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_ A Yraining set (TS) of document records with assigned utilities and e
utllity threshold defini ng document relevance are provided by & user. The
TS is nDrocessed to give Boolegn combinatlons of index terms for searching
a document file. A lineer utility prediction function (LUPF) is fitted to
the T9 documents using selechbed index terms., The LUPE is thresholded and
the resulting pseudo-Boolean inequality is solved, giving term couwbinations
for yetrieving relevant documents. Algorithme are presented end testiné

- is discussed. '
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DESIGN OF A DOCUMENT RETRIEVAL SYSTEM USING PATTERF RECOGNITION

AND MATHEMATTCAL PROGRAMMING TECHWIQUES

Steven R. Borbash, Jr., Ph.D.

University of Pittsburgh, 1970

A pattern recognitign (PR} model of the docuﬁégt retriey;l
process is introduced. Thié.mode1~%rocesses a training sét (18) of
documents to derive file searching instructions. A file of indexed
documents and a suvbsystem to implement search instructions is assumed
to be available. Documents are represented as binary vectors of index
terms., Two mutually exclusive categories of documents exist, A {rele-
vant) or B knon—relevant). Each document in the TS is assigned a
utility w on an arbitrary scale by a user. A1l documents in the TS
with u > t {a user specified threshold) are relevant.

The system 'learns' from the TS to predict document utility as
a linear function of the index terms and hence to recognize relevant

documents. The TS is processed by feature extraction followed by es-

timation of parameters in the linear ubtility predictibn function



{IUPF). Feature extraction discards all but those 'index‘ terms judged
‘best' using an information theoretic estimate. The LUPT parameters
are those which give a 'best! approximation (in the L, norm sense) to
The utilities of the TS documents as a function of thé extracted index
verms. This approximation problem is solved as a linesr programming
problem.

After the LUFF has been estimated, relevant documents can be
identified by applying the IUPF and the threshold 1 sequentially to
zll document vectors in the file. ?his is a 'weighted term' search.
Equivalent Boolean search instructions (called'a Boolean retrieval
strategy or BRS) can be derived by solving the linear pseudo-Bcolean
inequality (IPBI) formed by the LUPF and the threshold. The solution
“to this LPBi-is a groub of index term combinations (soluticn femilies).
- 411 documents héving index term coﬁbinatipns which mabch any one of
the solution families will be relevant. ‘Eacﬂ solutionlfamily may be
. regarded as é“matching templame‘-for c¢lassifying pattern vectors.
This‘anélytical der%vation of the BRS shows the relation between
'Weigﬂfed term' and 'Boolean' sesrches. Other methods of ERS con-
struction are subjective. An algorithm is given for solving the IFBI
which explores a binary tree using’a branch and exelude technigue.

The PR model was tested on the NASA document file using a de-
signed factorial experiment. Human analysts and the PR system both

produced BRS's from the same training sebs. The effectiveness of



searches done with these BRS's were compared. Humen analysts were

approximately twice as effective as the automatic PR system. The

ansalysts supplement their TS's with extra information not avail-

able to the PR system. BSuggestions for improving the PR system

are offered.
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1.0 INTRODUCTION

1.1 Sumnmary
1.1l Objective

This dissertation presents details of the design and tesbing
of a document retrieval system (DRS) using the NASA Scientific and
Technical Information System(l’g’B’h)*. The analytical model used for
the DRS_treats the system as a pattern recognizer. The objective of
the systém is to asutomatically develop a set of Boolean file searching
instructions from s sample of relevant and non-relevant documents.

A,goﬁputerized file of document numbers and and assoclated in-
dex terms is asssumed to be awailaﬁle! The syctem presented here re-~
ceives as input a sample set of documents from this file, Each of the
documehts in the set has-beén assigned a personal utility by a user.
In addition to the sample set, The user has specified a utility thres-
hold 7, vhich defines two categories, relevant and.not relevant.

The system output is a set of searching insbtructions for re-
trieving all other documents from the file which ére predicted to be
relevant, based on the examples provided in the sample set. The
searching instructions are presented ss Boolean combinations of index

terms which are collectively known as a Boolean retrieval strategy

(BRS). The system is shown on the next page.

*Parenthetical references placed superior to the line of text
refer to the bibliography.



sample set from file ———zml system” ey, Tile searching
instructions

1.12 Motivation

A DRS which functions as dééc?ibed above provides a new method
for s user to interact with a computerized file. This method elimi~
ngtes some pressing practicsel problems. In addition, it provides a
new analyticsl Tramework Cfor studying the retrieval process.

There are practical problems associated with the present method
of communication between the humen user and the computerized file. 'The

NASA system currently accepts file searching instructions in the form

of & subjecti%ely derived BRS submitted by a user. All documents which
mstch this subjective BRS are then retrieved for the user.

To form a BRS the user first selects a small subset of index

-~

terms. Next the user specifies Beolean coibinations of these terms
whick he feels are meaningful. As an aid to index term selection and

combination, the user nay consult a thesaurus snd/or consider index

term usage statistics. The subjective determination of a BRS in this
wanner is very dlfficult end Tabtiguing, and results are often unsat-’
isfactory. New methods are needed which ﬁeipithe vser select and

combine terms. .

The DRS presented here provides this type of aid to a user. A

-

training or example set of documents is presented to the system. The

DRS ettempts to ‘learn' how to discrimiﬁaxe between relevant and



non-relevant Gocuments by using this set. Thus the IRS becomes an in-
tellectual tool of the user and acts as his 'agent' to derive a BRS.
fhis system allogs the useﬁ Lo concentrate hig efforts on meking value
Jjudgments of documeuds in the training set. It relieves him of the
combinatorial problems of BRS formation.

Analytically, the model used here éllows pattern recognition
and mathenatical programming technigues developed for pattern recog-
nition systéms to be applied directly to the document retrieval prob-
lem. In addition to supplying numerical technigues, the model sug-

gests many extensions for further study.
1.13 Relationshin to the Work of Others

The DRS model devel?ped here Tills an important gavp in ths

literature. This resulis ffom.concentrating only on deriving the BRS
I ——u= H
i »

from the training set. Both automatic index term extraction and the

techniques of carrying out search requests have been excluded from
consideration here, A file of indexed documents is assumed to exist,
along with a system for carrying out search instructions.

In other DRS's, aubtomatic index term extraction from full

-

Englieh text has occupied o large portion of the analytical ef-

(5,6)

fort 5till other researchers have been conrcerned wainly with

the file structure and/or the mechahics of carrying out search re-—
(7,8)

quests . Generally a specified set of search instructions is

regarded as the inpul or query to their systems,
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In the system here, the BRS is developed analytically from the
training set by first deriving a set of index term weights and then
rdeveloping the BRS from these. thers have used weighted term systems
to carry out file searches. The index term weights are quite often
assigned subjectively(ngO) and occasionally by analytical
methods(llflz). The analybtical method used here to derive term
weights is new, and depends upon user-assigned document uviilibies.
< Ar inportant new result here is that the BRS is simpiy en al-
ternate way to express veighted térm search instruections. Thus, given
any set of index term weights and a threshold, it is possible to de-
rive an equivalent BRS usging algorithms presented here. Others have
attempied o specify.index term weilghts which would simulabe a given
- subjective-ﬁhs(l3flé). This is the inverse of the approach taken

here.
1.14 Methods Used

A vtility prediction funetion for decuments is construvcted
fro% the training set. This ubility function is used, togesther with
the user-specified threshold < +to retrieve documents from the file
wiich are predicted Lo be relevant.

In the conbext of pabttern recognition systems, the threshold

vbility prediction function is a decigion function. Bach document in

the system is represented as z vector x of index terms which is then
assigned to cne of two mutually exclusive categories, ‘relevant' or

‘non-relevanot' by applying the decision function [L(x) - Tl.



The training set is submitted by the user. REach document in
this set is assighed a uwiility on a pre-determined scale. Both rel-
evant and non-relevant documents are represented. Feature extraction
(dimensionality feduction) is first performed on training set wvectors
to reduce their dimensions., A subsget of index terms is selecﬁed'using
an information theoretic measure. This measure gives an estimate of
how well individunal index terms discriminate between relevant and non-
relevant docﬁments in the training set.

Next a linear decision function is estimated using the reduced
(in size) training set vectors. (For this application, £(x) is a

linear wbility prediction function (LUPF).} Parameters in this linear

model are estimated from the training set using the L, norm criterion
of best approximation. This estimation problem is set up as a linear
program and solved using the simplex algorithm.

Pinally, by applying‘the LUPF to documents not in the training:
set, it is possible o identify aii the documents in the file which
are predicted to be relevant.

This identification can be done in two ways. By evaluating

f(E) for each x and comparing this to the threshold =1, each x

may be classified individually. This method is appropriate for

searching a sequentially structured file (SSF). An alternate method

is to solve the linear pseudo-Boolean inequality (LPBI), f(x) > 1, for

its solution families. Tﬁis gives Boolean combinations of index terms
which are the analytically derived BRS. The BRS form of the LUPF is

necessary for scerching an inversely structured file (Isi).




The BRS derived above is a set of matching templates which can

‘be placed over a pattern vector X to categorize it. ZEach template
: !

corresponds to a-solution family of the LPBI. Solution families to
the LPBI are obtained using a branch-and-exclude binary tree search

algorithm. -Fig., 1-1 shows & block diagram of the system.

1.15 Testing and Results

Training sets were prepared for several test questions. Using
these training sets, BRS's were written both autgmatically by the sys-
tem and by a group of experienced NASA system users. A portion of the
NASA file was searched using each of the BRS's.

Relevant documents had been identified beforehand and a meas-
ure of effectiveness was dej%lobed for each search which used this
fact, ‘ !

Test results showad.%hat the machine-derived BRS's were only

agbout half as effective as the subjective user-derived BRS's. Differ-

encesg appéar to be largely attributable to the use (by humans) of

supplenmentary information not contained in the traifing set.

1.16 Conclusions

It is concluded that the phttern recognition model of document
retrieval employed here is very useful for deriving an ahalytical BRS.

Hovever, more work is needed to increase the practical effectiveness of

the automatic system, pavticulerly in the area of feature extraction.



FIGURE 1-1
BLOCK DIAGRAM'OF A DOCUMENT RETRIEVAL SYSTEM USING PATTERN RECOGNITION TECHNIGUES
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1.2 Structure and Assumptions of the Model

The analytical assumptions made to model the process are

listed and discussed below.
1.21 Document Representation and File Structure

A file of indexed documents is agssumed to exist. ZEach decu-
ment dk,_k=l,2,.°,,D in the file is represented as a binary wvector
x = (xik)’ i=1,2,...,9, of index terms., chosen from a master list

having § terms. If index term i 1s assigned as & characteristic

to dgéument dk’ then Xy = 1. Otherwise xik = 0. For example, in
the NASA system, Q@ = 13,000; D = 500,000 and about eleven Xq = 1

for each k.
The entire file mey be conveniently picbured as a binary..

docunent~term.matrix having @ rows and D columns. ZFach row index

corresponds to an index term Ti, ﬁhere all terms are arranged in some
standard order (such as alphébetibally) and each column index k cor-
responds to a document number nk,_where all document numbers sre aiso
srranged in .some standard order (such as chronologically). Because
the matrix is very sparse, it is comvenient to represent it in a mcre
compact form. There are two ways Lo readlly do this by collapsing
either the matrix columns or rows.

To collapse the matrixz columns, répresent each column {docu-

ment) vector %, as alist L

 Of row indices Ly = (Ekl,... %)

? kPk

having Pk members. Here Q,k are row indices corresponding to
d o



X,

ik = 1. The list Lk simply identifies the index terms used with a

given document. TFor example, with the NWASA system there would he sbout

SO0,000 lists having an aveiage of 1l members esch. A data structure
can now be defined havirg a master list of documen® numbers 0y
k=1,2,...,D vhere each o has amr associated sub-list Lk of index

term numbers. This data structure will be defined as a sequentially

structiured file (SSF).

Alternately, it is possible to collapse the matrix rows. Fach
rov can be represented as a list Ci of column indices having A,

e C, = (c,qaevesty where ¢,. are fnai s
membars . (Gll’ ‘e 1Ai), i colum indices corre

sponding to X5 = 1, This list identifies the documents associated

with the index fterm Ei' The corresponding datea structure has a
master list of index, terms, with each term having an associated sub-
list of document numbers. This data structure is defined as ‘an in-

versely structured f£ile (ISF):

Observe that to locate in.aﬁ SSF all 4 with f(sz > 1
it is necessary to examine every.list L, , form f(zk) from this list
and then mske g decision.

With an ISF, searching is done only with specified Boolean
combinations of index terms {the BRS). Appropriate set operations on

the lists Ci associabed with the terms Ti will give a resultsnt

set of document numbers. Since usually only a small subset of all Ti
are specified in the BRS, the search of an ISF is more economical than
"the search of an SSF. The conversion of the condition f(Ek) > T to

an equivelent BRS allows the more economical ISF search Lo be
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substituted for the SSF search. Given a file, it is easy to convert it
frem an ISF to an 8SSF or vice versa. We will represenf a file of ilndex

terms and docusent numbers in either Torm as F(X’Ti’nk)’
1.22 TFundamental Assumptions

1.221 File Existence. A file F(X,Ti,n ) of indexed documents

k

d, »k=1l,...,D exists. The nk,k=1,2,[..,D are document numbers,

while the Ti,i=l,2,...,9 are index terms.

1.222 Document Utility. Bach documend dk represented in the file -
has a personal uwiility . to a given user abt a given time. The ubil-
ities w, can be measured on an arbitrary scale.

1.223 Document Relevance. A threshold T (dependent cn the chosen

utility scale) can be specified by a user to define velevant and non-
relevant documents. wkiﬁ$% is relevant).

1.22hk System Objective, The objeéfive of the gystem is to provide a

iist from the file F of document numbers 0, corresponding to all

’

relevant dk‘-

1.225 Source of Information for Utility Prediction.  The utilivy u

‘of any document dk mzy be adegquately predicted as some funetion of
X vhere X is the column vector of X assoclated with document -
dk’ iL.e., uk = f(ggk). This asgsumption disaliows the use of information

which is not associated with the document characteristics in the file.-

1.226 Dimensionality Reduction. For the purposes of any given user,

all but a smali subset of all index terms may be neglected without a
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significant loss of informastion, This allows the vectors §k to b=
s xeduced in dimension.

1.227 Idinear Utility Function. A predicbion of document wtility &
n

is adequately given by

n
ﬁk=f(gcﬁ)=3 *Z\:x g

Jk"3 "

1.228 Tstimation of Parameters in the Linear Utility Function. Ths

parameters Bj,j=Q,l,...,n in the linear ubility function may be
adequately estimated from examples in a training set of m documents
where m > n. -

1.3 Limitations

Assumptions 1.221 tﬁroug@ 1.225 are rather general. Assump-~

L _.": -

- - ,-i"‘ il
© tion 1.225 implies that the quality ofiindexing is adequate for the

ST e Rt

group of users who will retrieve from the Tile.

Assumption 1.226 is quité restrictive since it assumes that
all but & small set of index terms may be discarded without a signif-
icantly degrading system performance. This of course is always done
by users who form a BRS with only a few (from 3 to 15) index terms
-selected subjectively from the master list. This same assumption is
also made frequently in pattern recognition systems design, where it

is termed 'pre~processing' or ‘feature extraction', It is also
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numerically necessary to reduce the size of the vectors X before
continuing with the estimation problem of assumptions 1.22T7 and 1.228.
‘ Assumption 1.227 agssumes & linear ubility function for con~
‘venience iﬂ estimating the parameters. This is a fairiy restric-
tive assumption.

Assumption 1.228 implies that the sample adequately represents
users initerests over the entire file. The number of documents m in
the training.set must be greater than or equal to the parameters Bj
vhich are estimated. This relastes t6 assumpbion 1.226, since the

final reduced dimension of the- training set vectors fixes the maximum

number of parameters which may be estimated.

1.4 Organization of this Dissgertation

This dissertation i§ presented in nine chspters, which des-
cribe system design and tests performed on the NASA file.

l Chapter 2 describes a simple pattern recognition system, bub
not in the context of document retrieval., An example problem ilius-
trates system operation. Example patteras are classified using both
the iinear decision function ard the matching templates which are de-
ri%ed frem it, by solving a pseudo-Boolean inequali%y.

Chapter 3 relates the system of chapter 2 to a similar system
for the document retrieval problem. Document utility is defined and
measured on an arbitrary scale. A user specified threshold is intro-

duced on this utility scale to define relevance. The deecision funection

can now be interpreted as a utility prediction function. The matchin



templates for classifying patterns are shown to be identical in form
and use to the subjective BES.

Chaptex h’develops %he information theoretic measure for ex-
tracting best index terms as an extension of decision theory when

utilitvies for action-outcome pairs are not known. This information

LY

thecretic measure has been used in other recognition systems for ex-

(15) (16-)‘=

and Mgitz
(17)

The interpretation here is different and follows Watanabe more

tracting pattern features. See, for example, Lewis

closely.
Chapter 5 illustrates the determination of index term welghts

by using spproximation theory. The L. norm problem is formulated

(18,19))

1

as a linear programming problem (see Barrodale . Bxamples &re

- i

given illustrating siternate opiimal solwbions. Special properties
of the solution are noted.
Chapter 6 presents the theory of pseudo-Boolean inequalities

as developed by Hammer and Rudeanu(20521,222

. A composite algorithm
is presented here vhich solves a pseudo-Boolean ineguality by a
branch~and~exclude technique carried out in the context of a binary
tree search., The basic branch-and-exclude technique is that deveioped
by Hammer and Rudeanu. TFo implemeng this technique, a binary tree

23 . R - .
traversal( ) subalgorithm is introjuced which controls aad sequences

the tree sgearch. The composite algorithm is called the Tree Pruningl

1This name was used by E.V. Kozdrowicki(eT) to deseribe a gen-
eral process of branching and excluding in operations with tree struc-
tures., Becauge of the accurate description which it also conveys about
‘+he operations of solving z pseundo-Boolean inequality, it is used.again
here.
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Algorithm (TPA). An exsmple problem is éolved and computational exper—
ience with the TPA is discussed.

Chapter 7 descrives system testing which is carried out by
using a 23 factorial design. The main Tsctor tested was the &iffer-
ence in the effeétiveness of searches performed using ZRS's subjec-

_tively derived by =snelysts and BRS's analytically deri%ed by the |

methods of chapter 3. Three nmeasures of effectiveness were used to

evaluate search effectiveness. The more traditional measures of recall

B
5

(2k,25)

and precision were both used . In addition an information theo-

(26)

retic measure suggested by Meetham was used. Other factors

tested were those of traininé set size and the number of extracted
features.

Chaéter 8 discusses results of the testing, and presents an-—
cillary data felt to be of interest: Searches done usipg subjective
BRS's were significantly moTe effective than those performed using the

" analytically derived BRS's.  The &ifferehce is largely attributable to
a significant difference in precision of subjective and machine
searches. This difference in precision seems related to the humsz: use

z

of information not contained in the training set. The extra informa-

tion allows human analysts to avoid using index terms which have a high
frequency of occcurrence, even thougﬂ they are excellent discriminators
over the training set. )

Chapter 9 suggests improvements and exvensions of some of the

concepts which appear useful. The generality of the pattern recogni-

tion model is apparent frowm the number of possible extensions.
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Appendix A provides an example of the processing of a typical
document training set to prcduce a BRS. Programs were written in
Fortran IV for the IEM T094/T0kY Direct Couple System. -

It is concluded that the pattern recognition m&del presents
& very convenient analytical framework to use for document retrieval
system analysis and design. Resolution of signiflicant differences
between automatic systems and human beings appears to be within the °

realm of possibility if more sophisticated automatic systems are de-

signed.,

1.5 Contributions

[

The contributions of this dissertation are felt to he in three

areasi models . methods . and data.
1.51 Models

Modeling the derivation of the BRS as a pattern recognition
problem is felt to be significant because it allows rigorous analytical
methods developed by others (information theory, zpproxiaesiior theory,
linear progfamming) to be applied directly to the document retrieval -
problem. This is an application of existing teehnolégy to a nev area.

The conversion of a linegr decision function to eguivalent
matching templates by solving an associated LPBI is a new application
of pseudo-Boolean programming to patbtern recognition systems.

. The analogy bebween the BRY of document retrieval systems and

the matching vemplates of pattern recognition systems makes this new



16

%emplate—geﬁeraiion technigue immediately applicable to document re-~

trieval systems ubilizing inversely structured files {ISF!'s).

1.52 Methods

.

s

Generation of matching templates by solwing an IPBI for its
solubicn Ffamilies is made practical by development of an algorithm
To carry out the reqguired compu£aiions quié?ly and efficiently. INo
claim is made here to the general method of LPBI solubtion via branch-
snd-exclude operations in a binary tree. This ié due to Hammer and
Rudeanu, The contribubtion here 1s the adaptation of a sub-algorithm

to efficiently organize and 'seguence the branch-and-exelude operations.

1.53 Data

~

Testing of the-model and methods on the KASA document retrieval
system has given new data on?which-to plan fubture system'modifications'
and retrieval experiments.

- In addition, a limited amoumt of data is alsc aveilable on-
operation -of the TPA (tree pruning algorithm), Tor solution of the LPBI.

This dete should provide a basis for comperison of the present TPA

with future modified versions as they are developed.
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2.0 PATPERN RECOGNITION SYSTHENMS

This chspter introduces and briefly describes a pattern recog-

nition system of the type which will be applied to thé document re-

trieval problem.

-

The general concepts of feature extraction, decision function
formation and template matching operations are introduced and dis-
cussed. One simple example is used throughout the chapter to illus-

trate these concepts.,

2,1 TIntroduction

Paﬁtern recognition systems are concerned with the automatice
classification of patterns (represented as vectors) into two or more
:mutually,exclusive c;tegories. A training set of pre-classified pat-
terns is assumed available to "train'! the recognition system. After
"training', patterns of unknown classification are presented to the
recogﬁition system. If the training set was 'typleal' in some éense,
then the recognition system shouwld ;lassify the unknown patterns
'regsonably well'.

The simplest pattern recogﬁition system is one vhich works
with binary pattern vectors x = (xl’XQ""Xh) where xis{O,l}, and
classifies all patterns into one of two categories. This is the type
of system 4o be congidered ﬁere. For general references to the subject

(28) (29) or

of pattern recognition, see for instance Nilsson

7. 1o (30}

, Nagy
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2.2 Pre-Processing

Training of =z recognition system can be consldersd in two
parts. The first part concerns representsticn of pictures or other

(31)

patterns as vectors, and will be called pre-processing . The sec-
ond part estimates parameters of a decision function from vectors in

the training set.
2,21 Representation of the Pattern as a Vector

Figure 2-1A 1llustrates a group cf 5 simple patberns. A
recognition system iz desired which will distinguish betwgen binary
patterns repfesenting pictures of the lettevrs A and B. Lét these pat-
terns become the training set, which contains two 'pictures' of the
letter A.a;d thrée of the letter B.- The grids of the pilectbures shown
are 4 x k., 1If ﬁe agree to order the rectanguler sub-elements of the
pictures from lé?t to right and from top £o bottom, then we can repre-
sent each picture of Fig; 2-1A as ;,binary vector X, as shown in
Fig. 2-1B, where x._ = 1 if any element of the a ‘picture of 2or B

ik

lies within %he ith rectangle and Xy = 0 otherwise.

2.22 Fesature Extraction

The next step in designing an autcematic récognition syastem is
usually to reduce the dimension.of the pattern %ectors by discarding
veetor elements vhich are "non-informative'. This operation is also
knovn as 'featuwre extraction’. +t is a very imporbtant portion of the '

pre-processing operation. Heuristically we can see that vector



| FIGURE 2-1

EXAMPLE SHOWING PATTERNS REPRESENTED AS VECTORS AND

ILLUSTRATING TFEATURE EXTRACTION

A. Training Set of Patterns Pk,k=1,2,...,5
1. 2, 3. . 4, 5.
o 1] : : £
A4 -+ R ~ %7
£ 7 Ny ST &l

B. Pattern Vectiors Ek:k=l’2:-~-r5
i X % X X X
1 0 0 0 0 4]
2 1 1 0 0 c
3. L 0 0 / 1 Q0
f:.. 0 0 0 k 0 0
5 0 i 0 0 C
6 1 1 1 1 10 Orxdering of
7 1 0 1 1 1 Grid Peints
8 0 0 0 4] 1 il 21354
9 0 i 0 0 0 - .
0 1 1 1] 1o Bl I
11 .1 0 1 1 1 glig (11412
12 0 0 0 0 1
i
130 ol o} o | o} o 13114115 (18
14 0 0 0 0 0
15 0 0 0 ] G
16 0 0 0 C GJ
C. Feature Vectors z ,k=1,2,...,5
K
1 1 0 0 1 0 z, . =%
2 0 1 0 0 0] zié = xii% k=1,2,...,5
3 0 0 0 0 : “3 = *us
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elements l,h and 13-16 contain no informatioa at all, since they are
always zerc, regardless of whether the pattern is an A or a B. Vector
éiement 2 is a perfect classifier of the patterns in the training set,
since Xy = 1 when k1,2 (letter A) and ko = 0 for k=3,4,5
(letter B). Vector elements 3,5 aﬁﬁ 6-12 give some information about
-he correct classification of the vectors even though tﬁey are not
perfect predictors.

The nobion of informetion content over the training set can be
formalized by using the concept of entropy from information theory.
This will be done later. 'Assume for illustrative purposes that all
vector elements except 3,5 and 8 have been discarded. Then elements
3,5 and 8 represent 'features' which have been extracted by the in-

formation screening process., The resulting 5 three-dimensional feature

-

N - -r'n — =
ZyaecesZg are shovn in Fig. 2-1C. Note that B T %30

vectors

CBen = X and Zag = X g for kf%,.,j,S.
2.3 Decision Tunction Specification

The second major step in the machine training process is ?o
specify a decision function. This Tunchtion is given as y = £(z). It
maps the feature veectors z of patterns of unknown classification into
the dependent variable y on the real line.

The form of the function f£(z} is specified while the para-
meters of f(g) are estimated from the training set.

The decision function £(z) is used as follows. Assume a

pattern vector x of unknown classification is to be put into category
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A or B. Firsv, vector x 1is reduced to vector z by extracciag
the festures selected as being 'informative' over the training set.
Thern f{z) =¥ is computed and if ¥ > 1 (a given threshcld), then

the vector z (or x) is assigned to category A. If § < 1, then z

is asgsigned to category B.
2.31 Selecting the Form of Decision Function

There are two methods generally used to select the form of
£(z). If the vectors z are from a known multivariate probability
gistribution p{z)}, then the form of f(z) may be derived from the
form of this .distribution. The parameters of p{z)} vhich eppear in
£(z)} will be estimated from the training set. This is known as para-
metric decision function formation.

. The other method used to speeily f£{z) is known as nonpara—
metric decision function formatior;. Here the form of f£{z) is chosen
as a matter of convenienc':e, andg. the parameters are estimated from the

training set samples. Nonparamefric methods sre used exclusively for

the applications to be considered here.
A very convenient feorm for the decision function and the ope to

be considered here is the linear function
j41
v (z) 8, 5%
. ] )

—~ < B, <« ®

z.e{0,1}
J .
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The Bj are the fezture weights, while the zj are binary elements of

the feature vector 3. !
|

2.32 Estimating the Parameters of the Decision Function

-

The parameters Bj are estimated by an approxiﬁation process
from the samples in the training set. If the tréining set 1s large
and typical of the universe of unknown patterns to be classified, then
good. results should be expected when ? = L(g) is vsed to classify un-
knowe patterns,

2.321 The Assocliated Approximation Problem. Theve is comsiderable

freedom in choosing a method of estimating the Bj. Nearly all1

methods involve the choice of é.best approximation to the £, based

Ca

on the vraining set. "This tjpe of prceblem haog Deen studied exbengively
|
]

by mathematicians, to whom it is known as the discrete linear approx-

(32,33)_

imation problem Consider %he'following relationships for a

training set of n pattern vectors having m < n elements each:

yi = EE: szij + ri % i=1.2,....03 Zio = 1

jril
3:

0
ar
Y= I8 L

Here vy is an (nxl) vector of known binary variables obtained from the

training set: vy = +1 .if pattern 1 Tbelongs to category A and
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¥, = -1 othervise. g = (sj) ig an (m x 1)} vector of unknowmn para-
meters (feature weights). 7 = (Zij) is a Mmati:‘ix (n x m) of
binary variables obtained from the tralning set. Rows of Z are the
training set feature vectors 3z. The unkdown vector of residusls

(n x 1) is'dencted by r = (ri).

The problem is lo estimate §. Ca]..l this estimate D (note
tha‘t 8 can never be known exactly as long as the training set is
only a sample of the universe of all patterns z). Note that ¥ = Zb
is an estimate of y based on the estimate b of $. Then T =3 -
Zh =y - ¥

2.322 Choosing the Criterion of Best Approximation. By a best esti-

mate b of B we shall mean the vector b vhich ninimizes the

length (norm) ||r]| of the vector r. There are many ways of spec-

ifying a.norm. An entiré class of norms is given by the Lp (L sub

p) norms defined below:(S,% .35) .
n 1/p
L (r) = Z r. |P = 1=l
@ =Y Iyl Izl
i=1 .
o L2
When p = 2, Lp(;'_) = L e and we get the familiar least squares
3
n L]
problem. When p = 1, we have Ll(;_'__‘) = 5_ |ri| , and in the limit as
im1

p + = we have Lm(g) = max |r1 | This is also known as the Chebyshev,
i i

uniform or max norm. The approximation problem can now be vritten as
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follows. Find 3, such that

b= min ||zf]) = min ||y - 2all .
oy Py P

AlY practical applications of discrete approximation theory
known fo the author use either the Ll’ L2 or L  norms {cr some
variation of them), since these three Tormulations have solution al-
gorithms Whicﬁ are reasoneble to implement on a computer. Most appli-

cations utilize the 1, norm. The solution for b is given then by

2
(36)

the fawiliar least squares normal equations

)™z

- -_b_= (ZIZ ZIX.-

Both the Ll and L norm problems can be cast as linear programming

(LP) problems, which are readily solvable by the simplex algorithm or
(37,38,39)

one of its variations

The popularity of the Ié norm is due largely to the following

items:

(a) familiarity of the method, and of Uthe solution algorithms;

€ L.

(b) statistical applications of least sguare estimstors when

(L0),

the ¥, e&re normally distributed snd

—

{c¢) uniqueness of the solution vector b.

Least sguares estimation'has the disadvantage that the n x m

matrix % wmust have all m coiuwms linearly independent to insure

that (%'%Z) will be nonsingular.
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The L, and L estimators of B have the following charae-

1
teristics:
' |
(a) ease of solution when formulated as IP problems;

r———rai

(b) the n xm mabrix Z is znobt required to have all mu

-

columns linearly independent to guarantee a-solution;
(c) the Ll and I& estimaﬁors can bé bebtter estimstors of
8 than IE ‘when the r; are not normally distributed(hl);

(d) Ll and ym estimztors are not necéssarily'qniqué; Thé °

same minimal value of L(E) can be attained Tor more than one solution

(b2)

veeior b .

The overall differences in estimates of B8 Dbased on L15 L2

and L norms can be negligible. Choice of a norm for-applied prob-

i
Tn the application to ‘document retrieval systems to be pre-

sented in chapter 3, the Ll' formulation will be utilized for the

following two reasons:

(a) the columas of 2 caanot be guaramteed independent so

that further checking would be required iT the L2 norm were used.

(p) the L, problem is very rapidly and éfficiently solved
in the linear programming (LP) formulationm.

L3

2,33 Current Methods of Forming Decision Functions
A preat nunber of patiern recognition decisicn functions are

linear, Several techniques for estimating the paremeters are based

on methods which are variations of the Ll or Lm norm. See for
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(43) (bk)

example Smith or Grinold

(k5)

See for instance Y.C. Ho . TFor another formulation less recogniz-

{16) (47)

gble as an approximation problem, see Mangasarin'

. Least squares methods are also used.

or Taylor
2.34 in Example Problem Illustrating Decision Punction Determination

In the example used to illustrate feature extraction, features

3,5 and 8 were arbitrarily chosen, and the feature vectors 51...355

were formed. Theze vectors now represent the training set, instead of

the vecbors 51"'°’~5'

Figure 2-2A shows the model ¥y = 2B + r’ for this example,.
The least squares criterion is used to derive a solution b as shown

in Fig. 2~2B. The least squares solution is used for this example

problem oniy. A1l subsegunent probléms will use the L, norm criver—

jon. The residual vector for the least squares solubtion is shown in

Fig. 2-20C-.
;
In Fig. 2-2A the n =5 rows of the matrix Z are the n

Zyae e oZs which coénstitute the training set for the '

problem. Each vector 2y is augmented by adding wity in the first

feature vectors

positicn.

The columms of the matrix 2 (excluding the first column)
correspond to the 0/1 'features' which were extracted from the orig-
inal training set vectors x. The first column is a vector of all
1's which is inclﬁded to allow a constant term in the decision func-

tion.
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FIGURE 2-2

EXAMPLE SHOWING LINEAR DECISION FUNCTTON PARAMETER ESTIMATION

A, TLinear Model Bstimation

3] 1
+1 1
-1 = 1
-1 1
_-1, _l

B. Least Squares (minimal

y =28 tx
1 0 o] 8, r
60 1 0 Bl r,
0 0 O B, + T,
1 0 0 LB3_ rh
0 0 1] 75|

Le(z)) Solution for b, the Estimator of B

-lli
b = min||y - 28], = (2'2) 'L =
B
yo= -1+ 1z, + 2&2 + 0z
T=20

H

L]

[zl

<>

i

- C. Residual Vector for Least Sguares Estimator

1| | o] 1]
+1 11
= |1] - lal = |o
2 0 -1
-1 <1 ] | o]
YTFT = /2
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The vector y of dependent variables consists of the elements

y. =+1 or -1 where ¥ +1 is used for patterns of letter 4 in

1

e

i

the training set and ¥, = 1 is used for patterus of letter B.

The problem is gpecified completely when 1 is chosen. The
threshold <t is used for making dééisions after £ 1is estimated.
This threshold is somewhat arbitrarily specified as the midpoint O be-
tween ¥y = +1  and ¥y = -1 if § > 7 =0 for some unclassified
pattern, then we agree to decide that this pattern z represents the
letter A gnd if ; < 7, then g represents B. -

Fig. 2-2B shows the least squares solution b = (-1,1,2,0).

Here the feature 23 has been assigned a weight zero (b, = 0).

3

The results of applying the model.to the training set as a pre-
dictor are given in ?ig. 2~2é, thch compares y and §. Here the two
A patterns are correctiy classified, [bubt one of the B patterns (pattern
4) is misclassified or rejecééd since §h = 0. The lipear relation-
ships ﬁ:= ZE: is thus not completely adeéuate to correctly classify
21l the documents in the training set.

Thené is Information lost at two points. " First, the feature
extraction process throws away information by discarding potentially
important feabtures. Secondly, the approximate linear decision funetion
may introduce errcrs. Perhaps a better decision function would be non-
linear. Or perhaps the training set should be larger.

The faect that any pattérn recognition system will make errors

must be accepted; although it must be trained to - have a minimal (cften

zero) error for the sample patterns. The emphasis is on picking a
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reasonable gystem design and then adjusting it so that its recognition

erreor rate is acceptable for the application at hand.
2.35 Rela&icnship of the Decision Function to Curve-Fitting Proeblems

The standard curve—fittingior regression model is given
.~ (h8 ) )
by( 18,49)

y=38+x

and 'is identical to the decision function model. The difference is
entirely in interpretaiién. In crdinary function fitting applicaticng
the dependent varisbles y are tﬁe yield of some process. In the
-pattern regognition preblem, the y. are fixed at *l, to %ndicate t}o‘
different categories.

One way of reéolving the apparent difference between the two

is to regard the y; as the differences between two probabilities
v; = p(a/z) - p(B/z) .

Then since p{A/z) = 1 and p(B/z) = 0 or vice versa for all trsining

patterns in categories A or B, it follows that
(p{a/z) - p(B/z))el{-1,+1}.

If we agree to assign patterns to category A when f >t =0

we see that;-
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¥y = p{a/z) ~ p(B/z) > 7 =0

== p(a/2) > p(B/z) =2 g%—gﬁ_—} > 1.

Thus by assigning p;tterns to category A when § > 1 =0 we are making
a reason;ble decision based on estimated probabilities. This explana~
tion of the decision function can be calied the 'potential function”
interpretamion(so).

The independent veriables zij in the problem are binary. In
the statistical literature linear least sguares models of this type are

(51)

referred to as "experimental design models".
2.4 Template Matching Operations

2.4 Introduction

Once the decision function is determined, the category of any
wnclassified pattern x may be estimated by first converting x to 3z
m.—
then by forming ¥ = bo + Z;ubjzj and comparing this with the thves-
1
hold zero,
There is an alternative to computing v and comparing it to a
threshold. This is the formation of groups of one or more templates

which compare specified combinations of binary features in the original

pattern vectors x, or in the leature vecltors z.

y
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2.42 The Pseudo-Boolean Inequality

AN

\

R The mathematical moﬁivation behind thls comes from the theory

of pseudo~Boolean inequalities (binery variables and real coefficients).

Wote that: - :

N

. n
r > T b‘ + b.z. > T
V2 or=3b zz: 533 2
- j:l .

- n
:@Z bz 2 (t-1.) 4
=1

)

which is a pseudo-Boolean inequaliiy:

Binary vectérs. g__a&e ﬁapped_onto the real line via the real
coefficients bj' All‘binarj vectors z, which satisfy the inequality
are solution vectors. Each golutipn vector represents a binary patterﬁ
zvector % which belongs to category A. ‘The soluéion vectors 2z can
be grouped and placed into cne or more solution families. BFach solu-
tion Vector’belongs to one and only one family.

The families specify a fixed configuration of eifher 0 or 1l
for some of the variables in the vector, and a free configuration for
others.

To illustrate how solution vectors may be grouped into families,

congider some hypothetical inequelity with six solution vectors 2z =

(z

1’22’23’Zh) and two solution families.



F (2) = {1,0,-,0) == /(1,0,1,0)
(l)o )030)
Folzd = (-,1,1,-) ==> {(1,1,1,0)
(1,1,1.1)
(0,1,1,0)
{0,1,1,1)

. All 6 solution vectors lie in either family Fl(g ) or family

1

FE(E)' F (z) is a compact representation of 2 solution vectors while

FQ( z) represents 4 solution vectors. Another way of writing the

s - + F‘ == _ - -
FTamilies is _1(5) 7,223 Fy(z) Zp70

Families of solutions may be regarded as matchiné templates

for the patterns 2z = (21’22"""-21})' For example, F_(z) requires

2

the simultaneous presence of a 1 in components 2 and 3 of the

'vector 2z ._ All vectors 2z with a 1 in both components 2 and 3
will match the template FE(_Z_ V. Sir;lila,rly all vectors.with a I in
position 1 and O's in both positions 2 and b will match the tem-
plate F, (z).

In this example all solubion vecbors belong to either family
Fl(_z_) or FE(_@_). ‘Also, all solution vectors z satisfy the

thresholded linear decision function given by

It follows that all pattern vectors z which match either template
Fl(g._) or Fe(g_) belong to category A (y > 1) and all patterns which

fail to mateh either template belong to cabtegory B {y < 7).

32
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It is convenient to define the characteristic fum1 == - d

of & pseudo-Boolean inequeliiy as a matching cperation om 5oz o -

of all solution families (templates) Fy{z), k=1,2,..., M.
8(z) = U[P(z)]
k

¢(g) is a Boolean function which takes on the value of 1 whsr i

pattern vector 2z matches cne of the M templates and tzz==

H
o
1y
£

value 0 when a match does =mot oceur.

Tt follows that

$(z)
¢(z)

1= z belongs to category A ;

it

0==> 2z belongs to category B .

Observe that the scluvbion of the pseudo-Boolean ineguz_l7TF

dorived from the thresholded decision function involves no 2rpzro#—

imation process. No information is lost. The matching terpliazes

LoL

for makiné‘binary decisions aboué the classification of patierrs

are merely an alternate form of implementing the decision functioa.
lustead of ;dding Weigh?s for vecktor elements which are presenti erd
compering the sum to a threshold, we look instead fox the pressnce
of configurations of points. If one of the configurations is -
served, we automatically agsign %he pattepn to category A. For sone
recognition systems this métching of configuratﬁcns is a more cf-
fective method of identifying patterns. Families of solutions 1o a
linear pseudo-Boolean ineguality may be.found by a branch-and-

exolude binary tree search algorithm.

.



2.43 An Example of Classification by Template Matching

S

. ! . . . . .
The exemple problem considered previously in this section has

an eassociated pseudo-Boolean inequality

("' 51) g',

g™

g -
p
1

_Z_) = i(l,O) 7

The family FE(E_) has only one solution veclor and is said to be

degenerate. The characteristic function of the unequality is

6(z) = (3,) U (2,7,) «

Applying the Fl(g) =z, T g template to ecach of the 5

petterns in the training set (see Fig. 2-1A) gives a mateh for

pattern 2, The F_(z)

5 = ZiEE = xéﬁs template gives a matech for

patterns 1 and B, Thus patterns 1, 2 and 4 satisfy the character-

istic function (¢{z) = 1)} and are predicted to belong to category

A,

Pattern % is still incorrectly classified (see Fig. 2-2C).

=



2.5 Summary

35

This chapter has introduced and illustrated fhe principles in-

volved in the design of a recognition system of the type to be used
for the document retrieval problem, This is the two~category system
/gsing binary pattern vecitors and a non-parsmetric linedr decision
function.
The steps involved in the design are:
(a) representation of patterns as vectors, and choice of
a training set;
(b) feature extraction to redﬁce the pattern vector dimensions;
(e) specification of a linear decision function and estimation
of the paraﬁéters in this linear function. Parameters are estimated
Trom the training set with a discreve linear approximsbion modsl,

and -
\(d) construction of templates from the decisién function, using
the pseudo-Boélean inequality. This gives an alternate (to the

lineaxr decision function) method of categorizing new patterns.



3,0 MODELING THE DOCUWNT RETFRIEVAL PROCESS AS

A PATTERN PEOGNITION SYSTEM

This chapter first descriiss a document retrieval system
(DRS). - Next an associated patters recogaition system is defined.
The op=rations of'characterizing thg patterns, feature extraction,
and decision function specificaticon are related to the DRS. Thg
implementation of the decision fusction fﬁ retrieve relevant docu-
ments from a file is presented irn detail. Computer methods are

briefly described.

3.1 The Document Retrieval System
3.11 Genera;

The system to-be deseribed here is quite general. In facso .,
it is idenbical to the NASA document retrieval sysiem(sé’sh}‘ Thisg
is a large system which has been in operation since 1862, ° Approxi-
mately 500,000 documents (technicgl reports and articles) are ac-
ecessible through the system. A master list of ahout 13,009 index
ternmg is uséd to.index éach document , with an average of about 11
‘index terms per document. A varieiy of services are available to
users of this system. Compuber searcﬁés are performed in both a

batch prccessing{S))

(56)

and 2 time-shared mode using remote

terminals
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3.12 Representatvion of Documents in the File

Y

1Y
]

Each document aequireh by the retrieval system is assigned
both a unique identific&;ion number and a set of index terms {index
set) which are chosen from a master list., These index terms nay in
fact be phrases or word groupings which.are deemed to ha&e meaning
"o the ﬁsers of the system.

Ml aéquired documents sre placed in a library, vhile their
identification numbers and index terms form a wnit record which is

placed in & compubter file.
3.13 Specification of File Search Instruections

The file is searched ?0 identify documents which have speci-
fied combinations of terms in thelr index sets. These index term

combinations are specified by the system users as intersections,

-

“wnions and negations of index terms“ The entire get of matching
instructicns is sometimes referred to as a Boolean retrieval strategy
(BRS). A typical BRS is shown below:

{(heat fransker + thermodynamic properties + thermal properties)
¥ (gases + gas fiow)) -~ (fluid flow + fluid properties).

The symbol (+) is used for wmion {cr), {¥) i= used for inter—

secticn (and), while {-} represents negation {but not). Parentheses
are used vhere needed to avcid ambiguity. The-BRS is specified

subjectively by each user.




3.14 Batisfying User Needs

The computerized search system applies the BRS to the file
and produces a list of document numbers.

Documents on fhis iist ma@ch the BRS and may be recovered
from the library. After looking at the actual documents (or &b-
stracts of them) the user may elect to revise the BRS and search
the file again. This can lead to an-iterative typs of search.

- The user may elect to have an agent (called am information
analyst) compose a BRS for him and screen the cited documents, re-
jecting those which do not (in the agent's opinion) mateh the user's
interests. This practice relieves the user of the need to become
familiar with operational details of the system, or with index
term usege. A ﬁisadvgntage ig thet the agent mey misinterpret the
user's interests. _

Recent trends in fhg NASA DRS hgme been to introduce time-
sharing facilities which permit direct user interaction with the

file, and eliminate the need for an information analyst.

3,15 Problem Areas

There are numercus problem areas which can be associated
with DRS's. Some of these are:
(a) poor search effectiveness;
(b) lack of a standard measure of search éffectiveness;
(c) ‘'communication' difficulties between a humsn user and a

computerized file;

38



(d) inadequate indexing; and

.(e) lack of comprehensive analyticel models for the above areas.

R The slleviation of problem (c) above is the géal‘of this dis-
sertation. A comprehensive analybical model is develofed for the
user-file communication process. The communicaticn of tﬁe user with
the file heré refers to the formulation of search instructicns by
the user to specify how the file will be searched. Tt is assumed
that an indeged file of documents exists, and also that a.software
system exists which will implement search instructions.

The present technique of subjectively selecting and com-
bining index terms to form a BRS is very difficult. This diffi-
culty is dve to the large number of index terms, the extremely
large number of ways to combine these terms and differences in

_word use between individuals {indexers and users). 'Each ERS which
is subjectively formed rgquifes solution of a difficult combinateorial
problem. .

The sgbjectively formed'BRS now functioﬁé as the inoput to
a file searching system. In the model introdﬁced below, a BRS is
provided asjan ggé_prodﬁct. The user inputs informabtion in the form
of .an example set of document numbers, with each document in the ex-
ample set assigned a utility. In addi%ion, each document is also
assigned to ome of two categoriés, relevant and non-relevant. This

evaluated exsmple set is all that is required of the user. The ERS

formulation proceeds automabically using this information. HNone of

the difficult combinatorial problems remain for the user.
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The model used to automatically produce a BRS from an example
set cf documents is nearly identical with the pattern recognition sys-
I

tem described in chapter 2. . Details of model development are given

below.
3.16 A Model of the Retrieval Process

Consider a file of indexed doeumenté. Assume Tirst that each
document &, in.the file ﬁas a utility uz.J {or measure of usefulness)
to & given user at a given time. The ubkility of any given document can
be determined by the user, and assigned a numerical value on some ar-
bitfary scale (say 1 to 10). These are reasonable agsumptions repeab-

(57)

edly used in cpersbions research studies. BSee for example Fishburn

or Hadley(ss). ’ /

Next assume that, dependent on the scale which is used to meas-
ure document utility that a threshold 7T can be specifiéd by the user™

which divides all documents in the file into two classes. Those docu-~

ments dk with w > 1 are defined as being relevant. Those with

e < T are not relevant. The goal of the retrieval system is to re-

A
trieve all relevant documents snd not retrieve any others.

3.2 In Asscclated Pattern Recognition Systen
3.21 Characterization of Doeuﬁents as Pattern Vectors

Fach document can be represented as a binary vector x .
. . =K

The elements O X, are Hyyd ImLs25aasfl; where 2 is ‘the -number of



index ferms in the master 1list (sbout 13,000 for the NASA system). Fach
xkj =1 1if ipdex term J is used to index document k and 0 other-

wise. On the average, only sbout 11 of the ij will ‘be nonzero.
3.22 Definition of Two Categories .

Each document dk is either relsvant or nonrelevant depending
on w@ether its wbility w 2T Oor uw < T These constitute the two
mutually exclusive categories to which each document belongs. The
‘ function of the system will ‘be to recognize velevant documents, or-to
assign documents to category A or B based on properties of the assoe-
iated pattern vector . .

Each user defines his own categories (relevant or not) depend-

on

[

ing is personal utility for documents in the file. A training set
is formed which reéresents a sampling of the perscnal utility function-
of an individual user. Thus, each user has an individual pabttern

recognition system at his disposal.
3.23 The Configuration of the System

The patterh recognition system designed to recognlze relevant
documents has the general configuration discussed below. (See also
Fig. 1-1.)

3.231 Training. Set Formation.. The training set is composed of .docu-~

ments which have been.selected by the user as being typlcally relevant
or non-relevant. An estimate of the utility . of egeh document in

the training set is provided by the user. Documents in the training
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set have been located via a manual search by the user, from a previous
search, or from references provided by others., If the search is done
iteratively, the trdining set grows and only the initial training set

need bhe selected manually.

3.232 Fegture Exbraction. All.index .terms.in the training set are

ranked using an,information”theoreéic measure of gooduness. This meas-
ure is the number of bits of information which each index term individ-
ually provides sbout the category of documents.in the training set.
Details are given in chapter L. A11 index terms except a specified
number with the highest.information measure are discarded. The re-
tained index terms are the 'extracted features'.

3.233 Decision.Function Formation. The pattern recognition system

" of this chapter attempts to classify documents as relevant or not based
ori their predicted utiiities. The categories -are not absolutes, butb
are defined withqreference-t;.an arbitrary utility scale.

The system of chapter 2 Was‘slightly differentAin'character‘
Categories A.and.B there were sbsolute. Parameters.in the decision
function of chapter.2 were estimated by solving an approximation prob-

lem where the cbserved dependent variables y; were dichotomous and

could be regarded as the difference between two.probeabilities. The

goal of "the approximation problgm'was to 'best' epproximate yi =
p(Aa/z) -~ p(B/z). The.threshold was 1 =.0.

The decision function of the présent cﬁapter is also set up as
an approximation problem, bub the objective is to gpproximate the user

assigned utilities of documents in-the training set. The observed
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dependent variables ¥, are no longer dichotomous and the threshold is
now set by the user insteaﬁ of being Tixed abt zero.

‘ . Another wey of deséribing the differeqces in the decision fune-
tions is to consider the approximetion model y = X8 + r. In chapter 2,
the observed variebles y, are reéarded as being fixed and non-randon,

while'the matrix X dis considered as a random varigble. In this case

variations in the residual vector r are caused entirely by variations

in X,

In the system.of this chapter, the.obseéved ¥ are regarded
as random_variables.and the matrix X is fixed. .3ere the y; ave
weility estimatés which. are' corrupted by 'noise’. Variation in the

regidual vector r is caused.entirely- by.variation.in the observed

variables y.. . l

3 - ¢

It ‘can be seen that regardléss of whethexr the-matrix X or the

-

vector y is taken to be the source.of.wvarisbility,.that the model

L -

remains the same. In.either case a reasonable estimate of B is one.

—~

which minimizes the length.of the residual vector . When the vectoxr
¥y is regarded as fixed, the decision function is oftén referred Lo as
a discriminant function, and when the matrix X is fixed the decision
function can be called an interpolation or regressionm function. The
relation between spproximation theory models anéd the pattern yecogni-
tion process has been discussed by P.A.V. Hal (59).

The pattern recogniti;n model used for document retrieval pur-

poses here employs a linear decision function vhich is-actually a re-

gression function for predicking document utility as & function of
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'extracted’ index terms...The training set document. utility estimates
"are regarded as noisy measurements. To emphasize this, the decision

function of this model will be referred to hereafter as an LUPF (lineax

ubility prediction function).

For reasons of-convenience; the Eggé_configura@ion uses an in-

’ygéger wbility scale where yie{lga,...,Q} and . T is .specified by the

user. When y, = 1, the document has no utility teo the user and when
v f 9, the document is most useful. The example problem presented

later in this chapter.uses.sa binary utility scale where yie{+l,~l}e

i

When y; = 1. the document is relevant and when y¥ = =1 +the document

is non-relevant. In this case the threshold +=0...Note that when this
.binary utility scale is used,.that the ILUPF here becomes identical to

the' decision function of chapter é._

3.3 Implementing.the .Decision Funection

3.31 Direct Method

Recall from section 2.h that when s pattern vector X of
unknown classification is to be assigned to either category A or B,
there are two eguivalent methods of making the.decision by using the
index terms in the decision function (the extracted features) which are
common to the pattern vector §kj‘

The direct .method simply adds up the. 'weights'. of features in

the vector 2 and comparesd the sum to the threghold, after which the
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vector x 1s put into the indicated.category, i.e.,

rn

Z"bjzj 2 (t -D)

J=1

implies that the.pattern vector x .is assigned to.cabegory A.
For the.document. recognition system, the index.term weights are
summed and. compared to the wkility threshoid 1, after which the docu—

ment vector x is classified.
3.32 TIndirect Method

The indirect method.derives. matching templates.by thresholding
the decision functi?n to form a linear pseudo—-Boolean inequality (TPBI}.
This inequality is solved -for its families of solutions. Details are
presented in chapter 6. Bach solution family becomes a matching tem-

‘plate. If -one of these templates matches the vector. Xx, then x is
assigned to category. A. Otherwiée, % belongs to category B.
For the document recognition.system,-ﬁhe mabtching templates

correspond to combinations of index terms. Observe that. the matching

templates are eguivalent in form.and function to the user's subjec-

tively specified BRS.

Thus, by considering document retrieval as a pattern recog-

nition process..vwe analytically.derive 2 BRS as a wnion of matching

templates. This is an important result which allows the previously
subjective BRS formation to be modeled as a feature extraction and de-

cision operaiion.
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To furthef‘illustrate this connection, .congider the example BRS
intro@uced in section 3.13. !Figure 3~-1 shows how this subjective BRS
can be written as a union of!solution families to some (unknown) pseudo-
Boolean ineguality (not. necessarily linear, of course). Fig. 3-1A
shows %he.original BRS. -.Fig..3-1B shows the reduction of the BRS to a

union of solution famiiies. Fig. 3-1C shows the sclution families in

tabular form.

The solution families.which result from.reducing a subjectively
determined BRS to the form of Fig. 3-1C are not necessarily mutually
exclusive. For.example, any documents containing the combinaiion of

index terms given by '

Tos (TJ:,TE,T3,T‘§_,T5',T6,TT.) = (1,0,0,1,1,0,0)
- I

~

|
is covered by.both solution families' F,(I) and F,(L) shown in Fig.

. 3-1C. The solution families.of an analytically determined BRS are

mrtually exclusive. This is important because no search effort is
wasted by retrieving.the .same document with two different solution “fam—

ilies. ‘

3.33 Relation of Decision Function Implementation to Retrieval Systen

File Structure

There are two basic methods .of organizing computer ‘files com-
posed of index term ~ document number records. The Tirst method is to
have ‘the document numbers arvanged in a sequential master list in mem-

ory. Associated with,.each document number in.this master list is a



FIGURE 3-1

"EQUIVALENCE OF A SUBJECTIVE BRS TO A UNION OF SOLUTION_FAMILIES

A. Bubjective BRS
(( T1+T2+T3)*(T4+T5)) - (T6+T7)
WHERE: T,= heat transfer
T.,= thermodynamic properties
= thermal properties
= gases
= gag flow
= fluid flow

T,= fluid properties

B. Reduction of the Subjective BRS +to a union of Solubion Famiiles

((T1+T2+T3)*(T4+T5)) - (T6+T?>

((Tl*T4)+(Tl*T5}+(TZ*T4)+(TZ*T5)+{TE*? )+(T3*T5)) - (T6+T?)

4
= KT ®T *T *T RT ST
(Tl T4‘T6hT7)+...+(T3 TSfTG T7)
= (T1T4T6-?) U (TITSTGT%) U(T2T£T6T7) u (T2$5T6T?)U(T3T4T6T7)U(T3T5T6T7)

_ E?l@:]i U [FZ @] o E_:B (_q;)] U [Fé(_'!.’;}] U[F§ (z)] U Eﬁ'e@)]

C. Solution Families in Tabular Form

Ty T, T3 T, 5 T 1
RN K
F2 1i~-{-1~-1t1i01]0
A e R R L
r,o | -li|-]-11]0j0
e -lolo
7, bl -11felo
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.5UDlist containing the index terms which bslong to the document. This
" type of organization results in a sequentially structured file (SSF).
(Somgtimes this type of file is called a linear file.j

To-implement the decision function on an S8F, the master 1ist
of document Burhers iz exsmined séquentially. The sublist of index
ierms sssoclated with. each docunment nugber is scanned to determine if
auy of the *feature terms! are pressnt. If so, their.%eights are
summed and the. result.compared to the threshold.. .All relevant docu-
ments in-the file cén be identified by repeating this. operation for
each doeument number.in the master.listo-_itqis.also.possible to see if
index term combinsations in.each. document sublist metch those sfecified
by each template in the ERS. Thus for an SSF the relevant documenis
can Lo resognized by:summing the term welghts directiy, or by using the
template matching technique with a BRS.

The major disadvantage of an. SSF. is .that all records in the
file must be individuwally inspected to identify a very small subset of
relevant documents. The cost of searching an SSF increases propor-
ticnally with the numwber of Adocument records it contains.

To reduce the unit cost of identifying relevﬁnt documents in a
file, the file can be organirzed in a different maﬁner. Here the master
iist is composed of the individual index terms in some order. Each in-
dex term in the master list hes an assoclated sublist of document num-
be_ars° Each doccument numbered in the suvblist is indexed with the teym
in the nmaster list, This type of file can be called an inversely

structured file (ISF).
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To implement the decision function.on an ISF the mabtching tem—
plates of the BRS are necessary. Index term weights cannot be applied.
The individual BES.templameé are matched by set intersection operations
on all index teyms corresponding.to fixed indices in the solution Tam~
ilies.. The set operations are performed only on the sets of document
nurbers which are associated wi;h.inde# terms which. are ‘fesgtures’.
Thegse feature sets are a.small fraction of the total file. Thus the
mit coste of recognizing patterns (relevant documents) are lower in an
ISP than in an SSF. However,.the increased scarch efficiency is off-
set in part by the exira costs incurred by organlzing the ISF. (The
natural ordering is the SSF.)

-3.3h  Example Showing System Ppefation

Tigures 32 and_3e3.i;;ustraté how the decision function is de-
:rived and hov the documenty predicted to be. relevant. are identified
‘using both a direct weighted. term approach.and. the. BRS éemplates.

' Figure 3-2A shows the matrix model which might arige from the
selection of five indsx. terms as features. The training set contains
eight documents.with ¥; = +1 for relevant documents and 7 = -]
for nonrelevant documents. The.relevénce threshold 1 for this model
is takeﬁ to be zero. The best approximate golution (in the Ll sense)
is shcwn in Fig. 3-2B. This also shows the residual vector r with
L, (z) = Z |z, | = 3.

Figure 3-2C shows the decision function, dr‘linear utility pre-~

dgiction equation (LUPF), When this function is thresholded (using
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=0} a linear pseudo—Booleén ineguality (LPBIL) results which has six
ksolution'families as showmn.

- Figure 3-3 shows all 32 possible combinations.of the five index
terms which were extracted as features. The predicted utility of gach
combination is shown as it would be determined by a direct summing of
“Fhe index term weights. This -approach might be taken %ith an 35F.

The groups of combinations with § =0 which are specified by
the solution families (templates) of the BRS are identified for cémr

parison. This approach to identifying relevant documents would be

vaken with an ISF.



TICURE 3-2
SAMPLE PROBLEM ILLUSTRATING DERIVATION OF THE DECISION FUNCTION AND BRS

A, Mabtrix Model Arising from Training Set of Documents

L=1IB+x

- - i - .S
-1 101 0 112 B, r
-1 1000 11 8, r
-1 J1 1110 1 B, Ty
-1l _ |t 0 0 1 0 1 N N
+1 1001 11 By, rg
+1 111110 B re
-1 10011 1 - xo
+1 1100 1 1 Tq
S - o S

B. Best Approximate Ly Solublon b and Residuel Vector x

oo - . .- -
bo ry 0]
|
bl 1 r2 1
b2 ~1 I'3 0 8
b3 Tl} 0 s
2oyl 23R |s] 7 | 2| sm@ =2 =3
b -1 . 0 =1
|75 Tg
r.T ~1
‘r8 0

C. LUPF, LPBI AND BRS

(=3

LUPE: =T1—T2+Th-'l‘5

T U o= - S, -
LPBI: n > T 0=§>11 '1324TLl 153_0

BRS:|F (1) = (1,0,-,-,-){
Fo(2) = (1,1.~,1,-)
F3([J_.‘_) = (1,1,-,0,0)

Fll-(?‘} = (0 gOs“al:"‘)

=i
—
=
—
1]

(O;O:“":p 90)

b
[}
I

= (0,1,~,1,0)




| FIGURE 3-3

1

PREDICTED UTILITIES FOR COMBINATIONS COF INDEX TERMS

Conmbination Index term Predicted
nunber configuration utility = 4
| T, T, ‘1‘3 T) ‘I‘5
1 I 1 1 1 1 0
2 1. 1L 1 1 o© lj Fz
3 11 1L 0 1 -1
b 1 1 1 o0 o 033 Ty
5 1 1 0-1 1 0
6 i 1 o 1 0 1j . T2
7 1 1 0 0 1 ~1
8 I 1.0 0 O 0 Ty
9 I o 1 1 1 1™
10 1L ¢ 1 1L o0 1
11 1.0 1.0 1 0 )
12 12 of1 o of 2| F  Solution
R - . fomilias
13 i ©¢‘'C 1 1 i nE
14 1 0 0 1 {0 2
15 1 o0 0 o0 1 0
16 1 0 0 0 0 1.
i o 1 I 1 1 }--1 :
18 0 1 1 1 0} 03 T¥g
19 0 1 1 o0 121 -2
20 60 1 1 0o 0 -1
21 ¢ 1 0o 1 1 -1
22 c 1 0°1 0, 03 Tg
' 23 0 1 0 0 1 -2
2k 0 1 o0 0 o -1
25 0 0o 1 1 1 0 .
26 0 0 1 1 © 14 " Tk
27 0 0 1 o 1 -1
28 0O 0 1 90 0 03 Fg
29 0 0 0 1 1 0-
30 c 0 0 1 0 1.4 4
3t o 0 0 0 1 -1
32 c 0 0 0 90 03 F
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L.0o AW INFORMATION THEORETIC MEASURE FOR RANKING

AND SELECTING INDEX TERMS

4,1 Tntroduction

An inforﬁation theoretic measure of goodness is'developed for
ranking index terms found in a training set of documents. Fach index
term is regarded independently as a potential ‘experiment' which can
be used to predict the relevance of documents in the training set.

For example, knoﬁing ﬁhaz there are 20 releveant and 30 ﬁon—
relevant documents in & training éet, but lacking any other informa-
tion, a decision maker if presented with a document selected at random
from the training set, would assume that the probability of the docu-—
ment being relevant (ﬁefore he examines it) is 0.40, Suppose now
that before inspecting the dbcumegt and making his decision aboub rel-~
evance, the user is shown one index term asséciated witlhh the document.
If he knows thal this term occurred with 20 of the trainlng sel docu~
ments and ?hat 15 of these 20 were £elevant, then the user would be
Justified in concluding that the probability of the documenlt being rel-
evani is 0.75.

¥nowledge that the particular index term was present has pro-’
vided informetion (or resolwed uncertainty) sbout the classification
of the document. In Tact it will provide {on the average =md for this
exgmple using tﬁe sbove data) 0.18 bits cf information each time it is
found With a document. The development -0f 'thisvquentitetive mess~ -

ure of inférma%ion-(divorced from economic considerations) will bs
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presented here. This measure is uséd to select the best index térms,
i.e., those terws which individually.provide the most information

about. document relevance.™ . -

2

4.2 ‘The Decision Theory Model

(60)

A simple decision theory model is shovm below (see Hadley )

(61)

or Fishburn For a more thorough discussion).

p(xl) p(xz) p(xn)

xl X2 ' PR }:n

% M1 Y2 Coe Y10
85 Uy Yoo T Yoy
ar url ur2 e . “rn

.

There are n ‘'states of nature' or possible outcomes zj,
3=1,2,...,8N which are relevant to the decision maker's problem. The
prdbability.distribution p(X) = {p(Xi),...,p(Xﬁ)} ovér these states
of nature is assumed known to the decision maker. A'random experiment
is performed which determines wh%ch state of nature ,xj actually holds.
The results of this experimént are not available to the decision maker.

The decision maker has a set of r possible actions a; 5
i=1,2,...,r which he can take. One and only one of the actions a;

-

mst be selected.
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After the action has been gelected by the decision maker, the
. true state of nature Xj is revealed to him. He will then receive the
revard ‘uij’ which may be ﬁegative‘ (uij is = ubility, which includes
monetary as well as more subjective revards.)

The decision problem is solved when the decision maker chooses
an action. The besgt actlon &, is one which maximizes the expected

ubility; i.e. -

i<r

gy = ma E v PO
j

4,21 Decision Problems with Experimentation

A natural extension of the decisicn theory model discussed

I
above is to allow the decision makelr Lo perform an auxiliary experiment

(62)

before picking an action . Recall that the state of nature Xj has

already been determined, but the results are unkﬁown to him. This ex~-
periment can be considered to be an attempt to gain more information
about the true state of nature.

Define Y = {yl,yg,...,ys} as the event set for the experiment

performed by the decision msker, i.e., these are the only outcomes.

It is assumed thet the conditional distributions

P(Y/Xj) = {p(yl/XA):--=,p(yS/xj)}, J=L,2,...,n

Fl

are known to the decision meker, as well as p(X) = {P(Xl)""’P{xh)}
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k.211 Bayes Rule. It is a trivial consequence of the definition of

‘conditional probabilities

ply, sx.)
o e S
p(yk/xj) 3 P(xj)_
.‘bhat we are able to write
plx, ¥y, )
plz. /v, ) = o,
37k ol
Thus
ar = 3y
plx,)
R
i, 'n{xjfyh) —_P{_y_k} pf‘,k/}‘.‘u) -
Now using )
ﬁ
= ) o= LX)
oy, ) Z ply/xgdplay) = ) ply-x,) g
J J
we have

\

I;(Xj )p(yk/xj )

Z p(-yk/xj )p(ij)
J

p(xj/yk) =
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(63)

This last expression is known as Bayes Rule . p(i/yk) =
‘{p(Xﬁ/yk), k=1l,...,8} is a new probability distribution over the n
states of nature.

The interpretation here is that for any particular observed ex—
perimental oubtcome ¥i» 80 entire new probability distribuiion p(X/yk)
mey be constructed. Since the experiment has S possible outcomes,
there are § possible new distributions which may be derived.

To distinguish between the initial distribubion p(X) and the
distributions p(X/yk) Geriveble after the experimental outcome ¥,

has been observed, it has become customary to call p{X) the prior

distribution and p(X/ylr) .the posterior distribution.

To perform the transformation from prior to posterior distri-
butions, it is necessary.to knov both the prior distribution p{X) and
the conditional distributions. p(Y/xj), j=1,2,...,n. 'This knowledze is

equivalent to knowing the jeoint distribution

p(vysx,) = ply, /2 d(x,), §=1.2,. 0 on, k=152, 0,8,

ATter the posterior distribution p(X/yk) is determined, it is

used in place of the prior distribution to determire the action aﬂ(k)

having the maxinum expected utility, i.e.

Sp(x) T mai(L p(xj/yk)uij> )

izr .
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The experiment has allowed a better, more up~to-date estimation of the

state of nature.

L.3 Selection of Experiments

The purpose of the experimeni performed by.the decision maker
is to érovide more information about the true state of nature. The in-
formation is conveyed.by permitiing a revision of the probability dis-
tribution over the stabe of nature from p(X) to p(X/yy).

In many problems,. the decision meker can choose from a group of
experiments only.one which will.be ﬁerformed.to,dbtain‘,p(X/yk). This
raises the interesting question of Which.experiment is 'best?. That
is, how can experiment 'good?esé' be deflined. to permit. a.ranking of all

T

available experiments?
4.31 Decision Theory Approsch when.the Utilities are Known

In the context of the decision model discuseed gbove, when the
utilities uij are known, the answer is to pick the eﬁperiment which
maximizes the expected utllitby averaged over all possible posterior
distributions.

For each experiment, consider.each outcome Yy in turn and
using the associated posterior distribution p(X/yk) determine the
maximom ubility which will result from making the best decision, using
this distridbution., Then weight bthese utilities by the marginal prob-
abilities p(yk) that the outcomes will occur. This éives the ex-

pected utility for each experiment assuming the best decision is always
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made for each possible outcome. Finally, the 'best' experiment is the
one with the highest average utility (averaged over a1l possible pos-

terior distributions).

4,30 fnadequacy of the Decision Theory Model when the Utilities are

_Not Known

There are at least three situaticns which frequently arise and
mgke the above procedures inapplicable.

{A) The utilities are all equal. IE this casse the expected
costs of all actions are egual and a best action cannot be chosen.

(B) '"The utilities ars wnknown, or fluctuate to such an extent -
.that they cah be considered to be unknown.

(C} The utilities do not exist, but a prior distribution can
be postulated; and various observed variables can give rise to pos-—
terior digtributions. - -

Situation (B) sbove might ocecur for example, where a local de-
cisiﬁn problem exists within a large system. The globsl utility of
selecbing various local experiments is not estimsble in this case.
Such types of situations are felt to arise frequently in design prob-
lems, vhere small porticns of the overall system are designed inde-
pendently of the others.

Situation (C) arises most often from a purely analybical situ-
ation where no utilities are associabed with a choice of experiment.

ALL three of the #bove situations negate the selection of

information-gethering experiments by using an expected utility measure.
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However, the fact thal experiments do provide information remains,
whether or not am economic value can be attached to the informaticn.
The process of index bterm selectbion can be modeled in the con—
text of a prior distribution which is modified by experimental informa-—
tion %o give posteriox distributior;s. However, ubilities are not
easily defined.
For the evaluation of these processes without attaching an

economic measure, we turn now to information theory.

4.4 Results.from Information Theoryl

L, 41 Definition of Entropy

-

. H(P) = H(P]_"”’P;‘l).z ~C Z p; 1o o,
: i=1

be called the entropy of the probability distribution

P = {pljpa,,q,,pn}; where

The functional form of H(P) is determined up to a multiplica-

tive constant by specifying the three conditions given below.

L .

fnalytical developments presented here closely fellew those
presentedfb« A. Feinstein ), as a secondary source, see S.
Watanabe(65) .
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(o) H(p,l - p)} is a continuous funckion of p for O <p <l
(B} H(P) is o symmetric function of all its variables.

(¢) Ir P, =4 ta, > 0, then

M . .

lq__ q2
H(p, > Py 109950,) = H(p, 50557 c*5p ) + anI‘g, -1;; .

By agreeing to.take logarithms. to the base 2 and by sebting

C=1, the units of information become bits. We shall denote thié by

writing

n

H(P) = - X p; log b,
. i=1 .-
J

vith the understanding that 'O log 0 = 0.

It is possible to prove the following two important results(66)

given below.

(A) The.entropy H(P) is bounded. That.is, 0 < H(P) < logn
" with B(P) = 0 iff p, =31 for some .k, and H(P).= logn iff p, = 1/n
for all j.

(B) H(P) is strictly conpanrelo

Result (A) has an intuitive interpretation when the entropy is

regarded as.the uncertainty in the probability distribution P.

lThis follows from the fact that 2z = -p log p is strictly
concave !

dgz

—= <0 for p > 0.
2 —

ép
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Let pe = p(x) = 1; Py =9, 3 # k. In this case, event x

is a certainty, and the entropy is zero. Let Py = 1/m; 3=1,2,...,n.

In this case all events xj are equally wncertain and the entropy is

a maximum.

By result (B}, the function H(P) smoothly approaches its single

~haximom value. Intuitively, this allows us to rank all probghility

distributions without ambiguity according to their entropy, in the
sense that distributions with greater entropy are always closer to the
maximum entropy distribution given by Py = 1[n.

Figure 4-1 shows the entropy for the two s;tate distribution
Py + Pp = 1; pysPg 2 0. The maxiﬁum entropy of one bit is attained

wvhen p) = pp = 1/2. The maximum is fairly broad.

-----

4.42 Definitions of Bvent Sets snd Probebilities

Let X = {x,...,%) and Y = {¥,¥p.-+,¥,) be two finite
discrete sets of events. Denote by Xcng the product set consisting
of 2ll mn pairs (Xl,yj).

Assume that there is a probability distribution defined over

X@)Y. with probebilities denoted by p(xy,yj). This is the joint

distribution of X and Y, p(X,Y), where

P(Xj_).Yj) > 05 i=1,2,...,n; j=1,2,...,m
n

Z i p(xi,73) = 1

i=1l Jj=1



bits

FIGURE 4-1

ENTROPY PLOT OF A SIMPLE BINARY DISTRIBUTION
ABS A FURCTICN OF ONE FPRUBABILITY

4 ) L L ' A [} [} 1

0.1 O. 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Py

no

where H(pl,pz) = -[p; logp py + po logy psl
and Py +Dp =15 py,P5 2 0

1.0



Let the marginal probabilities be given by

P(Xi) = z P{Xiayj}: iz'lsg:b‘osn;
j:
and
n N
P(Y) = y P(X- :y—-}s j=152:'°°:m°
N J — i J
i=1

-

Then denobe the marginal.distributicne by p{¥) and pl(Y).

Define conditicnal probabilities as

2 1

plx, .v.)
SO " S
P(Xi/yﬁ) = P(yj} ; P(yj) > 0.
and ‘ i
p(x_; 5}"“) )
= ¥ ; ) > 0.

Then let the conditional distributions be given by

p(Xij)a 3=1,2,°°,m

and

p(YYxi), i=1,2,° ¢ ,h.
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4. 43 Entropy of the Distributions

It is wseful.to define the entropies of the jolnt distribu-
tions, the marginal distributions and the conditionsl d@istributions as

shown beloﬁ.

n
p(xi,yj) log p(xg,yj) is the entropy of
1

]

i=

natc

(A) ﬁ(X,Y) = -

=
o
n

the joint distribution.

(B) The entropies of the merginsl. distribusvions_are given by

H(}_'E;J = - Ziﬂ(xi) log p(x,)

i

and

B(Y)= - zp(yj) 1og p(yy)-
J

(C) Define the.entropy of each conditicnal distribution as

n
H(XJYJ) = }:_ P(Xi/yj) log p(xi/yj); 3=1,2,°°°,m.

i=l

. Then the. gverage entropy of all conditional distributions is

defined by

z
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B(x/Y) =

ZF"TE

o
Il
fall

£ =rY hY
p(yj)lixm/yj;

~

p{y;} o(x;/y;) log n(x;/y;)

<
]

1

I
= Z Z p(xy,¥3) log p(x;/y3).
j o1

4.44 VUseful Relationships between Entropies of Distributions

The relations shown below for distributionel entropies can be

proven by using the previous definitions:

2X,Y) = BY) + BX/Y) = 7% + 5Y/%) {4-3)
H(X,Y) < H(R) + H(Y) . (4-2)

~

with equality iff p(X).and p(¥) are statistically independent.
0 < H(X/Y) < H(X) (4-3)
R = H(X) - H(x/Y) = 5(Y) - H(YX) >0 (4-4)

R = H(X) + H(Y} - H(X,Y) (4-5)
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4.5 Interpretation of Information Theoretic Results

5,
hl

4.51 Bayesian Interpretatibn

The agbove resulis are a1l we need o describe information in

¥

guantitative, non-economic terms.

Intuitively, the entropy of a ‘distribution represents the un-
certainty in the distribu?ionu If we revise the distribution from
prior to posterior through Bayes rule after observing the results of
an experiment, how does the entropy change? '

By letting H(X) be identified with the uncertainty in the
prior distribution, it folldws that H(X/yj) is the uncertainty in the
posterior distribution obtained from Bayes rule after observing one

[

prarticular experimental ocubtcome i=.2,..., m. 3ince there are m

-
.

v 1, u a4 b
o

possible posterior distributions, it!is reasonable to define H(X/Y)

as the average uncertainty over all posterior distributiocns.

It is customary and intuitively pleasing to define a decrease
in uncertainty (entropy) as in increase in information{ or
I=n1= Hl-; Eo' This allows tﬁe amount of information gathered
to be measured in bits. In this sense then, R = H(X) - H(X/Y) is the

measure of Information provided by the experiment. From (é—é), This

information will always be positive. EéEE time the experiment is per-
formed R bits of information (on the average) are acquired. If the
experiment is very good, H(X/Y) = O and the posterior distribution has
no anertainty. Here R = H(X)} and all the uncertainty in the prior

distribution has been removed by the experiment. If the experiment is
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very poor, then H(X/Y) = H(X)} and no information has been provided by
‘the experiment. In this case R = 0. '

| Of course the amount of information which can be provided by an
experiment is limiteé by the amount of uncertainty contained in the

pricr distribution. Thus for a given prior distribution, the best ex-

’ieriment iz the one with the largest value of R. To.compare experi-

ments in decision problems with different prior distributions it is

convenlent to define a dimensionless figure of merit

R -
o = .

H(X)

where 0 < o < 1. PCT = 100c is the percent of uncertainty in the
“prior distfibution which is resolvgd”by the experiment. PCT = 100 im-
plies a perfect experiment and PCT = 0 implies a worthlesgs experi-
ment . -
- Relation (4-4).states thaﬁfthé-goodness.of‘an experiment can
also be measured by R = H(Y) - H(Y/X). Here H(Y) is e function of
the experiment alone. H(Y/X) is the average uncertainty in Y, if X
is known beforehand. R = H(Y) - H(Y/X) is the amount of information a-
bout ¥ which is acguired from Enowiﬂg X. This e%presses an informa-~
tion balance(67). The amount of information contained about X in Y
is equal to the amount of information gbout Y in X,

From (k-L) it is clear then that the goodness of an experiment

can be inferred from either the average amount of informaticn provided

by the experiment as to the state of nature, or the average amount of

information provided by the stabe of nature as to the cutcome of the
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experiment. This is simply the strength of the statistical dependence
'?etween cause and effect, or effect and cauwse. TFrom (4-5) and {(4-2),
if cavuse and effect are svaristically independent, R =‘Oo

The interpretation cf‘cause and effect relationships is dis-

cussed in depth by Watanabe(68)a

His conelvsicns regarding interpre-
tation of entropy.expressions are similar to these presented here. He
defines the inferential process-cof locking ahead. from ; knovm state of
nasure 0 the uncertain outcome of an experiment as being prediction.
and looking backward from a known experimentsl outcome tc the uncertein

T

statd of nature ss being retrodiction.

4,52 Communication Thecry Interpretation

The decision theory interpretation of entropy reduction by per-

~

forming an expeviment is .not the customary way.to interpret relations

{(-1) through (L~5). Communicaticn engineers prefer to interpret the

same results in terms of an informeticn (or symbol) transmitter, a

noilsy chammel, and.a receiver, as shown below(69).

SOURCE ENCODER CHANNEL RECEIVER | CORRECT1NG SIFK

et S & o5 . e - =35

H{X) TRANSMITTER . DEVICE Hi{x/e)
" 1

NOISE

Here discrele symbols are dravn racdomly from a probabilicy
digtribution p(X) having entropy H(X), and are transmitbted sequen-
tially (as drawn) through a noisy chamnel. A distorted message iz r&-

ceived, where distoxtion Implies thab scme of the symbsls are changed
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by the ncoise into different symbols. A correcting device abtemphts to

infer what symbol was sent, on the basis of what symbol is received.

H(X/Wﬂ is the resicdual entfopy associated with the message received
ter the correcting device has 'eleaned up' the noisy message. H(X/Y)

is referred to as the equivocabion of the chennel with respect to the

source distribution p(X). It represents the amount of information
}9§§_(not rQCOVerable by the cérrecting dévice) in the channel.
R = E(X) - B(X/Y) is the amount of information transmitted through the
noisy channel. '

Both the decision theofy and the communications theory inter-
pretation of information theoretic expressions have merit, depending

on ‘the problem at hand.

rd ¥

4.55 Computation of an Inferuwsvion Statistic

For computational pdrp05e§, consider & decision problem with
two states of nature, and an associated experiment with two outcomes.
After observing the true states of nature and the corresponding exper-
imental outcome for several trials, it is possible to summarize the ob-

servations in the sample contingency table of integers showm below.



Outcomes of experiment

. Y1 T2
states % n +n =
of+ *1 11 B1o 10y Tl TRy,
nature -
%5 Doy Bop | Mpy T Don = 0y,
{4-6)
1, e
Ty FHyy Byp POy,
! TR p NEmy tngp F gy Fngy T ones

There is a large body of literature which deals.with. the statistical

theory of contingency tables. See for example Kullback(TO)° However

(4-6) above will be considered here simply as a convenient tebular
data array. Data in {(4-6) will be used to.estimate R.

- Let - R be a sanmple egtimate of R based.on the observaticns

~
Y - 4
\ B . b

b

in {k-§ wiil henceforth be called the information statistie., Is

can be computed directly from either (4-b) or (4-5). However, it is
easy to derive a more convenient computational form. To do this, first
define a conbingency table of probability estimates- (the joint -distri~

bution p(X,Y) as follows:

¥ . ¥ =
1 2 o nll/N
xl o £ a + B B = nle/m
x, ¥ § + 8 Y = /N
@+ Y B+ 8] 1.0 § = ny, /1 (k-7)
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T2

Then-:

>

~

H(x) + H(Y) - ﬁ(x,x) ’ (45}

=
1

I

~ {a+ B) Jog (@ + 8) = (Y+ 8) log (v +8) ~ (a+ v)log (o + ¥)

- (B + 8)log (B+8)+aloga+B log B+ yYlog Y+ & log 6.

Collecting all terms in o, B,.7, and & gives: . -

)

= gl- logla + B) - log{a + T¥) + log.al .
+ Bl-~ logla + R) - log(B +3) + log Bl + - .Log(a + ¥) - log(r + 3)

"+ Zog ¥] + 8l- log(B +B) ~ log(y + &) + log 5]
7 .

Tt e X Frpe— t P e T
.- B L -

) g ]
= o log[(a T B)(g T Yﬂ'*‘ 2 log{(a + B)(B 4 GZJ

or, in terms of the integer -counts

. oA i Nn Tn
11 . 12
HR = log +en log
By - ; : :
. Lﬂn +u_ _J(n.,, +an {} 12 [}nll_+ nla)(nl2 + HEE?J

11 127711 21
I i}
+n -logr nel "]+ n leg "2 -1.
22 " lngy *ngp)in nl 2T /o 22}
2 2
Since . ZE: n,, and n, = n, .,
i i. £ i
i=1 T J=1
2 & T ' -
we get: 1 Zi- 2{: i3 Log‘(n )(n1 71 (4-8)

i=l j=1

This pgives a convenieut computational form for the information
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statistic R. However when o = R/A(X) is to be computed, direct use
of {b-I) is recommended, since H(X) is produced as a byproduct.

If R is the estiéated number of bits of informetion (on the
average) which are provided each t}me the experiment(is performed, then
NR is the total number of bits of information providéd by all the W
replications of the experiment.

There is ancther interpretstion of-the information statistic
based on (k-8).. Suppose the sample contingency table arises ffom coti-
paring a (0/1) vector x (two states of nature, zero and one) with a

(O/l) experimental outcome vector X_(two experimental cutcomes, zero

and one). The similarity of vectors x and vy is intuitively high if

X =y, = 0 or 1 for a large number of indices i. Of the four terms
in the expression (4-8), two involwe f,; o the main diagopal of the

téble, and two involve nij- off the diegonel. The sum of the diagonal
terms of (L-8) represents the measure of similarity between the vectors
x and ¥, vhile the sum of the off-disgonal terms is a messure of

their dissimilariby.

h.5k Statistical Distribution of the Information Statistic

Bince R is a stabistic drawn from a sample, it can be ex~

pected to behave as & random varisble. It is knowm that(Tl)

[loge 272mk

is asymptotically distributed as & central chi;squared varisble with

one degree of freedom (for a 2 x 2 sample contingency table) under the
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null bypothesis that R = 0. The factor log, 2 = 0.693 is needed

because R 1is assumed.to have the units of bits in (4-8).

4.55 Example Problem

.

As an example, consider a training set of 28 documents. A seb °
of 155 index terms were found.with this document sedb. An estimate of
the information providsd about document relevance by two of -these
terms will be made to illustrate previous results.

Vector x = (xi), i=1,2,+++,28, of Fig. 24 shoﬁs the correct

classification of eaclh of the 28 documents in the training set, with

x& =1 4if document i is relevant. Vectors 21 = (til) and 22 =
'(ti2)- of Fig. L-24 shovw how terms 1 and 2 are used to index the 28
_ documents: For evemple, if - T*1:= 1. then index term 1 is used to

index document 1.

~ -

It is possible to.compare the effectiveness of Lterms 1 and 2
as relevance indicstors (over the trainiﬁg set) by comparing vectors
. gi -and ge separabely with vector .x. Fig. 4-2B.shows the reéults
of these compariscus expressed as 2 x 2 conbingency tables. Calcula-
tions leading to o, .and .o, are detailed in Fig. h-2C. Equation
(k-k) is used for R instead of (h—B)Abecause H(X) is generated as
a byproduct with (4=k), and. H(X) is required for 5 = R/E(X). Fig.
4-2C shows the estimated marginal and conditional distributions and

their correspording entropies. It can be seen that term 2 (u2 =

0.0780} is estimated to be slightly better tham term 1 (&l = 0,0701).



FIGURE k-2

EXAMPLES TLLUSTRATING COMPUTATION OF AN INFORMATTON STATISTIC FOR ESTIMATING INFORMATION
ABOUT DOCUMINT RELEVANCE CONVEYED BY INDEX TERHS.

A. Vectors for Comparison B. Contingency Tables for Comparing X with T, and 22
iX, |4, 4. - - = =
i il )-"i,2 ti,l—o ti,l-l ti 2 ti 2 1

2 I I 0 .

>l o1 1 X,= g 9 13 X0 15 3 18

31170 0

hia]a 0 ;=1 8 2 10 X, =1 10 o "I 10

Sl o] o 8] - i

6l 1] o0 0 17 11 a8 25 3 28

Tt o0l o0 0 ‘

8t o011 0

21 0] 0 1 . *

wol 1l o o C. Compuietions x with %, X with T,
11| 00 .] 0 - = =
2] 1] 0 0 p{X) (0.64236, 0.3571k) {0.64286, 0.3571%)
131110 0 .

ol e o H(x) 0.9h4o27 0.9ho27
15| 0l o o____j p(X/t,=0) (0.52942, 0.47058) {(0.6c0, ©0.k00)
iz | o 1 ) s .
lolo o H(X/tl-o) 0.99Thg 0.97096
8|l o|o L piXft =1} {0.81818, 0.18182) (x.00, 0.00)
wiopl o (K/t.=1) 0.68402 0.00 "
0l ol o o H{X/t =1 . ) .
P22 R TV I I o(T) i - {0.607LL, 0.39285) (0.80286, 0.10714)
2z 1| 1 0 . . -
53] 1l o 0 i(x/m} 0.87h3 0. BE5gL
2h | 0} - 0 B=H{X}-E{x/?) 0.06593 . 0.07333
25 1] 0 0 & N
T o3 5 a=K/H(Z) 0.0701 0.0780
27| o} 1 0
28 0| 1 0

-

*n(+) is the probability distribubtion and
H(-; is the distribution entropy
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5.0 SOLVING.THE.DISCRETE LINEAR APPROXIMATION PRORLEM IN THE L. XO=M

k3

I
5.1 Irtroduction

The. discrete. Linear approximation.model can be written as fol-

lows

n-1 n-1
. =B +§ ch, . = T E R P R R
Yl o 63.13 BJq)l;j' P 5
j: J=O
The linesav approwimabion problem arises when estimates of the unlmowm

vector B are desired. We define 8 best estimate of B to be the

vector g* which minimizes the length of the residual vector x. If

we designate the length of the vector = ‘by H;I [ , called the norm

of r, then our approcximation problem beconmes:

Find b such that

A class of noxms is given by( 72, 73)

v,
1)'1/13

[= Iri}) for L <p e
i .

LN
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When p = 2, the familiar least squares problem results. The
cases where p =1 and p = = are also of practical interest because
algorithms are available to compute pf. In parziculér, they may be
formulated as linear programming p?obiems and be easily solved.

Ll(z) corresponding to p = 1 gives a fit which minimizes
the sum of the absolute values'of the residuals L i=1,2,++-,0.

L. {xr) corresponding to the limiting case T _(r) = lim T, (r) =

. peo
max lril gives.a fit which minimizes the largest residual (in abso-
l<i<n
lute valueil fhé ﬁm norm is also often called the uniform or
Chebyshev norm.

Thg..Ll and I solutions will always exist when computed
using the linear programwing formulation. even when the renk of X is
q < n. This mskes the Ll and Lm— norms attractive when dealing
with data matrices which aré not knoun beforehand to have rank ¢ = n.
The Lé {least squares solution) normal equations do not have a solu-
tion when q < n..

For the appliecation considered here, the approximation problem
arises when index term 'weights' are to be derived for estimating
document wtility. The ﬁatrix X is now %nown beforehand to have rank
g =n. The Ll norm is used here to estimate the index term weights,
and no problem is encountered if g <n. In a&dition tie solution is
very rapidly and convenientiy attained with the linear programming
formulation. Formulation of the Ll problem as @ linear program 1s

briefly reviewed below. Example problems are used to illustrate the

development.
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5.2 TFormulseting the Discrete Ll Problem as a Linear Programming

Problem

Formuwlation of the L prdblém as a linear progrsmming problem

1
(74,75} (76)

has been showh by I. Barrodale gand P. Rabinowitz . The forw

malation proceeds as follows: let
= Xg +x.

Now, since B and r are unrestricted in sign, they can each be ex-

pressed as the difference betwsen two non-negative vectors, i.e.

B=8 -838B.8 >0

+ - 4 -
r=r -r ;LK. 20
= peHE -8 )
== (x-xl1]- /8" = 1.
-y -'@-—"
- e
z
-

These equations can be regarded as the constraint set for a linear’

- vla —_

programmin% probiem. The unknowne are the vectors §f,§f,£:3£‘. The
distinction made in section 5.1 between the unknowm vector B énd its
optimal -estimate b¥* has been droppea here to eliminate notational
complexity. Ail vectors B appearing as the unknowns in LP problems
are to te considered estimates ol the tyue wvectcrs.

The objective funetion can be formulated by observing that uwmit

. + - - o . .
vectors corresponding te ry and rs will never be in the basis at
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the same time, since they are lineaxly dep%ndent, (the same remarks ap-
+ - AT ; : NN
ply to Ei and Ei’ see Ha%lcy ), The solution varisble r:.L + ri

then represents the absolute vslue of the ith residwal, since:

. + . -
either r, = ]r.| >0 and ¥, = 0
1 1 - 1
R 1 p o=
or r, = r.| >0 and r, = 0.
x - 1 . Lr -

. . + - ‘s
By putting gzero costs in for the unknowns Bi and Bi and unit costs
*in for the unknowns rz and r;, the sum of the absolute values of the
residuals is minimized. This gives the linear programming problem

shown below. !

i=1 i=1 joi=l i=1
s + ] ) B - . ..:

subject to - (x}- XII[_ I) .é.\= L5 B, B ¥, r 2o. (5-1)

6
. +
£
Py,
¥ - o+ -
After solving the problem, form £ = Ef.—.g end r=r -1 to re-

cover estimates of the parvameter and residual vectors. The optimal
value of the objective function is the minimal Ll ROTR.

The size of the constraint set in (5-1) is m rows by
{(2m + 2n} celumns. By transforming some of the variables,

(78)

Barrodsale shows that (n - 1) columns of the constraint matrix can



be eliminated. To see this, let y = ¥g + »
. .n
or =y B + before
Yi = L j(i’ij r;, as before.

J=1

“How instead of writing the unrestricted Bj as the difference of two

non-negative components as before, define

u = max [g,] > o=k u 2 By iﬂ%ﬁ[ﬁj *-uz‘O]»

d
and let- o, =B, +u>o.
- 3 -J - ] 1
. n
Then ¥, = Z (o.r,j - u)qaij +ory
. j:l
n n
:$>yi=z .ocjd)iJ -uz ¢1J +r, -
=1 J=1
n
Finally de?‘flne Y = i @ij”
J=1

+ —
which gives y=Xg —uy + Iy - Ir

80
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for the constraint set. The complete problem hecomes:

n m i/
. ) ) ) o
ninimize z = oca, + o-u + ler, + L lor,
. i i . i
i=1 i=1 i=1
subject to (X|- y]Z]- Y o (5-2)
u-
r
z
The vector -~ y has .replaced the submabtrix. '~ X in the constrained
mabrix for a net savings of. n - 1 columns.
_ + - . ; - o
low solve (5-2) for go,u,r ,r . Then ¥ =r -xr  gives the
residuals, while the parameter estimates.are given by £. = o, - '

R
The length of the residval vector (in the L, d
optimal value of. the objective fumetion, as befcre.

Two comments.can. 'i;e made -Which_ap.ply to either- {5-1) or (swa),
The IP "problem has. no.Phase I. .Because.a wunit.matrix exists in the

constraint matrix, there is an initial basic feasible solution. This

implies that there is always an optimal basic. feasible solubtion. Tur-

thermoxe, the existence of this.solution does not depend upon the rank
of the matrix X.
AlternAate optimal. soluiions may .exist. .More.will be said sbout

this later.


http:comments.can.be

82

5.3 Solving.the Ll Problem

The L."L- problen ofi‘ determining index term weights was set up
and solved using (5-1) instead of (5-2). Although (5-2) is xore ef-
ficient, it was unknown to the aubhor at the time the_ computer program-—
wming was done. -

The spproximation problem is sclved here using three subrou-
tines, lone of which is a general purpose STMPLEX routine.' (Barrodale
has developed one specialized routine for the Ll problen). A Fortran
IV subroutine for linear progrémming written by R. J. Clasen(Tg’ao) is
used to solve the 1P proble;m. A dx:iver subroutine loads the struc-
tural matrix A using the data matrix X, loads the right hand side vec-
tor 2 using the known dep’enden'b variable vector ,Y.; and finally loads

¥

the cost vector c', which depends only on the structure of the problem
i .

and not on the data. -

After the A,b,c data hav'e been lozded b;y'-'the _subroutine, the
resulting LP preblem is solved using the Clasen subroutine. The solu-
tion to the LP problem is related to the solution of the approximation
problem by using a foJ;lowef’, or interpretive subroutine, which recovers

the wprestricted {as to sign) varisbles 8 from the optimal non-

J

negative solution variables o and.u of the LBE.problem.

5
Computational experience with the solution of Ll problems for
index term weights has shown that the precgrem is quite fast, For typi-

cal problems having 25 rows and 72 columms the average solution time

was 3.0 seconds, while for larger problems with 50 rows and 122



columns, the average solution time was 6.0 seconds. Tais is {or the
IBM TO9h/T0hl direct coupled system.

S

5.% Example Problems

Figure é—lA shows the initial full simplex vableau which re-—
sults when the Ll problem presented as an example in section 3.34 is
set up ag an IP problem using formulation (5-1). The submatrix X of
Fig. 5-1A is the same as the matrix Z of Fig. 3-2, except thalt the
columns of % have been permuted to form A. This does not effect the
problem sclution in any.way. This same permubed version of Z also

appears as matrix X of Tig. 5-2A and Fig. 5-34. - To identify columns

CoFTE. with columns.of % .-the following table is convenient:

) 1
T o e BT L EDLES ez ML

~

SE3K

)
0
T30
T

i Bz 5

o
iy

0

3 14 5

[e1]

Column number 1Z[{1

cross references|X 1 |4 |6 |5 |2 |53

Figure 5-1B shows the optimal tableau for this problem, and

Fig. 5-1C gives the solution

2

Q= E = - 1M 4+ 17, < AT

BO + BjTj lTl ;12 LTh 5
J=1

vhich is reconstructed from the cptimal LP solution,

The optimal tablean of Fig. 5~1B indicates that an alternate
opyimal solution is present. Columns indicated with an asterisk are in
the cptimal basis, while columns paired with the basis columns are

marked with 'P'. (Recall that all columns in the structural matrix A



SAMPLE L, PROBLEY - FORMULATION {5-1)

FIGURE 5-}

A. Tnitial Tebleau Showing Input Date
A = {(X|-%)1]-1) = strvetural matrix

¢=fo 0 o 0o ¢ o[0 o 6 © 0 ofr X 1 L 1 1 1 1[1 t 1 1 1 1 1 %
102 3 % 5 6 1 8 9 1p 11 12 13 14 15 1A A7 8 19 =20 21 22 23 2h 25 .26 27 28
11 1 0 ¢ |-z -1 ~-L 0 0 1|2 -1
i1 12 0 o O0ol-2 -1 -1 0 0 O 1 -1
1 0 1 1L 1 if-1 0 -1 -1 -1 -1 1 -1
A= {1 0 1 0o 1 of-1 0 -1 0 -1 0 1 -1
11 1 0 1 0f.r L -1 0 -1 0 1 -1
1 1 0 1 1 i|-1 -1 0 -1 -1 -1 b -1
L1 % 0 31 0l-1l -1 -1 0 10 bR -1
1 1 1 i 6 0]|-1 -1 -1 -3 0 0 1 -1
B. Optimasl Talleeu
CJ—":'-'GOOOUODOOODDllllllllllllllll
-+ + + -+ - + - - - - - - 4 [ b + £a " - + - - - - - - - -~
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have a palred column of the opposite sign in formulation (5-1)). Col-

umns not in the optimal basis but having their asscciated (c. - z,) =

. i 73
‘ (neglecting columns marvked with FP) indicate that an alternate opti-
mal solution can be attained with column 7 (8;) in the basis and column
9 (B;) out of the basis. Figure 5~2A shows the tableau for this alter-
nate optimal solution. DNote that the solution psrameters have changed
and the LUPF is .different.

Figure 5-3 shows the same problem solved using formulation
(5-2). The optimal solution is the same as that given in Figure 5-2

using formulation (5-1).

5.5 The Effects of Alternate Oplima

The appescance of alteruate optimal scluticns to the L, ep-
proximation problem.very simply means that we should-be indiffereny to
the effects of using different estimated LUPF's vhich ﬁight arise from
the alternate optims.

E@ch optimal IUFF gives the same 'best’ Ll fit to the user

assigned utilities in the training set, in the sense that §:|x'] is
i
the same for each LUFPF.
A seaxch of the rest of the file with a different LUPF will un-

doubtedly yield different reswlts, but without using extra information

to eliminate the alternate optima, one optimal LUPF is as good as any
cbher. The use cf extra information to limit alternate optimal solm-
tions is suggested in chapter 9 as an extension of the present system

wirich might be 1nve3u¢gated as g future research problem,
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Figure 5-b gives an example of the different utilities which

. would be predicted Ior the various term combinations when two alternate
1

optimal solutions are compared. All 32 combinations of five index

v T

terms T s + T are listed in Fig. 5-4. (Term T is fixed at

TO = 1 and hence does nct affect “the nudber of combigations.} The
utilities which were assigned for the term combinations ccrresponding
to thé eight documents in the training set are shown separately. These
combinations are numbered .2,3,13,21,25,27,29. WNote.thab Fwo different
documents were in the training set with the same index term combination
{combination 25). The assigned wtilities were differvent for the two
documents (one was relevant, the otﬁer was not). Solutions 1 and 2 of
Fig. 5-4 show the IWPF's which correspon@ to the elternate optimal LP
solutions illustrated previpusly in Figs. 5-1 and 5-2. Each dfl£hese
solutions provide =a Xbest' kbut dif?erent) fit to the training set
utilities. They also provide different utility sredictions for docu-
ments outsidelthe training set. In some cases differences in the pre-
dicteﬂ utilities czuse the predicted document relevance category

(u> 1 =0) to differ. For example, the term combinations 4,8,15,16,
22,28,32 are predicted relevant using soluticn 1 but non-relevant using
solution 2. Combination 17 is predicted non-relevant under solution 1

»

bur relevanb under solution 2.
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FIGURE 5-%

EFFECTS OF ALTERNATE CPTIMAL SOLUTIONS ON PREDICTED UTILITIES
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5.6 Secondary Feature Extraction

By referring to Figuwve 5~1A, note that the swbmatrix X has six
columns. Bach of these six columns represents a'possible term in the
LUPF. Five or these columns represent specific index terms which had
heen previously gelected using the information measure of chapter 4,

The optimal tableau shown in Fig. 5-1B indicates that only four
{otit of & péssible six) columms of ﬁ'(or_:éi are in the optimal basis.
Tour (out of a possible five) index terms have been assigﬁed to the
LUPF shown in Fig. 5-1C. A secondary index term selection has taken
place,

This secondary term selection (or feature extraction) process

has the efiect of discarding automatically index terms {columns ) from

the basis which are linearly dependent on other terms in the basis.

If the least squares solution were used instead,.the linearly

dependent columns offi?ﬁould have to be eliminated before solving the

normal squetions. The Ll formulation here eliminates this extrs

operstion.

5.7 More Efficient Algorithms -

It can be noted that the parameter vector b = x, chtained

with the Ll norm confignretion has elements which are integral mulz-

iples of 1/2, 1.8, bi = + nf2. This effect is cbviously dependent on

properbies of the inverses of matrices whose elements aye all 21, -1 or
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zero, and of the-integrel properties of the right hand side vector (the
Sutilities). s
The properties of X, sugegest that perhaps the LP problem for

this type of matrix can be solved with a trensportation or network type

of algorithm. Investigabion of this was outside the scope of this

work.,
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6.0 DETERMINATION OF THE OFTDMAL BRS

6.1 Scope and Organizstion

The optimal BRS is a set of searching instructions which re-
trieves from & file onrly those doéuments having a E{ggigggé_utility
‘greater than or equal to a given utility threshcld.

The optimal BRS is derived from the LPBI which is formed by
thresholding the document IUPF.

This chapter discusses mathematical properties of the LPBI and
of its soluticns. A éomposite algorithm is presented which finds all
the solutions to the LPBI and groups these into sclution families
which are mubvually disjoint. This composite algorithnm is based on

vigiting the nodes of a binary tree in search of pessible soluticns to

the inequality. It is called the Tree Pruning Algorithm (TPA), avd

= —

uses & bvranch-and-exclude téchnique which allows all solutions to be
fopﬁd without comstructing or exploring the entire binary solution
trée.

The composite TPA can be broken down into two parts. The .first
part is a node-visiting sub-algorithm. Here decisions are made {after
visiting a tree ncde) sbout which nodes of the tree to exclude from
Tuture visits. The second part of the TPA is a visit-scheduling sub-
algorithm which controls the sequencing of node visits., This sub-
algorithm guarantees that each non-excluded node is visited once and

only once in z defined order. Tt also keeps node records necessary for
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use by the node-visiting sub-algorithm. The visit-scheduling sub-
algorithm is necessary to implement the TPA on e digital computer.
The concepts and theory pevtinent to solving a LPBI by a node-

(82,82,

visiting method have heen given elsevhere by Hammer and Rudeanu
83), Most of the mathematical details presented here are alsc from
these references. An.exception is section 6.323. Here some proofs are
presented which are related to transformations used to solve the LPBI,
These proofs are not gliven by Hammer and Rudeanu. Background theoret-
ical results and details of the node-visiting sub—algorithﬁ are pre-
sented in the first part of this chapter, up to and including section
6.5.

The visit scheduling sub-algorithm is the Avthor's contribution
t2 the TPA, It iz a modified form of a pre-order tréversal algorithm
for binary t;ees. This sub-slgorithm allows dynamic vigit-scheduling
as portions gf the Dbinary tree are segquentially excluded from further
considepation. Developnment of_thia sub-algorithm begins.in section 6.6.

The operation of the composite TPA is illustrated with examples;
and computatiocnal experience with a Portran IV program is discussed.

The use of the LPBI solubion families to retrieve documents is
discussed near the end of the chapler. |

6.2 The LPBI Arising from the Document LUPF

It is assumed that a LUPF exists which adequabtely expresses

the utility of documents in the file as a linear combination of
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selected index term welghts. i.e.

~ , T e{0,1}
’ u = a T, ?
. j{i 33t J

B
=0 -0 £ [, < ®
J 3

which becomes a pseudo-Boolean inequality when thresholded;

i

a, T, > {1 - &
PIEAEA LIS

=1

“wm & T < ™o

After conversion of the coefficients &j end the right hand side

{t - ab) to integers Yj and & by a scaling snd truncating process,

[ :

r——
1]

n { ch {0,1}
v, T, > 8§ (6-1)
EZi 33 ‘9 53*39 {1}

where I 1is the set of 811 integers.

For all further results in this cﬁapter the LPBT will be
assumed to have integer coefficients. This represents no loss of gen-
eralitysbecanse by scaling &ll coefficients and right hand .gide,. and
then dropping the fractional parts, if any, the coefficients can be
converted to integers with any desired degree of sccuracy.

A1 solutions of ineguality (6-1) are O/L vectors T, =

i

(Tkl’TkE’“n.Tkn) . There are at most 2 vectors T, satisfying

(6-1). Solution by enumeraticn is always possible but becohes
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impractical for all but small pro{alems. ‘Moreover, solution by enumera-
‘tion does not group solution vectors into families.
Grouping of solution vectors into families is idportant for

two reasons: .

,//,(a) one solution family provides a compact mathematical representation
of many solution vechoxs;
{b) the solution families are megningful in the modeling of document
retrieval systems. More will be said about this in section 6.Th.

.

6.3 Properties of.the LPBI and Its Solutions

As a prelude.-to developing. an algorithm to golve the inequality
{6-1) for all of its solution vecbors and/or families of solution vec-

tors, it is necessary to investigate a more general form of {6-1}.

~

6.31 CGeneral Foxm of the LPRIT

ILet the -linear pseudo-~Boolean inequality in its general form bé

-

defined by:
n . .
. a‘]w
2,9, » & . (6-2) .
Z iY= . _
J=1
where &j, Yj and & are given parameters with

a8 {0,1} j=1,2,*"°,n,

yj,ﬁe {1} the set of all inéegers
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*

and where §~=‘(Z;)¢ CJ=l2,0 0

*is a solution vector, with zgs {0,1}.
The exponents arc used to indicate Boolean complements with the

following conventions:

Zg = %,, the complement of z?; (6-3)
1 _
Z.j = Zj;
Ez? =1 - Z%;
dJ J
. @, '
(z,) ¢ =29,
dJ J

=gz, if a, # A, .
dJ dJ

The inequality (6-1) arising from the IUPF is eguivalent wo
(6-2) if all o = 1. The algorithm developed in this chapter will

solve form (6-2) of the LPRI.

The adjective pseudo-Beoolesn implies that while the variabies -

7z, of (6-2) are binary valued, the coeflicients are not, and hence the

function

o o
.t ow - = jl
Llay 2,5 055, ) .L(_%_) Z 23775
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is & mapping of the binary wvector %z intoc the set of positive or neg-
ative integers. This is in distinction to a Boolean function £(z)

vhich would mep the binary vector z into the binary set {0,1} .
6.32 Canonical Form of the LPBI

Before solving the ineguslity (6-2) it is necessary to reduce
it to a standard or canonicsl mathematical form.

The cenonical form is defined by

I
Y epd s ds fep) e @ (6-1)
= '

1 . . —as
where x = (xi), 3=l,'--,nl is the solution vecteor and ¢, > ¢, > *c+ >

1 =% a2

c > 0. This Torm has =zll positive coefficients cj, ranked by ordex

T

of magnitude. In addition,-no complemented variables Xj appear.

6.32]. Transformation.of Pavameters of the LPBI from the Genesral Fdrm

to the Canonical Form. The transformation from {6-2) to (6-%) proceeds

in two stages.
First, all negative coefficients asre eliminated by the following

transformation, (and all Tj are relabeled ej):

>0 = (v, <e,; 0, ~a,)
s = Yy b B
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vhere a <« b is read "z is replaced by b". At this point a new in-

equality may be defined by:

Y e za (6-6)

yge {0,1}

(ede:) e {I}

The coefficients ej dre next permuted and relsbeled so they
are in descending order.as specified by (6-1). We define a transforma-

tion from ej to cj by

k + P(3) : {6~7)
e, « e
dJ

k

j=1,2,++,n.

where P(j) is a permutation which puts coefficients e in descend-
ing order. This completes the transformetion of parameters to (6~b)}
from {6~2).

For example, consider a pseudo-Boolean insqualitly whose para-

meters consist of:

-
=
e

VoW N PR
i
(J\-‘ -
HiOoOo H}
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Eliminating negative coefficients results in new parameters.

. e, a,
pa il L
1 2 Q
2 3 1
3 5 0
b 1 -0 d=6
5 2 3

Permuting and relabeling coefficients €5 as ¢y gives:

VW N e
[r]
= mt»\nL¢

The permutation P(j) is obtained from & sort of the e.. If

n

the indices i are sorted along with the e, the result is P(i).

o j -
Note that the uj are trensformed into the aj when the negative co-
efficients are eliminated. Permuting and relabeling does not modify
the a,.
J -
)|

We will be concerned with solutions X = (xij) of the canon-
ical form {6-4). The approach is to find sclutions to this form, then
perform appropriate inverse transformations on these solutions to get
vectors z, = (zij) which satisfy ineguality (6-2).

6.322 Transformation of Sclutions of the IPBI from the Canonical Form

to the General Form. We have defined three inegualities by performing

the preceding transformations on the parameters. These are repeated
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below for comparison.

f oo,

' Ei_ szY‘z_S {6-2)
Z y;'ej >4 (6-6)
Zx].'c. - (6-1)

Jd J 7

Solutions to (6-L) will be appropriatelf trensformed so they
become solutions to (6-6) and finally (6-2). These inverse transform-

ations proceed.in two steps, as follows:

(a) from x to y where

[k« 3(5) (6-5;
r
1
Vg ¢ *y

(b) from y to 3z where

1 1
g, = 1=z, ~1- (6-9)
3 i 73
a, = 0:>z%+yf“ :
J J 3
13
thet is: 2. «~ ¥y.%.
J J
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The transformations defined above can be depicted as shown be-

- low.

The solution transformation has as its object set all solutions of the
canonical form (6-4), and as its image set all solutions of the general
form (6-2},

6.223 Some Proofs of BResulis Related to the Transformations. It is

easy bto prove that a binary wvector Ek = (ij) is & solution to in-
equality (6-2) if and only if the corresponding vedtor % = (xkj) is
a solution to inequality (6-L) when (6-5) and (6-T) are used to trans-

form the coefficients, and (6~-8) and (6-9) are used to transform %

to Ek' That is,

n n .
o,
J > & N x;c > al. 6-10}
Z Zj Yj - &? L‘, J j it ( L 1-
j=1 3=

To show this it is convenient to establish two preliminary re-
sults. PFirst, note that we need consider only transformations from

(6~6) to (6~2) instead of from (6-%) tc (6-2). This is because e sclu-

tion x  to {6-4) is always transformed by (6-8) intc a solution Y
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of {6-6). Recall that transformation (6-8) is merely a permubation of

_coefficients, i.e.

373 L. J
J=l J=
n n,
—_ Z xte. > a) &> Z'yl:e_ > dy. (6-11)
R e I e
j:l M j:l

~

Another preliminary resulit is derived from the assumption with
no loss of generality that the first Pp coefficients Tj are positive

and the last {n - p) coefficients Ty are ne ative, i.e.

—Yj';’(o; 3:1:2:""5? (6 )“‘
. -12
Yy < 03 J=ptl,---.n.

Then after the transformaticn (6-5), note that we can conveniently ex-

press ej,aj and & in terms of Yj’ aj spd 6 as follows:

d=946 - .

Z '3

J=p+1

- : (6-13)
e il f. -
J }J
a. = o, j=l>2:l°'°:P
J J
e, = - v,
J J J=ptl, i
a, # «



NHow by using (6-3), it follows that:

a.\o, 1 N
(Y.J):J =Y. } j=l>2=“‘,P
J i)

( ?j)uj o 1

r'.‘ =y =] - -

'3 & 73 :
. J=ptl,-=-,n

—" Y. =

d

{(6-1k)

L
e, -

By .using the sbove results, the first half of (6-10), i.e.

Y e s A=Y )
e, > d z, > 48 6-1
vye; = 4= Z P (6-15)
J=i J=1
is proven as follows: /
\ I
2 R 2 2,
— 1
y%e > d ::;><;‘ y%e. + ‘;m yoe, + ) Y. > 8
J d L7433 L. dd J
j:l le . p+1 p"l"l
> - %3\% =T 1% \ "
Z&J ) Y3 +Z T (ya) (_Ya’+2733~6
3=1 ptl ptl
P
Q—ﬁ"(a‘])aj
= , , > 8
:VJ YJ 2z
=1
1 a,
and using the fact that Zj = yﬁJ from (6-9) we have the desired

result.
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Fext we would like to prove the second part of (6-10) which is

the converse of (6-15), i.e.

n g .
Z 29y, > :‘5\ —= X y?}.‘ej >da) . (6~16)

/ i~ }
= J=1

4]

n
.
Y iy« J=(1 <),
J=1 ] j=1

and this result can be shown by exactly the same technique used to

" prove (6-15).

iz

ote alsc thas Hhe bransfovmsEtion

one—-to~-one, i.e.

(o, # x2)<i:;>(§1'¥ Zp)- (6-17)

This is obvious since (6-9) simply complements certain fixed clements
of ¥y %o get z.

Results (6-10) and (6-1T} sre important because they guarantee
that all solutions to the original ineguality (6-2) will be found by
firet transforming the parameters using (6-5) and (6-T) to get the
canonical ineguality (6-h); soclving this inequality for all its solu-
tions émd transforuing these solubions back. These transformetions

are summarized in Fig. 6-1.
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TIGURE 6-1

FLOW CHART SHOWING TRANSFORMATIONS 1NVOLVED IN THE SOLUTION OF A
LINEAR PSEUDD-ROOLEAN INEQUALITY

-

Stari with paremeters

"(j 30lm>a;.j=lg R o

First pasrameter transformation
{remove negalive Y,j)

>0 e - By 4
v 8l Y3 ERS RS B
J <0 e, ja,<l-o
e, e{0,1} = T J IYJ', J J
d for j=1,2,.+-,n
d~38 - Z: Y,

(‘rj<0)

J

Solve canonical ineguality

n
.
[ 4
Z i3 2
=

Second parameter transformation.Sort
e, into descending order (produce P(i)).

J

x « P(i)}
-

LY

kA

- e

for m canonical solution families

Y o=
Fk(_l_(_; (xk,j)
k=1,2,***-m

§=1,2,7** 0

i=l,23" L

l.

¥

First solulion family transformation
P (0« F (y); k=12, " n

Seconé solution family itransiormation

Fk(y_) h Fk(_?_); k=1,2,",m

1 1
2« P =0 «1l -
(1) R Rl Vi .
1 1 - _ 11
Ye,e ¥ N s Ay = 125 5 Vs
k=1,2,-++,m k=l,2, -+ .m
i=l,2,--+.n J=1,2, .0
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As an example of inverse transformations of sclutions, observe

that =x = (0,1,1,0,1) is % solution to the canonical inequality used
) : - H
previously in sedtion 6.321 as an example: X transforms to y =

(1,1,0,1,0) which transforms to z = (0,1,1,0,0). This last veckor

satisfies the original inequality, since ~2(01) - 3(2") + 5(1%) -

1(01Y'+ 2(01) = 0. {Recall from (6-3) that 20 = Z.)

Another result which will be useful laiter to relate values of

. o,
j;- ¥ 5e; to :E:YJZJJ before and after transformation (6-9) is
J J

given below

n
T;— x;c - - zaj =g = - ji: Y. >0 {(6-18)
L7535 RS R
=1 =X , (v.<0}
I
This is easily proven by using preliminary results (6-11)

through (6-1%) and {6-9) which gi;és;-

o, n I D n
e 6 e D
7.%y., = . .= e, * v.{-e,)
ZJYJ Z SEWERE T3%3 R
1 1 1 - pH
.-.:En- n
1 1
= . + 1 -y ) ~e,)
RSB AIE
1 ptl
1
= le ﬁ‘m'Y
33 d
P+l
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As a corollary to this we can state that the inverse transform-

.ation (6-9) is order—preserving, i.e.

n a
1 1 e
‘Lz’m‘i 370 Twty) T mA s
J= J=1
(6-19)
/= -
. o .
I, o Ly 9y
=1 j=1

6.33 Families of Solubionsz.

A setz of sclution vectors formed from a given solubtion

1 1 1 )

. vector z..= (z Z N4
= ( 013 029 s On.

5 end a.set of indices I € {1,2,---,n}

iz called 2 ferily of solutions. Al members of the set match the

solubion vector Z4 at the indices in I and are free to vary at all _

indices not in I.

~

For example, z, = (0,0,0,1,0} is one solution of the example.
Iet I = {1,2,3}. The set Z(EO,I) of Solutions contains four solu-

tion vectors (including -%O)

(0 5090:030}
{0,0,0,0,1)
(0,0,0,1,0)}

(0,0,0,1,1)

This feamily can alsc he noted as F = (0,0,0,~,-} where (-) indi-

cates either O or 1.
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It E contains only one vector, namely Zy> it is said to be a
degenerate family of solutions. The number of vectors in }Lgis given
- . . . ) .
by 2 vhers 1 is the number of Tixed variables (elements) in I.

A group of solution families c_“l,lkﬂ P’e..’Ei“n is disjoint

if each solution vector belongs to one and only one solution family.
Our goal is to find &1} solubion points 2 to-the inequality

(6-2) grouped together into families. It can be shown (see section

6.352) that the method used to group solution points into families re-

sults in mutuslly disjoint sclution families.

Families of sclubions will be found ¢ the canonical inequality
(6-L4), and these families will be trensformed to solutions of (6-2],

using the inverse transformations (6-8) and (6-9)., A family of solu-

tranaformeble by (6-8) =nd (£-0) with the cbvious convention

that in (6-9) if Yj = (-), then Zj “« Yj = (-) irrespective of

_whether a3 = 0 or aj = 1.

6.34% The Relationship between Binary Trees and Solutions of a LPBI

(8k)

Certain isomorphisms exist between binary brees‘ and solu-
tions to pseudo-Boolean inequalities. These relationships prove in-—

valugble for developing algorithms to solve inequalities and to visu-
glize the sclution process.

6.341 Tsomorphism of Tree Paths to Pogsible Solutions. Fach possible

solution tc a pseudo-Beolean inegquality may be pletured as a path
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through a binary sclution tree. This is illustrabed in Fig. 6-24

for the.inequality !

3xl + 2x2 + 2 > L,

Starting from the root node 1, if we proéeed fo the left to
node ‘&, then Xy = 0. I we go to g from r, then ¥ 1. This
takes us tolstage 1. To go to stage 2, we can move to ¢ or 4 from
node a, or from node b to either node e or noée f. The stage of a node
in the solution tree is the number of levels which the node is removed
from the root ncde. There a}e n+l’ stages in thé complete solubion
tres associated with an ineéuality having n variables.

If we traverse the tree from the rcot node r %o node i in
the path r > a =+ 4+ i,-we'have enunerated one of the 23 = & biunmy
vectors x = (Xl’XE’X3) = (0,1,0). fA.move along a left branch from one
stage to the next implies that the variable X, associgted with that
stage 1s to be set at zero. A mbve to the right implies that the var-
iable is to be sebt at 1.

By traversing a path from the root to each of the terminal -
nodes (leaves) of the tree, each binary vector x can be enumerated.
Bach x could be tested to find only the x* which ére solutions to
the inequality. We conclude that each path from the root node to a
terminal (leaf) node is isomorphic to a posgible solution point x%,

By inspection, nodes 1,m and n represent solutions to the

inequality.



FIGURE 6-2

SOLUTTON TREE AND ASSOCIATED DATA FOR A SIMPLE IHEQUALITY

2
JX1+2X2+X33_h

-

~., Bolution tree

.

Value  IC.X. 0 1 2 3 3 4 5 6
Binery Xl 0 0 0 0 1 1 1 1
Vectors XE ‘ 0 0 1 1 0 1 1

X3 0 1 0 1 G 0 1

B, Partigl Path Records and Partial Inegualities Aasceisted wit

Partial Partial
Node | Stage | Path record- Ineguality
r 0 | 3L, ¢ 2, X3 > b
) 1 (0,-,-) 2%, * X3 > L
b 1 (1,~,-) X, + Ay > 1
e 2 (0,0,-) ):3 > b
‘ g 2 {0,1,-) Xy 22
e 2 (1,0,-) a2 1 -
£ 2 (1,1,-) x3 > -1
3 3 (0,0,0)
h 3 {0,0,1) —
i 3 (0,1,0)
3 3 (0,1,1) -
k 3 {1,0,0)
1 3 (1,0,1)
m 3 (1,:,0) -
n 3 (1.1,1)

h
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Fixed

Stage wveariable
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6.342 Isomorphism.of.Tree Hodes to Partial Peth Records and Partial

Inequalities. Associated with each node in the tree is a set of fixed

binary variables and a set of arbitrary binary variables.

The fixed set .of variables represents a partial path record

(PPR) from the root node to any other node in the tree. PPR's become
complete path records when the path is traced from the root to the
termina% (legf) nodes. See Fig. 6-2B for an illustration. The set
of arbitrary variables are those necessary to specify a complete path
record from a PPR. For example, at node d, the fixed variables are

3

xl and x2, vwhile x3 is arbitrary.

A partial inequality (PIN) can also be agsociated with each

node in the solution tree. The varisbles in these PIN's-are those in
the set of arbitrary variables. while the set of fixed variables and
their coefficients are absorbed into the right hand side of the PIN.
At an& pth stage node there are p fixed varisbles and
(n-p) afbitra}y variables, The PIN asscéiated with a pth stage node

is given by:

s T 2 "‘

¢.x, > Id - C. X, be
Z.Ja—' ZJJ
J=p+l Lo =t

As an éxample, node e of Fig. 6-2A has an asscciated PIN given

lx3 > b [3(1) + 2{0)] Ece ] N > 1,


http:Isomorohism.of
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Fig. 6-2B 1ist‘s the partial P]EIB:‘S and FPIN's associated ;»Tith
‘3a1l nodes of” the solution tree shovm in Fig. 6~2A.

It is péssible to Lonstruct a blnary solution tree for any
psevdo-Boolean ineguality, whether it is in general or canonical form.
Fig. 6-3 shows a solution tree for an ineguality in a general form,
Fig. 6-4 shows the soiution tree for the same inequality after trans-
formation to canonical form.

The canonical form solution treé has épgcial properties which

enable, families of solutions to be built up avtomatically from special

types of solution tree paths known -as basic. solution paths (BSP's).

These will be discussed extengively in the foliowing sections.

6.35 Solutions of the Canqhical Form

.
Fig. 6-b4 shows the sclution’ tree associated with the canonical

form of the inequality used as an example in section 6.321. TFor the
canonical inequality all solution values are bounded between 0O and
g% cj. There are no negative values. There are 19 solutions to the
l .

cenonical ineguality, just as there were to the original inequality.

6.351 Basic Solutions. OFf the 19 solution vectors x, seven have

specilal properties. These solubtions arve called basic solubtions. They

are formally definsd as follows.

A basic sclution to the canonical inequality (6-%) is a solu-

tion x* = (x*,x§,°'°,x§) such Ghat for each index 1 with x, =1

4 o3 T IR - 3 “h).
the vector (xl, sx¥ .0.xF ,xn} is pnot & solubion of (6-k)



FIGURE 6-3

BINARY SOLUTION TREE ASSOCIATED WITE AN LPBI IN GENERAL FORM
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FIGURE 6.l
BINARY SOLUTIQN TREE ASSOCIATED WITH AN LPBI IN CANONICAL FORM

Ky + 3y F Ry 2+ X 2 6

3

Fixed
Stage variable,
0
1 x
\ l

s

s 5@5@500@0@0@@@@ ’

12 392 3 45
e S| i A

o0 0j0 o 0 0[O0 0 0 9]0 O O OHL ) 1 21l 2 1 L2121 X Xf1 1 1 1
O 0 0{0 00 O|2 21 2 12 12200 O0CGC{0OOCO0O O)2 2 12 1|1 12 31 1
00011110000111100'00111100001111
0 1 1j0 0 L 110 9 L 1|0 O L X0 O X L0 O 1 Lo € 1 1 4] o} 3 L
10 2o 1 0 {01 ¢ {0 ¥ O 10 1 0 1§06 1 o0 lfo r O L;0 1 0 1
2 3 %{5 6 7T 819 2011 13 13 1k 15 16|17 18 19 2021 22 23 24|25 26 27 28|29 30 31 32

5
Values of z X%C_j which satisfy the inequelity sre cirecled.

d=1
Bonie selutions are marked with ¥ [
Sotution fomylies erc shown in brackets 2



6.352 C;anonical.Solution Families. Given a basic solution zr:; it is
.possible to define a famil¥ of solutions F_ = E{;(Ei,Ik) in & special
manney which exploits the &inimal property of the basic solution.

A solution family Fi:==§:(§§,lk) constructed from g basic

"

solution gﬁ vsing the following rules will be cslled.a canonical

solution family. Let £,(L <& j_n)' be the last "index for which
Xﬁi = 1, vhere xf = (xﬁl,xﬁg,--»,xin) is a basic solution. I, is
then defined to be the set of all indices 1 < L.

The basic sclution is a minimal solution vector x¥*, in the
sense that changing any of the variables from 1 to 0 gives a new vec~
tor x which is nct a solubtion., It is defined _cg:r_l_'IT}L for the canonical
form of the LPBI, where all coefficients are positive and all wvari-
ables are unoompleﬁented¢ ;

In terms of the solubtion trée, a .basic solution corresponds to

g solution path throuéh the tree which does not remain a solubion path
_if any right branch is changed to a left branch. Tn Fig. 6-L, the

basic solutions corresponds to tree paths numbered 12,14,15,18,19,21

and 25. A path through the tree corresponding to & basic solution will

be referred to as 2 basic solution path (BSP).

Referring to Fig. 6-%, path number 21 through the binary tree
corresponds to solution vector le = (1,0,1,0,0). This solution is
basgsic and path number 21 is a BSP. It can be made infto a cancnical

soluticn family by allowing arbitrary values for the last two O-valued




i S . ~ Al +t= thi *an 1 ~ T = . =
vector elements We can denc this family by Foq. 2:(x21,121)

*(1,0,1,-,-), where : T 1= {1,2,3} .

2
Canonical solution family F,, contains Ml 5573 Ly,
solution vectors as members. These are shown as paths numbered 21-2h,
The BSP is seen to be the lefi-most tree.path in the family. BSome can-
onical solution families have only one member (the BSP) end are said %o

be degenerate solution Families. In Fig. 6-4, paths numbered 12 and 1k

are families of this type. -
It can be seen that by kuowing only the basic solubions that
all other solutions to the canonical inequality can be enumerated.
This is Fformalized by the foliowing resulit which has been proven by
(85)

" Hemmeyr and Rudeanu .

Byery sclution to the. cancnical ineguslity belongs to one and

only one csnonical solution family.

Because the inverée transformation of canonical solutions is
one-to-one {see (6-1T7)), the above result holds after the transform- -
abtion. Thus, when the canonical solution families are subjected to
the inverse tramsformations (6-8) and (6-9), we get mutually disjoint

gsolution families to the original inequality.

The problem of solving the pseudo-Boclean inequality is now re-
duced to the problem of identifying all basic solutions of the canon-

ical inequality. This will be the subject of the next section.
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6.36 Summsry of Solution Procedure for the LPBI

Section 6.35 shows that the solutions to the IPBI (6-2) may be
obtained in mutually disjoint families by the following procedure:
(a) +transform the original inequdlity to canonical form;
(b) determine all basie solutions to the cenonical form;
(c) construct cgnonical solution families uasing each basie solution:
(@) inversely trensform the canonical solution families and get solu-

tion familizs to the original LPBI (6-2).

6.4 Determining Basie Solutions of the IPBI by Searching

the Binary Sclution Tree

The method used to determine basic solutions of the canonical”

inequality is based on finding all BSP's in the associated binary
solution %ree; This method,relies upon systematically 'visiting'
nodes of the itree, starting at the root node and moving in = downwaxd
direction %oward the términal (leaf) nodes. When a node is 'visited',
the parameters of the associated PIN are examined.' This gives inform-
ation about which nodes to visit next.

Tor each node visited,'it mey be possible to eliminate further
dovnward motion in the t¥ee through one of the following two devices:
(&) by determining that no BSP can exist using a branch directed dowm

to the left, right {(or both) of the current node;

(b) by enumerating all complete BSP's vhich employ branches directed
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dovn to the left, right (or both) of the current node. This mekes fur-
ther downward movement vnnecessary.

When all downward paths through the solution tree have been
blocked by (a) or (b}, it follows that all BSP's have been found, and
the node visiting operaticn stops.

The elimination of dowgward (away from the root) movements in
the tree through results obtained higher up (eloser to the root) in the
tree can be called a 'branch-and-exclude' scheme. The subtree whose
nodes are actually wvisited is then a small segment of the original so-
lution tree. This subtree can be considered to arise from the original
tree by a branch-cubting or'pruning operation. TFor this reason the

final algorithm. developed is called a tree pruning slgorithm (TPA).

L. - L e = £ - = >
At & given node, the decision toc pruns aznd/or to enunsrate

BSP's is hased on a classif;cation écheme to he applied to the para-
meters of the PIN associated with the node. The classification scheme
is due to Hammer and Rudeanu and is discussed in section 6.52.

When they are identified, complete_BS?‘s are constructed using
both the PIN and the PPR at any'given node. This 1s discussed in
section 6.51.

Development of the TPA can be broken dewn logically into two
parts. Definition of vwhat is done when a node is vigited is one part.
The other part gs concerned with the scheduling of node v}sits. At
though these two logical parts are linked (node visits can alter the
schedule of remaining visits), it will be convenient to consider the

node visiting porxrtion firvsh.
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Section 6.5 provides vheory and methods relabing vo what is
‘done at an individuval node when it is visited. This inecludes construc-

tion of BSP's and pruning of the solution tree.

The scheduling and recoxd keeping details related to node

vigits are deferred to section 6.6.
6.5 Solution Constrﬁction.and Wode Visits

6.51 Constructing Complete BSP's from Partial BSP's

As nodes in the subtree are visited, the PPR is maintained.
Thus suppose ab some node currently being visited, a basic solution to
“the P1N is ‘identified by the scheme to be presented in section 6.52.

Then the complete ESP consiste of two purbs and is consiructed in The

s

following manner.

The firxst part of the complete BSP is the PPR to the current
node. The second part is the basic solution of the PIN associated

with the current node.

These remarks may be formalized by the following results (see

e,

Hammer and Rudeanu
%

* F
(-Di-) Let (X 3X27'°.:X s X

-x'
0 p+l’;°"xn) be a basic solution of the

e A % *\ . X .
canonical ineguality (6-4). Then (XP+1,.,.,xn) is e basic solution of

the inequality
113

L
E ij. 2‘_ a - Z CKXK-.
k=1

Je=ptl
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* *®

. * .. . . . .
(B) 1f (Kp+l’xp+2"°"xn) is a basic solution of the inequality

n

C,x, > 4,
dod T

J=pr1

then (O;---,O,x;+l,-=-,xn) is a basic solution of the complete canoni-
cal inequality (6-U).

. . # # :
(C) If 4> 0 ang (xe,-=-,xn) is a basic solubion of

n

Z ijj >d - Cl,

j=2

* ¥* *
then (1,x2,x3,”.,xn) is a basic solution of (6-4).

Result .(A) allows partial paths to be excluded from further
eons}deration when they are "dead~ended" by a PIN which has no solu-
tion. ({(Use the contrapositive form of statement (A).)

'Repeéfed applications of (B) and‘(C) allow construction of
complete BSP's from PIN basic solutions and EPR‘S. By repeatedly ap-
plying (B) and (C), one starts with a basic solution of the PIN and
constructs .a. complete BSP by prefixing one element of the partial path
record at a time to this basic solution. Results (B) and (¢) validate
the formation of a complete BSF by simply prefixing the PPR to the ba-

sic solution of a PIN at the node being visited.
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6.52 Node Visits Summarized in Terms of PIN Parameters

By using (A),(B) end (C) of 6.51 above, Hammer and RudeanucaT’

88,8 .
»89) have bullt up the clever Solution Decision Table showmn on Fig.

6-5. This table is important because it permits inferences to be made
about the solutions of a FIN simply by inspection of its coefficients
and right hand side.

The flow chart on Fig. 6-6 presents a modified version of this
decision table which shows the sequence of calculations which are per-
formed on the parameters-of the PIN associsted with the current node.
This flow chart is applied when thé node is 'visited'. Examining the
paramecters leads to a classification of the FIN into one of T mubually
-exclusive cases. Each of ﬁhe T cases gives informabtion ébout basic so-
lutions and exclusion of ne:ighborin]g nodes in the tree.

Thus et any node of the soluvion tree p baesic solutions to
the PIN may be identified where p j_no"In addiﬁion, one or both of
the branches extending from the current node may be exeluded from fur-
ther consideration.

Fié. 6-6 defines exactly what is done when & node is visited.

This completes the discussion of this part of the TPA. Scheduling of

node wvisits is next considered.

6.6 Scheduling Node Visits in the Binary Solution Tree

This section develops methods for the following items:
{a) scheduling ncde vigits in the binary soiution tree;

{b) maintenance of FPR's corresponding to the node being visited;



FIGURE 6~5

SOLUTION DECISION TABLEL

c12a.?c5>d>cp+i;..;cn

xk=1,x1=...=xk_1=xk+1=...=xn=0
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of

S e

c:x3d ~ ¢
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&0,c4<d(i=1,2,...,n)

n n
Zcf»d and ch}d
i=1 j=2

The basic solutions (if any)
are characterized by the

property: elither xq =1
and (%5,...,%,) is a basic
solution of )
n )
Z Cj){j}(] - ¢ or:
i=2

x1=0 and (x2,...,%,) ic a
bagsic soluticn of

n
‘Z‘ ijj?,d
j=2

T (8, (5,
ana ()

1From:

Peter L. Hammer and Sergiu Rudeanu, Iscudo-Boolean Methods fox

Bivalent Programming, Lecture Notes in Mathematics, Vol. 23, (Berlin,

Heidelberg, New York: Springev-Verlag, 1968), page 27.
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FIGURL 66

FLOV CHART ShCUING THE FODIFIED SORUTION DETISION TABLE FOR
CLASSIFIIIIG PARTIAL IHZQUALITIES
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Case 1. .
Untaue basic solution;

K =Xy= e - -=X =0t

Eaclude lefi and raght
branches.

Case 2. Unique basie splution;

kl=h2="'=xn=¢:
Exclude left and right
ranches.,

Case 3. No basic solutrions:

E::elude lefi and raght
branches.

Case 4. n basic solutions.
for overy X=1,2,00t,nm; Xl
and X, = - =% =X,
and &y k-1 - Txel

» =X = 0: Exclu@e left
and rigﬂt branches.

=1

Case 5. p basic solutions;
for every K=1,2,-++,D; X‘(
and Xl = e B XK=1 = XK+1 =

X = 0: Exclude right
n
branch, advance p stages

down left branch.

Case 6. Ko basic solutions:
Exelude lelt branch,advance
one stage down right branch,

(<0}
& o
(=0}
1
Compute
n
E €25, (=a)
=1 %
{<a) ]
{
(>d} LW
%
Compute p such that
C.>C.»->C 24
i TE - - "n
’ Cp+1 zrrz Cn
X
>0
® (>0}
(=0}
Compute
T on
> e, e
3=2 {<2)
(<d) (>1)
32 ‘
o . -
(z3}
4

Case 7. o basic solwiiens:
Pxelude neither left nor
right branch, Advance ore
stace dovr both left and
r1ghil branches.
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(c) maintenance of a PIN coefficients list corresponding 4o the node

being visited. |

Ttem (a) asbove is developed by first consideriné a simple al-
gorithm for scheduling pre-order binary tree traversal. (Pree traver—
sal ia the process of visiting &ll nodes in some specified order(QO)).
This gimple algorithm is presented in section 6.62. It does not allow
the outcome of node visits to alter the schedule of other node visits.
The entire tree must be defined prior to traverssl in this simple al-
gorithm.

Section 6.63 discusses modifications to the tree traversal al-
gorithm (TTA) to permit treé pruning. Tree pruning is the process
whereby the tree traversal spheﬂule is modified by results obtained
when tree nodes axe visitea!

Finally section 6.6k gives Jetails on how the dynamic PPR and
PIN records are maintained during'the traversalc_

Section 6.61 precedes &ll the sbove with a simple example of
how the TPA should work to illustrats the problem of dynamic scheduliag

of node visits.
6.61 A Simple TPA Exemple Problem

Consider the tree ghown in Tig. 6m2A=. One method of starting

at the root node and segquentially visiting each node in the tree only

(91).

once 1s called pre-order tree traversal

The pre-crder traversal segquence aﬁﬁlied to the tree gives the

follewing order for node enuwmeration: rrerergrhrdeia Jrbrerkr Iy aon .
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At each node in the order given above, the PIN is classified using Fig.

For node r, We have case 6 of Fig. 6-6 since d » 03 C, < d;
i

n

:E: C, > d; and
i

i=]

setting X, = 1 end advancing one stage down to the right to node b.

n -
jg: Ci < d. The basic solutions, if any, are found by
i=2

-

We have bypassed the entire left branch of.the tree (where x; = 0).

Thus we have eliminated nodes (a,cgd,g,h,i,j) from further considera-

\
tion. This is an illustration of the pruning operation.

The revised schedule for pre-order traversal of the remainder
of the treg is TDbeerkrl>frmin. At node b we consider the. PIN: Exl +

Xy 2 1. This inequality matches case 4 of Fig. 6-6, since €, » Cy =
d=rp =2 =n. Thus the basic solutions of the PIN are giyen by {1,0)
and-(Ofl)n Since (xl,xe,x35 = (1,—~,~) is the fPR at node b, the BSP's
to the original inequality ave given by (1,1,0) and (1,0,1). This con-
cludes the traversal process since all other nodes heve been excluded,
and the algorithm terminates after node b has been visited.

Thus by analyzing PIN's at two nodes of the 15-node tree,-all
the basic BSP's have been found. The ideas presented in this example

represent the basic procedure used to identify all the BSP's in a solu-

tion tree.
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6.62 The Pre-Order Tree Traversal Algorithm (TTA)

The general LPRI solution precedure has been illustrated in
the preceding section. An important charecberistic cf‘thié procedure
is the successive re-definition of the traversz} schedule which oc-
eurs as a result of node visits. A separate sub-algorithm to handle
dynamic changes in the traversal schedule iz needed.

The algorithm for dynamic scheduling used in the fingl TPA
has been derived from s simpler glgorithm called the pre-order TTA.
The TPA allows no dynamiec modification of the tree structure and re-
quires that the entire tree be defined before node visiting begins.
To promote understaunding of the finel TPA, the simpler TTA is pre-
sented here in detail.

There are three principal ways to traverse a binar& tree,

- visiting each node once and conly onece. These methods all give rise
to a specific-ranking of th; tree nodes in the order in which they
will all be vﬁsited. They are ﬁgrmed pre~order, posb-order and end-
order tré;ersal(gz). Pre-order traversal will be used bhere. I% is
defined by the following successive steps:

{a) visit the root;

(b) traverse the left subtrec;

(¢) traverse the right subtree. In the exemple stated previously in

section .61, the tree of Flg. 6-2A has & pre-crder traversal schedule

given by: (r,a,c;8,h,4,1,5,0,e,k,1,8,mn).
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Before describing the method used bo guarantee pre-order trav-

‘\ersal, it ié corveniernt ﬁ% discuss three dats structures reguired,
namely & link table, a puéhdewn Jist and a single werking storage
location. The link table is necesgary bo shovw how the trée nodes are
linked to each other. For the trée of Fig. é«ZA we can show a link
diagram and correspondiﬂg-liﬁk table {gee Fig. 6-7). The tree struc-
ture is completely defined by-the link takle. Each tree node has &
left and & right link o other nodes. Tree nodes are given an integer
tag Tor internal machine use, hut this tag capn be related to other
symbols via a-look-up table. The nuil link is represented here by -1.
The data structure STACK is & push-down, pop-up list with last-in,
first~ont (LTFO) Aiscipline. S8TACK funchions as a 'memory’ for nodes
remaining to bhe visi%eds 4 single storage location labeled P is alsc
required to define tﬁe node currenily being visited.

The followiﬁg convéntions will be used to describe data storage
and dgts movement instructions. We rea&‘P&LLINK(P) as "'replace the
contents of memory location P with the contenis of the memory location
LLINK(P)"ﬁ‘ femory location LLINK(?) is not modified by the preceding
operation. For push-down list operations, we resd R<STACK as "réplaee
contente of memory location P with the contents of whichever memory
locabion is at the top of the push-down list STACK'. After this opera~
tion, the list STACK is ©o b2 popped up, or éhértenea by one item. The
deta transferred to P is no lonéer stored in SWACK giter whe list is
popped up. The list operation STACKP means that "the contents of mem—

ory location P are to become the {irst item in the list STACK, on top
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FTGURE 6-7
BINARY TREE WITH ASSOCIATED LINK DIAGRAM AUD LINK TARLE

(4) Tree Diagram

(B) Link Diagram

f\i -
iy i o i

{C)} Link Table :

Fode P LLINK(P) RLIDE(P)
r 1 2 3
a 2 L - 5
b 3 (6] 7
e b 8 9
d 5 10 i1
e G 12 13
£ 7 1h 15
g’ 8 -1 ~1
h 9 -1 -1
1 10 -1, -1
J 11, -1 -3
I 12 -1 -
1 13 -1 -1
m L -1 -1
e 15 -1 ]
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of elements already in STACK." This pushes down the list by adding one
more element. The contents of mewory location P are noi modified.

The TTA is described by the flow chart of F;{g; 6-8. (Tuis de-
scription is similar Go that for s post-order TTA given by Kﬂuth(gs).)
Operatioﬁs shown in this {low cha¥t are numbered. Written descriptions
of these operabions are given below. These descriptions are numbered
to correspond to the numbers of Fig. 6-8.

(1)‘P@ROOT, The numwber of the current node is replaced by the
number of the root node. This is an initialization step. BSTACK is as-
sumed empty.

(4) VISIT P. Some operation is performed st node P (such as
investigating the parsmeters of an inequality).

(5) STACK<~P. The node number in P is put on-the push-down
list STACK. (Wote that the contents of P are not modified.)

(2) PLLINK(P). Thz node number in P is replaced by the node
number in DLINK(P) which is defined in tﬂe link tsble. This prepares
for & move down the tree and to.the left.

(3) P = -1?. Test to see if the combents of P are the null
link., If &es, go to step (65 to determine whether STACK is empty. If
no, go to step {(4).

(8) STACK EMPTY?. If the push-down list STACK is empty, the
algorithm is terminsted. If STACK ig not empty, go to step (7).

(7) P<STALCK. Beﬁlace the contents of P with the node number at
the top of the push-dovm list STACK. This pops up the list. The tree

move is upwerd and to the right;back to the pivot node.
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FIGURE 6-8
FLOWCHART SHOWING AN ALGORTPHM FOR PRE-ORDER TRAVERSAL OF BINARY TREES

@

P<RLINK(T) P<STACK,

@

P<LLINK(P)

A

® ® -

STACKP 'YISIT
P _ STOP

A

1)

N
P<ROOT

START

Note: The tree is assumed defined by a complete link table, with -1 as null link

Note: Algorithm steps are numbered to correspond to the descriptions gilven in the text
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(8) P«RLINK(P). Replace %he contents of P with bhe right link
number of the current lirk in P, The tree move is dowmward and to the
right., away from the pivet node.

Operation of the TPTA can be further illustrated with an example
using the tree of Fig. 6-2A. Fig. 6-9 shows a "snapshot" of the con-
tents of the various memory locations afier each step of the algorithm
(as shown on Fig. 6-8) is completed. Thirty-nine sequential steps ave
shovn, which caused nodes r,a,c,g,h,d to be visited in that order. ‘
Traversai of the rest of the tree in pre-order can be continued in the
same way until node n has beén explored, at vhich time the slgorithm

terminates.

The pre-order TTA consists of 2 types of operations:
{a} moving dowmward and to the léft in the tree, one node at a time
while retaining a record of-downward moves (node numbers) in the push- -
dovn list; and
{(b) moving back up to the right, one node at a time, by popping up
the'pushdewn list, then moving down to the right, cne stage. Thisg is a
'hack up and go round the corner' type of move.

Kote that the push-down list STACK never contains more than

(n+1) elements, where n is the number of levels (stages) in the tyree.

6.63 Modifying the TTA to Permit Tree Pruning

The pre-order TTA presented in section 6.62 provides the basic
framework for the TPA. However, there are two modificavions of the TTA

vhich must be made. These are discussed below.



EXAMPLE PROBELM TLLUSTRATING

FIGURE 6-9

THE TREE PRE-ORDER TRAVERSAL ALGORITHM

et
[8:4
[aS]

n Step P Stack Comments
1 1 1r) INITIALIZE
2 i 1(r} VISIT P
3 5 1) i{r) STACKP
i 2 2(a) 1{r) P«LEIHK(P)
5 3 2(a) 1{x) TRGT P
6 I 2{a) 1(r) VISIT P
7 5 2(a) 2(a),1(r) STACK«P
8 2 L(e) 2{a),1(r) PLLINK(P)
9 3 L{e) 2(a),1{r) TEST P
10 I Ii{e} 2(a),1(r) VISIT P
i1 5 b(ec) k(c),2(a),1(r) STACKP
12 2 8{g) h(e),2(a},2(x) P<LLIKK(P)
13 3 8(g) Y{e),2(a),1(x) TEST P
1h i 8{g) kie),2(a),1(x} VISIT P
15 5 B8{g) | 8({=), {c),2(a),1{xr) | STACK=P
16 2 -1 | 8(g).k(c},2(2),1(r) | PELLINK(P)
17 | 3 -1 | 8(g),4(e),2(a),2(x) | TEST P
18 6 -1 | 8{g),b(e),2(a),1(x) | TEST STACK
19 7 8g) b{c},2(a),1(z) PeSTACK
20 g -1 bic),2{a),1(x) PeRLIFX{P)
21 3 -1 hi{ec),2{e),L(xr) TEST P
22 6 -1 bic}.2(s),0{r} TEST STACK
23 T b(e) 2(a),1(r) P+STACK
2l 8 g(n) 2(a),2(r) PeRLIVK(P)
25 3 9(n) z2{a),2(r) TEST P :
26 [N a{n) 2{a},i{r) VISIT P
27 5 9{h) a(h),2(a),1(r} SPACK<P
28 2 1 9{h),2(a},1{x) PeLLINK(P)
29 3 -1 9(h),2(a),1(x) TEST P
30 6 -1 9(h),2(a),1{r) TEST SPACK
3L 17 9(n) 2(2),1{r) PeSTACK
32 8 -1 2{a),1(r) P<RLINK(P)
33 3 -1 2(a),1(r) TEST P
3k 6 -1 2(a),1(r) TRST STACK
35 [ 2{a) i{r) P+STACK
36 8 5{a} I{xr) P<RLINK(?)}
37 3 5{(d) Lir) TEST P,
38 i 5(a) 1{r) VISIT P
39 5 5(a) 5(a),1{r) STACIP

LINK TABLE
Hode| P |LLIEK(P)| RLINK(P)
r 1 2 3
a 2 b 5
b 3 5 7
c 4 3 g
a 5 10 11
e 6 12 13
£ T ik 15
g 8 -1 -1
h 9 -1 -1
i |10 -1 -1
3 |1 1 = )
x iz -1 -1
1 |13 -1 -1
n }1h -1 -1
n |15 -1 -1
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6.631 Elimination of the Pre-Determined Link Table. The traversal al-

gorithm requireé that the link table be defined before traversal. In
the search for BSP's, maﬁy of the tree nodes will never be visited,
since they will have been excluded (pruned away) from further consider-
ation by resulits obtained at nodes nearer the root of the tree. Link
table %nformation for nodes to be excluded.is not needed. To avoid de-
fining thé free completely ahead of time, the tree is constructed by
the algorithm itself, and the only nodes which are defined in the link
table are those which must be visited, i.e. those which have not been
pruned away by previous results obﬁained higher up in the tree. Thus
the structure of the tree is actually determined as it is traversed.
Neceséary modificatfons to the algorithm shoﬁn on Fig, 6-8 in—
volve only the insertion of a new OPeration between the blocks labeled

|

(b} and (5) as shown below:-

(5) ' )

DEFINE
STACK<P et LLINK(P) 7 fes YISTT!
RLTNK(P) P

This new operation is the definition of left and vight links of anode P. .
It can be considered as part of bloek (4) ('VISIT!' P) if desired.

' 6.632 Storage Allocation Modifications. Defining a link table as the

tree 1s traversed introduces practical considerations. How can identi-
ficétion numbers be assigned to new nodes? And, how much storage space
is required for a link table used vith a tree of givgn size?

One obvious method for assigning node numbers is to‘éefine a

nev sequential integer for each new node that is discovered. The size
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of the link table is then proportional to. the size of the set of vis-
ited nodes, i.e.

n
1424kt « 2" =,:[: 2k = 2n+1 ~ 1

for a tree with all nodes visited. This is the maximum size of the

link table and several values are shown below.

R
| :E:’ ok L ooetl o
n_ . - k=0
5 63
10 2047
15 65,535

Clearly thig method is un%quable, since maximum sﬂorage space
reguirements are mucﬁ too great.

The .method used in fhe TPA .is %o usg‘node'ﬁumbérs over
again. The node number (index in the link table) is assigned to a
new node once the node it originally was assigned to feco&es inactive.
From the déscription of the pre-order THLA, it can be sesn that once a
tree node is removed from the push~down list STACK {a 'back up aﬁd

around the corner' move), this node is not Wtilized for any further

processing and will be defined as being inactive. (Aétive nodes are
defined as those nodes which are in the push*déﬁn list STACK, or those
nodes which are right links of nodes in STACK, since right link nodes
ma& become occupants of STACK.) Once nodes become inactive, their node

numbers become eligible for re-assignment toc new nodes.
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Since the meximum number of nodes in STACK at one time is (n+1),
‘and since each node has only one posgible right link, the ﬁaximum,num—
ber -of active nodes will be 2(n+l). Thus, the dynamic link table will
contain at most 2{n+l) node link records. Also only 2{n+l) unigue
node numbers will ever be needed at one time.

In order to assign node numbers as needed during traversal of
the tree, a second push~dovm list PLIST is initially loaded with 2(at+l)
consecutive integers so that the firsi integer removed is 1, As the
tree is traversed, new nodes may be identified. These new nodes will
be assigned nuwbers taken {rom the top of PLIST which pops wp the list.

Numbers from inactive nodes are placed on the top of PLIST

which pushes down the ligt. This oceurs as soon as the nodes bpecome in-

o
LN

{
‘l

lurf

. L = o= = -~ -y A e o
active, or between steps (T) and (8} of betwesn the 'move

. ig. 6-8
‘back up', and the 'move down -right').
The TPA with the modifications necessary to provide for the

dynamic link table is showm in Fig. 6-10.
6.64 Maintaining the Dynamic PPR and PIN Records

6.641 Maintenance of the PPR. As was discussed in sections 6.41 and

6.51, a complete BSP of the canonical inequality ls constructed from
two combonents. The PPR from the rcot to node P is required together
with a basic solutioch of the PIN associated with node P,

In addition, the PPR iz required to foxm the right hand side
of the PIN from the yight hand side of thg complete canonical in-

equality.



| FIGURE 6-10
FLOWCHART OF THE THREE TRAVERSAL ALGORITHM ATFTER MODIFICATION TO PERMIT

GENERATION OF A DYNAMIC LIFK TABLE

i

1

PLIST+P j

PeRLINK(P)

P+STACK

P+LLINK(E)

STACK«P
I

i A

%(1

INITIALLIZES:

P<+ROOT

- WISIT 'P

JLLINK(P )+PLIST

e PILISYT e ———

i

F .
¥

—za STOP

START

RLINK(P }+-1.

LLINK (P <PLIST

A

|
|
|
|
|
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The above two uses require that the PPR be recorded and updated
. a8 the various t?ee nodes are sequentially visited.. This represents an
‘addition to the pre-~order TTA.

The PPR is an ordered list ef O's and lis (left and right’
branches) along the path from the root node to the current node P.

A running record of the partisl path is kept in a binary vector
Y(J) having n elements. The.indgx of the last element of ¥(J)
which iz recorded represents the ‘'level’ in .the tree.vhere the current,
node P is located. Recall that the "level' associated with any node
P ranges from O (the rcot nede) to n  (the leaf nodes). This level
is called STAGE(P) in the trees c;f Figs. 6-2, 6-3, and 6-%. The var-
_iable STAGE(P)} is assigned as an attribute to each new node P in
the d@ynamic link teble at the samé time LLINK(P) end RLINK(P) are de-
fined. STAGE(P) is retained as part of the node record in the dynamic
link table.

Aé'the partial path grows dOané¥d and to the left, 0's are
added to the list Y(J). As the partial path is retraced back up the
tree and downward to the right, the list ¥(J) is first shortened and
then expanded with 1's reflecting the rightward move.

To permit the list Y(J)} to be modified as the tree is trav-
ersed, two pointers PPL and PF2 (called the following .and -lead pointers
vespectively) which refer to elements in Y(J) ére used.

As movement proceeds dovaverd and to the left in the tree, the

pointers and the PPR are revised according to the following rules:
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PT1 <« PT2
PT2 <« STAGE(P) (6-20)

Y(3) < 03 J=PTL+l,.--,PT2.

These oPeratio;s expand the list Y(J) by =dding zeros.

Fig. 6~11 illustrates how the PPR is dynamically wmodified.
Suppose the partial path and PPR shown in Fig. 6-11A exist at some
time during.enumeration of the tree. This is to be regarded as initial
data. WNext, suppose a move is made extending the initial partisl path
down two stages to the left. Revised data is given in Fig. 6~11B, af-
ter using (6-20).,

As movement ‘proceeds back up the tree and then downward and to

the right, the pointers and the PPR are revised according to the fol-

lowing rules:

" P <+ STACK
PT1 « STAGE(P)

P

0

RLINK{P) (6~-21)
.PP2 < STAGE(P)

Y{(J) < 1; J=PT1+l,*-*,PT2 .

For example, starting with the data shown in Fig. 6-11B, assune’
a move is made back up the tree and down to the right. The final re-
sults are shown in Fig. 6-11C. The PPR Y(J)'= 0 is erased as move-
ment proceeds back up the tree, and overwritten with Y(J) =1 as

movement proceeds down and to the right.



FIGURE 6-11

DETATLS OF PPR AND PIN DYRAMIC

I
!

A, Initisl Data
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MODIFICATTONS

PIN Parameters

Path Stage -PPR Jd ca) cria)
1 8 3
Y= (0,1,1,~,-,~) 2 6 /{2
; 3 3///‘fl
v
PT1 L 3 -
PT2 5 2 -
6 i -
D=7 Di=-p
B. Data After First Revision
Stage PPR J o3y ¢ {J)
0 I 1 8 1
. Lo . A
-1 = {0,¢,l,0;9,-) 2 6 g
- 2 l“ 3 3 /....
-3 PT1 L3 -
— PT2 5 2/ -
5 6 1 -
6
) D=T =2
C. Data After Second Revision
Path Stage PPR Joclg)y ¢ (J)
S — 1 2
1, Y = (0,1,1,1,-,-) 2 1
AR
S 2 J J 3 T
3 PT1 I ) -
% e )y P2 5 -
5 6" -
6 .
=7  D'=-5
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6.642 Maintenance of PIN Coefficients. Provisions are also made for
dynamically uvpdating coefficients and right hand side of the PIN as the
tree is traversed. This is another addition to the TTA.

A list of coefficients Ci(J), J=1,2,*'*M is maintained by
using the list of coefficients c(r}, J=1,2,-+-, for. the original

inequality. The €'(J) are copied from the list of C(J) as follows:

i

M+ N - PT2
K < PT2 + L ) (6-22)

¢ (L) < C(K); T=1,2,....M .

The right hand side D' of the current PIN is then given in

. terms of the original right hend side D as:

PT2
D! <D - Z [C{T)*x(T) 1. (6~23)
) - d=L

An example of PIN perameter revision using (6-20) and (6-22)
is shown in Fig. 6-11B. Fig. 6~11C uses (6-21), {6-22) ana (6-23).

This completes the discussion -of modifications end additions
necessary to convert the pre—order TTA to the TPA. A flow chaxt of
the TPA is shown in Fig., 6-12. A detailed description of this flow

chart is presented in the next section.
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FIGURE 6-12

FLOW CHART OF THE TREg PRUNING ALGORITHM FOR SOLVING PSEUDO-BOOLEAN
INEQUALITIES IN CAUONICAL FORM

@

PLYST<P P+RLINK(P)

A

&

i3

PT1+STAGE({P)

B> PI2-STAGE(P)

®

)

PSTACK

STOP

¥

Adjust pointers for a Adjust working solution for a

move down end ic lefs. move up and down to righi.
PT1 « PT2 ¥(5) « 1

PT2 + STAGE(P) J = PP o+ 1,...,002

i
]

I @ . ©®

Adjusi vorking solubtiovn | Update working coefficient list.
@ for move to lefd. - Ml - PP2
P LLINK( P) ¥(3) 0 1 eo(u) « (L + FT2)
J=PF'L + 1,...,FI2
Z i T = l’, - ,I‘I
A .
® ¥
VISIT.?: Define (X1,X2) Updave working raight hand side.
. LLIHK(P) ; SPAGE{LLINK(P))| e .
- RLINK(P}; STAGE(RLINK(P)) ™= [ 5 . ]
( Ble - #
P+PLIST for new nodes o Z {Y(J) C(J)!
] E B
€ ®
STACK<P T
- (no basic
solubion) -7 - TRIPTALIZE ®
J: - It PLIST; P+ROGT
P : ' K
VL ® I
+ » Record basic

R START
soluiions

Hote: Algoriihm steps are mmmbered to correspond to the descriptions given in ihe bext,
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6.7 The Tree-Pruning Algorithm (TPA}

6.71. Detailed TPA Descripbiom

The TPA is described by the flow chart of Fig. 6-12. The var-
ious operations shown ;n this flow chart are numbered and the written
descriptions given below refer‘to these numbered operstions.

(1) Initialize. The push-dovm list of new node num;ers PLIST
is loaded with sequential integers l,2,-=-,2(N+;). The first integer
(wnity) is removed from PLIST and placed in P +to correspond to the
root node. STAGE(P) + 0 for the root node. )

The PPR is undefined at the root node. The pointers PTL and
PT2 are both set to zero. ;

[C'(J\ and D' are met equsl to the can-

' Fa

The PIN parameters
oni?al ineguality parameters C(J)_;and D.

(2) Visit P. ‘The PIN associated with no@é P is -clgssified
uwsing Fig., 6-6. X1 is the classification case number and X2 is the
number of PIN basic solutions identified. If nodes linked Lo P are
identified, they are assigned numbers from the push-down list PLIST,
These node numbers are entered in the dynamic link table as LLINK(P),
RLINK(P) or both. They appear as part of the node ?” record. Also
each node linked to P has its attribute STAGE(LLINK(P)), STAGE(RLINK
(P)}, or both recorded in the dynamic link table at this time.

(3) Test for basic solutions. If X2=0, then no PIN basic

-

solutions were identified when P was visited.’
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(4) Construct end recoerd sll complete BSP's discovered. ALL
PN fasic solutions (X2 of them) identified in step (2) are used here.
‘Each complete BSP is constructed using the PPR and a PIN basic solution.
The form of each PIN basic solution is determined indirectly by X1
from step (2).

(5) STACK<P. The number of the node just visited is placed
on the top of the push-down list STACK.

(6} P<LLINK(P). The nuwber of the node just visited in step
(2) is replaced by the number of its left 1link node. The movement is
dovnward and to the left in the trec.

(7) Test for null link.' Here the test P E) is performed
to determine whether the node visited in step (2) has a left link to a
.new node. If no link node exists dowmward to the le%t, then control
transfers to step (8) for a move back up the tree ta the node visited .
in step (2). This is followed by a move down and to the right., If a -
left link'ggég exist to a node fu;thér down tﬁe tree, then control
traﬁsfers to step (19) for updating the PPR and the PIN paramebers.

(8) P<STACK. The nuiber of the node visited last is removed
from the pﬁshmdown list. This node is the pivot node for a move around
the corner and down to the right.

(9) PIL«STAGE(P). The following pointer in the PPR is moved
back 4o the stage of the pivot ncde (sometimes this step results in no
actual movement of the pointer).

(10) PLIST+P; Since the pivot ﬁgde will not be needed again,

it becomes inactive and its node number is released for future use by
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new nodes. This is done by placing the node number back on the push-
.down list PLIST.

(11) PeRLINK(P). The number of the pivos nodé P is replaced
by the number of its right link for a move down the tree and 'to thne
right.

{12) Test for null link., Here we test whether the Fight. link
of the pivot. is pon~null. If it is null, then go to step (13) to
test for an empty STACK. If it is not null, then go to step (15) to
prepare to visit the node.

(13) Test for empty STACK. If tne push-down list STACK is
empty, then the algorithm is terminated at step (14) and the tree has
been completely traversed. |

(1k) STOP. The tree has been traversed.

(15) P72 « STAGE(P). The lead PPR pointer is moved shead to
correspond to the move down ‘the tree-. {STAGE(P) was established in
step (2))f . .

(16) Y(J) <« 13 J=Pri+l,---,PT2. The PPR is expanded to re-
flect the move down the tree and to the right.

(1%) M« N - P12y C(L)} « C{L+FT2), I=1,...,M. The PIN coef-
ficients are updated to correspond to the node P wﬁich-ﬁill,be visited.

. Pz
{18) DF <D ~ 2: [Y(3)yx¢(J)]. The right hand side is adjusted
J=1 -
i0 correspond to the PIN asscciated with the node P which will be

visited.
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(19) PT1 « PT2;PT2 < STAGE(P). Advance both leading and fol-

- lowing PPR pointers to correspond to a move down the tree and to the

1
i

left.

" (20) Y(J) « 03J=PTi+Le-:,PT2. The PPR is expanded to reflect

F

the move down the tree and to the right.

6.72 Example Problems

Two exaﬁple problems are given here. Fivst, the very simple
example used in section'6.61 and shown in'Fig. 6-2 is presented here
in detail. This example shows step.—by—step operastion of the TPA. It
iz discussed in 6.721 below.

The second-exaﬁple (in seetion 6.722 below) illustrates the

f

entire LPBI sclution process. This includes:
i

(a) dillustration of the parameter transformation to canonical form;
(b) an overview of basic sclution deterﬁination using the TPA;
(c) generation of canonical solution families from basic solutions;
(3) transformation of canonical solution families to general solution
families.

The LPBI used in the second example is the.same cne discussed

in section 6.352 and illustrated in Figures 6-3 and 6-4.

6.721 A Detailed Example of the TPA. Tig. 6-2A shows the complete

solution tree for the inequality

3x. + 2x. + x

1 p v X3z M
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By applying the TPA of ¥Fig, 6-12 to this tree, we can solve the in-
equality. The general method of doing this was illustrated in sectiom
6.61. Fig. 6-13 shows the detailed results as the TPA of Fig. 6-12 is
applied. BEach step of Fig. 6-13 corresponds to a numbered block in the
flow chart of Fig. 6-12, The status of all data structures except the
-link table is shown in Fig. 6-13. The status of the d&namic Jink tahle
is illustrated in Fig. 6-~1l4 as it is modified during the tree traversal.
Only two records appesr in this link table because only two tree nodes
gre visited before all golutions are found.

6.722 Solving the General TForm Ineguality. This example follows the

solution of the inequality

—2zl - 3z, * 523 - 7y, * 225 > 0,

The solution tree to this general form inequelity is illiustrated in.
Fig. 6-3. Tye transformation of the ineguality parameters to canon-
ical form is shown in Fig. 6-~15A. The same transformetions were used
as an example in section 6.321. They are presented again in 6-15A‘
with other transformations required‘for the complete solution of this
ineguality. The solution tree associated with this canonical ineduality
is shown on Fig. 6-k4.

The- application of the TPA of Fig. 6-12 is illustrated below ta
find the seven basic solutions indicated in Fig. 6-15B and in Fig. 6-L.

Wode visits are presented sequentially and detailed resuvits are shown.

Each paragraph below corresponds to a single node visit. The growth of
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FICURE 6~1h

CONPINUARION OF EXAMPLE PROBLEM SHOWING DEFALLS OF TREE PRUNING ALGORITHM

Origanal Dete (Canonicsl Form) Exploration Peth
4 Coef(J) | D=k . . \‘
=
! 3 R
2 2 & 3
3 1 .
¥ i

C‘r/?"

basic solutions

DYNAMIC LIiNK TABLE CONSTRUCTION FOR EXAMPLE PROBLEH

1 (INITTALIZATION) . n = 2 (VISIT ROOT) n = 16 (VISIT NODE b)
= P LLINK(P) RLLWK(P) STACE(P) LLINK(P)} RLINK(P) STAGE(R) LLINE{P) RLINK(P) STAGE(P)
-- —— 0 -1 2 0 -1 z 0
- - 1 -1 ) 1
3xl+2x27):31h 2%, + X, 21
No basic solubaons Two basic solutions
' {1,1,0)

(1,0,1)
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EXAMPLE PROBLEM SRO#ING TRARSFORIATIONS IHVOLVED I THE SOLUTTON
OF A LINEAR PSRUDO-BOOLEAN INEQUALEITY

A. Poradeler Treasformution to Canonlesl For

&) ] 1
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the pruned subtree resulting from the node visit is also shown graph-

deally.

(A) Visit node 1 {root), The aode records give PIN = 5xl +

5 >6 and PPR=Y = (~,~,~,~,~-). DNode classifica-

;=13> 4 p = 0; and s, = 8 >

d. Hode classification is case 7. There are no basic solubtions and no

+
3x2 2%, + 21:h + x

3

tion parameters are given by: 4 > 0; g

exclusions. - Advance one stage down both right and left branches. De-

fine two new nodes. ILabel them 2 and 3. The tree is now defined as:

{B) Visit node 2 ab stage 1. The node vecords give: PIN =
3%, + 2x3 +2x) + %5 > 6 and PPR =Y = (0,-,-,~,~). Node classifica—

tion parameters are given by: 4> 0; s. =8 >d; p=0; s, =5 <4d;

1

and n = b > 1, Node elassification is case 6. There are no basic

2

solutions. Exclude the left branch, and advance one stage down the
right branch. Define a new node. Label it 2, since the pivot node 2
has becoma:inactive, and its nurber may be used over again. The tree

is now defined as:

(¢) Visit node 2 at stage 2. The node records give: PIN =

2%, + 2% + %5 >3 and PPR =Y = (0,1,-,~,~). Node classification

parameters are given By: 4 > 03 s, =5>d; p=0 and s, =3 > d .

1 2
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Node clessification is case 7. There are no basic solutions. Exclude
neither the right nor left, branches. Advance one stage down both the
1

left and right branches. Define two new nodes. Label them & and 5.

The tree is now defined as:

1 #]
-2/\3 1
2 2

it 5 3 .

(D) Visit node 4 at'stage 3. The node records give: PIN =

b

2x) + x. 23 and PPR=Y= (0,1,0,-,-). Node classification para-

>

meters are given by & > 0 and.s, = 3 = d: °~ Node classification is

1
case 2. There is a unique basic solution. Exclude both left and right -

brenches. Define no new nodes. The PIN basic solution is (xu,XS) =

(1,1) and the BSP is x = (0,1,0,1,1)}). The tree is now defined as:

1 o]

1BSP

(E) Visit node 5 at stage 3. The node records give: PIN =

2xh+x

P

meters are given by: 4 > 0 8y = 3>4d; and p=2=n. Node class-

jfication is case 4. There are two basic solutions. Exclude both léft

>1 and PPR= Y = (0,1,1,~,~), Node classification para-

end right branches. Define no new nodes. The.PIR basic solutions are:



(xy,%5) = (1,0) and (0,1). The BSP's ave: x = (0,1,1,1,0) and

(0,1,1,0,1). The tree is now defined as:

.[-—l

1BsP 2BSP's

{F) Visit node 3 at stege 1. The ncode records give: PIN =
3%, * 2x3 +2x) %s > 1 and PPR =Y (Lymym=,=s=) . DNode classifica-

tion paremeters are given by:  d > 0; s, =8 > d; end p =4 = n. Node

1

classification is cage &, There are four basic_soiutions. Exclude
both right and left branches. Define no new nodes. The PIN basice

0,0,0) and (0.1,0.0) and {(0,0.1,0)

solutions ore {x. .x%..x% ) =
5ol s o [y o 8 3- h;xs.r
and (0,0,0,1). The BSP's are: x = (1,1,0,0,0) end (1,0,1,0,0) and

(1,0,0,1,0) =n@ (1,0,0,0,1). The tree is now defined as:

1 0

2 3 1
hRSP's

2 2

L 5 3
1BSP OBSP's

(G} The tree traversal ends. All nodes which were defined
have been visited.
By visiting six nodes in a subtree (out of a possible 63 nodes

in the complete tree), seven basic solutions were found.
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~7~§ﬁgvré 6-4 shows that-thewe .-are 19 binary solubion vectors
to the Inequality. These solubion vectors are clustered in families
te the right of the basie solution path. There are aﬁ average of
19/7=2.7 solution vectcrs per family for this-problém. Fig. 6~15B
iliustratss the ccnversion of the‘basie solutions to canoaical solubion
families. A1l traliing 0's are changed to (=) toc indicase arbitrary
{o/1) ‘varishles. Fig. 6-—-’3_50 shows the traunsfcrmation -c‘_‘f the caronical
solution fawilies back to the general form. This transformation takes
place in two steps,‘ Pirst is the inverse permutation. Next, the com-

plemeated varisblss arve.accounved for.

6,73 Migsellaneous.

A1k

|+

2 an enumeration of the transformabion from canon-—

—
L.

ical form sclutions to generszl form solutions for the example problem::

of Fig. 6~4. In the 1&ft column-of Fig. 6-16 are the 32 binary vectors

3%& = (yl 2° =°xjk‘5),. In the right column are the correspending.trans—
a s . _ . A cms e s
Tormed binary vectors e = (Zkl’ ’ZkE)’ The families of sclugions

indicated -on Fig. 6-158 and 6-15C are shown grouped in Fig. 6-16,

Using Fig. 6-16, the following items can be noted.

z a
= - zZ
2. - k

5
¢ X
j:

el
Coaw g

(. * g; where =~ . =6,
‘\J &: g E‘ YJ

(Yj<0)

Cote

i<
gh ™
}.-.I

[T
1
]

Thig' is an illustration of result (6-18). By (6-18) the transforme-

tion ig order preserving.



FIGURE 6-16

EXAMPLE PROBLEM SHOWING ENUMERATION OF SOLUTION VECTOR EEFORE
i AND ATTER TRANSFORMATION

1 1 —5 o
Combination| Variable (XJ) e 1 Variable (Z) E 3
K 2.y,
number i 2 3 4 5 Pl 3- 1L 2 3 b 4 Pagi

32 101 1 1 1 [13% 0 1 0 0 1 T

31- 1 1 1 L 0}le% 0 1.0 1 1 6%
30 1 1 1 0 1jiix o1 0 0 O 5
29 11 1 0 oj10% | F(XHO 1 0 1 0 b7 (2)
28 11 0 1 1 }11¥ 110 0 1 5%
27 11 0 1 o0} 110 1 1 b
26 11 0 0 1} 9% 11 0 0 0 3%
o5 111 0 0 01| 8%/ 11 0. .10 D%,
2L 1 0 L 1 11}10% 0 0 0 0 1 L
23 1L 0 L 1 0| 9% Fs(X) 0 0 0 1 1 3% P (Z)
22 10 1 0 1| 8% 0O 0 0 0 O 2% | Tgr2
21 10 1 0 0f 7% 0 0 0 1 0 1%
20 10 0 1 171 8%y FXH1 0 0 0 1 2fj Fe(2)
19 1 0 0 1 0f 7% 10 0 1 1 1%
18 10 0 0 1| 6% Fe(X)jjxr 0 0 0 O 0% Fr(3)
17 10 00C 0] 5 100 1 0 -1 \
16 0 1 1 1 1 8%, L0 L 1 0 1 o¥y (7
15 01110 )Ry 1a 2T
1h o 1 20 2{6¥xF3(XNjo r 1 0 O o*DFB(g_)
13 0 1L 1 00 01 1 1 0 -1
12 0 1 0 1 1|63 F(fjr 11 0 1 0 Fy (2)
11 01 0 1 0} 5 1 1 1 1 1 .y

10 0 1 0 0 1]k 11 31 0 0 -2

9 0 1L 0 0 0} 3 11 1 1 0 -3

8 0 0 1L 1 1|65 0 0 1 0 1 -,

7 0 0 1 1L o}k 0 0 1 1 1 -2

6 00 10 L} 3 0 0 1L 0 O -3

5 0 01 0 072 0 01 1 0 -l

b 0 0 0 1 1|3 10 1 0 1 -3

3 0 0 0 1 of2®2 1 0 1 1 1 -4

2 0 0 0 0 11} 12 1 0 1 0 0 -5

1 0 0 0 0 0fO 10 11 0 -6

5K, 3K, ¥ 2y 2K+ Xg > 6 22, - 37, + 57, = 2 + 225 2 0

"5
:{: X?C
5=1

5
J, =

[+
T
IR AVELT e S
51

2.

{Yj<0)

NOTE:

v, =g=2+3+1=%6

d

.
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(B) The cancnical form vectors ave shown in stapdsrd order,

‘but note that

c for k > &,

“kz-Z "’j’ﬁlaj z

J=1 J

5 5
- cLX, .,
N

1

which shows that the sequence w s k=1,2,++,32 is not monctonically

increasing. For example, u29 < Ugg Note also that U, = 6, so

X. is a solution vector. However, x and X, are not solutions.

12 =13 17

How consider an enumeration scheme to determine all gr:k such that

W,z W, where o 1is a given constant. Sequentially select binary
vectors x_ starting at the top of the list (k = 2"%), Torm v, and
work downward until u o < w. This scheme will not guarantee that all

no have been found. It is not an acceptable albernative to the

TPA. -

(c) ‘ Associated with each i‘ami‘y,r-of solutions is a range of
values
. a < u(Fj) <b
instead of the single value w, associgted with an individual solution
vector. Even though two families are disjoint, their ranges of u(F,)

dJ
may be overlapping. For example, using Fig. 6-16, 8 < u(Fh} < 13 and

7< u(F5) < 10, Tt can be seen that if the renge of a canopicsl fam-

17 R (x) i vy < u(Fj(ﬁ)) < vy, the range of the corresponding
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general form solution family Fj (__z_._) is given by LI < u(Fj (g)) <

NG - 8 vhere g = ~ E: ¥,. This is a convenient computational re-
. {y.<0} 9 |
sult., J

6.7h The Use of Solution Families in a Document Retrieveal Systen

We cen identify each binary solution vector 2 with a partic-

ular combingtion of index terms. =ach Z, mey have m documents

associated with 1t, m=0,1,2,-++, and each of thése m documents is
predicted to be relevant. ‘

A family of solutions Fj (g) specifies a group of index bLerm
combinations which has relevant associated documents. The BES con-
sisting of the union of all the solubion families will retrieve all
documents from the file which are predicted relevant {have s utility
u > 1)

When the solution f;anilies Fj (g) are considered with respsct
1o a document retrieval system, several observations can be made aboui
the usefulness of a BR3S as derived from the LPBI.

(A} The GRS which consists of the union of F,j (z) has the
same exaci; form as the heuristically generated BRS which is the nan-
machine link in meny existing systems. This provi'des a model. with
analytical end resuits which parallels the end results of a human being
in current systemns.

(R) The solution femilies F (z) ere mutually disjoint. This

means that the BRS derived from the union of the Fj (z) will never
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retrieve any document more than once. The BRS vhich is hewristically
generated cannot be guaranteed to have this property.
(C) The cost of séarching the file using a family of solutions
Fj(E) is much less than the cost would be if an eguivalent search were
rm using each member 2 of the Tamily separately.
(D} A disadvantage of searches maée using solution‘families is
.that ény documents retrieved by a solution family Fj can have & pre-
dicted utility spread over the range a E_u(Fj) < b. and the predicived
wcility of a glven retrieved document can be obtained exactly only with
increased computation. The in&ividual Jocument wtilities may he desived
when a large nuwber L of'documenté are cited as being relevant (pre~
dicted) by a BRS. The user msy not have enough time to review all re-
trieved documents and may want only bhe subset of documenbs heving whe
highest predicted wutility. 'In this;case the wutility w, ez be deter-
mined for each document in the retrieved set by using the index term
welights. The set of L documegté caﬁ then be renked and the I docu-
ments with the highest predicted utility presented to the user. In
. this case enuvmeration of document utilities is restricted to only the
set of those predicted relevant, and this is uswally é very small sub-

set of the entire file.
6.75 Computer Implementation of the TPA

A computer program for solution of the LPBI using the TPA has

been written in Fortran IV for the IBM TOQh/TOhQ Direct Couple System.
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Four subroutines control the solubtion of the LPBI and the out-
‘put of data.

(A) The first subroutine forms the LPBI from the LUFF and con-
verts all LPBI coefficients to integers, The TUPF ss passed to this

/§ubroutine has real coefficients Yj and no ccmplemented variables
(aj = ] - for all j). Tais subroutine converts all Yj to integers by
Scaling snd truncating. Accuracy of the conversion process is variable
and is set by program parameters.'

(B) The second subroutine transforms the integer IPBI para~
meters to cenonical form, and finds sll basic.solutions to the can~-
onical form. The basic soclutions are written in groups of fixed size to
an cubput ﬁévice for temporary storage.

£} he third subwoulive profuces cavonicel solution families

-r

~~

from the basie solutiocne, and trensforme the canonical solution fam-
ilies -to get solution families %6 the general form LPBT. Basic solu-
tiops are read from the sborage devicde to core in groups, are con-—
verted to general form solution fapilies in core and then ars again

stored in ‘groups on the output device. The range of u(Fj) and SIiZ
o .

S(Fj) = }i Fij are also recorded with each solution’ Family.
i=1

(D) The fourth subroutine will output solution femilies to a
printer, or other device and which 1f desired will screen solution
families ‘on the basis of range or size and suppress printing of certain

gsolution femilies if desired.
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A1l four subroutines sye under the exclugive control of a
driver program. (No subroutine calls any other subroutine.) The re-

sulting modular system is convenient to use and modify.
6.76 Computational Experience with the TPA

Experience with the TPA has been rather limited. Table 6-1
gives some performance data for 1h sample problems. The largest prob-
lem solved had only 14 variables. -

By using these e%mple problems and by making some assumptions

which seem reasongble based on the data of Table 6-1, rough estimates

were obtained for larger prcblems. The assumptions are listed below.
(A) The number WV of nodes visited during solution of a

LPRE increoses exponeptizlly with the nuwber of problem varisbles n.
© 4
WV =4 e _ (6-2k)

Perameters A, and Y, &re experimentally determined constants.
(B) The number of basic solutions identified is proportional

t0o the number of nodes visited.

BSOL = a BV - (6-25)

The parameber 'a2 is a constant.
(C) The total number of solution points TS 1is, on the aver-

a fived fraction «, of the total possible B solution points.

age.,
- L

)
w8 = 02" =0y e (6-26)
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TABLE 6-1

DATA ILLUSYRATING COUNPUTATIONAL EXPERIENCE UITH THE TPA

160

Case | n = narber of & Kodes EBasziu Degenerabe Hondegeneraie | Total pornts in| Bolal solabion
number “yarianles visaled; solutaons| basic solutionsibasxe solutions nondegenerate points
famlies
1 b 16 2 3 1 2 12 13
2 8 256 Ly 35 20 18 108 125
3 5 32 3 4 1 3 26 27
4 12 Log6 206 518 100 218 3622 3728
5 3 8 2 2 1 . 1 2 3
6 8 256 17 18 8 16 200 208
T 4 16 3 2 1 h 2 3
& x0 1025 76 ar 33 5k Th 897
9 5 32 2 3 ¥ 2 2 as
10 9 51z 25 35 a2z 23 L56 L33
11 3 3 2 1 0 1 4 Yy
12 14 16364 632 733 37 lag 145ké 14863
13 i 16 L 3 2 1 2 y
14 12 Logé 250 216 116 100 652 768
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(D) A constent fraction o of 2ll-basic solutions will be

degenerate and (1 - u3) will be non-degenerate.

BSOL = DBSOL + HDBSOL
DBSOL = 0 BSOL (6-27)

NDBSOL = (1 - a3)BSOL

(B} The average number of solution points.in a non-degenerate
solution family is an increasing fﬁnction of n, F8(n). The analy-
tical form of this function can be derived from assumptions (4) - (D)
above as follows.

For the total number of solutions we can write two equivalent

-expressionsy

7y
TS = Gl 60.03311 (6—26)

.

and TS = DBSOL +—(NDBSQL)Fs(n) (6-28)

4

Ton Yon
= ozOoA e w1 - aB)u2AO e FS(n)

Bqueking (6-26) to (6-28) and solving for FS{n) gives

- ) Y o
oy e03693n - méa3Ao e ©
F3(n) = "Y = (6-29)
o)
o (1 - ug)AO e

2



PABLE 6-2

SMOOTHED AND EXTRAPOLATED ESTIMATES OF %PA PERFORMANCE

A. Estimated Sclubion Tame as & Function of Problem Size
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Hunber of Expected Total node visiting tame (secc) at node visit-
variables | nede visits 1ing rates {R)} shown below (noﬁes/sec)
n Ny R = 500 R = 1000 R = 2000
10 85 0.17 0.0850 0.0L25
15 121 2.h2 1.21 .605
20 17,800 35.60 17.3 8,65
25 250,000 500. 250. 125.0
30 3,627,000 T260. 3630. 1815,
{12), win} (60.5 min) (30.25 min)
B. Number and Type of Solutions as a Function of Problem Size
Number of Basic Hondegenersate Degencrate Average | Total splutions | Total number
variables | solutions|basic scluvions ! basic solntions | sols/fam in families solutions
n BIOL WDBSOL DBSOL FS(n) (¥DBSOL)FS(n) m5
10 98 59 39 10.3 G.08x202 6.h7x102
15 1,k%00 8h0 560 23.h4 1.9710% 2.03x10%
20 20,000 12,350 8,250 52.4 6., hTx10° 6.55xlo§
25 289,000 173,500 115,500 117.6 2.03x107 z.ohxloa
30 k,200,000] 2,320,000 1,700,000 260.3 6.56x108 6.58x10
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From the data of Table 6-1, estimates of the perameters are:

| o, = 0.622
&2 =..155
oy = 0.400 {6-30)
A = 0.403
_ :
Y, = 0.5345
and it follows that {6-29) then becomes:
Fs(n) = 2.23 21980 | o671 . (6-31)

The results of applying the sbove assumptions (6-24) to (6-31)

"fe shown in Table 6~2B. If one computer

word is used to-store each basic solution, it appesrs that the storsge

for seleclted values of n

problem for the 25 veriable problem is excessive, with 289,000 basic
solutions expected. The 20 variable problem gppears more reasonable,
with 20,000 basic solutions expeéted,

Tsble 6-CA shows the expgcted processing time based on three

different average node visiting rates. The current node visiting rate

is shout 500 nodes/second. With some very trivial program modifica- -
tions, this can be extended Lo 1000 nodes/sscond or above. The 25
variable problem at 1000 nodes/seccnd will require sn estimated 250

seconds for solution. This is considered excessive, and the 20

lThe reader is cautioned thet the varisages of the paraueter
estimates are ouite large. Swonthed zand extrapoizited dets based on
these parameters is intended for rough estimates only. Data is also
peculiar to the applizsation here, where index term weights are derived
using approximation theory. '
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variable problem again appears more reasonable with a 17.3 second
total.

Times given sre for the TPA which finds basie solutions o the

canonical form. Subroutines which transform perameters to canonical

s +

form and which transform basic solutions to general solution families
require much less time than the TPA., Their contribution to total
processing time is ignored here..

In ceonelusion, the TPA appears edeguate for solving LPBI's
with up o 20. varigbles. For the 20 wvariable problem, the expected
processing time is 17.3 seconds (gt a node visiting rate of 1000
nodes/second). For the sams problem, expected storage space is 20,600
words, assuming one basic solution per word. Both solution time and
storage reguirements eppeér reasonéhle for applications related %o

document retrieval systems.



7.0 EXPERIMENT DESTGN AND PRESENTATION OF DATA

This chapter discusses the experiment design configuration se-
lected for test purposes and presents the raw respénse data. Test ob-
jectives and the variocus measures of search effectiveness are also
discussed. Analysis of the experimental data is deferred to chapter

8.0.

T.1 Test Objectiveé

The test prograu had three objectives.

(4) TFirst, to determine whether significant differences in
search effectiveness exist between searches performed using machine-
s generated heuwrlstically by

(B) Secondly, to help determine.the causes of these differ-
ences, if they exist. |

(¢} Finally, to provide an overview of the whole process and
suggest érgas for further research.

Before presenting test details, it is convgnient to discuss
figures of merit used to ‘evaluate the effectiveness of document re-—

trieval systems.
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T.2 Measuring Search Effectiveness

| )
Three measures of effectiveness are used here to evaluate test

results. All are based on entries in the following 2 x 2 contingency

table.

Retrieved Not Retrieved

Relevant 04 N5 ny.,
, (7-1)
Yol &
Hol Relevant n?l n22 ne.
n_l‘ - - n.2 N

i

For each search, a contingency table identical to (7-1) can be con-

1

sftructed. This assumes thak all relevant documents are knowm, whether
. i

retrieved or not.

Vi

T.2} Recall and Precision

Two standard measures of search effectliveness based on the con-
tingepcy tgble are recall and precision. These measu%es have been pro-
poszd and used by several authors(gh’95). -
The definitions are:

n. - .

il relevent retrieved
Recall = = - "
. n,, total relevant

(‘7-2)

-Precision - nll - relevant retrieved (7-3)
n total retrieved
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Roughly, recall is a measure of how well the system retrieves
all the relevant material, while precision is 2 measure of the economy
of the retrieval process. Varisbions of the sbove definitions of re-

(96)

call and precision are occasionally used. See, for exemple, Salton

.

—~T7.22 The Information Statistic as a Measure of Search Effectiveness -

A disadvantage of recall and precision is that a pair of num-
bers are involved ingtead of & siﬁgle.figure of merit. An aliernate
measure based on the 2 x 2 contingency table has been proposed and used
by A. R.‘Meethaﬁ,(97) vhich'giveg g single figure of merit for the
search effectiveness,

reagpte

It is identical to the information measure R described in

-

- Nl It

R = H(X) - H(X/Y) = T4 i n g log n 2T} (h-8)
v i 'J
T

This compubational formule was derived in section 4.25.

Recall that R. is the gain in information (reduction in en-
tropy) which oceurs {on the average) each time new information p(Yf
is used to convert a prior distribution p(X) to a posterior distribu-
tion p(X/y). The prior distributi;n p{X)} is an initial assigument
of probabilities to states of nsture and the posterior distribution
plX%/¥) is the revise@ propability distribution after observing aux-

iliary data, or the resulbs of an experiment y. (See chapher 4.0.)
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~

The informetion measure R is used in chepter 4 to select the (most
discriminating) index terms for inclusion in the decision function. §
ie used here to evaluate document retrieval systewm effectiveness. This
allows & new view of the retrieval process as a prior to posterior
vrobability distribution adjustment. The prior distribution is the
prcbebility of a document in the file being relevant, given that it is
“draym .ab rahdom, and with no knowledge of index terms etc., which are
assoclated with the document. The posterior distribution is the prob-
gbility that a document which is selected by the retrieval system is
relevant. {This selection is based on the index terms.)

The retrieval system can be viewed as an. sutomatic processor
wnich performs -an auxiliary experiment on the index terms associated
with a document,.and then by using a builit-in decision rule on these
experimen£al results, offers a suggestion to the user as to vwhether the'
document is relevant 0? not. After seeing the document the user makes
a final decleion sbouk its relevance. The degree of agreement vhich ex-
ists between the judgements made by the retrieval system and the user
is the measure ﬁ of how well the system operates.

A perfect retrieval system would make decisions (suggestions)
gbout document relevance which would always agree with the user judge-
ment. The system suggestion would then remové all uncertainty (for the
user) sbowt document relevance. In this case R = H(X), Any real

system of course will not be perfect. As a conseguence we will have

0 < R < I(x).
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Define:
' = 100[R/H(X)]. (7~%)
Then we have:

0 < a < 100.

The varizble o ds_the noymelized information sktatistic (NIS) and is
interpreted as the percent effectiveness of the retrieval system. It
can be thought of as the average percent reduction in uncertainty about
doctment rele@anﬂe, if the system suggestion regarding document rele-
vemee is followed. The measure (7-4) will Dbe used in the experiment
described here to evaluate tbs_retrieval sjstem, in addition to recall

I

.
~
-

7-2) wd precision {7-3)

The relation of the NIS tcfrecall and precision is shown in
Fig..T—l, for & Tile similar tc the one used for test purposes. If
can be seen that rscall and preéision are bobh strictly increasing

functions of the WIS. Thus, increasing the KIS will never degrade

either recall or precision.

T.23 Other Applications of the Informstion Statistic

3
(98] to evaluate

The WIS as described here was used by Shirey
the efficisncy of decument abstracis and first - lzst parsgraph com-
binations at predicting document relevance. After reading these rele-—

vance cue indlcators, the users were asked to make & Judgwment abowud

the relevance of the [vll documepnt. After this firsc judgmeut was
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FIGURE 7-1

RECALL AND PRECISION VS. THE NORMALIZED INFORMATION STATISTIC (NIS)
FOR W = 5100 AMD ny, =2

A. Recall vs., NIS

/ 1 : , ) # L
0 10 20 30 40 30 &0 70 80 %0 100
WIS = 100 o = 100[R/H(x)]

B. Precision vs. NIS
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obtained, the users were shown the full document and asked for a second

 final opinion of relevaunce. The preliminary and final results were

-~
analyzed and R/H{X) was computed. In this application the use of
relevance cue indlcators constitutes an experiment performed to provide
more informaticn about document relevance.

R. H. Shumway(99)

has also noted the potential use of the in-
Y
formatior stabtistic R as av overall measure of retrieval system
effectiveness. In addition, he re-analyzes the Shirey data assuming a
three—way table relation. He demonstrates that the two-wsy table used
by Shirey for bis anelysis is really s .special case of multi-way con-—
tingency tables. These can be -analyzed using an information measure
which is partitioned in.s msnner similar to the sum of squares in the

{100}

- ——— L e oand pwm oy T . ot oy e ~ ¥ o T S o b AL . TLLT) -
Ell.l&.].,}'ala of varistncs. The ERneTas wetnod 18 treated -‘_"r.y Hiilback

7.2k  Summary

~

The information stabistic R described above was developed ion
chapter 4 for selection of index terms {(a form of featuré extraction).
It is use@ egain here in its normslized form (7-4) as a figure of merit.
for evaluvating retrieval systems.

It has been both used and proposed by others for extracvion of
pattern Feabures (see ssction 1.4), evaluation of search effectiveness,
evaluation of releveunce cue indicators, and general contingency table

anslysis.



T-3 Ixperiment Design

T.31 General

A 23 factorial experiment was designed to determine whether
retrieval system effectiveness.is influenced by:
{2) methods {BRS's generated by machine.vs., BRS's generated b
people);
(b} number of index terms used in the model {a high level of sbout 15
terms and & lov level .of sbout 5 terms); and
(e) number of documents. in the training set (50 documents at a high
level and 25 documents at ; low level).

The 23 factorial configuration was replicated-four %imes, with

2 | .
eachh replication {of. 27 ='8 points) being a separate guery to the
I

gystem., This allowed verishility existing between questions to be

accounted for. )
One momth of the NASA file (= to%al file size of L4881 documsnts)

was searched using the different BRS's. All the documents relevant to

he four gueries.were identified before the searches were performed:

The figuvres of merit for cach scarch were then computed from the 2 x 2

contingency tables {(7-1) constructed after completion or the searches:

T.32 Belection and Preparation. of Test Questions

The [our guestions used as replicates were selected at random

from a group of asctual queries in an information aysvem. Eech quesbtion

elected had an existing asgociated group of abstracts rated relevant

2]
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or non-relevant by a user. There were encugh existing abstracts to
“construet a 50 document training set.

Before the.training set was finalized, the moﬁth to be searched
(March, 1969} was. chosen at random, and all abstracts in the training
’Eet for this month were removed. The 50 sbstracts remaining in the
training set were from within six months before and after tvhe sesrch
month of March, 1969.

By ﬁsing the training set abstracts, a detailed question des~
cripbion was written. UNine meaningful and identifisble subcategories
for each gquestion ware deviséd, end each subecategory was zssigned a
wbility from 1 to 9. Each oi the 50 gbstracts was then placed in one
‘of the nine éubcategories, and & utility threshold T was introduced
wnich designated which of the subcategories wers relevuni and which
vere not. With the questions well defined by the traiﬂing sets and the -
written descriptionz, a cémplete manual search was performed over the
March, 1969 portion of the file snd all relevant documents for each
query were identified.

A 25-document training set was created for each guestlon by se-
lecting 25 documents from each 50-document training sét. (The 50 docu-
ments vwere ordered seguentially by their file numberss.and then every
other number wvas chosen. Since file numbers are unrelsted to utilities,
this selection method is believed uabiesed.) This gave eighﬁ training
sets, one of 50 and one of 25 documents for each of the four test gues-
tions. Prepa?a$ions for testing were completed by assembling = 'pacﬁ—

age' for each of the eight training sets. This package consisted of:



174

_(a) a sequential listing of all document numbers, the urility assigned
%o each, and the set of assoclated index terms;

(b) the ubtility threshold = defining vrelevance;

(e) £ull abstracts of each training set document, grouped by utility
sub~category , with each group alsc marked. as being relevan®t or non-
relevant

(H) one-senéence abstracts of each training set document, grouped and
marked as in (c¢) above.

The 32 experimental BRS's were next derived using the above
training sets. PFor.each of the eight training sets two BRS's were con-
structed; one using five index terms and the other fifteen. This was
repezbed for two methods of BRS construction (machine and analyst) to
give a total.of 32.combinations.

The machine generated BRS's (16 of them) were constructed using

" the methods described in previous chapters. First, best single index
terms were selected. Héxt, the iUPF_was fit to the assigned document
vtilities. ¥inally, using the utility threshéld, the IPBI was formed
and all soiﬁtioh femilies were found. Only items (a) and (b) in the

training seb packages were utilized by the machine system.

Another 16 BRS's were comstructed heuristically by four exper—u

ienced information analysts. Eéch,analyst was assigned one particular
combination of training set size (25 or 50) and number of index terms
(5 or 15) for ecach question. There are four such combinations per
question; one per analyst. Each snalyst was assigned only cnce to

each of the four combinations.
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B
A

The anealyst was then requested to construct a BES for this par-
ticuler combination.. The ?ffect of different sunslysits is considered to
be an integral part. of . bbe subjective methcd f{msihod 1}. The snalysts

utilized items {a), (b}, (&) ana (d) of the %rsining set packages.

They were not, however,. given the gquestion dsscriphtion. They were re-

uvired to infer the quesiion .neanln by resding the abstracts for rel-
! +. g g DY &

evant and non-relevant documents and by ncting the uviilities assigned
to each abstract. Each analyst was given a maximum of one hov;t' to
rrite the BRS assigned to him.

Finally, the file was sesrched using. each of the 32 BRS's.
Searches, uvsing the BRS's generated by the information analysts were
made with an exisbing computer program. The machine-genersted BRS's

used directly az gesrch instrnotioms. IJnstead,. the eguivalent

. . I
sets of index term welghts were used.
T.33 Classification of. Verizbies in the Problem

It is convenient to.place the problem variables into three
ETOURS . .

T.331 Independent Varlisbles Controlled.as. Parvt. of the Problem, This

includes Methods (M}, wnere Ml is the subjective method using human

analysts and ME <8 The wachine method. This factor is fixed and

gualitabtive. Analysts eppear 1mnl¢01t ly as pert of this factor.

Llso contrelled were the number of index texms (T) appearing

.

in the training set. ‘l‘1 refers to the lower Tevel (a ot 5 terms )

and T2 refers to the higher level of sbout 15 terms. This factor is
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fixed and gualitative -because the number of terms va?ied slightly, but
was identifisble at either a high or low level.

Documents in the training sei (D} were run ab fwo tevels., A
lower level Dy of 25 documents and an upper level D, of 50 docu-
ments was used. Factor D is fixed and quantitative,-‘

‘Questions (Q) were run as the replication (or block) variszble
to lower the error variaace. The entire experiment is conveniently
classified ag a 23 factorial run ig a randomized block design.(101)
Four.questions (replicat;ons or DPlocks) were.used. TFactor® § is ran-

dom and gualitative.

T.332 Variables.Held.Constant.as. . Boundary . Conditions.on the Problem.

"This includés—the fraction of the training sev vhich is relevant {sbous
50%), the time alliowed cach analysi o vonsbruck the BRS, aand the
method of query presentation to the analyst. Other variables held &on—
stant are the extent of file searched (one month, .or 4881 documents)
and the particular time period of the file (March, 1969).

T.333 Uncontrolled. Factors Contributing to the Frror Variance, In this

group are the systém indexing, compatibility of the question to the
system, and consistency of the guestion itself. Also, the variation

between analysts within method 1 contributes to error wvariance.
7.3k Pactors and Varisbles Mot Considered in the Experiment

The Tollowing important.items were not considered in this ex-

perimental program.
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(A} The effect of adaptive refinement of the BRS through add-
itions and/ov deletions from the training set, followed b& fepeated
searches, was not investigaved. BRS's rafined over several searches
by supplementing the training set would be expected to produce better
reswlts then the BRS's used here.

{B) Experienced information analysts were used to construet
BRES's for test purposes instead .of casual .system.users. The effect of
user experience was.not investigated, but casual users would not be
expected to construct BRS!s which would be as effective as those of
more experienced users.

(C) Most of the L, problems solved for index texm'weights(ﬂz)
exhibited elternate optimal solutions (see section 5.5). The retrieval
efficilency of these albernsbte optimal sclubicons was nol investigored.

= —na

The initial opbimal solution was alwsys used for retrieval purposes.
7.35 The Model Equation and Expectéd Mean Squares Table’

The model equation fof the factorial experiment is given by:

=u+ T, +D, + + M+ + T, + TDM,
¥ u Ti ) Dj TDi 3 Mk TMi k D4j X TTh ll .

+ +
s T e

ijk8 13k8

(7-5)

[t}

where i 1.2 and A=l = 5 index terms
3
i=2 =% 15 index terms

1,2 an

€
I

documents in training set |
. ]

u
.-—-""-«\
.
i
=
{
o
W

J=2 ==» 50 dccuments in training set
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k=21,2 and f k=1 => method 1 (analysts produce BRS) and
5
L kT2 =3> method 2 {machine produced BRS)
: i '
£=1,2,3,b for b questions each functioning as a replication.

All factors except Q are Iixed. .Q is a random factor. The
' (102)

expected mean sguare itable is shown below

Factoxr Fixed or Degrees of Expected
- - ~random freedom -~ mean square
T({index terms) T 1 cé +.160%
D(documents ) T . i cg + 160%
TD - ' 2 4 Bg2
F 1 Ge UTD
M{methods ) 7 -1 G2 + 16g% .
. e M -
: f ' (7-6)
s Fr 1 a2 & SU%M
f 2 2
M l\F I 1 oy + BUDM
N - 2 4 b4
TOM ¥ N :1 oo+ thDM
Q{questions) R 3 Gg + 86%
error R 21 dé

Hote that sn exact F test exists for each of the effects in terms of

the error umesn square.
7.36 Choice of Sample Size

The sample size was determined by choosing acceptable risk

levels agssociated with the test for a difference between treatrent
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means for main effect M (mezhods). This test between means is sum~

“marized by the following hypotheses:

By [MIs(e) - wIs(u,)] = o (-7) .
Hy }m:s(ml)_-- NIS(MEH > 0. . (7-8)

Here NIS(Ml} and -NIS.{ME.) are the true mean values.of the normalized

information stabtistic for meghod 1 (subjective) and method 2 {machine).
Egtimates of the mesn znd variance of the NIS for a one month

search of the NABA file were first determined subjectively. These

estinates were 28.3.percent.for the sverage NIS and . 177 = cg for the

. WIS variance. _

Ihe Test staristic for a &iffersnce ¢ between VIR trsatment

means is glven as:

[WiSx,) - FIBu)] ~ 6
e — . (7-9)

.

..,L I\/SZ/}M.;_-!‘-—-) .
IF e{\fi 1'2 -

which is distributed as Student's - with v degreés of freedom
where:

{(a) ﬁf@IMl}, ﬁf§IMé) are the trestment msans (average NIS responses
for methods M, end ME);'

(b) r,.r, are the nurber of replications in each treatment mean;

{e) Sé is the error variance (of the WIS response) as estimsted from

the experiment;
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(d) & ‘4s the true &ifference between the treatment means (difference
between NIS responses for methods Ml and ME); and .
(e) v 1is the oumber of degrees of freedom in S:'
The null hypothesis (7-T) now becomes -H_: & = 0.

After some deliberation., it vas decided that a true difference
§ = 10% between WIS response 0 the two different treatments would be
meaningful to retrieval system operation and .should be. detected by the
experiment. .Also, the type-I ervor (alpha) was Tixed at 0.10. Because
the cost in both time and effort of experimentation is grest, a com-

2
promise was resched for four. replications of the 27 factorial. or 32

data pointe (searches)., This gave r. =

L =T, ® 16: v = 21; and G =

13.3, which is the previous subjective estimate of the NIS standard

An operating characteristic curve constructed for the t-test
{7-9) using this data is summarized below, where the type Il error
(beta) or. not detecting a true difference & is given as a function of

3.

Trua difference Type II error
L8.= (R/H)100 (beta)
0 0.90
2 ) .81
5 .62 {7-10)
6 - .23 7
15 - .05
20 - 0L

In summary. for the chosen contiguration, it can be seen that

if the tyue & = 10, the probability of not detecting this difference
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is 0.23 (the beta error). Alternately, there ig a probability of 0.10

" (the alpha error) of falsely detecting a significant difference, given

that there is none.

T.37 A Sub-Experiment to Determine the Effect of Analysts within

Method 1

Analysts are considered to be an integral part of method 1 for

the 23 factorial experiment. However, when method 1 is considered

alone, it is meaningful to isolate the effects of the analysts.
To eonsider this effect., it was necessary to0.conbrol the

arrangement of analysts, guestions and treatments within method 1.

Phis was done with a latin sguare configuration(loh). The model equa~-
tion is: s '

|

. = + A, A N + e, ., -
y1j1{ H Al Qg ?k ele (7-11)
vhere A, : i=1,2,3,b are analysts;
Qj:‘ j=1,2,3,4 are questions; l

and T : k=1,2,3,% are treatment combinations.

fid

Figure T.2A shows the particular latin square configuration chosen.
One ccmbination showvm in this figure is query 1 (Ql) with analyst 3
(A3) using treatment b (Th}’ which consists of a training set of 50

documents and a BRS with 15 index terms.
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T.4 Presentation of the Experimental Data
7.4l Pactorial Experiment Response Data,

Table T-1 shows the respoﬁse data from the 32 experimental
searches. Bach response is given in terms of contingency table entries.
“This is followed by the WIS, the racall and the preci;ion of the search,
all of which are computed from the contingency table. -
"1+ For example , consider datsa point -8 of table T-1 (read across
line 8), This point corresponds to a search with a BRS formed using
‘noyinally li.index termsA(T2_=-l5); from & training set with 50 docu-

m.ents'(D2 = 50); using method 2 (M, for a machine BRS); and seerching

2
gquery 1 (Ql)J“fThe corresponding 2 x 2 contingency teble is given Dby:

Hot
Relevant ZHelevant
" Relevant 3 ) 9 12
Not relevant 29 L840 4869 (7-12)
32 48kg - | 4881

This téble‘corresponds to (THI?. The WIS is‘cq;pht;&.frpm {T—lQ) using
the same methods presented in the example of Fig. L-2, and deseribed in
section 4.55. For search 8, the KIS is 10.15 {percent). The search
recsll and precision are also computed from (7-12) by wusing (7-2) and .

(7-3).. These are given as 0.333 and 0,09k, respectively.



TABLE 7-1. - RESPONSE DATA FROM FACTCRIATL EXPERIMENT
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Data Treatment Contingency Response
point| combination table ©-

Q M D.T nl1 nl2 ?21 Noo KIS Recszll Precision
1° s= 5| 3 9 19 4850 | 11.5¢ 0.250  0.136
2 . 15| & 8 27 4842 | 15.35 . 333 125
3 1 5|1 =2 21 4848 | 55.90 . 833 .323
4 0 45| & 6 34 4835 | 25.00  .500 . 150
5 | * e 5| 8 4 27 484z | 39.10 0.687  0.229
6 ” 15| 5 7 26 4843 | 20.94  .420 161
7 5| ¢ 8 23 4846 | 16.05  .333 148
8 50 15| 3 9 29 4840 | 10.15 . 333 . 094
g 5| 2 2 3 4874 | 35.35 0.867  0.500

10 1 25 15| 2 2 3 4874 | 35.35  .667 : 500
11 s{ 2 2 9 4868 | 29.65 . 667 . 500
12 50 151 2 2 79 a798 | 16.90  .687 . 053
38 s{ 0 4 74 4803 | ©0.19 0.000  0.000
14 25 15{ 0 4 116 4761 L300 .000 . 000
15 2 5] o &4 60 4817 .15 .000 . 000
15 5¢ 15! 3 1114 478 27.7 1.000 . 038
17 s| 4 8 90 4779 | 9.98 0.333  0.042
18 25 35| 1 11 3 4866 | 4.53 . 083 . 250
19 1 5( 8 4 115 4754 | 26.36  .667 . 085
20 0 1501 11 27 4842 | 2.14  .083 . 036
21 S 25 51 1 11 25 4844 2.22  0.083 0. 038
22 151" 4 & ‘136 4733 | 8.15 - .333 028
23 2 ., 5|8 4 z27 4642 | 20.16  .667 . 034
24 15| 6 6 247 4622 | 11.68 . 500 . 024
25 5| o s 1 4875 | 0.00 0.000  0.000
26 .2 35| 2 3 2 4874 | £29.08  .400 . 500
27 1 51 0 5 O 4876 [ 0.00  .000 . 000
28 |, 50 15| 3 2 1 4875 | 49.65- .600 . 750
29 5| 0 5 8. 4808 | 0.18 0.000  0.000
30 25 15| 0 5 127 4749 B . 000 . 000
31 2 s| o 5. 69 4807 .18 . 000 . 000
32 SO 45| 1 & 73 4803 | 4.45  .200 ar

Mean responses: 15.90 0.355 0.1.48
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7.42 TLabtin Square Experiment Response Data

|
Table 7-2B gives the response data (NIS only) for this exper-

iment. For exsuple, the BRS submitted by analyst 2 for question 3 re-

sulbed in a search having an NIS response of 26.386. (?his is search 1S

of table 7-1.)

TABLE 7-2. - RESPONSE DATA FCR TATIV SQUARE

DESTCN WITHIN METHOD 1

A. Latin Square Layoub

q 9 & q
A, [T m H T -
1 1 3 4 2 Tl - 25/5
A T T B T . -
21,2. & 3 1 Ty = 25/15 | preatment
Aol m m @ | Tsz=50/5 |definitions
3 4 1 £2 3 T, = 50/15
AgTs Tp Ty Ty -
B. Latin Squsre Response Data (NIS)
Q % % a
Al 11.54& 29.85 2.14 29.08
AZ 15.35 1B.90 26.36 0. 003
A3 25.00 35.35 4,53 0. 000
A4 55.90 35.35 9.98 48,650
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7.43 Predicted Document Utilities vs. Known Document Utilities

Half (16} of the experimental searches were performed using a
machine derivedﬁBRS(Mé). Recall that either the index term welghts ox

an equivalent BRS can be used to search the file, TFor the 16 M2 data

/Points, the file was searched using the term'waighﬁs.~ This was done as
a matter of practical convenience. (The equivalent BRS's were also de-
rived and will be discussed in section T.k5.)}

When searching with term %eights, a predicted utility u is
computed for each document in the f£ile. Because.the utility threshold
v varies from question to guestion, it -is convenient to compé?e pre-
dicted utilities by using (4 - 1) instead of u. Here (4 - 1) >0

- if the docﬁhent is predicted to be relevant and (A - 7} < 0 otherwisé.

Wnen weighted index term searches gre pesiormed on a file of
documents, any given document from the file ends up in one of three
categories. o

(A) Wo index terms with assigned weights mstch index terms in
the given document.,

(B) One or more of the index terms associated with the given
document matchés index terms in the search strategy., and (& - T) >0,
(Relevance is predicted.)

(G} One or more of the index terms associated with the given
doctment matches index terms in the search strategy, snd (u - 1) < 0.

For the 16 weighted term searches, an average ol 5.72 pexrcent

of all documents fell into categories (B) or (C) above; 3.82 percent
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had (4 - 1) < 0 and 1.90 percent had (U - 1) >0, For the file of
4881 documents, this mave an average per-sesrch yield of 93 documents
with (4 -~ 1) >.0 (category B) and 186 documents with (4 - t) < 0 (eat-
egory C).

Table T-3A shows the relative freguencies P(ﬁ ~ 1) of the pre-
dicted wtilities for all M, searches in categovies (B) or (C) above.
Since coefficients of the LUPF are integral muitiples of 1/2, so are
the values -of .(1 - 7). {See section 5.7.) For example, 16.15 percent
of all documents in categories (B)'or (C) had predicted utilities of
~3.0 or ~2.5. The distribution of P(d - 1) tends o be bimodal,
having separabe modes for the documents with (ﬁ - 1) > 0, and for thcse
with (u = 1) < 0.

Relavant deocuments in the £ile had heen identified and assigned

utilities before the searches were run. It is possible to compare the

preéassignéd'values of (u - 1) for these relevant documents.with the

values of (u - t).predicted by the system.

Tables T-3B end T-3C compare the predicted {u - T} with the

assigne& (p -~ 1) for ‘the relevagt docvments only. Table.T-3B gives a
coarse cross-=classification shoéing (ﬁ - T) grouped into cabegories
(A), (B) or (C) above. For exsmple,. 13 relevent documents with an
assigned {(n - ¥) = 1 were placed by the 16 M, searches into category
(B). There were a total-of 132 relevaant documents associated with the

group of 16 M, searches.

Table T-3C gives a more detailed breakdown of cross classifica~-

tion information contained in table T-3B. For example, three relevant


http:example,.13

l...!

TABLE T-3. -~ COMPARISON OF PREDICTED DOCUMENT UTILITY

WITH AFTUAL DOCUMENT UTILITY

4., Relative Freguencieg of Observed Values of (ﬁ - 1)

1 - T P4 - tile -t - Pla - 1)
-8.0 0.0007 }10.,0 0.0k59
~T7.0 .0013 }}1.0,1.5 .0985
-6.0 . L0018 [ 2.0 L1410
-5.0 .101k 3.0 .0378
k.0 L1072 (k.0 . 0054
~3.0,-2.5 .i16hs | 5.0 .0009
-2.0,-1.5 L1386 | 6.0 . 0020
-1.0,-0.5 L1518 LiT.0 . 0007

8.0 . 000k

B. Comparison of Preassigned Document Utilities (G - 1) with
Those Predicted: by the Linear Model (4 - 1) for Relevant
Documents '

Predicted Utilities -{Coarse)

, a

¥o ({d~1)> 07 {1~ €} <0
match i
{(a) (B) (¢}
True 0 23 - 19 6 18
Utilities 1} 22 13 - 9 bl
(u- 1 2 15 |- T 5 5E
3 L 5 3 12
6l Lk 2k 132
C.” Detoiled Breakdown of Table 7-3B Above
Predicted Utilities
(@ - 1)
-} -3 .2 -1 0 1-2 3 4 5 6 (4)
0 21 k1312117073 {23 | 48
Tyue 1 bl 5] 128313151 - 1122 | uh
Utilities 2 3 3| 2| 2:11i2¢2 13 28
(v - 1) 3 ol 1] 1¥r1i211 12
A1 totiiazlaritlelelafolsfowise
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documents had a predicted wtility {u - 1) = L. ALl four of these docu~

ments had an assigned or true (u - t) = 0.

£

T.4lh Values of R for Index.-Terms in the Training Sets

Table T-4 shows the distribution of R = H(X) - H(X/Y) for the

.

ct

index terme which.appesred with documents in the eight different train-
ing sets used for the experiment. An average of 148 different terms
were found with each 25 document ﬁraining set and an average of 250
terms were found with each 50-dccument training set. To illustrabe the

use of table T-4, there are two index terms with 0.15 < R < 0.19999 in

the 25, document training set {D = 25) associated with query 1 (Ql)..

TARLE 7-k. - DISTRIBUTION OF R = H(X) ~ H(X/Y) FOR INDEX

TERMS APPEARING IH THE TRAINING SETS

D = 25 ) D =50
R(bits) Q @ 8 9 & Q 0y g
0,00 ~ 0.04999} 110 91 121 1kl 195 210 280 25k
05 ,00999) 728 36 231 [ 1711 157 1013
.10 14999 8 9 6 219 ¥ 2 6 1
.15 19999 2 3 2195 % 1 1
. 20- .2k999 conf.
25 299991 1 _ —
Total terms 128 128 166 168 208 225 298 269

T.45 BRS Descriptioms

The BRY is s union of index term solution families. It is con-

venient to describe a BRS by using some particular attribute of the
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sclution families from which it is formed. One useful attribute of an

individual solution family is the number of index terms vhich must-be
simultaneously pregent in a document to cause the document to metch
the family and hence be retrieved. This abttrihute will be called the

SIZE (S) of the family and will be used o compare machine-generated

BES's with those heuristically generated by users.
Let the STZE S of a solution family be the number of fixed

variables Fy; which equal unity in the family Fyp. That is

n-
5 = j{i Py Tor Fys #-(-) (7-13)
J=1

The following simple example illustrates this definition.

Family (T,T, T T)) SIZE(S)

17273
(1,0,-.1) 2
3 (0,1,-,~) "1 ©o(7-1k)

Fooo (1.1,2,-) 3

Femilies with .S = 1 are those which specify the presence-of
only ggg_matching index term in order to retrieve the document. TFam-
ilies with $ = 2 - reguire a specified pair of index terms to be pres-
enb., HNote that varisbles In the, family which are fixed at zero require
the absence of the correspcnding index term in order that the document
will be retrieved.

Table T-5 shows the distribution_of solution Tamilies having a

gize S within & BRS for 30 of the 32 BRS's used in the experiment.
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(BRS data was lost for data points numbered 29 and 30.) For example,

consider data point 14 {(question 2, M, (machine), & 25 document train-
. i - .

ing set, with a.nominal 15 index terms used for the BRS}, There were

12 solubicw femilies in the associated BRS. Four of these families had

S =1, six had & =2 and two had S = 3.



TABLE 7-5. - DISTRIBUTION OF SOLUTION

FAMILTES HAVING SIZE S
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Data Treatment Solution family size
roint combinstion
Q M D 1 *{lal 2f 31 W st 6 71 8 9 10
1 . 5 sllol 6
2 1 2% 15 k| o b5
3 50 5 6161 0O
b 15 13} 0] 6L
1 3
5 o5 5 Lt 3
6 5 15 8§ 37 8 11f 10/ k| 2
7 50 5 sli2f 2
8 15 124l 1§ 36{ 64{10s| 77| 385
9 o5 5 5f0f 6
10 1 15 16l o 22
11 50 5 5o 6
12 5 15 154 0] 56
i3 o5 5 242 _
1k - o 15 THY 6] 2
i5 50 5 312
16 15 104 5| 16| 261 271 131 8] 2l
iT o5 5 b4 1
18 1 15 15} 0} 56
19 50 - 5. 5|5 O
20 ., 15 14 o} sh
21 . o5 5 5it2f 0. 1 T
22 o i5 9§ 3f 10| 12 6| &
23 50 5 3§11
ol 15 1hjl Li 20i 70{108| 15413571123 601 261 2
25 o5 5 Sliof 6
26 5 15 15} o} 50
27 50 5 5jo0i 6
28 | 15 18 of kol | B I P N
29 o5 5 Wit ~f ——f —-
30 5 15 11lf = —} -~
31 50 gk 1 -
32 - A5 apll 31 161 27 36| 630 261 30] 12
Methods My 435 J15[420] -mf ow] wn| wm] ael asm] ee] wa
totals My 1515 li36]124{213)262] 317| 2281 155] 132} 26

*
L is the

T =5

actual number of index terms in the IRS.
or 15 is the nominal number
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8.0 EXPERIMENTAL DATA ANALYSIS

8.1 Mnalysis of Varisnce for the Factorial Experiment

The responsé data for each of the 32 experimental searches
appears in Teble T-1. Three different measures of search effectiveness -
are considered (NIS, precision and recall). The experiméntal data of
-Table-T-l ié analyzed separabtely for each measure of effectiveness.
Three corresponding analysis of variance (ANOVA) tables are shown in
Table 8-1.-. ihese will be ‘@iscussed below. Only effects which are
significant at an alpha level of at least 0.10 {confidence level of

90%) will be discussed.
2,11 DIependence of the NIS on Methods

The ANOVA table for this measure of effectiveness is shown in
Table 8-1A. The only factor significantiy affecting the NIS is that
of search methods (M). Heuristic BRS's (M1) gave beﬁtéﬁ;fégults than

did machine BRS's (ME)' The experiment treatment means are:

x

NIS(M. ) = 21.67

1

i

"

'ﬁfs"(mg) 16.13

A = % - v = 1 7. -
A st(-zl) m:s(l.2 11.54



TABLE 8-1. ~ ANALYSIS OF VARIANCE TABLES FOR FACTORIAL EXPERIMENTS

Source of | Sums of | Degrees of Mean F 7(0.90)
variation { squares freedom | squares
A, Wormalized Tnformabion Statistic (NIS)
T 6.79 1 - 6,79F <1°
D} 218,43 1 218.438F <1
™D 8.20 1 8.20 <1
M| 1067.37 1 1067.371 4.52 2.96
TPhi 0.h2 i 0. .42 <1
DM 63,87 1 63,.87F <L
TOM b 176, 36 1 176.36) <1
© . ©§731055,93 3 351.971 1.4
ERROR § 41959.60 21 236.17
TOTAL 7556.97 31
"B, Recall !
71 0.02832 1 0.02832¢ <1
Di .2h7hé 1 L2767 3,17 2.96
™ .00720] 1 007200 <1
M| .15318 1 .153181 1.96
™| .03920 17 L03620 1 <1
ME .00189 1 L0018 <1
DM { .0780L -1, ~.07801 | 1.002
@i .50867 3 _ 169564 2,17 2.38 |
ERROR | 1.63775 " 21 .07799
TOTAL 2.70169 31
C. Precision
T§{ 0.01565 1 } 0.015654 <1
Dl .00262 1. 002628 <1
01 .0G902 1 L00902 | <1
M1 .3057h 1 .305Th 8 8,48 2.96
™ ,02L9T 1 L02L0TT <1
DM L000LT 1 .00017F <
oM L0137k 1. L0137h ;- <4
ot 08101 3 027003 <1
ERROR § .15667 i 21 . 03602
TOTAL 1.20959 31

193
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Confidence limits for the true difference & = [NIS(M)) -
_\NIS(MQ)} between the treastment mesns at the (1 - o) confidence level
(105)

are given by:

- /2 (. WL/2
[A - t(v,u/e)se(%a- %-—) ]5_ 8 _gtl + t(u,u/E)Se(-i"T—+ ;L—,g) ] (8-1)
T 2 1

where
¢ = the true difference in treatment means;
L = the observed difference in treatment means:

8 =-the square roét of the mean square §ue to error;

12 T = the number of data poinbts used to compube the treatment
means;

¢ = the error probability; and

t(v,0/2) = the student's % statistic with v degrees of fresdom.

For the difference in NIS mean response we have Se = ‘V§36.2 =

15,4, = 0,10, r- = ¢, = 16, v = 21 and +%(21,0.05) = 1.72L. The 90

1 2

percent confidence interval Tor the true WIS -difference is thus:

2.19 < [i\TIS(Ml) - NIS(ME)] < 20.89.

Note that although NIS(Ml

NIs(M,) there is considerable room for improvement in M., since this
1

) is estimated to be twice as large as

method is operating only at 21.67 percent efficiency.


http:t(21,0.05
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8.12 Dependence of Precision on Methods

The ANOVA tszble for search precision is shown-in Table 8-1C.
The only factor significantly affecting search precision is methods (M}.

The treatment means are: .

i

¥

—r
|

= 0.2kh5

]

P(ME) 0.050

A = P(Ml) - P(ME) = 0.195 .

The difference A is significant at the 99 percent confidence level.
By using (8-1), a 99 percent confidence interval can be established for

the true difierence in search precision:

0.005 < [P(M,) - P(M,)] < 0.385.

For this application, t(v,a/2) = £(21,0.005) = 2.83,’s_ = /0.036 =

0.190 ané T, =T, = 16.

The mean precisions given zbove are for individual searches.
Comparing pooled MZL and M2 searches provides an illustration of the
large difference in search precision,’ A total of u8L documents were
predicted relevant by the 16 Ml sea:rchés, and 50 of these were sctually

relevant. For the 16 M, searches, 1484 documents were predicted rele-

vant, with 43 being actually relevant.
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8.13 Dependence of Recall on Training Set -Size

The ANOVA table for search recall is shown in Table 8-iB.
Only the number of documents in the training set (faétor D) signifi-
cantly affects search recall. The training sets with the mcst docu-
ments lead to searches with better recall. The experiment treatment

means are:

=

P Y

o
.

1§
o
no
()
=

V]!
=)
N

S,
I

(=]
£~
=
O

The- 90 perecent confidence interval for the true difierence he-

17
t{v,a/2) = (21, 0.05) = 1.72L and 8, = 415,078 = 0.279:

tween treatment means is given below by (8-1) with r, = r. = 16,

0.07 < [R(DB') - R(Dl)] < . 345 .

Comparing pooled Dl and D2 segrches further illustrates the
observed differences in search recall. A perfect retrieval system
would have found 132 relevant documents for either the 16 Dl searches

or the 16 D2 searches. In ‘the- experimeni, the 16 D, searches found

only 36 of these, while the 16 D2 searches located 5T of them.,
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8.1% Lack of an Effect Due to the Wumber of BRS Index Terms

|
The number of BRS index terms {factor T) did nct have a signif-

icent effect on either the search NIS, precision, or recall. This is
somevhat unexpected, and may.be dﬁe in part to an unlorvunate scurce of
uncon.trolled yaristion in the experiment.

The nominal levels of‘factor T were set at 5 and 15 because
these levels were approximste upper and lower limits -for the nuwber of
index tevrms used normally by snalysts in thelr BRE's. Accordingly, the
mgchine system selected the 'best' 5 or 15 index term column vectors
for inclusion in the Ll approximation problem. Unfortunavely, these
chosen binary column vectors were not often lineariy independent, and
thus the optimal basis in @&e linear programming problsm coentains
fever than 5 or 15 index term vectolrs with non-zero weights. (For a
further discussicn of thi-s,“refer to gection 5.6.) The final number x;f
texrms in the M, BRS's was correspondingly reduced to less whan

2

Tl =5 or T2 = 15, This is illustrsited by the data of Table 7-5,

vhere the column labeled L shows the sctual number of index terms

appearing in the BRS. The average 'high' level (Tzl is 10.4 index terms

{instead of 15), end the average low leve; (Tl) is 3.8 instesd of 5.
Experimentally, this would have the effect of 'smearing' the

level of factor T, and might mask effects of variation due to this

factor. 'The levels of factor T in the experiment must be ccnsidered

qualitabively a 'high' or 'low'! instead of guantitatively as was orig-
inally intended. Suggestions are offered in section 5.6 for overcoming

this difficulty in future applications by modifying the LP program.
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8.15 Summery of the Factorial Experiment

The factor M (methods) had a significant effect‘on both the
search precision and NIS. Furthermore, it wes the only experimentval
factor which had an effect on preeision or the NIS. The 16 Ml searches

_{heuristic BRS's) had an average NIS response of 21.67 and an sverage
precision of 0.2hk5. The 16 Mé seayches {machine BRS's) had an average
WIS of 10.13 and an average precisién of 0.050, From Figure T-1,
virtually the entire cbserved averege difference in NIS response be-
tween Ml and M2 can be attributed to the observed aversasge di%fer—

ence in precisicn between M; and M2. This large observed difference
in average.sear;h precizion between Ml and Mé is felt t¢ be related

%o differeﬁces in selection of index terms and structural form of the
BRS. Evidence for this will be presented in subsequent sections.

Search recall was observed to significantly depend on the nun-
ber of ddcuﬁents in the training 'set5 and to be independent of the
search method. The aversge search recall for the 25 document tralning
set (Dl) was 0.264%, while the 50 document training set (D2) led to
searches with an average recall of 0. hko.

The number of index terms (nominally Tl =5 and T2 = 15) ex-
tracted from the training set and used for subsequent.BRS formstion had
no observed gignificant effect on the search recall, precision or NIS.
The levels T, and T, varied somevwhat during experimentation. This

1 2

mey have helped to obscure a true effect if one were actually present.



8.2 Analysis of Variance Ffor the Letin Square Sub-Bxperiment

This experiment, as discussed in section T.37 was designed to
determine whether there are significant differences between analysts,

guestions or treatments when metlHod M (heuristic BRS formation) is

1
conéidered alone. Response dava for this experiment sppears in Table
T-2B. ‘The AUOVA is shown below in Table 8-2.

Conclusions are simple. There arve no significant effects
sttributable to eivher analysts, questions or treatments whisch are dis-
cernible from the experiment data at the chosen 90 percent confidence
_levél (or even &t the T75% confidence level).

TABLE 8-2. ~ ANALYSIS OF VARIANCE TABLE FOR LATIN SQUARE EXPERIMENT

Source Fized or Expected arf. 88 MS F | F{0.75)
of variation | random { mean squares .
ANATYSTS(4) R 0f + 160 3 | 1396.98] k65.66{1.58, 1.78
QUESTIONS (@) R g + 160§ 3 1 837.90] 279.30] <1
TREATMERTS(T) | F o2+ 1602 | 3| 304.85|131.62) <1
'ERRCR R o2 6 1 1766.94} 294 ko
TOTAL 15  14396.66

8.3 ZIxuvracbion of Best Index Terms
8.31 Distribution of R

Table T-I wag discussed in section 7.k, This table shows the

E

relative frequencies of observed values of H = H(X) - #{Z/¥) rfor che

eight training seits which were used to generate the experimental BRS's.
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The quentity (0.693)(2WR) is asymptotically distributed as a chi-squared

_variate with one degree of freedom (when R is in Eits), under the null

hypothesis that R = 0., (See section h.54.)} If the alpha errvor is

~

fixed at 0.05, this nwll hypothesis can Pe rejocved when R is greater
than 0.1105 for index terms in a 25 document training set (N=25), or

- . s 4.
when R is greabter than 0.0650k for the 50 document training set {N=50),

Index terms meeting the gbove eriteria can be considered stabtistically

significent .predictors of document relevence at the 95 percent confi-
dence level,
From- Table T-4, fhe aversge humber of index terms having a
statistically significant value éf R at the 95 percent coufidence
_level is elght terms for each 25 document tralning set and 15 terms
for each 50 document training set. These averages are in line with
the nominal values (Tl =5 and T, = 15) chosen for the experiment

using another criterion. (See section 8.1k.)
8.32 Differencss in Index Texm Selection between Methods

There are two major differences between index bterms selected
usiné Ml and Mg. These are: differences in R evsluated over the
training set; and differences in the annual frequency of index term use.

8.321 Differences in R, The individual index terms sslscted for the

BRS using M, (machine methods) are these having the highest values of

~

R, The gverage value of R for index terms exvracted heurisitieally

*

(Mi) was only ebout half that of the average R using ME‘ The

overall search effectiveness (NIS), however, is better for Ml than
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M2. It follows that the index terms chosen by analysts are better in-
dicators of document relevency over the file as a whole than are those

selected by the M? mschine methods. This suggests the use of extra

information by aralysts from cutsige the training set during the term

selection process..
[
8.322 Differences in Freguencies of Term Occurvence. The freguency cof

Lterm orcurrence over the file as a whole was not a sslection facteor Tor

method M, (machine). The ennuel frequency of occurrence for the M,

index terms has a mean of 773 ard a variance of 597,100. For method

Mi,'the population of index terms selected by analysts and used to con-

struct BRS families with 8§ = 1 (see section T7.45) has a mean snnual
frequency of cccurrence of 177 and a variance of 31,300. The hypoth-

esis that the mean frequencies of occurvence are the same for M1 and

Mé index terms cam be rejected at the 99.5 percent confidence level.

This implies that the analysts of Ml

occurrence information (vhich is not availsble from the training set)

are utilizing frequency of-

when they choose index terms. o sumarize, the Ml snalysts select

terms o use in their BRS's whichk have a fregquency of ogcurrence lower

by a factor of 773/177 = k.37 +than those terms selected for the BRS's

of method Mé.

8.33 The Sampling Prcblem

The problem of choosing a representative training set is one of

3

saumpling from the dccument file. A rvandom sample is usually assumed

for the training sets of patiern recognition systems. However, in a
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large document retrieval systbem, a randomly chosen sample Tor the
training set is infeasible for practical reasons. To il%gstrate

I
assume 500,000 documents are in a file, and that 100 of them are rele-
vant. Now it would require, on the average, a rardomn gamplie of 5,000
documents from this file to proviée a training set which wovld include
ggg_?elevant document. Clearly, a semple of this size is unmanageablie.
A training set with only 25 té 50 documents is considered typical.
Some reasonsbie percentage (near half) of all training set documents
should probably be relevant to insure reasonabie retrieval resulis.
Thus & typical training set with 50 documents (and 25 relevsnt) con-
stitutes a highly enriched-rsasmple, ss opposed to a random chosen
training set.

The Results of secﬁ&on.8.32 indicate that the analysts of Ml
are wsing supplementary information' to select index terms., It is in-~
teresting to relate this obéervation to ﬁhe phenomenon of non-rendom -
sampling discussed above.

The data presented in sections 8.321 and 8.322 suggests that
the supplementary informstion is of two forms. Tirst, the analysts'
knowledge of term occurrence freguency is used to avoid those terms
which occur freguently, even though they have é high wvalue of ﬁ " over
the enriched training set. Perhaps the analyst 'feels' (for example)
that there are only 15 relevant documents in,é.énemmonth section of
the file. This leads him to‘reject any index terms which he knows have

more thaa 50 associated documents (on the average) in a one-month sec—

tion of the file. If the training set size were greatly increased, it
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is felt that the same low frequency index terms would also be selected

by method MQ.

Secondly, pure sampling error of a random nature msy cause
terms to appear to be good discriminaiors, when in fact, with a larger
training set they would nct be. fhese terms are exciuded by the Ml
énalysts because they do not '£it in' with the snalyst's concept of the
guery. Here the analysts supply information based on their prior know-
ledge of the query and thelr prior knowledge of langusge use.

In conclusion it is hypothesized that the suppilementary inform-

gtion used by the spnaiysts of M

4 Lo gelect dndex terms compsnsates

for the small size and non-randomness (enrichment) of the training set.
A high index term frequency of occcurrence would tend to reduce the

~

value of R for this teym in M, if the sample size were increased.

~

Mso, the probability of cdbserving wmrelated index terms with a high Rr

decreases as N, the sample size increases.

8.4 Analysis of the BRS

8.41 Dependence of BRS Solution Family Size on Methods

Table T-5 shows the SIZE=S distribution of constituent families
of the BRS's for all ‘the experimental searches (see section T.L45).
There are geveral striking QifiErences between the BRS's for Ml and
1, wher they are compared using the SIZE(S) of their constituent solu-

tion femilies. Table 8-3 presents this comparison.
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{(A) The M, enalysts use (on the average) 27.2 solution fam-
ilies to meke up a BRS (recall that each solution family is a 'matching

template'). On the other hand, each M

5 BRS is composed of an aversage

of "108.2 solution families.

’

(B) The M1 analysts composed their BRS's using only solu-

tion families having S < 2. Of 435 solution families, only 15 (cx

3.45%) had solution families with 8 = 1. For the Mé BRS's, solution

Tamilies with £ < 10 were observed, with S = 5 being the most

likely value. There were 12L {out of 1515) families with 3 = 2 {or

8.19%) and 36 with S = 1 {or 2.38%).

Because the M

N analysts used fewer solution families per BRS,

the number of Ml solution families with 8 = 1 ig less pexr BRS than

the M verscus 2.57). This causes ths

tobal number of documents retrieﬁed per BRS to be less {on the awerage)-

for Ml than M, .

2

TABLE 8~3., ~ COMPARISON OF BRS SOLUTION FAMILY SIZES FOR Ml AND Mé
Ml M2

Sclution |j Average! Average| Average| Average

-family [{number | percent| nuwber | percent
size per BRS| of BRS | per BRS| of BRS
S=1 0.9 §  3.45 2.57 2.38
5=2 26.26 | 96.55 8.86 8.19
83_3 ““““““““““ ’ 96 . 77 89 ° )"‘3

Total 27.20 100,00 108.20 {100.00
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8.42 Effects of BRS Family Size on Retrieval System Operation

The SIZE=S of thesclution families making up the BRS has en

effect on retriéval system operetion. The expected number of documents
which a given family (or templatg) will match decresses as & in-
creases. With 5=1, only one term in a document is required to match
the solution family. Thus, the expected number of matching documents
in a file ¢overing a given time span is simply the total number of doc=
uments indexed with the teym in that time span. When S=2, all match-
ing documents are required to have a pair of matching téms. One would

expect (on the average) less documénts to match a family with 8=2

than with S=1, .

The followlng a@ﬁ}bximate model is useful for descriptive pur-
. j A

poses. et p << 1 be the average probabllity that any given index

1
term will be used to index & document. Then ¢ = 1 --p dis the prob-

ability that- a given term will qégﬁgg_used to index a givea document.
This assumes, all terms-are indegéndent.

Consider a solution family F vhich has 8§ varisgbles fixed
at 1, £ variagbles fixed at 0 and the rest arbitrary. Then, the prob-
sbility of matching the given term combination in the femily with a com~
bination of terms in a document is p(F)=Iﬁ§? R since g=1-p=-1.
For a file with N documents, there will be {on the average) M = ‘
Wp(F) = Np® documents matching the solution family F. Uow, by using

log P—"“‘-"‘%" (since p ¥ 0) in the expression log M = leg N+ s log p
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we have:

M= ne 8P (8-2)

H
1

To a rough approximavion then, the number of documents matching (or

retrieved -by) a given BRS solution family decreases expounentially as

the SIZE=S of the family increases.

By minimizing the use of solution families with B5=1, the
analysts of Ml have cut dovn drastically on the number of documents
which will be retrieved by the BRS. This should increase the Mi
search precision. By avoiding the use of families with 8 > 3 they
have cut down the gearch costs by neglecting]those documents whiech have
a very low probability of ﬁatching the BRS.

/

8.5 Predicted Utilibies of Relevant Documents Loy Mé

8.51 Factors Affecting the Recall of the Mé System

Tgble 7-3B (discussed in section T.43) shows that for the
known relevant documents {with (u - T) 3_0), 33.h percent were cor-

rectly predicted to be relevant by the system {had {(a'- 7) > 0), 18.1

percent were imcorrectly predicted to be non-relevant (had (0 - 1) <0Q),
and 48.5 percent were missed because they had no index terms in common

with index terms in the BRS. This datz shows how the recall of the M2

system is affected by errors,.since only the relevant documents are

analyzed.
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The system made errors %ith 66.6 percent of the relevant docu-
ments. OFf these 18.1/66.6 = 27.2 percent were misclassified by the
LUPF &nd Lk8.5/66.6 = 72.8 percent were eliminated bf the fsature ax-
traction process. This indicates that the feature extraction process
very criticalily affects the Mé system recglli. Improvements in M2

recall are most likely to be broughv sbout by efforts to improve the

feature extraction process instead of the LUPF estimation process.
8.52 Effects of Increasing the Vocabulary Size

Although not directly supported by data heré, the vocabulary
size {or number of index terms in the system masber iist) would seem
to have an effect on the number of documents having no terms in common
wivh the BRS. Scme conjectures gre meds helow,

As dndex terms azre added to the master 1list, all relevant docuj
ments associazbed with g given query'woyld show {on the average) less
overlap in thelir index term sets. This implies that the relevant docu-~
ment index terms would slso have less overlasp with a 'best' BRS of
given size. (It is assumed that indexing remasins at a constant quality
level , that the same nunber of inéex terms asre assigned to a document
before and after the master list is expanded, and that the method of
BRS formation remains the same.) The reasoa for this is simply that
there would be more terms for an indexer to choose from and hence the
gverage frequency of individual term use would be reduced, assuning a

constant file size,
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As the term master list is reduced in size, term 'overlap' in
the set of relevant documents should become greater. Thisz would cause
?gggg_relevant documents to be missed but more unrelated documentsAtQ
be retrieved by a 'best' BRS of fixed size. This is gecause the terms
and term eccombinations would be legs specific with a reduced voezbulary.
Stetad ancther way, decreasing thé vocabulary size should increase

recell and éecreage precision.

8.6 Summary of the Data fAnalysis

Many aspects of the experimental data have been snalyzed in
this chapter. Only the resulls which are felt to be most important are
reviewed hére.

From section 8«1 it is concluded that search effectiveness (in

texms of the NIS) is significantliy greaser for method My {analysts])

then for method Mé {machine). It is shown that this difference éaﬁ‘
be abiributed wholly to the significant differences in search precision
between Ml and Mé, In othex words, Mi and Mé recover nearly the
same fraction of relevaent documents (recall ie the same}, but metﬁod
Mé rebrieves many more non-relevant documents (a lower search pre-~
cision).

Section 8.3 shows that index terme selected by analysts differ
eignificantiy from those selacited by machine methods. The major 4dif-
ferencs is that the Mé 'terms have a much higher frequency of occur-

rence., This is vndesirable, since it causes more documents to he re

trieved, which reduces M2 seareh precisicn. By using supplementsry
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information about term occurrence, the analysts are apparently able to
eliminate index terms whi?h would have been eliminated had the tralning
sets heen randomly chosen; and hence been much larger.

Section 8.4 demonstrates that the index term chosen by the Ml
analysts are combined in a much différent manner (to Torm & BRS) than
are the M, terms. In particular, a greater number of solution fam—

2
ilies appear 1in the M2 BR8's. Also, the M2 BRS's are constructed
largely of solution families with S > 3, while for Ml’ nearly all
families have £ = 2. Families with & = 1 - appear an average of 2.57

times per BRS with My, snd only 0.9% times per BRS with M-

The selection of terms with a low freguency.of. cccurrence, to-

gether vith the avoidance of solution families with. S = 1 constitube

the major differences betw;en Ml and ME' These two differences

working jointly would account for iarge differences in search precisidhi......

- e,

between Ml and M21 It appears that any attempt to make the machine '

method Mé comparable with Mi' will have to resolve these differences.
Section 8.5 analyges errors which reduced the Mé search re-
call, About T3 percent of the relevant documents were missed because

they had neo index terms in common with the BRS. This indicstes again

that improvements in the Germ selection process would have a major

affect on search effectiveness.


http:freguency.of
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8.7 Conclusions

The results of the experimentatioﬁ illustrate the basic applic-
ability of pattern recogpition techniques to the document retrieval
problem.

Test resulits conclusively show the superiority of ﬁhé analysts
to the machine recognition sysvem developed here. The clear super-
iority of huﬁans to machine systems for recognition of visual patterns
is well known. It is one of the reasons for the enduring acsdemic in-
terest in pattern recognition processés. Thus it is not surprising thab
patterns consisting of index terms should be recognized more efficiently
by humans than by machine methods.

What 1s supprising and encouraging is that the resolution of
the current differences in system effectiveness does 'not appeaé:to be
.out of the realm of possibility. The current best estimated différence'
of 11.5 percent in the NIS can possibly be resolved by extending end
refining the model. In pavticular, two refinements-are feit to be most
promising.

First, the methods of index term seléction should be extended
to incorporate term frequency of occurrence information. This would
tend to compensate for the non-randomness of the training or sample
set. -

Secondly . restrictions should be placed on the BRS to reduce

the number of solution families with S5 =1 and S5 > 3.
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.The above refinements are discussed in chepter 9. They both

should improve the searchlprec151on of MQ relative to Ml’ and make

the differences in overall effectiveness less for the two methods. A
number of other reasonable extensions to the present Mé system are

also mentioned in chapter 9.
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8.C SUGGESTIONS FOR FURTHER RESEARCH

9.1 General

Several suggestions for further research can be made as é re-
gsult of this study. These can be more or less divided into five dis-~
ﬁinct areas, vhich are summarized very briefly below béfore details are
given.

(A} The information statistic for selecting index terms can de
modified to take term freguency of occurrence into account.

(B) Instead of selecting the best single index terms; term

pairs or triplets, ete., can be selected which have a high information

v

content over the training set. This is s form of higher o}def feature
extraction. )

(C) The approximation theory model can be altersd. Possible
modifications include a change ‘of norm from Ll te L, or -Lg5 use of
{0,1,2} vériables for Xij based on 'mejor' or ‘minor' terms in the
training set; use of rougher utility estimates (say +1 or -1) for doc-
unents in the training set; and secondary selection of alternate opti-
mal solutions based on frequency of occurrence of index teyms. Also,
alternate algorithms can be investigated for more efficient solution of
the approximation problem. ’

(D) The solutions of the IPBI can be-constrained g0 that énly‘
solution families with § <2 or S5 =2 will be found. This is

easily done by solving a two-inequality system instead of a single in-

eguality.,



(E) The importent effect of iterative improvement of the
training set by repeated searches of the file . can be considered as an

‘extension of the previous test methods.

9.2 Modifications to the Information Statistic

for Selecting Index Terms

9.21 Incorporating Information about Frequency

of Term Occurrence

A revised meassure of goodness for index term gelection which
utilizes index term frequency of occurrence information is desired.
One such measure would be (ﬁj/fj) which would replacg (ﬁj). Here fj
ies the expected freguency of occurrence of ternm J. over the section
of file to be searched. This measure would reduce the estimated efféél
tiveness ﬁj of the individual ferm if it occurred very freguently.
Fof example, the term 'computer. program' might be judged excellent
based on the training set vaiue of ﬁ, but knowing that it oceurred
1000 timeg per year umight change this judgment. This would be espec-

ially true if a prior user estimate were available to the effect that

no more than 50 documents were relevant in the annual file.

9.22 Utilizing More Refined Document Utility Heasurements '

~

Tt is also possible to derive a more refined R without using

information about freguency of term occurrence. .The present scheme
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assumes a binary utility measure (relevant or not relevant), and de-

rives the information statistic from the 2 x 2 contingency table shown
i

below, The enfries in thé table are obtalned {rom the training set.

Term present Term absent

Relevant (u > 1) nyy n,f 0,
] (9-1)
Not relevant (u < 1) Dy Noof s,
B Poal w

Since more refined utility measures are avallable, g more

extensive table could be set up as shown below:

Term present ~Term absent

u=1 nyq j n 5 n,,
nE2e Iy a2 .
LT e
u=9 n91 n92 n9_
n=l B N

~

Table (9-2) can be used instead of (9-1) to determine R =

H(X) - B(X/Y) by direct calculation.- o T
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9.3 Applying the Feature Selection Process

te Different Types of Features
9.31 Higher Order Features

Either single index terms or term combinations can be consid-
ered as pattern 'feabures®. The system tested extracted ths best
gingle~term features. It is possible to consider other types of index
term 'features'. TFor example, ali training set index terms can be

€

arranged in paris (Ti,Tj}, triplets (Ti’Tj’Tk)’ etc., having fixed

configurations. Any one-of these fixed configurations can be consid-
ered as a binary 'feature' and an informetion statistic R can be .
derived for it.

4

e any o,

- - — - PR L~ . -~
-feguures, considey £

=

Tor an exampie of bwo~terw 5

(Ti,Tj). There are four fixed configurations in which to arrange this’

pair of terms, i.e.

(T nTJ.) = (TiTj)
(T ﬂTJ.) = (T Tj)
(T:L”Tj) = ("tEiTJ.)

(TRT,) = (T, T,

1 ~ b

Since the same informsation is contained in (TiT ) as. is contained in

3

(@;E}), there are only three different fixed confipurstions to consider.
dJ

For a training set with 200 different terms, there would be
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200 . R o
3( 5 ) = 3(19,900) = 59.700 term-pair features to consider individ-

“ually. Each of these features would require & corvesponding R com~ -

pubation.

Methods to avoid complete, enumeration when searching for good

(106)

term-pair features have been ‘discussed by Swonger » If the

'features' extracted are of the multiple index term type, the LUPF will

be of the form E: . = y., vhere f
YJ 3 ¥is i

. When this LUPF is thresholded, the resulting pseudo-Boolean inequality

are features such as (Tlﬁé).

is no longer linear. Luckily, solving a non-linear pseudo-Boclean in-
equality can be accomplished as a simple extension of the linear theory.

This will be discussed in section 9.42.°
9.32 Belection of Features for Training Set Coverage

The results of section 8.51 showed that 48.5 percent of the
relevant documents were.gg§§§g_bécause they had no teéms in common with
those in the set of selected index terms. This suggests that perhaps
single~term features or term-pair feabtures be chosen not only for their
good dis&nimination gualitieg, bub also for their degree of 'coverage'
of the training set. One way of insuring betbter coverage is to choose
features with high information stabtistics, but with low pairwise corre-
lation coefficients. This type of correlation screening has been

(207)

studied by Maltz for binary features extracted from two-dimensional

patterns.



9.33 Major and Minor Index Terms in the HASA System

Ali index terms o?curring in the NASA system are assigned as
either 'major® Br 'minor"terms. Major terms are intended to indicate
major concepts in the document, while minor terms are used in a sup-
porting role. Selecting only from the set of major ferms would be one

way of witilizing this buil{-in form of feature extraction.

9.4 Modifications to the BRS Structure

9.41 Avoiding Solution Families with S =1

1

By changing the structure of the BRS to avoid solution families
with & = 1, the precision of the search may be increased. One way of.
doing this is to incorporate constraints directly on the binary vari-

| =" . -

_ ! AT
ables of the LUPF. TFor exsmple, to restrict the SIZE of 21l solution..

families to be 'less than or equai to 2, we can solve the system given by

;E: aT > {48 )
Jd 4 ¢

J

L

. d""
j

Ancther, more indirecv way of restricting the use of freguently

occurring index terms would De to solve a system such as the following:
t
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' Zaj‘l‘j > (T - ao-)
3

;i f.T, < B
- d 47

J
Where N is the.maximum (expected) number of documents desired per
time period and the fj are expected frequencies of term occurrence
for the ssame time period.
Methods for solving systems of linear pseudo~Boolean inegqual-

(108)

ities avre discussed by Hammeyr and Rudeanu.
9.42 Solving the Nonlinear Pseudo-Boolean Inequality

As mentioned in section 9.31, choice of other thsn single-term

features leads to & pseudo-Boolean inequality which has the form

a,f

1
. =
. 3=

)

: fr~a).
J=1

As an example, consider

i + + g (B T T > - .

ay (T TpT5) + ey (ToT) + ag(TyTyls) 27 - 2,

This nonlinear irequality may be solved by using simple extensions of

the methods used for linear‘ineg‘uali‘bies in chapter 6. See, Tor in-
(109)

stance, Hammer and Rudesanu . To solve the nounlinear inequality,

define new binary variables yj:
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5
]
H
=
'.3

17275
Yo =TTy
v3 = T -

Then solve the linear inequelity given by

3
Yeetea.
J=1

After the m solution families FK(K); K=1,2,""*,m are.obtained
for this linear inequality, the original variables are substituted

into the expressions for the linear families F_(y) as foliows

K

. £
V&

Y

= F (p)eF (D).

Finally, after simplifying the resulting expressions for’ FK(E), we
have the desired solution families for the nonlineer inequality. Thus
the specification of multi-term feabures does not introduce gevere com-
putational difficulties.
2.5 Derivation of the LUPF
Several modificetions and extensions are dlscussed below, all

of which retain the linear model for predicting document utility.
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9.51 Choice of Norm

Payameters in the LUFF could be estimated from the training set

by using the minimel value of the L, or I, nowm as a measure of

2
goodness of fit instead of the minimal Ll norm. The L problem
also has & formulstion as a linear programming problem(llo°lll),

9.52 pelecticn Among Alternate Optimal Solutions

Both Llﬁ and L_  problems suffer from the 'disadvantage’ of
admitting alternate optimal solutions. This could be used to advantage
by selecting among alternste optimal soluticns as a post-optimal pro-

cedure. A secondary function based on frequency of term occurrence

could ke used for this purpose.
9.53 - Cholce of Indeﬁendent Variables

The- choice of independent varisbles Xij was very simple for
the problem tested. Here xijE{O,l} depending on whether or not a
festure (term) j is present with document i. A simple extension-is
to let xija{o,l,Q} where now Xy = 1 if term J dis.a minor term
with document Jj and g = 2 if term J 1is a magjor temm. (See
section 9.33.)

When the LUPF {formed using: xijg{o,l,Z}) is thresholded, it no

longer gives s pseudo-Boolean inequality. This difficulty can be over-

come by converting the integer inequality t0 an equivalent system of

pseudo~Boolean inequalities. See, for instance, Hammer and

Rudeanu(llg).



9.54 Choice of Dependent Variables

I
The dependent.variable ¥s is documenit utility. In the test

configuration yié{l,e,---Q}. A mueh simpler form and one which might
work just as well would be to let yie{nlg+i} a5 a measure of rele-
vence for documents in the vraining-set. Then & value of T = 0

could be used to form the Boolean ineguality.
9.55 IP Problems with Unequal Slack Costs

With the Ll approximation problem formulated as a linear pro-
gramming problem, the initial basis is composed entirely of slack
vectors. As these slack vectors are driven out of the basis the L,

norm is minimized. When each slack vector has unit weight (or cost)
in the objective,fvnétion, there is no preference given to one slack
vector over another. Bach has an equal opportunity.to be driven from-
the basis. Every slack vector is associated Witﬁ'one row of the con-
straint matrix, which represents a single ﬁocument in the training set.
When a slack vector is driven out of the basis, the residusl for this
row érops to zZero and a perfect £it to the predicted document ubility
is realized.

By assigning different objective function weights to slack
vectors, it is possible to force a bebter it to the part of the
training set with the higher weights, at the expense of the part of

the training set with the lower weights. This,can be used in at leasi

WO ways.
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8.551 Forced.Fitting {0 the Relevant Documents. By assigning higher

. welghts to slack associated with the training set which are relevant,

and lower weights to those documesnts which are non-relevant, the util-

ities of the relevant documents will be fit at the expense of the non-
relevant ones. This may result in improved search quality.

9.552 Applicetion to Xterative Rebrieval. With iterative retrieval

the training set grows in size following repeated retrieval efforts on
the same file. Consider an exponential decrease in the weighits of slack
vectors corresponding to sample documents according to the time which

-7, 1
they have remained in the iraining set {i.e., Wj = e J for the nth

time in the training set). The relative importance of training set

. documents decreases as they become 'older'. Thus, the older documents
sre gradually 'forgotten', and the INPF derived is more elosely tuned
to the most recently acqui;ed members of the training set. This is oﬁé,

way to effectively limit “the sgize of a large training set, and also £0

following the changing interests of a user.
9.56 Improved Algorithms

While only marginally related to the document retrieval problem,
more efficient methods of solving the Ll approximation prdblem are -
suggested by the nature of the basis inverses arising from the LP prob-
lem. In particulsr, it has been observed thalt elements of the basis
inverses are integral multiples of integral powers of 1/2 when the .doc-

unent uwtilities are specified as positive integers. The LP solution

varigbles have been observed to be integral multiples of 1/2.
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9.6 Experimental Investigation of Iterative Retrieval

The gbility of a document retrieval system to adapt to changing
User needs has become especilally important wi?h the édvent ol time-
sharing seaxch Systemé ‘which allow rapid implementation of successive
BRS's.:

The system tested in this dissertation has beén of the ‘statie’,
s;ngle search type. In an iterative configuration the same file would
be repeatedly searched a number of times, with modifications being
made to the training set after each search. Following a sequence of
searches, it is hypothesized that-an asymptotic level of search effec-
tiveness wou%d be reached, vhich would be significantly greater than
that of a 'single search' system.

Test methods for use with en iterative configuration could be
the same as those eﬁployed Tor the testing here, except for tw; coﬁ—
plications, First, rules regarding éddi%ions and deletions to the
training set ﬁould have to be eétablished. Perhaps the size of the
training set would be limited, with new additions forecing an equel
‘nunber of-deletions. ‘Aliernately, the training set size could be un-
restricted, and the 'old;r' documents ‘forgotten' as outlined in section
9.552, Becondly, a stopping rule would have to be imposed to restricﬁ
the number of iterations. This could be simply a limit on the allowsble
nﬁmber of searches. The effectiveness of the final search could become
the dependent variable, instead of the effectiveness of the only search

as was done here.



APPENDIX A ~ AW EXAMPLE PROBLEM

To previde an ove:i*vie'vr of system operation, the sclution of a
representative problem is presenved here. A training set of pattern
vectors (representing documents having user assigned ﬁtiiiﬁies) is
processed, First, index termsf are s'elected in s feature extraction
operation. This is followed by solving an Ll approximation problem
for document utility as a function of index term 'weights'. Finally,
the LUPF is thresholded to give an LPBI. This is solved for solution
femilies (index term matching templates). The union of these templates
is a BRS. Results are illustrated with actual computer output. The
syster has been progr.e.mmed in Fortran IV for the TBM 709k /TOkk Direct

[

Couple Eyssen.

A.1 TInpuvt Data

The input data to proces;c, a 28 document. :training set is shown
on Figs. A-1 to A-4. The first card read in {(not shown) gives the num-
ber of documents in the training set (28) and the utility threshold
(1 = 3) which defines relevancy on the scale of 1-9 (integer) used to
rate all docuvments in the training set. A document ié considered rein
evant if its utility is greater than or egual to 3 and not relevant
otherwise. |

For each document in the training set, the following items are
read in:

(a) document number (treated as an alphanumeric character string);



n
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(b) number of index terms;
. (¢) user assigned utility; and
(@) actual index terms (also treated as alphanumerié chsracter
strings ).
The training set documenté are processed in sgquential order.
"Bach document number is read and storved as a character string and

assigned a nev number {an integer) vhich is used by the program for

further processing. Tig. A~5 shows the document data summary.

A2 ‘Proqessing of Index Terms

Figures A-6 to A-8 show an- alphsbetical listing of all index

" terms occurring in the tralning set and their associgted information
tistics (see chapter L), Each index éerm is read in and storzd as
a character string but for all further processing is repressnted b§ %ﬁd
internal .index term number (an iﬂteger). A total of 155 index terms
were found with the 28 documents of the training set.

Figures A-9 to A-11 show the same list of index terms sorted oun
their information statlistics instead of alphabetically. (The larger the
the information statistic,the more effective the indextterm is at dis-

criminating between relevant and nonrelevant documents. )
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~

A.3 The Document-Term Matrix and Computation of R

Figures A-12 to A-1Lk show the document-term matrix which it
will be convenient to dencte ag T = (tij)° Each row corresponds to
an index term and each column represents a document in the training set.

If index term 1 appears in document 3, then tij'z 13
otherwise . = 0. At the top of Fig. A-12 the document utilities are
shown over the document category designation (1 for a relevant document,
0 otherwise). This category vector is formed by applying the utility
threshold T = 3 to the document utilities.

To compute the information statisties, the 0/1 row vector in
T for each index teym is compared with the 0/L category vector in a
2 x 2 contingency table. The information statistic 'ﬁ is a measure of
the similerity of the two vectors.

Norm Approximation Problem

A4 Solving the L,

Index tern weights are determined by sclving a linear approx—
imzgtion problem using the Ll norm as the criterion of goodness. This
approximation problem is éet up as a linear programming problem and
solved using the simplex algorithm (see chapter 5). Prior to solving
the problem, all index terms are discarded except those ten having the
highest informebion statistics. Only these ten Lerms appear in the

approximation problem., They vepresent extracted features and are used

to best approximaie assigned document wtilities as a linear combination
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of term weights. The linear programming problem has the following form:

|
minimize z = ¢'x

it
o

subject to Ax

and

[ b

> 0 .

Figures A-15 to A-1l7 show the matrix A and the vectors b and
" ¢ which reéult from setting up the approximation problem using only
the ten best terms. There arer 28 rows in the matrix A and 78 columns.
Data is listed by cclumas. (A{13,6) for example is ~1.00). Cost data

(c,) are listed with each matrix column. All costs are either 0 {(non-

J
slack cols. 1-22) or 1 (slack cols. 23-78). The right hend side (b)

iz shown in Fig. A-17. /

The elements of the right hand side vector b = (bi) are the
j o

utilities assigned to the documents. The first eleven columns of the

matrix A (I,T7) correspond to a constant a (first column) plvs the
0/1 vectors from the document term matrix corresponding to the ten in-
dex teéﬁs with the largest information stabtisbics.

Figure A-18 shows a solution summary priﬁted after the linear

programming problem was solved. This figure relates the basic var-

igble numbers (structursl columns in the optimal basis) to the actual

index terms and the slack variables.

The value of the objective function is the leagth of the resid-

ual vector in the Ll sense {that length is Ll = T in the problen
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solved here). Based on Gata shown here, the best L, LUPF is:

5 = B+ SZ__ a,T, (a-1)

= 1.0 + ko7 - h.STQ + h.oT

1 3 + E,OTk + 5.5T

5 + 2.5T6 + 3.0T

7"
vhere U is the predicted utility,-ao = 1,0 1is the constant Term
welght and aj are the weights for index terms 1 to T. though the
Ll approximation problem was set up to determine wreights of ten terms,
only seven terms have non-zero wéiéht in the optimal solution. This
phenomenon 1s discussed 1n chapter 5. It occurs because oé linearly
dependept index term columns in the original structural mstrix. Fig.
A-19 shows a computaiion of residuais using the derived utility pre-
dictiqn equation. A eompgrison can easily be made between the user
assigned document utilities and tﬁe utilitieé predicted by the linsar
model. TFor example, document ten has an assigned utility of four and

& prediéted utility of three.

A.5 BSolving the LPBI

The LUPF derived previously can now be thresholded to give an
LPBI (see chapter 6). Using the threshold t = 3 wvead in with the

dats, we getb

L.OT, - b.5F, + 40T, + 2.01), + 5.5T; + 2.5T + 3.07, > 2.0 . (a-2)

3

> T
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Before this LPBI can be solved, it is necessary to convert all

_coefficients to integers. Multiplying the inequality by 10 gives
mo 1 b it 2 -
hor, - MST, + hor, + 201) + 55T, + 25T, + 30T, > 20 . (A-3)

These data sre swmmarized in Fig. A-20.

{The notation used in the program here to describe the para-
meters of the LPBL (A-3) on Fig. A-20 is slightly different than that
used in chapter 6. The exponents ay given in (6-2) are referred to
as COMPLEMEWF(J) in the program here. Also, when o = 1, COMPLEMENT
(1) = 0.)

The next step in the solution of the LPBT is to converi it to
canonical form (see chapter 6). This form has no negative coeffic—
ients, end 2ll coefficients are sorted according to ﬁsgnituﬁe, Then
coefficients.of the canonical form are also shown in Pig. A-20.

The branch~and-exclude algorithm deseribed in chapter & gives

a7 basiq golutions to the cenonjcal forxm. These are shown in Fig. A-2]A.

The basic solutions are converted to canonical families of
solutions and then transformed back to their original (non-
canonieal) form. The 17 non-canonical families of solutions are
showvn on Fig. A-21B. Each solution family represeﬁts a Booleavn template
of index terms which can be used for retrieving from an inverted file.
The 1's are interpreted as the required presence of 5 term, the 0's in-

dicate the required shsence of a term and the 2's indicate indifference

as to whether the term is present or absent. The 1l's and 0's corre-

gpond to fixed varisbles, while the 2's correspond to free or arbitréry
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variables. For example, soiution family 12 specifies the retrieval of

all documents which have term 5 presenq and term 2 gbsent, and with

“indifference as %o whether' terms 1,3,4,6,7 are present or not. The

complete BRS is given by the union of all solution families.

A.6 Miscellaneous Results

Near the right margin of the page on Fig. A-21B are shown.the
variables MIN, BASE, MAX and SIZE, which perfain to each of the’
solution families listed near the lelt margin of Fig. A-Z1B. The var-
iables MIN, BASE and MAX are related to the range of predicted utilities

associated with each.of the solution families.' (See Section 6.73) The fol-

lowing terminology is introduced to describe this relationship.

. ! )
Ve are given the LPBI from the linear programming solition

(A-2): l

ajTj'z_(T - ;o) . ’ (A-4)

™

Cae
i
-

We multiply this inequality by the appropriate constan%‘ v, giving

a new inequality’ﬁ&—a)with integer coefficients:

——

%
%7 a%)
a7 > (T ao)

373~
5=1
where a? = Yaj’ J=0,1,2,-:-,n (4-5)
and t# o= oy .
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(In the sample problem; y = 10, t* = 30, ; =7 and a§ = 10 from (A-1)
.1through (A-3)) Next, we solve this inequelity for itz M families of
solutions FK(E), K=1,2, -+ M. (In the example problém, M= 17.)
Designate £he set of fixed indices associatéd with the kth‘
solution femily as Sy, end the set of free indices as Sj,. (For ex-

ample with k = 123 8,4 = {2,5} and Sy = {1,3,4,6,7}.) Now define

" for each family k the following:

BASE(-k )_ = Z az'ij ; (A-6)

MAX (k) =

i
98] 5
I R
A
. !\'/!’;S
[©)
[N
_Jt-:i
T
t
~J

-
MIN(k) = min
Syo

=]

and
q . (A-8)

a %

373
J=1
(For the sample problem, BASE{12) = 55, MAX{12) = 210 end MIN(12) =
55, as shown on Fig. A-21B.)

Quantities (A~6) through (A-8) can be related. to the end points of

- th
the.-range of predicted utility w(k) for the k— solution femily -of-+the
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original inequality (A-1) as follows:

win - u(.;.,= win ta +§—
) JES - J

]

Il
L] . . L.
Shaf+ min (Z a*p | 1= b [ag + MIN(X)];  (5-9)

1
and’ max wik) = max la + aT.al

%[ag + MAX(K)}]. (4-10)

o e e
H

For the sample probiem: using (A-9) and (A-10) gives:

min 4(12) = -:-':a [10 + 55] = 6.5 (A-11)
and max 4(12) = % [10 + 210] =

Thus we have 6.5 < 11(12) < 22. In a similar manner ranges of pre-
dicted utility can be established for each of 'bne solu'tlon families
shown in I‘lg. A-21B by us:.ng (A-9), (A 10) a.nd “the glvml-’l datba. e

T 'BASE(F) is used as 8 pre iminary result in the computation of

MIN(%) and MA%(k). To illustrate this, consider
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MAx (k)

f
B
S
)
g
8
[
b

= max Z a¥T, + aﬁ?TI
: Jd dJ s

s o J d
k2' JESkl JeSkE j
= E a:"“T o+ mar Z "‘T
:JQS EE
= BASE(k)} + max[z a,*'l‘ . (A-12)
' . ls:2 JE }

Asirﬂilar result holds for MIN(k).

The SIZE of a soiu%ion family is defined as the number of
i's din it. This variable is shownjon Fig. A-21. Each 1 specifies ;c“he
reguired presence of an indéx term in anyzdocument vector vhich Wédﬁi-
match the femily (or template).. Very rbughiy}'ﬁge probebility P - of
finding a document which matches a given template is given by (see

section 8.42)
P(uatch) = o 5P (A-13)

where p is the: average probsgbility that an index term will be used,
and s 1is the SIZE of the family. The larger the SIZE of a solution
family, bthe greater are the chances that no documents will be found

which will match it.
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Each solution fawily has the pleasant property that any docu-
\_ment retrieved using it will not be retrieved by any cther reduced sol-
ution family. This can be verified by noting that each selution family

of Wig. A-21 differs from the others by abt lesst one 1 being changed to

0 or vice versa.



CUMENT INDESL TERM DUCUNLNE
RUMBER COURY YPILITY
6BN10674 1 ¢7
BIBLIOGRAPRIES
CONTARIRANTS

MICROHAVE SPECTRA
HOLECULAR STRUCTURE
SPACELRPAFT CABIN ATHDSPHERES

GBH12280 07 oL
FIRE PREVEKTION

MISSTLE sILOS

OXYGLH

CATEGORY L1

GBNIZ312 o7 [
CLPACITORS

ERSULATORS '
SEXICONDUCTING FILMS

CATEGORY ©

6BN15206 13 0%

AFRCRAFT SAFETY
DISPLAY DEVICES
FIRE PREVENYEON
INTEGRATED CIRCUITS

HICRCELECTRONICS

ULTRAVIOLEY RADIATION

CATEGORY B

6ER15670 26 oL

ACCIGERT INVESTIGATION
CADIN ATHODSPHERES
OXYGIN BREATHING

HBHEASD03 11 o5
AIR

GAS HIRTURES

IGNITION

EGRITION TEHPERATURE

SPACECRAFT CONTAMINATION
LATEGORY 14

£8NET36T 11 01
CABIN ATHOSPHERES

FERES . .
FLIGHT HAZARDS

IGNITEON

OXYGEN

CATEGORY 31

GBNR173E0 16 01
CMERGENLY LIFE SUSTAINING SYSTEHS
FIRE PREVENTION

FLAHE FROPOGATION

HUMAN FACTORS EHGINEERING
IGNITION TEMPERATURES

SPACE ENYIPONMENT SIMULATION
SPACECRAFT CABIN ATMOSPHERES
SPONTAKEDUS COMBUSTION

FIGURE A-1

CHFMICAL ANALYSLIS
INGRGANIC COKPOUNDS
ROLECUL AR SPECTROSCOPY
ORGANIL COMPOUMDS
CATEGORY 23

HAZARDS
LONFLARMABLE HATERTALS
SAFETY DEVICES

DETECTORS
HETAL DXIDE SEMICONDUCTORS
THIN FILHS

COHPUTER BESEGH

FALLURE

INFRARED PETECTGRS

LOGIC LIRCUTTES

TEHPERATURE HEASURING IMSTRUMENTS
HARNING SYSTEHS

APOLLO SPACECRAFT
FIRES
CATEGORY 11

ALTITUDE

HYDROGEN

IGNITION LIHITS

SPACECRAFT CABIH ATHOSPHERES
TEMPERATURE DISTRIBUYION ‘

EXTRATERRESTRIAL RESOURCES
FLAME PROPOGATION

HEL [th

NITROGEN

STORAGE -

ENVIRONHENTAL TESTS
FIREPRODFIRG

HELMETS

HUMAK FACTORS LABORATORIES
RATERTALS TESTS
SPACE SUITS
SPECIFICATIONS
CATEGORY 5

INPUT DATA FOR éAMPLEPROBLBﬂ
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DOCUMENT INDEX TERM
KUmBLR couly

PCCUKENRT
UTILITY

GEMETI26 13 ¢z
BURRING RATE

FIREMRCOFING

HAZARDS

PLASTILS

SPACECRAFT CABINS

SPACECRAFT CONTAMINATION
CATEGORY 5

S8H1BTa4 28 04
ACCTDENT IRVESTIGATION

BURNS (INJURIES)

CONFERENCES

ELECTRICAL FAULTS

FIRE CONTROL

FIREPROOF TNG

FREQN

GLAS5 FIBERS

HUMAN FACTORS ENGYMNEERING
OXYGEN -
PROTECTIVE CLOTHING

SPACE SUTITS

SPUNTANEDUS COMBUSTION
PRESSURE CHAMBERS ‘

68N18745 13 1}
ACCIBENT INVESTIGATION
CONFERERCES

HIGH PRESSURE DXYGEM

PRFSSURE CUAHBERS

SPACECRAFT CABIN STRULATORS
ELECYRICAL FAULTS 4
CATESTRY = '
6BN18746 14 03
CABIN ATHOSPHERES

EMERGEMCY LEFE SUSIRINIMG SYSTEKS
FIRE EXTINGUISHERS N

HIGh FRESSURE OXYGEW

LHONFLARMABLE HATERTALS -
SAFETY DEVICES

SURVIVAL

G8N1BT4T 12 03
ACCIDENY PREVENTION

COHTERERCES

FIRE CONTIOL

HUMaN FALTORS ENGINEERING
PRUTECTIVE CLOTHING .
SPACECRAFT CABIn SERULATORS -

GBN1BTED 12 01
ACCIGENT PREVENTIOR

EMERGEMEY LIFE SUSTAINING SYSIEHS
FERE LX7IHGUISHERS

HUMAN FACTGRS ENGINEERING

SAFETY DEVICES

SPOR) <KEOUS COMBUSTEON

FIGURE A-Z

CONTAMIHANTS

FLAMHABILITY

DUTGASSING

SPACFCRAFT CABIH ATHDSPHERES
SPACECRAFT CONSTRUCTION HATERIALS
TOXICITY

ACCIDENT PREVENTIOHN

CABIN ATHOSPHERES
CONTRGLLED ATHOQSPHERES
EMERGERCY LIFE SUSTAINING SYSTEHS
FIRE EXTINGUISHERS
FLAHHABILITY

GAS CONPOSITION

HIGH PRESSURE OXYBEN
NUNMFLAHKABLE MATERLALS
PRESSURIZED CABEHS

SAFETY BEVICES

SPACECRAFT CABIM SIHKULATORS
THERHKAL INSULATION
CATEGORY 5

CHEHICAL AHALYSIS
FIRES -

HUHKAR PATROLOGY
RESTOUES

SPONTANEOQUYS COMBUSTICN
FLAKMASILITY

CEBNFERERLES

FIRE CORVROL

F1REPROGFLNG

HUMAN FALTORS ENGINEERING
PROUTELTIVE CLOTHING
SPACECRAFT CABIN SIHULATORS
CATEGURY 5 .

CABIN ATMOSPHERES "

EHEPGENCY LEFE SUSTAINING SYSTERS
FIRE EXFINGUISHERS

PRESSURIZED CABINS

SAFETY DEVICES -
CATEGORY 5

CABLY ATRDSPHERES

FIRE CORTROL

GAS COHPOSITEION

PROTELTIVE LEOTHERG
SPACECRAFT CABIN SIMULATORS
CAYEGOPY §

INPUT DATA FOR SAMPLE PROBLEM
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DOCULENT IHDEY, TERT DOCURENT

NUMBRR COUNE UTILITY .

LEMIBTSE 14 ol -
CAR1M ATHOSPHERES CONFERENCES

EMERGENCY LIFE SUSTATHMING SYSTEHS FIRE CONTROL

FIREPRGOF ENG GAS COMPOSLITION N
HUMAN FACTORS ENGINEERING MATERIALS TESTS
HONFLAMHABI E MATERIALS PROTECTIVE CLOTHENG

SKLFETY DEVICES SPACSCHRAFT CABIH SIPULATORS
SPONTAREQUS COMBUSTIOR CATEGORY &

tBNZO005 12 ol

ENV IRONMENT SThLLATIOH - FIRE PREVENIION

FLAFE PROPAGATION FLAMMABILLTY

FLAYHABLE GASES FLASH PDINT

HIG# PRESSURE DXYGEM HUMAN FACFORS LABDRAYORIES
IGHITIOR PRESSURE DISTRIBUTIOH
PROTECTIYE CLOTHING CAYEGORY 5
4BH20058 12 133

AFRCRAFT HAZARDS BROKINE COMPOUNDS

CARBON TETRAFLUORIDE CHLORINME FLUOREFDES
DIFLUORD COHPOUNDS FIRE EXTIMGUISHERS

FIRE FIGHTLHG . HALOGEN COMPOURDS

HETHANL OXYGEH

PYROLYSIS ) CATEGORY &

68M20870 10 Gl
TOKBUSTION EXPLOSEONS

FIRES FLAKHABILEYY

HAZARDS OKXYGEN

PROTECTIVE CLOTRHING SAFETY

SPACELRAKET CNVIROMHKENYS CATEGORY 33

6BN21752 11 (433

FIRE PROVENTION . FIREPRDOFING

FLAYE PROPAGATION TLANMMASILITY

HUMAN FACTORS LABORATORIES KICE

HONFLAMHABLE HATERIALS OXYGEN .
FROTECTIVE CLOVHING SPACECRAFT CABIH ATHOSPHERES
CATEGORY 5 .

GBN24T 56 15 01

8IBLfOGFAPHIES - FIRE EXTINGUISHERS
FLAPRABILITY FLIGHT CRENS

HEAT TRANSFER HIGH PRESSURE CXYGEN

RYHAH TOLERARCES LIFE SUPPORT SYSTEHS
SPACECRAFY CABIN ATHOSPHERES SPACCCRAFT GONSTRUCTIOR HATERIALS
SPACECRAFT CONTAMIRATION STATIC ELECYRICITY

T0X1C HAZARDS WEIGHTLESSKESS

CAYEGORY 5

68H24871 10 ol

CONFEREHCES FIRE PREVENTION

F1RES GREAT SRETAIN

EGNETION LINITS SPACECRAFYT CADIN ATHOSPIERES
SPOHTANEQUS COMBUSTION THERAPY

UNITED SYRTES OF AMERICA CATEGURY 5 .
&BH2%668 o7 06

AIRCRAFT SAFLTY ELECTROCHEPICAL CELLS
ELECTROLYTES FIRE PREVEHTION

FIGURE A-3

INPUT DATA FOR SAMPLE PROBLEM



DOCUMERT
NUBER

INDEX TEREM DOUUMENT
COURTY UTILTTY

TEMPERATURE SEMNSORS
CATEGORY 14

G8H25947 10 03
CALIBRATING

CURRENT AMPLIFIERS

INERTIA

TEHMPERATURE MEASURING INSTRUNEKTS
TRIODES

GBN30L 34 o7 [+33
BURNING RATE

FLAHMABILITY -

SPACECRAFT CABIN ATHOSPHERES
CATEGORY 33

68R34881 11 [e2:]
ATHOSPHERIC COMPOSITION
ELECTRICAL PROPERTIES

ORGANIC COMPOUNDS
SEHICONDUCTIHG FILKS

SPACECRAFT CONTAMINATION

CATEGORY 5

GHEN36272 o7 ol
ATRCRAFT FUEL SYSTEHS

EXPLOS JONS

TGNITION

CATEGORY 2

6BN362T4 12 01
LIRCRAFT FUEL SYSTEMS

CORMERCIAL AIRCRAFY

ELECTRIC DISCHARGES

FUEL TANKS

LIQUID NITROGER

VENTS ) .

6BH26275 08 13
ATRCRAFT FUEL SYSTEMS

ATRCRAFT [NDUSTRY

FERE PREVERTION

SAFETY DEVEICES

FIGURE A-4
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HARNING SYSTEMS

CORRFCTEON

GAS FLOW
SEMICONDUCTOR DEVICES
TEHMPERATURE SENSORS
CATEGORY 14

FIRE PREVENTION
IGNITION TEHPERATURE
SPACECRAFT CONSTRUCTION HATERIALS

CLOSED ECOLODGICAL SYSTENS
GAS ANALYSIS

POLYHERIC FILHS

SPACECRAFT CABIN ATMOSPHERES
THIN FILRS

CONFERENCES
FIRE PREVENTION
POLYURETHANE FOAH

CARBON"DIDXIDE
CONFERENCES
EIRE PREVENTION
LIGHTNING
SAFETY DEVICES
CATEGORY 2

ATRLRAFY HAZARDS
CONFERERCES

JET ARIRCRAFT
CATEGORY 2

INPUT DATA FOR SAMPLE PROBLEM



DOCUMENT DATA

MG. GF DOCUMENTS PROCESSED=28

CATEGORY THRESHOLD= 3
({OUCUMENTS WITH WEIGHTS GREATER THAN DR EQUAL T0 THRESHDLD ARE IN CATEGORY 1)

PROGRAM ACTUAL DOCUMENT DOCUMENT NO. OF NEWR
DOC. NO, 00C. NOw HEIGHT CATEGORY TERMS TERMS
1 68N106T4 T 1 10 1o
2 68N12280 1 0 7 ¥
3 68N1LZ3L 2 5 1 T 7
4 GBNLS206 ) 1 13 12
3 6BN1IG620 1 0 6 5
6 68N16F03 & 1 il 10
7 GENLT3&7 1 0 11 7
8 68NLT 380 1 0 16 i3
g 6BN1LTS23 2 0 i3 7
iC 68N1LBTL4 & 1 z28 1é
1t 68N1BT45 M § (] 13 2
12 6BN1B 746 3 i 14 L
13 6BNLBTLT 3 1 12 0
14 HBN1LBTSO i 0 12 4
15 58N1BTSE I3 o 14 0
i6 68N2000S ~1 0 12 5
17 68N20Q058 13 0 12 16
18 6BN203BTO i o] 10 5
19 68N21LT52 1 t] 1} i
20 EBNZ4T56 1 Q i35 it
a1 6BN248T1 1 0 10 3
22 68NZTG6E 6 1 7 3
23 GEN2994T ) 1 10 7.
2% 6AN30134 X 0 7 0
25 68N34861 8 i il 5
26 HBN36272 1 0 7 3
27 EBN262T4 1 0 12 7
2B 6BN36275 Y 0 8 2

FIGURE A-5
DOCUMENT DATA SUMMARY FOR SAMPLE PROBLEM
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IRDEX TCAMW DATA
ALPHABETICAL SORT

NO. OF TERMS DISCOVERED=155

SOURCE ENTROPY Hia)= 0.940

PROGRAM 1NDEA
TERN HO, TERH
37 ACCEDENT ENVESTIGATIDN
19 ALCEDERY PREVENTION
25 LLRCRAFT SAFETY
1063 AIRCRAFT HAZARDS
1hb ATRCRAFT FUEL SYSTEMS
154 ATRCRAFE INOUSTRY
* 42 ALR
43 ALTIVUDE
38 APOLLO SPACECRAFT
139 ATMDSPHERYC COMPDSITIDH
)3 BIBLIDGRAPKIES
104 BROHINE CONPOUNDS
12 BURNING RATE
[:1¢] BURNS (INJURIES:
39 CABIH ATHDSPHERES
132 CALIDRATING
18 CAPACITORS ~
105 CARBON TETRAFLUDRIDE
N 147 CARBON DIDXIDE
10 CATEGORY 23
17 CATEGORY 1)
- 24 CRTEGORY 9
- 36 CATEGORY a
51 CATEGDRY 14
58 CATEGGRY 21 -
71 CATEGORY 5
113 LATEGORY & -
117 CATEGDRY 33
146 CATEGORY 2
2 CHEHICAL ANALYSLS
106 CHLDRINE FLUORIDES
140 CLOSED ECOLOGICAL SYSTEM
113 . COXBUSTION
T 148 COMMERCIAL AIRCRAFT
28 CONPUTER DESIGHN
81 CONFERENCES
3 CONTABINANTS
B2 CONTROLLED ATHMDSPHERES
133 CORKFCTION
134 CYRRENT AMPLIFIERS
19 DETECTYORS
107 DIFLUORD COMPOUNDS
27 DISPLAY DEVICES
83 ELECTRICAL FAULTS
129 tLECTROCHLRICAL CELLS
130 ELECTROLYTES
141 ELECTRICAL PROPERTIES
149 ELECTRIE DISUHARGES
59 EMERGENCY LIFE SUSTAIMIN
60 ENVIRONHENTAL TESTS -

FIGURE A-6

ALPHABETICAL LISTING OF INDEX TLRMS i SAMPLE PROBLEM TRAINING SET

FNFORMAT 10N

STATISTIC
0.00022
0.D34%%)
0.11340
0.04771
0.0T337
0.02329
0.05472
0. 03479
0,02329
0.05477
000575
0.02329
0.04771
0.05579
0.00526
0.05479
0.03%79
0.02329
0.02329
0.05479
0.04771
0.05479
0.05479
0.17649
0.02329
0.00656%
0.02329
004771
D.07337
0.00474
0.02329
0.05479
.02329
C.023292
005477
G.00085
0.00h7%
0.03477
0.05479
0.05475
0.054789
0.02323
0.0547¢
D.004T4
0. 03473
003479
0.05479
D.02329
0.01693
0.0232¢%

240
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IHDEL TERM TREZL TRAN IHFORRATION
RUKBER STATISTIC
98 ENY IROMMENT SIMULATION 8.0232%
114 EXPLOSICHS 0.0477
52 EX1RATERAESTRIAL RESOURC 0.0232%
28 FLILURE 0.05473
5L FIREPRODFING 0. 00059
11 FIRE PREVENTION G 06593
40 FIRES 0.12897
84 FIRE CONTROL D.03867
85 FIRE EXTINGLIISHERS 0.016%98
108 FIRE FIGHTING 0.02329
53 FLAME PROPOGATION D.D&7TL

.9% FLAME PROPAGATIOH 0.04771
2 FLAMHABILITY 0.0T586
100 FLAHKABLE GASES 0.02329
101 FLASH pOLHT .02329
S4 FLIGHT HAZARDS 0.02329
119 FLIGHT CRFUS . 0.02323
1) FREON 0. 05479
150 FULL TANKS 0.02329
&7 GAS COMPOSITION 0.00022
142 GAS ANALYSIS 0.05479
135 GAS FLOW 0.05479
44 GAS HIXTURES . 2.05479
23 GLASS FIBERS 0.05572
126 GREAT BRITAIN 0.02329
109 HALOGEN COMPOUMDS 0.02329
12 HAZARDS 007337
120 HEAT TRANSFER 0.02323
55 HEL fuH 0.G2527%
62 CELHUCTS 0.02329
89 HIGH PRESSURE OXYGEM DaUBER%

. &3 HUHAM FACTORS CHGIMESRIM 0.01698
54 HUMAN FACTORS LABORATORI 0.07337
95 HUMAN PATHOLOGY 0.02379
121 . HIHAN TOLFRANLES 0:02329
45 HY DRUGEN 0.054¢9
46 TGHTEION 0,06630
4T IGHITICN LTRITS 0.00674
4B IGHITICY TEMPERATURE 000674
65 IGHITION TEMPERATURES 0.02329
130 HERTIA 0.05473
29 INFRARCD DETECTORS D. 05479

4 INORGANIC COHPOUNDS Da 05673
20 IMSULATORS - D.05579 -
a0 INTEGRATED CigCUITS 0.0547%
155 JET AIRCRAFY 0.0232%
122 LIFE SUPPORT'SYSI1EHS F.02329
151 LIGHTHING 8.02329
152 LIQUID MITROGEHN 0.0232%
31 LOGIC CIRCUITS 0.05479
[ HAYERIALS YESTS 004771
21 METAL OXIDE SEMICOUDUCTO 0-08477
110 KETHAKE 0.02329
118 HICE 2.02329

5 HICROVAVE SPECTRA B.054TS
32 HICROELECTROHICS D. 65479
13 hISSILE SILOS 3. 02329

b HOLECULAR SPECTROSCOPY U.0587%

7 HOLECULAR STRUCTERE 0.05473
56 HITROGEM 0.02329

FIGURE A-7

ALPHABETICAL LISTING OF WDLX TERMS IN SAMPLE PROBLER TRAINING SET



INDEX TERM
NUMBER

14
8
T4
15
41
75
143
145
90
24
102
9L
i1l
96
16
115
2Z
137

131
127
93
23

124
138
34
128
153
- 35
125

IHDEX TERNM

NONFLAMMASLE HMATERIALS
DRGANIC COHPOUNDS
OUTGASSING

OXVGEN

OXKYGEH BREATHING
PLASTECS

POLYRERIC FILHS
PDLYURETHARE FOAH
PRESSURIZED CABINS
PRESSURE CHAMBERS
PRESSURE DISTRIBUTION
PROTECTIVE CLOTHING
PYROLYSIS

RESLDUES

SAFETY DEVICES

SAFETY

SEMICONDUCTING FILMS
SEMICONDUCTOR DEVICES
SPACECRAFY CABIN ATHOSPH
SPACECRAFT COMTAMINATION
SPACE ERVIRONHENT SIHULA
SPACE SUITS

SPACECRAFT CABINS
SPACECRAFY CONSTRUCTION
SPACECRAFT CABIN SINULAT
SPACECRAFT EHVIRDNMENTS
SPECIFICATIONS
SPONTANEQUS CO¥BUSTION
STATIC ELECTRICETY
STORAGE |
SURVIVAL

TERPERATURE MEASURING IN
TEMPERATURE DISTRIBUTION
TENPERATURE SEHNSDRS
THERAPY

THERMAL INSULATION

THIN FILHS -

TOXICITY

TOXIC HAZARDS

TRIUDES

ULTRAVIOLET RADIATION
UNITED STATES DF AMERICA
VENYS ,

HARNYNG SYSTEMS
WEIGIIVLESSNESS

FIGURE A-8

INFORMATION
STATISTIC

D.00124
0. EE340
0.02329
D«034%2
0.0232%
0.02329
0. 05479
0.02329
0410340
0. 00474
0.02329
.00040
0.02329
0.02329
G 000460
0.02329
0. 11342
0.0547%
0.00085
0.01032
0.02323
0.0047%
6.02329
-0.07337
0.01698
0.G2329
0.02329
Ve DEGLY
0.02329
0.02329
G.0547%
0.1334D
0.05479
011240
0.02322
0.05479
0.11340
002329
0.02229
0.05479
0.05%79
0.02329
0.02329
0. 11340
0.02329

ALPHABETICAL LISTING OF INDEX TERMS IN SAMPLE PROBLEM TRAINING SET
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TNDEX TERM DATA

IKFQ.

NO. OF TERMS DISCOVERED=155

SOURCE ENTROPY Hixl=
PROGRAM
TERM }O.

40

- INFORFAATION STATISTIC SORT OF INDEX TERMS i SAMPLE PROBLEM TRAINING SET

0.940
IRDEX
TERH

CATEGORY 14

FIRES

TEMPERATURE SCHSORS
PRESSURIZED CABENS
HARNING SYSTEHMS
TEHPERATURE KEASURING IN
AIRCRAFT SAFETY

THIN FILHKS
SEMICORDUCTING FILMS
OAGAHLIC COHPOUNDS
FLAMHABILITY

CATEGDRY 2

AIRCRAFT FUEL SYSTEHS
SPACECPAFT CONSTRUCTION
HUMAN FACYORS LABORATORY
HAZARDS

FIRE PREVENTION
POLTHERLIC FILHS

GAS ANALYSIS

ELECYRICAL PROPERTIES
LLOSED ECOLOGICAL SYSTER
ATHDSPHEREC COMPOSITION
TRIODES

SEHICONDUCTOR DEVICES
INERTIA

GAS FLOW

CURRENT AHPLIFICRS
CORARECTIOR .
CALIBRATING
ELECTROLYEES
ELECYROCHENFCAL CELLS
SURVIVAL

TRERMAL ENSULATION
.GLASS FIBERS

FREDON N

CONTROLLED ATWDSPHERES
BURNS (INJURIES})
TEHPERATURE DISTRIBUTION
BY DROGEN

GAS HIXTURES

ALTITUDE

AIR

CATEGORY B

ULTRAVIBLET RADIATION
KICROELECTRONLCS

LDGIC CIRCBITS
INTEGRATED CIRCULTS
T4FRARED DEYECTORS
FAILURE

DISPLAY DEVICES

FIGURE A9

INFORHATION

STATISTIC
D.17647
0.12497
0.11349
0.11340
D.11340
0. 11348
0.11340
0.11340
0.11340
0.131340
0.07586
0.07337
0.07337
0. 07337
0. 07337
0.07337
0.06593
(L E T
0. 06479
€.05472
0.05479
0. G5479
0.0547%
0.05572
0.0547%
0.0547%
0.054T%
£,05570
0. 85479
B. 054719
0,0547%
©.05472
005579
0.03479
0.05479
0.05479
0.05479
4.05479
0.0547Y
0.05473
0.05479
0.05579
0. 0557
0. 05479
0.05519
0.0547%
0.055473
005579
0.05579
0.05479
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IRDEX ‘PsRM INDEX TERN IHFORMATION
HUMEBER STATISTIC
26 COHPUTIR DESEGH 0.05479
24 CATEGORY % 0.05479
21 WETAL OXIDE SERICORDUCTO B.05479
29 THSULATORS 0.05479
19 DETECTOS 0.05479
ig CAPACITORS 0,05479
10 CATEGORY 22 0.05473

T HOLECULAR STRUCTURE 0.05473
& HOLECULAR SPECTROSCOPY G.054%9
5 RICROWAVYE SPECTRA 0.05479 -
- &5 " INORGANIC COMPUUNDS D.05473
17 CATEGORY 33 0. 04TTL
114 CXPLOS [ORS 0.04771
103 ATRCRAFT HAZARODS 0.047T1
Qo FLAUE PROPAGATION 0.05771
T2 BURNING RATE 0.04TT1
66 HATERLIALS YESTS 0. 04771
53 FLAKE PROPOGATION 0.04771
17 CATEGDRY i1l 0.047TL
B4 FIRE CONTREGL 0.03867
79 ACC IDERT PREVENTION G.0344)
70 SPONTANEOUS COHBUSTION 0.03412
15 OXYGEN 0.03412
155 JET AIRCRAFT 0.02329
154 AIRCRAFT INDUSTRY N 0.02329
153 VEHTS 0.0232%
152 LIQUID NETROGEN 0.02329
151 LIGHTHING 0.02329
15¢ TUEL TANKS 0.02329
149 ELECTRIC DISCHARGES 0.02323
48 COHHERCEAL AIRCRAFT 0. 02329
147 CARBWM DIOXIDE 0.0232%
145 POLYURETHARE FOAR 0.0232%
128 UNITEG STATES OF AMERICA 0.02329
27 THERAPY Ge 2227
126 GREAT BRITAIN 0.0232%
125 HWEIGHTLESSHESS 0.02329
124 TOXEC HALARDS 0.02323
1z3 STATIC ELECTRICITY - 0. 02329
iz22 LIFE SUPPORY SYSYEHS U.02329
121 hJHAR TOLERANCES 0.02329
120 HEAT TRANSFER 0.06232%
115} FLIGIHT CREVS 0.0232%9
118 RICE N 0.02329
|30 SPACECRAFT ENVIROHHENTS 0.02322
115 SAFETY . 0.902322
113 COMBLSTION 0.02329
112 CATEGORY & 0.02327
111 BYROLYSIS 0.0233% -
110 METHANE 0.023:23
109 HALBGER CDHPOUHOS 0.0232%
108 FIRE FLIGHTING 0.0232%
107 DIFLUDROD COKEOUNDS 0.02329
105 CHLORINE FLUDREDES 0.02329
105 CARBON TETRAFLUDREDE 0.0232%
104 BROUINE COMPDUHDS 0.02329
10z PRESSURE DISTRIBUYION 0.02329
1891 FLASH POIRT 0.0232%
icp FLAKHABLE GASES 0.02329
g8 ENV ERONMENT SINULATIQN ' 0.02329
FIGURE A~10

INFORFAATION STATISTIC SORT OF INDEX TERMS IN SARPLE PROBLEM TRAINING SET



INDEX TERM
RUMBER

96
95
T8
76
15
T
69
67
65
62
60
58
57
56
55
54
52
41
38
13
92
85
63
59
49
TL
46
39
Qg
83
68
48
47

3

2

1
BY
14
Bi

g
61
91
16
87
3T

INFORMATION STATISTIC SORT OF INDEX TERMS IN SAMP[.% PROBLEM TRAINING SET

INDEX TERM

RES IDUES

HUMAN PATHOLOGY

TOXICITY

SPACECRAFT CABINS
PLASTICS

BUTGASSIHG
SPECIFICATIONS

SPACE ENVIRONMENT SIHULA
ISNITION TEMPERATURES
HELHETS

ENVIRDNMENTAL TESTS
CATEGORY 31

STDRAGE

NITROGEN

HELIUM

FLIGHY HAZARDS
EXTRATERRESTRIAL RESOURC
UXYGEN BREATHING

APOLLO SPACECRAFT"
MISSILE SILOS

SPACECRAFT CABIN SIHULATY
FIRE EATINGUISHERS

HOMAN FACTORS ENGIREERIN
EMERGERLY LIFE SUSTAINIR

SPACECRAFY CONTAMINATION-

CATEGURY 5
IGNITION

CABIN ATHOSPHERES
PRESSURE LHAMBERS
ELECTRICAL FAULTS

SPACE SUITS I
IGHITION TEHPERATURE
IGHITICN LIKIYS

CONTAM INANTS

CHEMICAL ANALYSIS
BIBLIOGRAPHLES

HIGH PRESSURE OXYGEN
RONFLAMMABLE HATERIEALS
CONFERENCES

SPACECRAFT CABIM ATHOSPH
FIREPRODFING

PROTECTIVE CLOTHING
SAFETY DEVICES

GAS COMPOSITION

ACCIDENT INVESTIGATION

FIGURE A-11

JINFORMATION
STATISTIC

0.02329
0.02329
0.02329
0.02329
0.02329
0.02329
0.02323
0.02329
0.02329
0.02329
0.02329
0.0232%
0.02329
D.02329
0.02329
0.02329
0.02329
0.02329
G.02329
0.02329
0.01698
0.0L6%8
0.01698
0.01698
0.01G32
0. 00662
0.00636¢
0.00526
6.006TH
0.80474
0.0047%
0200474
0.00474
0.00475
0. 00474
0.004T4
0.0012%
G.00126
0.00085
0.00085
0.00047
0.06049
0.00040
0.00022
0.00022
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FIGURE A-12
DOCUMENT-TERM MATRIX FOR SAMPLE PROBLEW
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INFORMATTON
STATISTIC

DOCUMENT NUMEBER
123456 78 9101112151415161 718122021 20232425262728

THDEL
TERM
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FIGURE A-13
DOCUMENT-TERIM MATRIX FOR SAMPLE PROBLEM



INFORMATION <~
STATISTIC

DOCUMENT NUMBER
123456 7 8 5101112151415161716819202122252425262728

INDEX

TERM

24.8

0. 0477
0.02329
0.02329
0.04771
0.02329
0.02329
0.02329
0.02329
0.02329
0.02329
0.02329
0. 02329
0.02329
0.02329
'0.02329
0.05479
0.05479
0.11340
0.05479 _
0.05479
0. 05479
0.05479
0. 05479
0.05679
0.05479
0.05479
0.05479
005479
6. 05479
0.05479
0.07337
0.02329
0.07337
0.02329
0.02329
0.02329
0.02329
0.02329
0.02329
0.02329
0.02329
£a02329

DOCUMENT-TERM MATRIX FOR SAM PLE PROBLEM
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COLUMAN .

MATRIX COLUMY ELEMENTS

WUMBER

1
-4

w

- T -

16

¥
13
14
W5
3
AT
18
19
2¢
21

23
24
25
26
27

28

1.00 1400 1.00 1.60 1.00 1.0C 1.00 1.00 1.00 1.0G 1.00 1.00 .00

1.00 }1.00 1.00 L.G0 1.00 1.00 1.00 1.00 1,00 .00

On 0. Oa 0. 0. 1.00 0. O Ge Ga Ow Os
0 0. G~ 1.00 1.00 0. 0. 0. Q. 0.

0. Ou Q. 0. 1.00 0. 1.00 0. 0. ¢ 1.00 9.
0. 0. L-00 0. Oy 0. 0. QO Q. .

O. G. e 0. C. [+ 29 Q. Q. G Ge ) s
. Q. Q. 1.00 1.00 0. LLES . 0. 0.

0. Ta Cu C. 0. Da 0. D. [ 1,00 Qs 0.
9. 2. G, J. 0. 0. 0. G- 0. O

0. 0. . 1.00 0. 0. Ou 0. O Q. Cu Q.
¥ G Q. 1.00 G. 0. O 0. . 0.

0. 0. 0. 1.00 0. M 8. 0. O« [+ 18 Ou Q.
d. O G. Q. L.00 Oa O. 9. C. 0.

Q. 0. U. 1.00 0. 0. 0. O« Qs 0. Qa 0.
D. . (-9 1.00 G 0. 0. 0. D. 0.

0. b 1.0¢ 0. G Oa O 0. C. ' Ga G.

0. Ca O 0. L 0. 1.00 0. Q. 0.
Q. 0. 1.00 0. Ga G. 0. G 0. 0. Ta 0.
G.- 0. Ca Q. 0. 0. 1.00 p. G, Q.
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A. ORIGINAL CCEFPFICIENTS
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2

SOLUTEON VARLIABLE
NUHBER 1 23 4567
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17 1000001

B SOLUTION FANILIES CF ORIGINAL INBQUALITY

VARE ABLE HIN BASE MAX RHS SiZE
234567 "
1o0t1014 30 39 30 65 4
r1oz022 *% 75 70 65 3
1020110 20 @ 30 &5 3
112022 35 35 110 45 3
112021 | 25 5 70 65 %
112010 20 20 40 65 2
ci2022 0 46 155 63 1
cgzozz 40 40 115 65 1
602021 - . . 30 =2 715 65 1
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00L0CGDO 20 0 20 65 3
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lozl2z2 50 0 125 65 3
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101100 ED) 30 30 65 3

FICURE A-21

SOLUTIDNS TO THE PSEUDO-BOOLEAN INEQUALITY

2

5



11.

256

BIBLIOGRAPHY

The NASA Scientific and Technical Informastion System: Tts Scope
and Coverage, NASA Brochure, {Washington: NASA Seientific and
Technical Information Division; March, 1970).

W.T. Brandhorst-and P. F. Eckert, Guide to the Processing, Stor-
age, and Retrieval of Bibliographie Information &t the NASA Sci-

entific and Technical Information Facility, NASA Contractor Report
CBE6§033 W66-34085, (Washington: U.S. Goverament Printing Office,
1966

IBM Corp., Implementation, Test, and Evaluation of a Seisctive
Dissenination System for NASA Scientific and Technical Information:

Final Report., NASA Contractor Report CR 62020, N6T-11241, (Wash-

ington: U.S, -Government Printing Office, 1966).

Tntroducing NASA's RECON, NASA Brochure, (Washingbon: WNASA
Scientifie and Technieal Information Division, Office of Technology
Utilization, 1969).

G. Salton, Avtomatic Information Organization and Re"cmcva;.,
(¥ew York: McGraw Hill, 1968).

D.J. Hillman, "Negotiation of Inquiries in an on-Line Retrieval
Systen," Informatlon Storage and Retrleval Vol. 4, No. 2 (June,
1968), pp. 219-238.

C.T, Meadow, The Analysis of Information Systems; an Introduction

to Information Retrieval, (New York: John Wiley, 1967).

D.T. Komoto, "Wesrac System," Datamation, Vol. 16 No. 9 (4ug.,
1970}, pp. U3-hT.

Ssiton, op.cit, pp. 243-252,
M.E. Maron and J.IL. Kuhns, "On Relevance, Probsbilistic Indexing

and Information Retrieval," J. Assoc. Comp. Mach., Vol. T, No. -3~
(July, 1960), pp. 216-244.

J.H. Williems, "A Discriminant Method for Automatically Class-
ifying Documents," Proc. Fall Joint Computer Conf., Vol. 24
(1963), pp. 161-166. -

Hillman, loc. cit.



13.

14.

15.

16.

17.

18'

20. -

z1.

22.

23.

257

R.T. Zrandhorst, "Simulation of Boolean Logic Constraints
through the Use of Term Weights," American Documentation,
Vol. 17, TWo. 3 (1968), pp. 145-146.

E.P. Irer, "Solution of Boolean Equations through the Use of

Term Weizhts to the Base Two," American Documentation, Vol. 18,

-

P.M. iewis, "The Characteristic Selection Problem- in Recog-
nition Systems," IRE Trans. Infor. Theory, Vol. IT-8, No. 2
(Feb., 1882), pp. 171-178.

C. Mzliz, "A Measure of the Significance of Pattern Features
for Use zs an Aid in the Design of Recognition Systems"
(unpublizhed M.S. Thesis, Dept. of Engineering, University of
Califormia at Los Angeles, 1962), pp. 98-102.

8. Wabtznabe, Knowing and Guessing, A Quantitative Study of
Inference and Information (Wew York: John Wiley, 1969);
pp. L-Z7.

I. Barrodale and A. Young, "Algorithms for Best 1I; and
I, Linezr Apprroximations on a Discrebe Set,” NumerisSche
Mgthemstik, Vol. 8, (1966), pp. 295-3086.

I. Barrodale, "Approximation in the I, end L, Norms by
Linear Programming” (uwnpublished Ph.D. dissertation, Dept. of
Comp?ta‘c.ional and Statistical Science, University of Liverpool,
1967).

P.L. Hammer and S. Rudeanu, Pseudo-Booleasn Methods for Bi-

‘velent Programming, Lecbure Notes in Mathematbics, Vol. 23,

(Berlin, Heidelberg, Wew York: Springer~Verlag, 1966), . -
DPPe £3-26.

P.L. Hammer and 3. Rvdeanu, Boclean Methods in Operations
Research, (New York: Springer-Verlag, 1968), pp. 54-65.

P.L. Hammer end S. Rudeanu, "Pseudo-Boolean Programming,"
Operations Research, Vol. 17, No. 3 (1969), pp. 233~261.

D.E. Knuth, The Art of Computer Programming, Vol. 1, Fund-

amental Algorithms, (Reading, Mass.: Addison-Wesley, 19687;

pp. 305-328.



24.,

25.

26.

27.

28.

31.

32.

258

D.W. King and E.C. Bryant, Evaluation of Document Retrieval
Systems: Tdtergture Perspective, Measurement, Techrnical
Papers, Part II. Measurement. Prepared by Westat Research,
Inc. for Office of Science Informabion Service, National Science
Foundation Report No. FB. 182-710, (Springfield, Va.: Clearing-
house for Federal Scientific and Technical Information, 1969).

F.W. Lancaster, Iecformation Retrieval Systems: Characher-
istics, Testing, Evaluation, (New York: John Wiley, 1968).

A.R. Meetham, "Communication Theory and the Evaluation of
Information Retbrieval. Systems," Imform. Stor. Ret., Vol. 5,
No. 3 (Oct., 1969), pp. 128-134,

E.VW. Kozdrowicki, "An Adaptive Tree Prunming System: A
Language for Programsing Heuristic Tree Searches" (unpub-
iished Ph.D. dissertation, Dept. of Electrical Engineering,
University of Washington, 1967).

N.J. Wilsson, Learning Machines, (New York: McGraw-Aill,
1965). :

G. Wagy, "State of the Art in Pattern Recognition,” Proc.
IZEE, Vol. 56, No.[5 (May, 1988), pp. B836-862.

J. Ho and A.K. Agrewala, On Pattern Classification Algey-
ithms - Introduction and Spyvey,"” Proc. IEEE, Vol. 56, Mo. 12
(Dec., 1968}, pp. 2101-2114.

P.E. Bart, A Brief Survey of Preprocessing for Pgttern Recog-
nition, Rome Air Development Center Technical Revort RADC-TR-
66-819; also AD-647275, N67-24942, (Springfield, Va.: Clear-
inghguse for Federal Scientific and Technical Informstion,
1967}).

P.J. Davis, Inberpolation and Approximstion, (New York:
Blaisdeil, 1963), pp. 136-140.

J.R. Rice, The Approximation of Functions, Vol. 1, Linear
Theory, (Reading, Mass.: Addison-Wesley, 1964), p. 11.

*Davis, op.cit., pp. 128-134.
Rice, op.cit., pp. 4£-8.

F.A. Graybill, An Introduction bo Linear Statissvical Models,
Vol. 1, (Wew York: McGraw-Hill, 1961}, pp. 117-120.




37.
38.

39.

T

L.

L8,

50.

>1.

52.

259

Barrodale and Young, op. cit.

Barvrodale, op. eit.

P, Rabinowitz, "Applications of Linear Programming to Numer-
ical Analysis," SIAM Review, Vol. 10, Fo. 2 {4pril, 1968),
pp. 1l21-159. )

Graybill, op. c¢it., pp. 110~-11kh,

J.R. Rice and J.S. VWhite, "Norms for Smoothing and Bstime-
tion," SIAM Review, Vol. 6, No. 3 (1964), pp. 2L3-265.

Davis, op. cit., pp. 140-1L6.

F.W. Smith, "Pattern Classifier Design by Linear Programming,”
IEEE Trans. on Cowp., Vol. C-17, No. & (April, 1968), pp. 367-

372,

R.C. Grinold, "A Hote on Pattern Sepafa$ion," Operabtions
Research, Vol. 18, No. 1 (Jan.-Feb., 1970}, pp. 187-190.

Y.C. Ho and R.L. Kashyap, "An Algorithm for Linear Inequel-
ities and Its Application,"” JEEE Trang. Elect. Comp., V6l. EC-
14, No. 5 {Oct., 1965), pp. 653-588,

O.L.—Mangasarian, “linear and Nonlinear Separation of Patterns
by Linear Programming," Operations Research, Vol. 13 (1965},
pp. Lhl-L52, )

M, Taylor, Pattern Separation by Linear Programming, Ballis-
tic Resesrch Labs. Report, Aberdeen-Proving Ground, Maryland;
AD-656~928, N67-38194, (Springfield, Va.: Clearinghouse for-
Federal Scientific and Technical Information, 1965).

Graybill, op. cit.

i.R. Draper and H. Smith, Applied Regression Analysis, (New
York: John Wiley, 1966).

R.L. Kashyap and C.C. Blaydon, "Recovery of Functions from
Noisy Measurements Maken at Randomly Selected Points and Its
Application to Pattern Recognition," Proc. IEEE, Vol. 5k, No.
8 (Aug., 1966), pp. 112741129,

Graybill, op. cit., p. 104 and pp. 223-253.

Hammer and Rudeanu, "Pseudo-Boolean Programming,"” op. cit.



53.

Sk,

55.

56.
5T.

58.

59.

65.
66.
67.
68.
69.

10.

TL.

260

The NASA Scientific and Technical Information System ...,
op. cit.

Brandhorst and Eckert. op. cit.

IBM Corp., Implementation...., op. cit.

Introducing NASA's RECON, op. cit.

P. Fishburn, Decision and Value Theory, (New-York: John
Wiley, 1964).

G. Hadley, Introduction to Probability and Statistical De- -
cision Theory, (San Francisco: Holden-Day, 1967), pp. 160-166.

P.A.V. Hall, "Pattern Classification as Interpolation in N
Dimensions," The Computer Journal, Vol. 11, No. 3 (Nov,, 1668),
pp. 287-202.

Hadley, op. cit,

Fishbuin, op. cit.

Hadley, op. cit., pp. h18-hol.
Ibid., pp. 296-298.

A, Feinstein, Foundations of Information Theory, (Wew York:
#MeGraw-Hill, 1958), pp. 1L-23.

- - Watanabe, op. cit.
Feinstein, op. cit., pp. 4-9.
Watanabe, op. cit., pp. 105-11k,
Ibid.

J.C. Hancock, in Introduction to the Principles of Commni-~
cation Theory, (New York: MeGraw-Hill, 1961), pp. 168-169.

S. Kullback, M. Kupperman, and H.H. Ku, "An Application of
Information Theory Lo the Analysis of Contingency Tables with a
Table of {2n)in(n), n=1{1)10,000," Journal of Research of the
Wational Pureau of Standards -~ B, Mathematics and Mathematical
Physics., Vol. 66B, No. 4 (Oct. - Dec., 1962), pp. 217-2h3.

Thid,



T2,
13.
Th,

T5.
6.

7.
8.
9.
80.
81.
g2,
83.

8l
85.

86.
87,
as.
89.
90.

91,

261

Rice, op. cit., pp. b4-B.

Davis, op. cit.,'pp. 128-13k%,
ﬁarrod;le, op. cit., pp. T1-Th.
Barrodale and Young, Op. cit.
Rabinowitz, op..cit., pp. 126-127.

G. Hadley, linear Programming, (Reading, Msss.: Addison-—
Wesley, 1962), pp. 168-170.

Barrodale and Young, op. cit., pp. 295-296.

R.J. Clasen, SIMPLE - Linear Programming Simplex Subroutine,
thare Program Library No. SDA 3384, Program RS-LSUB, (Santa -
Monica: Rand Corp., 1965).

R.J. Clasen, Linear Programming as a Simplex Subroutine,
Rand Report P-3267, (Santa Monica: Rand Corp. 1965).

Hammer and Rudeanu, 'Pseudo-Boolean Programming ,"

bp. 236-2h41. '

op, cit.,

Hammer and Rudeanu, Pseudo-Boclean Methods for Bivalen® Pro-
gramming, op..cit., pp. 23~36.

Hammer and Rudeanu, Boélean Methods in Operations Research,
op. cit., pp. 54-65.

Knuth, op. cit.. p. 309.

Hammer and Rudeanu, Boolean Methods in Opeiations Research,
op. cit., pp. 57-59.

Tbid., pp. 56-57.
Ibid., p- 58.

Hemwer asnd Rudeamy, Pseudo—-Boolean Methods for Bivalent Pro-
graming, op. cit., p. 27.

Hammer and Rudeanu, "Pseudo-Boolean Programming,” op. cit.,

p. 238,
Knuth, op, cit., p. 316.

Tbid., pp. 3L6-317.



92.
93.
94.
95.
96,
97..

98,

100.

101.

104,

105, °

108.

107,

lo8.

26z

Tbid.

Yoid., pp. 317-318,

Lancester, op. cit.

King, op. cit.

Salton, op. cit., pp. 283-293.

Meetham, op. cit.

A. -Kent; ed., Flectronic Handling oi: Information: Testing

and Evaluabion 'Relevance Predictability II, by D. Shirey and
M. Keefurst," (Washington: Thompson Book Co.,, 1967), ch. 1l4.

R.H. Shumway, "Contingency Tables in Information Retrieval:
An Information Theoretic Analysis,”" Bvaluation of Document
Retrieval Systems: Literature Perspective, Measurement, Tech-
nical Papers; Part 1T, Technical Papers. Prepared by Westat
Research Inc. for Office of Science Informabtion Service, Nat-
ional Science Foundation Report Wo. FB. 182-710, (Springfield,
Va.: Clearinghouse for Federal Scientific and Technical In-
formation, 1969). )

Kollback, op. eit.

C.R. Hicks, Fundameatsl Concepts in the Design of Experi-
ments, (NWew York: Holt, Rinehart and Winston, 1964), pp. 179~
185.

Ibid., pp. 153-156.

W.G. Cochran and G.M. Cox, Experimental Designs, (Wew York:
John Wiley, 1957), pp. 50-53.

B.J. Winer, Statistical Principles in Experimentsl Design,
{Wew York: McGraw-Hill, 1962), pp. 524-529.

Cochran and Cox, loc. cit.

L.N. Kanal, ed., Pattern Recognition "“Property Learning in
Pattern Recognition Systems Using Information Content Measure-
ments, by C.W. Swonger,” {Washington: Thompson Book Co.,
1968), pp. 529-347.

Maltz, .op. cit.

Hammer and Rudeanu, Boolean Mebhods in Operations Resesrch,
op. cit., pp. 65~75.




109.
110,
111.

iiz.

263

Ibid., pp. 86-80.
Rarrcdale, op. cit.
|
Barrodale and Young, op. cit.

Hammer snd Rudeanu, Boolean Methods in Operatiorns Ressarch,
op. cit., p. 170,




264

REFERENCES WOT' CITED

Aoderson, T.W.  Inbroduction to Multiveriate Statisticul fnalysis
Wew Yovk:: JohnHiley,.l958, Chapter &.°

Figher, R.A.. 'The Use of Multiple Measurements in Toxonomic Problems,’
Amals of Bugenics, Vol.'7, Part 2 {1936), pp. 179-188.




A Reproduced Copy

OF

Reproduced for NASA
by the
NASA scientific and Technical Information Facility

FFNo 672 Aug 65



