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PREFACE

It is well known that a caleculus-—of-variations approach to
solving the Bolza form of tragectory optimizaﬁion problems usually yields
a nonlinear two-point boundary value problem in terms of the state and
Lagrange multiplier Variables: Clogsed~form solutiOn; for problems of
this type are difficult to obtain except for a few simple problems. As
a result, recent work in trajectory optimization has focused on numerical
proceéures for obtaining solutions using high~speed digital computersl
Particular interest has centered on a group known as the second~order
nethods,

One such method is the Successive Sweep Method (SSM). It uses
the generalized Riccati transformatlion technique to bypass a direct nu-—
merical integration of the perturbation equations. The reasons such an
approach has much potential appeal ares presented in this study; however,
because the SSM iterates on the control values over the interval of in-
terest, considerable computer stof%ge is necessary even for problems of
small dimension. This storage is required to compute corrections to the
assumed control. Furthermore, the Eulerian control is not obtained upon
CONVEYrgence.

This research develops a new second-order numerical optimization
-method, the Modified Sweep Method (MSM). It requires very little computer
storage and provides the Eulerian control. In addition, the properties
and informat%on contained in the Riccati transformation variables are

preserved.

Furthermore, this research also presents a new scheme for defi-

il



ning classes of numerical optimization methods. The Successive Sweep
Method and the Modified Sweep Method are then discussed in terms of
differences arising because each falls into a different class. The Modi-

fied Sweep Method is subsequently compared numerically to the Method of

Pevturbation Functions (MPF), both of which belong to the same class.

The author extends thanks to Mr. Walt Williamson of The Univer—
sity of Texas at Austin for many helpful discussions concerning the Apollo
reentry problem, to Mr. I. J. Xim, of Lockheed Electronics Company, Hous-
ton, for programming the plots, and both to Mr, Kim and Mr. Mike Frederick
of The University of Texas at Austin for helping with the data. He also
expresses gratitude to Dr. J. M. Lewallen of NASA/MSC and Professors A.M,
Bedford and E.J. Prouse of The University of Texas at Austin for serving
0? the dissertation committee and helping with the manuscript. Special
thanks is due to Mr. E. L. Davis of WASA/MSC for msking this research
possible, and for his personal interest and friendship which have pro-
vided constant imspiration.

Tpe author expresses his iﬁdebtedness to Professor B. D, Tapley
of The University of Texas at Austin, who suggested this research and
provided many stimulating discussions while serving as committee super-
visor.

The author expresses deep appreciation to his famiiy for their

understanding and cooperation during the course of this research.
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A Modified Successive Sweep Method was devised which yields
Eulerian solutions to two-point boundary value problems of control opti-

- mization. This was accomplished by requiring control satisfaction of

_local optimality over the entire time interval of interest while simul-
taneously relaxing terminal transversalitg requirements on the Lagrange
multipliers.

The new method was tested successfully om several classes of
problems including optimizing the roll program for an Apollo-type three-—
dimensional reentry trajectory so as to minimize a time integral of
spacecraft heating and acceleration.

This new method was-shown to require significantly less computer
storage than the original Successive Sweep Method while requiring numeri-
cal integration of fewer variables. In addition, the method was shown to

Possess rapilid terminal convergence and a conjugate—~point test capability.
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ROTATION LEGEND

Derivatives:

Ordinarz

For any variable W

oo D0 _ 4w
I’J“Dt"dt
Partial

For the variables =x,y the scalar S and the vector V

_ v
Vx T 3%
_ 38 . D @ST
5 T 3y  Syx ax Gy’
Differentials: ~
dw total differential of the variable W
Variations:
W total wvariation of W
slw first variation of W
82y second variation of W
Transgose:
T
W transpose of W



Subscripts:

For any variable W

Wo = (W) e = W(to‘) value of W at the initial tine
o
W= (W), =Wt value of W at the final time
£ tf f -

Norm:
The Euclidean norm of the error in satisfying the term terminal

constraints 1s used as follows:

I]Errorll = Il I]Efll + |IMf|I * g% |l
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Theoretical Developments

Indices:

n number of state wvariables

m number of control variables
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T augmented functional

G terminal payoff quartity (the classical Mayer term)

Q classical Lagrange éerm
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v initial valued function

H variational Hamiltonian

’ﬁ variational Hamiltonian for the Modified Sweep Method

2 classical tramsversality condition associated with free
final-time problenms

s, ¢ auxiliary Riccati variables

B> T » ¢ terminal boundary values

L ; terminal boundary value
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%
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CHAPTER 1

INTRODUCTION

Optimal control of spacecraft trajectories requires obtaining
an optimal (maximum or minimum) value for an appropriate scalar quantity.
This scalar quantity measures spacecraft performance and is called the
perjormance irdex. In addition, terminal conditions such as might ge
specified for intercept or rendezvous problems must often be satisfied
simultaneously.

After the problem has been formulated mathematically, severzl
conceptual approaches ara available to obtain the conditioms required to
solve tie optimization problem. Among the more uéual approaches are the
calculus—of-variations, dynamic programming, and Pontryagin's Principle.

The caleculus—of-variations is censidered here because specific
optimal control problems can be considered as particular cases of the
more generalized Bolza problem of the classical cglculus_of—variations.
The powerful results associated with this classical theory thus aré‘avail—
able for attacking optimal control problems.

The calculus—of-variations approach yields a nonlinear itwo-point
boundary value problem for which closed-form solutions are usually not
possible. Sophisticated numerical procedures have been developed because
of the need to solve these problems. These procedures have become feas-
ible in the last decade because of the development of large~scale digital

computers.

This chapter introduces the definitions and terminology used



throughout the dissertation. A brief history of the development of the
numerical optimization methods is given also with interest centering on
the second-order variational methods. The class of trajectory optimi-
zation problems to be solved is stated, as well as tﬂe associated non-—
linear two-point boundary value problem obtained from using a calculus-
of-variations approach. - -
Chapter II discusses (1) the second-order variation approach
used to solve the nonlinear two~point boundary value problem, (2) the
general set of perturbation equations for second-order methods, and (3)
techniques used to achieve an integration of these perturbation equations.
Chapter III presents the Modified Sweep Method based on the
generalized Riccati transformation. Chapter IV develops the linear feed-
back control law for the Modified Sweep Method. The numerical results -

obtained using this new method are discussed in Chapter V, with conclusions

and recommendations presented in Chapter VI.

1.1 Definition of Terms Used

The MSM (Modified Sweep Method) is obtained from the _ $8M (Suc-
cessive Sweep Method) by requiring that the control satisfy both local
optimality and strengthened Legendre-Clebsch condition over the entire time
interval of interest. This optimal control is then eliminated from the
Hamiltonian for the problem and the restructured Hamiltonian used to obtain
the nonlinear differential equations for both the‘state and Lagrange multi-
plier variables. As in the case of the SS5M, the MSM then uses the
generalized Riccati transformation to solve the linearized two-point

¥

boundary value problem in terms of the state and Lagrange multiplier per-



turkations. This is done while simultaneously relaxing the terminal trans-
versality requirements on the time-dependent Lagrange multipliers. It is
desiyzble to compare the proposed ¥SM to other existing numerical opti-
mizzition methods. For this reason, a study was made of several well-known
metiods waich appear in the literature. This author felt that these methods
wers representative of the properties contained in the set of variational
meétiods for the numerical solution of'optimization problems. Tt is empha-
sizsgd tﬁat only a representati;e portion of the total number of existing
nunirical methods has been used for this study. In addition, the second-
ortsy methods intentionally have been selected more extensively then the
firsi-order methods. The generalizations made, therefore, pertaim only to
thos2 methods contained in Section 1.2 on the historical development of

nutiirical optimization methods.

This study of the selected group of existing methods revealed a
set of properties which can be employed to describe the characteristic

fezzures for each method. These properties have been used to specify, ar-

itrarily, twelve classes of numerical optimization methods. Each method

D

cai then ba identified as belonging to a particular eclass according to the

:D‘,-' . . -
~besowing properties:

~

(1) the ORDER (first or second) of the theory upon which the
method is based.

(2) the APPROACH (direct or indirect) used by the method to
compute the required corrsctions.

(3) the ITERATION PROCESS (interval, boundary oxr hybrid) used

by the method.



The following definitions are used:

Definition 1: Order of the Method

A method is described as first order if it is based only upon
the theory of the first variation for z real functiomal. If a method is

based upon the theory of the second variation for a real functional, it is

described as a szeond order method.

Definition 2: Approach of the Method -

A method is said to take a direet approach if the required
corrections {(state, coﬁtrol or Lagrange multipliers) are computed such
that the performance index for the zugmented variational problem is

“itself directly affected in some manner to expedite convergence. If a
method chooses to compute the required corrections based on the set of

first-order necessary conditions required for optimality with respect

to the control, then the method is said to take an indirect approach.

Definition 3: Iteration Process for the Method

A method is said to use an interval value iteration process if
the end result of a particular iteration is the computation of correc-
tions to the variables (state, control, or Lagrange multipliers) over the
entire time interval of interest. Methods which compute corrections to
these same variables at a boundary only are said to use a boundary value
iteration process. If a method combines both an interval and boundary
value iteration process, it is described as using a hybrid itervation pro-

ce83.

Definition 4t Convergence for a Method -

(a) Control Function Iteration Method. Given an arbitrary




w

numerical tolerance g, a control function iteration method is said to

have achieved convergence if

7 2
IR (R | B
where
[iﬁi]l = Mex {Abs[HE(X,u,i,t)3} L
u{t)

(b) Boundary Value Iteration Method. Given a numerical toler-—

ance €, a boundary value iteration method is said to have achieved con-

vergence if

| el + Tlgll + |

The symbols H, Zf, Mf and Qf are defined in Section 1.4,
Using these definitions, Table T summarizes the twelve classes

of numerical optimization methods extracted from the methods chosen as

representative for the study. Refereace numbers specify major studies in

each class while the acronyms (S8S¥, etc.) identify the particular class

for the three methods to be compared in detail.



TABLE I

CLASSES OF NUMERICAL OPTIMIZATION METHODS

CLASS ORDER APPROACH ITERATION PROCESS REFERENCES
1 - 1 Direct Hybrid
2 1 Direct Interval value 4;i2
3 1 Direct Boundary value
4 1 Indirect Hybrid
3 1 Indirect Interval value
6 1 Indirect Boundary wvalue
7 2 Direct Hybrid
8 2 Direct interval value 19,26
9 2 Direct Boundary wvalue 35
10 2 Indirect Hybrid 3,13
11 2 Indirect Interval value 23,27 (8sM)
12 2 Indirect Boundary wvalue 10,11,16
’ (MSM,MPTF)

As shown in Table I, the class of second-ordér methods which

- take a direct approach in computing the desired corrections and implement
a hybrid iteration process was not represented in the methods chosen for

the study. Furthermore, Classes 1,3,4,5 and 6, all first-order methods,

were also not represented. This can be attributed to the fact that second-

order methods were of primary interest in this study.



The mnilarities and differences between the three numerical

nosmizs LA mThods (SSM, MSM and MPFR) to be discussed are now obvious.

.1 thrse are

s2cond-order methods which use an indirect approach in

smputidNg the s2quired corrections for the state, control or Lagrange

Jizipiider vamsbles. The 6SM  falls into Class 11 because it uses an

-—arvad itera”on process. Both the MSM and MPF fall into Class 12

:zause €ach 1mes g boundary iteration process.
- & hisvorical development of the methods chosen for the study

detailed nov for reference purposes.

ssrorice Information

Fire:—Order Methods.

The first numerical procedure for solving
-l Sptimization problems whieh generated active interest was devel-

4 ipdsyendeszly by Kalleylz and Bryson and Denham®. Their research

-znded the corcept of steepest descent developed earlier by Courant®.

Class 2 method was based on the first-order variation of a scalar

vionsl, w1 a control function assumed for the time interval of in-—

.st. CGorraz:tions to this control were then computed iteratively using

cdinesy grzdient technique. Applications showed that the method was

to dvplemeat and tended to convergence with even gross initial coantrol

b

The nethod, however, possesses two undesirable features. First,

e EEn a2
wETZe

- ¢z rate decreased asymptotically during the terminal stages

LLEL0T.

Second, once convergence was achieved, the control obtained

.. "Atrniz a numerical tolerance of the Eulerian countrol.

Jue o the first undesirable feature, numerical procedures to

: the convergence rate flourished. These were all first-order
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methods and are not discussed in this research. Both features led to the

development of the second-order methods which sought to increase conver-—

gence as well as provide the true Eulerian control.

Second-Order >Methods. Jurovics and HcIntyrell solved the two-
point boundary value problem of trjaectory optimizatioé by using the egua-
tions which are adjoint to the linearaized Euler-Lagrange equations. Their
method was called the Adjoint Metheod (Method of Adjoint Functions), and
extended the work of Goodman and Lance’ to allow for variable terminal
time. The Adjoint Method is a Class 12 method wherein an indirect approach
is used to compute the desired corrections while iterating on the initial

boundsry values of the Lagrange multipliers.
Breakwell, Speyer, and Brvsond developed a "second variation"
method (Class 10) to solve control dptimization problems. Kelley, Kopp,

13 a1so developed a "second variation" method similar to the -

and Mirer
previsus one, Jazwinskil? developed a modified adjoint method equivalent
to th: second-varistion method of Breakwell, Speyer, and Bryson® by ex-
tendiz3 the method of Juroviecs and McIntyrell. Jazwinski's method had
the syecific advantage, however, of requiring considerably less storage.

Furthizmore, it required less computer time in that fewer integrations of

an eg:ivalent set of equations were necessary.

_McGill and Kenneth?0 developed the Generalized Newton-Raphson
Operzior Method for solving two-point boundary value problems. This method
falls into Class 11, which uses the indirect approach linked with an
intewal value iteration process. A proof of quadratic convergence for
the mzchod had previously been given by these same authors?1, &his method’s
major arawback was the laborious manner in which corrections to the final

time talue were computed.
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An alternate approach, the Modified Generalized Newton—-Raphson
-chog, using tra same method was developed by Longl?. To eliminate the
<ward handlirng of free final time, a change of‘independent variable was
sed for the frze-final-time corrections. Another method based on the
swtoni~Raphson zpproach, but incorporating a better technique for compu~
..ag tae free-Ilnal-time corrections, is the Modified Quasilinearization
2thod dgvelo;ei by Lewallenl®, Sylves%er and Meyer3® have also used the
swton—Raphson zsproach, calling it quasilinearization.
A meinod based on the theory of both the first and second vari-
.zaons was deviszed by Merriam?®. This is a Class 8§ method in which a
.~recl approaci is taken for computing corrections to the control functions
ssumed througrout the time interval of interest. This particular method
as instrumentzi in the development of the successive sweep method discus-
2d 4n the nexr paragraph. -
McResmolds and Bryson?d introduced the successive sweep method
;r solving oz:imal control problems. Although the method is a second-
-de:r method, :he Bulerian conmtrol requirement is relaxed. The method is
-od on the gineralized Riccati transformation and falls into Class 11
dble I). A zimilar method called successive approximation was developed
dfitter??. =2 also showed the formal equivalence of this method to
-on's Methzz.
LewzZlenl® also introduced the Method of Perturbation Functions
*#), based ¢z previous work by Breakwell, ggﬂgl.,3 and Jazwinskil®, The
-n0d falls Izmto Class 12. ZLastmanl® has shown the equivalence cf all

'se¢ methods =o Newton's Method. o,

Sutzerland and Bohn3® have recently developed a method which falls
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into Class 9, which uses a direct approach to compute boundary corrections
for the initial values of the multipliers.

Maynelg developed a second-—order method which falls into Class 8
(Table I). However, a dynamic programming technique is used to attack the
optimization problem instead of a calculus—of-variations technigue.

9

Jacobson® extended the Class 11 features into a new second-order

algorithm through use of a differential dynamic programming technique. His

23

method generalizes the successive sweep methods of McReynolds<® and

Mitter??, .

The development of the MSM completes the historical davelopment
for the numerical optimization metheods chosen.

As was mentioned previously, it is now degsirable to compare the
MSM to both the SSM and the MPF. Toward this end, a general class of con-

trol optimization problems is first cheosen. This class of problems is

presented in the next section.

1.3 Class of Control QOptimization Problems to be Solved

Posed as a special form of the Bolza problem from the calculus-
of-variations (see Blissl), the general class of control optimization prob-
lems to be solved is stated as follows:

In the time interval tO <tz tf , find an m-vector of control

variables u(t) to minimize the real functiomal,

t

£
J@) = 6xg,t) + J Q(x,u,t) dt (1)

t
O
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subject to the n-~vector of differential constraints,

x = f(x,u,t) (2)

while satisfying the p-vector of known initial conditions

N(xo,to) = 0 (3)

and the g—vector of desired terminal conditions

- PO P

M(xf,tf} = 0 -(4)

The control and state variables in the following discussion are

‘ -
assumed to be defined on completely open regions and thus are not subject

to inequality constraints.

1.4 Associated Nonlinear Two-Point Boundary Vaiue Problem

Proceeding in the usual calculus-of-variations manner for solving
the Bolza problem of control optim}zation stated in the previous section, an
augmented functional denoted as I dis first formed. This augmented func-
tional has the property of being formally equivalent to the original func-
tionaly it incorporates the desired auxiliary conditions through the use
of Lagrange multipliers. To form this auémented functional, the n—vector of
Lagrange multipliers A{t) and the p and ¢ vectors of constant Lagrange
multipliers u and v aéjoin the desared auxiliary conditions to the ori-

ginal functional as follows:

t
£ )
I = J + p'N + v + J A(E - %) dt (5)

t
0



For convenience of notation, this funetional is rewritten as

t.

T Tl
I = P + ¢V + (H - 2 x) dt (6)
t
(o]
where
P =P(x \)t)éG(x t)+\)TM(x t.)
£270F fPf £f*°F
o= vk ot ) 2 uTeex L)
0’ "o o’ o
H = H(x,u,\,t) 2 Q(x,u,t) + A £(x,u,t)
and x = x(t) , u = u(t) , A= e

The scalar H 1is the variational Hamiltonian for this class of problems,

Necessary Conditions. The set of first—order necessary condi—

tions which must be satisfied by the extremal control for the augmented
functional of the type above is obtained by requiring the first variation
of this functional to vanish. These conditions are well documented in the
literature (for example Bliss!, Hestenes®, Pontryagin3?, et al., Tapley and

Lewallen38). 1In summary, these conditions are

f
X - Hi(x,u,l,t) = 0 7
§
- T -
toSt ity AFH (Ut = 0 (8
T
Hu(x,u,l,t) = 0 )
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aoy

[ T A T
B, = (Tx+x)t = 0
O
£ o= ot N(xo,to) = 0 h (11)
e & (v -p = 0 (123
o t t B
\ o .
( T A T .
£t = - -
£ B ")tf = 0 (13)
_ { . o oa
t o= ot A(xf,tf) = 0 ‘ (14
o, & . +m) = 0 (15)
W t te

&

Equations (7) through (9) constituts 2ntm Euler-Lagrange equations for
this class of problems. Equations (11) and (14) are the ptq specified
initial and final values of the problem state variables. The remaining

_ equations form the 2nt+2 set of classical transversality conditions from
the calculug—of-variations.

The comntrol optimization problem thus is posed as a nonlinear
two-point boundary value problem for the 2ntm variables x(t), u(t),
and A(t) and the ptq+2 parameters 1, v, tys and te in terms of
the 2n differential equations (7) and (8), the m algebraic equations

(9), and the 2ntp+q+2 conditions in equatioms (10) through (15).
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It is assumed that the initial time to and n values of the

initial state x(to) = §0 ave specified. Equations (10) and (12) are

then identically satisfied and therefore disregarded in subsequent dis-

cussions.

+

Sufficiency Conditions. To ensure that the control satisfying

these first-order necessary conditions does indeed generate a weak mini-

mizing solution, the second-order variation of the augmented functional

I(u) must be positive everywhere in the interval of interest when it is

evaluated along an extremal trajectory (Gelfand and Fomin®). This re-

quirement leads to the following additional set of second-order conditicns:

1.

Strengthened legendre—~Clebsch Condition

The strengthened Legendre-~Clebsch condition must be satis-~
fied everywhere in the interval of interest. Specifically,

for any arbitrary change in control du(t) ,
T -
duH Su >0 {16)
uu
is required.

Jacobi (Maver) Conjugate Point Condition

The Jacobi (Mayer) conjugate point condition must be satis-
fied everywhere in the interval of interest. This reguires

that no two points exist in the interval t_ < t < t. which

o £

are conjugate to one another.

The following restrictions on the definitions presented in Sec—

tion I are subsequently assumed im this research: dinterval iteration

corresponds to control function jiteration and boundary iteration corres-

ponds to Lagrange multiplier iteration.



CHAPTER 2
THE PERTURBATION EQUATIONS

The second-order variational methods seek to solvé the nonlinear
two-point boundary value problem associated with'trajectory optimization
by solving an equivalent linearized problem in terms of perturbations in
the problem variables. The six classes of second-order methods are dis-~
tinguished by approach and <teration proé;ss. Furthermore, each method
for a given class is distinguished by the technique used to perform the
numerical integration of the perturbation equarions which are obtained
from a first-order perturbation of the Euler-Lagrange equations, viz.,
Equations (7) through (9). These perturbation equations can assume one of
two forms with each form patterned by the iteration process selected for a
given method.

As in the case of the S5M (Successive Sweep Method), if a con-
trol function iteration process is usad, a "PE" scheme is used to obtain
the perturbation equations. The acronym "PE" designates the following
procedure: Perturb the Euler~Lagrange equations.and then Eliminate the
contreol perturbations. If a Lagrange multiplier boundary value iteration
process is used, an "EP" scheme is used to obtain the perfurbation equa-
tions. The acronym "EP" similarly designates the following procedure:
Eliminate the optimel control and then Perturb the resulting Buler~Lagranze

equations. These two schemes for generating the perturbation equations

for second-order methods are detailed below.

2.1 The PE Scheme

The PE Scheme is associated wath control function iteration

15



schemes such as the SSM, It proceedé by first perturbing the first-
order nécessary conditions for stationary control. Then the perturbatiom
in the control are eliminated from the perturbed Euler-Lagrange equations
for the state and Lagrange multipliers and the appropriate transversality
conditions. This scheme tacitly assumes that the matrix Huu is nonsin-
gular everywhere in the time interval of interest. The set of perturba-
tion equations associated with this scheme is outlined in Appendix A and

are summarized here as

6x A B §x v
= +
sx | |]-c -af] e - (an
where
A = - Him + H
. Auuu ux AX
-1
B = “Hlu uu uA !
-1
¢ = -H H™H + H
XU uu ux XX
v = H. H -sur
Auuu u
w = A_lGHT
XU uu u

and H = H(x,A,u,t) while the Hamiltonian partials H H > etc., are

au’
evaluated on the known trajectory. The known trajectory is called a nomi-—
nal (or reference) trajectory.

Note that for this scheme, the system of perturbation equations

assumes the form of a set of inhomogeneous first—order linear differential

equations with time-dependent coeificient matrices.
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2.2 The EP Scheme

The EP Scheme is used by the boundary valué iteration methods.
It proceeds by first using the control optimality condition Hﬁ = 0 and
the strengthened Legendre-Clebsch condition SuTHﬁu Su > 0 to eliminate
the control from the Euler-Lagrange equations for theistate and Lagrange
multipliers, as well as the appropriate transversality conditiocns. The
revised set of equations are perturbed then to obtain the following home—

geneous set of first-order linear differential equations.

o 3]
H
]
e
O
W

3 < -ar| s (18}

where ,
A = HAX
) B = H.ML
c =
XX
~ %
H = H[x(t), A e, u(x,?\,t),t]
g i i i h ditions that HT = 0
and u(x,A,t) 1is the control obtainad using the condition o

and H > 0. Tt is important tc note that this scheme involves the as~
un

sumption that the Hamiltonian H# £oxr the particular problem is structured

such that HT =0 and H > 0 can be used to obtain the explicit rela-
u uu

. . T
tion ﬁ(x,l,t). Implicitly, such a relation is assured if Hu =0 and

H >0 ; however, such an explicit relation may be impossible to obtain
uu

for some problems.



2.3 Integrating the Set of Perturbation Equations

It has been pointed out previously that second—-order methods
within a given class differ only in the technique that is used to 1nte-
grate the set of perturbation equations. The two techniques presently

available for accomplishing this integrating are detailed below.

Explicit Integration. Methods using this technique choose to

integrate divectly the perturbation eguatrions to obtain the perturbed
values over the interval of interest. Some investigators have found (see
for example the work of Merriam?®) that these methods suffer from numer-
ical instabilitiesz. Instabality here is used in the sense that small
errors in numerical precision will become exponentiazlly very large over a
long interval of numerical integration. The nature of these instabilities
is associated with the numerical integration for coupled systems of linear
differential equations which have split bo;ndary conditions and admit both
increasing and decreasing exponential solutions. -

Inmplicit Integration. Methods which presently use this technique

are based upon a transformation process such as the generalized Riccati
transformation. The technique consists of bypassing direct integration of
the perturbation equations, and integrating a set of auxiliary variables.
These in turn can be used to compute the perturbed values for the variables
in the perturbation equations. Several advantages are claimed for this
technique. First, the differential equations for the new auxiliary vari-
ables have been reported to be more stable numerically than the original
perturbation equations. Second, these auxiliary variadbles contain addi-
tional intrinsic information about the optimal trajectory for the problem

being solved.
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A strong case concerning increased numerical stability in first—

order linear two~point boundary value problems has been made by Rybicki
and Usher3!. However, work by Williamson®? and this author has revealed
that problems which have large diifferences in sign and magnitude for the
eigenvalues of the coefficient matrix in the linear system of equations do
not behave well numerically with the generalized Riccati transformation

technique. This author's opinion is that a valid generalized statement iz

yet to be made concerning the numerical stability properties of the Riccati

transformation technique.
That the auxiliary variables could contain additional intrinsic
information certainly proves to be true. The earlier methods lacked in

.one respect: after counvergence had been achieved, they required that post-

convergence procedures be used to test the Legendre~Clebsch condition and/
or the Jacobi-Mayer conjugate point condition. Those methods which used
the "EP" Scheme to generate the set of perturbation equations automatically
took the Legendre—Clebsch condition into account when eliminating the con-
trol from the set of Euler-Lagrange equations. However, the Jacobi-Mayer
conjugate point condition still must be tested. This condition was often
ignored and the converged solution was assumed to be a local optimum.
However, using the generalizéd Riccati transformation technique
on the perturbation equations provides the advantage of additional infor-
mation for the current reference trajectory. Information is contained
among these auxiliary Riccati variables for testing the Jacobi~Mayer con-
jugate point and abnormality conditions from the calculus-of-variations

(McReynolds23). It is well-known that the existence of a conjugate point

precludes a trajectory from being optimal. The existence of such a con- ~
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jugate point can be automatically detected continuously during the back-
ward sweep process. This is accomplished by use of the fact that the
matrix solution to the Ricecati differential equation becomes unbounded at
a conjugate point. i |
i
On the other hand, the abnormality condition is equivalent to a

certain matrix of these auxiliary Riccati transformation variables be-—
coming singular at the initial time. This information is important be-
cause s;ch a condition is tantamount to the inability in making correct—
ions for values of the terminal constraints. This abnormality condition
occurs for the Bolza problem if the boundary conditiéns at the final time
are not linearly indepeﬁdent (McReynolds?3).

. This leads to speculation concerning additional information
about the reference trajectory which might be contained in the other Ric-
cati transformation variables, either indiv?dually or in some combined

form. To this author's knowledge, little work has been done in attempting

to extract such additionzl information.

2.4 The Generalized Riccati Transformation Technigque

The generalized Riccati transformation is a transformation which
chanées the original two-point boundary value problem in terms of the
coupled linear system of differential equations t; an initial-value prob-
lem having udcoupled variables and boundary conditions. This initial
value problem is now stated in terms of .n original problem variables,
and in the general case, a total of [n(n+i) + q(q+l)} /2 + [(nxq) +
3(n+q) +-2} auxiliary BRiccati variables where n is the number of state

variables and -q is the number of terminal constraint. Since the coupled
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system of perturbation equations is integrated implicitly by integrating
these auxiliary variables, it was expected that the differential equations
for the auxiliary variables would be numerically more stable than the ori-
ginal equat?ons. Furthermore, Breakwell and ﬁ$2 have shown agreeﬁent with
McReynolds?3 1n that the conjugate point condition is related directly to

the boundedness of an (nxn) matrix of Riccati variables which must satisfiy

a matrix version of the scalar Riccati equation over the time interval of

interest. . i

This transformation approach proceeds to solve the original non-
linear two-point boundary value control optimization problem in the fol-
lowing manner. A solution‘go the original nonlinear problem is assumed,
and the corresponding terminal conditions are obtained. In general, these
conditions are not satisfied to within the specified error tolerances.
Desired changes, in these terminal conditions are specified, and the gen-
eralized Riccati transformation is used then to generate a linearized field
of solutions about this assumed solution. The transformation allows the
specified changes in the set of terminal conditions to be mapped back to
the initial time, when the particular member of the field that also satis-
fies the initial conditions is selected. A new solution to the original
nonlinear two—point boundary value problem is then computed using the lin-
earized corrections, which are obtained through use of the auxiliary Rie-
cati variables. As before, the new solution does not satisfy the desired
terminal conditions exactly due to the linearity assumptions. However, the
process can be applied iteratively until the desired terminal conditions

are satisfied to within a suitable error tolerance.

Historical Background. A Riccati transformation technique was

fyrst used by Gelfand and Fomin® in their successive sweep procedure of
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. solving two-peint boundary value problems for linear inhomogeneousgs
of secend~order differentis]l equations. The same fransformation g )
eralized and discussed for systems of first-order equatioms by Rydad
Usher. 33 McReynolds?3s2% and Mitter?” used the successive swesp ne
with the generalized Ricecati transformation technique to solve The .

linear two-point boundary value problem of comitrol optimization. 3&"}

and Lee3? have developed a Newton—Raphson method which uses the Riegr .

transformation technique. Speyer and Byrson®® have extended the C@g:
of the Ricecati variables for the case when some of these variables.erm,
unbounded. Narha and Berry2® and Omicioli?? have applied the sywove
sweep method of McReynolds to the shaping of optimal finite-thewgrmess
transfer trajectories for which the control functicn is charachesuny
discontinuities. McGregor?? has used the same method but has gt
wodifications to handle problems with inequality constraints whig.ogmeafmr
the control explicitly. IHost recently, Longmuir and Bohn'® havespe
kow this technique can be used with any second-order methoed.

Analytical Development. The generalized Riceati transfoszie

for the linearized control optimization problem can be written imzsfox

“form as

aalt) dx{t)

M. | = R(E) [dv + ple) (197

dnf dt £


http:Usher.31

where de, dﬂf, dv, and dt,. are constants for a particular iteration

£

and

[k D 2 [0 )
1
¥
R & |g P o & | ¢
yT ZTS ¢
| J . J

T . . . .
where K, E, y~ respectively map given state perturbations 8x{t) into
changes in the multipliers 6&A(t), terminal state dissatisfactions &M .

and terminal Hamiltonian transversality dissatisfaction dﬂf and

K(t) dis an nxn symmetric matrix
E(t) ds a qxn matrix

y(t) is an n-vector

Also, D, F, zT > Trespectively mab changes in the multipliers dv into
changes in the multipliers 8x(t) , terminal state dissatisfactions de,

and Hamilténian terminal dissatisfaction de » and

D(t) is an nxq natrix
F(t) 4is a qxq symmetric matrix

z(t) is a g-vector

The scalars £, g and s respectively map changes in the final
time dtf into changes in the multipliers 8A(t), terminal state dissat-

isfactions 9Mf and the dissatisfaction in the terminal Hamiltonian, dﬂf.
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The quantities n, { and ¢ respectively map changes in termi-

i

nal local optimality dissatisfaction or terminal transversality dissatis-
factions by the multipliers into changes &x(t), de, and dﬂf .
Differentiating the generalized Riccati transformation (Bq. 19)

with respect to time gives

r Sk - rs‘x'} o ra}; N
0 | = ® jav| + rR}io |+ o (20)
0 dt 0

\ 7 L fa \,

Expanding the middle term on the right and transposing to the left yields

(1 -K 1 6% )
n h
SA * L]
0 -E . = R {dv + 9 (21)
8x)
T
0 -y ) dtf
\ J .. L)

Using the perturbation equations, Equations (17), to eliminate 8L and

.
.t '

"8x leads to the following expression

r ~
s 3 3
In -K . 6x
-A -Cl{dX —w . .
0 -E { 4 + r = R [dv | + p (22)
B Alléx v
¢ -yt - d
Yy tf

\ Jk. J LJ




Now

. —A -C S —C ~A dx

Using the first row of the Riccati transformation, Equation (19),

following relation can be readily obtained.

[

8x
Sx I 0 i — 0
byl
= dw +
52 X D A n
i Ldtfa

Substituting Equations (23) and (24) back into Equation (22) gives

Ay

[ \ { )
In K . 8x
-C —-A I 0 0 0
0 -E 1 " dv [+ +
A B K D 2 n
T
0 -y dt
f
. / \ r
.
éx

dt

(233

the

(24)

-

(23)



Multiplying and collecting terms for arbitrary

the following equations must hold

R = ~sTyr
5 = -STr
where
,
A In 0 0
g = T
K E ¥y
L
4
I 0] 0
r & B
K D £
\
( T )
A C A
W =
A B
. F
( b
ATn 4+ w
A
and r =
Bn + «w
. J

Sx,

dq and dt

f ¥

L2860

{2054

Performing the matrix multiplications yields the familiar set of equa-

tions for the Riccati variables.

I K D A
d
3 E F g =
T T
LY z s
- s
— E(A + BK)
L yI(A + BE)

p—

EBD

yTBD

T A
(A" + K8) K+ KA+ C ;(AT+KB)D {

l

T + wB)s
EBL

yIBR

(28)



n ] (AT + xB)n + (Kv + w) ]

4 = - E(Bn +

dt (: - ( n V) ?-9)‘
3 y G + V)

From Equation (28), the following rates of change for the Ric-
cati varizbles are found to be equa1: ﬁT(t) = ﬁ(t), §(t) = p(t) and
é(t) = é(t). If, then, at the terminal boundary ET(tf) = D(tf), y(tf) =
R(tf) and z(tf) = g(tf), the following will be true: ET(t) = D(t),

y(t) = 2(t) and z{(t) = g(t). This means not only that the mat;ix of

Riccati variables R(t) given in Equation (19) is symmetric but alsec that

Equation (26) ditself is also symnctric. TIn this case,

R o= -sTws (30)

-
where S and W are defined on page 26.

-

Terminal Boundary Conditions. The derivations of the general-

ized set of terminal boundary conditions for the Riccata variables are

presented in Appendix B. In summary, these boundary conditions are ob-

tained from

8 h r ) ¢ 3 {3
Slf (Pxx Mi af fo T
£ . 1
f -
M = M 0 M, dv | + [0 (3D
Xg
L 1
de of + T M o4 1 B_+ ¢ ||dt T
Sy CE T 2 TE T £y £ Us)



The boundary condivions thus are

3
rK(tf) D(,tf) £(tf)
R(t,} = E(tp) Flep) g(te)
T T
‘y (te) z (tf) Sth)J
[ T ]
(Pxx)f Mx Ol:E
f
= Mx 0 Mf 7323
f
T ' T
+ M+ +
%t T e T T Be &7
( 1Y
n(tfﬂ T
and p(tf) = C(tf) = 10 L (33)_
£ T
Lt!>( f), s,
wvhere
T
P
@ & @-3‘- + HT)
£ t %/,
£
A b [oe
By oDt (Dt * Q)tf
b
TI = —dz‘.f
A JEng |
T, = (HuHuu(Hux + HukPxx)]tf
N (RS N
‘3 - [ ﬁuHuuHulMx]t



A [.TDf 1
v, £ {zf s b BH Hul“f]tf
A ~1,.,T T
and '['5 = [HuHuu Hu - (x  -8BH H A) dEf] .
I

Interval Value Process. Methods using this process start b’

assuming a contyol function over the_time interval of interest, In-
general then, H:(t) # 0. For such methods, the Lagrange multiplie:z.
can be made to satlsfy the transversality conditions identically; BEEe
?f = 0. The Successive Sweep Method is an example of a contrgg_:mn
‘iteration process. The terminal boundary conditions for the s

variables are then obtained from

r \ r T A0 3 Ly
Mf (PXX) fo af fo %t
Ml = fo 0 M, dv ) 1 €34
© -7 b
ds + M.+ T B. + T dt,
L L) AT £ 3 £ rj{ £ TE
where
T = [—H H (H )]
2 U uy s ux
£
T = [ ~H H H T]
3 TRTITRTY e
t
£
T, = [ GO o o).
and T = [H H ldﬂT}
5 U ouu u tf
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Note#fmat the terminal matrix R(tf) of Riccati variables‘is
symmetric only when the control function satisfies the local optimality
condition thaé Hz(tf) = 0., This same conclusion has been drawn by
McGregorzz. However, this contradicts the results presented by licReynolds

and Bryson?® and Mitter?7. This argument needs to be resolved.

Boundary 7alue Process. These methods assumed that H.E(t) =0,

where & it <%z .---In this case, initial values are guessed for the

-+ = -
1

[

- s
- T A=
i .

Lagrange multiSSSers, and subsequent corrections are computed iteratively.

In general thep, Zf # 0: likewise, de # 0. The terminal boundary

conditions in this case are obtained as

'4 3 f AN 3 r 3
mf (Pxx)f ;fo ag fo -«ci?lf
|- fo 0 Mg dv + 0 (35)
T + T T Df{dt T
4% ) % Mg Be = Zepef{ f | Fedlg

Note then that there is a basic difference in philosophy between a control
function and a boundary value iteration process. Im the first case, the
optimality condition that HE = 0 is relaxed at each point in the inter-

val to ensure satisfaction of the tramsversality condition Z_. = 0 by

£
the Lagrange multipliers. In the second case, the optimality condition

Hu = 0 1is satisfied at each point in the interval while the terminal

transversality Zf = 0 is relaxed on the multipliers.



CHAPTER 2

THE MODIFIED SWEEP METHOD

26

Merriam?® and Mitter2? have pointed out that boundary-condition

~

iteration methods have certain programming advantages; viz., computer

logic is relatively simple, and programming storage requirements are

small. TFurthermore, accurate trajectories are obtained in problems where

these methods are successful. Experience has shown that such methods have

- -

one main disadvantage, viz., the numeracal instability mentioned previousiy.

The nature of this instability has been discussed by several researchers,

31 gince the Riccati transformation tech-

among them Rybicki and Usher.
nique attempts to circumvent this preoblem by dealing with new uncoupled
“variables, this approach enhances the desirable features already known

about boundary iteration schemes. , -—

3.1 Differential Equations

For the modified sweep me.hod, it is assumed that the Euler-
Lagrange equations are satisfied ovér the time interval of interest. Fur-
thermore, Ehe optimality condition that HE = 0t is assumed to yield an
explicit'ﬁxpression for the control in terms of the other variables. Tne

Legendre-Clebsch condition is then used to yield the extremal control
% .
v = u(x,),t) ' (36)

This expression can now be used to eliminate the control from the original
nonlinear Euler-Lagrange equations for x and X as well as from the
appropriate transversality conditions. The set of first-order necessary

conditions can now be rewritten as

31
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2 {CBWINEN 37
SRR :

A+ Hx(x,;\,t) = 0 (38)

t = £, { N(xo,to) = 0 (39}
R Y.

Ip o= (B, -1) = 0 (40)

t o=t $ M(xf,tf) = 0 (41
- A ~ _

L R, = (B, +H) 0 (42)

Equations (37) and (38) are 2n equations for the 2n unknowns x(t)

and A(t). Equations (39) through (42) are Zn+g+l conditions for the

2n unknowns x(t), A(t), and the g+l unknown parameters v and tf.
These equations constitute the familiar nonlinear two-point boundary value
problem. A first—order perturbation of the nonlinear Euler-Lagrange equa-
tions is now considered. This yields the following homogeneous linear

system of equations (see Section 2.2).

(8x Lo By dx
. = - - (43)
s3 - -
e o) |9

As was mentioned on page 27, the differential equation for the
n+g+l matrix of Riccati variables, R(t), will be symmetric if the terminal
ﬁoundary values are such that R(tf) = R?[tf). In the_pext section it
is shown that R(tf) ?ill always be symmetric for the MSM. This
reason,_along with the fact.that an EP scheme is used by the MSM to obtain

the perturbation equations given in Equation (18), give the following dif-

ferentizl equations for the MSM Riccati variables:



R = -stws (),
T
P = -8r &8
where
s = In 0 0O
K L
) i_.H
W A XX ~Xl
Hx + Ha
H
r A ~xl N
i
3.2 Boundary Conditions
Boundary conditions for these equations are obtained by a first-
order perturbation of equations (39) and (40)
ﬁx(to) = GXO (46)
83, = (P Y. ox.+M dv + oa.dt, - 4T -
£ xd £9% Ty £9% T % (47)

£

Equations (43) represent 2n equations for the 2n unknowns 6x(t) and
82(t). Furthermore, equations (46) and (47) give 2n split-boundary con-
ditions for these variables in terms of the 2n  known parameters 6x0

and &Af plus the g+l additional unknown parameters/ dv and dtf. The
required addirional’ g+l conditions are obtained by also performing a
first—order perturbation of equations (41) and (42). It is shown in

Appendix B that this procedure yields



where

and

In matrix

= M
X

£

= aTSX + ﬁ dv -+

f

*T
= -=x

dz

f

6x + M.dt

f

T
£

f

(R + 1) dt
i

£

+ T
5

34

(48)

(49)

form, these boundary conditions can be summarized as

’

-z )

(50)

Note that this coefficient matrix is symmetriec. Furthermore, if n values

of the state are specified at t

f’

b

£

= dt

£

0. For this case, the ter-

winal boundary conditions reduce to the homogeneous form

(
(e,

X)f

(5%

Hh

dv

dt

(51)
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Tc summarize, Equations (43), (46), and (50) censtitute the linear fir,
order, two-pcint boundary value problem for the 2n functions Sx{t) ,

§A(t), and the q+1 parameters dv and dtf- in terms of the 2ntq+l

specifiable parameters 6xo R Glf s de , and dﬁf. The compitakahn

procedure followad by the MSM wiil now be outlined.

3.3 Computational Algorithm -

The modified sweep method can be implemented as follows:

Step 1 - Assume ntqtl values for k(to) , Vv and tf .

Step 2 ~ Integrate the nonlinear Euler-Lagrange Equations (37) anB#=xy

forward from t_ tao t_., viz.,
o £

;C = HT(X:}‘st}

3 T

A o= -Hx(x,l,t)
Step 3 - Test the error norm

IlErrorII

| gl + dilt = 5

If this criterion 1s satisfied, exit; otheywise, continue to

the next step.
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Set the terminal boundary conditions for the Riccati vari-

Step & -
ables
T
R(t) = |D (t,) F(t.) g(ty)
2Te) gt s(tp)
L f f f 7
> o ]
XX %
= M 0 M (52}
x
T T T DE
o " 8~ Z¢ Bt Je
. £
(t.) { -dz
n(t, £
= = 0 53
p(ty) £(tg) (53)
T
- -x- dZ
Step 5 ~ Integrate the Riccati variables backward from the final to
the initial time using the differential equations
R = -sws
5 = -STr
Step 6§ ~ Compute the wnlq+l corrections 610, dv and dtf uéing

the generalized Riccati transformation (Equation 19), eval-

uvated at the initial time. These corrections are



Step 7 -

-1 T,-1 -1
dv = (F-gs g)to((de-c> -gs (42 - ¢)
- (DT - gs_lzT) 8x Jt
(o]
-1 oy LT T
de = sto[ (de $) —g dv -2 6x )to
and
s, = [kex + de+£dtf+n]to

where it has been assumed that

*
de = -g Mf

%
dﬂf = - ﬂf

Repeat from Step 2 using the new values

i+l

- i
A (to} A (to) + 610
v1+l - vl + dy
i+l _ i
Ef = tf + dtf

3.4 Computational Advantages

The computational advantages of the MSM over the SSM are

that it has to integrate n+q less variables and requires considerably

less storage than the SSM. The exact comparisons are shown in Tables

11 and III.

37

Table II shows the number of wvariables which must be inte—
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grated by each method in forward and backward direc;ions. Table 1II
shows the storage requirements for each method, Only 3n + 2(qHl) quan-
tities need to be stored in the MSM case. TFor the 85M, however,
M(n(q+3)+m+n(n+l)/2) guantities have to be stored where M is the total
number of poants in the integration interval. A quick check for a
typical reentry problem with M = 1,000, n = 6, g=3, and m=1
shows the MSM requires storagé of 26 quantities while the 55M must
store 58,000 quantities. )

It is speculated that use of the SSM for large conplex prob-
lems suchk as the Apollo 3-D reentry will require fixed step-size integra-
tion routines with a large enough step-size to remain within the computer

storage limitations. Furthermore, the large step size may lead to unsat—

isfactory numerical accuracy.
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TABLE II ) i

MSM AND SSM VARIABLES TO BE NUMERICALLY INTEGRATED

STANDARD SWEEP? METHOD

MODIFIED SWEEP METHOD

n(q+5) + (3q+2)

+ % (n(x+1) + qlq+1))

Forward: X=-n Forward: X -1
Backward: A-n A—-mn
X - Eﬁ%ill Backward: K - Eﬁ%ill
D - nxq D — nxg
L -n L - n
n-n n=—n
F—ﬂ%@- F 9-—9-———(;1)
g~ q g8 4
z-q t-q
s -1 s ~ 1
¢ ~ 1 $ -1
¥y -n
z-4q
Totals: Totals:

n(qts} + (2q+2)

+ 2 (aG+l) + q(atD))

Difference: (ntq) less variables

Note: If all values of the term~
inal state are constrained, i.e.,
if q=mn, then m=0, 7 =0,

$ = 0 and the difference increases

te 2(ntql4+l less variables.
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TABLE I1I
COMPUTER STORAGE REQUIREMENTS

STANDARD SWEEP METHOD

At every point in the integration
interval, the following values

must be stored:
x(t) 1+ n
ut) 1 m

At) i n

. n(ntl)
: 2

D(t) : nxq

K(t)

(L) ¢+ n

MODIFIED SWEEP METHOD

At the initial and final poants only,

the following values must be stored:

Let M = total number of points in

the integration, then

M [n(q+3) +m +—E£%ill)

guantities have to be stored. A

typical reentry problem has

M = Order(1,000), n=6, q=3,

and m = i.

Thus, 58,000 gquantities must be
stored over the integration

interval.

Only 3nt+2(g+l) quantities need to
be stored from iteration to iter-

ation.

. Compare 26 quantities with 58,000

for the Apollo reentry problem.



CHAPTER 4

THE MODIFIED SWEEP METHOD GUIDANCE SCHEME

Initial conditions for dynamical processes are difficult to
controel in actual problems. Errors often oceur which may be due to in-
ternal mechanical causes such as premature cutcff by a thrusting rocket

mOtor.- Regardless of where these errors occur, they have the cumulative
effect of causing a deviation from the intended optimal path. It is then
desirable to use the known information about the path to recompute & new
control program to accomplish the mission objectives. This is done by
determining the control function corrections &u as a functionm of the
state perturbation; i.e., 6u = du(éx,t). This is a guidance problem in
optimization theory. The guidance relations are now derived using the
MSM.

The MSM assumes that from the loczl optimality conditiom
H. = 0 and the strengthened Legendre-Clebsch condition suH_ Bu > 0,

the minimizing control u(t) can be expressed as an explicit function of

the state and Lagrange multiplier variables; i.e.,

u = Ux,A,t) (54)

Perturbing this expression to first-order gives

du = Uxﬁx + Ulal (55)

The generalized Riccati transformation is

41
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dME

dﬂf

it

u

i

Solving the last two

dv

dt

where

and T
11

T
12

T
i3

ki
21

™
22

ki
23

flimg [[]=0 e L2 fie> Ne>

ne-

e

[{]=

Kéx + D dv +

DTﬁx + F dv

£T6x + gT dv

L dt
£

+ g dtf

+ s dtf

+

+

+

n
C

.

equations simultaneously yields

© 8§ + w y + 7
11 12

7 & + 7y +
21 22

12

23

(a4, ~ )
(ae; ~ ¢)
(F - gs gL
A(gs-liT - DT)
A
—Ags"l
~5_1(gTﬁ + 2%
11
S—l gTT
- []
12

- T
-5 l(g Ty 3—1)

Z

A

Using Equaticns (59) and (60) to eliminate dv

(56) gives

X

"+ (Dw
13

and dt

f

‘42
(56)
(57

(58}

(59)

(60)

from Equation

(K+Dx  +4ar J)éx + (Pm + 2w
11 21 ¢ 12 22)y

+ &
23

)z

(61)
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Substituting this expression into Equation (55) then gives

su = (U + U, (K+Dr__ +8m ))éx
X A 11 21

+ U D + 7 + D7 + 4w 2
.3\(( b2 T o, 23)} (62)

This equation represents the linear—-feedback control law for continuously
correcting the optimal control program for a given perturbation 6&x(t) ia
the vehicle state. The new control program is then obtained by adding
these corrections to the converged control program. Note that for a
given perturbation &x(t), the coefficients are obtained by integrating
the Riccati variables forward using the initial walues corresponding to
the converged soclution.

In guidance work it is desirable to know the control corrections

in terms of a known time—-dependent matrix and the initial vehicle state

perturbations, i.e., ‘

- su(t) = L) 6}:0:0) (63)

where L(t) is an explicit relationship between the Riccati variables
from the conéérged optimal trajectory. Attempts to yield a relation such
as Equation (63) were unsuccessful. DNumerical studies using the MSM
guidance scheme therefore were conducted with the assumption of a contin—

”

uously correcting procedure.

An immediate disadvantage is obvious in the guidance scheme
reg?esented by Equa&ion (62). Since values for the coﬁverged Riceati
variables are not stored by the MSM except at the initial point,these
variables must again be integrated forward from this initial time re-—

gardless of when the perturbation 6x(t) occurs. A more detailed dis-

cussion of this problem 1s contained in the next chapter.



CHAPTER 5

DISCUSSION OF WUMERICAL RESULTS

The modified sweep method algorithm was programmed for the
i

¥
3

THIVAC 1108 digital computer at the Manned Spacecraft Center in Houston,

Tezas. The integration schemes used follow.

5.1 Numerical Integration Routines

Fixed Step-Size Integration. Fixed step-size integrations were

carried out using an Adams-Bashforth predictor-corrector procedure with a
Ruage-Kutta starter (Lastman and Fowler!®). The Adams predictor had a ‘
éiscretization error of o(h®), and the Bashforth corrector discretization
error was of o(h®); h is the step~size. The Runge-Kutta starter had a
discretization error of o(h>). Partial double-precision arithmetic was
used as follows: the values of the dependent variables were carried in
full double precision, but the derivatives were evaluated and stored as
single—-precision numbers. This technique minimized the effect of round-

off error.

Variable Step-Size Integration. Variable step~size integrations

were carried out using a predictor-corrector—-starter procedure as mentiocned
above. -However, the discretization error in all cases was of ofh>).

These integrations were carried out in full double precision (Schwausch33).

5.2 A Brachistochrone Problem

To compare Modified Sweep Method converged results with known

analytical solutions for a problem of sufficient complexity, a class of

&4
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free~final-time Brachistochrone problems was posed as follows.

Minimize the value of the final time te for a particle to fall

along a frictionless path in a constant gravitational field from point 1

+

to point 2 subject to the constraints

i

i = V cos u
§ "= Vsinu
x(to) = 0.0
y(to) = 1.0
where
Vo= 72y - a)
VZ
and a =y -2
o 2g

The variational Hariltonian is H = V(J\x cos u + Ay sin u). Two differ-
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ent cases were scl, -

-

" Iir the terminal constraint vector Mf :

L
£ odlky <50 = 0
£
and M2 l('(tf)—s.o o
P/ -
kg - 8.0 0

The Modified Swe=-

-+ itltonian and its Partial Derivatives

Using the ., , X L. T
“ality condition Hu = 0 and the strengthened

Legendre—Clebsch -:
""fen that GuTHuuSu >0 , the control vector can

be eliminated to .

-

T the following Euler-Lagrange equations

x|
|- v [ ~T
v K = B
J Ay A
sy ’
Ay L 0} -
AN
}rJ gJ -
where
A = .
. / 1‘- 4 22
x Yy

Furthermore, the sz-, | . . . . . .
' vartial devxivatives required by the perturbacion

equations are

xx i, 5
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———

A
Ax 0 _ %_(.ji)
{ 4
T |
X'y
g v
0= (—)
A A3 -
A A -A2
7 X x

Results

The M% and M% cases were computed using the fixed step~size
integrator mentiocned on vage 44. For comparison purposes, these twa
cases were solved using the Method of Perturbation Functicns program, .
MPF (see Lewallenlf). A step—size h = 0.01 second was used in all
cases, with the initially assumed values of the unknown Lagrange multi-

pliers and final time as follows:

Ao = -0.2368 sec/ft
A; = -0,6095 sec/ft
- tf = 00,5410 sec

. . . ex -3
The convergence criterion & was specified as 0.1 x 10 ~. The correc—
tion procadufe used in all cases was 257, 50%, 75%, and 100%Z from the
fourth iteration onward.

Rate of Convergence, TFigures 1 and 2 show plots of the

terminal constraint norms versus time for the Brachistechrone problem.

Both the MPF and MSM results are plotted. Figure 1 shows the errox
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norm for the case M% = x(tf) - 5.0, The two metﬁods CONVErge in seven

itevations; however, the MSM consistactly shows a smaller errvor tham

the MPF for each iteration. Note that the Jdecrease in the error norm

for the MSM is significantly less than the MPF for the last iteration.
Figure 2 shows the error norws for the c;se ME = (x(tf) - 5.0 E

y(tf) - 8.0)T ; the MSM error norm Is noZ always iess than the MPF

error norm. However, the error differaicz is never Zarge. The terminal

stages of iteration reveal the same high Tzte of convergence as in the
1

M% case.

~

The MSM for this problem at its worst took 20% less compu-

tational time. However, this figure iIs uct considered significant be-

cause two unrelated computer programs were used.

Accuracy of Converged Rcsults. The MSM  coaverged solutions

gave six decimal place agreementkfor poth the ﬂ% czse and the M% case
when they were compared to the known analyticzl solutions. For the M%
case, the initially guessed multi?liers Ai and A; were in error with
the converged values 2247 and 262%, respectively, the initial guess at
the final time was 2% in error. TFor the M% case, the initial guesses
cn the same A; and l; multipliers were 50C0% and 2607, respectively.
In this case, the initial-guess erroxr for the Zfinal time was 14%. These
results are tabulated in Table IV. '

- To summarize, the MSM has exhibited ropid terminal convergence

and reasonable convergence envelopes focr the free-final-time Brachisto-

chrone problem.
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TABLE IV

MSM INITIAL-GUESS ERROR RESULIS

2
1 Mg
Converged % Initial Cenverged % Initizl
Values Ervor i Values Error
2° -0.0689 2447 ~0.0357 500%
x -
i 7
YA ~0.1623 282% -0.1726 ~ 260%
y ]
tf 0.5271 27 0.6277 14%

The excellent results warranted further applications of the MSM
to more complex problems whose analytical solutions were not known and
which were of curremt interest to the space program. For these reasons,

an Apollo three-dimensional reentry problem was chosen.

5.3 Apollo Three-Dimensional Reentry Problem

In the time interval L, 3ttt find the roll angle progranm
B(t) vhich can be used to control an Apollo spacecraft so as to mininmize

the weighted sum of heating and acceleration effects
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where Ro is a con;tant veighting parameter. Here, the first—term in the
integrand serves to measure the acceleration effects due to aerodynamic
forces while the second term measures the convective heating experienced
by the spacecraft. This minimization is to be accomplished subject to the

differential equations of motion given as follows

fﬁ\ ( V sin vy )
8 V cos v cos A/(R+ h) cos A ‘
A V cos v sin A/(R + h)
6 ) G sin vy - D
Y (G cos Y/V) + (V cos v/(R + 1)) + (L cos B/V)
8{ L(—V cos Y cos A tar A/(R + h)) - [(i sin 8/(V cos Y)],

The following initial conditions represent the reentry conditions
[£3

for a space vehicle on an Apollo-type lunar return mission.

()] (400,000 ft | (75.757576 mi

B(t,) 0.0° 0.0 rad

Efto) 0.0° 0.0 rad

V(e ) ) 35,000 fps ) 6.8181818 mi/sec

y(t) ~6.5° ~0.11344640 rad

Lﬁ(t‘o)J L 0.0° J | 0.0 rad J
where

G = -u/(R+ h)?

D = pSV2C,/2m
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L = PSVZCL/2m
fh
po= QOE
and m = sgpacecraft mass (assuméd constant)

Optimal reentzry trajectories were determined for two cases of

terminal conditions

h(tf) - hf
-3 ( -3
B(tf) ef 8(tf) ef
ACt.) - B Al) - B
M = £ £ and M2 = £ £
f R £ _
V(tf) - Vf V(tf) - vf
v(te) = vg LA(tf) - AEJ
f&(tf) - AfJ

Values for the terminal state represent a typical set of conditions at

drogue parachute deployment for the Apollo space vehicle

0] (75,504 £t)
8, 24.1°
A -0.6°
v, - 856 fps
Ye -44.3°
Ac) ( —29.4° ]

Numerical values for the Apollo parameters were assumed as
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S = 129.3 ft2 = 0.46379993E-05 mi?

m = 204.0 slugs

p, = 0.27E-02 slug/ft3 = 0.39743447E + 09 slug/mi3
B = 0.428-04 £t™F = 0.2217600E + 00 mi .
A, = 0.24509804E-07 sec/(s1ug-££) 12

2
= (.17809708E-05 sec/(slugHmi)l/
¥ = 0.14076519F + 17 ft3/sec? = 0.95629856E + 05 mi?/sec?
= (0.20908800E + 08 ft = 0.39600000E + 04 mi

Figure 3 shows the essential geometrical relationships between
the state variables for the three-dimensiomal Apollo reentry problem. The
variables chosen to specify the state of the point mass spacecraft were
h = altitude, 6 = longitude, A = latitude, V = speed, vy = angle of at-
tack, and A = heading angle. The following assumptions have been made:
the earth is a nonrotating homogeneous sphere with 1ts center fixed in
interial space, Furthermoxe, its gravitational potential is characterized

by an inverse-square law and it possesses an exponential atmosphere.

The Medified Sweep Method Reentry Hamiltonzan. In Appendix C,

the Apolio reeatry optimization problem is restated. The mechanics of
restructuring the problem Hamiltonian by use of local control optimality
and the strengthened Legendre-Clebsch condition are shown. The Hamiltonian
which is optimal with respect to the choice of roll angle B is given as

follows:
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?

H = - V2 2 -+ -'E 2 + N 1/2 3 + . V cos v
(csV2 ¥CP + Cp /2m) APV AIV sin Y + =0y
¢ (S5 Ay sinA) + (4 sinA+A)}-—-u—~
S leos &4 7y g 3 5 (R + h)2
A_cos v
+ [ % sin Y + >
L & v -
1 L f
- z 2 2
5= pSV [}\l{CDV *oos ¥ Ao+ 2 cos Y]

The Euler—-Lagrange equations for this problem are then generated

by taking firs{ partial derivatives of H as follows:

s 3l s _ . 3H S L
% 3 and Aj = T where i,j = 1, ..., 6.
i - h| )
These results, along with the second partial derivatives H__, H . and R
S xx’ TxA AX

which serve as coefficients for the matrix Riccati equation are also pre-

sented in Appendix C.

Resuits. Initial attempts to solve the Apollo three-dimensional
reentry probley encountered some difficulties when the modified sweep
method algoriium was used. Using the system of units ft/lb/sec, certain
elements of the Riccati matrix K grew very large at the initial time.
Because of thege large values, the matrix F also became very large at
the initial tiye, Consequently, when its inverse was used to compute
initial-time cyrrections, they were so small that the initial values al-

tered only 1n the seventh decimal place. As a result, the initial tra-

jectory was esgentially duplicated by subsequent sweeps.
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THREE-DIMENSIONAL APOLLO REENTRY GEOMETRY
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An attempt to impose arbitrary bounds on these variables was
tried for several bounding orders of magnitude ranging from 0.5 to’
1 x 10%. 1In all cases, every element in the Riccati matrix achieved the
bounding value by the third sweep. An attempt was then made to generate
more accuracy by cyeling through the evaluation—correction procedure (EC)X
of the fixed-step-size integrator several times, Values were tried for X

ranging from 2 through 9. This eifort to prevent the Riccati matrix

from going onto the limiting boundary was unsuccessful.

A scheme which used a scaled fractional part of the corrections
610 was then attempted, and this did not eliminate the numerical diffi-
culties with the Riccati matrix.. The vectox Mf was then altered with
respect to size and to choice of terminal state variables, neither of
which was successful. The system of units then was altered to slug/mi/sec,
for which the range of Lagrange multiplier magnitudes became smaller. Al-
tering the unit system was tried after discussion with Williamsonag,
whose studies on the same problem with the MPF revealed a correlation
between the numerical sensitivities of the Lagrange multiplier equations
and the unit system chosen. The choice of slug/mi/sec achieved a more
suitable scaling for the magnitudes of the multipliers; however, this did
not succeed in eliminating the difficulties with the Riccati matrix.

A variable step-size integrator routine was then introduced
which revealed the numerical sensitivity of the Apollo three—dimensional
reentry problem to the single-step error om the UNIVAC 1108. This sensi-
tivity was measured by fixing the final time at t_ = 437.263 seconds;

f

the initial values for the state and Lagrange multipliers were defined as
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XO and AO as shown in Table V, The state and Lagrange multiplier dif-

fery eial equations were then integrated forxrward from Lt = 0 seconds to

tf' Using the terminal values for the state and Lagrange multipliers,

the process was reinitialized at tf and 2z backward integration carried
ut, . . .

OUt: The values obtained at t, using this procedure were then compared
for

agreement with the defined values of Xo and AO. Four cases were

LeSlad in which the single step error & was bounded:

Case 1 1.6 X 10d10'i e £ 1.0 x 10“07
Case TI 1.0 x 10 °2< ¢ < 1.0 x 1070°
Case TIT 1.0 x 10733< ¢ < 1.0 x 10720
Case V. 1.0 x 10 < ¢ < 1.0 x 1071%

To tumerically integrate forward from the initial to the final time and

T®yitialize and integrate backward to reproduce the initial values to

©1sht decimal places, the single-step error ¢ had to be bounded as

14

1x107% < e < 1x107H

! ~14 . . R
Wity the error became less than 1 x 10 s, the integration step size

- -11
W35 doubled for the next step. If the error exceeded 1 x 10 I , the

®t-p size was halved; otherwise, the step size remained unchanged. These
f-<ults are summarized in Table V where the bar under the digits denotes
d&?iations from agreement with initially assumed values. \
Figures 4 through 9 give a particular set of numerical results

*“r this problem. This set of results was essentially identical for both

Y of terminal conditions M! and M% .

f
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TABLE V

SINGLE~-STEP ERROR TOLERANCE

0.71934619-02
~0.72100154+01
0.81929769+01
0.24207833+01
0.16458225+02
0.35760746+01

0.75766004+02

-0.40744522-06 °

~0.65481932-06
0.68185440+01
-0.11346347400
0.41275475-05

INITIAL VECTOR

0.71895786-02
~0.72100154+01
| 0.81929783+01
0.24206079+01
0.16453277+02

0.75757626+402

0.68181686+01
-0.11344647-+00

0.35760666+01

~0.13346897-07
-0.13262769-08

0.20899670-07

(0.71895168 - 02
-0.72100154 + 01 0
0.81929784 + 01 Xo = 0]
0.24206058 + 0L - 0.68181818 + 0L
0.16453211 + 02 -0.11344640 + 00
0.35760665 + 01 0
NUMERICAL RESULTS
Case 1 Case I1 Case III
. 1.0D-10 1.0n-12 1.0p-13
1.0D~07 1.0D-09 1.0b-10

0.71895265~02
~0.72100154+0%
~0.81929784+01
0.24206063-+01
0.16453225+02
0.35760665+01

0.75757596+02
~0.15685918-08
~0.18274255~08
0.68181827+01
~0.11344644+00
0.10682438-07

3
0.75757576 + 02

59

Case IV

1.0D-14
1.0D-11

0.71895178~02
~0.72100154+01
0.81929784+01
0.24206059+01
0.16453212+02
0.35760665+01

0.75757577+02
~0.14599980~09
~0.10809805~09
0.68181819+01
0. 11344640+00
0.73654477~09
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Figure 4 shows the a2ltitude and scaled reentry speed histories
that the Apollo spacecraft would follow during optimal reemtry for both
the M% and M% cases. Figure 5 shows the hastories for the longi-
tude, latitude, angle of attack and heading angle state variables during
these optimal reentries. These two figures are of interest because they
define the optimal state histories which the Apollo spacecraft should fly
to aéhieve_the specified terminal conditions while minimizing aerodynamic
acceleration and convective heating. Figures 6 and 7 show the Ah
and lA multiplier histories, respectively. These are the Lagramnge
multipliers associated with the rates of change in altitude and latitude.
They are included here to define the trends to be anticipated for the
specified set of initial reentyy conditions:

The two Lagrange multipliers which are required to dafine the
optimal reentry roll profile are shown in Figure 8. This particular fig-
ure shows the lY and AA histories where lY and lA are associated
with the rates of change in the reentry angle and heading angle, respec-
tively. Figure 9 shows the reentry history for the payoff function.

The aerodynamic acceleration and weighted convective heating experienced
by the spacecraft have been plotted to reveal their individual character—
istics. A study of this figure shows that two peaks occur in both space~
craft acceleration and heating duriag the optimal reentries. The optimal
reentry roll procedures seem to c¢all for a trade-off philosophy between
acceleration and heating experienced by the Apollo spacecraft. The high
peak in convective heating is initially balanced with a smaller acceler-
ation peak in the vicinity of 100 seconds. This situation is subsequently
reversed in the viginity of 400 seconds where the high acceleration peak

is balanced with the smaller heating peak.
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. Figure 10 and 11 show the A, histories for the M. end 2
cases, respectively. This is the Lagrange multiplier which is associated
with the rate of change of speed for the Apcllo spacecraft. These figures
were included to reveal, for the specified initial reentry conditions, the
sensitivities of this variable to a change in terminal conditionms. It is

interesting to note that both histories are similar with the major dif-

ferenpe arising beyond 400 seconds.

Figures 12 and 13 show the optimal reentry roll programs for
the M% and Mf2 cases, respectively. These are the roll profiles that
an astronaut would have to use during reentry from a lunar mission to
minimize aerodynamic acceleration and convective heating while satisfying
the desired terminal constraints on the vehicle state.

In each case, optimal reentry calls for the spacecraft to com—
mence the reentry maneuver with the lift vector pointed almost straight
downward. The spacecraft is then quickly rolled such that the 1lift vector

is pointed almost straight up aftesr 90 seconds. A slower downward roll

of the 1lift vector is then initiated so that this vector is at a vaiue of

169 degrees by 350 seconds. The 1lift vector is subsequently rolled up-
ward to approximately 15 degrees by 410 seconds at which time terminal
dewnward roll procedures differ depending on the specified values for the
final vehicle state. Specifying two less conditions on the final state of

the Apollo spacecraft calls for less terminal roll of the lift vector.

An attempt was made then to obtain a precise evaluation of the
MSM computational characteristics. For comparison purposes, the
three~dimensional Apollo reentry M% case was chosen, The MSM program

was then altered to assume computational characteristics similar to
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1
39 wpr program. Values for the initial Lagrange multipliers

Williamson;s
and final time were specified in varying degrees of accuracy ranging from
four to eight decimal places. Both programs were run on the University
of Texas CDC 6600 digital computer using single~precision arithmetic
everywhere except in the variable step—size numerical integrators where
parfial double~precision was used. Each integrator had a single-step

error tolerance of 1.0E-10< g < 1.0E~08. The correction procedure re-

quired correcting 1007% of the terminal error after each iteratiom.

Results of this comparison study are summarized in Table VI. The

TABLE VI
MPF/MSM

Convergence Characteristics

for M% Case of the Apollo Reentry Problem

Significant Time to Converge % More Time Number of
Digits for CDC 6600 Required by Corrections
Ao’ tf {Seconds) MSM Required

MPF MSM MPF MSM
8 33 49 49% - 1 1
6 66 106 607% 2 2
4 165 207 25% ’ 5 4
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MPF program regquired less time to converge in each case. However, with
decreasing accuracy in the initial guesses for AO and tf, the MSXM
revealed a tendency toward fewer required corrections and more competitive
time-to~converge, Terminal error norms of both the MPF and MSM pro-
grams for the case of four significant digits in AO and te are shown
by Figure 14.

No direct computational comparisons with the SSM were avail-

able. McGregor?? ysed the SSM to converge the three—dimensional

Apollo reentry pr;blem for the case of terminally specified values for

6, A, and V. This particular case was converged using a fixed step-size
integration routine. However, as was discussed previously, the MSM re-
quired a variable step-size numerical integration scheme to preserve the
numerical integrity of the state and Lagrange multiplier eguations. Im
addition, the MSM failed to converge this particular case of the three-
dimensional Apollo reentry problem. This failure is currently under study
by this zuthor. WNumerical comparison between the SSM and MPF for this
particular case of the Apolleo reentyy problem can be foqyd in the study by

-

Tapley, et al.3’

5.4 MSM Guidance Results

The MSM guidance scheme was impleménted for the three-dimen-
sional Anollo reentry M% case. A 5% perturbation in altitude, speed,
and angle of attack was initiated at t = 0 seconds to study initial
reentry condition perturbation effects. A similar perturbation was initi-

ated at t = 75 seconds to correspond to anitial peaks in spacecraft

heating and acceleration. In either case, it was assumed desirable to
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correct s0 as to satisfy the originally specified terminal conditions. The

guidance scheme then assumed that

y(t) = z(t) = © (¢ <t < tf)

Control corrections reduced to

Su = [UX +U, (R+Dr + 9,1?21)]5}{

(64)

(65)

Numerical results revealed that the MSM guidance scheme failed

to satisfy desired terminal conditions for specified vehicle state pertur-

bations. Investigation revealed that numerical instabilities arising

from attempts to forward-integrate the metrix Riccati equation were re-

sponsible for compromising effective terminal guidance.

to suppress these instabilities is needed to achieve an effective MSM

guidance schemne.

Further study



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

A new second-order variational method (the Modified Sweep

- Method) was developed for solving the two-point boundary value problen

of trajectory optimizataon., If differs from the original Successive
Sweep Method in that the iteration process is now associated with modi-
fying the initial values of the Lagrange multipliers instead of the
control function over the time interval of interest. This approach re—
quires considerably less computer storage and yields the Fulerian control.

The new method was tested successfully on several classes of problems.

The following conclusions were reached about the Modified Sweep Method:

CONCLUSIORS —

1. The method has appeal for problems in which knowledge of
the Eulerian control is critical, The MSM vyields the Eulerian control
over the entire time interval of i;terest upon convergence.

2. Significantly less conmputer storage than the 8S5M was re-
quired. Only 3n + 2(g+l) quantities were required by the MSM algorithm
to compuée the desired corrections from one iteration to the next. This
is a desirable characteristic for larger-cimensional problems and small-
storage computers.

3. The numerical integration of a ieast ntq less varisbles

than the SSM is required. Tnis feature is desirable because less com-

putation time is required.
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4. Rapid terminal convergence characterigtics of second-order
nurerical optimization methods is retained by the MSM.
5. The conjugate-point test feature contained in the orxiginal
SSM 1is also retained by the MSM,
1
6. A numerical comparison.of the MSM with the MPF for the
class of free final-time Brachistochrone problems revealed that the MSM

possesses acceptable convergence envelopes and competitive time-to-

converge features.

RECOMMENDATIONS

1. The basic nature of the generalized Riccati transformation
technique for solving the linear two-point boundary value problem of con—
trol optimization should be studied. It is possible that other equivalent
combinations might possess a better structure for solving the two-point
boundary value problem than the combination presently being used.

2. Sensitivity of the MSM algorithm to classes of problems
should be determined. This recommendation is made because of the method's
failure to converge the three-dimensional Apollo reentry problem when ter-
minal state values are specified for longiéude, latitude and speed.

3. The correction procedure used with the MSM should be opti-
mized such that the largest allowable correction is always attempted during
a given iterxation. This should be accomplished for the obvious reason of
reducing computational costs by requiring fewer iterations.

4. Properties of the other Riccati transformation variables
and their relations to the reference trajectory should be studied. Cur-

rently, only information about the Jacobi-Mayer conjugate point condition
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and the abnormality condition is being extracted. This information is
contained in only two matrices of the many used by the Riccati transfor-
mation technique.

5. The MSM algovithm should be extended to treat state as
well as control inequality constraints. The need for this extension-is

obvious since most practical problems are subject to such constraints.



APPENDICES —



APPENDIX A

THE INBOMOGENEQUS SET OF PERTURBATION EQUATIONS

Let x%(t), u(t), and A(t) be functions associated with an
extreme trajectory for the functional to be optimized. With the assump-

tions made in Xecessary Conditions, page 12, the following Euler-Lagrange

equations are necessarily satisfied:

x = chaz,a,x,e) = £(x,u,t) (A.1)

2 T, — - =

A= -Hx(x,u,l,t) (A.2)
T.—

0 = Hu(x,u,?t,t) (4.3)

where () indicates that the variables are to be evaluated on the ex-
treme trajectory. L

Now assume a nearby trajectory characterized by the 2nm func—-
tions x=x+4+8x, u=u+56u, and A=A + 8\, Substituting x, u,
and X into Equations (A.1l) through (A.3) and expanding into a Taylor

Series to first order about this nearby trajectory, the following equa-

tions are obtained

éx = Hlxﬁx + Hluﬁu (A.4)
§A = -Hxxﬁx - quﬁu - HXAGA (A.3)

SHY = H 6x +H 6u -+ H S (A.6)
u ux uu uA

where the partial derivatives of the Hamiltonian H are evaluated along

the nearby trajectory.
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Making the assumption that the (mxn) matrix Hu; is non-

singular, the control corrections can be obtained from Equation (A.6) as

fu = H X ((SHT -H 6x - H ax) . (a.7)
uu u ux uA

Using this expression to elimimate &u from Equations (A.4) and (A.5)

then gives

6x A B &x v
= + (4.8
& ¢ -AT||sx —
where
A L2 ol 4
Au uu ux AX
A -
B = HluHuiHul
¢c 2 wgls 41
Xu uu ux XK
A -1..T
v = HluHuuéHu
w & u ylst

Xu uu u

Equation (A.8) represents the inhomogeneous set of linear perturbation
- equations used by second-order variational methods. For computational

purposes, the following is used:
SHT(t) = g Ht(t) 0< g <1 (A.9)
u uu ? u -

BOUNDARY CONDITIONS

Boundary conditions for these equations are devrived in Appendix

B. They are summarized here as
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L]
[

8x(t,) = &x% (A.10)

and
T
- ALl
Sl(tf) (Pxx)f 6xf + fodv + afdtf + T, ( )

where the vectors o and T, are also defined in Appendix B.



APPENDIX B

FIRST-ORDER PERTURBATION OF TERMINAL CONDITIONS

To allow for changes in the variable final time from iteration
to iteration, the following linear approximation is psed throughout this
section. For an appropriate variable; e.g., Ve, assume that
dv, = dv. + v dt, .

The transversality conditions on the terminal values of the La-

grange multipliers are expressed by the condition
-Z. = P_=- 1A (B.1)

A first-order perturbation of this condition gives

gy = (B dpdxe + (B Jedv o+ (B ) de~dAg (8.2)

Replacing dxf and dlf using the linear approximation stated in the

first paragraph above, and grouping terms yields

DPT
Ly = (B, ) 8%, + (B Jodv+ | =E -1 ! de; - 84, (B.3)
Replacing ) by use of A= —Hz and trahsposing the SAf term to the
left gives
. DPT
T8hp = (R ) 8%, + }szdv + Dt" + Hz dt, - 4z, (B.4)

iz
The required terminal conditions on the state variables are

given by

Mo = Mlxg,tp) = O (B.5)
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Similarly, a first-order perturbation in the variables yields

dM_ = M & 4+ M_dt. (B.6)
£ pld

The transversality condition on the final value of the Hamilton-

ian is given by

o, & e, + H(x,u,l,t)]tf (2.7)

After using the linear assumptions stated im the fivst paragraph of this

section, a first-order perturbation in the variables gives

dﬂf = [(Ptx + Hx)]fﬁxf + (Ptv)fdv + (Hu)fﬁuf + (Hl)fﬁkf

+ [(Ptt + Ht’) + (PtX + Hx)x + Huu + Hkk]f dtf (B.8)

r

using Equation (A.7), &A. using Equation (B.4), and

Eliminating 6u £

f

collecting terms gives

v

- -1 -
dgf B [Ptx + Hx HuI-quHu:‘: + (H). I’I\:‘Hul:tH ul) Pxx]fa Xf
+ ’p + (o -unuly P dv
{ tv A U uu uA XV §
T
r DP
D -1 % .T\)
+ |==(e_+H) + - —=
pc®e ¥ B (HA HuHuuHul) ( Dt T Hx) e
+ Eter)-{n -mm m az (B.9)
[ u uu ulf A u uu ui e £ ’
. . . T . . .
Substituting =x = H, , grouping terms again, and rewriting gives

A
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e :aT B HuH;i (Hux B F xx)]
+ ;(Pﬁ\g) - HE H ’VIT}fd
¥ :5% (v + 1) + 5 ;:;‘ + 5 R o }f dte
+ :HuH;iﬁﬁi ;T as, + HuHulllHul az f}f (8.10)

where
T

P
G2+ o),
b

Manipulating the coefficient for the di:f term, it is possible to vewrite

"~

this coefficient as

Hl

D [pP TD ~
[Dt (Dt ¥ Q) ¢ D HuHuiHuA“L

In matrix form, Equations (B.4), (B.6), and (B.10) can be written as

T \ [ (- )
Slf (p )f fo ag 6xf T,
| = fo 0 Mg fldv @+ 10 (B.11)
an Ty ML o4t B+ dt
e £ T T e T T PET Tuf | ')
where T
A (DP}: 'l‘)
e = —- + H
£ Dt A
f
4 D (op
Be = D¢ (Dt * Q)t



and

e

=

ne>

(=

L=
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APPENDIX C

-A MODIFIED SWEEF METHCD HAMILTONIAN WITH

FIRST AND SECOND PARTIALS OF
3-D REENTRY PROBLEM
Problem Statement
Minimize the real functional
te
J = J [-;./L2+D2+ipl/2
m o
0
subject to
h = Vsiny
é v Cos Yy cos A
(R + h) cos A
A = .__JL,__ (v sin A
®+ 1) 0os v si
¥ e - —E gny-2
(R + h)?
. U cos ¥y
Y = - cos
R +n)* ¥ R +h)
A = - v cos Y cos A sin A _ L
R+ 1) cos A m

and satisfying the end conditions

B
3t

x(0) (a constant wvector)

ﬁ(xf,tf) = 0 [ a (gx1) vector ]

87
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v3| dt



where

_ 1 2
L = 3 esvic,

_ 1 2
D = 5 SV CD

The wvariational Hamiltonian is

* ES
e & B8houo / c2 2 > 1/2 ~-g(h/2) 3 .
H = 20 Poe sV CL -+ CD + lopo e Ve + AIV sin vy

Vcosy'cosA _ . .
+ ® + 1) oos A (lz AG sin A) <+ (AS sin A + AS) ]
- —F——| A, siny+ A, =2
(R + h)2| v
1 Eh in B
- sin
- 3o Pe sV {AQCDV - CL (}5 cos § - Ag oS Y)}
Partials of the Apollo 3-D Hamiltonian With
Respect to the Roll Angle
3H 1 gh B
= 28 . _L = - : - Los B _
HB Y] 7z Po® SVCL l5 sin 8 Jkti cos vy 0
~-This implies that
Ao sin g+, 228 _

6 cos vy
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T
g COs Y

26

2 2 2
i{is + ls cos< vy

—ks cos B8

/32 P z
_Vis + 15 COS< ¥

ency Condition

or
tan B =
Thus
sin § =
and
cos B =
Suffici
L3
Beg = = 3m Po®
B
We require
HBB > 0
Thus
. sin B
[ ls cos B 16 cos ¥
or, using H, = 0

h Ag sin B
SVCL As ¢cos 8 -
cos ¥

for a local minimum

| < o

Requiring = - —%— < ¥y < —/ vyi

89



Therefere, the "4

Finally,

The Optimal Hamiltonian With Respect to

g0

0 < <

cos Y 1

sign of the radical must be chosen for optimality in B.

A
sin B = ®
OPT VA2 + A2 cos? Y
_ b 5
—AS COS Y
cos Bopp =

2 2 2
Vﬁe T A7 cost y

B

Eliminati

1
2m P

=

AV

O,

ng sin B and cos B then yields
h ~ 1/2 ~B(h/2
e FPey2 /BT 502 4 3 pr/ 2B/ 2)ys
1) L D 00
sin y + %Rcish§ [zgz i (A, = A, sin &)
sin A + 15)] - -—-iL-—jg [Aq sin v + Ag Los ¥ ]
(R + 1) Vo
e BBy ln cv + % YAZ + A2 cos?
o 47D 5 Y 6 5 ¥
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First Partials of H With Respect to x and A

The Euler-Lagrange equations for the

M5M are obtained f£rom the
first partial derivatives of the Hamiltonian H.

These equations are given
below, where

= 1, . 6
i
aH o En § - 1/2 ~Bm/2)
8n - 9 .- 2/c2 3+ 2 B - 3
%, 5t 82 e = SV CL+CD ZApo e v

V cos vy cos A . .
[cos A (Az Ag sin A) + (ka sin A + AS)]

+ P
3 .2 _~Bh L nr2 3 )
+ B e SV[AchV + = /ks + AS cos< ¥
-2 ~
g aH V cos vy lcos A
oy (A, sin A -~ A.)
Xy £ (R + h) cos2 A 2 6
- Y S 172 -Ben/2)
B = = = 2.7 /c2 + 2 + - 2
x4 W - m © sV CL + CD + 31000 e v
+

A

cos A 2 ls sin 4)

Al sin y + cos v cos A (
(R + h)



AS cos Y
+ (A, sin A+ 25 )| + L 5 >
(R + h) v
1 th €y
- = e /22 2 7
= poe S[ZAL}CDV + AG + 1\5 cosS”T Y
cos ¥y
- _ gﬁ_ _ _V sin y jcos A _
HXS = Ay AV cos v ®+ {cos i Gy, = A
+ (ls sin A + )\5)] -t [Rq cos ¥ -
2
(R + h)
% 2 o4
1 “En 16 sin y
< om poe SVCL
cos? vy A% + cos? y
;I :): Veosy | _ sin A
Xg oA (R + h) cos A
=~ 3l
H = (—“) = V gin v
11 32

B ) - - V cos v cos A

(R +h) cos A

V cos y sin A

(R + h)

® + h)?

gin v -

L.
pO

2m

%
~gh

SV2C

|

6

KS )
= gin ¥

v

sin A)

)

(lz - ls sin A) + 13 cos A}
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oot

AXr

vhere

V cos y _ u Ccos Y
R
®RHB) g2 ¥
_% Ao cos Y
Bhsch 2
Vﬁ% + l% cos? vy
YV cos v cos A'sin A
(R + h) cos A
%
i SVCL 16
cos ¥ /ig + Ag cos? v
HM Matrix
6 "0 o o o0 0
-
0 0 0 0 ] 0
0 0 0 0 0 0
= @
4] 0 0 0 4] 0
0 3 0 0 a b
0 t] 0 0 b c
L J
%*
o] C. 8ve Bl
- .0 L 5
2m \3/2 Ag COS Y
2 2 2 .
(16 + As cos {)
. %
P, C, Sve Bh )
+ = A X cos v
(gg + 22 cos? y)
*h
o, c,sve®
T - A% cos ¥
3/2

93



o

A%y

=

A1%q

Mo

A%y

AEg

et

MXg

ot

klxﬁ

ool

A%y

b 2

L)

et ¢

Aox

=)

12x4

Hlx Matrix
0
0
0
sin ¥
V cos vy L
o
_ cos Y cos A

(R + )2 cos A

0

Vv cos Y cos A sin A
(R + ) cos? A

cos Yy cos A

(R + h) cos A

%4



ot

Ag¥s

A%

[=s ]

Ag¥g

o2

A X

ot

Ag¥s

t

Ag¥y

v sin ¥ cos A
(R + h) cos A

v cos v sin A

(R + h) cos A
}

Vi .
- cos ¥y sin A
(R + h)
0
0
cos_¥Y .
®+ 1 sin A
A sin v sin A
(R + h)
v
m cos Y cos A
21U . % pﬂ 2 'Eh
—-—-————51ny+8-2-—SV CDe
® + h) -
0
0
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Ag¥y

573

t

15x4

=]

Ag¥g

ja il

As¥g
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P Bh
- -—-SVCDe
- .__JL__HE cos Y
(R + h)
0
_Vocos y I 2y cos ¥y
(R + h)?2 ® +n)® V
) % A_ cos ¥
% - 5
B —=C_8ve Bh
2Zm L #/2 > > ‘
AS + As cos® ¥
0 LA
¢
4]

* A
cos y U cos Yy Po o geFR 5 €98 ¥
(® +n) @+n2 vz @b AZ +22 cos? v

. . p _x
¥ siny u sin vy _ EE'CLSVE Bhk -
R+h) @®+hn)2 v 5 2
0



where

] ?\g- sin y
T2 f—y -
().2 + 22 cos? Y)B/Z
[ 5
‘ fn
;I = Y cosy cos A sin b '*é‘ _p_q_ Cste A
Ag¥1 (® + h)? cos A T cos v 4&2 + Ag cos? ¥
H = 0
Ag¥a
ﬁ - \ cos y cos A
A6¥3 R +h) g2,
#n
ﬁ _ _ _Cosy cos A sin A _ pi_ CLSe Ag
36x4 (R+h) cos A 2m cos Y Vﬁ% T kg cos? v
- v i Asinp P fh
_ sin y cos A sin 4 _ "o -
Hlsxs (R + h) cos & 2m Cste J,\6-""3
ﬁ - v cos ¥y sin A sin 4
}Lsxﬁ (R + h) cos A

where

2 2 2
sin vy ()Ls + 2).5 cos y)

3 2
cos™ ¥ (A: +J\§ c052 7)3/2
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1*1

H Matrix
XX

* W i %
%, P - 2 ~
g2 2 ¢ BhSVZ Yo + 02 & B2 A pj—/ze B(hlz)vg
2m L D 4 oo

2V cos y | cos A
R + h)3 cos A

6u . cos
2 1y siny +a 22X
[ L wny 5 v ]

(R + h)Y

* C
%, P -
2 _o -fh L 7 5 5
B 5p ¢ SV[KI}CDV * oo v /)Ls + AL cos® ¥
0

V cos v lcog A

(R +1h)2 |cos? A

(A sin &4 - 1)
2 6

% L%
% o Bhou/oT T o2 3 %7 1/2 -8(h/2)2

cos ¥ cos A

(R +h)2 [cos o 2 6

2u A, cos Y

(R + h)3 v2

(A -2 sin A+ (A sin A+ 1))
2 6 3 5

(- sind) + (A sind+d)
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