NASA TECHNICAL NOTE

cee2ETOD

AR A

NASA TN D-6332
WN ‘G4 ABVEEIT HO3L

LOAN COPRY: RETURN
A¥WL (DOQGL)
KIRTLAND AFB, N, Mi

THERMAL BUCKLING ANALYSIS
- FOR STIFFENED ORTHOTROPIC
CYLINDRICAL SHELLS

‘/(,.’ :»‘:.;’- RS '&f“g‘ﬂﬁ&
by L. K. Chang and Michael F. Card “-? 3;\\%’*' ot
Langley Research Center "9/ m\‘%\ ?&?;Q
Hampton, Va. 23365 ek o ‘v“\&

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. - APRIL 1971




12

(15,

1.

. Author(s)

TECH LIBRARY KAFB, NM

AV

— 0132882

Report No. 2. Government Accession No. Recipient’s Catalog No.

NASA TN D-6332

Tltle and Subtltle /heport Date
THERMAL BUCKLING ANALYSIS FOR STIFFENED April 1871

ORTHOTROPIC CYLINDRICAL SHELLS*

.‘*’

o

|

Performing Organization Code

Performing Organization Report No.

=

L. K. Chang** and Michael F. Card L-7021
- R e 10. Work Unit No.

Performlng Orgamzatlon Name and Address 722-02-10~02-23
NASA Langley Research Center — - - -

. 11. Contract o; G;ant;\lo
Hampton, Va. 23365

13. ’Type of Rep;arf an‘d Period Covered

Technical Note
14. Sponsoring Agency Code

Sponsormg Agency Name and Address
National Aeronautics and Space Administration
Washington, D.C. 20546

Su pplementary Notes

*part of the information herein was presented at the AIAA/ASME 11th Structures, Structural
Dynamics, and Materials Conference.

**NRC-NASA Resident Research Associate, now at Argonne National Laboratory, Argonne, Il

16.

Abstract

A theory for thermal buckling of an orthotropic, multilayered, stiffened cylindrical shell
is presented. The theory includes the effects of eccentricity of layers and stiffening, and
deformations prior to buckling. It is sufficiently general to account for discrete rings and
averaged properties of longitudinal stiffening, as well as arbitrary temperature distributions
through the thickness of the shell and depth of the stiffeners. Two computer programs are
described corresponding to solutions for buckling obtained by using finite differences and
determinant plotting or modal iteration,

Computed results for thermal buckling of unstiffened and ring~stiffened shells are pre-
sented and are in reasonable agreement with published results. The interaction of thermal
loading and axial compression in two large-diameter stiffened shells representative of a
launch vehicle interstage and a preliminary supersonic transport fuselage design is investi-
gated. Results indicate that buckling can occur in both structures at a realistic temperature
under thermal loading alone.

17. Key Words (Suggested by Author(s)} 18. Distribution Statement
Thermal buckling Unclassified — Unlimited
X . nclassified — Unlimite
Cylindrical shells
Stiffened orthotropic shells
19. Security Classif, (of this report) [ 20. Security Classif. (of this page) | 21. No. of Pages | 22. Price”

Unclassified Unclassified 817 $3.00

*For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151



THERMAL BUCKLING ANALYSIS FOR STIFFENED
ORTHOTROPIC CYLINDRICAL SHELLS*

By L. K. Chang** and Michael F. Card
Langley Research Center

SUMMARY

A theory for thermal buckling of an orthotropic, multilayered, stiffened cylindrical
shell is presented. The theory includes the effects of eccentricity of layers and stiff-
ening, and deformations prior to buckling. It is sufficiently general to account for dis-
crete rings and averaged properties of longitudinal stiffening, as well as arbitrary tem-
perature distributions through the thickness of the shell and depth of the stiffeners. Two
computer programs are described corresponding to solutions for buckling obtained by
using finite differences and determinant plotting or modal iteration.

Computed results for thermal buckling of unstiffened and ring-stiffened shells are
presented and are in reasonable agreement with published results. The interaction of
thermal loading and axial compression in two large-diameter stiffened shells representa-
tive of a launch vehicle interstage and a preliminary supersonic transport fuselage design
is investigated. Results indicate that buckling can occur in both structures at a realistic
temperature under thermal loading alone.

INTRODUCTION

Advanced aerospacecraft of the seventies, such as space shuttles and hypersonic
aircraft, will probably experience severe thermal environments during flight. A renewal
of interest in thermal stress and thermal buckling problems is anticipated, since it is
unlikely that thermal protection can completely eliminate stresses and deformations
arising from thermal gradients in stiffening frameworks, bulkheads, and covers. Ther-
mal buckling problems in unstiffened shells have been investigated in references 1 to 8.
Results for stiffened and sandwich shells are given in reference 3 and references 9 to 12,
An excellent summary of existing thermal buckling analyses and experiments is given in
reference 13. A review of these references, however, indicates that further studies of
thermal buckling in stiffened, multllayered shells are needed.

*Part of the 1niormat10n herem was presented at the AIAA/ASME 11th Structures
Structural Dynamics, and Materials Conference.

**NRC-NASA Resident Research Associate, now at Argonne National Laboratory,
Argonne, I1l.




Recent advances in computer technology together with derivations of more consis-
tent buckling theories (refs. 14 to 17) permit the development of buckling analyses which
accurately account for thermal stresses and deformations in stiffened shells. The pur-
pose of the present paper is to present an analysis for thermal buckling of stiffened
cylindrical shells, to describe two computer programs based on solutions for buckling,
and to report the results of thermal buckling calculations for unstiffened and stiffened
cylindrical shells.

The analysis was developed by extending the theory of reference 17. The theory is
sufficiently general to account for the averaged properties of longitudinal stiffening and
multiple orthotropic layers with differing coefficients of expansion as well as arbitrary
temperature gradients through the thickness of the shell and depth of the stiffeners. A
general outline of the theory is given and buckling solutions suitable for rapid computer
calculations are presented. Two computer programs based on determinant plotting and
modal iteration are described. Results of computations for unstiffened and ring-stiffened
cylindrical shells under thermal loads are compared with results from existing buckling
theory. Results are presented to demonstrate the effects of interactions of axial com-
pressive loads and thermal loads on buckling of large-diameter cylinders typical of those
which might be considered for an interstage structure of a launch vehicle and a fuselage

of a supersonic transport.

SYMBOLS
The units used for the physical quantities in this report are given both in U.S.

Customary Units and in the International System of Units (SI). A table of conversion fac-
tors is given in appendix A. The relationship between these two systems of units can be

found in reference 18.
A cross-sectional area of stiffener

Ai,Bj,C; 4 x4 matrices defined after equation (C16)

Cij extensional stiffness of stiffened shell wall (egs. (B10))
Djj bending stiffness of composite shell wall (eqs. (B10))

E Young's modulus

Ex,Ey Young's moduli of orthotropic layer of shell



cr

U,V,W

shear modulus

shear modulus of orthotropic layer of shell
moment of inertia of stiffener about its centroid
torsional constant for stiffener

stiffnesses associated with coupling between bending and extension
(egs. (B10))

buckling-moment variation with x as defined by equations (C13)

moment resultants for stiffened shell

thermal moment resultants in multilayered shell

thermal moment resultants in stringers and rings, respectively
number of rings

stress resultants for stiffened shell
magnitude of applied compressive load at ends of cylinder

thermal stress resultants in multilayered shell

thermal stress resultants in stringers and rings, respectively
radius of cylinder (to reference surface)
change in temperature
skin temperature change at buckling

buckling-displacement functions of x defined by equations (C13)

2
curvature parameter for ring-stiffened cylinder bay, i{_tvl - p2
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2 g€ <9Cc

length of cylinder

stringer spacing

distance from reference surface of cylinder to surface on which fIx acts
function

shape factor for exponential temperature variation (eqs. (B5) to (B7))
height of stringer or ring

integer

total number of finite-difference intervals along length of cylinder

ring spacing

number of full waves in cylinder buckling pattern in circumferential direction
pressure (positive for external pressure)

sea-level atmospheric pressure

thickness of isotropic cylindrical shell

A
effective wall thickness of stiffened isotropic cylinder, Ts +t

displacements of stiffened shell at reference surface in x-, y~, and
z-direction, respectively



X,¥,2 orthogonal curvilinear coordinates (see fig. 1)

7 distance from centroid of stiffener to reference surface (see fig. 1), positive
if stiffener lies on external side of reference surface

Ajj structural coefficients defined after equations (C15)

g strain energy of composite shell wall (shell plus stiffeners)

Oy, potential energy of loading

o coefficient of linear thermal expansion

Ol s 0y coefficients of linear thermal expansion for orthotropic layer of shell

BsksByr,Bs temperature distribution factors (see eq. (C1))

B1,89,. . -B7 structural coefficients in equations (C4) and (C6)
Ysko¥rrVs temperature distribution factors (see eq. (C1))
Yxy shearing strain

A distance between adjacent finite~-difference stations
o0

8(x - j1) Dirac delta function defined so that S‘ f(x) 6(x ~ jI) dx = £(jl) where
- 00

8(x - j7)) =0 when x #jl

5 H Kronecker delta, equal to zero when i+ H and equal to 1 when i =H

€x €y normal strains

Ky oKy sKyy changes in curvature

U Poisson's ratio for isotropic material

Bxsby Poisson's ratios for extension of orthotropic layer of shell
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E=wy

o normal stress

T shear stress

Subscripts:

A prebuckling state

B small changes away from prebuckling state which occur at buckling
H. integer denoting finite-difference station at which ring is located
cr at buckling

i index of finite-difference station

max maximum

r rings (circumferential stiffening)

s stringers (longitudinal stiffening)

sk skin

Superscripts:

i layer index

t total strain in composite shell

A subscript preceded by a comma indicates partial differentiation with respect to
the subscript.

Primes denote total derivatives with respect to x.



BUCKLING THEORY

Assumptions

The theory employed herein is an extension of the theory of reference 17. The
cylinder considered (see fig. 1) is composed of a multilayered orthotropic shell, stiffened
by uniform, equally spaced rings and stringers, all having linearly elastic properties.

The elastic constants of the multilayered shell are taken as those given in reference 19.
Individual layers of the shell are assumed to be such that their principal axes of orthot-
ropy are alined with the principal directions of loading. The stringers are assumed to be
closely spaced so that their elastic properties may be averaged over the stringer spacing.
The effects of the rings are not averaged but instead the rings are considered to be located
along the length of the shell at uniform spacings. The effects of the individual (discrete)
rings are accounted for through the introduction of the Dirac delta or impulse function as
described in references 17 and 20. The cylinder is assumed to be loaded by compressive
and/or pressure loadings (mechanical loading), and is subjected to thermal stresses.

In considering thermal stresses and deformations, the usual assumptions of engi-
neering thermal-stress studies are adopted in that coupling between heat transfer and
deformation is ignored. Thermal effects are accounted for by specifying axisymmetric
temperature distributions in the shell and stiffening elements. The theory is sufficiently
general to include arbitrary temperature variations through the thickness of the shell and
depth of the stiffening elements. The effects of axisymmetric temperature variations
along the length of the shell are accounted for in an approximate manner.

The theory was derived by specifying strain energy expressions corresponding to
nonlinear Donnell-von Karman displacements in the shell and stiffeners, and by applying
the method of minimum potential energy to obtain equilibrium equations and associated
boundary conditions. These equations were separated by a perturbation procedure into
equations governing axisymmetric behavior prior to buckling and equations governing
behavior at buckling. A complete development of the theory is contained in appendix B.
Since similar developments have appeared in the literature (for example, refs. 17 and 21),
only pertinent equations are presented.

In the derivation of the governing equations, the ends of the stiffened cylinder were
considered to be free to expand longitudinally (u # 0). With this assumption, thermal
buckling is a consequence of circumferential compressive stresses introduced by radial
restraint at the boundaries (w = 0) and restraints resulting from differences in expansion
between the stiffeners and the shell.



Governing Equations

Prebuckling.- The equation governing the prebuckling behavior of a multilayered
stiffened cylinder subject to axisymmetric thermal and mechanical loadings derived from
the present theory (see appendix B (eq. (B21)) can be written as

2 2
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The equation is a linear, fourth-order, ordinary differential equation in wjp, the radial
displacement of the cylinder prior to buckling. The coefficients of wj, involve the
structural stiffnesses of the composite shell wall (including stiffeners) Djj, Cij’ and
Kij which are associated with bending, extension, and coupling between extension and
bending, respectively. Because rings are treated as discrete members, the circumfer-
ential extensional stifiness Cg9 is a function of X, the axial coordinate. Thus, equa-
tion (1) contains involved variable coefficients and requires numerical techniques for
solution. The magnitude of the applied axial compressive load ﬁx appears on the left-
hand side of equation (1) as ltlxwx, a term which represents the contribution of nonlinear
von Karman strain-displacement terms to the prebuckling analysis.

The right-hand side of equation (1) involves loading terms resulting from tempera-
ture gradients in the stiffened shell structure (terms ‘with subscript T) and the applied
external pressure p. The thermal loads Nrpy, NTy’ Npg, and Np, are results of
temperature gradients through the thickness of the shell and depth of the stiffening ele-
ments, whereas NT(x) contains terms associated with exponential variations of temper-
ature along the length of the stiffened shell., The effect of thermal gradients and mechan-
ical loadings is both to stress the cylinder and change its shape prior to buckling. The
total effect can be accounted for by finding w, and its derivatives by solving equa-
tion (1) for suitable boundary conditions and applied loadings.

Buckling.- The equations governing the buckling behavior of a stiffened shell
derived from the present theory (see eqs. (B22)) can be written as

Nyp + Nayp y = O (22)

nyB,X + NyB,y =0 (2b)
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Equations (2a) and (2b) involve the stress resultants associated with extension (NXB and

NyB> and shear (NXYB> during buckling, Equation (2¢) involves the moment resultants

(MXB’ MyB, MyXB’ and MXyB) and contains some of the effects of deformations and

stresses in the axisymmetric prebuckling state (terms with subscript A). In form,
equations (2) reduce to more familiar classical buckling equations if the term Nwa

"

A
is omitted in equation (2¢). The classical buckling theory contains the effects of pre-
buckling loads <§Ix, Ny Al and Ngy A> but not prebuckling deformations (w"Ax and WX)

The effects of thermal gradients appear in equations (2) in two ways. First, the
buckling stress and moment resultants are functions of WA s0 that terms corresponding
to thermal prebuckling deformations appear in equations (2a), (2b), and (2¢). Secondly, a
direct thermal-stress term appears as NYAWB,yy in equation (2¢). This term repre-

sents the effects of circumferential stresses introduced by differences in expansion due to
thermal gradients or variation'in thermal properties in the stiffened shell wall. In many
existing theories for thermal buckling, the direct thermal-stress term is retained,
whereas the less obvious effects of thermal deformations are omitted.

Numerical Solutions

The complexity of equations (1) and (2) requires the use of numerical techniques.
Solutions to the equations governing prebuckling as well as buckling behavior were
obtained by omitting the applied torsional loadings (ny A) and employing finite differences.

Both sets of equations were formulated as a system of second-order difference equations
which are documented in appendix C. The prebuckling equations (eqs. (B18) and (B21))
were solved by matrix algebra by exploiting Gaussian elimination. Buckling loads were
extracted from the equations governing buckling (egs. (C15) and (C16)) by either of two
methods: determinant plotting or modal iteration. In the determinant plotting solution,
either the applied axial compressive load NX, the pressure p or a base temperature
Tp can be used as a buckling parameter. For the modal iteration solution, T A must
be the buckling parameter. The parameter T A 1s related to temperature changes
between the cylinder shell and stiffeners and the boundaries of the stiffened cylinder.



The two numerical solutions have been incorporated into computer programs
entitled BAMSOC I and BAMSOC II (Buckling Analysis of Multilayered Stiffened
Orthotropic Cylinders). The programs were written in FORTRAN IV for the Control
Data 6600 computer. Input variables and sample problems are given in appendix D. The
cards and computer listings for these programs can be obtained from COSMIC, University

of Georgia, Athens, Georgia 30601.
APPLICATIONS OF ANALYSIS

By use of the present analysis, the thermal buckling behavior of four types of
cylindrical shells was investigated: unstiffened, ring stiffened, stringer stiffened, and
ring and stringer stiffened. Unstiffened and ring-stiffened shells were studied in order
to relate results from the present theory to published results from less complex theories.
The behavior of two large-diameter shells — one stringer stiffened, the other ring and
stringer stiffened — was also studied. The interaction of thermal and mechanical loading
in these two structures was investigated in order to assess the sensitivity of contempo-
rary aerospace designs to thermal buckling.

Unstiffened Cylinders

A solution for buckling of unstiffened cylinders subjected to uniform temperature
has been presented by Hoff in reference 1. In the reference, calculations of the thermal
buckling temperature were made for a steel cylinder with a radius-thickness ratio of 300
and a length-radius ratio of about 0.3. The boundary conditions employed corresponded
to those of simple support (NXB =Vp =Wg = MXB = O> The cylinder was found to buckle

at an unusually high temperature.

In calculations using the present theory, both the determinant plotting solution and
the modal iteration solution were employed in an attempt to find a buckling temperature
for the cylinder. The modal iteration solution would not converge. Further investiga-
tion was conducted with the determinant plotting solution, but no buckling temperature
could be found within a practical temperature range.

The basic difference between the present theory and that of reference 1 lies in the
treatment of the effects of deformations and stresses in the shell prior to buckling. In
the theory of reference 1, the effects of thermal stresses introduced by restraints offered
by the boundaries of the cylinder are accounted for by introducing circumferential thermal
stresses into Donnell's buckling equation. In the Donnell equation, however, the effects of
rotations and changes in rotations <WA and WX) in the cylinder prior to buckling are

ignored. The present theory accounts for thermal effects in a more consistent fashion,
and as previously discussed, contains additional terms in the buckling equations which
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are associated with shell prebuckling rotations. In order to make computations for the
steel cylinder on a more comparable basis, these additional terms were suppressed in
buckling calculations. Thermal buckling predictions were then in excellent agreement
with the results of reference 1. It must be concluded that the additional terms of the
present theory tend to alleviate the effects of the boundary restraints; thus, the buckling
temperature of this cylinder is beyond a practical range of interest.

An approximate solution for buckling of clamped, unstiffened cylinders subjected to
uniform temperature is presented by Sunakawa in reference 6. The solution is based on
a theory which includes the prebuckling displacement effect just discussed. The clamped
boundary conditions for buckling implied in the solution are NXB =0, Vg = 0, wg = 0,

and wg x= 0. Thermal buckling predictions for the steel cylinder previously described

were performed by using the same clamped boundary conditions in the present theory.
Results for the nondimensional buckling temperature difference oTyy and the number of
circumferential waves n in the buckling mode are as follows:

Present Theory of
theory reference 6
oTeor 0.01440 0.01255
n 46 44

It can be seen that the present theory yields a buckling temperature which is about 15 per-
cent higher than that predicted by reference 6 with similar circumferential mode shapes.
The differences in buckling predictions are attributed to lack of convergence of the one-
term Galerkin solution of reference 6. Convergence of the present solution was investi-
gated by varying the number of finite-difference stations and was found to be satisfactory
when 100 finite-difference stations were employed.

Ring-~Stiffened Cylinders

A theoretical model for buckling of ring-stiffened cylinders has been proposed by
Anderson in reference 10. In Anderson's theory, the ring-stiffened cylinder is idealized
by considering the behavior of a skin bay in the central regions of an infinitely long cyl-
inder. Thermal stresses caused by temperature differences between the skin and rings
are found for the bay by assuming that no rotation occurs at the rings. The circumfer-
ential stresses are then introduced into Donnell's buckling equation for an unstiffened,
isotropic shell. Boundary conditions (at the rings) during buckling are assumed to be
those corresponding to conventional simply supported or clamped boundaries.

In contrast, the present theory treats a cylinder of finite length. Thermal stresses
and deformations prior to buckling are found for a cylinder supported at its ends in

11



conventional fashion, but with intermediate, discrete stiffening rings. Rotation of the
rings may occur during thermal loading. Thermal stresses and deformations for a dis-
cretely stiffened shell are introduced consistently into the buckling equation. Boundary
conditions during buckling are enforced only at the ends of the cylinder so that the con-
tinuity conditions at each ring are natural consequences of the structural stiffnesses of
the ring and shell at the line of attachment.

Comparison with reference 10.- In order to compare Anderson's predictions with
the present results, an analytical investigation was made of the thermal buckling behavior
of ring~stiffened cylinders with proportions similar to the test cylinders of reference 11.
These cylinders were internally stiffened with equally spaced Z-shaped rings having the
dimensions shown in figure 2. Geometric and mechanical properties employed in the
present calculations are indicated in table I. In the investigation, the rings and bound-
aries of the cylinder were considered to be at room temperature, whereas the cylinder
skin was heated to a constant temperature. The nonuniform temperature in the stiffened
cylinder produces circumferential thermal stresses that cause buckling of the cylinder
skin between rings. The cylinder was assumed to be simply supported at its ends with
the boundary conditions NXB =0, vg= 0, Wp = 0, and MXB = 0.

For the comparison, the length, radius, and thickness of the cylinder were held con-

stant for all the computations. The number of rings in the cylinder (and hence the ring
2

spacing 1) was varied to study the effects of the bay curvature parameter Z<-lﬁ 1- u2>
on thermal buckling characteristics. The results of reference 10 suggest that somewhat
unusual behavior occurs for small Z in ring-stiffened cylinders. The overall cylinder
length a was much shorter than that of the test cylinders of reference 11. The particu-
lar value selected (see fig. 2) was based on considerations of the number of rings and
finite-difference stations required to investigate small values of Z.

Results of the theoretical buckling predictions from reference 10 and the present
theory are compared in figure 3. The nondimensional skin-buckling temperature oTcr
is shown as a function of Z. Results from the present theory are shown as discrete
points corresponding to calculations with a finite number of rings. The solid curve has
been faired through the points to indicate trends. The dashed curves on the figure are
based on results presented by Anderson (ref. 10) for simply supported and clamped cylin-
der bays with rigid rings. A correction which accounts for flexibility of the rings is sug-
gested in the reference. When the rings are considered to be flexible, circumferential
thermal stresses near the rings are less than those computed for rigid rings; therefore,
the thermal buckling temperatures are higher. For the present cylinders the correction

amounts to an increase of about 7 to 7% percent above the values shown in figure 3.
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In figure 3, it can be seen that results from the present theory are in reasonable
agreement with Anderson's results for clamped cylinder bays when Z is greater than
15. The numerical differences shown for this range of Z are about 5 percent. For
smaller Z, a larger disparity exists. Studies of prebuckling stress distributions based
on the present theory suggest that the idealizations used by Anderson to obtain thermal
stresses are reasonably accurate. It is believed, therefore, that the analytical differ-
ences shown in figure 3 stem mainly from the additional thermal deformation terms in
the present buckling theory, and the effective ring boundary conditions during buckling.
The present results suggest that when Z is greater than 15, the cylinder rings offer
nearly clamped support to the skin bays during buckling. Furthermore, both the present
theory and that of reference 10 suggest that the thermal buckling temperature becomes
independent of ring spacing for this range of Z. The theoretical differences and unusual
behavior for cylinders with smaller Z is probably associated with the interaction of
closely spaced rings.

Thermal-mechanical interactions.- A further topic of interest in the thermal buck-
ling behavior of ring-stiffened cylinders is the interaction between thermal and mechan-
ical loading. The behavior of the simply supported cylinders just discussed was investi-
gated under combinations of axial compression and thermal loads induced by heating the
cylinder skin. Results of interaction studies are presented in figure 4, where the nondi-
mensional mechanical buckling load &Xcr /Et has been plotted against the thermal buck-

ling load oT¢cr. Buckling interaction curves are presented for cylinders of fixed overall
geometry (see fig. 2) with three, five, and seven rings. The buckling loads shown for
axial compression loading alone <ozTcr = O> were compared with published results for iso-

tropic cylinders having a similar value of Z (ref. 22). The comparison suggested that
the rings of the present cylinders provide almost clamped supports for the skin bays
when loaded in axial compression. A similar result has already been noted for thermal
loading when 72 is large. The interaction curves shown are very regular in shape with
the exception of the case of three rings. Results of the interaction curves were compared
with interactions suggested by reference 10 for clamped cylinders but no correlation was
evident for the range of curvature parameter considered (Z = 8 to 30). In this range of

Z, the results of reference 10 suggest that substantially larger thermal loads can be car-
ried when axial compressive loads are present, whereas results from the present theory
do not support this conclusion.

Stringer-Stiffened Cylinder

In order to investigate the thermal buckling behavior of longitudinally (stringer-)
stiffened shells, the behavior of a large-diameter aluminum shell representative of pro-
portions which might be considered for an interstage structure in a large launch vehicle

13



was investigated. The structure considered is an integrally stiffened shell which has
been used in theoretical and experimental studies of stiffener and loading eccentricity
effects. (See refs. 23 and 24.) The geometry and mechanical properties adopted for the
present investigation are given in figure 5 and table I(b). Thermal buckling problems in
interstage structures might conceivably arise from thermal gradients induced by rapid
aerodynamic heating of the shell outer skin; as a result, thermal lags between stiffener
and shell temperatures occur. For the present analysis, the skin was assumed to be
heated whereas the stringers remained unheated. Bending and thrust loads are also
present during flight; thus, it seemed desirable to investigate the interaction between
axial compressive and thermal loads. For purposes of the investigation, the cylinder
was assumed to be clamped at its ends (NXB =vVg=Wg = WB’X = O). Local buckling of

the skin was not considered.

Prebuckling stress distribution.~ The stress distributions induced by combinations
of axial compression and temperature were investigated by use of the results of the solu-
tion of the equations governing deformations and stresses prior to buckling. (See eq. (1).)
Stress distributions in the skin and stringers of the interstage for three combinations of
applied compressive load ﬁx and change in skin temperature Tgi are presented in
figure 6 as functions of the distance xX/a measured from the supported end of the shell.
In figure 6(a) the axial stress at the skin middle surface is shown to increase in propor-
tion to the applied axial load. The axial stress asymptotically approaches the mem-
brane state of stress (Gx = Nx /Ef) in the central areas of the shell. The higher values of
stress near the ends of the shell (x/a = 0) are due to bending stresses developed from end
constraints. In figure 6(b), the circumferential stresses at the skin middle surface shown
increase roughly in proportion to skin-temperature changes. The circumferential
stresses are small in the central regions of the cylinder and the stresses shown near the
ends are largely due to restraints in expansion between the cold boundaries and cold
stringers and the heated shell. A significant difference between circumferential stress
variation in the present stiffened shell and results for unstiffened shells of similar geom-
etry is that stresses decay much more rapidly in unstiffened shells. (See ref. 13.)

Stresses developed in the longitudinal stiffening for various combinations of axial
compression and thermal load are shown in figure 6(c). The stress distribution in the
stringer is plotted against the normal coordinate z nondimensionalized by the stringer
height h for various longitudinal stations x/a. The origin of z was taken to be the
surface of the stiffener in contact with the shell. The stress distributions shown in fig~
ure 6(c) indicate that bending stresses in the shell increase appreciably as the tempera-
ture difference between skin and sfringers increases. For the case with no applied axial
compression, the calculated stress in the outstanding flange of the stiffener actually
exceeds the ultimate tensile strength of aluminum.
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The results presented for the stress distribution in the interstage structure suggest
that complex states of stress exist which depend on the relative magnitude of the applied
axial compression and the differences in expansion between the boundaries and stringers,
and the heated shell. Studies of the detailed stress distribution in skin and stiffeners
indicate that intolerably large bending stresses exist in the stringers near the ends when
only thermal loads are present. The results also indicate that thermal stresses are
developed from boundary effects which appear to persist over relatively large sections
of the longitudinally stiffened shell.

Buckling of stringer-stiffened cylinder.- The buckling behavior of the idealized
interstage structure was investigated under combinations of axial compressive and ther-
mal loads. Results of the investigation are presented in figure 7 as an interaction curve
between the normalized axial compressive load at buckling f\Ix cr /Et- and the change in

skin temperature at buckling oT¢cy. The three combinations of axial load and tempera-
ture change discussed in the section entitled "Prebuckling stress distribution™ are shown
as cross marks in figure 7. The buckling load shown for the clamped shell under axial
compression alone (olI‘cr = O) was in good agreement with published results, the present
calculation being about 2 percent higher than the result presented in reference 24.

In figure 7 it can be seen that the interaction curve has an unusual shape when small
thermal loads are present. For temperature changes of about 50° F (28 K) in the skin,
that is, aTcr = 0.0007, the shell buckling load actually increases to about 1.4 times the
compressive buckling load of an unheated shell. It appears that small thermal loads can
introduce favorable deformations prior to buckling which increase the shell's effective
stiffness to resist axial compression. As can be seen from the interaction curve, how-
ever, when thermal loads became large, the longitudinally stiffened shell had little
resistance to the circumferential thermal stresses so that buckling can occur by thermal

-~

Ny
loading alone Egr = 0/. The temperature change corresponding to this case is about

1300 F (72 K), and is well within a practical temperature range for aluminum. In inter-
stage structures, when thermal environments are present, simple insulators such as cork
are used to shield the outer skin of the structure. However, in many instances, the insu-
lation is not adequate to eliminate all thermal gradients. The present results suggest
that small gradients may be tolerated, but if large thermal gradients are present, the
structure should be carefully considered with regard to the possibility of thermal buckling.

The normal component of the buckling mode shape for the interstage structure under
thermal loading alone is shown in figure 8, where the normalized variation of the radial
buckling displacements W/ Wmax is plotted against the length parameter x/a where
a is the length of the shell. For comparison, prebuckling deformations at the onset of
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buckling are shown in the inset in figure 8. The buckling wave pattern is characterized
by a nearly sinusoidal wave along the length of the shell and many sinusoidal waves
around the circumference (n = 65). Because the number of circumferential waves is
large, the nodes in the buckle pattern in the circumferential direction are separated by
distances which are about 1-1 times the stringer spacing. Since the stiffness properties
of longitudinal stiffening are averaged in the present theory, the calculated circumferen~
tial mode shape is one which is near the limits of applicability of the theory.

Ring- and Stringer-Stiffened Cylinder

In order to investigate the thermal buckling behavior of ring~ and stringer-~stiffened
shells, the behavior of a stiffened cylinder with geometry similar to that which might be
considered in a preliminary design of a supersonic transport was investigated. A rather
long, uniform, titanium fuselage section, bounded forward by a heavy bulkhead and aft by
the wing-joint structure, was selected. The geometry and mechanical properties adopted
for the present calculations are presented in figure 9 and table I. Studies of design
loads and predicted thermal environment for this type of structure suggested the possi-
bility of thermal buckling as a consequence of a rapid climb to altitude. In this maneuver
there is a thermal lag between the skin and stiffening elements so that for a short period
of time the skin is at elevated temperatures while both rings and stringers are unheated.
Bending and pressurization loads on the fuselage are also present during the maneuver;
therefore, it seemed desirable to investigate the interaction of axial compressive loads
and thermal loads for various internal pressures. For purposes of the investigation, the
cylinder was assumed to be simply supported at its ends (NXB =vVg=Wg= MXB = 0) and

the axial compression was introduced by means of a line load applied at the skin middle
surface.

Prebuckling stress distribution.- The stress distribution induced by combinations
of axial compression and temperature was investigated by using results based on the
solution of equation (1). Stress distributions in the skin, stringers, and rings of the fuse-
lage under an applied compressive load of 1650 1bf/in. (0.289 MN/m) and temperature
difference of 360° F (200 K) between skin and stiffeners were obtained. Results are pre-
sented in figure 10. The diffusion of load into each element of the structure is illustrated
by showing results for various stations near one of the supported ends of the cylinder.

In figure 10(a) the stress distribution in the skin of the cylinder is shown as a function of
length. At the end of the cylinder (x/a = 0), both axial and circumferential stresses are
very high, but are still within the elastic range of titanium. The stresses are not nearly
as large as those for the clamped interstage structure already discussed. Sharp peaks in
stress occur at each of the 19 rings in the shell. The circumierential stress shown in
bays that are distant from the boundary is a result of the differences in thermal expansion
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between the rings and the shell. The curves shown in figure 10(a) indicate that the state
of stress does not vary from bay to bay beyond the third bay (x/a = 0.15).

Variations in the stress distribution in the stiffening elements are shown in fig-
ure 10(b). The assumptions of the present theory are such that the ring is in a state of
uniform, uniaxial stress (in this case, tension). The ring stress variations shown in fig-
ure 10(b) indicate that the interior ring stresses are essentially constant in rings that are
not adjacent to the boundary. The assumptions of the present theory are such that the
stringers (longitudinal stiffening) are also in a state of uniaxial stress, although bending
stresses through the depth of the stringers may exist. The magnitudes of these bending
stresses are given in figure 10(b) by plotting stresses against the depth parameter z/h
for various longitudinal stations. The bending stresses in the interior of the shell are
mainly due to thermal stresses and restraints to expansion offered by the rings. The
bending stresses near the ends of the cylinder also include the effects of introducing the
applied axial compression load by means of a line load on the skin midplane. The edge
moment introduced by the eccentricity of the line load with respect to the stringer-shell
centroid has been noted in previous studies (ref. 23) and large effects on buckling predic-
tions have been found. In the present case, the stress distributions shown in figure 10(b)
suggest that this edge moment decays rapidly from the cylinder ends so that the state of
stress in the stringers does not vary from bay to bay beyond the second ring.

The results presented for the stress distribution in this example indicate the com-
plexity of the state of stress existing in a ring- and stringer-stiffened shell under com-
bined mechanical and thermal loadings. Studies of the detailed stress distributions in
skin and stiffening elements suggest that no large stresses exist that are not within the
capabilities of the structural material. The effects of the boundaries of the stiffened
shell on stress distribution appear to be negligible beyond the second bay of the cylinder.

Buckling of ring- and stringer-stiffened cylinder.- The buckling behavior of the
idealized supersonic transport design was investigated under combinations of axial com-
pressive and thermal loads. In addition, the effects of including cabin pressurization as
an applied load were also included. The results of the investigation are summarized in
figure 11 by means of interaction curves between axial compressive load at buckling
ﬁxcr / Et and relative skin temperature at buckling oT¢p. The solid curves shown cor-

respond to various values of internal pressure p normalized by sea-level atmospheric
pressure pg. The maximum value of p/p0 shown is about that proposed for cruising
altitude.

Results shown in figure 11 for p /po = 0 indicate that the interaction between axial
compressive and thermal loads is substantial. In fact, in the absence of axial compres-
sion, thermal loads are large enough to cause buckling in a practical temperature range,
The value of oT;, shown for this case corresponds to a temperature difference of about
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5259 F (292 K) between the skin and stiffening elements. Results shown in figure 11 for
cases where internal pressurization exists (p /po < 0) indicate that even small values of
internal pressure are very beneficial in alleviating the problem of buckling under thermal
loading alone. At cabin pressure at cruise (p /p0 = -0. 82) the interaction curve 1s nearly
horizontal over a practical temperature range and the buckling load is roughly 15 times

that of an unpressurized fuselage. In some aircraft design criteria for buckling, how-
ever, the beneficial effects of pressure are not included in buckling calculations; there-
fore, the fuselage structure is required to be stable even if all cabin pressure is acciden-
tally lost. Under these circumstances, elimination of buckling under thermal and com-
pressive loads or thermal loads alone may be a serious design consideration.

An additional effect shown in figure 11 by the dashed curve is that of introducing the
axial compressive load at the neutral surface of the sheet-stringer combination
(¢ = 0.13 in. (0.33 cm)) rather than at the skin midplane (¢ = 0). The dashed curve sug-
gests substantial improvement in buckling strength under axial compression alone due to
the edge moment effect already mentioned. However, the interaction curve is unaffected
when large thermal loadings are present.

The normal component of the buckling mode shape for the stiffened shell under
thermal loading alone with no internal pressure is presented in figure 12, where the nor-
malized variation of the radial buckling displacements W/ Wmax is plotted against
length x/a for one-half of the cylinder. For comparison, prebuckling deformations at
the onset of buckli\ngﬁ'e shown in the inset in figure 12. The wave shape shown in fig-
ure 12 is typical of a panel instability buckling pattern in that nodes occur at each of the
rings. It can be seen that the amplitude of W decays in the interior bays so that in the
central bays of the cylinder almost negligible deformation is present. The variation in
amplitude from bay to bay suggests that buckling is a consequence of restraints at or
near the boundaries of the cylinder. The presence of longitudinal stiffening apparently
makes thermal edge effects persist over a large length as evidenced by the large ampli-
tude of the buckle wave in the fifth bay of the cylinder (0.20 £ x/a £ 0.25). As was the
case with the interstage structure, a large number of circumferential waves (n = 57)
occurred in the buckling mode when thermal loading predominated. In this case, however,
at least three stringers are included in each circumferential half-wave. Thus, the buck-
ling mode found appears to be a legitimate panel instability mode and is consistent with
theory employing the average stiffness properties of longitudinal stiffening.

The present study of an idealized supersonic transport design indicates that a poten-
tial design problem exists in that temperature gradients which might be induced by a
rapid climb to altitude were sufficient to buckle the shell in a practical temperature range.
The presence of internal cabin pressure is sufficient to alleviate the thermal loads. If
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internal cabin pressure is not available as a stabilizing force, additional reinforcement
must be judiciously applied to the structure.

CONCLUDING REMARKS

An extension of the theory of NASA Technical Note D-4283 for buckling of stiffened
cylindrical shells under combinations of mechanical and thermal loadings has been pre-
sented. It includes the effects of eccentricity in multilayered reinforcement, deforma-
tions prior to buckling, and discrete rings. The theory is sufficiently general to account
for the averaged stiffnesses of stringers and multiple orthotropic shell layers as well as
arbitrary temperature distributions through the thickness of the shell and depth of the
stiffeners. Buckling solutions have been obtained by employing finite differences. Two
computer programs from which buckling loads can be found (either by determinant plotting
or modal iteration) have been developed.

Theoretical results for thermal buckling have been compared with existing solutions
for unstiffened and ring-stiffened cylindrical shells. Results from the present theory for
a simply supported unstiffened shell indicated that thermal buckling would not occur in a
practical temperature range. Results for a clamped unstiffened shell were in agreement
with published theoretical results. Buckling predictions for a ring-stiffened shell with
various ring spacings were in agreement with existing theoretical results when the cylin-
der bay curvature parameter is large. In cases where large disparities between pub-
lished theoretical results and those presented herein exist, differences are attributed to
the effects of prebuckling deformations which have not been accounted for in previous
theories.

The effects of interaction of thermal loading and axial compression on the buckling
behavior of two types of contemporary stiffened shell structures have been investigated.
Thermal loads were introduced by considering the skin of the structure to be heated,
while the stiffening elements and shell boundaries remain unheated. The behavior of an
aluminum, clamped, large-diameter longitudinally stiffened cylinder representative of a
launch vehicle interstage structure was investigated. Stress distribution studies indi-
cated that thermal stresses induced by moderate skin temperatures cause large bending
stresses in the stiffeners near the ends. Buckling calculations suggest that the inter-
stage structure may buckle under thermal loading alone at a realistic skin temperature.

The behavior of a titanium simply supported, ring- and stringer-stiffened cylinder
representative of a preliminary design for a supersonic transport fuselage was also
investigated. Stress distribution studies indicated that no large thermal stresses beyond
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the capabilities of the shell material were present. Buckling calculations suggest that
the fuselage also can buckle under thermal loading alone at a practical skin temperature.

Near the completion of this work, preliminary calculations for the ring-stiffened
cylinders by another investigator suggested that thermal-buckling behavior could be
influenced by the type of ring theory employed in the analysis. For the ring-stiffened
cylinders, out-of-plane bending stiffness appeared to be an important parameter. To
account for this effect, a ring theory which includes out-of-plane bending behavior was
developed and is presented in appendix E. This ring theory was incorporated into one of
the computer programs; however, no numerical results were available for this paper.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., April 28, 1970.
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ference on Weights and Measures in 1960.

APPENDIX A

CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

The International System of Units (SI) was adopted by the Eleventh General Con-
(See ref. 18.) Conversion factors for the

units used in this report are given in the following table:

Length
Stress modulus
Stress resultant
Temperature change . . . .

Physical quantity

U.S. Customary

Unit
in,
ksi
1bf/in.
op

Conversion factor

(*)

0.0254
6.895 x 106
175.1

5/9

SI Unit
(**)

meters (m)

newtons/meter2 (N/m2)

newtons/meter (N/m)
Kelvin (K)

*Multiplyr v_aAlue“given in U.S. Customary Unit by conversion factor to obtain
equivalent value in SI Units. '

**Prefixes to indicate multiple of units are as follows:

Prefix Multiple
giga (G) 109
mega (M) 106
kilo (k) 103
deci (d) 10-1
centi (c) 10-2
milli (m) 10-3

21



APPENDIX B
DEVELOPMENT OF GOVERNING EQUATIONS

Stress-Strain Relations

In the ith layer of the shell, the stress-strain relations can be written as

i 7
Ao Fx v it ok + phab)T
x T T alx Ty &ty
1= pyy
J El T i'T]P (B1)
y—1 ii€y+“xx'(°§7+“‘x°§()
- Bxhy
Al Lt
xy = Sxy’xy )

where ay and oy are coefficients of linear expansion associated with thermal elonga-
tion in the axial and circumferential directions, respectively, T is a change in temper-
ature relative to a thermal-stress-free state and the remaining quantities with the super-
script i are orthotropic elastic constants associated with extension. The strains
appearing in equation (B1) are related to the shell displacements u, v,and w by
Donnell-von Karman relations having the form

\

E; = Ex -+ ZKX

t_

€ =& * 2Ky > (B2)

t _

Yxy T Txy * ZKxy

.
with

2
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APPENDIX B — Continued

Ky = Vyy
Kxy = “2¥ xy
In the stringers
Oxg = Es@:{ - as'1> ' (B3)
whereas in the rings
oy.. = Er<e§, - arl) (B4)

To account for axisymmetric temperature variation along the length of the shell, the
relative temperature of the shell is expressed as

T= Tsk<1 + 'yskegx/a> (B5)

where a is the length of the shell, and Ysk and g are constants. Similarly, in the
stringers,

T = Tg <1 + yseg"/a> (B6)

and in the rings
T = Tr<1 + yregx/ a) (B7)

where Tg, Tg, and T, are functions of z. By specifying temperature distributions

with equations (B5) to (B7), the first-order effects of longitudinal variation in thermal
distributions can be obtained. The present theory, however, does not consider the effects
of variation of mechanical properties with the assumed longitudinal temperature
distribution.

Potential Energy

The integration of the familiar strain energy expression

ng =% S‘S‘S‘ -E:Lxx“y(e}t{)z . lzflzizy e;%, *3 ‘iyxny(e;)z ¥ ny(y)t(y)z - ix#y Kax + uyay)st( + ("y + I.ons‘)eg]T}dV

Volume
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APPENDIX B — Continued

over the depth of the composite shell wall (shell plus stiffeners) yields the following

expression:

Ig =% SS‘ Nyex + Nyey + ny'ny + Myky + MyKy + (Mxy - Myx)%z - [(NTx + NTS)Ex + (MTx + MTs)"x
Surface
+ (NTy + NTr>€y + (MTy + MTr) "a} dax dy (B8)
where w

Ny = Cy1ex + Ciaey + Ky#x + Kqgky - (NTX + NTS)
Ny = Cqo€x + szey + Kyokyg + K22Ky - (NTy + NTr)
Nxy = C667'xy + K66"xy

My = Kj16x + Kyg€y + D11kg + D12ky - (MTx + MTS) &

(B9)
My = Kq96x + K226y + D121y + Dagky - (MTy + MTr)

GgJs
Myy = - K667xy + D66ny + 3 Kxy

Do

>z

o(x - jl) GrJery

- 1
MyX = K66'}/xy + D66ny + -2- .

j=1 y

1l

where 6(x - jl) is the Dirac delta function associated with the N rings on the cylinder.

The quantities Cij’ Dij, and Kjj appearing in equations (B9) are structural stiff-
nesses associated with extension, bending, and extension~-bending coupling, respectively,
and are given by the following integrals:

E EgA
Cy1 = X dz 428 (B10a)
1- Bxiy d
g E
Cqg = Xy (B10b)
1 - pxhty
N
E
Cog = l——y— dz + Z 6(x - ji) ExAr (B10c)
- ll.x“'y j=1
Coo = | Gy o2 (B10d)

24



APPENDIX B — Continued

EqAZ
1-pgpy d
piE
Kio=)|—2Y 2dz (B10f)
12
1- FLxIJ'y
rog N
Kog = ’1'__1-—- z dz + Z 6(x ~ jl) EpApZ, (B10g)
Kgg = 5 Giyy? dz (B10h)
Ex Eslg ESASZE
Dy1 = z2dz + + (B10i)
E
Dis = | XY ;24 (B10j)
1- ,on[.Ly
E N
Dog = Y 224z 4 Z 5(x - jl)(ErIr + ErArZE) (B10k)
1-pxity i=1
Dgg =§ Gyyz2dz (B107)

where the integration is to be performed over the multiple layers of the shell wall. A
convenient numerical scheme for the integration for a specified reference surface can be
found in equations (83) and (85) of reference 19 (p. 34). The properties associated with
the stiffeners (location of the centroid of the stiffener Zz, the moment of inertia I, the
cross-sectional area A, and the torsional constant J) are also defined (when appropri-
ate) with respect to an arbitrary reference surface. In specifying the structural stiff-
nesses, the dependence of the elastic constants upon temperature can be accounted for in
the shell by analytically dividing the multilayered shell into thin layers and performing
the required integration of equations (B10) numerically. In the stiffeners, the following
sample definitions can be employed to perform a comparable integration through the depth
of the stiffeners:
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APPENDIX B — Continued

EgA
5 S=l§ Es(Z) dAS
d dJAg

zgEgAg

=1S Eg(z) z dAg
d dJag

The thermal moment Mg and thermal force terms Np appearing in equa-
tions (B9) are

Npg = CTX<1 + 'yskegX/a)
Nty = C1y (1 ¥ Vskegx/a>
) (B11)
Npg = CTs<1 * 7’segx/a>
N
Npp = z 5(x - ji) Cppe (1 + yreg"/ a)
j=1 y
2
My = KTX<1 + yskegx/ a>
Mty = K’ry<1 *7, kegx/a>
) (B12)
Myg = KTs(1 + ysegx/a>
N
My, = Z o(x - j1) K’I‘r<1 + Yregx/a>
j=1 J

26



APPENDIX B — Continued

where

EX
CTX = 5 (%( + IJ’Y&Y)HXTY TSk dz

——Ey dz
C =§< + L a,é T
Ty Oy *HxO%TT uxpy S

1
Crs =g gA agEgTg dAs
s

CTr = S‘ arErTr d.Ar
Ar

o = o+ g T

For Crmpy, CTy’ Ky, and KTy’ the integration is to be performed over the
multiple layers of the shell wall and can be accomplished by the method suggested for
equations (B10).

As in reference 17 the potential energy of mechamcal loading for the case of an
applied compression load Nx, an applied shear load ny, and an external pressure p
is given by

27R 27R 27R .
Iy, = g g pw dx dy + gO Nx(u - ew ’5)‘ dy + SIO Nxyv ' (B13)

where € is the distance from the arbitrary reference surface to the line on which the
applied mechanical load resultant ﬁx acts.
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APPENDIX B — Continued

Equilibrium Equations and Boundary Conditions

By the principle of minimum potential energy, the vanishing of the first variation of
the total potential energy (G(HS + IIL) = O) yields the equilibrium equations and appropriate
boundary conditions. The first variation with respect to the displacement variables u,
v,and w yields

S
Nxx + Ney,y =0

- Nxyx+Nyy=0 ) (B14)

N
y _
“My xx + (Mxy - Myx>,xy - My gy + = = NaW e - NyW,yy - 2NggW oy 4 p = (j

with the following boundary conditions to be specified at each end of the cylinder:

- ~ N
NX + NX =0 u=20

. > or ) (B15)
Mx+Nxé=O W,X=0
My x = (Mxy,y = Myx,y) + NaW x + NeyW = 0] w=0 |

The nonlinear equilibrium equations and associated boundary conditions (eqs. (B14)
and (B15)) are used to obtain equations governing the prebuckling and buckling states of
the stiffened shell by taking the displacements u, v,and w tobe

u(x,y) = up(x) + up(x,y)
v(x,y) = v5(x) + vg(x,y) (B16)

w(x,y) = WA(x) + wg(x,y)

In equations (B16) the subscript A denotes the am’symmetric, prebuckling displacements
of the stiffened shell, and the subscript B denotes the infinitesimal nonaxisymmetric
displacements that occur at buckling.

Prebuckling Equations

For axisymmetric prebuckling deformations, the equilibrium equations are found
from equations (B14) by discarding terms which have derivatives of y. The resulting
equations are
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APPENDIX B — Continued

Nip x = 0 (B17a)
NXYA,X =0 (B17b)
-MXA,XX + i;'é - NXAWA,XX +p=0 (B17¢)
with boundary conditions
NXA+ﬁx=O or up =0 (B18a)
nyA"'ﬁxy:O or vy =0 (B18b)
My, +Ny8=0 or wp, =0 (B18c)
MXA,x + NXAWA’X =0 or wp =0 (B184d)

where the subscript A terms are defined by inserting u = up(x), v =v,(x),and
W = Wx(x) in the definitions of the stress resultants (egqs. (B2) and (B9)).

As discussed in the text, the cylinder was considered to be free to expand longitudi-
nally (u A? 0) so that integration of equation (B17a) yields

= =Ny (B19)

where ﬁx is the applied compressive load at the boundary. From equation (B19) and
the definition of NXA,

Np_ +Np. X Cio Wy N
e =18 X, llwax' 12VA Ny (B20)
A Ci11 Ci1 ™ Cii R Cny

The use of the definitions of Mg A and NyA together with equation (B20) in equa~
tion (B17c) yields the following equation in w Al

K2 K{4C 2
11\ [2(B11%12 o R | Ci2 1
Dy ~-——|wi"+ |2 22 22 LK, |+ N fw! & —[Cog - —28lw, =L|Npy + N
<11 Cll A R Cll 12> XIYA Rz 22 Cl A R Ty Tr
Cio/
+E—13<Nx = Npg - NTX)J + Np(x) - p (B21)
11
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APPENDIX B -~ Continued
with

2 2 2
- g Vg8 Vg8
Npe) = = 11/ Tx sl; egX/a+C 82 o&%/2) _ [k . sl; egX/a+KTs Sz o8%/2
1\ a a a a

where the primes denote total differentiation with respect to x.

Buckling Equations

The equilibrium equations and boundary equations which govern the buckling behav-
ior of the stiffened cylinder are obtained by substituting equations (B16) into equa-
tions (B14) and (B15). If only linear terms in the buckling displacements (subscript B
terms) are retained, and if equations (B17) are utilized, the following buckling equations

are obtained:

\
N + N =0
*Bx VB
N =0
*¥Bx " "By
N b (822)
M M M M +BLR Ny w'
) %B, XYB,xy YXB xy YB,yy R T xWB xx ~ YxgVaA

with the boundary conditions

Nxp =0 ug =0 )
Nxyg =0 vg =0
MXB =0 o WBx = 0? (B23)
MXB,X - (MXYB,y - MYXB,y) - NXWB’X + NXBW'A - ﬁxyWB,y =0 wg =0
J

where the stress resultants with the B subscript are given as in equation (B9) with the

strains and curvatures defined as
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APPENDIX B — Concluded

‘\
- ]
&xp = UB,x ¥ WAVB x
VB

EyB = VB,Y + _R-,—

—_ Al
yxyB =ugytVgx+ WaAWg g

’ (B24)
Kx = "VB,xx
“v = "VB,yy
Kxy = -2WB,xy J

It is assumed that there are no additional thermal moments and thermal forces during
the buckling process so that

Nrxg = NTyp = Nrsp = Nprp = Myxp = MTyg = Mpgy = Mrr =0
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APPENDIX C
NUMERICAL SOLUTIONS

The solutions to the prebuckling and buckling equations were found by employing
the finite-difference method. The equations were formed into a system of second~order
difference equations. As shown in reference 25, this type of system can be easily solved
by matrix algebra with a modified Gaussian elimination technique.

In many thermal buckling problems of technical interest, a knowledge of the inter-
action between thermal and mechanical loads is desired. Hence, for the present problem
there are two possible choices for a buckling parameter: (1) the magnitude of the applied
mechanical load (for example, the compressive load or external pressure) for a fixed
temperature distribution or (2) the magnitude of a temperature change which determines
thermal forces and moments for fixed mechanical loading. In the present study a solu-
tion was developed for each parameter, The solution using mechanical loading as the
buckling parameter is similar in form to that of reference 17 so that the details are
omitted herein. The solution with temperature as the buckling parameter is described in
detail in the following sections.

To employ temperature as a buckling parameter, a scalar temperature change T,
is defined so that Tgy = TpBgk, Tg =TpaBs, and Ty = TpPBy; thus, in the shell

T=T ABsk<1 + 'yskegx/ a) (Cla)
whereas in the stringers
T = TpPBg (1 + y e/ a) ~ (C1b)
and in the rings
T =TpPBr (1 + yregx/a> (C1c)

Note that in the integrals associated with equations (B11) and (B12), T A can be con-
sidered as a constant.

By virtue of equations (C1), the magnitude of the relative temperatures in the stiff~
ened cylinder is linearly related to a scalar T,. The shape of the temperature distri-
bution is specified by the constants B, v, and g. Thus, the problem to be solved is one
in which the magnitude of the base temperature T, may vary while the shape of the
temperature distribution remains constant.
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APPENDIX C —~ Continued

Prebuckling Solution

To formulate the prebuckling equations as a second-order finite-difference system,
the variable ¢ is introduced so that

wy =& (C2)

If the first and second derivatives at the ith station of the stiffened shell are approximated
by central differences as

f1+1
f
(£ = 5 A
(C3)
" f 28 + f5.
(f )1 1i+1 - &4 +3i-1

A2

the prebuckling equilibrium equation (B21) and the definition of the variable ¢ (eq. (C2))
can be written at the ith station as

\
£i+1 7 245 + &1 : ,
By ;2 122 ¢ By + [3’3(1)<WA)i = By + T Bs(0)
(C4)
(WA>1+1 (WA> +(WA>1-1 B
e 5 - gl =0
A
./
with 9
11
B1=D11 - o—
Cn
K44C
2(¥11C12
= K N
B2 R( C11 >+ <
2
C
N 1= 12
B3(i) = —{Coa(i) - =—
7 R2 Cy
gy = 12 Nx
11 B
N Cy z( > Kigf~  Ysk8 gx/a
B5(1) = | Nry() + Npr(l) - 1 Nrx + Nrs e CTXT €

_ 2 [ 782 — 7e2
2T T8 gx/a) - ([Ry, (ST e&¥/2 K [5C 2%/2
Ts az a2 3.2
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where

E 6;: yE.A
— H>rSr
Coqli) = S'.__Y_ dz + 212 I T
22( ) 1 + A
oy
NTr(l) === CTr (1 +y egx/a>
with the integration to be performed over the shell wall and
Sig=1 @(i=H)
6g=0 (i=+H)

The subscript H denotes the difference station at which a ring is located. The barred
- thermal terms are found by considering a unit temperature change and letting

Tsk = Bsk
Tg = Bs
Tr = BI’

in equations (B11) and (B12).

In considei'ing the boundary conditions associated with equation (C4), it was assumed
that the cylinder was supported at each end (w = 0) and that the ends were free to expand
longitudinally and a compressive load is prescribed at the boundary. Under these

assumptions

= -Ny (C5)

where ﬁx is the magnitude of the applied compressive load. If the cylinder is supported
so that wy = 0 at the ends, the boundary conditions on w (eqs. (B18c) and (B18d)) can
be stated in finite-difference form at stations i=0 and i=k (atthe ends of the cylin-
der where x =0 and x = a, respectively) as follows: For simply supported shells

B1£g = Bg + T pB7(0)

(C6a)
B1ék = Bg + T aBr(k)
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and for clamped shells (by using the definition of ¢ and eq. (C3))

where

and

A250 - 2(wy); = 0

A2g, - 2(Wp)g-1 = O

K
o~ = Kig
BG - Nx<e C11>

K1/ —_ o —
Br(i) = éﬁ(NTs + NTx) - (MTx + MTS)

(Céb)

(= O’k)

The governing equations (C4) and boundary conditions (C6) can be written in matrix

form as

[
L
I

where

_@&;
(ZA>1
(ZA)z

I Igq 1 (ZA)k-1
K

L (z A)k ]
ekl
A28, a2
2 B1 B F3)
Lj=
-A2 -2

—

TARkg.1 + 8

TARO +§
TAR7 +S
TARg + 8

(o))

TaRg + 8

(=0,1,2, . .k

(i=1,2,3,. . .k-1)
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R = (=123,

L=1
_ o o
K =

0 0

w0l
1l
1
| ™
e H'@

pos|
o
{
om‘
[

and for clamped boundary conditions

ol
Il
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Because equation (C'7) contains a band matrix, to conserve computer storage it is
convenient to solve for the unknowns (Z A)i by Gaussian elimination. By performing a

series of elementary row operations (see ref. 17), equation (C7) can be written as

1 T -~ 7 o 9
T o (Za)o @r)o Qo
I Py Za)1 @1 | @
I Py (Z4)2 Q2| | @
B JN R I (c8)
I Pg.g (ZP;)k-l (QT> k-1 Qx-1
| (ZA)k_ L(QT)k R
where i B N
Po=1 K |
P, - (L1 ) Pi-l)-l i=1,2, . .k-1) (C9)
Qy=FT =g
G=1,2, ..k-1)) (C10)
Q; = Pi(s - Ql-l)
and
@n)o = RoL-1
(QT>i= i[Ri -(QT)i_l] (i=12, . .k-1) (C11)
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The unknowns (Z A)i are determined by finding P;, Qj, and (QT)i from equa-
tions (C9), (C10), and (C11) and solving successively for (Z A)k— 1 (Z A)k-z’ . . .from
equations (C8).

It should be noted from equations (C8) that the prebuckling radial displacements w A
are linear with Tp so that

(2a)s - (ZAN;)i + TA(ZAT>i = ﬁﬁ;l + Ty (fzsl (C12)

where (Z AM)i are the variables associated with deformation resulting from mechanical

loading whereas (Z AT)i are the variables associated with deformation resulting from

thermal loading. Deformations associated with mechanical loading are found by setting
T a equal to zero in equation (C8) and solving for (Z A)i- Deformations associated with

thermal loadings are obtained by deleting the Q; column from the right-hand side of
equation (C8) and solving for (Z A)i corresponding to a unit base temperature change

(T A= 1).
Buckling Solution

If torsional loading is neglected (ﬁxy = 0), the partial differential equations gov-
erning buckling of a stiffened cylinder (eqs. (B22) and (B23)) can be uncoupled into a set

of ordinary differential equations by assuming the following relations:

up = U(x) cos -I—lRX

Vg = V(x) sin %X
5 (C13)

wg = W(x) cos %}—7

ny
M, =M -
xp (x) cos ;

where n, the number of circumferential buckling waves, is an integer. The substitution
of equations (C13) into equations (B22) together with the definition of MXB yields four

ordinary differential equations in u, v, w,and M. To eliminate derivatives of higher
order than 2, equation (B20) was employed together with the expression
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M
w ___Bx  Ku L K12 L1 K2 K1 ) _Dia
Bxxx ™ D11 D11 B,xx D11 Bxy RDll B,x Dll( Ax B,x/x D11 B,xyy

(C14)

obtained from the derivative of MXB. The resulting buckling equations can be written as
A1U" + AgU + A3V’ + <A14 - TAA15>W" + (1\16 - TAA17)W

+ <A18 - TAA19>W +Aq10M' =0 (C15a)

AgqU" + AgaV" + AggV + AgqW'" + (A25 - TAA26>W' + (qu - TAA28>W =0 (C15b)

(A31 - TAA32)U' +AggV" + (A34 - TAA35)V + (A36 - TAA37)W" + (/\38 - TpAgg

2 t no_
AgqU' + AgoV + AggW" + (A44 - TAA45)W' +DggW + M =0 (C15d)
where
2
A11=Cq1 - 11
D11

2
n
Aqg = -Css<§)

K12K11>£

A13=<C12+066- D1 R

A14 = A]_]_WAM

" 1 Ki1K12 K11D12}/m\2
A =A{4W =IC -——_— & K 2K - e
16 = F11%Ap R( 12" "Dqy > i ( 1275066 " oy (R)
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Aqq = =AW},
17 11VA
2
n
Mg = 'C66(§) YAM
2
n ]
Mg = CGG(‘ﬁ) YA
K11
Ao =5
11
Agq = -(Cq + Cgel=
21 = ~\412 * ~66/§
Agg =Cep
2
Agg = -Coaf=
23 22(’1;)
Aoy = (Kqo + 2Kgg) =
24 = (®12 * “B66/R
Agr = Ao W,
25 = A21Wa
Agg = ~Ag W,
26 21% A

Coyon

n o_.n 22 n\3
- W - - Koof—

R AM R2 22(R>

Agn = -Cgg

n "
A28 =Ce6 5 YAy
C12 n 2 "
A31 =———R + (KIZ + 2K66><§> - CIIWAM

Agg = 011WXT

A33 = -2K66 PR—
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C22n n 3
Agy = + Kzg(—) -Cqo a Wx
RZ R R M

n "
A35=C1a g Vaq

+ Z o(x - ji)

=1

. G.J
Agg = KIIWAM _|4De6 +

Ag7 = -K11Wa.

n\2
Gpdy + D9 (ﬁ)

C12 2 ' r
A38 = < + (KIZ + 2K66><%>:IWAM - CllwAMwAM

N
- zé'(x-'l)GJ )2
] rr(R)

j=1

c 2| |
Agg = -[—R@ ¥ (Klz " 2K66)< )]WAT ¥ C11<w’

A =Cqyqw\ Wi
310 11 AT A

C12K11 n\2 Ci2
Aoqq = { |22 _ 2<K -K ) n\* _xla
311 { Cs 12 - Kgg <R) B

o220

C12K1 2 C12
"~ C11 |

Ag12 = [2(1{12 K66

Kaar Maaio
w +l Coo
AM 'R

rRZ Cin\R

w" 1
AT "R <C22

Cag C12( )2N

2
C12\/n\2 = - Cio/= —_ n\2
Cn>( ) AT +l:NTr Ty g\ Ts (§>
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Ag1 = -Kqy

n
Mgz =-Kp2 ¢
Ag3=D11

Agq = -KyqWy o

Ag5 = K11‘*"}ur

2 K
= Do) + 212
Age = [Dm(R) + R]

To represent the Dirac delta and doublet functions appearing in the coefficients of
equation (C15), the following finite-difference approximations were employed:

6(X - ]l) f= ﬁiHi

. f f
8'(x - jI) £=08(_1yF—= - O(i+1
(i-1)H 2A2 (i+1)H 9A2

In this form, equations (C15) are the analogs of equations (36) of reference 17. As
outlined in that reference, equations of this form can be cast into matrix form, and buck-
ling loads can be found by examination of a simple determinant resulting from a Gaussian
elimination procedure similar to that previously described herein. A solution of this type
was obtained in the present study by using the determinant plotting method described in

reference 17.

Modal Iteration Scheme
If the central difference formula (eqs. (C3)) are employed for the first and second
derivatives of U, V, W,and M in equations (C15), the equilibrium equations can be
written at the interior stations of the shell as

AjZ;_1 + BiZi + Cizi+1 = TA(DiZi—l + EiZ; + Fizi+1>

+ Ti(Gizi_l + HiZi+1) (=12, ..k-1) (C16)
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0
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-§A13 Aqg '%Am --2A-A110
Agg Agg - ? Ags 0
A33 Azg - -QA-X38 -1

0 A43 - ? Agg 0
0 -2Aq4 + A2A18
~2A99 + A2K23 -2A94 + A2K27

-2A33 + A2K34

-2h3¢ + A%R313

~2A43 + A2A46

A
A1q +5 Mg

A
Agg Ty Ags
— A—

Age +5 A3

A
Agz +5 Dag

A
Ags - 7 A7

A
-2
5 26

Ag7 - % A3g

A
-2
5 145

A
2

At10
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0 -2A 15 + A2A19
0 A279g
A2A35 -2A37 + A2K312
0 0
0 A1s +§ A
A
=N
0 5 126
0 Agn +§ Asg
A
2
0 5 1145
0 0 0
0 0 0
A
-2 0
0 5 310
0 0 0
0 0 0
0 0 0
A
0 0 0

|
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with

Ko = ool
23 = - ZZ(E)

e n
A27 = -C66 ﬁ w

—_ — 3
" Coo B - Koo/
AM 22 R2 22<R)

3
Aaq =Coog -2 + K 1) -Cqio L w
34 22 Rz ZZ(R 12 R AM

— " GgJ G,J 2 Kqp

Agg = KIIWAM - <4D66 + Sd S+ Siu Z L +D12>(£> +——+ Ny

- _|C12 n\2 ' " 1 n\2

Agg = \: r Tt (K12 + 2K6€§<§> Wanr - C11VA, WAy, oAZ GrJr(§> [5(1-1)H - 5(i+1)H]

2
—- C12Kgy n\2 Cral , 1=  Ci2\h\2 = /M\d
A ={|l—— = _2(Ky9 ~ K L N =IC - =& Dool/—
311 [ Cqq ( 12 - Keg) (R) R ([ AmTR\227C, <R) YAyt 22(R>

R
— CioKiglm\2 Ci2l . 1f=  Clo\m\2 = =
Azqa = 2(K12 - Kse) - T(ﬁ) *& (Vap “g|\C22 e (ﬁ) YA "'[NTr + Ny
Cio
--C—<NTS +NT < >
in which
[ E
Yol y ErAp
C22— 1-”,J, dZ+51H A
J 7y
r\
— E E.A.Z
K99 = y z dz + §5 rrr
J 1-pxiy A
[ =2
—_ E E.I E Az
Dgg = y zzdz+51H rir r'r°r
- A A
J 1 FxHy
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In order to develop a modal iteration solution, the following forward and backward
difference formulas are introduced at ends of the cylinder (finite-difference stations 0

and k)

r_1
fo =z(f1 - fo>

1
fie =Z<fk - fk-l)

(c17)

The cylinder was assumed to be supported at the ends so that wg = 0. The eight possible
boundary conditions for buckling in equations (B23) can be written in matrix form as

Bozo + Cozl = TAE()Z]_

AxZy_1 + BxZk = TpERZy 1

0

with
-
An K11K12
-Aqq " Cia - ~Di1 Y
n
-Ces g A ~Ce6
By =@
0 0
0 0

46

K11
D11

1-"ay4

Aqqw, (0
11AM)

n
2Kgg R

1 -0y

=)

o

(C18)
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0
EO =a
0
0
where
011
0
o=
0
0
and

0 -Ag1wy, (0) 0
T
0 0 0
0 0 0
0 0 0
T
0 0 0
B9 0 0
0 0 0
0 0 Ty ]
Ak = CO
Bk = BO
Ex = -Eg

(C19¢)

(C20)

where in equations (C20) WA terms are to be evaluated at x = a rather than at x = 0.

The elements of the selection matrix « are defined as follows:

Element

o1

Q44

Value

0

Boundary condition

up =0
NxB=0
VB=0
nyB=0
MXB=0
vg =0
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The equilibrium equations (C16) and boundary conditions (C18) can now be written

in matrix form as

2
AX = T,BX + T4CX (c21)

where T, isa scalar, X isavector,and A, B,and C are matrices. In order to
perform modal iteration, let

A=l (C22)
Ta
so that equation (C21) can be written as
AAX = BX +il' cx (C23)

To start the iteration process assume that X = X° where X° is a trial eigenvector.
Substitute X© into the right-hand side of the approximate equation

AAX = BX
and solve

AXX = BX° (c24)

by treating XX as the unknown variable. In finding the solution to equation (C24),
Gaussian elimination (Potter's method) is employed to avoid having to find the inverse
of A. The resulting approximate eigenvalue A; and normalized eigenvector x1 can
be taken as

A= x|
x1 -2 (C25)
A
For subsequent iterations the equation
AXX = BXi +X1_ cxi (=12, .. (C26)
i

must be solved to find more accurate solutions to equation (C23). The iteration process
converges to the largest characteristic value of A (lowest Tp) provided % CX is

small compared with BX. Thus the temperature Tp can be found for a specified num-
ber of circumferential waves n. The lowest value of T, found is then the buckling

temperature.
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COMPUTER PROGRAMS

BAMSOC 1

The computer program BAMSOC I finds the buckling load for a stiffened cylindrical

shell subjected to mechanical and thermal loadings by using determinant plotting. The
programed solution is similar to that developed in reference 17 and differs only in that
the present solution considers thermal effects in a multilayered orthotropic cylinder.

Buckling loads or buckling temperatures can be selected as the buckling parameter, and

critical values are found by determinant plotting over user-specified ranges of circum-
ferential wave number n and the buckling parameter.
seeks a change in sign in a determinant or "modified residual' by varying the buckling

For a specified n, the program

parameter. A flow diagram for BAMSOC I (determinant plotting solution) follows:

Assume
load

Evaluate prebuckling
deformations

AZp =TpAB +C (eq. (C8))

\

Assume n

Increase

Yes

Evaluate buckling
determinant

(eq. (C15))

Has its sign

No

Increase load

< changed? =

Y
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computer terminal with 70 000 octal storage units.
Input required by the program is contained in the following namelists:

in

$

$ (end of CON)

50
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The program is written in FORTRAN IV and will run on the Control Data 6000
series computer with the Scope 3.0 operating system. The program elements were over-
layed so that a maximum of 200 finite-difference intervals could be used on a remote

the shell.

CON

NI

NF

DELN

NBARXI

NBARXF

DELNX

PINIT

PFIN

DELP

TAI

TAF

DELTA

KASE =1

A maximum of 20 layers can be used

initial value of n to be investigated

final value of n

incrementin n

initial or fixed value of I:Ix, axial compressive load

final value of fIX

increment in ﬁx

initial or fixed value of p or (, lateral or hydrostatic pressure
final value of p or g

incrementin p or q

initial or fixed value of T,, base temperature (see eq. (C1))
final value of Tx

increment in Tp

axial compression with fixed temperature and lateral pressure
lateral pressure with fixed temperature and axial compression
hydrostatic pressure with fixed temperature and axial compression

thermal loads corresponding to T A With fixed mechanical loads



$ NANCY

DELBAR

BC=1

IR

ZR

GRJR

NRING

NRSPACE

ES

AS

IS

VA

GSJS

APPENDIX D — Continued

radius to reference surface

cylinder length

distance from inner wall surface to reference surface
simply supported for prebuckling analysis

clamped for prebuckling analysis

Young's modulus for ring

area of ring

moment of inertia of ring about its centroid

distance of centroid of ring to reference surface (positive, external rings)
ring torsional stiffness, GJ

number of rings

number of finite-difference intervals between adjacent rings (no more
than 200 stations along cylinder length)

Young's modulus for stringer
area of stringer
moment of inertia of stringer about its centroid

distance from centroid of stringer to reference surface (positive,
external stringers)

stringer torsional stiffness, GJ

stringer spacing
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ECC distance from reference surface to surface on which ﬁx acts
GAMS stringer temperature shape parameter, vyg (see eq. (C1b))
GAMR ring temperature shape parameter, v, (see eq. (Clc))
W
TAUS g g Bs(z)dAg
TAUR S. C”rﬁr(z)d-Ar $ where B is temperature shape parameter in
equation (C1)

TAUSPR S agBs(z)z dAg

TAURPR 5 oy Br(z)z dAy

y
G exponential temperature shape factor, g (see eq. (C1))
EX(I) Ex of ith layer of shell (first layer lies on inner surface of shell; no

more than 20 layers)

EY(I) Ey
NUX(I) iy
NUY(I) . by
GXY(I) Gy
H(I) thickness of layer

GAMMA() layer temperature shape factor yg, (see eq. (Cla))
BETA(I) layer temperature shape factor Bgi (see eq. (Cla))
ALPHAX(I) o

ALPHAY(I) oy
LAYER number of layers (520)

$ (end of NANCY)
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$ CORNIE
IALF =1 NXB=0’ vg=0, wg=0, MXBT-O

=2 Ug=0, vg=0, wg=0, MXB=O
=3 NXB=O, nyB=0, wg =0, MXB=0
=4 Ug =0, NXyB=0, wy =0, MXB=0
=5 Ug=0, Ngy =0, wg=0, wg, =0
=6 NXB =0, NXyB =0, wg=0, WB’X =0
=" NXB=0, vg=0, wg=0, WB,X=0
=8 Ug=0, vg=0, wg=0, WB’X=0

MODE = 0 calculation of buckling mode shape is not required

#0 calculation of buckling mode shape is required

IRING

il
et

simplified ring theory described in appendixes A, B, and C
=2 more accurate ring theory described in appendix E
$ (end of CORNIE)
$ RING (required only if IRING = 2)
IX Ix, moment of inertia for out-of-plane bending of ring (eq. (E11))

10XZ Iozz, cross product of inertia for out-of-plane bending of ring (eq. (E11))

$ (end of RING)

A sample output listing for BAMSOC I follows. The case shown is the ring- and
stringer-stiffened cylinder loaded by thermal loading alone. (See text.) The parameter
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Tp has been selected as the change in temperature of the heated skin. Experience with
determinant plotting solutions has shown that it is possible to miss sign changes in the
determinant by taking too large an increment in the load parameter. As a safeguard
against this possibility, the present program examines small loading increments, when
unusual trends in the determinant are detected.

In the sample problem, for N = 51 or 52, the modified residual value was found to
increase in value after a steady decline. The irregularity was detected and finer load
increments were employed in the calculations and a change in the sign of the determinant
was found. Note, however, that no irregularities were found for N = 53, and as a con-
sequence, sign changes were found at higher temperatures. Further investigation with
finer load increments in calculations not presented established a buckling temperature of

about 5250 F (292 K) for N = 57.
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NAMEL ST INPUT FOR BAMSOC 1

SCON NI250,¢ NF=S53es DELN=]1e+ NBARXI=0es¢ NBARXF=0es DELNXZles
PINIT=0es PFIN=0Oes DELP=1e, TAI=450e¢ TAF=600ss DELTA=20++ KASE=4S

SNANCY R=6Se+ Ax300es DELBAR=403s BC=1+ ER=16+4E6+ AR=¢2464 'IR=41377s
ZR==14992s GRJUR=3477e+ NRING=19¢ NRSPACE=10+ ES=16+4E6+ AS=.C495¢ 157.004082s
ZS=—o342+ GSJS=93es D=1+35, ECC=0es GAMSTOss GAMR=0es TAUS=0es TAUR=O0es
TAUSPR=0++ TAURPR=0s+ G=0sy EX(]1)=14eSE6s EY(1)=14+5E6s NUX{1)=e3¢ NUY(1)=e3v
GXY(1)x5.580E6s H{1)=e06+ GAMMA(13=0ee BETA(I)=1ev

ALPHAX(1)=5eE~6¢ ALPHAY(1)=5+E~6¢ LAYER=1$%
SCORNIE JALF=1e¢ MODE=0+ IRING=1S
BAMSOC I

CALCULATION OF BUCKLING LOAD FOR THERMALLY STRESSED, STIFFENED, MULTI-LAYERED CYLINDER USING DETERMINANT PLOTTING
CHANG-CARD ROF364 NASA LANGLEY RESEARCH CENTER 1968

DATE 03727/69

NI= 5.0000E+01

TAI= 4.5000E+02
NBARX= 0.
P= 0.

NF= 5.3000E+01
TAF= €.0000E+02

DELN= 1.0000E+00
DELTA= 2,0000E+01

INPUT FOR PROGRAM THERMUL CHANG~CARD A2031 RDF364 JANUARY 1968
GEOMETRY PARAMETERS LOADINGS TEMPERATURE PARAMETERS
R= 6.5000E+01 TAUS= 0. GAMS= 0.
A= 3.,0000E+02 TAUR= 0. GAMR= 0.
DELBAR= 3.0000E-02 ECC= 0. TAUSPR= 0. G= 0.
TAURPR= 0.

RING PROPERTIES STRINGER PROPEARTIES

ER= 1.6400E£+07 ZR=-1.9920E+00 ES= 1.6400E+07 1S=-3,4200E~01

AR= 2,4600E-01 GRJR= 3.4TT70E+03 AS= 4.9500E-02 GSJS= 9.3000E+01L

IR= 1.3770E-01 I1S= 4.0820E-03 D= 1.3500E+00

NUMBER DF RINGS= 19

NUMBER OF FINITE DIFFERENCE SPACES BETWEEN RINGS= 10

GEOMETRY AND TEMPERATURE PROPERTIES FOR LAYERS

LAYER EX EY NUX NUY GXY H GAMMA BETA ALPHA X ALPHA Y

1 1.450E+07 1.450E+07 3.000E-01 3.000E-01 5.580E+06 6.,000E-02 O. 1.000E+00 5.000E-06 5.000E-06
SIMPLE SUPPORT BOUNDARY CONDITIONS
11 12 22 66 13 23

B 1.59340659E+07 4.78021978E+06 1.59340659E+07 5.58000000E+06 -1.03571429E+02 -1.03571429E+02
c 9.56043956E+05 2.86813187E+05 9.56043956E+05 3.348)0000E+05

D 2.86813187E+02 8.60439560E+01 2.86813187E+02 1.00440000E+02

K Q. 0. 0. 0.
L -6,21428571E+00 -6.21428571E+00
M 0. O.
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INPUT FOR CALCULATION OF MODIFIED RESIDUAL

IALF= 1
N= 5.0000E+01
TA MODIFIED RESIDUAL
4.50000000E+02 -T1.79225885E+05
4.70000000E+02 -T7.75252974E+05
4.90000000E+02 -7.65576851E+05
5.10000000E+02 ~7.60571046E+05
5.30000000£E+02 ~7.42188514E+05
5.50000000E+02 6.79009921E+05
5.40000000€+02 ~7.14898570E+05
$.40000000E+02 CROSSING FOUND WITHIN 1.
N= 5.1000E+01
TA MODIFIED RESIDUAL
4,50000000E+02 -7.88803726E+05
4,70000000E+02 —7.84474819€E+05
4.90000000E+02 —7.78172671E+05
5.10000000E+02 -7.67786896E+05
5.30000000E+02 -7.43541985E+05
5.50000000E+02 ~9.24281493E+05
OPEN UP INTERVAL IN SEARCH CF CROSSING
5.30000000E+02 -7.43541985€+05
5.32000000E+02 —7.38292392E+05
5.34C00000E+02 -7.31168334E+05
5.36000000€+02 -7.19848153E+05
5.38000000E+02 ~6.91640017E+05
5.40G00000€+02 9.03024088E+05
5.39000000E+02 —-6.24795117E+05
5.39000000E+02 CROSSING FOUND WITHIN 1.
N= 5.20C0E+01
TA MODIFIED RESIDUAL
4.50000000E+02 -7.98256606E+05
4.70000000£+02 —7.93594324E+05
4.90000000E+02 -7.86682408E+05
5.10000000E+02 ~7.74838733E+05
5.30000000E+02 -7.41093951E+05
5.50000000E+02 —7.61622322E405
OPEN UP INTERVAL IN SEARCH OF CROSSING
5.30C00000E+02 -7.41093951E+05
5.32000000E+02 -7429620508E+05
5.34000000E+02 ~6.99861698E+05
5.36000000E+02 8.61174311E+05
5.35000000E402 -6.16100274E+05
5.35000000E+02 CROSSING FOUND WITHIN 1.
N= 5.3000E+01
TA MODIFIED RESIDUAL
4.50000000£+402 -8.,07594308E+05
4.70000000€E+02 -8.02630842E+05
4.9C000000E+02 =7.95147042E+405
5.10C00000E+02 -7.81817375E+05
5.30000000E+02 ~7.24361857€+05
5.50000000E+02 -7.05664617E+05
5.70000000E+02 6.79333836E+05
5.60000000E+02 8.50808776E+05
5.60000000E+02 CROSSING FOUND WITHIN 1.
MINIMUM TA= 5.35000000E+02 N=  5.20000000E+01
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" APPENDIX D — Continued

BAMSOC I

The computer program BAMSOC II finds the buckling load for a stiffened cylindrical
shell subjected to mechanical and thermal loadings by using modal iteration. The solu-
tion corresponds to equations (C16), (C18), and (C27) of the present text. A flow diagram
for BAMSOC II (modal iteration solution) follows:

Evaluate prebuckling deformations
with unit thermal load

AZj =B +C (eq. (C8))

|

Assume n

Assume trial
buckling mode

Increase
. I~ —=
i Use calculated
Calculate buckling :
J mode and temperature mOd;?n gcsletrlal
(egs. (C26) and (C27))
Yes ‘ Has buckling temperature No

l converged ? > S

Buckling temperatures are found for specified ranges of the circumferential wave num-
ber n. If the solution is well behaved, the program will converge to the candidate buck-
ling temperature after several iterations. The program is overlayed to permit a maxi-
mum of 200 finite-difference intervals and requires 150 000 octal storage units.
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The input required by the modal iteration solution is similar to that for BAMSOC I
except that loading ranges and increments are not specified and the solution is valid only
for simply supported boundary conditions. The following modifications are required for
the three namelists presented for BAMSOC I:

(1) in namelist CON, retain only NI, NF, DELN, NBARXI, and PINIT
(2) retain namelist NANCY

(3) in namelist CORNIE, permissible values of IALF are from 1 to 4. Delete
MODE and IRING.

The convergence criteria (see eq. (C27)) is specified internally for the ith iteration as

(Ta)s - (Ta)i-al o,
()

A sample output listing for BAMSOC II follows. The case is the same case as for
BAMSOC I except that only 100 finite-difference intervals were employed to condense the

output.
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NAMELIST INPUT FOR B8AMSOC Il

SCON NI=S7.9 NF=57,s DELN=les N3ARXI=O0sy PINIT=0e3

SNANCY R=65%.9 A=300.9 QtlL3AR=.u3s dC=1ysy ER=16,4E69 AR=.246s IR=.1377s
ZR=-1,992y GKJR=3477.9 WRINGZ19s NRSPACE= Sy ES=1b.4E6s A45=.04955 [5=,004082,
25=-.342y G3JS=33.9 D=1.35s £CC=0ev GAMS=0.s GAMR=0.s TAUS=0.s TAUR=0,s
TAUSPR=Nss TAURPR=0.+ G=U0.s GAY(1)=H,.580k6s H(1)=.06s GAMMA{1)=0.4 HSETA(1)=1l.s
EX(1)=1445E5s EY(1)=14.5E60 NUA{1)=.30s NUY(1)=,3Uy ALPHAX(1)=25,E=6y
ALPHAY (1) =5.E-Ay LAYER=1%

$CORNIE IALF=1%

BAMSOC II

CALCULATICN OF BUCKLING LOAD FOR THERMALLY STRESSEDs STIFFENED, MULTI-LAYER CYLINDER BY MODAL ITERATION
CHANG-CARD ROF364 NASA LANGLEY RESEARCH CENTER 1968

DATE 03721769
NI= 5.7000E+01

NF= 5,7C00E+01 DELN= 1.0000E+00

INITIAL Z VECTOR (UNSCALED)

us vB W8 MB
1 C. 0. 1.00000000E+00 0.
21 0. 0. 1.00000000E+00 0.
41 0. 0. 1.00000000£+00 0.
61 0. 0. 1.00000000E+00 0.
81 0. 0. 1.00000000E+00 0.
101 0. 0. 1.00000000E+00 0.
ITERATION NUMBER 1
TEMPERATURE TA= 1.63659058E~C1 CORRESPONDING SCALED Z VECTOR
us vB WB MB
1 ~7.76570553E-07 0. 0. 0.
21 =1.91130069E-10 1.83146093E~-08 7.35752664E-09 -1.83573040E-01
41 =7.01489655E~14 1.83760317€-08 7.39760844E-09 ~1.837727T76E-01
61 7.01483688E-14 1.83760317E~08 7.39760844E~-09 -1.83772776E-01
81 1.91130C69E-10 1.83146093E-08 T.35752664E-09 -1.83573040E-01
1ol 1.7657CS53E~-07 0. 0. 0.

ITERATION NUMBER 2

TEMPERATURE TA= 1,17890697E+03 CORRESPONDING SCALED Z VECTIR
us vs W8 MB
1 7.27927938E-07 0. 0. 0.

21 —1.57725826E-09 5.04390724E-08 3.52955211E-08 =1.52729564E-01
41 ~1.20398426E~12 5.07973257E-08 3.55277678E-08 ~1.53943644E-01
61 1.20398423E-12 5.07973257e-08 3.55277678E-08 ~1.53943644E-01
81 1.57725826E-09 5.04390724€E-08 3.52955211E-08 ~1.52729564E-01
101 ~T1.27927938E-07 0. 0. 0.

[TERATION NUMBER 25

TEMPERATURE TA= 5.37719505€+02 CORRESPONDING SCALED Z VECTIR
us ve WB MB
1 4.58064816E-07 0. 0. 0.

21 -2,87625169€-07 ~9.81722985E~09 —6.56022956E~09 3.23334452E-02
41 ~4.84982682E~-08 -4.40150651E-09 =2.92732002E-09 1.45714341E-02
61 4.84982682E-08 ~4.40150651E-09 -2.92732002E-09 1.45714341E-02
81 2.87625169E-07 —9.81722985E-09 —6456022956E-09 3.23334452E-02
101 ~4.58064816E-07 0. 0. 0.
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ITERATION NUMBER 26

TEMPERATURE TA=

us

4.46578687TE-07
-2.93047826E-07
-5.29982857€~08
5.29982857€E~-08
2.93047826E-07
~4.46578687E-07

ITERATION NUMBER 27

TEMPERATURE TA=

21
41
61

101

us

4435668C83E-07
~2.97920426E-07
~5.75110986E-08
5.75110986E~-08
2.97920426E-07
~4.35668C83€-07

ITERATION NUMBER 28

60

CONVERGED TEMPERATURE TA=

VE~NCWHWN -

us

4.25301149E~-07
-7.59850632E-07
-5.21414819€E-07
7.46228255€6-11
2.70353608E-07
2.99574280E-07
2.81086829:-07
1.11722331€-07
~1.45090817E-07
-3.27532512E-07
~3.62573005€-07
—3.44911857€E-07
=1.44970992E-07
1.497477124E-07
3.45113853E-07
3.53028614E-07
3.03512382E-07
1.11311952€-07
~1.52077748E-07
-3.16278412E-07
~3.02289280E-07
-2.40603980E-07
-7.79210795€-08
1.33393533€-07
2.58710335e-07
2.34182913E-07
1.73529469E-07
4.90093406E-08
-1.05031425€E-07
=1.92160659E~07
-1.65745567E~-07
-1.14405427€E-07
—-2.73157633E-08
7.54101910E~-08
1.30679669E-07
1.07290082E-07
6.81917701E-08
1.24C77770E~-08
—4.98547675E-08
-8.10843369E-08

5.37123003E+02

5.36575924E+02

APPENDIX D — Continued

vB

0.
~9.38196491E-09
~4.69946566E~09
~4.69946566E~09
-9.38196491€E-09

O.

vB

0.
-8.94910655E-09
~4.98896109E-09
~4.98896109E-09
~8.94910655E~09

0.

5.36074232E+02
ve

0.
~4.59625262E~07
-T7.71134756E~-07
-7.28756070E-07
—4.41484170€-07
—9.37078924E-09

4.28T26627E-07

6.97014670E-07
7.09547922€E~07
4.55146445€E-07
2.43286648E-09
~4.67981720E~07
-T.4€556218E-07
~7.43563747€E-07
~4,61421596E-07
4.79054708E-09
4.42124012E-07
6.84191543E-07
6.6174S5356-07
4.04730815€6-07
—8.52149244E-09
-3.70626319E-07
-5.60691973€E-07
-5.38503291€E-07
-3.20106295E-07
9.58375632E-09
2.81E43089E-07
4.17721507E-07
3.65379757E~-07
2.30933170E-07
~8.73802977E-09
-1.96104461E-07
~2.84928388E-07
-2.65806306E-07
~1.52498812E-07
7.01425061E-09
1.24588002E-07
1.76889287E-07
1.62046387E-07
9.07149850E-08

CORRESPONDING SCALED Z VECTOR

W8

0.
-6.26962170E-09
-3.12613561€E-09
-3.12613561€E-09
-6.,26962170E-09

0.

CORRESPONDING SCALED Z VECTOR

L3

0.
-5.98057394E-09
-3.31932851£E-09
-3.31932851E~-09
-5.,98057394E-09

0.

MB

0.
3.08988773E-02
1.55542013E-02
1.55542013€-02
3,08988773E~02
0.

M8

0.
2.94725094E-02
1.65089071E-02
1.65089071E~02
2.94725094E~02
0.

CORRESPONDING SCALED Z VECTODR

WB

0.
2.88703579E~05
4,27008188E-05
3.92369407€-05
2.31230666E-05
~5.52645553E-09
-2.32819862E-05
-3.79640995€E-05
~3.85226372E~-05
-2.427952S6E-05
1.72226769E-09
2.50584371€-05
4.04388090E-05
4.02956732E-05
2.47843487E-05
3.21738900E-09
~2.34938675E-05
-3.70558546E-05
=3.62463455E-05
~2.18899554E-05
-5.69499266E~09
1.95833395k-05
3.03633453E-05
2.32702575E-05
1.74149936E-05
6,39701603E-09
—1.48179466E-05
—2.26210193E~-05
—2.15199960€E-05
-1.26321987E~05
~5.82660431E-09
1.02615469E-05
1.54304282E-05
1.44877480E-05
8.38882829E~-06
4.67248845E-09
—6.48369T88E-06
-9.57824365E-06
~B8.84625T94E-06
-5.02850473€E-06

M8

0.
1.97151230E-01
2.03472475€E-01
1.45920054E-01
B8.13483855€E~02
~6.637656T3E-04
~1.08527967E-01
~1.76416032E-01
-1.84431761E-01
-1.24870198E-01
-9.63841827E~03
1.20262254E-01
1.92473613E~01
1.90551988E~01
1.15363571€-01
~1.57017051E-02
~1.23089686E~01
-1.78314582E-01
-1.68109183E-01
-9.40429520€E-02
2.80636251E~02
1.08943509€-01
1.47419054E-01
1.33661345E-01
6.96391649E-02
~3.15968803E-02
~8.67100390E-02
-1.10635773E-01
+9.67952493E-02
~4.70731332€-02
2.88428069E-02
6.28887408E-02
7.59949709€E-02
6.41582849E-02
2.89144603E-02
-2.31792101€E-02
-4.18076618E~02
~4.76148396E~02
~3.84342699E-02
-1.53969322E-02




-6.20122302E-08
-3.40867935E-08
-2.04212480E~09
3.04004734E-08
4.40193554E-08
2.79055634E-08
7.88264544E-09
-6.66980972E-09
-1.66255869E-08
~1.61454443E-08
-5.11607606E-20
1.61454443E~08
1.66255869E-08
6.66580972E~09
~7.88264544E-09
-2.79055€634E-08
~4,40193554E~08
-3,04004734E~-08
2.04212480E-09
3.40867935E-08
6.20122302E~08
8.10843369E-08
4.98547675E~08
-1.2407TT70E-08
-6.81917T01E-08
~1.07290082E~07
~1.30679669E-07
-7.54101910E~08
2.73157633E-08
1.144054276-07
1.6574556TE-07
1.92160659E-07
1.050314256~07
—4.90093406E-08
-1.73529469E-07
-2.34182913€-07
~2.587103356-07
-1.33393533E-07
7.79210795€-08
2.40603980E-07
3,02289280E-07
3.16278412E~07
1.52C77748E-0T
~1.11311952E~07
-3,03512382E-07
~3,53028614E~07
-3.45113853E~07
~1.49747724E-07
1.44970992E-07
3,44911857E-07
3,629730056-07
3.27532512E-07
1.45090817€~07
-1.11722331€-07
~2.81086829E~-07
-2.99574280E~07
-2.70353608E-07
~7.46228255€~11
5.21414819€-07
7.598506326~07
-4.25301149€-07

NUMBER OF ITERATIONS=

MINIMUM

28
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~5.26917618E-09
-6.97854476E-08
-9.50531674E-0Q8
-8.,38477792E-08
~4.41941266E~08
4.04701034E~-09
2,81461217E-08
3.22525792E~08
2.30691997E-08
7.16082486E~09
-3.61446716E-09
7.16082486E-09
2.30691997E-08
3.22525792€-08
2.81461217E-08
4.04701034E-09
~4.41941266E-08
~8.384777T92E-08
~9.50531674E~08
~6+9785447T6E-08
~5.26917618E-09
9.07149850£-08
1.62046387E-07
1.76889287E~07
1.24588002€-07
7.01425061E~09
~1,52498812E~07
~2.65806306E-07
-2.84928388E-07
~1.96104461E-07
~8473802977€-09
2.30933170E-07
3,95379757e-07
4.17721507E-07
2,81 €43089E-07
9.58375632E-09
-3.,20106295€-07
-5,38503291E-07
-5.,60691973E-07
-3,70626319E-07
-8.52149244E-09
4,04730815€6-07
6.677495356~07
6.84191543E-07
4.42124012€-07
4,79054708E~09
—4.61421596E~07
~T7443563747€E-07
~7.46556218E-07
-4.67981720E-07
2.43286648E-09
4.55146445E~07
7.09547922E-07
6.97014670E-07
4.28726627€E-07
~9.37078924E-09
~4,41484170E~07
-7.28756070E-07
~7.71134756E-07
-4,59625262E~07
O.

-3.50634900E-09
3.59568563E-06
5.14159204E-06
4.58879044E-06
2449591889E~06
2.69043138E~09

=1.39425150E-06

~1.7315423T7E-06

-1.27836897E-06

-4.92203515E-07

-2.4017962BE-09

-4.92203515E-07

~1.,27836897E-06

~1.73154237E-06
~1.39425150E-06
2.59043138E-09
2.49591889E-06
4.58879044E-06
5:14159204E-06
3.59568563E-06
~3.50634900E-09
~5. 028504 T3E~06
~B8.84625T94E-06
~9.57824365E~-06
~6.48369T88E~06
4e 67248845E-09
8.38882829E-06
1.44877480E-05
1.54304282E~05
1.02615469E-05
~5.82660431E-09
~1,26321987E-05
~2+15199960E-05
~2426210193E-05
~1.48179466E-05
6.39701603E~09
1.74149936E-05
2.92702575€-05
3.03633453E~05
1.95833395€6-05
~5.69499266E-09

-2.18899554E~05

=3462463455E-05

-3,70558546E~05

~2.34338675E-05
3.21738900E-09
2.47843487€E-05
4.02956T32E-05
4.04388090E-05
2,50584371E-05
1.72226769E-09

-2.42795296E-05

-3.85226372E~05

~3.796409S5E-05

-2.32819862E-05

-5.52645553E-09
2,31230666E-05
3.92369407E-05
4.27008188E-05
2.88703579E-05
0.

TA= 5.36074232E+02 N=  5.,70000000E+01

RUNNING TIME APPROXIMATELY 72 SECONDS

1.74328862E-ue
2.52369502E~02
2.61273885E-02
1.92021907E~-02
5.26846401E-03
~1434039223E-02
~1.29366908E-02
-9.83661853E-03
~4.16443057E-03
3.44T03134E-03
1.19772649E-02
3.44703134E-03
-4.16443057E-03
-9.83661853E~03
~1.293656908E~02
~1434039223E-02
5.26846401E~03
1.92021907E-02
2.61273885E-02
2.52369502E-02
1.74328862E-02
=1.53969322E-02
-3.84342699E-02
~4.76148396E-02
~4.18076618E-02
-2.31792101E-02
2.89144603E-02
6.41582849E-02
7.59949709E-02
6.28887408E-02
2.88428069E-02
-4.70731332€E-02
~9.67952493E-02
-1.10635773E-01
-8.67100390E-02
-3.,15968803E~02
6.96391649E-02
1.33661345E-01
1.47419054E-01
1.08943509E-01
2.80636251E-02
-9.40429520E~02
-1.68109183E-01
-1.78314582€E-01
~1.23089686E-01
-1.57017051€-02
1.15363571€-01
1.90551988E-01
1.92473613E-01
1.20262254E-01
-9.63841827E~-03
-1.24870198E-01
~1.84431761E-01
«1.76416032E-01
-1.08527967€-01
—6+637656T3E-04
8.13483855€-02
1.45920054E-01
2.03472475E-01
1.97151230E-01
0.
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APPENDIX E
DEVELOPMENT OF MORE ACCURATE RING THEORY

Near the completion of this investigation, Dr. David Bushnell of the Lockheed
Missiles and Space Company verified the results of some of the present calculations by
using a newly developed program for shells of revolution (ref. 26). In doing so, he
obtained results which indicated that the thermal-buckling behavior of the ring-stiffened
shells investigated herein could be influenced by the type of ring theory employed in the
analysis. Preliminary results suggested that the out-of-plane ring bending stiffness

during buckling was especially important.

The purpose of this appendix is to present an extension of the present analysis to
include the first-order effects of out-of-plane deformations in the rings during buckling.
The ring theory is developed by a method proposed in reference 27 to obtain a consistent
theory for sturdy rings attached firmly to a shell. A key assumption in the development
is that compatibility of the ring and shell deformations is enforced along a normal
passing through the centroid of the ring. Thus, local deformations of the ring elements
are ignored and the ring behaves as a rigid beam. More exact models for rings which
enforce compatibility only at the point of attachment have been proposed. (See, for
example, ref. 28.) However, these models lead to extremely complex, unwieldy equations.

Ring Displacements

The ring center of shear and centroid are assumed to coincide. The ring displace-
ments u}., Vg_, and w% are specified in local ring coordinates X, y, and Z, which are
parallel to the coordinates of figure 1 but have their origin at the ring centroid. The ring

displacements u';, vg, and w% are expressed (ref. 28) as

_ N

u%, =Uc + 284
vl =ve + 28y - Ru, y> (E1)
wt = w, - %8

by ¥ 1

J
v
with B¢ = “We g and B9 = -We § + R—c where the subscript ¢ denotes the ring centroid.
’ C
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The ring coordinates y and Z are related to the shell coordinates y and z by

- Zy
=[1+—
y ( R)Y

_ (E2)
Z=2Z-%Z

The displacements in the shell in the vicinity of the ring are assumed to be

t -

Ugy = U - ZW 5 )
t -y - -L

ek TV Z<W,Y R) (E3)
t -

W =W )

To develop a ring theory for sturdy stiffeners, compatibility of shell and ring defor-

mation is enforced along a shell normal passing through the centroid of the ring. Matching
ring and shell displacements along X =0 (that is, ugk = u‘Il,l , and so forth| yields
X=0

uc=u-irw,i A
5 2
Zy = Z
Ve =Vl + =] - ZpW o, + 0= E4
W, =W
c /
and
~
ut =u - zw -
r b3

z 2
el d)- oo - B ) o)

Strain Energy
The strain energy in the N interior rings on the shell is approximated as
1 21R

(ES6)
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with

t
w
et=vt +L -l(wt) (ET)
sy

where the introduction of the Dirac delta function permits the replacement of X by x
in the derivatives appearing in equation (E5).

Buckling Strain Energy

By following the procedures outlined in appendix B, the total potential energy of the
shell, its stiffening elements, and the external loading can be formed, and the principle of
minimum potential energy (8611 = 0) can be used to obtain nonlinear equilibrium equations.
The equations governing prebuckling and buckling can be derived by separating displace-
ments into axisymmetric and small asymmetric parts (for example, u=up + ug). For
the more accurate ring theory, the prebuckling equations obtained are the same as those
developed as equation (1) or equation (B21) in appendix B. Thus, the new terms of the
more accurate ring theory appear only in the buckling equations.

In order to make a comparison of the present theory with existing ring theories, the
strain energy during buckling can be written as

N
I, =% Z fozﬂR S:B‘ Er<e§,B)2dAr + GrJr(ﬁB,y>2]6(x - jl)dx dy (E8)

Pp = VB x

To express the energy as a function of the buckling displacement variables U, V,
and W, equations (C13)

ny

= 0SS —
uB Uc R
. ny

Vvp =V sin —
B R

ny
W = W cos —
B R
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APPENDIX E — Continued

are employed. The integration over the ring area can be accomplished with the following
definitions:

“~N\
S E; dAp = E;Ay g E X dAy =0 ( Ry = o)
S‘ Erz dAr = ErErAr g Er}-{Z dAr = ErIO}-{'Z B (Ell)
S Epz2dAp = Egl,, S ErX2dAy = Egl;

where the subscript o is used to denote that the inertias Iy and Igg; are to be com-
puted about the shell reference surface, z =0.

After integration, equation (E8) can be written in matrix form as

Mg = __§ ZpGZ g dx (E12)
in which
U
— \"
A E13
B W (E13)
wv
and
G11 Gig Gi3 Gig
Ggg Ggg Ggy
G = (E14)
Ggg Gsq
Symmetric Gy4

— —
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APPENDIX E — Continued

4
N2E LI
- il ErIX(R)

- JOnErl =

0XZ R4

4
. n
- JZ)nErIO}_(Z (—R_)

- i)

- i)

- 3D

_jl)__

p—

- 3 3
ErAr - + ZEpAr(m20 )+ Exlgy = 1
2 R3 4

2 _ 4
nErlg n_3 - nZZrErEE(%)
R

R

;

(E15)



APPENDIX E — Continued

where
n=1-= (Note that Epl,, = Eplp + il%ErAr>

In this form, the elements of the ring stiffness matrix G can be compared with results
obtained in other buckling studies of ring-stiffened shells. (See refs. 28 to 30.)

Equilibrium Equations

The condition for vanishing of the first variation of the ring energy (GHI.B = 0) yields
the contribution of the more accurate ring theory to the buckling equilibrium equations.
If the terms in 06U, 6V, and &W are collected, the set of buckling equations which are
the counterpart of equations (C15) with a more accurate ring theory can be written as:

AU + (A12 - G11>U +Aq13V' - G192V + <A14 - TAA15>W" + (A16 - G14 - TAA17)W'

+ <A18" Gy3 - TAAlg)W +A11oM' =0 (E16a)

A91U" -~ G19U + AgoV'" + (A23 - 1"21>V + AggW' + (A25 - Gog -~ TAA26)W’

+ (A27 - I'ag - TAAzs)W =0 (E16b)

(A31 - G14 - TAA32)U' + F31U + A33V” - G24V' + (A34 + I'sg - TAA35)V

T 2 T
+ (Ass - T35 - TAA3'7>W + <A38 - T34 - Tahgg - T3A31)W

+(Agq1 - Ghg - TpMgqg)W - M =0 (E16c)
Ag1U' + MgV + AggW" + (Agq - TpA4g)W' + AggW + M = 0 (E16d)
where
N 2
j=1

N

3

. n - n

1"22 = G23 - E 6(X - ]l) ErAr Ez— 4 ZrErAr(ﬁ)
j=1
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APPENDIX E — Concluded

I3y =Gy3 -Gy

N
3
3 24 Rz

32 2 R
=1
N
r..=G Zé 'lGan
33'— 44_ (X—J)rr<ﬁ>
i=1

2

N

=G - 3 n

T,, =G, ZG(X ]Z)GrJr<R>
j=1

Equations (E16) were cast in finite-difference form using the techniques described
in appendix C and reference 17; the results were programed as part of the determinant
plotting solution ir the computer program entitled BAMSOC I (see appendix D). However,
numerical results employing the more accurate ring theory are not available.
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TABLE I.- STRUCTURAL PROPERTIES FOR BUCKLING CALCULATIONS

* . .
Based on reference surface at skin middle surface.

72

(a) SI Units
_ . .
Type of Esk ” % Er | Ar | Ir zr |Grdr| Es | As | Ig zs | Ggds
cylinder GN/m2 kI per K GN/m2| ecm2 | em4 | em |N-m2|{GN/m2| ecm2 | em4 | em |N-m2
Ring-stiffened 183 0.3 {1.43 x 10-5| 183 |0.626|1.228]/-1.364|0
Stringer-stiffened 72.4 .32,2.52 72.4 [2.394)|3.663 |-2.344|68.44
Ring- and 100 .30(0.9 113 [1.587(5.732|~5.060(9.999 | 113 .319| .1699; -.864| 0O
stringer-stiffened
(b) U.S. Customary Units
- *_ *o
Type of Esk u Ok Er Ar | Ir zy | Gpdr Es Ag Is zg | Gsds
cylinder psi Skl per oF psi in2 | in4 | in. |lb-in2| psi in2 in? | in. |lb-in2
Ring-stiffened 26.5 x 106/0.3 | 7.95 x 10-6{26.5 x 1060.097|0.0295|-0.537 ©
Stringer-stiffened |10.5 .32)14 10.5 x 106/0.371 |0.088 -0.923/23 800
Ring- and 14.5 .30| 5 16.4 .246| .1377-1.992 3477 (16.4 .0495| .004082| -.342{ 0
stringer-stiffened




Figure

1.- Geometry of stiffened multilayered cylinder.
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Figure 2.- Geometry of ring-stiffened cylindrical shells from reference 11.
Dimensions are in inches (cm).
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Figure 3.~ Thermal buckling predictions for ring-stiffened cylinders.
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Figure 4.- Buckling interaction curve for ring-stiffened cylinders under
combinations of axial, compressive, and thermal loadings.
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Figure 5.- Geometry of stringer-stiffened cylinder from references 23 and 24. .
Dimensions are in inches (cm).
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(a) Longitudinal skin stress.

Figure 6.- Stress distribution in clamped stringer-stiffened cylinder under
combinations of axial compression and thermal loadings. (Negative sign

on stresses denotes compression.)
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Figure 6.- Continued.
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Figure 7.- Buckling interaction curve for clamped stringer-stiffened cylinder under combinations
of axial, compressive, and thermal loadings.
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Figure 8.- Radial buckling deformation for thermally loaded stringer-stiffened cylinder.
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Figure 9.~ Geometry of ring- and stringer-stiffened cylinder. Dimensions are in inches (cm).
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Figure 10.- Stress distribution in simply supported ring- and stringer-stiffened
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Figure 11.- Buckling interaction curve for simply supported ring- and stringer-stiffened cylinder under
combinations of axial compressive, thermal, and pressure loadings.
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