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I would like to present here today & case history in physics, a review
of the evolution of a concevt. As you will see, the story begins with matters
that are now old history — and yet it is not a finished affair, there still
renain unresolved problems and unexplored avenues, which i3 the way a physicist

likes his problems to be.

One difference betweer auiasbatic invariance and other concepts in physice
is that here is an idea that started with a quantum problem ana ernded in
classical mechanics -- or at least this is true for those aspects of it which
will be discussed today. Back around the turn of the century physici:zts were

surprised by the discrete character of energv exchange between matter and
electromarmetic racistion. Irn black-body equilibrium, say, or in the photo-
electric effert, i% anpeared that radiation of frequency V tranferred its

energy only in amounts that satisfied

E/Yy = h

The question arose, what did all this mean?”

Now one possible clue that was explored was the way radiation chanses ite
energy without interaction with matter. Suppose we have a perfecily reflecting
enclosure with a perfectly reflecting piston at one end, filled with electro-

magnetic radiation:




As the piston is pushed forward, it compresses the radiation gas adiabatically
and two things change: the energy changes, since the piston does work against
the radiation pressure, and the frequency distribution changes, due to the
Doppler effect by reflection from a moving piston. This is how Wien in 1893

derived his displacement law, for radiation in equilibrium with a given temperature.

A few years after that Rayleigh noted that it may be convenient to assume
here that the cavity is rectangular and to treat the standing modes of electro-
magnetic waves in it, and this led him to the Rayleigh-Jeans formula (actually,
it was Rayleich who derived it -- Jeans only pointed out that it included an
unnecessary factor of 8 ). Ehrenfest around 1910 examined the effect of adiabatic
compression in this case and found that for each wave mode, for infinitely slow

compression, the ratio (energy,/(frequency) stayed constant.

Now Rayleigh, in 1902, had also examined a mechanical system with rather
gimilar properties (eariier, Boltzmann and others had already dorne some work in
on a string
this direction). Suppose we have a pemulum/\t.hat is being slowly drawn up through

a hole in the ceiling: S —

As the string is shortened, two things occur: the freguency increases, because
the shorter a pendulum is, the shorter its period -- and so does the energv,

since work is being done against the centrifugal force of the oscillation,
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In this process, the ratio (energy)/kfrequency) is only an approximate
constant, but it has the following interesting property. Suppose for the sake
of definiteness that the string is shortened to half its length. Then we can
make the variation of the ratio during the entire process arbitrarily small
by making the shortening process sufficiently slow -- that is, by stretching

it out over a sufficiently long time.

Since this resembled a property of the adiabatically compressed radiation
gas, Ehrenfest called this type of conservation adiabatic invariance. I will
call this the "old" definition of adiabatic invariance, since -- as you will =
see -- there also exist other defirnitions. before going further, let me say a

few words atout what exactly is happening in this particular example.

fi

e T

If the length of the perdulum is kept constant, the motion is periodic. The
energy E , the angular frequency :«' and their ratio —— wnich we will denote

by J -- are all exact constanis of the motion, and that's all, E

On the other hand, if the string is drawn upwards at an appreciable rate,
the motion is no longer exactly periodic, and small changes must be made in the
equations of motion to take this factor into account. We then say that we have
a perturbed pendulum motion. There exist aprroximate methods for treating such
e motion — so-called perturbation methods -- which can be used provided the
difference from pure pendulum motion is never very great, In the present case

this reduces to the requirement that tre relative change in the stiring's length

per oscillation is small.

low perturbation methods usually express such requirements by means of some

constant £ , which has to be much less than unity in order for the method to

work:
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In this case
let U be the oscillation period
let T be the time required vo pull up the string by one

half (or to 1/e of its lensth, etc. )

Then one may take
£ = T/®

Let us furthermore denote by small f changes over a single period and by

capital 4 changes effectea over the entire drawing-up process.

In a sinele oscillation, the string length L changes by an amount

of orger €L , and similar changes occur in B , « and

ey

L = o(tl)

SE = O(cE)

S = 0oel)
and

SJ = o(tJ)

There exists one important difference, however, between §J and the other
small deltas: CL is always nepative (the string steauily gets shorter), fE
and $. are always positive —— but it may be shown that §J , to the first
approximation, oscillates with the pendulum motion and has zero average, or

anyway, an average of higher order:

<83 = G(SZJ)
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The entire drawing-up process containeg ¢ periods, which is a large
numoer. In calculating the accumulated change in . during this time, we may

replace ~ 1 by its oscilistion-averapre, leadins to

‘—nunber ol periods
\ l‘v..l I .
AT = & K%I> = o(EJ)

Thus &J way be made arbitrarily small by making 7. small enoueh, that
is, by pulling the string slowly enough. Please note that this is a property
of J alone, not of E , « or of any other constants of the pure nendulum
motion: only J gives us the extra factor of ¢ , because only it is conserved

on _the average to one order in ¢ better than it is conserved instantaneously.

Zefore ccntinuing let me point out that this is a ratner remarkable
result: we eget an aporoximzte constent of tne perturbed motion without ever

having to know what the perturbation is. All that is required is that the

motion be periodic and that the perturbation be slow and not rescnate with
the basic periodicity. Ir you think about it you will realize that this is a
remarkable bargain -- you almost get something for nothine, I krow of no other

theory that is so generous,

Ehrenfest puessed — and so did Lorentz and Einstein, who were also
involved in this — that quantised variables were those that in the classical
limit were adiabatically conserved. The problem now became how to identify

such adiabatic invariants in other periodic mechanical systems. In order to




examine this point in more detail, I must now step back and review what clasaical

mechanics was doing at that time, and in particular trace the evolution of

celestial mechanics which -- as you will see — is quite relevant here.

The first general theory of mechanics was due to Newton and was based on
the concept of force. Combining it with the law of gravitation, Wewton was able
to account for Kepler's laws of planetary motion and ever since that time, much
of classical mechanics was directed towards analyzing the motion of celestial
bodies, because here was a problem in which all factors were known and all were

easily observed.

An ambitious test of Newton's theory was undertaken in 1705 by one of his
contemporaries, the astronomer Edmund Halley. Halley guessed that the comets
of 1531, 1607 and 1662 were all the same object and he confidently predicted
its return in 1758. In calculating the orbit of the comet, Halley took into
account the attractions of Jupiter and Saturn and thus was the first to use
perturbation theory in celestial mechanics. He died in 1742 and thus did not
see the event which he predicted; neither did he realize that he had made an
error in his perturbation calculgtion and that therefore the comet was behind
his schedule — it was first seen on Christmas night, 1758, and passed perihelion

only in March 1759,

Perturbation methods improved steadilyv, however, ana even before tue
predicted return of Hallev's comet, Clairaut had already calculated its

perihelion tiwme within a wonth of the correct date.
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The real advances, though, came in the 1Yth century, after William
Rowan Hamilton reformulated ivewton's mechanics, basing it on the concept
of energy rather than force. He showed that there exists, for a large class
of motions, a function — the Hamiltonian -- which not only can be identified
with the energy, but which also contains in it all the information about

the evolution of the mechanical systemu.

The arguments of this function are generalized momenta and generalized
coordinates, usually denoted by p-s and q-s ; I won't elasborate cn this, since
you all are probably familiar with Hamiltonians, The Hamiltonian of, say,

planetary motion, might have a form like
Stk | 2
B a B%p, 9 + ef'lp g + ¢

where H(o) represents the planet's Kenler motion around the sun, the correction
proportional to ¢ represents perturbations due to other planets, and there
may exist terms of higher orders as well \underlined quantities are vectors

lumping topether the p-s and the g-s, the so-calied canonical variables) .

Based on the Hamiltonian, Jacobi devised & partial differentiil equation,
the Hamilton-Jacobi ecuation, which when c>lved gives the complete evolution
of the system., Specifically, it combines the canonical variaoles into new

auantities, whicn sre either constants of the motion or srow lirearly in time,

In practice one soon finda out that if vou can solve a problem vy elementary
methods, the Hamilton-Jacobi equation can be solved, tco -- but if not, nothing
helps. The met'od therefore is not ar all-purpose snortcut to a solution: its

real usefulness is as a good starting voint for perturbation schemes, One such
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scheme is due to Poincare and Von Zo:l.pol'and requires the basic system to have
a periodic character -—- a property that is satisfied by the Kepler motion. It

goes as follows.

First let us choose the initial variables so that each pair \pi. qi)

(0) =t H(o) does not have

corresponds to a different periodicity of H
the maximum number of periocdicities, it may lack the corresponding variables:
for instance, H(o) for the Kepler problem contains only one pair of canonical

variables, because the motion revresented by it has only one periodicity.

Next, solve the Hamilton-Jacobi equation for the unperturbed part H(o)

alone. This gives the problem a new Hamiltonian formulation, with new canonical
variables -- we will denote them by capital P-s and Q-8 -— that are either
constant or linear in time. We choose the new variapbles so that the Ql are

the only variables that may be linear in tiwe, and that they all be les, of

the sort that enters the problem only as the argument cf periodic functions —
say, of sines and cosines. With this choice, even though the Q‘. may grow without
limit, all observable quantities merely osciliste: by contrast, a steadily

increasing variable that is not an angle usually spells trouble.

It turms out that this is not an unreasonable cemand and can be met. The new
momenta conjugate to these "angle variables” are usually denoted by capital J-s

(rather then P=-s), and have the form

J1'§’1d“1
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where the integration is over a complete perioc cf the apprnpriate derree of

freedom, The J are called action variables.

i

Now we turn our attention to the entire Hamiltonian, including correction
terms of order € anc hipgher, ano re-formulate it in terms of the action and
anrle variables, After this there exists a rather straightforward procedure
for cranking out, order by order, a near-identity transformation to vet

another set of canonical variszbles, which we will distinpuish by asterisks,

» »(1) 2 .#\2)
$ = 4= £ -+ LI

i 1 4+ ove

2 «l2)

€ —= -9 = e:Q‘i’“) — = =y

-
i
constant while the Q; mav evolve linearly in time. In other words, we
(0)

such that for the real motion —— perturbation included -- the J, are

solve the Hamilton-Jacobi equation in two steps, first for H rione

- this gives us and Qi -- ana then for the entire H , giving the

J
i
asterisk-marked variables as solutions,

This is standard coperating procedure in celestial mechanics, and scientists
have carried it to as many orders in £ as their patience couls stand. More
recently computers have been progra.med to do the alpebra, which saves wear

and tear on the rerves,

Now let us return to adiabatic invariants, where bhrenfest and his
colleagues were trying to extend results derivec for the drawn-up pendulum
to general periodic systems., They found and proved that in such systeas,

the action variables
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are adiabatically conserved. This led to the Bohr-Soumerfeld theory of the atom,
in which such integrals were quantised, and as you know this theory gave quite
useful results for one-electron systems but completely failed for the Helium atom.
For details of sll this -- including perturbation theory, the drawn-up pendulum,
adiabatic invariance and so forth — I recommend Born's book "Mechanics of the
Atom! written in 1924 (a 1960 edition exists)%) This was probably the last attempt

to attack quantum problems by using classical adiabatic invariance,

Soon after the book appeared the real breakthrough occured, when Schrodinger
and others decided to look not at the action variables but at the Hamilton-
Jacobi equation that generated them. They found that if that equation is regarded
as the limiting equation describing the "geometrical optics" of a wave, a
consistent quantum theory could be derived, and you all know that this theory
has been very successful indeed. Among other things, quantum theory has its
counterpart of the adiabatic invariance properties described earlier (oxplaining
among other things the Bohr-Sommerfeld atom), but this talk is concerned with

classical motion and therefore we will not continue in this direction any more.

Instead, let us look further into the significance of classical adiabatic
invariance. In celestial mechanics we found that the action variable J w¥as
the first term in a series giving the true invariant J*

* &J.(l) = sz.(z)

J = J + + e




We now ask: is the action variable of the drawn-up penduluu also merely the
first term in an infinite series giving an exact invariant — and is the

omission of higher order terms the reason why it is only approximately conserved?
The answer is, y®s. But it is not quite so simple,

Yes, there indeed exists such a series, giving (if it converges) an exact
invariant J* , which is what people nowadays usually mean by adiabatic
invariant (however, some stick with the old definition and there also exists

a third definition, all of which causes occasional confusion).

Furthermore, it turns out that the first correction term J'u) is, to
the lowest approximation, a purely oscillating quantity with zero average. If

one averages over the oscillation one therefore gets

> - 0 . e

Since J" is a constant, this shows that J is conserved, on the average ,

to order 82 , with the consequences that have alreaay been described.

But this is not the entire story, because this is not the same kind of
perturbaticn as one finds in celestial mechanics. In celestial mechanics, say
we have a planet circling the sun and perturbed by vupiter. Then 8\0) represents
the energy of its motion around the sun while the correction term E,Hu')
represents the influence of Jupiter. Since the attraction of Jupiter may be

a thousand times smaller than that of the sun, at all times , the total energy

H is always close to g\0/ . We say that the perturbation is small.
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For the pendulum, the perturbation is not smalls if the string is
shortened by one half, the energy changes considerably. In this case, the
perturbation is not contained in suall terms added to H but in an explicit

time dependence of H , and this dependence must be"glow" , that is

2°

E(aqpt) = o(elwT])

(the perdod T 4s inoluded here to make the dimensionality correct)

It would take me tco long to describe how such adiabatic perturbations
are treated. Let me juast state that a theoxry can be developed for then(:mthat
exactly parallels the theory for small perturbations. The slow dependence, by
the way, may be on the time t or also on some of the canonical p-s and gq=-s ,
but I won't elaborate on this., The end result is that J is indeed the first

term of a series for an exact invariant J" , just as in celestial mechanics.

During the 1930-s, classical adiabatic invariance was regarded as little
more than in interes<ing problem of historic interest. But then it suddenly

reappeared from quite a different direction.

In the 40-5 a Swedish scientist by the name of Hannes Alfven -~ you may
recall that he shared the Nobel Prize last year -—— got interested in the motion
of charged particles in a magnetic field. His main interest was in the motion
of particles causing the polar aurora, which is a subject that comes quite

naturally to someone living in Sweaen, where auroras are often seen.
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Alfven found that particles of low energy tended to follow magnetic field
lines while spiralling around them. You can easily prove that this happens
if the magnetic field is constant in direction and magnitude: the momentum
component p, orthogonal to field lines has a constant maemitude and
rotates at a consgze ,80 that the particle spirals zround its guiaing field
line along a helix of circular cross section. The radius of this helix, the
so-called gyration radius f , gets smaller and smaller as the particle's

energy decreases.

If the field is slightly inhomogeneous -~ field lines curve or converge
slightly -- the magnitude of p, is no longer constant. Alfven however
showed that the gquantity

M = pf/ B
(with B the field intensity) is an approximate constant of the motion. He

called it (or rather, a quantity proportional to it) the zagnetic moment

of the particle, since if you replace the particle circling the field by a
small wiro&’(ogarrying the same amount of current, M is proportional to the

nagnetic moment of this loop.

At first Alfveén did not apparently realize that he was dealing with an
adiabatic invariant: in his book "Cosmical Electrodynamics" that appeared in
1950, the term is never mentioned(:{)l don't know who first realized the connection:
the earliest reference I know of is the 1951 English edition of "The Classical
Theory of Fields" by Landau and L:lfahitz(,s,uhene this is given, of all things,

as an excercise for the student!




Briefly, what happens is the following. The slightly inhomogeneous magnetic
field, with field lines slowly converging or curving, may be regarded as a
perturbed version of the homogeneous field, where the particle gyrates around
field lines with strict periodicity, while sliding along them with constant
velocity. In a homogeneous field these two motions may be separated, and one
finds the Hamiltonian for the gyration to be very much like that of a harmonic
oscillator, leading to an adiabatic invariant that turns out to be proportio-
nsl to bk . The perturbed motion is termed guiding center motion and has

been the subject of wmuch research.

If all the forces are magnetic, the energy E is conserved, for magnetic
forces are always orthogonal to the velocity and can do no work. The total
momentum p is then also conserved. Because a component of a vector cannot

exceed the magnitude of the vector itself, we get an inequality

2
2
i L -’-’-B—
B
or
B & pP/M = B

That is, if M d1is conserved there exists for each particle a maximum

field intensity B_ (we abbreviate the subscript!) bevond which it cannot

penetrate. If in its wmotion along a field line the particle approaches fields
. its advance
exceeding Bm | is slowed down and finally stopped and reflected back at

the point where B equals Bm o

Consicer now a radiation-belt particle in the earth's magnetic field. To
a ~ood approximation this field resembles the field of a dipole, with field

lines arching out, from one hemisphere to the other :
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On any dipole field line the field intensity is highest near the surface
of the earth and weakest in the equatorial region, where the distance from
the earth is greatest. A particle of suitable M can be trapped on such a
field line, bouncing back and forth between regions of higher field intensity,

as illustrated here.

)
It was the plasma physicist Marshall Rosenbluth who first raalizoé? in

the early 50-s , that since this motion is periodic, it too ought to have an

adiabatic invariant associated with it, namely

J = d

Here Py is the momentum component parallel to the fiela and the
integration is along the guiding field line over one entire "bounce period".
Usually J is called the second invariant or the longitudonal invariant, and

in a moment we will see that it is indeed a most useful concept.




==
There exists yet another periodicity and to see its cause, let us pick

an orbit that stays fairly close to the equator and observe it from above

-- say, {from the north pole :

\
\ :

Drift

Weaker field

As said before, the particle spirals around field lines, which are perpen-
dicular to the picture. Since the field is stronger closer to the earth,
the inner portion of the orbit will curve a little more tightly than the
outer part (the drawing greatly exaggerates this effect). The net result,
as you can see, will be a so-called drift motion sideways, ultimately

carrying the orbit all the way around the earth.

If the field is axisymmetrical, the drift motion is axisymmetrical too.
In actual fact the earth's field is only approximately symmetrical and has
appreciable non-dipole components. If a particle then starts from a given
field line in this field, it becomes a real problem to determine onto which

of the adjacent field lines it latches on next.
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The answer, however, is easily guessed if one kanows about adiabatic
invariants: the particle moves to that field line on which the value of J ,
for a particle that is rellecied al ilhe same field intensity Bm y remains
unchanged. The answer is in general unique and it explains, perhaps, why
NASA spends a great deal of computer time on numerical integrations along

peomagnetic field lines,

Now the drift motion ultimately carries the particle all the way around
the earth, so you get a third periodicity and — you puessed it — a third
invariant, That's its usual name -- "the third invariant" -- it was introduced
by Northrop and Teller in 1960g2nd is quite useful for handling time-dependent

field perturbations, but I do not have the time to describe the details,

To give vou some quantitative feeling for this motion, let me add that
a typical 1 Mev electron about 5000 Km. from the earth --
— gyrates around its guiding field line about a million times each second

- makes about 10 back-and-forth bounces per second, and

— takes over half an hour to drift once around the earth
during which time it actually covers about 500,000,000 Km.., since a 1 Mev
electron is rather relativistic. On July 9th, 1962, the U.S5S. Air Force
exploded a hydrogen bomb over the Pacific, crsating an intense belt of
trapped electrons. Three minutes later = radio observatory in Feru detected
svnchrotron raadiation from this belé?)peaking about 6 minutes af'ter the explo-
sion, and this agrees fairly well with the calculated drift times of such

particles.




I may add that this artificial belt required over 5 years to decay, during
which time some of its particles must have covered several light years., This
is a rather surprising amount of stability for a motion described by the first
term of a series that may or may not converge. I would like to devote the
rest of my talk to these questions of stability and convergence, but let me
first warn you that some of what I am going to say may be more speculation

than fact,

To make things simple, let us concentrate on the magnetic moment N .

As was said earlier, M is the first term of a series

- on o+ exd) o 240

By now, the first-order correction 3\1) has been derived and the second

one is xnown for some special kinds of field, though I am not aware of anyone
needins these corrections for a practical purpose. One may ask what £ repre-
sents here. In the present case, the slow dependence is on location, not on
time |though slow dependence on time could also be adued), so we require that
the scale length over which the field varies is much larger than the

syration radius .P -~ «n fipures

8, /2x, & B/ (any i, 3,

M

This is called Alfven's criterion. One might extract an § of sorts from this,

put it would take me *co long to discuss the full implications.

liow suppose that the series does converge. It may then be expected to

have & certain —— quite finite -- radius of convergence in &£ . If so, as one
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increases £ -- say, by increasing the energy of the particle, which makes §
grow —— at a certain point the series besins diverging and suddenly everything
breaks down. Ev.n the f*rst term M then is no longer an approximation to

a constant of the motion. This is called breakdown of adiabatic invariance :
it has been observed (if this is the word) in computer simulations of particle

(8)(9)
motion, and it indeed happens rather suddenly.,

Next we consider a different point. I have promised to tell you about
the 3rd definition of adiabatic invariance, and here perhaps is a good place
to do so. Consider again a case of slow time dependence -— such as our
pendulum -- with invariant
J = J + EJu) . 62 J( ) =

Suppose that the system starts from one unperturbed state, the pertur-
bation begins swmoothly, it carries the system to a different state, switches
of{ smoothly and finally leaves the system uudisturbed in its new state.

(] (i) (1)
Then by the definition of Chandmekhar.bemm:' Littlevood. etc. an adiabatic

invariant of order n is a guantity undergoing only variations of order en

in such a transition.

At {irst glance it seems that J does not change at all. In the initial
state there is no time dependence, so £ is zero and J = J* . The same
holds true for the final state and since J" stays constant all the time,

J must have the same value before and after .,

Nevertheless Lenard et al. did not claim that J was conserved, but

instead they called it "adiabatically invariant to all orders." There still




exists some confusion about this phrase, especially with people who have a
ditferent definition of adiabatic invariance in mind, but the main implication
appears to be that these scientists did not believe that their series converged.

In fact, they called it an asymptotic series. To understand the reason for

this lack of faith, we must once more turn back to celestial mechanics,

Newton solved the gravitational motion of two bodies, but the motion of
three or more bodies — say, of the sun and two planets perturbing each other —
turned out to be quite a different preposition. One cun try to solve it by a
series of expansion in ¢ , similar to the series described earlier, and in fact
the rirst few terms of such expansions give quite usable results. However,
try as they would, the astronomers who derived such series could not prove

their convergence, or even that the quantities which they represented remained

bounded .

A great deal of work ana frustration was spent on this topic during the
19th century and King Oscar the 2nd of Sweden even offered a prize to whcever
came up with a solution. The prize went in 1859 to Poincaré who proved that

the series did uot converge.

The proof, briefly, is as follows (vou can find it in wWhittaker's text on
mechani(t‘::). It may be shown that there exist initial conditions under which
the expansion breaks down, due to vanithing denominators in some higher terms.
Furthermore, there are infinitely many such cases, in a way that requires them
to have a point of accumulation. Poincare showed that under these conditions

the expanded function cannot be analytic.




Now even if a series does not converge the quantity which it represents
way remain bounded. Let us tuke an example closer to our subject -- a particle
trapped in a dipole field. If then the series for M" does not converge,
this does not mean that the point at which the particle gets turned back
wanders without restriction -- so that sooner or later it wanders into the
atmosphere and the particle rets absorbed, as some people have suggested,
It may well be that the excursions of this point are limited -~ except perhaps

for some singulsr orbits == in which case one says that the motion is stable.

A preat deal of high-powered math has fone into this problem and I am
glad to report that Jirgen iioser of the Courant Institute at the University
of lew York proved certain types of 3~body motions to be stable, for which
the U.S. National Academy of Sciences awarded him the James Craiz Watson liedal
in April 1969 ., I am also glad to report that only last year Martin Braun, a
student of lloser, proved the stability of charged particle motion in a dipole
fieldq‘gnd also in a magnetic mirror configuration, if you know what that
means, Thus if the radiation belt comes down, it won't be due to a deterioration

of adiabatic invariance.

et me now speculate a bit: it could actually be that the series does
converge, in wany cases of adiabatic invariance. Poincare's example —— two
planets around the sun -- has two independent frequencies, namely those of
each planet's motion considered separately, and any time you have two different
frequencies in a system, you may get a resonance, at least in some higher
harmonics. [his need not necessarily happen with the drawn-up pendulum, or with

its mathematical idealization, the slowly perturbed harmonic oscillator.
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One possible avenue to explore in this connection is a remarkable result

(15)
found by Ralph Lewis of Los Alamos several years ago. He showed that for the

perturbed harmonic oscillator, with the Hamiltonian

B = (1/2n) [p2 + 52 u(t) q2]
the quantity
2 2
1 = 12%2 + {gp -n':—tg- Q}

is a constant of the motion, provided § satisfies the equation
it + =12 = o

It may be shown that I equals the adiabatic invariant in this case. The
equation may be solved by series expansion, and this seems to be the fastest
route yet for deriving the adiabatic invariant of the perturbed harmonic osci-
llator to high orders. There exists however another advantage, which may be
more importar*: with this approach, one may dispense altogether with the series
expansion. Instead, one now looks at existence theorems for solutions of .? ’
and with suitable choices of W it may be that these solutions can be extended
to arbitrarily large values of t , in which case the invariant I exists for
all times. Professor Keith Symon of the University of Wisconsin at Madison is
working on this approach and on extending lLewis' method to more general cases,

and I wish him success.

In conclusion, we have ended up where we started —— with the drawn-up pendu-
lum and with an intriguing problem that is not completely solved. The nice thing
about phvsics, even old-style classical physics, is that you never seem to run

out of intriguing problems.
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