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I rn ra)DUCPION:

The constants of motion m-,thod* has been widely used to solve the

Vlasov equation, and also for stability artialysist . For this equation the

method coincides with Lagrange's characteristic method: The Lagrjjnge

characteristic differential equations are identical with the equations of

motion connected with the Vlasov equation. This is, however, not neces-

sarily the case for other kinetic equations.

In this paper we consider collisional kinetic equations and their

characteristics. We also intend to use the constants of motion method tr

solve these equations. There are two main reasons for this investigation:

1. This method of integrating, kinetic equations is able to deliver

exact nonlinear solutions (being of interest for nonlinear stability analysis,

for nonlinear darrping , etc.) .

2. Linearized solutions of the Vlasov equation breakdown when

becomes the same order of magnitude as au° 	 Collisional effects may be

^f lrropor..ional to f1 or to 	 and should therefore be included into a non-

linear analysis (e.g. for a better matching together the linear and the non-

linear solutions, mainly for big wave lengths and low frequencies).
i

THE COLLISIONAL KINETIC DQUATIONS

The Lagrazige characteristics of the Vlasov equation, coinciding with

the respective equations of motions, read

dx
=u du - -e -

 

e [ux]	 (1)dt	 TF	 m	 n1lc

In order to include eollisional effects (encounters) due to long-

range forces, we include a Langevin tern and obtain a. new equation

* References 1 through 6
References 7 through 131

1 4, 1 5
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of motion (Langevin equr tion)

u,dt= - mE-  - [uxB] - Vu =b	 (2)CTF

where v is an effective collision frequency. If such a dynamical friction

term is included, the Hamiltionian canonical Equations of motions (which are

ased in the derivation of the Liouville equation resp the Vlasov equation)

produce a kinetic equation

at+ (uV) f - (= + - [u x B]) Vuf = v f.	 (3)

of the Bhatnagar-Gross-Krook type 1G. The Lagrange characteristics of (3)

are, however, given by (1) and an additional equation

1 df = v
f dt
	 (4)

We see that for the BGK equation (3) the Lagrange characteristic

equations and the e-piat-.icr:s of motion are not the same.

If one asks the qut.stion for which kinetic equation the characteristics

are described by the equation of motion (2) and by (4) one gets another

kinetic equation

at + W)f + (bVu)f =',)f	 (5)

An even more sophisticated collisional kinetic equation was given
17p18r19

by Chandrasekhar and others

at+ w)f + (bVu)f = 3vf + aVuf	 (6)

if
	 q is a constant. All these collisional kinetic equations (3), (5) and

i

--
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(6) m-3y be derived also by various assumptions and neglections from the

FokkEx-Planck ecruation2 0

The right-hand terms of the collisional kinetic equations are also

of interest for particle belt physics: now the Liouville theorem doss no

more forbid particle trapping since collisions within the field may change

the particle properties 2. There is experimental evidence for such a change

occurring in the Van Allen belt 21and therefore in favor of the use of

collisional equations.

TRANSFORMMIONS OF THE KINETIC DQUATIONS

Since we shall show later how to solve (6), when we have a solution of

(5), we first solve (5) . we write

r	 f (x,u, t) = e	 g (x,u,t)	 (7)

and obtain from (5)

+ (u1J)g + (b0u)g = 0	 (8)

which is a Vlasov equation with a Langevin collision term. The Lagrange

characteristic of (8) are given by the equations of motion (2). So we

may now solve thc-! collisional kinetic equations (5) , (6) and (8) and also

(3) - by t-ie constants of method.

If a l ... a 6 are six constants of motion of (2)

a i (x,u,t) = const	 (9)

so that

u = u (al ... a6rt)	
(10)

x = x(al...a6,t)



•

- 4 -

- ► -*
is a solution of (2) , then g (x,u, t) = g (a l ...a 6 ) is a solution of (8)
ince

6	 3a.	 da.

1 1 as ( TF + ( u ;) a i + (b ',A i)	
i 3ai dt	

- 0	 (11)

Another useful transformation is the trans."ormation to a wave frame

moving with the constant velocity v. The variables in this wave frame may

be

r = x - V 1. , w = u - v
	

(12)

so that

g %x,u,t) = F (r,w) 	 (13)	 1

presents a solution of (6). The solution F is now determined by
)

(WV r )F + (bqw)F = 0	 (14)

It is time independent if the. fields E and B are time independent.

If one assumes 22F(r,w,t)(e.g. for special damping investigations) one

obtains

at+ (WV r ) F + (bOw) F = 0	 (15)

CONSTANTS OF MOTION:

In order to solve our collisional kinetic equation (8) we need constants

of motion of the Langevin equations of motion. Multiplying (2) by u

we obtain
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u du __ _ e E(x,t)dx
	 ^dx	

(16)
cwt m	 ^ 4t

since u = u(t), x = x(t), we may write u = u(x) and integrate

s

a (x, u, t) _ ? + m f (x,t) + VAX)	 (17)

where

= j E(x,t)dx,	 = ju(x)dx	 (18)

The question if these integral., ex;_st depends on the special problem.

The first equation of (2) gives (i = 1, 2, 3)

-^ -► dxl

b. (x,u,t) = t - j—	
t - ju. l 	(19)

1	 ',2a-uk-ui-20- .^	 1

where i,k,l are cyclic permutations of 1, 2, 3, x1 = x, x2 = y, etc. Now

g(a,bl ,b21 b3 ) is a particular solution -)f (8) which can be proven directly

by insertion. When treating special problems, two further constants of

motion may be found.

THE CHANDRASEKHAR DQUATION:

In treating (6) we follow ideas which were discussed by Chandrasekhar17'1e

For simplification we discuss only the one-dimensional case

2

at
+u 

ax +bau	 as	
(20)

Using (7) we obtain

2
+u 2a +b=qa	 (21)

,A

i
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Introducing g (a, b, t) into (21) where a and b f ram (1 7 ) to (22) respect-

ively sae get

2
a = q ( a u ` + a )	 (23)

Putting u 2 (t) = G(t) we obtain the particular solution

g(a,t) = exp[gfG(t)dt-qt-a)	 (24)

The methods proposed in this rote shall be applied to forthcoming

papers to collisional nonlinear electrostatic modes, to collision l non-

linear Landau damping, to eollisional nonlinear damping of large amplitude

whistler waves, etc.

0
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