thermal distortions were determined from 

the stiffness matrix of Table IV. These amplitudes were rounded to the 

nearest 0.0010 R. To check the thermal inputs, the axial distortion 

due to both the acceleration load and the corrective thermal inputs 

were determined using the computer analysis of Reference 16. The 

combined distortion is shown in Figure 20. Also indicated on the figure 

is the amplitude of the thermal input for each control point. The 

maximum residual distortion is well within the tolerance limit of 

2 microinches. It is significant that only very low amplitude inputs 

are necessary to correct the distortions which exceed the tolerance 
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Figure 19.- Axial distortion of beryllium telescope mirror due to 
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limit by such a large amount. The feasibility of a thermal active 

optics system has thus been demonstrated for a cosine-type thermal 

input. 



CHAPTER VI 

CONCLUSIONS 

A thermal active optics technique to correct distortions in a
 

thin telescope mirror has been developed. This technique utilizes
 

measured distortions to determine the amplitude and location of thermal
 

inputs necessary for correction of surface errors.
 

The use of this technique has been demonstrated anajytically by 

using a beryllium paraboloid. This mirror had 10 equally spaced con­

trol points actuated by symmetrical thermal inputs. The stiffness 

matrix indicates that for this particular configuration the amplitude 

of the thermal inputs must be controlled to within 1.8 x 10-3 degrees. 

Distortions due to an acceleration-type loading were examined. These 

distortions exceeded the allowable tolerance by a factor of about 25. 

Even though these distortions were quite large, they were corrected 

to well within the required accuracy. Axial temperature gradients 

resulting from the application of the thermal inputs to the rear 

surface of the mirror were shown to be quite small. 
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TABLE I.- PROPERTIES OF BERYLLIUM
 

Property Value 

Modulus of elasticity (E) 4o x 106 psi 

Poisson's ratio (v) 0.08 

Coefficient of thermal expansion (a) 6.9 X 10- 6 OR--

Thermal conductivity 92 Btu/ft-hr-R 

Density 0.066 lb/in3
 



TABLE IL- CALCULATED VALUES OF THE VIEW FACTOR AND
 

HEAT FLUX AT EACH CONTROL POINT
 

Control Radius, Pm fctor Heat flux, Q/A 

point (in.) Fm, I (Btu/hr,in2 ) 

1 6 0.03366 11.4229 x io-3 

2 1-1.4 0.03384 1.4 24 3 x 10r3 

3 16.8 o.o34oo 1.4250 x lO-3 

4 22.2 0.03413 io4257 x l o0 3 

5 27.6 0.03424 1.4264 x 10- 3 

6 33.0 0.03433 1.4264 x io-3 

7 38.4 0.03 4O 1.4271 x 10-3 

8 43.8 o. o5-4 I1.4271 x lO-3 

9 49.2 0.03447 1.4278 x 10 °3 

10 54.0 o.o3448 1.4278 x 10-3 



TABLE III. - FLEXIBILITY MATRIX CC] 

D ;j;Lqoz-ol 3.2649GOE-01 3.34356OC401 2.9564GOE001 k,105100E+01 7.7610OOE-00-1.058000E+01-3.430500E+01-6.365200E*oI 
IFS---A 0 -9-1cl ILE 

.60§03BE-00 2AS760QE*01 3.051900E*01 3.1936OOE-01 2.8767OOE-01 2 09SSOOE-01 8.342000E.00-9.335000E+00-3.238400E+OI-6.1009OOE-01
 

,15,47200DE*0 ZiIMQPE-.01 2.776800C-02 9.49NOOE-91 2.76Ek6OQE+01 ?.975900;-Ql 9.0080OOE"0-7.8210OOE-00-3.QOOOOOE+01-5.769!OOE-01
 
A 
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,10 
-3 

x A&DOODE-00 L.51360DEtUl 2.043000E 01 2.360600E*01 2.361900E Ol 1.92qgOGE-01 1.014500E+01-4.059000E.00-2.349300E+01-4.619800E+0 1 
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7.54BOOOE-00 


1;1109OOE-01 

1.2k4BOOE-01 


1.1431OOE-01 

9.54500CE-00 


E4,0 6.90900DE-OD2 ZL4-jDOOE.00 3.1020OOE-qo 3.731000E*00 3.993DOOE-00 3 70QOQOE-00 2.60600GE-00 4.OSOOOOE-01-3.2600OOE- 0-8.7470 OE. 
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MOT REPRODUCIBLE 

mailto:0l:-4.2S37@9,E-0k
http:6.24lS1A'F-GQ-G.e4?34JilE.00
http:6.?9S6Z6E-Qli-3.94Z*S3E.Q0
http:4.6SVlZZE-0fi-3.?llSJ0E.00


APPENDfl A 

DIGITAL COMPUTER,PROGRAM TO GENERATE THE STEADY-STATE
 

TEMPERATURE DISTRIBUTION IN A CIRCULAR DISC 

JOB. A0301, 1,MARVIN RHODES - ;RD0i12,114 8,20 11
 
RUN(S)
 
SETINDF.
 
LGO.
 

PROGRA* MDR (INPUTOUTPUTTAPESiINPOT,TAPE6OfPUTKi..
 
C THIS PROGRAM WILL GENERATE THE STEADY STATE TEIPERATURE'bISTRIBUT'ION
 
C IN A DISC OF THICKNESS T
 

EXTERNAL FUNC
 
COMMON XLAM(20),I
 
DIMENSION D(I),FOFX41),ANSJN(400),ANSJ(400),ANS(400)gF(20)-


C GENERATES B(N) COEFFICIENTS DESIGNATED AS F(N) 
PRINT 3 

3 FORMAT C * COEFe. NUMBER LAMBDA BESSELS FUNCTION COjF-
IF. VALJE*) 
READ 1, ABN 

I FORMAT (2FI0.5,16) 
00 7 1=1,20 

10 READ 2,XLAM(I) 
2 FORMAT (E16.8)
 

CALL MGAUSS(A,BN,D*FUNCFOFX,1)
 
CALL BSSLS(XLAM(I)ANSJN,O,IERR)
 
C=ANSJN(1)*ANSJN(1)
 
E=1.O.EXP(-XLAM(I)/25.)

F(I)=-2.*O(It/(C*E)
 

PRINT 4.IXLAM(I),ANSJN(i),(I)
 
4 FORMAT ( 5X.13,3XE16.8,3XE16.8,3X,E16.8) __
 
7 CONTINUE
 

C GENERATES TEMPERATURE AT 0.05 RADIAL INCREMENTS FOR EACHVALUE 6V -A
CTA
0F
30 IF(EOF.5)7020 

20 READ 15,Z
 
15 FORMAT(FZO.5)
 

PRINT 17,Z
 
17 FORMAT(3H Z=,FiO.5,2HXL)
 

PRINT 18
 
18 FORMAT(6X,6HRADiUS,12XiIlHTEMPERATURE9/),
 

R=O.0
 
40 	T=1.0
 

DO 50 1=1,20
 
G=XLAM(I)*R
 
CALL BSSLS(G.ANS,0,IER)
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H=EXP(XLAN(I)O(Z2.)/50.) EXP(-XLAM(I)*Z/50.0)
 
HH=F(I)*ANS(I)*H
 
T=T HH
 

50 	CONTINUE
 
PRINT 60,RT
 

60 	FORMAT(EI6.8tSKXEI6.8)
 
R=R+0.05
 
IF(R6LT1.05) GO TO 40
 
GO 	TO 30
 

70 	STOP
 
END
 
SUBROUTINE FUNC(R.FOFX)

DIMENSION FOFX(I),ANSJ(400)
 
COMMON XLAM(2O)gI
 
A=COS(6.283185307*R)
 
B=XLAM(I1*R
 
CALL BSSLS(BtANSJOIERR)
 
FOFX(I)=R*A*ANSJ(I)
 
RETURN
 
END
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APPENDIX B 

DIGITAL COMPUTER PROGRAM TO flVERT THE FLEXIBILITY MATRIX C 

TO OBTAIN THE STIUFNESS MATRIX K 

JOBTI0400. 45000.... A301, 1. MARVIN RHODES , RD0212, 1148,2011 

SETINDF.-----------------..........
 

. PROGRAM. MAT- ..-N-UT OTLT AE5 NP-T4T P =OUTRP-UT-­
-C-4HI-S PROGRAM 4 LL-INV. R-T A.MTRX-ALbEO--A--84 --SUROUT4,NE-MAT-LNV.---NP4T--DATA-­
20 NUMELOSOWSJ -EFRIw. Bt.Y-MARIX-AA EADBy R -D_.. 
C_ OUTPUT FeR.M&T STATEMENTS (2.AND. -L.AUSL BE. CHANGED f-OR-EA.H- MAkTIx. 

~ ~ 9 
-

DIMEN$10NA(Qp~LID1s~VIi~~ ~ ~ ~ .LNPEX 00?I_~-- ­

... DI4ENSON. DELTA±_IO|LT(1I0I 
READ 1NR -­

1 FORMAT (13) 
..... READ 

2 FORMAT((OFS.5),4
 
PRINT 3
 

3 FORMAT (/40W* OIGINAL MAIRIX*/J/i
 
PRINT 4,((A(I,J),J=1NR),I=INR)
 
CALL MATINVA,NR,B.O,DETERMiP1VOTINDEX,1O4ISCALE)-
PRINJ S
 

5 FORMAT(/440X,*INVERSE OF MATIX A*///)
 

PRINT 4,94A(,J),J=INR).I=INR)
 
4 FORMAT((lE13.6,//))
 

DET=I0 **C100*ISCALE)*DETERM
 
PRINT 61 DET
 

-6FORMAT (//VAUE OF DETERMINATE IS *E16.8)
 
READ 7,(DELJA()I=II0)
 

7 FORMAT(IOF8.6)
 
DO 9 I=1l10
 
T(I k=O.0
 
DO 8 J=l,10
 

8 T(I)*A(I,J)*DEL-A(Jk+T(I)
 
PRINTIOIT(i) 

10 FORMAT(* TEMP*,12,*=*,E16.8)
 
9 CONTINUE
 

STOP
 
END
 


