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PREFACE
 

It is well known that a calculus-of-variations approach to
 

solving the Bolza form of trajectory optimization problems usually yields
 

a nonlinear two-point boundary value problem in terms of the state and
 

Lagrange multiplier variables. Closedform solutions for problems of
 

this type are difficult to obtain except for a few simple problems. As
 

a result, recent work in trajectory optimization has focused on numerical 

procedures for obtaining solutions using high-speed digital computers.
 

Particular interest has centered on a group known as the second-order
 

methods.
 

One such method is the Successive Sweep Method (SSM). It uses
 

the generalized Riccati transformation technique to bypass a direct nu­

merical integration of the perturbation equations. The reasons such an
 

approach has much potential appeal are presented in this study; however,
 

because the SSM iterates on the control values over the interval of in­

terest, considerable computer storage is necessary even for problems of
 

small dimension. This storage is required to compute corrections to the
 

assumed control. Furthermore, the Eulerian control is not obtained upon
 

convergence.
 

This research develops a new second-order numerical optimization
 

-method, the Modified Sweep Method (YaM). It requires very little computer
 

storage and provides the Eulerian control. In addition, the properties
 

and information contained in the Riccati transformation variables are
 

preserved.
 

Furthermore, this research also presents a new scheme for defi­
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ning classes of numerical optimization methods. The Successive Sweep
 

Method and the Modified Sweep Method are then discussed in terms of
 

differences arising because each falls into a different class. The Xodi­

fied Sweep Method is subsequently compared numerically to the Method of
 

Perturbation Functions (MPF), both of which belong to the same class. 
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sity of Texas at Austin for many helpful discussions concerning the Apollo 

reentry problem, to Mr. I. J. Kim, of Lockheed Electronics Company, Hous­
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of The University of Texas at Austin for helping with the data. He also 
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thanks is due to Mr. E. L. Davis of NASA/MSC for making this research
 

possible, and for his personal interest and friendship which have pro­
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The author expresses his indebtedness to Professor B. D. Tapley
 

of The University of Texas at Austin, who suggested this research and
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visor.
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Publication No.
 

Daniel Colunga, Ph.D.
 
The University of Texas at Austin, 1970
 

Supervising Professor: B. D. Tapley
 

A Modified Successive Sweep Method was devised which yields
 

Eulerian solutions to two-point boundary value problems of control opti­

mization. This was accomplished by requiring control satisfaction of
 

local optimality over the entire time interval of interest while simul­

taneously relaxing terminal transversality requirements on the Lagrange
 

multipliers.
 

The new method was tested successfully on several classes of
 

problems including optimizing the roll program for an Apollo-type three­

dimensional reentry trajectory so as to minimize a time integral of
 

spacecraft heating and acceleration.
 

This new method was--shown to require significantly less computer
 

storage than the original Successive Sweep Method while requiring numeri­

cal integration of fewer variables. In addition, the method was shown to
 

possess rapid terminal convergence and a conjugate-point test capability.
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NOTATION LEGEND
 

Derivatives:
 

Ordinary
 

For any variable W
 

DW = dW
 
Dt dt
 

Partial
 

For the variables x,y the scalar S and the vector V
 

-=V 
x x
 

3 (DS)TS as 
y ,yx ay
 

Differentials:
 

dW total differEntial of the variable W
 

Variations:
 

SW total variation of W
 

sIW first variation of W
 

62W second variation of W
 

Transpose:
 

wT transpose of W 
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Subscripts:
 

For any variable W
 

W = (W)t = W(t ) value of W at the initial time
0 

Wf = (W)tf =W(tf) value of W at the final time
 

Norm:
 

The Euclidean norm of the error in satisfying the term terminal
 

constraints is used as follows:
 

IlErrorIl jI J I + iIMfil + 

x
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Indices:
 

n 


m 


p 


q 


Scalars:
 

t 


J 


G 


Q 


P 


Vinitial 


H 


H 
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4 s 
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CHAPTER 1
 

INTRODUCTION
 

Optimal control of spacecraft trajectories requires obtaining
 

an optimal (maximum or minimum) value for an appropriate scalar quantity.
 

This scalar quantity measures spacecraft performance and is called the
 

perfoncrnee index. In addition, terminal conditions such as might be 

specified for intercept or rendezvous problems must often be satisfied
 

simultaneously.
 

After the problem has been formulated mathematically, several
 

conceptual approaches are available to obtain the conditions required to
 

solve tile optimization problem. Among the more usual approaches are the
 

calculus-of-variations, dynamic programming, and Pontryagin's Principle.
 

The calculus-of-variations is considered here because specific
 

optimal control problems can be considered as particular cases of the 

more generalized Bolza problem of the classical calculus-of-variations. 

The powerful results associated with this classical theory thus are avail­

able for attacking optimal control problems. 

The calculus-of-variations approach yields a nonlinear two-point
 

boundary value problem for which closed-form solutions are usually not
 

possible. Sophisticated numerical procedures have been developed because
 

of the need to solve these problems. These procedures have become feas­

ible in the last decade because of the development of large-scale digital
 

computers.
 

This chapter introduces the definitions and terminology used
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throughout the dissertation. A brief history of the development of the
 

numerical optimization methods is given also with interest centering on
 

the second-order variational methods. The class of trajectory optimi­

zation problems to be solved is stated, as well as tAe associated non­

linear two-point boundary value problem obtained from using a calculus­

of-variations approach.
 

Chapter II discusses (1) the second-order variation approach
 

used to solve the nonlinear two-point boundary value problem, (2) the
 

general set of perturbation equations for second-order methods, and (3)
 

techniques used to achieve an integration of these perturbation equations.
 

Chapter III presents the Modified Sweep Method based on the
 

generalized Riccati transformation. Chapter IV develops the linear feed­

back control law for the Modified Sweep Method. The numerical results
 

obtained using this new method are discussed in Chapter V, with conclusions
 

and recommendations presented in Chapter VI.
 

1.1 Definition of Terms Used
 

The MSM (Modified Sweep Method) is obtained from the SSM (Suc­

cessive Sweep Method) by requiring that the control satisfy both local
 

optimality and strengthened Legendre-Clebsch condition over the entire time
 

interval of interest. This optimal control is then eliminated from the
 

Hamiltonian for the problem and the restructured Hamiltonian used to obtain
 

the nonlinear differential equations for both the state and Lagrange multi­

plier variables. As in the case of the SSM, the MSM then uses the
 

generalized Riccati transformation to solve the linearized two-point
 

boundary value problem in terms of the state and Lagrange'multiplier per­
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turbations. This is done while simultaneously relaxing the terminal trans­

ver§ality requirements on the time-dependent Lagrange multipliers. It is
 

desIrable to compare the proposed XSM to other existing numerical opti­

mization methods. For this reason, a study was made of several well-knovn
 

metrods which appear in the literature. This author felt that these methods
 

wer4 representative of the properties contained in the set of variational
 

methods for the numerical solution of-optimization problems. It is empha­

sizsd that only a representative portion of the total number of existing
 

n=_Erical methods has been used for this study. In addition, the second­

ordfx methods intentionally have been selected more extensively than the
 

fir t-order methods. The generalizations made, therefore, pertain only to
 

tho;a methods contained in Section 1.2 on the historical development of
 

numnrical 	optimization methods. 

This study of the selected group of existing methods revealed a
 

set of properties which can be employed to describe the characteristic 

fea-ures for each method. These properties have been used to specify, ar­

bitarily, 	twelve classes of numerical optimization methods. Each method
 

can then be identified as belonging to a particular class according to the
 

foilowing 	properties: 

(1) 	the ORDER (first or second) of the theory upon which the
 

method is based.
 

(2) 	the APPROACH (direct or indirect) used by the method to
 

compute the required corrections.
 

(3) 	the ITERATION PROCESS (interval, boundary or hybrid) used
 

by the method.
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The following definitions are used:
 

Definition 1: Order of the Method
 

A method is described as first order if it is based only upon
 

the theory of the first variation for a real functional. If a method is
 

based upon the theory of the second variation for a real functional, it is
 

described as a second order method.
 

Definition 2: Approach of the Method
 

A method is said to take a direct approach if the required
 

corrections (state, control or Lagrange multipliers) are computed such
 

that the performance index for the augmented variational problem is
 

'itself directly affected in some manner to expedite convergence. If a
 

method chooses to compute the required corrections based on the set of
 

first-order necessary conditions required for optimality with respect
 

to the control, then the method is said to take an indirect approach.
 

Definition 3: Iteration Process for the Method
 

A method is said to use an interva value iteration process if
 

the end result of a particular iteration is the computation of correc­

tions to the variables (state, control, or Lagrange multipliers) over the
 

entire time interval of interest. Methods which compute corrections to
 

these same variables at a boundary only are said to use--a boundary value
 

iteration process. If a method combines both an interval and boundary
 

value iteration process, it is described as using a hybrid iteration pro­

cess.
 

Definition 4: Convergence far a Method
 

(a) Control Function Iteration Method. Given an arbitrary
 



numerical tolerance s, a control function iteration method is said to
 

have achieved convergence if
 

iiTIi
II + i~xfli + E f< 

where
 

It 1 	 max {Abs[HTuA,t)]} t < t < t 
u(t) U 0 - f 

(b) Boundary Value iteration Method. Given a numerical toler­

ance e, a boundary value iteration method is said to have achieved con­

vergence if
 

+ fl<II~I+lif Q 

The symbols H, Zf, Mf and Rf are defined in Section 1.4.
 

Using these definitions, Table I summarizes the twelve classes
 

of numerical optimization methods extracted from the methods chosen as
 

representative for the study. Reference numbers specify major studies in
 

each class while the acronyms (SSM, etc.) identify the particular class
 

for the three methods to be compared in detail.
 



TABLE I
 

CLASSES OF NUMERICAL OPTIMIZATION METHODS 

CLASS ORDER APPROACH ITERATION PROCESS REFERENCES
 

1 1 Direct Hybrid
 

2 1 Direct Interval value 4,12
 

3 1 Direct Boundary value
 

4 1 Indirect Hybrid
 

5 1 Indirect Interval value
 

6 1 Indirect Boundary value 

7 2 Direct Hybrid 

8 2 Direct Interval value 19,26 

9 2 Direct Boundary value 35 

10 2 Indirect Hybrid 3,13
 

11 2 Indirect Interval value 23,27 (SSM)
 

12 2 Indirect Boundary value 10,11,16
 
(MSM,MPF) 

As shown in Table I, the class of second-order methods which
 

take a direct approach in computing the desired corrections and implement
 

a hybrid iteration process was not represented in the methods chosen for
 

the study. Furthermore, Classes 1,3,4,5 and 6, all first-order methods,
 

were also not represented. This can be attributed to the fact that second­

order methods were of primary interest in this study.
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The smilarities and differences between the three numerical
 

:m zat.tcn, =mItodc; (SSM, MSM and MF) to be discussed are noVI obvious. 

~-_thte are macond-order methods which use an indirect approach in
 

:-putu,- g the n=_quired corrections for the state, control or Lagrange 

"-io>Cr varlzsles. The SSM falls into Class 11 because it uses an 

:ervJ- itera_on process. Both the MSM and !F fall into Class 12 

,causea each ises a boundary iteration process. 

A hizorical development of the methods chosen for the study 

aeti'i d nor for reference purposes. 

rzca- Information 

Fir:-Order Methods. The first numerical procedure for solving
 

trot czg r-zation problems which generated active interest was devel­

d 4nd-ende:zly by KelleyJ 2 and Bryson and Denham4 . Their research
 

-andc-d ,he c-mcept of steepest descent developed earlier by Courant5 .
 

Cla:,s 2 mazhod was based on the first-order variation of a scalar
 

ion,;, wz:h a control function assumed for the time interval of in­

.st. Crre tions to this control were then computed iteratively using
 

;din.y gr-ient technique. Applications showed that the method was
 

to t pleent and tended to convergence with even gross initial control
 

The 2ethod, however, possesses two undesirable features. First,
 

-arge-c rate decreased asymptotically during the terminal stages 

-_-.on. 
 Second, once convergence was achieved, the control obtained 

-;ih-- a numerical tolerance of the Eulerian control. 

Due to the first undesirable feature, numerical procedures to 

- the convergence rate flourished. These were all first-order 
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methods and are not discussed in this research. Both features led to the
 

development of the second-order methods which sought to increase conver­

gence as well as provide the true Eulerian control.
 

Second-Order Methods. Jurovics and Iclntyre 1 solved the two­

point boundary value problem of trjaectory optimization by using the equa­

tions which are adjoint to the linearized Euler-Lagrange equations. Their
 

method was called the Adjoint Method (G4ethodof Adjoint Functions), and
 

extendod the work of Goodman and Lance7 to allow for variable terminal
 

time. The Adjoint Method is a Class 12 method wherein an indirect approach
 

is used to compute the desired corrections while iterating on the initial
 

boundary values of the Lagrange multipliers.
 

Breakwell, Speyer, and Brvson 3 developed a "second variation"
 

metho- (Class 10) to solve control Cptimization problems. Kelley, Kopp,
 

and MYer 1 3 also developed a "second variation" method similar to the 

previcus one. Jazwinski1 0 developed a modified adjoint method equivalent
 

to thz second-variation method of Breakwell, Speyer, and Bryson 3 by ex­

tendit. the method of Jurovics and McIntyrel1 . Jazwinski's method had
 

the s-ecific advantage, however, of requiring considerably less storage.
 

Furthtrmore, it required less computer time in that fewer integrations of 

an eq2.valent set of equations were necessary.
 

jMcGill and Kenneth 2 0 developed the Generalized Newton-Raphson
 

Operaor Method for solving two-point boundary value problems. This method 

falls into Class 11, which uses the indirect approach linked with an 

interal value iteration process. A proof of quadratic convergence for
 

the m:chod had previously been given by these same authors21 . This method's
 

major arawback was the laborious manner in which corrections to the final
 

time alue were computed.
 



An alternate approach, the Modified Generalized Newton-Raphson
 

4chod, using t.e same method was developed by Long17 . To eliminate the
 

,swata handlin of free final time, a change of independent variable was
 

sed 'r the frea-final-time corrections. Another method based on the
 

wtoj-Raphson approach, but incorporating a-better technique for compu­

ng u;me free-f:nal-time corrections, is the Modified Quasilinearization
 

erhod developed by Lewallen1 6. Sylvester and Meyer36 have also used the
 

aetonRaphson approach, calling it quasilinearization.
 

A me-.hod based on the theory of both the first and second vari­

.:ion5 was devised by Merriam 6 . This is a Class 8 method in which a
 

.recat approae. is taken for computing corrections to the control functions
 

,ssumd throughout the time interval of interest. This particular method 

as instrumental in the development of the successive sweep method discus­

d ln the next paragraph. 

McRenolds and Bryson2 5 introduced the successive sweep method 

-r solving o;:inal control problems. Although the method is a second­

c'kr method, --e Eulerian control requirement is relaxed. The method is 

-od on the gZneralized Riccati transformation and falls into Class 11 

ble I). A similar method called successive approximation was developed 

:itter2 7 . 3a also showed the formal equivalence of this method to 

_on's Methos. 

LewSlen1 6 also introduced the Method of Perturbation Functions
 

1 0
fl, based = previous work by Breakwell, et al., 3 and Jazwinski . The 

'1od falls fzto Class 12. Lastman1 4 has shown the equivalence of all 

-se methods to Newton's Method. 

Suthrland and Bohn35 have recently developed a method which falls 



into ClAss 9, which uses a direct approach to compute boundary corrections
 

for the initial values of the multipliers.
 

iMayne 19 developed a second-order method which falls into Class 8
 

(Table I). However, a dynamic programring technique is used to attack the
 

optimization problem instead of a calculus-of-variations technique.
 

Jacobson9 extended the Class 11 features into a new second-order
 

algorithm through use of a differential dynamic programming technique. His
 

method generalizes the successive sweep methods of McReynolds2 3 and
 

Mitter27 .
 

The development of the MSM completes the historical development
 

for the numerical optimization methods chosen.
 

As was mentioned previously, it is now desirable to compare the
 

MSM to both the SSM and the NIPF. Toward this end, a general class of con­

trol optimization problems is first chosen. This class of problems is
 

presented in the next section.
 

1.3 	Class of Control Optimization Problems to be Solved
 

Posed as a special form of the Bolza problem from the calculus­

of-variations (see Blissl), the general class of control optimization prob­

lems to be solved is stated as follows:
 

In the time interval t < t < tf ) find an m-vector of control
 

variables 	u(t) to minimize the real functional,
 

tf
 

j
J(u) = G(xfltf) + Q(x,u,t) dt (1) 

t 
0 
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subject to the n-vector of differential constraints,
 

(2)
x f(x,u,t) 


while satisfying the p-vector of known initial conditions
 

(3)
N(xo,to) = 0 

and the q-vector of desired terminal conditions
 

0 (4)
M(xf~tf) = 

The control and state variables in the following discussion are
 

assumed to be defined on completely open regions and thus are not subject
 

to inequality constraints.
 

1.4 Associated Nonlinear Two-Point Boundary Value Problem
 

Proceeding in the usual calculus-of-variations manner for solving
 

the Bolza problem of control optimization stated in the previous section, an
 

augmented functional denoted as I is first formed. This augmented func­

tional has the property of being formally equivalent to the original func­

tional; it incorporates the desired auxiliary conditions through the use
 

of Lagrange multipliers. To form this augmented functional, the n-vector of
 

Lagrange multipliers A(t) and the p and q vectors of constant Lagrange
 

multipliers p and v adjoin the desired auxiliary conditions to the ori­

ginal functional as follows:
 

(5)
I = J + VTN + TM + XT(f - x) dt 

t 
0
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For convenience of notation, this functional is rewritten as
 

tf T. 

I = P + 7 + (H - Xx) dt (6) 

t 
0 

where
 

P = P(xf,,tf) A G(xftf) + TM (xf,tf 

V = V(Xop,to) A )TN(xo'to)
 

S= H(X,u,Xt) = Q(x,u,t) + Tf(x,u,t) 

and x = x(t) $ u = u(t) ), = x(t) 

The scalar H is the variational Hamiltonian for this class of problems.
 

Necessary Conditions. The set of first-order necessary condi-­

tions which must be satisfied by the extremal control for the augmented
 

functional of the type above is obtained by requiring the first variation
 

of this functional to vanish. These conditions are well documented in the
 

literature (for example Bliss l, Hestenes8 , Pontryagin30 , et al., Tapley and
 

Lewallen38 ). In summary, these conditions are
 

T 

HT(x,u,A,t) 0 (9)
 

U 
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0 ( +AT)t = 0 (10 
0 

t - to N(xo,to) 0 (i1) 

A -H) = 0 (12) 

0 

T A T
 
f (Px- = 0 
 (13)
 

t = tf M(xftf) 0 (14) 

Qf A (Pt + H)tf_ 15= P +1 = 0 (15) 

Equations (7) through (9) constitut 2n+m Euler-Lagrange equations for
 

this class of problems. Equations (11) and (14) are the p+q specified
 

initial and final values of the problem state variables. The remaining
 

equations form the 2n+2 set of classical transversality conditions from
 

the calculus-of-variations.
 

The control optimization problem thus is posed as a nonlinear
 

two-point boundary value problem for the 2n+-Im variables x(t), u(t),
 

and A(t) and the p+q+2 parameters p, v, to, and tf in terms of
 

the 2n differential equations (7) and (8), the m algebraic equations
 

(9), and the 2n+p+q+2 conditions in equations (10) through (15).
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It 	is assumed that the initial time t0 and n values of the
 

initial state x(to) = x are specified. Equations (10) and (12) are 

then identically satisfied and therefore disregarded in subsequent dis­

cussions.
 

Sufficiency Conditions. To ensure that the control satisfying
 

these first-order necessary conditions does indeed generate a weak mini­

mizing solution, the second-order variation of the augmented functional
 

I(u) must be positive everywhere in the interval of interest when it is
 

evaluated along an extremal trajectory (Gelfand and Fomin6 ). Th:s re­

quirement leads to the following additional set of second-order conditions:
 

1. 	Strengthened Legendre-Clebsch Condition
 

The strengthened Legendre-Clebsch condition must be satis­

fied everywhere in the interval of interest. Specifically,
 

for any arbitrary change in control &u(t)
 

6uTH au > 0 	 (16) 

is 	required.
 

2. 	Jacobi (Mayer) Conjugate Point Condition 

The Jacobi (Mayer) conjugate point condition must be satis­

fied everywhere in the interval of interest'. This requires 

that no two points exist in the interval t< t < tf which 

are conjugate to one another. 

The following restrictions on the definitions presented in Sec­

tion I are subsequently assumed in this research: interval iteration
 

corresponds to control function iteration and boundary iteration corres­

ponds to Lagrange multiplier iteration.
 



CHAPTER 2
 

THE PERTURBATION EQUATIONS
 

The second-order variational methods seek to solve the nonlinear
 

two-point boundary value problem associated with trajectory optimization
 

by solving an equivalent linearized problem in terms of perturbations in
 

the problem variables. The six classes of second-order methods are dis­

tinguished by approach and iteration process. Furthermore, each method
 

for a given class is distinguished by the technique used to perform the
 

numerical integration of the perturbation equations which are obtained
 

from a first-order perturbation of the Euler-Lagrange equations, viz.,
 

Equations (7) through (9). These perturbation equations can assume one of
 

two forms with each form patterned by the iteration process selected for a
 

given method.
 

As in the case of the SSM (Successive Sweep Method), if a con­

trol function iteration process is used, a "PE" scheme is used to obtain
 

the perturbation equations. The acronym "PE" designates the following
 

procedure: Perturb the Euler-Lagrange equations and then Eliminate the
 

control perturbations. If a Lagrange multiplier boundary value iteration
 

process is used, an "EP" scheme is used to obtain the perturbation equa­

tions. The acronym "EP" similarly designates the following procedure:
 

Eliminate the optimal control and then Perturb the resulting Euler-Lagrange
 

equations. These two schemes for generating the perturbation equations
 

for second-order methods are detailed below.
 

2.1 	The PE Scheme
 

The PE Scheme is associated with control function iteration
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schemes such as the SSM. It proceeds by first perturbing the first­

order necessary conditions for stationary control. Then the perturbatioa
 

in the control are eliminated from the perturbed Euler-Lagrange equations
 

for the state and Lagrange multipliers and the appropriate transversality
 

conditions. This scheme tacitly assumes that the matrix H is nonsin­uu
 

gular everywhere in the time interval of interest. The set of perturba­

tion equations associated with this scheme is outlined in Appendix A and
 

are summarized here as
 

S6x 1 A 
 B 
 6 
 vi
 

6i -J -AT 6A -w (17)
 

where
 

A=-HIH~i + H
Xu uu ux Ax
 

-l'
 

B =-H H lH

Xu un uA
 

C = -H H-IH + H
Xu uu ux XX 

V = H H-16H T 

XU uu U
 

H H-16H
T
 

w = 

Xu uu U
 

and H = H(x,A,u,t) while the Hamiltonian partials HXu Hxu etc., are, 


evaluated on the known trajectory. The known trajectory is called a nomi­

nal (or reference) trajectory.
 

Note that for this scheme, the system of perturbation equatLons
 

assumes the form of a set of inhomogeneous first-order linear differential
 

equations with time-dependent coefficient matrices.
 



2.2 The EP Scheme
 

The EP Scheme is used by the boundary value iteration methods.
 

It proceeds by first using the control optimality condition HT = 0 ana
 
u 

the strengthened Legendre-Clebsch condition 6uTR u > 0 to eliminate
fu
 

the control from the Euler-Lagrange equations for the state and Lagrange
 

multipliers, as well as the appropriate transversality conditions. The
 

revised set of equations are perturbed then to obtain the following homo­

geneous set of first-order linear differential equations.
 

~ i-C -AT SA ( 

where
 

A = x 

- B H , 

C H xx 

H H(x(t), X~t), xXt))
 

is the control obtained using the conditions that HTu 0

and u(x,A,t) 


and H > 0. It is important to note that this scheme involves the as­un
 

sumption that the Hamiltonian H for the particular problem is structured
 

= can be used to obtain the explicit rela­such that T 0 and H > 0 

U uu 

T
tion u(x,X,t). Implicitly, such a relation is assured if 


H1- > 0 ; however, such an explicit relation may be impossible to obtain
 

for some problems.
 



2.3 Integrating the Set of Perturbation Equations
 

It has been pointed out previously that second-order methods
 

within a given class differ only in the technique that is used to inte­

grate the set of perturbation equations. The two techniques presently
 

available for accomplishing this integrating are detailed below.
 

Explicit Integration. Methods using this technique choose to
 

integrate directly the perturbation equations to obtain the perturbed
 

values over the interval of interest. Some investigators have found (see
 

for example the work of Merriam2 6) that these methods suffer from numer­

ical instabilities. Instability here is used in the sense that small
 

errors in numerical precision will become exponentially very large over a
 

long interval of numerical integration. The nature of these instabilities
 

is associated with the numerical integration for coupled systems of linear
 

differential equations which have split boundary conditions and admit both
 

increasing and decreasing exponential solutions.
 

Implicit Integration. Methods which presently use this technique
 

are based upon a transformation process such as the generalized Riccati
 

transformation. The technique consists of bypassing direct integration of
 

the perturbation equations, and integrating a set of auxiliary variables.
 

These in turn can be used to compute the perturbed values for the variables
 

in the perturbation equations. Several advantages are claimed for this
 

technique. First, the differential equations for the new auxiliary vari­

ables have been reported to be more stable numericallj than the original
 

perturbation equations. Second, these auxiliary variables contain addi­

tional intrinsic information about the optimal trajectory for the problem
 

being solved.
 



A strong case concerning increased numerical stability in first­

order linear two-point boundary value problems has been made by Rybicki
 

and Usher31 . However, work by Williamson39 and this author has revealed
 

that problems wihich have large differences in sign and magnitude for the
 

eigenvalues of the coefficient matrix in the linear system of equations do
 

not behave well numerically with the generalized Riccati transformation
 

technique. This author's opinion is that a valid generalized statement is
 

yet to be made concerning the numerical stability properties of the Riccati
 

transformation technique.
 

That the auxiliary variables could contain additional intrinsic
 

information certainly proves to be true. The earlier methods lacked in
 

.one respect: after convergence had been achieved, they required that post­

convergence procedures be used to test the Legendre-Clebsch condition and/
 

or the Jacobi-Mayer conjugate point condition. Those methods which used
 

the "EP" Scheme to generate the set of perturbation equations automatically
 

took the Legendre-Clebsch condition into account when eliminating the con­

trol from the set of Euler-Lagrange equations. However, the Jacobi-Mayer
 

conjugate point condition still must be tested. This condition was often
 

ignored and the converged solution was assumed to be a local optimum.
 

However, using the generalized Riccati transformation technique
 

on the perturbation equations provides the advantage of additional infor­

-mation for the current reference trajectory. Information is contained
 

among these auxiliary Riccati variables for testing the Jacobi-Mayer con­

jugate point and abnormality conditions from the calculus-of-variations
 

(McReynolds2 3). It is well-known that the existence of a conjugate point
 

precludes a trajectory from being optimal. The existence of such a con- ­



jugate point can be automatically detected continuously during the back­

ward sweep process. This is accomplished by use of the fact that the ­

matrix solution to the Riccati differential equation becomes unbounded at 

a conjugate point. 

On the other hand, the abnormality condition is equivalent to a
 

certain matrix of these auxiliary Riccati transformation variables be­

coming singular at the initial time. This information is important be­

cause such a condition is tantambunt to the inability in making correct­

ions for values of the terminal constraints. This abnormality condition
 

occurs for the Bolza problem if the boundary conditions at the final time
 

are not linearly independent (McReynolds23).
 

This leads to speculation concerning additional informatioA
 

about the reference trajectory which might be contained in the other Ric­

cati transformation variables, either individually or in some combined
 

form. To this author's knowledge, little work has been done in attempting
 

to extract such additional information.
 

2.4 	 The Generalized Riccati Transformation Technique 

The generalized Riccati transformation is a transformation which 

changes the original two-point boundary value problem in terms of the 

coupled linear system of differential equations to an initial-value prob­

lem having uncoupled variables and boundary conditions. This initial 

value problem is now stated in terms of -n original problem variables, 

and in the general case, a total of (n(n+i) + q(q+l)] /2 + ((nxq) + 

3(n+) + 21 auxiliary Riccati variables where n is the number of state 
v
 

variables and "q is the number of terminal constraint. Since the coupled
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system of perturbation equations is integrated implicitly by integrating
 

these auxiliary variables, it was expected that the differential equations
 

for the auxiliary variables would be numerically more stable than the ori­

ginal equations. Furthermore, Breakwell and Ho2 have shown agreement with
 

McReynolds2 3 in that the conjugate point condition is related directly to
 

the boundedness of an (nxn) matrix of Riccati variables which must satisfy
 

a matrix version of the scalar Riccati equation over the time interval of
 

interest.
 

This transformation approach proceeds to solve the original non­

linear two-point boundary value control optimization problem in the fol­

lowing manner. A solution to the original nonlinear problem is assumed,
 

and the corresponding terminal conditions are obtained. In general, these
 

conditions are not satisfied to within the specified error tolerances.
 

Desired changes, in these terminal conditions are specified, and the gen­

eralized Biccati transformation is used then to generate a linearized field
 

of solutions about this assumed solution. The transformation allows the
 

specified changes in the set of terminal conditions to be mapped back to
 

the initial time, when the particular member of the field that also satis­

fies the initial conditions is selected. A new solution to the original 

nonlinear two-point boundary value problem is then computed using the lin­

earized corrections, which are obtained through use of the auxiliary PlUic­

cati variables. As before, the new solution does not satisfy the desired
 

terminal conditions exactly due to the linearity assumptions. However, the
 

process can be applied iteratively until the desired terminal conditions
 

are satisfied to within a suitable error tolerance.
 

Historical Background. A Riccati transformation technique was
 

first used by Gelfand and Fomin6 in their successive sweep procedure of
 



,solving two-point boundary value problems for linear inhomogencouc
 

of second-order differential equations. The same transformation.u­

eralized and discussed for systems of first-order equations by Ryk
 

Usher. 31 McReynolds 2 3'2 4 and Mittcr2 7 used the successive swepme
 

with the Seneralized Riccati transformation technique to solve-tle
 

linear two-point boundary value problem of control optimization. ,c:
 

and Lee3 2 have developed a Newton-Raphson method which uses the Ric
 

transformation technique. Speyer and Byrson3 4 have extended the ctn
 

of the Riccati variables for the case when some of these variablesnea-,
 

unbounded. Narha and Berry2 8 and Omicioli2 9 have applied the &e
 

sweep method of McReynolds to the shaping of optimal finite-thW,
 

transfer trajectories for which the control function is characjLgmy
 

discontinuities. McGregor 2 2 has used the same method but has i
 

modifications to handle problems with inequality constraints wbfezt
 

the control explicitly. 1ost recently, Longmuir and Bohn 8 have&
 

how this technique can be used with any second-order method.
 

Analytical Development. The generalized Rircati transfn=-a 

for the linearized control optimization problem can be written itzac
 

-form as 

dMf = R(t) dv + p(t) 

r f 

http:Usher.31


where dMf, d~f, dv, and dtf 
 are constants for a particular iteration
 

and
 

K D
 

R E F g P
 

T T 
y z s 

where K, E, y 
 respectively map given state perturbations Sx(t) into
 

changes in the multipliers 6A(t), 
terminal state dissatisfactions dM.
 

and terminal Hamiltonian transversality dissatisfaction dof and
 

K(t) is an nxn symmetric matrix
 

E(t) is a qxn matrix
 

y(t) is an n-vector
 

T

T
Also, D, F, z , respectively map changes in the multipliers 
 dv into
 

changes in the multipliers 
 SA(t) , terminal state dissatisfactions M-, 

and Hamilt6nian terminal dissatisfaction do , and 

D(t) is an nxq matrix
 

F(t) is a qxq symmetric matrix
 

z(t) is a q-vector
 

The scalars £, g and s respectively map changes in the final
 
time dtf into changes in the multipliers 6X(t), terminal state dissat­

isfactions dMf and the dissatisfaction in the terminal Hamiltonian, dL.
 
t
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The quantities n, C and 0 respectively map changes in termi­

nal local optimality dissatisfaction or terminal transversality dissatis­

factions by the multipliers into changes 6X(t), dMf, and dQf
 

Differentiating the generalized Riccati transformation (Eq. 19)
 

with respect to time gives
 

6 x 16x 

o dv +R 0 + (20) 

o dtf 0 

Expanding the middle term on the right and transposing to the left yields
 

I -K 6x n 
Iax
 

0 -E dv +(21) 

0 -y T dt. 

Using the perturbation equations, Equations (17), to eliminate 6i and
 

6x leads-to the following expression
 

In -K 6x
 

R d (22)
 
B' AJI]
T
0 -Y 
 dtf
 



Now 

f B 	 [,6 A 7 (23)
6 x 	 B 6 

Using the first row of the Riccati transformation, Equation (19), the
 

following relation can be readily obtained.
 

6x
 

6x in 0t 0o 
= : d + (24)6x 	 D k T 

dtf
 

Substituting Equations (23) and (24) back into Equation (22) gives
 

I 	 6x}
 

IBnTJK 
-C 


0 -E 
-ATJ 

I 
 0 
 0' 	 dv + + 
0 YT A , dtf + 

6x
 

R 	dv + (25)
 

dtf
 



Multiplying and collecting terms for arbitrary 6x, dv. and dt, 

the following equations must hold 

= -ST r' 

where
 

BnA 0 

YF TE 

Performing the matrix multiplications yields the familiar set of equa­+KW+K 


tions for the Riccati variables.anr 
C 

T1 
+ i7 a 

dt
 

T ET 0 0 
A ( 

S(A 
 + vK) EBD BZ (28)
 

T + B ) T T 
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(AT + KB)n + (Kv + w)
 

d-
 E(Bn + v) 


yT(Bn + v) 

From Equation (28), the following rates of change for the Ric­

cati variables are found to be equal: E (t) = f(t), y(t) = j(t) and 

If, then, at the terminal boundary ET(tf) = D(tf), Y(tf) 

Z(tf) and z(tf) = g(tf), the following will be true: ET(t) = D(t),
 

y(t) = z(t) and z(t) = g(t). This means not only that the matrix of 

Riccati variables R(t) given in Equation (19) is symmetric but also that
 

Equation (26) itself is also symmetric. In this case,
 

-SWS (30)
 

where S and W are defined on page 26.
 

Terminal Boundary Conditions. The derivations of the general­

ized set of terminal boundary conditions for the Riccati variables are
 

presented in Appendix B. In summary, these boundary conditions are ob­

tained from
 

6Af (Pxx) MT a 6x f t 
Xf 

dMf Mxf 0 f dv + 0 (31) 

T +T +T dtdf)af 
 2 Mf +T3 Bf+T4j dtfj
 



The boundary condit.ons 

R(tf) = 

and P(tf) = 

where
 

f 


"t 

thus are 

K(t) 

E(tf) 


yT(t) 

(pxx f 


T 


DLf) k(t 

F(tf) g(tf) 

zT(tf) s(tf) 

xf f
 

T
 

TI (t 

(tf) 

f 

0 

T 

(33) 

T 

AD 

t Dt 

+ 

f 

-

L 

3HMjf_ 

f 

-1 
1 

u uu ux 

+ HF)t 

11)t 
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and (1, H-H -6 T H utid21unuu uauu 
 ft
 

LnterVal Va ue Process. Methods using this process start b­

assuming a control function over the time interval of interest. In 

general then, HT (t) # 0. For such methods, the Lagrange multipliea.
U 

can be made to satisfy the transversality conditions identically;
 

f = 0. The Successive Sweep Method is an example of a contro4.mWa
 

iteration process. The terminal boundarcy conditions for the 

variables are then obtained from 

A2 (P XH 6x

f T fx f f 

dM fM f OC4 

T -T 
d9 +r Mf+T f1 dtfB+z-


where
 

k u uu UA X~tf ~ t(H +Ha = -HH 

ijku(. f)tf
 

= f H-1HTand 

uu5 lu u)tf 



Note'K~t the terminal matrix R(tf) of Riccati variables is 

symmetric only when the control function satisfies the local optimality 

i T
condition that H (tf) = 0. This same conclusion has been drawn by 

McGregor2 2 . However, this contradicts the results presented by McReynolds 

2 5 and Bryson and Mitter2 7 . This argument needs to be resolved.
 

Boundary 7aZue Process. These methods assumed that HT(t) = 0 
U 

where -t <'t = .'-In this case, initial values are guessed for the
 

Lagrange mu:Cti rs and subsequent corrections are computed iteratively.
 

In general thej, f # 0: likewise, dZf 0. The terminal boundary 

conditions in this case are obtained as
 

1d
X(MT az x 

f xf f f f 

N Vf dv + 0 I (35) 

df f f .t -­f f- f fl~dT - T Df dtfdZ 

Note then that there is a basic difference in philosophy between a control
 

function and a boundary value iteration process. In the first case, the
 

optimality condition that H = 0 is relaxed at each point in the inter­

val to ensure satisfaction of the transversality condition Zf = 0 by
 

the Lagrange multipliers. In the second case, the optimality condition
 

T
HU = 0 is satisfied at each point in the interval xhile the terminal
 

transversality Ef = 0 is relaxed on the multipliers.
 



CHAPTER 3
 

THE MODIFIED SWEEP METHOD
 

Merriam2 6 and Mitter27 have pointed out that boundary-condition
 

iteration methods have certain programming advantages; viz., computer
 

logic is relatively simple, and programming storage requirements are
 

small. Furthermore, accurate trajectories are obtained in problems where
 

these methods are successful. Experience has shown that such methods have
 

one main disadvantage, viz., the numerical instability mentioned previously.
 

The nature of this instability has been discussed by several researchers,
 

among them Rybicki and Usher. 31 Since the Riccati transformation tech­

nique attempts to circumvent this problem by dealing with new uncoupled 

variables, this approach enhances the desirable features already known 

about boundary iteration schemes. . -­

3.1 Differential Equations
 

For the modified sweep me~hod, it is assumed that the Euler-


Lagrange equations are satisfied over the time interval of interest. Fur­

thermore, the optimality condition that H T = 0 is assumed to yield an
U 

explicit !xpression for the control in terms of the other variables. The
 

Legendre-Clebsch condition is then used to yield the extremal control
 

u = u(x,A,t) (36)
 

This expression can now be used to eliminate the control from the original
 

nonlinear Euler-Lagrange equations for x and X as well as from the
 

appropriate transversality conditions. The set of first-order necessary
 

conditions can now be rewritten as
 

31
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- T xXt) = 0 (37)


{ Hx(x,,t) = 0 (38) 

t = to { N(xo,t o ) = 0 (39) 

E (B AT) = 0 (40)
 

t = tf M(xf,tf) = 0 (41)
 

f (Pt + 
-

) = 0 (42) 

Equations (37) and (38) are 2n equations for the 2n unknowns x(t) 

and )(t). Equations C39) through (42) are 2n+q+l conditions for the
 

2n unknowns x(t), A(t), and the q+l unknown parameters v and tf.
 

These equations constitute the familiar nonlinear two-point boundary value
 

problem. A first-order perturbation of the nonlinear Euler-Lagrange equa­

tions is now considered. This yields the following homogeneous linear
 

system of equations (see Section 2.2).
 

I I (43) 

As was mentioned on page 27 , the differential equation for the
 

n+q+l matrix of Riccati variables, R(t), will be symmetric if the terminal 

boundary values are such that R(tf) = RT(tf). In the next section it 

is shown that R(tf) will always be symmetric for the MSM. This 

reason, along with the factzthat an EP scheme is used by the MSM to obtain 

the perturbation equations given in Equation (18), give the following dif­

ferential equations for the MSM Riccati variables:
 



ft TW (44A= -sw (4) 

where
 

S fx :'t 
{'Ux "HXj
 

W xxJfx 

r
 

3.2 Boundary Conditions
 

Boundary conditions for these equations are obtained by a first­

order perturbation of equations (39) and (40)
 

6x(t)0 6o0(46)
 

6 (P f6xf+W dv + adt - df
 
f xxf f fd df (47)
 

Equations (43) represent 2n equations for the 2n unknowns 6x(t) and
 

52(t). Furthermore, equations (46) and (47) give 2n split-boundary con­

ditions for these variables in terms of the 2n known parameters Sx
a
 

and 6Xf plus the q+l additional unknown parameters dv aid dtf. The
 

required additional q+l conditions are obtained by also performing a
 

first-order perturbation of equations (41) and (42). It is shown in
 

Appendix B that this procedure yields
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dMf = ixf6x + Mfdtf (48) 

d f df T + M f dv + + T ) dtf + T (49) 
f 25 

fx A"T ( 

where
 

TT4 = - Df
 
f Dt
 

and T -x dZf
5f
 

In matrix form, these boundary conditions can be summarized as
 

6xf (P mT a 6-d 
XX f Xf __ f f 

614f M 0 KI dv + 0 '(50) 

df TT (Qf + T) dt T
 

Note that this coefficient matrix is symmetric. Furthermore, if n values
 

of the state are specified at tf, Ef = dZ = 0. For this case, the ter­

minal boundary conditions reduce to the homogeneous form
 

6x- (p ) M1 T a x1: XX f X~f f
 

dMf = x 0 Af dv (51) 
f 

T
 
dn) f Mf B f t
 



To summarize, Equations (43), (46), and (50) constitute the linear fi-r,
 

order, two-point boundary value problem for the 2n functions &x(t)
 

6A(t), and the q+l parameters dv and dtf in terms of the 2n+q+l
 

specifiable parameters 8xO , , d5f, .
 

procedure 	followed by the MSM will now be outlined.
 

3.3 	Computational Algorithm
 

The modified sweep method can be implemented as follows:
 

Step I -	Assume n+q+l values for X(to) v and tf
 

Sten 2 -	Integrate the nonlinear Euler-Lagrange Equations (37) ana4 1
 

forward from t0 to if, Viz., 

x H (x,X,t) 

Ste 3 -	 Test the error norm
 

IjErrorli g flZfIl + fl'~fH ±+ af 

If this criterion is satisfied, exit; otherwise, continue to
 

the next step.
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Step 4 Set the terminal boundary conditions 
for the Riccati vari­

ables 

K(tf) D(tf) £(tf) 

R(tf) = T(tf) F(tf) g(tf) 

ZT(tf) gT(tf) s(tf) 

P 
xx 

T 
a 

M T 

x 

0 

T 
M 

a 

14 

T Df 

tN tf 

(52) 

P~t f) = (tfj 
d 

0 

-x Rf tf 

(53) 

Sten 5 Integrate the Riccati variables backward from the final to 

the initial time using the differential equations 

= s_ws 

S= -STr 

Ster) Compute the n+q+l corrections 6xo0 dv and dtf 

the generalized Riccati transformation (Equation 19), 

uated at the initial time. These corrections are 

using 

eval­
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dv 	 (F - gs-lgT) 1 ( (dM ) -gs- (d~ff- )
 
0 

- T - gs-lT) x )t o 

df= s-Il( (dPf - @) -gTd -zT6x )t
to 
 0 

and
 

6X (K6x + Ddv+ t dtf + n )t
 

where it 	has been assumed that
 

dMf = -E Mf
 

d2f 
 = -E 2f
 

0<e<l
 

Step 7 	 - Repeat from Step 2 using the new values
 

Xi+1(to0 Xi(to) + ax°
 

i+l i 
v = v + dv
 

t = t + dt
 

wf f f
 

3.4 	 Computational Advantages
 

The computational advantages of the MSM over the SSM are
 

that it has to integrate n+q less variables and requires considerably
 

less storage than the SSM. The exact comparisons are shown in Tables
 

Il and III. Table II shows the number of variables which must be inte-"
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grated by each method in forward and backward directions. Table III
 

shows the storage requirements for each method. Only 3n + 2(q+l) quan­

tities need to be stored in the MSM case. For the SSM, however,
 

M is the total
M(n(q+3)t-m+n(n+l)/2) quantities have to be stored where 


number of points in the integration interval. A quick check for a
 

= 

typical reentry problem with 1 = 1,000, n = 6, q 3, and m = 1
 

shows the MSM requires storage of 26 quantities while the SSM must
 

store 58,000 quantities.
 

SSN for large complex prob-
It is speculated that use of the 


the Apollo 3-D reentry will require fixed step-size integra­lems such as 


tion routines with a large enough step-size to remain within the computer
 

storage limitations. Furthermore, the large step size may lead to unsat­

isfactory numerical accuracy.
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TABLE II 

MSM A\D SSM VARIABLES TO BE NUMERICALLY INTEGRATED 

STANDARD SWEEP METHOD MODIFIED SWEEP MTHOD 

Forward: x - n Forward: x - n 

Backward: X - n X - n 

K - n(n+l) Backward: K - n(n+l) 
2 2 

D - nxq D - nxq 

i-n i-n
 

Ti-n rn-n
 

F _-q(gl) F _(l)
2 2 

g-q g-q
 

-q C-q 

s-i s-i 

y -n
 

z- q
 

Totals: Totals:
 

n(q+5) + (3q+ 2) n(q+4) + (2q+2 )
 

+ " (n(n~l) + q(q+l)) + . (n (n+) -t 

Difference: (n+q) less variables
 

Note: If all values of the term­

inal state are constrained, i.e.,

if q = n, Lhen n = O, = O, 

= 0 and the difference increases
 

to 2(n+q)+l less variables.
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TABLE III 

COMPUTER STORAGE REQUIREMENTS 

STANDARD SWEEP XETHOD MODIFIED SWEEP METHOD 

At every point in the integration At the initial and final points only,
 

interval, the following values the following values must be stored:
 

must be stored:
 

x(t) :n 
u(t) : m 

x -n 
- n 

0 

X(t) : n v -q 

K(t). 
K~) 

n(n+l) 
2 

t 
tf 1 

D(t) : nxq Zf -n 

i(t) : n Mf -q 

Let M = total number of points in Only 3n+2(q+l) quantities need to 

the integration, then be stored from iteration to iter-

M -n(q+3)++ ation.m + n(--+l)1 

Compare 26 quantities with 58,000
 

quantities have to be stored. A for the Apollo reentry problem.
 

typical reentry problem has
 

M = Order(l,000), n = 6, q = 3, 

and m = 1. 

Thus, 58,000 quantities must be
 

stored over the integration
 

interval.
 



CHAPTER 4
 

THE MODIFIED SWEEP METHOD GUIDANCE SCHEME
 

Initial conditions for dynamical processes are difficult to
 

control in actual problems. Errors often occur which may be due to in­

ternal mechanical causes such as premature cutoff by a thrusting rocket
 

motor. Regardless of where these errors occur, they have the cumulative
 

effect of causing a deviation from the intended optimal path. It is then
 

desirable to use the known information about the path to recompute a new
 

control program to accomplish the mission objectives. This is done by
 

determining the control function corrections 6u as a function of the
 

state perturbation; i.e., 6u = 6u(6x,t). This is a guidance problem in
 

optimization theory. The guidance relations are now derived using the
 

MSM.
 

The M1SM assumes that from the local optimality condition 

H = 0 and the strengthened Legendre-Clebsch condition SUT H 6u > 0 u Un
 

the minimizing control u(t) can be expressed as an explicit function of
 

the state and Lagrange multiplier variables; i.e.,
 

u = U(x,A,t) (54) 

Perturbing this expression to first-order gives
 

6u = Ux6X + U A (55)
 

The generalized Riccati transformation is
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6X = K6x + 	 D d% + Z dt + Yi (56)f 

dMf = DT6x + F dv + g dtf + (57)
 

dzf kT6x + gT dv + s dtf + (58)
 

Solving the last two equations simultaneously yields
 

dv = %12 &x + l22 y + is13z (59) 

dt = q dx + W y + W z (60) 

f 21 22 23 

where 

y = (dMf -c) 
A 

z =(df -

A (F- gs- gT) - I 

DT
 T 1 A(gs-lkTand 

11
 

12
 
A s-i
 
= -Ag
 

13
 

A _s-1 gT +T
it = -s (g -I-) 
21 11
 

A -1 T
 

ir - (ggr 3-1)
 

23
 

Using 	Equations (59) and (60) to eliminate dv and dtf from Equation
 

(56) gives
 

6X 	 (K + D1 + r )6% + (D 12 + r2 )y 

i1 21 12 22 

+ 	 (Dii ±Zii )z (61) 
13 23 
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Substituting this 	expression into Equation (55) then gives
 

=(U+u X(K+ D +Zr ))6x
 

+ U((D12 + T22 )y + (D + Zr )z) 	 (62) 

This equation represents the linear-feedback control law for continuously
 

correcting the optimal control program for a given perturbation ax(t) in
 

the vehicle state. The new control program is then obtained by adding
 

these corrections 	to the converged control program. Note that for a
 

given perturbation tx(t), the coefficients are obtained by integrating
 

the Riccati variables forward using the initial values corresponding to
 

the converged solution.
 

In guidance work it is desirable to know the control corrections
 

in terms of a known time-dependent matrix and the initial vehicle state
 

perturbations, i.e.,
 

6u(t) L(t) 6xCt) 	 C63) 

where L(t) is an explicit relationship between the Riccati variables
 

from the converged optimal trajectory. Attempts to yield a relation such
 

as Equation (63) were unsuccessful. Numerical studies using the MSM
 

guidance scheme therefore were conducted with the assumption of a contin­

uously correcting procedure.
 

An immediate disadvantage is obvious in the guidance scheme
 

represented by Equation (62). Since values for the converged Riccati
 

variables are not stored by the MSM except at the initial point,these
 

variables must again be integrated forward from this initial time re­

gardless of when the perturbation dx(t) occurs. A more detailed dis­

cussion of this problem is contained in the next chapter.
 



CHAPTER 5
 

DISCUSSION OF NUMERICAL RESULTS
 

The modified sweep method algorithm was programmed for the
 

LC;IVAC 1108 digital computer at the Manned Spacecraft Center in Houston,
 

Texas. The integration schemes used follow.
 

5.1 Numerical Integration Routines
 

Fixed Step-Size Integration. Fixed step-size integrations were
 

carried out using an Adams-Bashforth predictor-corrector procedure with a
 

Runge-Kutta starter (Lastmau and Fowlerl5 ). The Adams predictor had a
 

discretization error of o(h5 ), and the Bashforth corrector discretization 

error was of o(h6); h is the step-size. The Runge-Kutta starter had a 

discretization error of o(h5 ). Partial double-precision arithmetic was 

used as follows: the values of the dependent variables were carried in
 

full double precision, but the derivatives were evaluated and stored as
 

single-precision numbers. This technique minimized the effect of round­

off error.
 

Variable Step-Size Integration. Variable step-size integrations
 

were carried out using a predictor-corrector-starter procedure as mentioned
 

above. -However, the discretization error in all cases was of o(h5 ).
 

These integrations were carried out in full double precision (Schwausch33).
 

5.2 A Brachistochrone Problem
 

To compare Modified Sweep Method converged results with known
 

analytical solutions for a problem of sufficient complexity, a class of
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free-final-time Brachistochrone problems was posed as 
follows.
 

1 

T-u 2 

V 

y 

Minimize the value of the final time tf for a particle to fall 

along a frictionless path in a constant gravitational field from point 

to point 2 subject to the constraints
 

x = V Cos u 

y = V sin u 

x(t) 0.0 

y(t 0) 1.0o

where
 

V 2gy - a) 

V2 

V0

and a o g 

The variational Hamiltonian is H = V(A cos u + X sin u). Two differ­x y 

1 
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ent cases weresi:
ents Cwre , ,r the terminal constraint vector Mf
 

If
 
MI 
f - f'IL) = 0_ 5.0 


5.0
and M 
 1(:f
;'(tf) 8.oJ
 

The Modified Swee; 
- S -1tonian and its Partial Derivatives 

Using thE HTl"Iality condition 
 = 0 and the strengthened
 
u 

Legendre-Clebsch l'ion that &uTH ,fuu
Su > 0 the control vector can
 

be eliminated to -, 
 I-ie following Euler-Lagrange equations
 

-V x T 

Xy 

-=HI 

where
 

A X2 
S y
 

Furthermore, the ,. p
artial derivatives required by the perturbarion
 

equations are
 

xx I 
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A 

o a_
V Aj 

V 

- y 

X A3 

Results
 

The 1I and M2 cases were computed using the fixed step-size

f f 

integrator mentioned on page 44. For comparison purposes, these two
 

cases were solved using the Method of Perturbation Functions program,
 

1F (see Lewallenl6). A step-size h = 0.01 second was used in all
 

cases, with the initially assumed values of the unknown Lagrange multi­

pliers and final time as follows:
 

X° 
 = -0.236$ sec/ft
x 

A0 
 = -0.6095 sec/ft
 
y 

tf = 0.5410 sec
 

The convergence criterion e was specified as 0.1 x 10 - 8 . Te correc­

tion procedure used in all cases was 25%, 50%, 75%, and 100% from the
 

fourth iteration onward.
 

Rate of Convergence. Figures 1 and 2 show plots of the 

terminal constraint norms versus time for the Brachistochrone problem. 

Both the MPF and MSM results are plotted. Figure 1 shows the error 
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norm for the case MI = x(tf) - 5.0. The tw3 methods converge in seven 

iterations; however, the MSM consistently shows a smaller error than
 

the MTF for each iteration. Note that the decrease in the error norm
 

for the MSM is significantly less than the :VF for the last iteration.
 

Figure 2 shows the error non's for the case M2 = (x(tf) - 5.0 

Sy(tf) -8.0) T ; the MSM error norm is nz: always less than the 112F
 

error norm. However, the error differencz is never large. The terminal
 

stages of iteration reveal the same high rzte of convergence as in the
 

MI case.

f
 

The MSM for this problem at its worst took 20% less compu­

tational time. However, this figure is not considered significant be­

cause two unrelated computer programs were used.
 

Accuracy of Converged Rsuits. The M4 converged solutions
 

gave six decimal place agreement for both the Mfl case and the 12 cas

gavf 

when they were compared to the known analytical solutions. For the M1

-f
 

o0 .
X° 
case, the initially guessed multipliers and A -were in error withx y
 

the converged values 224% and 282%, respectively, the initial guess at
 

the final time was 2% in error. For the M2 case, the initial guesses

f
 

A0 X0
on the same and multipliers were 500% and 260%, respectively.
x y 

In this case, the initial-guess error for the final time was 14%. These 

results are tabulated in'Table IV. 

- To summarize, the MSM has exhibited rapid terminal convergence 

and reasonable convergence envelopes for the free-final-time Brachisto­

chrone problem. 
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TABLE IV
 

MSM INITIAL-GUESS ERROR RESULTS
 

If f 

IConverged
Values 

% Initial 
Error 

Converged 
Values 

% Initial 
Error 

A0 -0.0689 244% -0.0357 500% 

i / 

Xo 1-0.1623 282% -0.1726 260% 
7 

0.6277 	 14%
tf 	 0.5271 2% 


The excellent results warranted further applications of the MSM
 

to more complex problems whose analytical solutions were not known and 

which were of current interest to the space program. For these reasons,
 

an Apollo three-dimensional reentry problem was chosen.
 

5.3 	Anollo Three-Dimensional Reentry Problem 

In the time interval t< t < tf , find the roll angle program 

a(t) which can be used to control an Apollo spacecraft so as to minimize
 

the weighted sum of heating and acceleration effects
 

tf + pV 3 jdt 

to 
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where Xo is a constant weighting parameter. Here, the first-term in the
 

integrand serves to measure the acceleration effects due to aerodynamic
 

forces while the second term measures the convective heating experienced
 

by the spacecraft. This minimization is to be accomplished subject to the
 

differential equations of motion given as follows
 

h V sin y
 

0V cos y cos A/(R + h) cos A
 

AV cos y sin A/(R + h)
 

V C~sin y-D 

y(G cos y/V) + (V cos y/(R + h)) + (E cos a/V) 

(-v cos y cos A taf. A/(R +h - (C sin /(V cos y)) 

The following initial conditions represent the reentry conditions
 

for a space vehicle on an Apollo-type lunar return mission.
 

h(to) 400,000 ft 75.757576 mi 

00 

O(to) 0.00 0.0 rad 

Aito) 0.00 0.0 rad 

Vit0) 35,000 fps 6.8181818 mi/sec 

y(t-) -6.5' -0.11344640 rad 

0.00 0.0 rad 

where
 

G = -p/(R + h)2
 

D = pSV 2CD/2m 
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L pSV2CL/2m 

-Bh 
P0e 

and m = spacecraft mass (assumed constant) 

Optimal reentry trajectories were determined for two cases of 

terminal conditions 

h(tf) - hf 

q(tf) - f 8(tf) -f 

A(tf) - Af A(tf) -AM1- = and y42 = 

f f 
V(tf) -f V(t) f 

y(tf) - Yf A(t) -Af 

A(tf) - Af 

Values for the terminal state represent a typical set of conditions at
 

drogue parachute deployment for the Apollo space vehicle
 

hf 75,504 ft 

f0
 

Of 24.1 

A f I-0.6'
 

Vf 856 fps 

Yfl -44.3' 

Af -29.40
 

Numerical values for the Apollo parameters were assumed as
 



54 

S = 129.3 ft2 	= 0.46379993E-05 mi
2
 

m = 204.0 slugs
 

3
p= 0.27E-02 slug/ft = 0.39743447E + 09 slug/mi3
 o 	 -l.­
-
 = 0.2217600E + 00 ml 1
0.42E-04 ft


=
Xo 0.24509804E-07 sec/(slug-ft)1 /2
 
= 0.17809708E-05 sec/(slug-mi) /2
 

p = 0.14076519E + 17 ft3/sec 2 = 0.95629856E + 05 mi 3/sec 2 

R 0.20908800E + 08 ft = 0.39600000E + 04 mi 

Figure 3 shows the essential geometrical relationships between
 

the state variables for the three-dimensional Apollo reentry problem. The
 

variables chosen to specify the state of the point mass spacecraft were
 

h = altitude, 8 = longitude, A = latitude, V = speed, y = angle of at­

tack, and A = heading angle. The following assumptions have been made:
 

the earth is a nonrotating homogeneous sphere with its center fixed in
 

interial space. Furthermore, its gravitational potential is characterized
 

by an inverse-square law and it possesses an exponential atmosphere.
 

The Modified Sweep Method Reentry Hamiltonian. In Appendix C,
 

the Apollo reentry optimization problem is restated. The mechanics of
 

restructuring the problem Hamiltonian by use of local control optimality
 

and the strengthened Legendre-Clebsch condition are shown. The Hamiltonian
 

which is optimal with respect to the choice of roll angle 0 is given as
 

follows:
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(3sV
2
H + c /2) + xp/2v3 + X v sin y +Vcos
 

L D o (R+ h)
 

-cos A
 
(Cos A (A - A sin A) + (X sin A + X 

2 6 35 (R + h)2 

sin y + Cos
 
4 
 V
 

1- V CL +A 2
 

SSV Cos y Y
CDV+ 5 Cs 2 


The Euler-7Lagrange equations for this problem are then generated 

by taking firzL partial derivatives of H as follows: 

311- and =Ii Aci- - - -j" where i,j 1, .. 6. 

These results, along with the second partial derivatives Hxx , H and HXx
 

which serve a coefficients for the matrix Riccati equation are also pre­

sented in Appenidix C.
 

Resitits. Initial attempts to solve the Apollo three-dimensional
 

reentry problem encountered some difficulties when the modified sweep
 

method algoriLhm was used. Using the system of units ft/Ib/sec, certain
 

elements of the Riccati matrix K grew very large at the initial time.
 

Because of thzse large values, the matrix F also became very large at
 

the initial tilme. Consequently, when its inverse was used to compute
 

initial-time C,rrections, they were so small that the initial values al­

tered only in the seventh decimal place. As a result, the initial tra­

jectory was 2bsentially duplicated by subsequent sweeps.
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An attempt to impose arbitrary bounds on these variables was
 

tried for several bounding orders of magnitude ranging from 0.5 to
 

1 x i06. In all cases, every element in the Riccati matrix achieved the
 

bounding value by the third sweep. An attempt was then made to generate
 

more accuracy by cycling through the evaluation-correction procedure (EC)
 

of the fixed-step-size integrator several times. Values were tried for N
 

ranging from 2 through 9. This effort to prevent the Riccati matrix
 

from going onto the limiting boundary was unsuccessful.
 

A scheme which used a scaled fractional part of the corrections
 

6X0was then attempted, and this did not eliminate the numerical diffi­o 

culties with the Riccati matrix.. The vector Mf was then altered with
 

respect to size and to choice of terminal state variables, neither of
 

which was successful. The system of units then was altered to slug/mi/sec,
 

for which the range of Lagrange multiplier magnitudes became smaller. Al­

39
 ,

tering the unit system was tried after discussion 

with Williamson


whose studies on the same problem with the b2F revealed a correlation
 

between the numerical sensitivities of the Lagrange multiplier equations
 

and the unit system chosen. The choice of slug/mi/sec achieved a more
 

suitable scaling for the magnitudes of the multipliers; however, this did
 

not succeed in eliminating the difficulties with the Riccati matrix.
 

A variable step-size integrator routine was then introduced
 

which revealed the numerical sensitivity of the Apollo three-dimensional
 

reentry problem to the single-step error on the UNIVAC 1108. This sensi­

tivity was measured by fixing the final time at tf = 437.263 seconds;
 

the initial values for the state and Lagrange multipliers were defined as
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x o and A as shown in Table V. The state and Lagrange multiplier dif­
fersatial equations were then integrated forward from t o 0 seconds to
 

tf. Using the terminal values for the state and Lagrange multipliers, 

thc process was reinitialized at t and a backward integration carried 

out. The values obtained at t using this procedure were then compared 
o 

for
 agreement with the defined values of 
 X and A . Four cases were
0 O 

tesLed in which the single step error s was bounded:
 

-
-
 E < 1.0 x 10 07Case I 1.0 x 10 10 < 

- s < 1.0 x 10-09Case II 1.0 x 10 1 2 < 

-10
 e < 1.0 x 10Case III 1.0 x 10- 1 3 < 

X 10-111.0 x 10-14 <c s< 1.Case IV 


To tumerically integrate forward from the 'titialto the final time and
 

rehitialize and integrate backward to reproduce the initial values to
 

eirit decimal places, the single-step error e had to be bounded as
 

-
- 14 x 10 11
E; < I1 x 10 < 

-
wrin the error became less than 1 x 10 , the integration step size
 

-
W"z doubled for the next step. If the error exceeded 1 x 10 , the
 

SLp size was halved; otherwise, the step size remained unchanged. These
 

r -ults are summarized in Table V where the bar under the digits denotes
 

de'iations from agreement with initially assumed values.
 

Figures 4 through 9 give a particular set of numerical results 

4 r this problem. This set of results was essentially identical for both 

M1t- of terminal conditions and M.
ft
 



59 

TABLE V 

SINGLE-STEP ERROR TOLERANCE 

INITIAL VECTOR 

A0 

0.71895168 - 02 

-0.72100154 + 01 

0.81929784 + 01 

0.24206058 + 01 

0.16453211 + 02 

0.35760665 + 01 

X° 

0.75757576 + 02 

0 

0 

0.68181818 + 01 

-0.11344640 + 00 

0 

NUMERICAL RESULTS 

Case I Case II Case III Case IV 

ERPMIN 

ERV 4AX 

1.OD-10 

1.OD-07 

I.OD-12 

I.OD-09 

1.OD-13 

1.OD-10 

!.OD-14 

I.OD-11 

Xh 

A 

XV 

XY 

XA 

0.71934619-02

fG-0.72100154+01 

.81929769+01 

0.24207833t01 

0.16458225+02 

0.35760746+01 

0.71895786-02 

1-0.72106154+01 

I 0.81929783+01 

0.24206079+01 

0.16453277+02 

0.35760666+01 

0.71895265-02 

-0.72100154+01 

-0.81929784+01 

0.24206063+01 

0.16453225+02 

0.35760665+01 

0.71895178-02 

-0.72100154+01 

0.81929784+01 

0.24206059+01 

0.16453212+02 

0.35760665+01 

ho 

0o 

Ao 

V 

YO 

A 

0.75766004+02 

-0.40744522-06 

1-0.65481932-06 

0.68185--44001 

-0.11346347+00 

0.41275475-05 

0.75757626+02 

-0.13346897-07 

-0.13262769-08 

0.68181886+01 

-0.11344647+00 

0.20899670-07 

0.75757596+02 

-0.15685918-08 

-0.18274255-08 

0.68181827+01 

-0.11344644+00 

0.10682438-07 

0.75757577+02 

-0.14599980-09 

-0.10809805-09 

0.68181819+01 

-0.11344640+00 

0.73654477-09 
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Figure 4 shows the altitude and scaled reentry speed histories
 

that the Apollo spacecraft would follow during optimal reentry for both
 

the M1 and M2 cases. Figure 5 shows the histories for the long'­
f f
 

tude, latitude, angle of attack and heading angle state variables during
 

these optimal reentries. These two figures are of interest because they
 

define the optimal state histories which the Apollo spacecraft should fly
 

to achieve the specified terminal conditions while minimizing aerodynanic
 

acceleration and convective heating. Figures 6 and 7 show the Ah
 

and ?A multiplier histories, respectively. These are the Lagrange
 

multipliers associated with the rates of change in altitude and latitude.
 

They are included here to define the trends to be anticipated for the
 

specified set of initial reentry conditions.
 

The two Lagrange multipliers which are required to define the
 

optimal reentry roll profile are shown in Figure 8. This particular fig­

ure shows the X XA X and XA
and histories where are associated
 

with the rates of change in the reentry angle and heading angle, respec­

tively. Figure 9 shows the reentry history for the payoff function.
 

The aerodynamic acceleration and weighted convective heating experienced
 

by the spacecraft have been plotted to reveal their individual character­

istics. A study of this figure shows that wo peaks occur in both space­

craft acceleration and heating during the optimal reentries. The optimal
 

reentry roll procedures seem to call for a trade-off philosophy between
 

acceleration and heating experienced by the Apollo spacecraft. The high
 

peak in convective heating is initially balanced with a smaller acceler­

ation peak in the vicinity of 100 seconds. This situation is subsequently
 

reversed in the vicinity of 400 seconds where the high acceleration peak
 

is balanced with the smaller heating peak.
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M1 2
Figure 10 and 11 show the Xv histories for the and m

V f f 

cases, respectively. This is the Lagrange multiplier which is associated
 

with the rate of change of speed for the Apollo spacecraft. rnese figures
 

were included to reveal, for the specified initial reentry conditions, the
 

sensitivities of this variable to a change in terminal conditions. 
 It is
 

interesting to note that both histories are similar with the major dif­

ference arising beyond 400 seconds.
 

Figures 12 and 13 show the optimal reentry roll programs for
 

Mf2
the MI and cases, respectively. These are the roll profiles that
ff
 

an astronaut would have to use during reentry from a lunar mission to
 

minimize aerodynamic acceleration and convective heating while satisfying
 

the desired terminal constraints on the vehicle state.
 

In each case, optimal reentry calls for the spacecraft to com-­

mence the reentry maneuver with the lift vector pointed almost straight
 

downward. The spacecraft is then quickly rolled such that the lift vector
 

is pointed almost straight up after 90 seconds. A slower downward roll
 

of the lift vector is then initiated so that this vector is at a value of
 

169 degrees by 350 seconds. The lift vector is subsequently rolled up­

ward to approximately 15 degrees by 410 seconds at which time terminal
 

downward roll procedures differ depending on the specified values for the
 

final vehicle state. Specifying two less conditions on the final state of
 

the Apollo spacecraft calls for less terminal roll of the lift vector.
 

An attempt was made then to obtain a precise evaluation of the
 

NSM computational characteristics. For comparison purposes, the
 

three-dimensional Apollo reentry M2 case was chosen. The MSM 
program
 

was then altered to assume computational characteristics similar to
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Williamson's39 MPF program. Values for the initial Lagrange multipliers
 

and final time were specified in varying degrees of accuracy ranging from
 

four to eight decimal places. Both programs were run on the University
 

of Texas CDC 6600 digital computer using single-precision arithmetic
 

everywhere except in the variable step-size numerical integrators where
 

partial double-precision was used. Each integrator had a single-step
 

error tolerance of 1.OE-10< E < 1.OE-08. The correction procedure re­

quired correcting 100% of the terminal error after each iteration.
 

Results of this comparison study are summarized in Table VI. The
 

TABLE VI
 

MPF/MSM
 

Convergence Characteristics
 

M2
for Case of the Apollo Reentry Problem
 
f
 

Significant Time to Converge % More Time Number of
 

Digits for CDC 6600 Required by Corrections
 

Ao tf (Seconds) MSM Required
 

MPF MLSM MPF MSM
 

8 33 49 49% 1 1
 

6 66 106 60% 2 2
 

4 165 207 25% 5 4
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2F .program required less time to converge in each case. However, with 
decreasing accuracy in the initial guesses for A and tf, the Y±SX 

revealed a tendency toward fewer required corrections and more cormpetitive
 

time-to-converge. Terminal error norms of both the MPF and MSM pro­

grams for the case of four significant digits in A0 and tf are shown 

by Figure 14. 

No direct computational comparisons with the SSM were avail­

able. McGregor22 used the SSM to converge the three-dimensional
 

Apollo reentry problem for the case of terminally specified values for
 

6, A, and V. This particular case was converged using a fixed step-size
 

integration routine. However, as was discussed previously, the MSM re­

quired a variable step-size numerical integration scheme to preserve the
 

numerical integrity of the state and Lagrange multiplier equations. In
 

addition, the MSM failed to converge this particular case of the three­

dimensional Apollo reentry problem. This failure is currently under study
 

by this author. Numerical comparison between the SSM and WF for this
 

particular case of the Apollo reentry problem can be found in the study by
 

Tapley, et al.
37
 

5.4 MSM Guidance Results 

The MSM guidance scheme was implemented for the three-dimen-


M2
sional Apollo reentry case. A 5% perturbation in altitude, speed,
 

and angle of attack was initiated at t = 0 seconds to study initial
 

reentry condition perturbation effects. A similar perturbation was initi­

ated at t = 75 seconds to correspond to initial peaks in spacecraft
 

heating and acceleration. In either case, it was assumed desirable to
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correct so as to satisfy the originally specified terminal conditions. The
 

guidance scheme then assumed that
 

y(t) = z(t) = 0 (t < t < tf) (64)o 

Control corrections reduced to
 

au (Ux + UX (K + D-ir +- £+r21)6x (65) 

Numerical results revealed that the MSM guidance scheme failed
 

to satisfy desired terminal conditions for specified vehicle state pertur­

bations. Investigation revealed that numerical instabilities arising
 

from attempts to forward-integrate the matrix Riccati equation were re­

sponsible for compromising effective terminal guidance. Further study
 

to suppress these instabilities is needed to achieve an effective MSM
 

guidance scheme.
 



CHAPTER 6
 

CONCLUSIONS AND RECOMMVENDATIONS
 

A new second-order variational method (the Modified Sweep
 

- Method) was developed for solving the two-point boundary value problem 

of trajectory optimization. If differs fro the original Successive 

Sweep Method in that the iteration process is now associated with modi­

fying the initial values of the Lagrange multipliers instead of the 

control function over the time interval of interest. This approach re­

quires considerably less computer storage and yields the Eulerian control. 

The new method was tested successfully on several classes of problems. 

The following conclusions were rerched about the Modified Sweep Method: 

CONCLUSIONS~
 

1. The method has appeal for problems in which knowledge of
 

the Eulerian control is critical. The MSM yields the Eulerian control
 

over the entire time interval of interest upon convergence.
 

2. Significantly less computer storage than the SSM was re­

quired. Only 3n + 2(q+l) quantities were required by the MSM algorithm
 

to compute the desired corrections from one iteration to the next. This
 

is a desirable characteristic for larger-cimensional problems and small­

storage computers.
 

3. The numerical integration of a least n+q less variables
 

than the SSM is required. Tnis feature is desirable because less com­

putation time is required.
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4. Rapid terminal convergence characteristics of second-order
 

numerical optimization methods is retained by the MSM.
 

5. The conjugate-point test feature contained in the original
 

SSM is also retained by the MSM.
 

6. A numerical comparison of the MSM with the MIF for the
 

class of free final-time Brachistochrone problems revealed that the M1SM
 

possesses acceptable convergence envelopes and competitive time-to­

converge features.
 

RECO2,ENDATIONS 

1. The basic nature of the generalized Riccati transformation
 

technique for solving the linear two-point boundary value problem of con­

trol optimization should be studied. It is possible that other equivalent
 

combinations might possess a better structure for solving the two-point
 

boundary value problem than the combination presently being used.
 

2. Sensitivity of the MS4 algorithm to classes of problems
 

should be determined. This recommendation is made because of the method's
 

failure to converge the three-dimensional Apollo reentry problem when ter­

minal state values are specified for longitude, latitude and speed.
 

3. The correction procedure used with the MSi should be opti­

mized such that the largest allowable correction is always attempted during
 

a given iteration. This should be accomplished for the obvious reason of
 

reducing computational costs by requiring fewer iterations.
 

4. Properties of the other Riccati transformation variables
 

and their relations to the reference trajectory should be studied. Cur­

rently, only information about the Jacobi-Mayer conjugate point condition
 



78 

and the abnormality condition is being extracted. This information is
 

contained in only two matrices of the many used by the Riccati transfor­

mation technique.
 

5. The lSM algorithm should be extended to treat state as
 

well as control inequality constraints. The need for this extension is
 

obvious since most practical problems are subject to such constraints.
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APPENDIX A
 

THE IVHOMOGENEOUS SET OF PERTURBATION EQUATIONS
 

Let X(t), i(t), and X(t) be functions associated with an
 

extreme trajectory for the functional to be optimized. With the assump­

tions made in Necessary Conditions, page 12, the following Euler-Lagrange
 

equations are necessarily satisfied:
 

x = H(x,,X,t) = f(x,u,t) (A.l)
 

X = HT(x,u,Xt) (A.2)

x 

0 = HT(x,u,X,t) (A.3) 

u 

where (-) indicates that the variables are to be evaluated on the ex­

treme trajectory.
 

Now assume a nearby trajectory characterized by the 2n+m func­

tions x = x + Sx , u = u + 6u , and X= + X. Substituting x, u,
 

and X into Equations (A.1) through (A.3) and expanding into a Taylor
 

Series to first order about this nearby trajectory, the following equa­

tions are obtained
 

6x = H xax + HX6u (A.4)
 

6i = -Hxx X - Hxu6u - Hx (A.5)
 

T = H-x 6u +lHd6 (A.6) 
u mc uu ux 

where the partial derivatives of the Hamiltonian H are evaluated along 

the nearby trajectory. 

80
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Making the assumption that the (mxn) matrix Hfu is non­

singular, the control corrections can be obtained from Equation (A.6) as
 

Su = H-1 (6
HT - Hu x - nud) (A.7) 

Using this expression to eliminate 6u from Equations (A.4) and (A.5) 

then gives 

{ A j + (A.8) 

L-- -WAT 

where 

A -H H-H + H 
Xu uu ux Xx
 

B -H 111H
Xu uu ux
 

C = -H IH + H 
xu uU ux xx
 

u U U E XA HAH-6HT 

wA H -16H T
 

xU UU U
 

Equation (A.8) represents the inhomogeneous set of linear perturbation
 

equations used by second-order variational methods. For computational
 

purposes, the following is used:
 

6H1u t) = -c Ht (t) 0< e < 1 (A.9)U --

BOUNDARY CONDITIONS 

Boundary conditions for these equations are derived in Appendix
 

B. They are summarized here as
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Sx(t) 
0 

= x
0 

= 0 (A.1O) 

and 

6X(tf) =(P) 6x + MT dv + afdt + T (A.11) 

f xx f f f iedx 

where the vectors a and T 1are also defined in Appendix B. 



APPENDIX B
 

FIRST-ORDER PERTURBATION OF TERMINAL CONDITIONS 

To allow for changes in the variable finhl time from iteration 

to iteration, the following linear approximation is used throughout this 

section. For an appropriate variable; e.g., vf, assume that 

dv = 6vf + vf dtf . 

The transversality conditions on the terminal values of the La­

grange multipliers are expressed by the condition
 

T _, 2 T 	 (B.1)-Z f = Pxf - Xf(B1
T T 

A first-order perturbation of this condition gives
 

dZ = (Pxx)fdxf + (PxV)fdv + (P x)fdtf-dXf (B.2) 

Replacing dxf and dXf using the linear approximation stated in the
 

first paragraph above, and grouping terms yields
 

d~f = 	 (P)fdxf + (Px)fd + -D T f dtf - 6Xf (B.3) 

f = (xvfxxf 	 (Di: 

-HT
Replacing i by use of 2. and trahsposing the SXf term to the
x 
 f
 

left gives
 

.6 =~ (P )6x + 'Mdv + x + HTI dtf - dEf (B.4) 
f xff Xf (Di: x f 

The required terminal conditions on the state variables are 

given by 

Mf = M(ftf) = 0 (B.5) 
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Similarly, a first-order perturbation in the variables yields
 

dMf = Xf 6 + M-dtf (B.6) 
xf~x~f tf zf 

The transversality condition on the final value of the Hamilton­

ian is given by 

af A ± H(xuX~t (B.7) 

After using the linear assumptions stated in the first paragraph of this
 

section, a first-order perturbation in the variables gives
 

+(PtxHx)]fSxf +dsf = + + (Pt)fdv + (Hu)f6uf CH )f6xf 

+ L(Ptt + H) + (Ptx + Hx)X +Hu + H X dt f (B.8) 

Eliminating 6uf using Equation (A.7), 6Xf using Equation (B.4), and
 

collecting terms gives
 

=+ - H+ H-HE + ) Pl 6V 

" *(pt± (HA - R uiHA2) PXVf 

f uPt x u\ U uuux f dHUu U)fxf 

+ si(ti + H) + - + T )(HA HgHrou)n Idt
 

TT 

"+ (H-16H T]-(nE, - H ERAX)f B9 

Substtutin )T grouping terms again, and rewriting gives
 



-- 
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1
f=T 	 _H H-- ( + H Sx 
dSfu 	 uu (ux uxx)Iff
 

+ 	MT) -H H-1H MT1 dv
 
D-t U uu ux xjf
 

*T D__ T TT _ H H 
+"+ (P E) + x + 	 ca dt 

[Hu uul - x dZf + HufulHu dZf] 	 (B.10)

'ur u an.ax
 

where
 

A 
 DPxT 
 H T 

Manipulating the coefficient for the dtf term, it is possible to rewrite 

this coefficient as 

D TTD
 

Vkt +U QJ-u unH
 

In matrix form, Equations (B.4), (B.6), and (B.10) can be written as
 

6 Xf (iP MT
ff 

afi ff xx f 

dMf = 1f 0 f - d\ + 0 (B.11) 

dafn f + C2 gf + T3 f+ r 4 dtff; 

where
 

D t (~t f 

f =- + Q
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A 
1 

f 

U A -(H H-I(H + HuPx))f 

2 uuu_ ux ux 

T3 A-- H- H .MT ]u uu u x f 

4 
A

4 
+TnDf+H1-1 H'a1 
-IE +-- a 

fDt U u f 

and 

A (H Hi&HTV-(tu uu u - HuHlH)uruuuf d 



APPENDIX C
 

A MODIFIED SWEEP METHOD HAMILTONIAN WITH
 

FIRST AND SECOND PARTIALS OF APOLLO 

3-D REENTRY PROBLEM
 

Problem Statement
 

Minimize the real functional
 

t [ 
 2 +J I L.m+ D 2 O 1/2V3 dt 

0 

subject to
 

V sin y 

V cos y cos A
 
(R + h) cos A
 

V 
(R + h) cos y sin A 

_ N sin y--D 

+ h) 2(R m 

- Cos y + V + it± cos 

(R + h)' V (R + h) m V 

V cos y cos A sin A L sinS 

(R + h) cos A m V cos y 

and satisfying the end conditions 

x(O) C (a constant vector) 

R(xfItf) 0 (a (qxl) vector 3 
87
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where
 

p poe 

PSV2 CL=1L 


D i pSV2 CD 

The variational Hamiltonian is
 

1- oe-hsv2 2 lI2h2 h2)V3 
=hV eH / + C + xopo e +lV sin y 

+ VCosy cosA(- % sin A) + (X sin A +X5 )3 


(R +h)2[IcosyA} 5 


(R + h2V 

2mp0 4CDV - L1 - 6 cos y 

Partials of the Apollo 3-D Hamiltonian With
 

Respect to the Roll Angle
 

N - -poeISvcx s =h sin A 0 
L 6ScosyJ
y ~ VCJ 5 

-- This implies that 

x5 sin a + 6 cos y 0 
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or
 
26 

tan 6
X cos y
5 

Thus 

6 5 

and
 

-C cos 


CS y
COS 
5X
6 + 

Sufficiency Condition
 

1 2* AX sin 
H = vGLLvc osSp e X 


cos 
y 

We require
 

H > 0 for a local minimum
 

Thus
 

[A 5 cos X6 sins < 0 

or, using H = 0
 

2Re1n ± + -2cos y} < 0 

Requiring --- < y < yields
2 2 
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0 < cos y < 1 

Therefore, the "+" sign of the radical must be chosen for optimality in 0.
 

Finally,
 

6
sin OPT 
= )2 + X 

-A5 cos y 
C 8OPT = +X 2 COS2 y 

YX6 5
 

The Optimal Hamiltonian With Respect to
 

Eliminating sin B and cos 0 then yields
 

H 2ml oehsv2/ + + j pl/2e-(h/2)V3
 
2m L 0oo
 

co
+ A V sin y + V CosiY s A (x sin A)
2
§ (A(R +h) ros6 

+(X (AsinA + X)1 X4 sin y + X Cos Y 
3 s5 (R + h)2 
 5 V j
 

1 e hCL 

p e SVtx4CDV 
+ 67 + X2 cos 2 y

Cos y 6 5 
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First Partials of H With Respect to x and
 

The Euler-Lagrange equations for the MSM are obtained from the
 

first partial derivatives of the Hamiltonian H. These equations are given
 

below, where 

x. . = x. [= H and i,j , ... 6. 

*° *i * / *(/) 

Hl- = -o m-hsv2jC/ + - 1/2 (h/2) 3 
x h Zm etL D 2 Oo o V
 

VRCosh Y2 [os A (A2 - A6 sin A) + (A3 sin A + 

)
(Ao- 5
co A 2y 


cdy
sin y +± 
+ 2p x4

(R + h)3 v 

C
 
+ a- e./SVIxXv + cos 2 y

2m e s4CDV + Cos
 

H 0 

-2- -

H- v cosy (cosA4( 

R M (R Ch) {os A 2 sin A X-) 

+Rh{Cos A (X2 -A sin A)
 

+ Al sin y + Cos y -- cos A -AsnA 
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215 COS y
 
+ ( 3 sin A + 5 )? +
J (R + h) 2 V2 

_4CDV S C y + X5 cos2y 
6 Y] 

H sinycos r2H X A 

3y = V Cos y -(R+ h) Co s 2 X6 sin A)
x 5 

h) 2
( 3 snA+ (R 4+ (X3 sinA+(h) 5 ) + 4 COST - -SY iny 

X*
X2sin y
 
1 poe-hSvcL6
 

me 0 sccos2 y AI2 + cos 2 y 

H DH V Cos - sin A (X2 X sinA) + X cos A] 
Hx A (R+h) os A 2 6 36 


H V sin y 

H fH) V cos y cos A 

" 2 = =" (R + h) cos A 

~ - (3 V cos y sin A 

A3 = = (R + h) 

( sin y - p e hsv20
HX4 D)(R + h)2 
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H V Cosy p cos y
H5 (R + h) (R + h)2 V
 

1 h 5 
m Poe-hCL/X2 + X2 cos2
 

6 5 Y 

H (DH - V cos y cos A'sin A 
X6 (X 6 ) (R+ h) cosA 

* SVCL A
 
1 -Bh L 6 
zm-OS os Y A 2 C

o 
S
 

6 + X5 

HXx Matrix
 

0 '0 0 0 0 0
 

0 ° 0 ° ° ° 

o 0 0 0 0 0 
X 0 0 0 0 0 0 

0 j 0 0 a b 

0 0 0 0 b e 

where
 

a - 0~ ctLsvOh X2 os *2
2m X2 + cos 2 )32 

5 

cLSVe-h
b - P 
2m (?, + A2 2 S - )3/2 5 S 

2 
cosy
cL
O
c 22n 2 + X cos 3 
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H Matrix
 

1.
 
H'1x2 0
H =0
 
Xx
 

H'lx3 0
 

H 	lx4 = sin y
 

H 	X5 = V cos y
 

HXlx6 0 

U 	2x - V cos A 

2 (R+ h)2 cosA 

H 0
 

-	 V cos y cos A sin A 
2 	A
Xxx3 (R + h) cos


cos y cos AH x (R + h) cos A 
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V sin y cos A
 
H'2x5 (R-+h) cos A
 

V cos y sinA 

2x6 (R + h) cos A 

Hx I = 
31 

V(R +h) 2 cos y sin A 

H 3x2 0 

H 3x3 0 

~X Cos Y1 sin A 

3x4 (R + h) 

~ V 

t3x5 (R + h)sln sinA 

- V 

'3x6 (R + h) cosy cos A 

EXl1 

- = 2w* 
2x(R + h)3 

sin y + 
o SV 2 c e- h 
0 De 

H"4x2 0 

Hx4x3 0 
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p* hHAx 0 SVC e-

H -- PO 

H x5 = Cos y 
4 5 ((R + h 

H 4x6 0 

H = -V cos y + 2 Cos yI 


+ h)2 (R + h)3 
 V
5 (R 


S PoCLSVe-h5co
 

A 2 cos 2 y 

HA5x2 =0

HX& 5 

C e-V

H =0 


Po e xL5Cos y~Cos y + 11 Cos y_ 

X (R + h) + h)2 v2
15x4 (R 2m F/X2 + 125 cs2 y 

H5X5 (R + h) (R + h)2 V 2m A52= V sin y + 1 sinfy P LSoe-BhI 

H5x6 
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where
 

A2 sin y
6 

2 - (x2 + X2 cos 2 32 

VV cos y cos A sin A LSVe 2 A6 
(R + h)2 cos A Cos y 2 + 

6 
2 

5 
2 

H6x2 0 

H V cas y cos A 
HA6x3 (R+ h) cos 2 A 

cos I cos A sin A P--CSe A6 
H6x4 (R + h) cos A 2m cos Y XA2 + X 2 c os2 y 

H~ 6x5 
- v 

(R + b) 
sin y cos A sin A 

cos L 
0° 

-m 
C 
L 

- h 
= x6r3 

H
H6x6 

V 
(R + h) 

cos y sin A sin A 
cos A 

where 

T3 
2 + 2X2 ossin Xs+ 25 jYI

cos2 Y (X +X2 cos2 Y)3 /25 
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H Matrix 
xx
 

*2PO ~ . 

H ~~ +0-2~~hv a 1I2 (h/2)v0 
2m L Dx1x1 40
 

S+2V Cos y cos A - X sin A) + (X sin A + ]
(R + h)3 Cos 2 63 

6vi X sin y + X Cos__ 
5
(R + h) 4 4 V 

o e-h CL /?I+X2 cos 2 Y] 
2 2m e + Cos 6 5 

H =0 

~ = V cos y cos A
H I'Cos (X sin A - X] 
x3 (R+ h)2 cos2 t 2 

e ( h / 2 ) 2- e~Lh2+C 3* 1/2 -
H= -$-e SNv L 0p e(/)2

xlx4 m L D 200 

Sos - X sin A) + (X sin A +A(X X 

(R + h) 2 cos A 2 6 3 5 

2. cos y
 
2( 5
 

(K-+ h) 3 V2 
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+ 2mTjm e S2XCDV + csL x COS2 

5 

SV sin y 

(R + h) 

(R + h)3 

cos 
os 

[ 

4 

A 
A 

(X -X sin A) 

X. Sin y] 

V 

+ (X sin A + 
5 

+ + pa 2m SVe-hCL 

cos 2 

Xj sin y 

y /X +2 cos2 y 

H = V(R + h sn - X sin A) + X cos Al 

H 0 

H0 

Hxx 

x22 

H 

= 0 

0 

2x4 

H 
x~x 

0 
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H =00 
• x2x6
 

- 2e6x-X cos 

HX 3XI (R + h) 2 cos2 2
A 
 6
 

I-I = 0
 
x3x2
 

X C h Cos A (eI + sin2 A) - 2 sin Al
 

x3x4 (R+ h) COS3 2 6
 
~x _ o! o ( +sin 2) sin 

33 = cos A ( -
Hx3x4 (R+ h) cos2 A (2 s 
 X 

~ Vsny sA( sinA ­
x3x5 (R + h) cos2 A 2
 

- Cos y sinA
H(x
3x + cos 2 A 2 sin A-A 6
 

- _____ 3* 12 + 2* 
Cosy cosA 6 s nA X i 
 5
 

2p x5Co
 
(R + h)3 v2
 

o + s y 6_+_5Co
 
2m 
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= 0x4x2
 

eos cosA A
Hx4x 3 (R + h) cos 2 ( 2 

S
Hx'4x4 p 0° e + -6 0p0V
Rh -p 1/2v -(h/2)
 

211_ - . Cos y p 

(R + h)2 V3 m Se IXcD) 

Co sin cos A X- sin A)
 

' 4 x 5 	 y (R + h) os A (X2 6 

5 sin y+3 si 
h) 2 2+ ( 3 sinA+) 	 (R + v 

2r
 

- 2 	 /X22 +-hCLCos
 
S/ 6 15 cs
 

x4x6 	 s(i+h) X
cosA sin A) + X3Cos
 

x 4 xCO(RThf[ csA 2(3-A
 

Hx sin y os AXsi A) 
X5x1 (R + h) 2 cos A (X2 - 6s sinA+ 5J 

sin y

[x Cs5
+ 


(R + h) 3	 V 



102 

* 
+ 2mPo CL 

cos 2 y 

A2 sin y 

fm26+ X25A 2 A COS2Y 
y 6 5 

HXsX2 0 

V sin vI cos A (A 

(R+h) cos 2 sinA­ 6)j 

H xICo sin y [ cos A 

xcos (R +h) os A Q­ 6 sinA) 

+ ( 3 sinA+ 5)]A + X35 (R + h) 2 
5 siny3 
Sv2 

o-S-Rse-hC 
A2 sin y6 

2m L 

VCos y -A cos 

H 
= 

-A V sin y c 
(R + 

CoA
h) 2 (X2 -A sin A)

c 

+ ( 3 sin A + A) + 
(IR+ h) 2 

IX4 sin y + 
V 

J 

o0 - h~ 
P SVe-CLT 4 

where 

4 Co= 

X2 
6 

+ X2Cos2 Y)3/2 
(X2+X2C2 

[ 6 + Y) 
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(I + 2 tan 2 y) + X2 sin 2 y 

-~sX6 V siny -sinA (A A A) + cosA 
Hx5x6=-(+h_[CosA( 2
56(R+bh) co x6 snA+X3 co)A 

HV Cos [ sinA s + AHx6xl = (R + h)2 - cos A (?2 - 6 sin A) + 3A 

H = 0­x 6 x2 

-V Cs y sin A (X sin A - 6 ) 
Hx (R + h) cos2 2 6
6x3 


Cos y__ sin A ( - 6sin A) + X3 Cos A 
H6x4 (R + h cos A 2o
 

Vsin y sn A
 

(R + h) Lcos A '(2- x6 n A) + X
±X 3 cos A]
 

H V osy cos A sinA) -A sin
 
x6x6 (R+h) I- cos A\A2 6 A3
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