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utility threshold defining document relevance are provided by a user. The
 

TS is processed to give Boolean combinations of index terms for searching
 

a document file. A linear utility prediction function (LUPF) is fitted to­

the TS documents using selected index tdrms. The LUFF. is thresholded and
 

the resulting pseudo-Boolean inequality is solved, giving term combinations
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- is discussed. 
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ABSTRACT
 

Signature _ 

DESIGN OF A DOCUMiENT RETRIEVAL SYSTEM USING PATTERN RECOGNITION
 

AND MATHEMATICAL PROGBUAhING TECH1TIQUES 

Steven R. Borbash, Jr., Ph.D.
 

University of Pittsburgh, 1970
 

A pattern recognition (PE) model of the document retrieval 

process is introduced. This model-processes a training set (TS) of 

documents to derive file searching instructions. A file of indexed 

documents and a subsystem to implement search instructions is assumed 

to be available. Documents are represented as binary vectors of index 

terms. Two mutually exclusive categories of documents exist, A (rele­

vant) or B (non-relevant). Each document in the TS is assigned a 

utility u on an arbitrary scale by a user. All documents in the TS 

with u.> 'c (a user specified threshold) are relevant. 

The system 'learns' from the TS to predict document utility as 

a linear function of the index terms and hence to recognize relevant 

documents. The TS is processed by feature extraction followed by es­

timation of parameters in the linear utility prediction function 



(LUPF). Feature extraction discards all but those index terms judged 

'best' using an information theoretic estimate, The LUPF parameters 

are those which give a 'best' approximation (in the L1 norm sense) to
 

the utilities of the TS documents as 
a function of the extracted index
 

terms. This approximation problem is 
solved as a linear programming
 

vroblem.
 

After the LUPF has been estimated, relevant documents can be
 

identified by applying the LUPF and the threshold 
v sequentially to
 

all document vectors in the file. 
 This is a 'weighted term' search.
 

Equivalent Boolean search instructions (caled a Boolean retrieval
 

strategy Or BRS) can be derived by solving the linear pseudo-Boolean
 

inequality (LPBI) formed by the LUPF and the threshold. The solution 

to this LPBI is a group of index term combinations (solution families). 

All documents having index term combinations which match any one of 

the solution families will be relevant. Each solution family may be 

regarded as a 'matching template' for classifying pattern vectors.
 

This analytical derivation of the BRS shows the relation between 

'weighted term' and 'Boolean' searches, Other methods of BRS con­

struction are subjective. An algorithm is given for solving the LPBI 

which explores a binary tree using a branch and exclude technique; 

The PR model tested the NASA documentwas on file using a de­

signed factorial experiment. Human analysts and the PE system both 

produced BRS's from the same training sets. The effectiveness of 



V 

searches done with these BRS's were compared. Human analysts were
 

approximately twice as effective as the automatic PE system. The
 

analysts supplement their TS's with extra information not avail­

able to the PR system. Suggestions for improving the PR system
 

are offered.
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1.0 INTRODUCTION
 

1.1 Summary
 

1.11 Objective
 

This dissertation presents details of the design and testing
 

of a document retrieval system (DES) using the NASA Scientific and
 

Technical Information System(1'2,3 4 )* . The analytical model used for
 

the DRS treats the system as a pattern recognizer. The objective of
 

the system is'to automatically develop a set of Boolean file searching
 

instructions from a sample of relevant and non-relevant documents.
 

A "computerized file of document numbers and and associated in­

dex terms is assumed to be available, The system presentedi here re­

ceives as input a sample set of documents from this file. Each of the 

documefits in the set has been assigned a personal utility by a user. 

In addition to the sample set, the user has specified a utility thres­

- hold T, which defines two categories, relevant and. not relevant. 

The system output is a set of searching instructions for re­

trieving all other doeuments from the file which are predicted to be 

relevant, based on the examples provided in the sample set. The 

searching instructions are presented as Boolean combinations of index 

terms which are collecrively known as a Boolean retrieval strategy 

(BRS). The system is shown on the next'page. 

":Parenthetical references placed superior to the line of text 
refer to the bibliogra hy. 
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sample set from file system' _z 	file searching
 
instructions
 

1.12 Motivation
 

A DRS vhich functions as described above provides a new method
 

for a user to interact with a computerized file. This method elimi­

-
nate some pressing practical problems. In addition, it provides a
 

new analytical £ramwork for studying the retrieval process.
 

There are practical problems associated with the present method 

of communication between the human user and the computerized file. The 

NASA system currently accepts file searching instructions in the form 

of a subjectively derived BRS submitted by a user. All documents which 

match this subjective BES are then retrieved for the user.
 

To form a BES the user first selects a small subset of index
 

terms. Next the user specifies Boolean colbinations of these terms
 

which he feels are meaningful. As an aid to index term selection and 

combination, the user may consult a thesaurus and/or consider index 

term usage statistics. The subjective determination of a BRS in this _ 

manner is very difficult and fatiguing, and results are often unsat-l

isfactory. New methods are needed which bleln'the user select and 

combine terms.. 

The DES presented here provides this type of aid to a user. A 

training or example set of documents is presented to the system.- The 

DBS attempts to 'learn' how to discriminate between relevant and 
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non-relevant documents by using this set. Thus the DRS becomes an in­

tellectual tool of the user and acts as his 'agent' to derive a BRS.
 

This system allows the user to concentrate his efforts on making value 

judgments of documents in the training set. It relieves him of the 

combinatorial problems of BRS formation. 

Analytically, the model used here allows pattern recognition 

and mathematical programming techniques developed for pattern recog­

nition systems to be applied directly to the document retrieval prob­

lem. In addition to supplying numierical techniques, the model sug­

gests many extensions for further study. 

1.13 Relationshin to the Work of Others 

The DRS model developed here fills an important gap in the 
I 

literature. This results fron concentrating only on deriving the BBS 

from the training set. Both automatic index term extraction and the 

techniques of carrying out search requests have been excluded from
 

consideration here. A file of indexed documents is assumed to exist,
 

along with a system for carrying out search instructions.
 

In other DRS's, automatic index term extraction from full 

English text has occupied a large portion of the analytical ef­

'6 )
fort (5 . Still other researchers have been concerned mainly with
 

the file structure and/or the mechanics of carrying out search re­

questsC7,8). Generally a specified set of search instructions is
 

regarded as the input or query to their systems. 



In the system here, the BRS is developed analytically from the
 

training set by first deri-ving a set of index term weights amd then
 

,developing the WAS from these. Others have used weighted term systems
 

to cariy out file searches. The index term weights are quite often
 

assigned subjectively(9jlO ) and occasionally by analytical
 

methods(ll1 2). The analytical method used here to derive term
 

weights is new, and depends upon user-assigned document utilities.
 

An important new result here is that the BRS is simply an al­

ternate way to express weighted term search instructions. Thus, given 

any set of index term weights and a threshold, it is possible to de­

rive an equivalent BRS using algorithms presented here. Others have 

attempted to specify index term weights which would simulate a given 

subjective'RS(13S14). This is the inverse of the approach taken
 

here. 

1.14 Methods Used
 

A utility prediction function for documents is constructed
 

from the training set. This utility function is used, together with
 

the user-specified threshold T to retrieve documents from the file
 

which are predicted to be relevant. 

In the context of pattern recognition systems, the threshold
 

utility prediction function is a decision function. Each document in
 

the system is represented as a vector x of index terms which is then
 

assigned to one of two mutually exclusive categories, 'relevant' or
 

'non-relevant' by applying the decision function [f(x) ­
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The training set is submitted by the user. Each document in
 

this set is assigned a utility on a pre-determined scale. Both rel­

evant and non-relevant documents are represented. Feature extraction
 

(dimensionality reduction) is first performed on training set vectors
 

to reduce their dimensions. A subset of index terms is selected using
 

an information theoretic measure. This measure gives an estimate of
 

how well individual index terms discriminate between relevant and non­

relevant documents in the training set.
 

Next a linear decision function is estimated using the reduced
 

(in size) training set vectors. (For this application, f(x) is a
 

linear utility prediction function (LUPF).) Parameters in this linear
 

model are estimated from the training set using the L1 norm criterion
 

of best approximation. This estimation problem is set up as a linear
 

program and solved using the simplex algorithm.
 

Finally, by applying-tbe LUPF to documents not in the training
 

set, it is possible to identify all the documents in the file which
 

are predicted to be relevant.
 

This identification can be done in two ways. By evaluating 

f(x) for each x and comparing this to the threshold i, each x 

may be classified individually. This method is appropriate for 

searching a sequentially structured file (SSF). An alternate method 

is to solve the linear pseudo-B6olean inequality (LPBI), f(x) > T, for 

its solution families. This gives Boolean cooinations of index terms 

which are the analytically derived BES. The BRS form of the LUPF is 

necessary for searching an inversely structured file (ISF). 
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The BRS derived above is a set of matching templates which can 

-be placed over a pattern vector x to categorize it. Each template 

corresponds to a-solution family of the LPBI. Solution families to 

the LPBI are obtained using a branch-and-exclude binary tree search
 

algorithm. Fig. 1-1 shows a block diagram of the system.
 

1.15 Testing and Results
 

Training sets were prepared for several test questions. Using
 

these training sets, BRS's were written both automatically by the sys­

tem and by a group of experienced NASA system users. A portion of the
 

NASA file was searched using each of the BRS's.
 

Relevant documents had been identified beforehand and a meas­

ure of effectiveness was developed for each search which used this 

fact. I 

Test results showed that the machine-derived BRS's were only
 

about half as effective as the subjective user-derived BRS's. Differ­

ences appear to be largely attributable to the use (by hutmans) of 

supplementary information not contained in the traiting set. 

1.16 Conclusions
 

It is concluded that the phttern recognition model of document
 

retrieval employed here is very useful for deriving an asalytical BBS.
 

However, more work is needed to increase the practical effectiveness of
 

the automatic system, particularly in the area of feature extraction. 



FIGURE 1-1 
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1.2 Structure and Assumptions of the Model
 

The analytical assumptions made to model the process are
 

listed and discussed below.
 

1.21 Document Representation and File Structure
 

A file of indexed documents is assumed to existi Each docu­

ment d ,.k=l'2,...,D in the file is represented as a binary vector
 

x= (Xik) 1,2...,£, of index terms, chosen from a master list 

having 2 terms. If index term i is assigned as a characteristic 

to document dk, then xik = 1. Otherwise xik = 0. For exmple, in 

the NASA system, Q2 13,000; D - 500,000 and about eleven xik = 1 

for each k. 

The entire file may be conveniently pictured as a binary.. 

document-term.matrix having Q and columns. row index-- rows D Each 

corresponds to an index term T. where all' terms are arranged in some 

standard order (such as alphabetically) and each column index k cor­

responds to a document number nk' where all document numbers are also
 

arranged in.some standard order (such as chronologically). Because
 

the matrix is very sparse, it is convenient to represent it in a more
 

compact form. There are two ways to readily do this by collapsing
 

either the matrix columns or rows.
 

To collapse the matrix columns, represent each column (docu­

ment) vector , as a list Lk of row indices Lk= (kl"'" kr ) 

having rk members. Here ,jk are row indices corresponding to 
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x 1. The list L simply identifies the index tenms used with a 
jk Lk 

given document. For example, with the NASA system there would be about 

500,000 lists having an average of 11 members each. A data structure 

can now be defined having a master list of document numbers nk; 

k=l,2,...,D where each nk has an associated sub-list Lk of index 

term numbers. This data structure will be defined as a sequentially 

structured file (SSF).
 

Alternately, it is possible to collapse the matrix rows; Each
 

row can be represented as a list Ci of column indices having A,
 

members,. = (c. .,ic i) here c.j are column indices corre­

sponding to x.. = 1. This list identifies the documents associated
 

with the index term T.. The corresponding data structure has a
 

master list of indexterms, wIith each term having an associated sub­

list of documenb numbers. This data structure is defined as 'en in­

versely structured file (ISF);
 

Observe that to locate in an SSF all d. with f(X,) > 

it is necessary to examine every.list Lk, form f() from this list
 

and then make a decision.
 

With an ISF, searching is done only with specified Boolean
 

combinations of index terms (the BRS). Appropriate set operations on
 

the lists C. associated with the terms T. ill give a resultant
 

set of document numbers. Since usually only a small subset of all T,1 

are specified in the BBS, the search of an ISF is more economical than
 

'the search of an SSF. The conversion of the coidition f(_,) rT to 

an equivalent BRS allows the more economical ISF search bo be 
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substituted for the SSF search. Given a file, it is easy to convert it 

from an ISF to an SSF or vice versa. We will represent a file of Index 

terms and document numbers in either form as F(X,Ti,nk). 

1.22 Fundamental Assumptions
 

1,221 File Existence. A file F(XTi,nk ) of indexed documents 

dk k=l,... ,D exists. The nk~k=l,2,:.. ,D are document numbers,
 

while the Ti i=l,2,..., are index terms.
 

1.222 Document Utility. Each document 6, represented in the file 

has a personal utility uk to a given user at a given time. The util­

ities uk can be measured on an arbitrary scale. 

1.223 Document Relevance. A threshold T (dependent on the chosen 

utility scale) can be specified by a 'ser to define relevant and non­

relevant documents. (uk > T=>dk is relevant). 

1.224 System Objective. The objective of the system is to provide a 

list from the file F of document numbers nk. corresponding to all 

relevant dk. 

1.225 Source of Information for Utility Prediction. The utility uk 

of any document dk may be adequately predicted as some function of 

2, where 4 is the column vector of X associated with document ­

d, i.e., uk = f(:S). This assumption disallows the use of information 

which is not associated with the document characteristics in the file.­

1.226 Dimensionality Reduction. For the purposes of any given user, 

all but a small subset of all index terms may be neglected without a 



significant loss of information. This allows the vectors 4 to be
 

reduced in dimension.
 

1.227 Linear Utility Function. A prediction of document utility U
 

is adequately given by
 

n 
"k_ Xjk j 

j=l 

1.228 Estimation of Parameters in the Linear Utility Function. The 

parameters e.,j=a,l,... ,n in the linear utility function may be 

adequately estimated from examples in a training set of m documents 

where m > n. 

1.3 Limitations
 

Assumptions 1.221 through 1.225 are rather general. Assump­

tion 1.225 implies that the quality ofifidexing is adequate for the 

group of users who will retrieve from the- file. 

Assumption 1.226 is quite restrictive since it assumes that
 

all but a small set of index terms may be discarded without a sig f­

icantly degrading system performance. This of course is always done 

by users who form a BRS with only a few (from 3 to 15) index terms 

selected subjectively from the master list. This same assumption is
 

also made frequently in pattern recognition systems design, where it
 

is termed 'pre-processing' or 'feature extraction'. It is also
 



numerically necessary to reduce the size of the vectors x before
 

continuing with the estimation problem of assumptions 1.227 and 1.228.
 

Assumption 1.227 assumes a linear utility function for con­

venience in estimating the parameters. This is a fairly restric­

tive assumption.
 

Assumption 1.228 implies that the sample adequately represents 

users interests over the entire file. The number of documents m in
 

the training set must be greater than or equal to the parameters $.
J 

which are estimated. This relates t6 assumption 1.226, since the
 

final reduced dimension of the-training set vectors fixes the maximum
 

number of parameters which pay be estimated. 

1.4 Organization of this Dissertation
 

This dissertation is presented in nine chapters, which des­

cribe system design and tests perfoi~med on the NASA file. 

Chapter 2 describes a simple pattern recognition system, but 

not in the context 'of document retrieval. An example problem illus­

trates system operation. Example patterns are classified using both 

the linear decision function and the matching templates which are de­

rived frcm it, by solving a pseudo-Boolean inequality. 

Chapter 3 relates the system of chapter 2 to a similar system 

for the document retrieval problem. Document utility is defined and 

measured on an arbitrary scale. A user specified threshold is intro­

duced on this utility scale to define relevance. The decision function
 

can now be interpreted as a -utility prediction function. The matching
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templates for classifying patterns are shown to be identical in form 

and use to the subjective BS.
 

Chapter Itdevelops the information theoretic measure for ex­

tracting best index terms as an extension of decision theory when 

utilities for action-outcome pairs are not known. This information 

theoretic measure has been used in other recognition systems for ex­

tracting pattern features. See, for example, Lewis(15) and Maltz 

The interpretation here is different and follows Watanabe (1 7 ) more 

closely.
 

Chapter 5 illustrates the determination of index term weights 

by using approximation theory. The L1 norm problem is formulated 

as a linear programming problem (see Bsrrodale (1 8 19) ). Examples are 

given illustrating alternate optimal solutions, Snecifl properties 

of the solution are noted. 

Chapter 6 presents the theory of pseudo-Boolean inequalities 
Ruen(20,2g!,22) Acoose grih 

as developed by Hammer and Rudeann *. A composite algorithm 

is presented here uhich solves a pseudo-Boolean inequality by a 

branch-and-exclude technique carried out in the context of a binary 

tree search. The basic branch-and-exclude technique is that de'eloped 

by Hammer and Rudeanu. To implement this technique, a binary tree 

traversal(23) subalgorithm is introduced which controls and sequences 

the tree search. The composite algorithm is called the Tree Pruning 

( 2 7 ) This name was used by E.W. Kozdrowzicki to describe a gen­
eral process of branching and excluding in operations"with tree struc­
tures. Because of the accurate description which it also conveys about 
the operations of solving a pseudo-Boolean inequality, it is used,again 
here. 

1 
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Algorithm (TPA). An example problem is solved and computational exper­

ience with the TPA is discussed.
 

Chapter 7 describes system testing which is carried out by
 

using a 23 factorial design. The main factor tested was the differ­

ence in the effectiveness of searches performed using BRSts subjec­

_bively derived by anlysts and BES's analytically derived by the 

methods of chapter 3. Three measures of effectiveness were used to 

evaluate search effectiveness. The more traditional measures of recall 

and precision were both used(2 4 ,25). In addition an information theo­

retic measure suggested by Meetham( 2 6 ) was used. Other factors 

tested were those of training set' size and the number of extracted 

features. 

Chapter 8 discusses results of the testing, and presents an­

cillary data felt to be of interest. Searches done using subjective
 

BRS's were significantly more effective than those performed using the
 

analytically derived BBS'su' The differehee is largely attributable to
 

a significant difference in precision of subjective and machine
 

searches. This difference in precision seems related to the hun,_ use
 

of information not contained in the training set. The extra informa­

tion allows human analysts to avoid using index terms which have a high 

frequency of occurrence, even though they are excellent discriminators
 

over the training set.
 

Chapter 9 suggests improvements and extensions of some of the
 

concepts which appear useful. The generality of the pattern recogni­

tion model is apparent from the number of possible extensions.
 



15 

Appendix A provides an example of the processing of a typical 

document training set to prcduce a BRS.' Programs were written in 

Fortran IV for the IBM 7094/7o44 Direct Couple System. -

It is concluded that the pattern recognition model presents
 

a very convenient analytical framework to use for document retrieval
 

system analysis and design. Resolution of significant differences
 

between automatic systems and human beings appears to be within the
 

realm of possibility if more sophisticated automatic systems are de­

signed,
 

1.5 Contributions
 

The contributions of this dissertation are felt to be in three
 

areast models. methods- and data.
 

1.51 Models
 

Modeling the derivation of the BBS as a pattern recognition
 

problem is felt to be significant because it allows rigorous analytical
 

methods developed by others (information theory, approximation theory,
 

linear programming) to be applied directly to the document retrieval­

problem. This is an application of existing technology to a new area. 

The conversion of a linear decision function to equivalent 

matching templates by solving an associated LPBI is a new application 

of pseudo-Boolean progranmiing to pattern recognition systems.
 

The analogy between the BBS of document retrieval systems and 

the matching templates of pattern recognition systems makes this new 



template-generation technique immediately applicable to document re­

trieval systems utilizing inversely structured files (I F's). 

1.52 Methods 

Generation of matching templates by solving an LPBT for its
 

solution families is made practical by development of an algorithm
 

to carry out the required computations quickly and efficiently. No
 

claim is made here to the general method of LPBI solution via branch­

and-exclude operations in a binary tree. This is due to Hanmer and
 

Rudeanu, The contribution here is the adaptation bf a sub-algorithm
 

to efficiently organize and -sequence the branch-and-exclude operations.
 

1.53 Data
 

Testing of the model and methods on the LASA document retrieval
 

system has given new data onwhich,to plan future system*modifications
 

and retrieval experiments.
 

. In addition, a limited amount of data is also available-on 

operation'of the TPA (tree pruning algorithm), for solution of the PBI. 

This data should provide a basis for comparison of the present TP.t 

with future modified versions as they are developed. 



17 

2.0 PATTERN RECOGNITION SYST24S
 

This chapter introduces and briefly describes a pattern recog­

nition system of the type which will be applied to the document re­

trieval problem.
 

The general concepts-of feature extraction, decision function
 

formation and template marching operations are introduced and dis­

cussed. One simple example is used throughout the chapter to illus­

trate these concepts.
 

2.1 Introduction
 

Pattern recognition systems are concerned with the automatic
 

classification of patterns (represented as vectors) into two or more
 

mutually exclusive categories. A training set of pre-classified pat­

terns is assumed available to 'train' the recognition system. After
 

'training', patterns of unknown classification are presented to the
 

recognition system. If the training set was 'typical' in some sense,
 

then the recognition system should classify the unknown patterns
 

'reasonably well'. 

The simplest pattern recognition system is one which works 

with binary pattern vectors x = (xlx 2,...x n ) where xis{Ocl} and 

classifies all patterns into one of two categories. This is the type 

of system to be considered here. For general references to the subject 

(28) (29))
of pattern recognition, see for instance Nilsson ), Nagy or
 

).
 JH0
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2.2 Pre-Processing
 

Training of a recognition system can be considered in two 

parts. The first part concerns representation of pictures or other 

patterns as vectors, and will he called pre-processing The see­

ond part estimates parameters of a decision function from vectors in 

the training set. 

2.21 Representation of the Pattern as a Vector
 

Figure 2-1A illustrates a group of 5 simple patterns. A 

recognition system is desired which will distinguish between binary' 

patterns representing pictures of the letters A and B. Let these pat­

terns become the training set, which contains two 'pictures' of the 

letter A and three of the letter B.- The grids of the pictures shown 

are 4 x 4. If we agree to order the rectangular sub-elements of the 

pictures from left to right and from top to bottom, then we can repre­

sent each picture of Fig. 2-1A as a binary vector xk as shown in 

kt h
Fig. 2-1B, where 	x 1 if any element of the picte of K or B 

th
lies within the i rectangle and Xik = 0 otherwise. 

2.22 Feature Extraction 

The next step in designing an automatic recognition system is 

usually to reduce the dimension of the pattern vectors by discarding 

vector elements which are 'non-informative'. This operation is also 

known as 'feature e%traction'. It is a very important portion of the 

pre-processing operation. Heuristically we can see that vector
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FIGURE 2-1
 

EXAMPLE SHOWING PATTERNS REPRESENTED AS VECTORS AND
 
ILLUSTRATING FEATURE EXTRACTION
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elements 1,4 and 13-16 contain no information at all, since they are 

always zero, regardless of whether the pattern is an A or a B. Vector 

element 2 is a perfect classifier of the patterns in the training set, 

since x2k = 1 wben k=l2 (letter A) and k2k = 0 for it=3.4.5 

(letter B). Vector elements 3,5 and 6-12 give some information about 

-the correct classification of the vectors even though they are not 

perfect predictors. 

The notion of information content over the training set can be
 

formalized by using the concept of entropy from information theory.
 

This will be done later. ' Assume for illustrative purposes that all 

vector elements except 3,5 and 8 have been discarded. Then elements
 

3,5 and 8 represent 'features' which have been extracted by the in­

formation screening process. The resulting 5 three-dimensional feature
 

vectors z 1 ,. L5 are shown in Fig. 2-lC. Note that zkl =x3' 

Zk2 = xk5 and Zk 3 = xlc8- for k=l,... ,5. 

2.3 Decision Function Specification
 

The second major step in the machine training process is to
 

specify a decision function. This function is given as y = f(z), It 

maps the feature vectors z of patterns of unknown classification into
 

the dependent variable y on the real line.
 

The form of the function f(z) is specified while the para­

meters of f(z) are estimated from the training set.
 

The decision function f(z) is used as follows. Assume a
 

pattern vector x of unknown classification is to be put into category 
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A or B. First, vector x is reduced to vector z by extracting 

the features selected as being 'informative' over the training set. 

Then f(z) =r is compute&'and if Y > T (a given threshold), then 

the vector z (or x) is assigned to category A. if y < T, then z 

is assigned to category B. 

2.31 Selecting the Form of Decision Function 

There are two methods generally used to select the form of 

f(z). If the vectors z are from a known multivariate probability 

distribution p(z), then the form of f(z) may be derived from the 

form of this distribution. The parameters of p(z) which appear in 

f(z) will be estimated from the training set. This is knovn as para­

metric decision function formation. 

The other method used to specify f5(z) is knowin as nonpara-­

metric decision function formation. Here the form of f(z) is chosen 

as a matter of convenience, and the parameters are estimated from the 

training set samples. Nonparameric methods are used -exclusively for 

the applications to be considered here.
 

A very convenient form for the decision function and the one to
 

be considered here is the linear function
 

n 
y L 0 -1-E 8j zL(z 

j=l
 

<)
zjs{O l} ; 
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The f. are the feature weights, while the z. are binary elements of
J 3 

the feature vector %, 

2.32 Estimating the Parameters of the DecisionFunction
 

The parameters 1j are estimated b? an approximation process
 

from the samples in the training set. If the training set is large
 

and typical of the universe of unknown patterns to be classified, then 

A
good results should be expected when y = L(z) is used to classify un­

known patterns. 

2.321 The Associated Approximation Problem. There is considerable
 

freedom in choosing a method of estimating the .6. Nearly all
 

methods involve the choice of a.best approximation to the 8. based
 

on the Training seb. "This tS-pe of problem has been studied extensively­

by mathematicians, to whom it- is known as the discrete linedr approx­

imation problem(32,33). Consider the following relationships for a 

training set of n pattern vectors having m < n elements each: 

= + iYi ij r i=l,2,7..,n; zio ; 
j=0
 

or
 

y.= r 

Here y is an (nxl) vector of known binary variaoles obtained from the 

training set: yj = +1 -ifpattern i bel6ngs to category A and 
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=Yi -1 othervise. -- = ((j) is an, (m x 1) vector of unknown para­

meters (feature weights). Z = (z..) is a known matrix (n x m) of 
'ij
 

binary 	variables obtained from the training set. Rows of Z are the
 

training set feature vectors z. The unkioim vector of residuals 

(n x 1) 	is'denotel by r = (ri). 

The problem is to estimate (. Call this estimate b (note 

that a3 can never be known exactly as long as the training set is 

only a sample of the universe of al.patterns z). Note that j Zb 

is an estimate of y based on the estimate b of -3. Then r = v ­

2.322 Choosing the Criterion of Best Anproximation, By a best esti'­

mate b of" ( we shall mean the vector b which minimizes the 

length (norm) Li of the vector r. There are many Iways of spec­

ifying a.norm, An entire class of norms is given by the L (L sub 
p 

-p)norms defined :
 

/n 1/ip 

Lp(r)
 

Nhen p 2, Lpr) = r 2) and we get the familiar least squares 

7n 

problem. When p 1, we have Ll(r) 1ri, and in the limit as 
i=l 

p we have L.(r) = max jr j. This is also known as the Chebyshev, 
-i 


uniform or max norm. The approximation problem can now be written as
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follows. Find b. such that 

b raniJI min !k-a_ 
r a 

All practical applications of discrete approximation theory
 

known to the author use either the L1 , L2 or L norms (or some
 

variation of them), since these three formulations have solution al­

gorithms which are reasonable to implement on a computer. Most appli­

cations utilize the L2 norm. The solution for b is given then by 

the familiar least squares normal ecuations ( 3 6 ) . 

b = (z'z'-iy 

Both the LI and L norm problems can be cast as linear programming 

(LP) problems, which aie readily solvable by the simplex algorithm or 

(37 ,38 39 )
 
one of its variations , 

The popuiarity of the L2 norm is due largely to the following 

items: 

(a) familiarity of the method, and of the solution algoritbms; 

(b) statistical applications of least square estimators 'when 

the r. are normally distributed(40); and 

(c) uniqueness of the solution vector b. 

Least squares estimation has the disadvantage that the n x m 

matrix Z must have all m columns linearly fndependent to insure 

that (z'Z) will be nonsingular. 
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The LI and L. estimators of $ have the following charac­

teristics:
 

(a) ease of solution when formlated as LP problems; 

(b) the n x m matrix Z is -notrequired to have all m 

columns linearly independent to guarantee a-solution; 

(e) the I 1 and L estimators can be better estimators of 

than L2 'whenthe ri are not normally distributed 

(d) L, and L estimators are- not necessarily- utiqu& Th& "- .. 

same minimal value of L(r) can be attained for more than one solution 

vector b 

The overall differences in estimates of ' based on LIl L2 

and L. norms can be negligible. Choice of a'norm for-applied prob­

nemsoften depends upon practical considerations. 

In the application to documert retrieval systems to be pre­

sented in chapter 3, the L1 formulation will be utilized for the 

following two reasons: 

(a) the columns of Z cannot be guaranteed independent so 

that further checking would be required if the L2 norm were used 

(b) the T1 problem is very rapidly anid 6fficiently solved 

in the linear programming (LP) formulation. 

2.33 Current Methods of Forming Decision Functions 

A great number of pattern recognition decision functions are 

linear. Several techniques for estimating the p'arameters are based 

on methods which are variations of the L1 or L. norm. See for 
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example Smith( 43 ) or Grinold Least squares methods are also used. 

(h45)See for instance Y.C. Ho For another formulation less recogniz­

(46) (47)
able as an approximation problem, see Mangasaran or Taylor 

2.34 An Example Problem Illustrating Decision Function Determination
 

In the example used to illustrate feature extraction, features 
3,5 and 8 were arbitrarily chosen, and the feature vectors z1 ...1z 

were formed. These vectors now represent the training set, instead of 

the vectors 2 1,.. . 

Figure 2-2A shows the model y = Z + r' for this example. 

The least squares criterion is used to derive a solution b as shown 

in Fig. 2-2B. The least squares solution is used for this example 

problem only. All subsequent problems will use the L norm crater­

ion. The residual vector for the least squares solution is shown in 

Fig. 2-2C. 

In Fig. 2-2A the n = 5 rows of the matrix Z are the n 

feature vectors Zl...1 which constitute the training set for the 

problem. Each vector k is augmented by adding unity in the first 

position.
 

The columns of the matrix Z (excluding the first column)
 

correspond to the 0/1 'features' which were extracted from the orig­

inal training set vectors x. The first column is a vector of all
 

l's which is included to allow a constant term in che decision func­

tion.
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FIGURE 2-2
 

EXAMPLE SHOWING LINEAR DECISION FUNCTION PARflETR ESTIMAITION
 

A. Linear Model Estimation
 

y= Z$ + r 

+i- -. 1 0 0 Fj r 
10 1. 

+1 1 0 1 0 8I r2 

-1 1 0 00 a3
 

-1 1 2- 0 0 3Jr
 4
 

-i i 0 0 i rs5
 

B. Least Squares (minimal L2(r)) Solution for b, the Estimator of _
 

minIk- z1 2 = (z,z)F zly J 

y= -1 + izI + 2z2 + Oz3
 

T 0
 

C. Residual Vector for Least Squares Estimator
 

+i 0 -+3• 

+ 1 
 i1 0 1
 
r = Y - -i = 0 

-1 0 -1 

-1 -1 = - 0J 

1 Li 2 =i\f2 
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The vector y of dependent variables consists of the elements 

.. = +1 or -1 where y, = +1 is used for patterns of letter A in 

the training set and y, ='l is used for patterns of letter B. 

The problem is specified completely when 7 is chosen. The 

threshold T is used for making decisions after $ is estimated. 

This threshold is somewhat arbitrarily specified as Lhe midpoint 0 be­

= 
tween y. = ±1 and yi -I'. if y = 0 for some unclassified 

pattern, then we agree to decide that this pattern z represents the 

letter A and if y < T, then z represents B. 

Fig. 2-2B shows the least squares solution b = (-1,1,2,0). 

Here the feature z3 has been assigned a weight zero (b. = 0). 

The results of applying the model.to the training set as a pre­

dictor are'given in 'Fig. 2-26, which compares y and y. Here the to" 

A patterns are correctly classified, Ibut one of the B patterns (pattern 

4)is misclassified or rejected since = 0. The linear relation­

ships = Zh is thus not completely adequate to correctly classify 

all the documents in the training set. 

There is information lost at two points. -First, the feature 

extraction process throws away information by discarding potentially 

important features. Secondly, the approximate linear decision function 

may introduce errors. Perhaps a better decision function would be non­

linear. Or perhaps the training set should be larger.
 

The fact that any pattern recognition system will make errors 

must be accepted; although it must-be trained to have a minimal (often 

zero) error for the sample patterns. The emphasis is on picking a 

http:model.to
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reasonable system design and then adjusting it so that its recognition
 

error rate is acceptable for the application at hand
 

2.35 Relationship of the Decision Function to Curve-Fitting Problems
 

The standard curve-fitting or regression model is given
 

and'is identical to the decision function model. The difference is
 

entirely in interpretation. in ordinary function fitting applications
 

the dependent variables y are the yield of some process. In the
 

pattern recognition problem, the yi are fixed at ±1, to indicate two 

different categories. 

One way of resolving the apparent difference between the two 

is to regard the yi as the differences between two probabilities 

Yi = p(A/z) - p(B/z). 

Then since p(A/Lz) = 1 and p(B/z) = 0 or vice versa for all training 

patterns in categories A or B, it follows that 

(p(A/z) - p(B/z))s{-i,+l}.
 

If we agree to assign patterns to category A when y > T 0 

we see that;. 
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y p(A/L) - p(B/z) > T = 0 

p(A/- -1i
> (Bz)(/z) 


Thus by assigning patterns to category A when y > t = 0 ie are making 

a reasonable decision based on estimated probabilities. This explana­

tion of the decision function can be called the "potential function" 

interpretation(50). 

The independent variables z., in the problem are binary. In
 

the statistical literature linear least squares models of'this'type are
 

referred to as "experimental design models". 
(51 )
 

2.4 Template Matching Operations
 

2.41 Introduction
 

Once the decision function is determined, the category of any
 

unclassified pattern x may be estimated by first converting x to z
 

then by forming y = b0 + b zj and comparing this wiith the thzes­

1 

hold zero. 

There is an alternative to computing y and comparing it to a 

threshold. This is the formation of groups of one or more templates
 

which compare specified combinations of binary features in the original 

pattern vectors x, or in the feature vecLors z. 
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2.42 The Pseudo-Boolean Inequality 

The mathematical motivation behind this comes from the theory 

of pseudo-Boolean inequalities (binary variables and real coefficients). 

Note that: 

n 

y > T-b + b.z. > T 

j=l
 

S nzib.-. _ (r - bo ) 

,j;>=1 j> .j=l
 

which is a pseudo-Boolean inequality; 

Binary vect6rs z abe mapped onto the real line via the real 

coefficients b. All binary vectors z, which satisfy the inequality 
a 

are solution vectors. Each solution vector represents a binary pattern
 

vector z which belongs to category A. The solution vectors z can
 

be grouped and placed into one or more solution families. Each solu­

tion vector belongs to one and only one family.
 

The families specify a fixed configuration of either 0 or 1
 

for some of the variables in the vector, and a free configuration for
 

others.
 

To illustrate how solution vectors may be grouped into families,
 

consider some hypothetical inequality with six solution vectors z
 

(zlZ2 ,z 3,z4 ) and tuo solution families. 
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F2(z) = (->l±,-)z (!i,i,O) 

S0,1,1,0) 

All 6 solution vectors lie in either family F (z) or fatly 

F2(z). F (z) is a compact representation of 2 solution vectors while 

F2(z) represents 4 solution vectors. Another way of writing the 

families is F (z) = Z z (z 3F (z)

1- 12z4' 2- 2
 

Families of solutions may be regarded as matching templates
 

for the patterns z= (z z2 ,. .,z 4 ). For example, F (z) requires
1' 2''4)2(- ­

the simultaneous presence of a 1 in components 2 and 3 of the 

vector z. All vectors z with a 1 in both components 2 and 3 

ill match the template F (z). Similarly all vectors.with a 1 in
 

position 1 and O's in both positions 2 and 4 will match the tem­
plate F1(z).
 

In this example all solution vectors belong to'either family
 

F (z) or F2(z), Also, all solution vectors z satisfy the
 

thresholded linear decision function given by
 

n 

b z > t b 

j=1 

It follows that all pattern vectors z which match either template 
FI(z) or F2 (z) belong to category A (y '> T) and all patterns which 

fail to match either template belong to category B (y < T)
 



It is convenient to define the characteristic cn - : j 

of a pseudo-Boolean inequality as a matching operation on : .
 

of all solution families (tsi-_lates) Fk(z), k-1,2, ... . 

[(z) = tUFk(z)] 

'(z) is a Boolean function Vnich takes on the value of 1 -- t-n 

pattern vector z matches cne of the M templates and ta" tu . 

value 0 when a match does not occur. 

It follows that
 

d('z) = !, z belongs to category A 

(z) = O-> z belongs to category B 

Observe that the solution of the pseudo-Boolean ineqas_ -. Y 

dorived from the thresholded decision function involves no attzt%­

imation process. No information is lost: The matching te-pl./e 

for making binary decisions about the classification of patterf, 

are merely an alternate form of implementing the decision funcitlon 

Instead of adding weights for vector elements which are present and 

Com11paring the sum to a threshold, we look instead folt the presenc e 

Of configurations of points. If one of the configurations is o7h-

For someserved, we 'automatically assign the pattern to category A. 

recognition systems this matching of configurations is a mdre ef­

fective method of identifying patterns. Families of solutions to a
 

linear pseudo-Boolean inequality may be .found by a branch-and­

eXhlude binary tree search algorithm. 
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2.43 An Example of Classification by Template Matching 

The example problem considered previously in this section has
 

an associated pseudo-Boolean inequality
 

3 
y b b z= -1 + lz + 2z + Oz 

0 L_ 11. 2 3
j=l
 

y_> T y> o L bzj > (- - bo ) 

lzI + 2z2 1I 

This pseudo-Boolean inequality has two solution families:
 

t2(z) '(-,0) 
F()= UL,o)o 

The family F2(z) has only one solution Vector and is said to be 

degenerate. The characteristic function of the unequality is 

(z_) = )U (Z 2)
 

Applying the PI(z) = z2 = x5 template to each of the 5
 

patterns in the training set (see Fig. 2-lA) gives a match for 

pattern 2. The F2 (z) = z x3 x 5 template gives a match for 

patterns I and 4, Thus patterns 1, 2 and 4 satisfy the character­

istic function ( (z) = i) and axe predicted to belong to category 

A. Pattern 4 is still incorrectly classified (see Fig, 2-2C).
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2.5 Summary
 

This chapter has introduced and illustrated the principles in­

volved in the design of a recognition system of the type to be used
 

for the document retrieval problem, This is the two-category system
 

using binary pattern vectors and a non-parametric line&r decision
 

function.
 

The steps involved in the design are:
 

(a) representation of patterns as vectors, and choice of
 

a training set;
 

(b) feature extraction to reduce the pattern vector dimensions;
 

(c) specification of a linear decision function and estimation
 

'of the parameters in this linear function. Parameters are estimated 

from the training set with a discrete linear approximation model; 

and 

,(d) 	construction of templates from the decision function, using
 

the pseudo-Boolean inequality. This gives an alternate (to the
 

linear decision function) method of categorizing new patterns.
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3,0 MODELING THE DOCU{ONT BEPIEVAL PROCESS AS 

A PATTERN PE'ZGNITION SYSTEM 

This chapter first descraies a document retrieval system 

(DRS). - Next an associated, patterA.. recognition system is defined. 

The operations of characterizing ThM patterns, feature extraction, 

and decision function specificatiiz are related to the DRS. The 

implementation of the decision fu-cz:tion to retrieve relevant docu­

ments from a file is presented in detail. Computer methods are
 

briefly described.
 

3.1 The Document Retrieval System
 

3.11 General
 

The system to be destribed here is quite general. In facT, 

it is identical to the NASA dbcument retrieval system (5354) This 

is a large system which has been in operation since 1962." Approxi­

mately 506000 documents (technical reports and articles) are ac-

A master list of about 13,000 index
cessible through the system. 


terms is used to-index each document, with an average of about 11
 

A variety of services are available to
index terms per document. 


users of this system. Computer searches are performed in both a
 

(55)
batch processing and a time-shared mode using remote
 

(5 6 )
 

terminals 
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3.12 Representation of Documents in the File
 

Each document acquired by The retrieval system is assigned 

both a unique identification number and a set of index terms (index 

set) which are chosen from a master list. These index terms may in 

fact be phrases or word groupings which are deemed to have meaning 

to the users of the system. 

All acquired documents are placed in a library, while their 

identification numbers and index terms form a unit record which is
 

placed in a computer file.
 

3.13 Specification of File Search Instructions
 

The file is searched to identify documents which have speci­

fied combinations of terms in their index sets. These index term 

combinations are specified by the system users as intersections,
 

unions and negations of index terms. The entire set of matching
 

instructions is sometimes refez'red to as a Boolean retrieval strategy
 

(BPS). A typical BES is shown below:
 

((heat transfer + thermodynamic properties + thermal properties)
 

*' (gases + gas flow)) - (fluid flow + fluid properties).
 

The symbol (+) is used for union (or), (*) is used for inter­

secticn (and), while (-) represents negation (but not). Parentheses
 

are used where needed to avoid ambiguity. Tne-BRS is specified 

subjectively by each user.
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3.14 Satisfying User Needs
 

The computerized search system applies the BRS to the file
 

and produces a list of document numbers.
 

Documents on this list match the BRS and may be recovered
 

from the library. After looking at the actual documents (or ab­

stracts of them) the user may elect to revise the BRS and search 

the file again. This can lead to an-iterative type of search. 

The user may elect to have an agent (called an information 

analyst) compose a BRS for him and screen the cited documents, re­

jecting those which do not (itn the agent's opinion) match the user's
 

interests. Thi's practice relieves the user of the need to become
 

.familiar with operational details of the system, or with index 

term 	usage. A disadvantage is that the agent may misinterpret the 

user's interests.
 

S"Recent trends in the NASA DRS have been to introduce time­

sharing facilities which permit direct user interaction with the
 

file, and eliminate the need for an information analyst. 

3.15 Problem Areas 

There are numerous problem areas which can be associated
 

with DRS's. Some of these are:
 

(a) 	poor search effectiveness;
 

(b) 	lack of a standard measure of search effectiveness:
 

c) 	'communication' difficulties between a human user and a
 

computerized file;
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(d) inadequate indexing; and
 

(e) lack of comprehensive analytical models for the above areas.
 

The alleviation of problem (c) above is the goal of this dis­

sertation. A comprehensive analytical model is developed for the
 

user-file communication process. The communication of the user with
 

the file here refers to the formulation of search instructions by
 

the user to specify how the file will be searched. It is assumed
 

that an indexed file of documents exists, and also'thxt a.software
 

system exists which will implement search instructions.
 

The present technique of subjectively selecting and com­

bining index terms to form a BBS is very difficult. This diffi­

culty is due to the large number of index terms, the extremely
 

large number of ways to combine these terms and differences in
 

word use between individuals (indexers and users). Each BRS which
 

is subjectively formed requires solution of a difficult combinatorial
 

problem.
 

The subjectively formed BRS now functions as the input to
 

a file searching system. In the model introduced below, a BRS is
 

provided as'an end product. The user inputs information in the form
 

of .an example set of document numbers, with each document in the ex­

ample set assigned a utility. In addition, each document is also
 

assigned to one of two categories, relevant and non-relevant. This
 

evaluated example set is all that is required of the user. The BRS 

formulation proceeds automatically using this information. None of 

the difficult combinatorial problems remain for the user. 
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The model used to automatically produce a BRS from an example
 

set of documents is nearly identical with the pattern recognition sys­

tem described in chapter 2. Details of model development are given
 

below.
 

3.16 A Model of the Retrieval Process
 

Consider a file of indexed documents. Assume first that each 

document dk in-the file has a utility uj (or measure of usefulness) 

to a given user at a given time. The utility of any given document can 

be determined by the user, and assigned a numerical value on some ar­

bitrary scale (say 1 to 10)., These are reasonable assumptions repeat­

edly used in operations research studies. See for example Fishburn(57)
 

or iadley(58). 

Next assume that, dependent on the scale which is used to meas­

ure document utility that a threshold T can be specified by the user" 

which divides all documents in the file into two classes. Those docu­

ments w uk L T Those with
with are defined as being relevant, 


uk < T are not relevant. The goal of the retrieval system is to re­

trieve all relevant documents and not retrieve any others.
 

3.2 An Associated Pattern Recognition System
 

3.21 Characterization of Documents as Pattern Vectors
 

Each document d can be represented as a binary vector .k. 

The ejements of' k are xkA; - , where S is the -,unlber of 



index terms in the master list (about 13,000 for the .IASA system). Each
 

Xkj = 1 if index term j is used to index document k and 0 other­

wise. On the average, only about 11 of the xj will be nonzero.
 

3.22 Definition of Two Categories
 

Each document d is either relevant or nonrelevant depending 

on whether its utility uk L -c or uk < T. These constitute the two
 

mutually exclusive categories to which each document belongs. The
 

function of the system ill "be to recognize relevant documents,.or-to
 

assign documents to category A or B based on properties of the assoc­

iated pattern vector
 

Each user defines his own categories (reletant or not) depend­

ing on his personal utility for documents-in the file. A training set
 

is formed which represents a sampling of the personal utility function
 

of an individual user. Thus, each user has an individual pattern
 

recognition system at his disposal.
 

3.23 The Configuration of the System
 

The pattern recognition system designed to recognize relevant
 

documents has the general configuration discussed below. (See also
 

Fig. 1-1.)
 

3,231 Training-Set Formation.. The training set is composed of.docu­

ments which have been.selected by the user as being typically relevant
 

or non-relevant. An estimate of the utility u, of each document in
 

the training set is provided by the user. Documents in the training
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set have been located via a manual search by the user, from a previous
 

search, or from references provided by others.'. If the search is done
 

iteratively, the training set grows and only the initial training set 

need be selected manually. 

3.232 Feature Extraction. All.index.terms-in the training set are
 

ranked using an.informationr.theoretic measure of goodness.. This meas­

ure is the number of bits of information which each index term individ­

ually provides about the category of documents .in the training set. 

Details are given in chapter 4. All index terms except a specified 

number with the highestinformation measure are discarded. The re­

tained index terms are the 'extracted features'. 

3.233 Decision Function Formation. The pattern recognition system
 

of this chapter attempts to classify documents as relevant or not based 

on their predicted utilities. The categories-are not absolutes, but
 

are defined with~referenceto.an arbitrary utility scale.
 

The system of chapter 2 was slightly different-in character. 

Categories A..and-B there were absolute. Parameters.in the decision
 

function of chapter.2 were estimated by solving an approximation prob' 

lem where the observed dependent variables y, were dichotomous and 

could be regarded as the difference between two.probabilities. The 

goal of"'the approximation problem was to 'best' approximate yi ­

p(A/z) - p(B/z). The.threshold was = .0. 

The decision function of the present chapter is also set up as 

an approximation problem, but the objective is to approximate the user 

assigned utilities of documents in-the training set. The observed 

http:Parameters.in
http:with~referenceto.an
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dependent variables yf. are no longer dichotomous and the threshold is
 

now set by the user instead of being fixed at zero, 

.Another way of describing the differences in the decision func­

tions is to consider the approximation model y = Xa + r. In chapter 2, 

the observed variables yi are regarded as being fixed and non-random, 

while the matrix X is considered as a random variable. In this case 

variations in the residual vector r are caused entirely by variations 

in X. 

In the system..of this chapter, the -observed yi" are regarded
 

as random variables .and the matrix X is fixed. Here the y are 

utility estimates which are'corrupted by 'noise'. Variation in the 

residual vector r is caused.entirely-by.variationin the observed 

variables y,. 

It ,canbe seen that regardldss of whether the matrix X or the 

vector y is taken to be the source of.-variability,.that the model 

remains the same. In-either case a reasonable estimate of 6 is one 

which minimizes the length.of the residual vector r. When the vector 

y is regarded as fixed, the decision function is often referred to as
 

a discriminant-fiction, and when the matrix X is fixed the decision
 

function can be called an interpolation or regression function. The
 

relation between approximation theory models and the pattern recogni­

tion process has been discussed by P.A.V. Hall (59 ) .
 

The pattern recognition model used for document retrieval pur­

poses here employs a linear decision function which is-actually a re­

gression function for predicting document utility as a function of
 

http:length.of
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'extracted) index terms..-The training set document. utility estimates 

are regarded as noisy measurements. To emphasize this, the decision 

function of this model will be referred to hereafter as an LUPF (linear 

utility prediction function). 

For reasons of-convenience, the test configuration uses an in­

teger utility scale 'where yis{l2. 91 and - -r is .specified by the 

user. When Yi = 1, the document has no utility to the user and when 

yi = 9, the document is most useful. The example problem presented 

latet in this chapter-uses.a binary utility scale where Yie{+i,-l}. 

W4hei yi = +l. the document is relevant and when Y. = -1 the document 

is non-relevant. In this case the threshold T=0.-. Note that when this 

binary utility scale is used,-that the LUPF here becomes identical to 

the'decision function of chapter 2. 

3.3 Implementing-the.Decision Function 

3.31 Direct Method
 

Recall from section 2.4 that when a pattern vector of 

unknown classification is to be assigned to either category A or B, 

there are two equivalent methods of making the.decision by using the 

index terms in the decision function (the extracted features) which are 

common to the pattern vector _xCj. 

The direct .methodsimply adds up the. 'weigfhts'.of features in 

the vector z and compareF the sum to the threshold, after which the 

http:weigfhts'.of
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vector x is put into the indicated.category, i.e., 

n 

Trz > -'bo 

implies that the~pattern vedtor x -is assigned-to-category A.
 

For the.document. recognition system, the index.term weights are
 

summed and compared to the utility threshold T, after which the docu­

ment vector x is classified,
 

3.32 Indirect Method
 

The indirect method.derives-matching-templates by thresholding
 

the decision function to form a linear pseudo-Boolean ineq:uality (LPBI). 

This inequality is solved-for its families of solutions. Details are 

presented in chapter 6. Each solution family becomes a matching tern­

.plate. If-one of these templates matches the vector- x, then x is 

assigned to category,.A.' Otherwise, x belongs to category B. 

For the document recognitionsystem,-the matching templates
 

correspond to combinations of index term.s Observe that..the matcling 

templates are equivalent in form-and function to the. user's subee­

tively specified BRS.
 

Thus, by considering document retrieval as a pattern recog­

nition process ,_we analytically.derive a BRS as a union of matching
 

teniplates. This is an important result which allows the previously 

subjective BRS formation to be modeled as a feature extraction and de­

cision operation.
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To further illustrate this connection, .consider the example BRS
 

introduced in section 3.13. Figure 3-1 shows how this subjective BRS
 

can be written as a union of solution families to some (unknown) pseudo-


Boolean inequality (not.necessarily linear, of course). Fig. 3-1A
 

shows the-original BER.. -..Fig._3 --B shows the reduction bf the BRS to a
 

union of solution families. Fig. 3-1C shows the solution families in
 

tabular form.' 

The solution families-which result from-reducing a subjectively
 

determined BRS to the form of Fig-. 3-1C are not necessarily mutually 

exclusive. For-example, any documents containing the combination of 

index terms given by
 

1' ' 3' T'T T. (1,0,0,1,1,0,0)
 

is covered by.both solution families' FIT) and F2 (T) shown in,Fig.
 

3-1C. The solution families-of an analyticall_ determined BRS are 

mutually exclusive. This is important because no search effort is 

wasted by retrieving-the .same document with two different solution fam­

ilies.
 

3.33 Relation of Decision Function Implementation to Retrieval System 

File Structure 

There are two basic methods -of organizing comuter files com­

posed of index term - document number records. The first method is 1o
 

have 'the document numbers arranged in a sequentfai master list in mem­

ory. Associated with,.each document number in. this master list is a 
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FIGURE 5-1
 

EQUIVALENCE OF A SUBJECTIVE BRS TO A UNION OF SOLUTION FAMILIES
 

A. Subjective BRS 

(( Tl+T2+T3 )* (T4+T5)) - (T6+T 7) 

WHERE: TI= heat transfer 

T2= thermodynamic properties 

T3= thermal properties 
T4Cgases 

T5= gas flow 

T6= fluid flow
 

T7= fluid properties
 

B. Reduction of the Subjective BES to a union of Solution Families
 

((Ti++T 3)* (T4+T5 )) ­ (T6+T7) 

= ((T"11*T 1 *T "° 2*T•55 )+(T *T 4 (T6+T 77 )-4 )+(T )+(T 2 *T,.)+(T"- 5 ­-5'J • )+(T *TQ) 

= (T1*T4*T6*T 7)+...+(T3 *T5 *T 6 *T7 ) 

= (TIT4T6T7) U (TIT5T6T7) U(T2T4T6T7) U (T2 T T )U(T3T T T )U(T3 T5 T6 T7 ) 

=~~~'F1(_]UF2 ( U F3 (_]U F4 (T-)UI5(). F T 

Lxl% uwrUEP[Ffr~~~~n%4 F~
 

C. Solution Families in Tabular Form
 

T1 T2 T3 T4 T5 T6 T7 

F 1 -

1 -0 

F2 1 1 0 0 

F ~11-0 0 

F4 1 -10 [0 
F -- 1 - ijo... 
F6 -- -- - 1-- _ 
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.sublist containing the index terms which belong to the document. This
 

•type 'of organization results in a sequentially structured file (SSF).
 

(Sometimes this type of-file is called a linear file.)
 

To implement the decision function on an SSF, the master list 

of document hmbers is exammned sequentially. The sublist of in-.ex 

terms associated with. each document number is scanned to determine if 

any of the 'feature terms! are present. If so, their.weights are 

summed and the- result- compared to the threshold,- A11 relevant docu­

ments in'the file can be identified by repeating this. operation for 

each document number- in the master- listo.Itis. also. possible to see if 

index term combinations in.each- document sublist match those specified 

by each template in the BRS. Thus for an SSF the relevant documents 

can, t recognized by,cumming the term weights directly, or by using the 

template matching-tecbnique with a BRS. 

The major disadvantage of an. SSF. is .that all records in the 

file must be individually inspected to identify a very small subset of 

relevant documents. The cost of searching an SSF increases propor­

tionally with the number of document records it contains. 

To reduce the unit cost of identifying relevant documents in a 

file, the file can be organized in a different manner. Here the master 

list is composed of the individual index terms in some order. Each in­

dex term in the master list has an associated sublist of document num­

bers0 Each document numbered in the sublist is indexed with the term 

in the master list, This type of file can be called an inversely 

structured file (ISF). 
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To implement the decision function.on an ISF the matching tem­

plates of the BBS are necessary. Index term weights cannot be applied. 

The individual BPS.templates are matched by set intersection operations 

on all index terns corresponding.to fixed indices in the solution fan­

ilies°. The set operations are performed only on the sets of document
 

numbers which are associated with index terms which. are Tfeatures 1. 

These feature sets are a.small fraction of the total file. Thus the
 

unit costs of recognizing patterns (relevant documents) are lower in an 

!SF than in an SSF. However,the increased search efficiency is off­

set in part by the extra costs incurred by organizing the ISF. (The
 

natural ordering is the SSF.)
 

-3.34 Example Showing System Opeiation
 

Figures 3-2 and3-3 illustrate how the decision function is de­

-rived and how the documents predicted to be- relevant,are identified
 

-using both a direct weighted. term approach. and. the BRS templates. 

Figure 3-2A shows the matrix model which might arise from the 

selection of five index,terms as features. The training set contains
 

= 
eight documents,with Yi = +1 for relevant documents and yi -1 

for nonrelevant documents. The.relevance threshold T for this model 

is taken to be zero. The best approximate solution (in the LI sense) 

is shcwn in Fig. 3-2B. This also shows the residual vector r with 

=
L1r) = Z IriI 3. 

Figure 3-2C shows the decision function, or linear utility pre­

diction equation (LUPF). When this function is thresholded (using 

http:corresponding.to
http:function.on
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T=0) a linear pseudo-Boolean inequality (LFBI) results which has six 

\ solution families as shown. 

Figure 3-3 shows all 32 possible combinations,of the five index
 

terms which were extracted as features. The predicted utility of each
 

combination is shown as it would be determined by a direct summing of
 

the index term weights, This -approach might be taken itith al SSF. 

The ps of combinations with u 0 which are specified by 

the solution families (templates) of the BRS are identified for com­

paris6n. This approach to identifying relevant documents would be 

Taken with an ISF. 
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FIGURE 3-2
 
SAMPLE 	 PROBLEM ILLUSTRATING DERIVATION OF TIM DECISION FUNCTION AND BRS 

A. 	Matrix Model Arising from Training Set of Documents 

Za + r 

1 0 1 0 1 1 Vrj 
-1 1 0 0 0 1 1 r2 
-1 1 1 1 1 0 1 r3 

-1 _ 1 0 0 1 0 1 a3 + r4 
+1 1 0 0 1 1 1 N r 5 

+1 1 1 1 1 0 r6 

-1 1 0 0 1 1 1 7 

L+1 -1 0 0 1 1 	 r 8 

B. Best Approximate Solation b and Residual Vector r
L1 

b1I
I r2 -1
 

b p 
 -1 
 r3
 
0 r4 0
b 	b3 

k r =I ir B= 	 I i
 

LUPF: T- T2 + T4 - T>5
 

LPBI: u > T => T1 	- T2 4-4 - T5 	 0 

BRS: 	F (T) (
 

F2'(T) = (1,1,-,,-)
 

F4 (T) =(0,,-,0,0)
 

i(OZ) = (o,o,-,o,o)
 

r,-(T) 	 =(O1-,) 
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FIGURE 3-3
 

PREDICTED UTILITIES FOR COMBINATIONS OF INDEX TERMS
 

Combination Index term 1Predicted 
number configuration utility -


T T T- T5
 
1 2 3 4 5'
 

1 1. 1 1 1 1 F 
2 1 1 1 1 0 1 2
 
3 - 1 1 1 0 1 -1
 
4 1 1 1 0 01 0"D F
 
5 1 1 0 - 1 1 0-1I6 1 1 0 1 0 1- 2
 

7 1 1 0 0 1 -1
 
8 1 1. 0 0 0 o2 F3 
9 1 0 1 1 1 1­

10 1 0 1 1 0 1
 
1. 0o1 1 0 01 

13 S ! 0 1.0 1 F Solution0 0 1 1 
 failies , 

14 1 0 0 1 0 2
 
15 1 0 .0 0 0 1
 
16 1 0 0 0 0
 
17 o a 1 i r --l
 
18 0 1 1 1 0 o0 F6
 
19 0 1 1 0 1 -2
 
20 0 1 1 0 0 -1
 
21 0 1 0 1 1 -1
 
22 0 1 0 1 0 0-h F6
 

'23 0 1 0 0 1 -2
 
24 0 1 0 0 0 -1
 
25 0 0 1 1 1 0h F
 
26 0 0 1 1 0 1 Di 4
 
27 0 0 1 0 1 -1
 
28 0 0 1 0 0 0) F 5
 
29 0 0 0 1 1 0'-> F
 
30 0 0 0 1 0 ll 4
 
31 0 0 0 0 1 -1
 
32 0 0 0 0 0 O F5 



53 

4.0 	 aN IrFORMATION THIEORETEIC MEASURE FOR RANKING
 

AND SELECTING INDEX TERMS
 

4.1 Introduction
 

An information theoretic measure of goodness is developed for
 

ranking index terms found in a training set of documents. Each index
 

term is regarded independently as a potential 'experiment' which can
 

be used to Dredict the relevance of documents in the training set.
 

For example, know4ing that there are20 relevant and 30 non­

relevant documents in a training set, but lacking any other informa­

.tion, a decision maker if presented with a document selected at random
 

from the training set, would assume that The probability of the docu­

ment being relevant (before he examines it)-is'0.40'. Suppose now,
 

that before Inspecting the document and making his decision about rel­

evance, the user is shown one index term associated with the document.
 

If he knows that this term occurred with 20 of the traifling set docu­

ments and that 15 of these 20 were relevan-, then the user would be 

justified in concluding that the probability of the document being rel­

evant is 0.75.
 

Knowledge that the particular index term was present has pro-' 

vided information (or resolved uncertainty) about the classification 

of the document .- In fact it will provide (on the average and for this 

example using the above data) 0.18 bits of information each time it is 

found. ith a document. The development .6f thisqu4LitatLve mess­

ure of inf6rmation- (divorced from &cdnomic considerations) will. b5 

http:it)-is'0.40
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presented -liere. This iheasure is used to select 'the best index t rms) 

i.e., 'those terms which individually. provide the mo~t infor ation 

dbout. document relevance.. -. ­

4.2 The Decision Theory Model
 

A simple decision theory model is showm below (see Hadley 
(60
 

or Fishburn (61 ) for a more thorough discussion).
 

P(x1 ) p(x2 ) P(Xn) 

xl '2 . n 

a ui1 

. . . u ln 

a2 u21 u22 U2n
 

ar Url Ur2 ... rn 

There are n 'states of nature' or possible outcomes xj
 

j=l,2,... ,N which are relevant to the decision maker's problem. The
 

probability distribution p(X) = {p(xl),....,p(xn)} over bhese states
 

of nature is assumed known to the decision maker. A random experiment
 

is performed which determines which state of nature x. actually holds.
 

The results of this experiment are not available to the decision maker.
 

The decision maker has a set of r possible actions aI ,
 

i=l,2,...,r which he can take. One and only one of the actions a.
 

must be selected.
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After the action has beer selected by the decision maker, the
 

*true state of nature x. is revealed to him. He will then receive the
 
3 

reward 'ui.j, which may be negative. (uij is a utility, which includes 

monetary as well as more subjective rewards.) 

The decision problem is solved when the decision maker chooses 

an action. The best action a. is one which maximizes the expected
 

utility; i.e.
 

ma u .p(x . 
ir
 

4.21 Decision Problems with Experimentation 

na. uraa. extension, of t-- cisio~n tho- model. discussed 

above is to allow the decision make to perform an auxiliary experiment 

(62).-saeonauex 
 hs
before picking an action ( . Recall that the state of nature xj has 

already been determined, but the results are unknown to him, This ex­

periment can be considered to be an attempt to gain more information
 

about the true state of nature. 

Define Y = {y 1 ,y 2 , .,yS 
] as the event set for the experiment 

performed by the decision maker, i.e., these are the only outcomes. 

It is assumed that the conditional distributions
 

p(Y/xar {p(y /x jdecision j=,2,...,n 

are known to the decision maker, as well as p('X) = {.P(X1) .. P (Xn)} 
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4.211 Bayes Rule. it is a trivial consequence of the definition of
 

,conditional probabilities
 

P(yk'
 

(Y_/xj) - p(xj 

that we are able o write 

kIc 
P (x /Yk) 

Thus
 

P(X p (x.XA) 

P(y ) 
P~(xj v ' " Ix,) 

Now using 

P(Yk ) = P(Yk/X(xj L P(ykX ) 

j j 

we have
 

P(Xj/Yk) )
 

P(-Yk/x )P(x )
J
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.This last expression is known as Bayes Rule (63) = 

-{p(xj/yk) k=l,... ,s} is a new probability distribution 'over the n 

states of nature. 

The interprebation here is that for any particular observed ex­

perimental outcome yk' an entire new probability distribution p(X/Yk) 

may be constructed. Since the experiment has S possible outcomes, 

there are S possible new distributions which may be derived. 

To distinguish between the initial distribution p(X) and the 

distributions p(X/y) derivable after the experimental outcome Yk 

has been observed, it has become customary to call p(X) the prior 

distribution and p(X/y) -the posterior distribution. 

To perform the transformation from prior to posterior distri­

butions, it is necessary.to know both the prior distribution p(X) and 

the conditional distributions. p(Y/x), j-l,2,...,n. This knowledge is 

equivalent to knowing the. joint distribution 

p(y xj) = p(yk/x. )p(xj ), j=l,2,...,n, k1l,2,...,S. 

After the posterior distribution p(X/yk) is determined, it is
 

used in place of the prior distribution to determirie the action aZ(k)
 

having the maximum expected utility, i.e. 

mx(
Z(k) i P(x1j/Yk,)u I ) 

http:necessary.to
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The experiment has allowed a better, more up-to-date estimation of the 

state of nature. 

4.3 Selection of Experiments
 

The purpose of the experiment performed by.the decision maker
 

is to provide more information about the true state of nature. The in­

formation is conveyed-by permitting a revision of the probability dis­

tribution over the state of nature from p(X) to p(X/yk).
 

In many problems,.the decision maker can choose from a group of
 

experiments only-one which will.be performed.to. obtain. p(X/yk). This 

raises the interesting question of which experiment is 'best'. That
 

is, how can experiment 'goodhess' be defined-to permit. a.ranking of all. 

available experiments? 

4.31 Decision Theory Approach when .the Utilities are Known 

In the context of the decision model discussed above, when the 

utilities u.. are known, the answer is to pick the experiment which13 

maximizes the expected utility averaged over all possible posterior
 

distributions.
 

For each experiment, consider.each outcome yk in turn and 

using the associated posterior distribution p(X/yk) determine the 

maximum utility which will res'ult from making the best decision, using 

this distribution. Then weight these utilities by the marginal prob­

abilities p(yk) that the outcomes will occur. This gives the ex­

pected utility for each experiment assuming the best decision is always
 

http:performed.to
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made for each possible outcome. Finally, the 'best' experiment is the
 

one with the highest average utility (averaged over all possible pos­

terior distributions).
 

4.32 Inadequacy of the Decision Theory Model when the Utilities are
 

-Not Known
 

There are at least three situations which frequently arise and 

make the above procedures inapplicable. 

(A) The utilities are all e In this case the expected 

costs of all actions are equal and a best action cannot be chosen. 

(B) The utilities are unknown, or fluctuate to such an extent 

.that they c.ah be considered to be unknown. 

(C) The .utilities do not exist, but a prior distribution can
 

be postulated; and various observed variables can give rise to pos­

terior distributions. 

Situation (B) above might occur for example, where a local de­

cision problem exists within a large system. The global utility of 

selecting various local experiments is not estimable in this case.
 

Such types of situations are felt to arise frequently' in design prob­

lems, where small portions of the overall system are designed inde­

pendently of the others.
 

Situation (C) arises most often from a purely analytical situ­

ation where no utilities are associated with a choice of experiment. 

All three of the above situations negate the selection of 

information-gathering experiments by using an expected utility measure. 
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However, the fact that experiments do provide information remains, 

whether or not an economic value can be attached to the information. 

The process of index term selection can be modeled in the con-' 

text of a prior distribution which is modified by experimental informa­

tion to give posterior distributions. However, utilities are not 

easily defined.
 

For the evaluation of these processes without attaching an 

economic measure, we turn now to information theory. 

.h Results .from Information Theory1 

4.41 Definition of Entropy
 

As a definition, let 

- H(P) = H(pl,... 'pn). -c PiIn -i 
-. . i=l 

be called the entropy of the probability distribution 

n 

P = { where 7 pi = 1; pi > 0 

The functional form of H(P) is determined up to a multiplica­

tive constant by specifying the three conditions given below. 

IAnalytical developments presented here closely follow those 
presented by A. Fcinstein(bh). As a secondary source, see S.
 
Watanabe(6 5).
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(A) H(p,1 - p) is a continuous function of p for 0 < p < 10 

(B) H(P) is a symmetric function of all its variables. 

(C) If pn = qj + q2 > 0, then 

H(pl,, ° Pn-l'ql,CL? ) = H(plp 2, "p n) + PnH n a]2 

By agreeing to.take *logarithms. to the base 2 and by setting 

C=l, the units of information become bits. We shall denote this by
 

writing
 

n 

H(P)' = - Pi log Pi 

- i=l 

-I 
with the understanding that '0 log 0 0. 

It is possible to prove the following two important results (6 6 )
 

given below.
 

(A) The.entropy H(P) is bounded. That.is, 0 < H(P) < log n
 

with H(P) 0 iff pk = -l for some -k, and H(P)-= log'n iff pj = 1/n 

for all j. 

(B) H(P) is strictly concave 

Result (A) has an intuitive interpretation when the entropy is 

regarded as.the uncertainty in the probability distribution P.
 

1This follos from the fact that z = -p log p is strictly 
concave, 

d~z 
- < 0 for p > 0. 
dp2
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Let rk = P(Xk) = 1; pj = 0, ,j / k. In this case, event xk 

is a certainty, and the entropy is zero. Let pj = 1/n; j=l,2,...,n. 

In this case all events xj are equally uncertain and the entropy is 

a maximum. 

By result (B), the function H(P) smoothly approaches its single 

-aximum value. Intuitively, this allows us to rank all probability 

distributions without ambiguity according to their entropy, in the 

sense that distributions with greater entropy are always closer to the 

maximum entropy distribution given by pj = 1/n.
 

Figure 4-1 shows the entropy for the two state distribution
 

Pl + A = 1; Pl p2 > 0. The maximum entropy of one bit is attained
 

when P1 = P2 = 1/2. The maximum is fairly broad.
 

4.42 Definitions of Event Sets and Probabilities 

Let X = xl...x0 and Y = (yly 2 ,...,ym) be two finite 

discrete sets of events. Denote by XQY the product set consisting
 

of all mn pairs (xlyj). 

Assume that there is a probability distribution defined over
 

XQY. with probabilities denoted by p(xlyj). This .is the joint
 

distribution of X and Y, p(XQY), where
 

Pxi ) 1 O i=l .xn,) = .. 

n m 
p x i ' y j ) l = l '
 
c
 



FIGURE 4-1 

E-NlROPY PLOT OF A SIMPLE BINARY DISTRIBUTION 
AS A FUNCTION OF ONE PflOBABILTTYI 

H(pj P2) 

1.01 
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0.2 -

0.1 

0.0 -

0.1 0.2' 0.3 0.4 0.5 
P3­

0.6 0.7 0.8 0.9 1.0 

wbere H(P1 P2) 
and Pl + P2 = i; 

-[Pi log 2 
PlP2 > 0 

Pl + P2 log 2 P2] 
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Let the marginal -orobabilities be given by 

!M
P(x± -- P(Xivyj i=1,2,oo,n;
 

j=l
 

and 

n 

7)p(xiy.), 

Then denote the marginaldistributions by p(X) and p(Y).
 

Define conditional probabilities as
 

P(x. ,Y,) 
P(x±/yjl) p() 0./(y > 


and
 

p(y 3 P(x i) 0 

Then let the conditional distributions be given by 

p(Xiy.), j=l,2,° 0 m 

and
 

p(Y/x.),i=,,
 oOn
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4.43 Entropy of the Distributions
 

It is useful-to define the entropies of the joint distribu­

tions, th marginal distributions and the conditional distributions as 

shown below. 

n m 

(A) H(X,Y) = - P(xi,) log P(xi.j.) is the entropy of 

i=l j=l 

the joint distribution.
 

(B) The entropies of the marginal.distributions-are given by
 

H(i') =) log p(x)
7 

and
 

H(Y)- Zp(yj) log p(yj).
 

(C) Define the.entropy of each conditional distribution as
 

n 
H(X/y) = ) P(xiiY.) log P(X,/y ); J1,2," 6im. 

i=l 

Then the average entropy of all conditional distributions is
 

defined by
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H(X/Y) p(y) ')
'x)/y1

j=1
 

m n 

= (j EipPc(>5log P(yj) 1 /yi) 
j=l i=1
 

m n

7E pcx 1 ,yj) log p(xi/y9).T 
ji 

4.44 Useful Relationships between Entropies of Distributions
 

The relations shown below for distributional entropies can be
 

proven by using the previous definitions:
 

T(xY) 14(7) ± rHf I) =:Ifx) + (4-i 

x(x,Y) < H(x) + (Y)(-2) 

with equality iff p(X).and p(Y) are statistically independent. 

0 < H(x/Y) < n(X) (4-3) 

R = H(X) - H(X/Y) = H(Y) - H(Y/X) >0 (4-4) 

R = (X) + II(Y) - H-(x,Y) (4-5) 
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4.5 Interepretation of Information Theoretic Results
 

4.51 Bayesian Interpretation
 

The above results are all we need to describe information in
 

quantitative, non-economic terms.
 

Intuitively, the entropy of a'distribution represents the un­

certainty in the distribution. If we revise the distribution from
 

prior to posterior through Bayes rule after observing the results of
 

an experiment, how does the entropy change?
 

By letting H(X) be identified with the uncertainty in the
 

prior distribution, it foll6ws that H(X/yj) is the uncertainty in the
 

posterior distribution obtained from Bayes rule after observing one
 

psrtic)lTar experimental optckme yj; j=t12,...m. Since there are _m 

possible posterior distributions, itlis reasonable to define H(X/Y)
 

as the average uncertainty over all posterior distributions.
 

It is customary and intuitively pleasing to define a decrease 

in uncertainty (entropy) as in increase in information, or 

I = AlT = H1l.- Ho. This allows the amount of information gathered 

to be measured in bits. In this sense then, R = H(X) - H(X/Y) is the 

measure of information provided by the experiment. From (4-4), this 

information will always be positive. Each time the experiment is per­

formed R bits of information (on the average) are acquired. If the 

experiment is very good, H(X/Y) = 0 and the posterior distribution has 

no uncertainty. Here R = H(X) and all the uncertainty in the prior 

distribution has been removed by the experiment. If the experiment is 
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very poor, then H(X/Y) = H(X) and no information has been provided by 

.the experiment. In this case R = 0. 

Of course the amount of information which can -be provided by an 

experiment is limited by the amount of uncertainty contained in the
 

prior distribution. Thus for a given prior distribution, the best ex­

periment is the one with the largest value of R. To-compare experi­

ments in decision problems with different prior distributions it is
 

convenient to define a dimensionless figure of merit
 

R­

where 0 < a < 1. PCT = 100a is the percent of uncertainty in the 

prior distribution which is resolved-by the experiment. PCT = 100 im­

plies a perfect experiment and POT = 0 implies a tless experi­

ment. 

Relation (4-4).states that:the goodness of an experiment can 

also be measured by R = H(Y) - H(Y/X).. Here H(Y) is a function of 

the experiment alone. u(Y/X) is the average uncertainty in Y, if X 

is known beforehand. R = H(Y) - n(Y/,) is the amount of information a­

bout Y which is acquired from knowing X. This expresses an informa­

tion balance ( 6 7 ) . The amount of information contained about X in Y 

is equal to the amount of information about Y in X. 

From (4-4) it is clear then that the goodness of an experiment 

can be inferred from either the average amount of information provided 

by the experiment as to the state of nature, or the average amount of 

information provided by the state of nature as to the outcome of the 



69 

experimento This is simply the strength cf the statistical dependence 

between cause and effect, or effect and cause. From (45)and (4-2), 

if cause and effect are statistically independent, R 0. 

The interpietation of cause and effect relationships is dis­

(68).srireadncussed in fis conclusions nep­depth, by Watanabe regarding interpre­

tation of entropy. expressions are similar to those presented here, He 

defines the inferential process-of looking ahead.from a knowm state of 

nature to the uncertain outcome of an experiment as being predition' 

and looking backward from a known experimental outcome to the uncertain 

stat"'of nature as being retrodiction, 

4°52 Communication Theory Interpretation
 

The decision theory interaxetation of entropy reduction by per­

forming an experiment is -not the customary way.to interpret relations 

(4-1) through (4-5). Communication engineers prefer to interpret the 

same results in terms of an information (or symbol) transmitter, a 

noisy channel, anda receiver, as shown below (6 9 ) 

SOURCE ENCODER CHANNfEL RECEIVER CO BCTaNG qSUbT( 

11(X) TRAIWMITTEDR DEVICE B(.XIY) 

NOISE
 

Here discrete symbols are'dravn randomly from a probability 

distribution p(X) having entropy H(X), and are transmitted sequen­

tially (as drawn) through a noisy channel- A distorted message is re­

ceived, where distortion implies that some of the syibols are changed
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by the noise into different symbols. A correcting device attempts to
 

infer what symbol was sent, on the basis of what symbol is received.
 

H(X/Y') is the residual entropy associated with the message received
 

after the correcting device has 'cleaned up' the noisy message. H(X/Y)
 

is referred to as the equivocation of the channel with respect to the
 

source distribution p(X). It represents the amount of information
 

lost (not recoverable by the correcting device) in the channel.
 

R = H(X) - H(X/Y) is the amount of information transmitted through the
 

noisy channel.
 

Both the decision theory and the communications theory inter­

pretation of information theoretic expressions have merit, depending 

on the problem at hand. 

4.55 Computation of an Tnfrmatlion Statistic B 

For computational purposes, consider a decision problem with 

two states of nature, and an associated experiment with two outcomes. 

After observing the true states of nature and the corresponding exper­

imental outcome for several trials, it is possible to summarize the ob­

servations in the sample contingency table of integers shown below. 
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Outcomes of experiment 

yl 
 Y2
 

statesof". 1 i11 12 1=2 1
 

nature 1+ 
x2 2 I

1 ) n2l + D22n22 n2­

(tp-6) 
n12 + n22 

l + n 21ri 
n. 1 - n 2 nl + n1 2 + 21 + n22 

There is a large body of literature which deals-ith.the statistical 

theory of contingency tables. "See for example Kullback (70 ). However 

.(4-6) above will be considered here simply as a convenient tabular 

data array. Data in (4-6) will be used to-estimate R. 

Let, R be a sample estimate of R based.on the observations 
in (k-ol, B qiI henceforth be called the information statistic. it 

can be computed directly from either (4-4) or (4-5). However, it is
 

easy to derive a more convenient computational form. To do this, first
 

define a contingency table of probability estimates- (the joint -distri­

bution p(X,Y) as follows: 

Yl" Y2 
 a nl1/N
 

xI a a + $ n12/N 

x2 + 6Y =rn21 N ­

a+ Y + .0= n2/1 (4-7) 

http:based.on
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Ther:
 

= H(x) + 1(Y) - H(X,Y) (4-5) 

S- (~a + s) log (a + )"- (Y+ s) log (Y + 6) - (a + x)'Iog (a + y) 

- ( + 6) log (S + 3) + a log 'a + 3 log a + y log y + 6 log 6. 

Collecting all terms in a, ,T, and 8 gives: 

R = at- log(. + p) - log(a + r) + loga.] 

+ Pl- log( + j) - log(3 + 8) + log 0] + r1-!og(a + r) - log(T + F) 

+ log T] + 8t log(3 + 5) - log(r + 8) + log 8] 
/ 

=a log + S)(a+ l{ + p)(p + 

+ y log (N + 6 logF-[7rmA r)I; 

or, in terms of the integer-counts
 

lo - Nnll1 - - + log 'n21^-= TiNn I Nn1
 
nlog)(n


*A 1 1 

n n+ll1 1 1  n2 12+n 1 2 )(n12 + 1122p 

-oF2 Nnn22 
21 log + 

+ 
n
n 
2 21  +n n22 l og 2 n 2)(n1+ 22 

2 2
 

Since n nij and ni. = n.
 

- j=l
 

2 2NP 

we get: NR n, log ni U. (4-8) 

i= j=l 

This gives a convenient computational form for the information
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statistic R. However when a = R/H(X) is to be computed, direct use 

of (4-4) is recommended, since 1(X) is produced as a byproduct.
I
 

If R is the estimated number of bits of information (on the 

average) which are provided each time the experiment is performed, then 

NR is the total number of bits of information provided by all the N 

replications of the experiment. 

There is another interpretation of the information statistic 

based on (4-8).. Suppose the sample contingency table arises from com­

paring a (0/1) vector x (two states of nature, zero and one) with a 

(0/1) experimental outcome vector y (two experimental outcomes, zero 

and one). The similarity of vectors x arid y is intuitively high if 

x. = yi = 0 or 1 for a large number of indices i *Of the four terms 

1 1 . Iin the e-es sion (h-U)60 oivov a. or. the-main ai a~onsl of' the­

table, and two involve nij off the diagonal. The sum of the diagonal 

terms of (4-8) represents the measure of similarity between the vectors 

x and ., while the sum of the off-diagonal terms is a measure of 

their dissimilarity.
 

4.54 Statistical Distribution of the Information Statistic
 

Since R is a statistic drawn from a sample, it can be ex­

pected to behave as a random variable. It is known that(71)
 

[loge 2]2NR
 

is asymptotically distributed as a central chi-squared variable rith
 

one degree of freedom (for a 2 x 2 sample contingency table) under the
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null hypothesis that R = 0. The factor log 2 = 0.693 is needede 


because 1 is assumed-to have the units of bits in (h-8).
 

4.55 Example Problem
 

As an example, consider a training set of 28 documents. A set
 

of 155 index terms were found .with this document set. An estimate of 

the information provided about'document relevanbe by two of-Lhese 

terms will be made to illustrate previous results.'
 

Vector x = (xi), i=l,2,-*.,28, of Fig. 4-2A shows the correct 

classification of each of the 28 documents in the training set, with
 

x = 1 if document i is relevant. Vectors T = (til) and T = 
a 	 -1 i
 

(t. ) of Fig. 4-2A show how terms 1 and 2 are 	used to index the 28
i2
 

documents. For example, if- T,= 1. then index term 1 is used-to
 

index document i. 

it is- possible to-compare the effectiveness of terms 1 and 2
 

as relevance indicators (over the training set) by comparing vectors
 

T and T separately with vector . x. Fig. 	 k-2B. shows the results
 
42~h h eut
'-1 -2 

of these comparisons expressed as 2 x 2 contingency tables. Calcula­

tions leading to a1 -and "a2 are detailed in Fig: ,-20. Equation 

(4-4) is used for A instead of (4-8) because .H(X) is generated as
 

a by-product with (4i), and- 11(X) is required for a R/RI(x). Fig. 

4-2C shows the estimated marginal and conditional distributions and 

their corresponding entropies. It can be seen that term 2 (a2
 

0.0780) is estimated to be slightly better than term 1 (i = 0.0701). 
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FIGURE 4-2
 

EXA14PLES ILLUSTRATING COMPUTATION OF AN IIFOMATON STATISTIC FOR ESTIMATING INFORMATIO-N 
ABOUT DOCUMENT RELEVANCE CONVEYED BY INDEX TERMS. 

A, Vectors for Comparison B. Contingency Tables for Comparing I vith T and m 
ii X ti,i2" tl ti=1 t 0 ti-1
 

9 8 X 1 3 18
1 1 0 0 x.=o 1 

31 0 0 
4 1 1 0 X,=1 8 2 10 X.- 10 100-
5 0 0 0 
6 10 0 17 11 28 25 3 28 
7 0 0 0 
8 0 1 0
9 0 0 1 c. Comput atlon,
 
10 1 0 0 x with x- w ith
 
ll1 0 0 . 0
 

i(0.6h286, 0.35714) 94:6, 
13 1 0 o.94027 

12 1 0 0 I(X) (0.6 0.35714) 

14 0 O0O29W27o0 o 0() 


0 2 H(X3O (0-2942 0.47058) (0.600, 0.400) 

± 0 0 0 H(X/t,=o) 0.99749 o0.9y096170 0 0 a_ _ _ _ _ _ _ 

18 0 0 1 p(X/tisl) (o.81818, 0.18182_) (1.00, 0.00)
 

201901 0 0.00
 

21T 0 --- P(T) - (0.60714, 0.39286) (0.89286, oi0714) 
22 1 1 0 

H(X/T) 0.8743 0.86694
23 1 0 0 

23 1 0 0 Q59
24 0 -1- 0 R=H(X)-I(X/T) 0.07333
J.06593 

2 0 /H(v) 0.O701 0.0180
26 0 1 0
 
27 0 I1 0
 
28 *p(-) is the probability distribution and
 

H(-) is the distribution enTropy
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5.0 SOLVING-TIMDISCRETE LINEAR APPROXIIMATION PROBLZ4 IIR THE L NOFI4 

5.1 Introduction 

The.discrete.linear approximation.model can be written as fol­

lows 

y =X + r. 

The model can also be written as ­

n-l n-1 

Y=r o + jISiI i=1,2,-= -,m. 

j=l j=0
 

Tbe lineax app ir,atJoY problem arises when estimates of the unhnor 

vector 5 are desired. We define a best estimate of S to be the 

vector b* which minimizes the length of the residual vector r. If 

we designate the length of the vector r by I I called the norm 

of r, then our approximation problem becomes: 

w 
Find b such that
 

b min LII min Ill- XbI.K
 
b b
 

A class of norms is given by(72,75)
 

Id_I -- IP for 1 < 
.1 
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When p = 2, the familiar least squares problem results. The 

cases where p 1 and p = are also of practical interest because 

algorithms are available to compute b . In paaicular, they may be 

formulated as linear programming problems and be easily solved. 

L1 (r) corresponding to p 1 gives a fit which minimizes 

the sum of the absolute values of the residuals ri, i=1,2,.. ,n. 

L_(r) corresponding to the limiting'mase L(r) = lim L Cr) = 
-p400 


-
max Ir I gives.a fit which minimizes the largest residual (in abso­
l<i<n 

lute value). The L norm is also often called. the uniform or 

Chebyshev norm. 

The..L and L solutions will always exist when computed 

using the linear programming formulation, even when the rank of X is 

q'< n. This makes the L! and L norms attractive when dealing 

with data matrices which are not knowrn beforehand to have rank q = n. 

The L ( least squares solution) normal equations do not have a solu­

tion when q < n.. 

For the application considered here, the approximation problem 

arises when'index term 'weights' are to be derived for estimating 

document utility. The matrix X is not known beforehand to have rank 

q = n. The L1 norm is used here to estimate the index term weights, 

end no problem is encountered if q < n. In addition the solution is 

very rapidly and conveniently attained with the linear programming 

formulation. Formulation of the L problem as a linear program is 

briefly reviewed below. Exawple problems are used to illustrate the 

development. 
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5.2 Formulating the Discrete LI Problem as a Linear Programming 

Problem
 

Formulation of the L1 problem as a linear programming problem 
.(74;75) (76) 

has been shown by I. Barrodale and P. Rabinowitz The for 

mulation proceeds as follows: let 

y + r. 

Now, since and r are unrestricted in sign, they can each be ex­

pressed as the difference between two non-negative vectors, i.e,
 

S= +- r_-s+, - > o 

+ - 0+­

r= r -r ;r r >o 

_=j y.=( -s (r -rh 

These equations can be regarded as the constraint set for a linear 

programming problem. The unknowns are the vectors - ,0 ,r -,r The 

distinction made in section 5.1 between the unknomn vector B and its 

optimal-estimate b* has been dropped here to eliminate notational 

complexity. All vectors _ appearing as the unknowns in LP problems 

are to be considered estimates of the true vectors. 

The objective function can be formulated by observing that unit 

vectors corresponding to r
+ 
i and ri wil-1 never be in the basis at 



79 

the same time, since they are linearly dependent, (the same remarks ap­
+ 


- ade(77)x + ­

ply to 5. and 5,, see Hadley'). The solution variable r. + r­

then represents the absolute value of the ith residual, since:
 

+ F'.l 

either r. = > o and r. = o; 

11 

=
 or r. = ril. > o and r. O. 

S+
By putting zero costs in for the unknowns and 5. and unit costs 
3. 1 

- in for the unknowns r. and r., the sum of the absolute values of the 

residuals is minimized. This gives the linear programming problem 

shown below. 

n n m m 
0 - L _- £2 . __ ..+ ! l r. z00Mi -'e ~ - * 

i=l i=l i=l i=l
 

subject to (XI- XI . = x--; j , r , r .o. (5-1) 

+-) 
+
After solving the problem, form 5 = - - and r = r - r to re­

cover estimates of the parameter and residual vectors. The optimal 

value of the objective function is the minimal L 1 norm. 

The size of the constraint set in (5-1) is m rows by 

(2m + 2n) columns, By transforming some of the variables, 

Barrodale(78) shows that (n - 1) columns of the constraint matrix can 



8o
 

be eliminated. To see this, let y = X8 + r 

n
 

or yi = + ri , as before.
 
j=l
 

5ow instead of writing the unrestricted 8. as the difference of two
 

non-negative components as before, define
 

-= max o~4<.A4oIn>> 4 +o'
 

and let- a + u > o.
 

n 

Then y± = (a - u) ij + ri
 

- . j=l
 

n n 
y, Z aj j - u Z ij +r+ -r7. 

j=l j=l
 

n
 

Finally define y 
 5
 
j =1
 

which gives y= Xa- ux + Ir - It­
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for the constraint set. The complete problem becomes: 

n m in 

+minimize z = oaj + o-u + lr + J r. 
1=1 i=l i=l 

subject to (Xl- xIII- 1) L; ',rr > °0. (5-2)
 

The vector - y. has -replaced the submatrix. - X. in. the constrained 

matrix for a net savings of. n - 1 columns. 
+ --

How solve (5-2) for ua,u,r ,r . Then r = r - r- gives the 

residuals, while the parameter estimates. are given by ;z a - U. 
a aj 

The length of the residual vector (in the L1 sense) is given ty the 

optimal value of the objective function, as before. 

Two comments.can.be made which-apply to either (5-1) or (5-2). 

The LP -.problem has. noPha e I .Because-a unit-matrix exists in the 

constraint matrix, there is an initial-basic feasible solution. This
 

implies that there is always an optimal basic-feasible solution. Fur­

thermore, the existence of.this-solution does not depend upon the rank
 

of the matrix X.
 

Alternate optimal, solutions may.exist. _More.ill. be said about 

this later.
 

http:comments.can.be
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5.3 Solving-the L1 Problem
 

The Ll. problem of determining index term weights was set up 

and solved using (5-1) instead of (5-2). Although (5-2) is more ef­

ficient, it was unknown to the author at the time the computer program­

ming was done. 

The approximation problem is solved here using three subrou­

tines, one of which is a general purpose SIMPLEX routine.' (Barrodale
 

has developed one specialized routine for the L1 problem). A Fortran
 

IV subroutine for linear programming written by R. J. Clasen(79,80) is
 

used to solve the LP problem. A driver subroutine loads the struc­

tural matrix A using the data matrix X, loads the right hand side vec­

tor b, using the known dependent variable vector y, and finally loads 

the cost vector c', which depends only on the structure of the problem 

and not on the data. 

After the A,bc data have been loaded by-the subroutine, the
 

resulting LP problem is solved using the Clasen subroutine. The solu­

tion to the LB problem is related to the solution of the approximation
 

problem by using a follower, or interpretive subroutine, which recovers
 

the unrestricted (as to sign) variables j from the optimal non­

negaLive solution variables ,j arid. u of the-LP.problem.
 

Computational experience with the solution of problems for
L1 

index term weights has shown that the program is quite fast. For typi­

cal problems having 25 rows and 72 columns the average solution time 

was 3.0 seconds, while for larger problems with 50 rows and 122
 



columns, the average solution time was 6.0 seconds. This is for the
 

IBM 7094/7044 direct coupled system.
 

5.4 Example Problems 

Figure 5-1A shows the initial full simplex tableau which re­

sults when the L1 problem presented as an example in section 3.3h4 is 

set up as an LP problem using formulation (5-1). The submatrix X of 

Fig. 5-1A is the same as the matrix Z of Fig. 3-2, except that the 

columns of Z have been permuted to form A. This does not effect the 

problem solution in any-way. This same permuted version of Z also 

appears as matrix Y of Fig. 5-2A and Fig. 5-A. 'To identify columns 

f RC- with coluans-.f Z.-the"following table is convenient: 

- ,. , a -ee - - u/"..... b P P, _ I 13 , 1 1! 

1-- Ii s 
.Column number z 1 -1.2' 3 I 51 
cross references] 1 ±l " 6 2 -

Figure 5-lB shows the optimal tableau for this problem, and 

Fig. 5-1C gives the solution
 

5 

u + Lo IT1 1 T2 + lT50= jTj - IT4 
j=l
 

which is reconstructed from the optimal LP solution. 

The optimal tableau of Fig. 5-1B indicates that an alternate
 

optimal solution is present. Columns indicated with an asterisk are in
 

the optimal basis, while columns -paired with the basis columns are 

marked with 'P'. (Recall that all columns in the structural matrix A 



FIGURE 5-3 

SAMPLE L, PROBLDM - FORMULATION (5-1) 

A. lThitial Tableau Shoving Input Data 

A = (XI-XIII-i) = strrctural mtr.x 

c 0 	 0 0 0 0 0 0 0 00 0 0 1 1 1 1 1 1 1 1111 1 1 111 

1 2 3 4 5 6 7 8 9 10 11 12 13 lb 15 i IT 18 19 20 21 22 23 24 25 -26 27 28 
1 1 1 0 0 1 -1 -1 -1 0 0 -1 1 K­
11 1 0 0 0 -1 -1 -1 0 0 0 1 -1
 
1 0 1 1 1 1 -! -1 -i -i -1 1 -1
 

A= 1 	 0 1 0 1 0 -1 0 -1 0 -1 0 1 -1 b 
1 1 0 t 0 .1 -1 - 0 -1 0 1 -1 
1 O. I I 1 -1 -1 -1 -1 -1 1 -1 

1 1 1 -1 -1 -1 0-1 0 	 1-I 11 1 00 0 -i -i -i -! 0 O 	 1 -


B. Optimal Tatle u 

C.>. 0 0 0 0 00 0 000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3. 

4- - - - - . r-. .+ 
Bais j46 S 1 0S 3 r1 r~r rI re r; rj r5 z' r 7 r 8O 5 

2 0 1 '1/2 1 0 0 0 0 -1/2 -1.0 0 0 0 1/I' 0-/4 1/, 0 1/2 0 I/h -1/ 0 314-1/4 0 -1/2 -i/ 
12 0 1 0 0 0 0 0 - 0 0 0 0 11 -1/ 0-1/2 1/2 00 0 1/2 1/2 0 1/2-1/2 0 0 0-1/2 

0 1 0 00 1 00 0 0 0 -1 0 0 -1/ 0 1/2-1/2 0 0 0 1/2 1/2 0-1/2 1/2 0 -0 0-1/2 
9 01 -1/2 -1 0 0 0 1/2 00 o o - 0i1, 0 1/2 0-1/ 00 /4 1/41 -1/2 it:,o o-1/4-1/4 1/ o 

17 1 1-1/2 0 0 0 0 0 112 0 0 0 0 -I/4 0 3/4 -5/4 1 -1/2 0 -1/. 1/4 D -3/b 5/1,-1 1/2 0 1/4 
5 0 0 I/2 0 0 0 1 0 -1/2 0 0 0 -1 0 -14 0-1/4 3/4 0 1/2 0-1/4 1i1 0 1/4- 3/4 0 -1/2 0 1/h, 

27 1 3 1/2 0 0 0 0 0-1/2 0 0 0 0 D 1/ 0-3/4 5/4 0 1/2 -1 1/I-1/4 0 3/4-5/4 0 -/2 i-i/A 
22 1 .1 0 0 0 0 0 0 0 0 1o -1-1/2 1I/ 00 1/2-12 1 1/2-1/2 0 0 -1/2o 0 00 00 I 0 0 

B - 7 3 0 0O000 0 0 0 00 0 1/ - -1/2 2 1 -11/2-1/2 1 1/2 -1/2 -i 0 2 -/p
gm-Z -- 0 0 0 0 0 0 317F231712 0 1 21 1 13/2 1/2-322 1 0 -2 

In.51: K.. p o at' P * p P P 	 Pp 
-- Alternlate Ontima---

C. Solution Intorretation
 
0 a 6, 0= o- 0 = 0 - 0 1
r N 2 


P0=P~0 -= 	 2 2 

1-0=1 = r=7-r 7 014= 	 4 ­
82= 2- 2= 0-1=-i 3r7=37 0-i 

= 
4 0+ - 8 0 - 0 ­

85 ,== 5 -; 5 0 -I -1 ­

5 
uo+2 8j =3T~~ -'. 
=8+J-1 j =I 1 , ' T2 + !T' IT

j 1 	 5 

Columns out of the bass, but "paired" to coloums in the basis 
ndicated with an asterzs.Note: Columns in the optimal basis are 


are indicated with the letter 'P'.
 



FIGURE 5-2 

SAMPLE L, PROBLEM - FORMULATION (5-3) SHOWING ALTERNATE OPTIMAL TABLEAU 

A. Alternate Optimal Tableau
 

1 2 3 4 5 6 7 8 910 11 12 L3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

j 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 
+ + + + - - - - - + r+ r+ + + - -

Basis j - 0 04 65 01 03 2 0 0405 al 03 R2 r1 r2 3 h4 r5 r6 7 a8 r1 r2 r3 r4 r5 r6 r7 r8 

2 0 2 0 1 -1 0 0 0 0 -1 1 6 0 0 0 0 -1 0 0 1 0 0 0 0 1 0 0 -1 0 0 
12 0 1 0 0 0 0 0 -i 0 0 0 0 0 1 '-1/2 0 -1/2 1/2 0 0 0 1/2 1/2 0 1/2-1/2 0 0 0 -1/2 

4 0 1 0 0 0 1 0 0 0 0 0 -1 0 0 -1/2 0 1/2 -1/2 0 0 0 1/2 1/2 0-1/2 1/2 0 0 0 -1/2 

7 0 2 -1 0 -2 0 0 0 1 0 2 0 0 0 -1/2 0 -1/2 -1/2 0 1 0-1/22/2 0 1/2 1/2 0 -1 0 3/2 
17 10 0 0 1 0 0 0 0 .0 -1 0 0 0 0 0 1 -i 1 - 0 0 0 0 -1 1 -. 1 0 0 

5 01 0 0 -1 0 1 0 0 -1 0 /20-1 /21/2 0 1 0-1/21/2 0 1/2-1/2 0 -L 0 1/2 
21 1 2 0 0 -1 0 0 0 0 0 1 0 00 0 0 0-1101-10 0 0 1 -1 0 -1 10 
22 11 0U 0 0 0 0 0 0 0 0 00 3./2--l -1/2 1/2 0 0 0 1/2 -1/2 1 1/2-1/2 0 0 0 -1/2 

0 1/2 -1 -1/2 1/2 1 0 -1 1/2 -1/2 1 1/2-/2 -1 0' -2Pj=z . 3. 0 0 0 0 0 0 0 0 0 0 0 1 -2 

0J-Z -- D 0 0 0 0 0 0 0 0 0 0 0 ./2 2 3/2 1/2 0 1 2 1/2 3/2 0 3/2 3/2 2 1 0 3/2j 

Basis- P 4 A F P P P 

Alternate Optima-

Note: Columns in the optimal basis are indicated with an asterisk. Columns out of the basis but "paired" to a basis colunn are 
indicated with the letter P. 

B. Solution Interpretation
 

R+ R 0 - 2 r -r 0 1 -10 + ~+- 2 28 2= 0 0 

1 = + 1 -o= 1 =r -r = 0 -2 =-2 
0s 2 a=1~ 7 7 7

02 = + - = - 0 = (r 3 

1­83 3 6 

= 3), -4 2­a4 

a a+5 =+ o= 0
 

5= - 0 - 0 0
 

5 
+ T + 2T
U = o + %.x =-2 +' -T 

-. 1 3+ 4. 2 + 



FIGURE 5-3 

SM4PLI I, PB0BLB3I - FOHY'JATI0N (5-2) 

A. Initial Tableau Showing Input Data 

C= ~ooo 0 
A = (XI-XIII-I) 

01011 L.i 
atructural matrix 

1 1.1 1 1l 1 1 1 1 1 1 1 1 

A 

1 1 
I 1 

1 1 
11 0 

11 11IIIIo 

0 0 
0 0 
0 1 

1 
1110 

1 

1 

0 

0-3 
3-5 
o-5 
oo -4 

3 

i" 

1-

1 
1 

1 1 

-i 

-
-1 

-1 -1 

b 

-­

-1 
-

Coln, 

C--

2 0 
7 0 

0 
17 11 
6 0 

22 1 
5 0 
3 0 

-l- Z)3 

1-z-

B. Optimal Tableau 

1 2 3 4 5 67 8 9 10 11 12 13 14 15 16 17 

0 0 0 0 000 1 1' 1 1111 1i1 1 

- + + + + 
a0 '4. "5 '1 '3 * 2 Jur 1I 2 r3 Z4 r 6 f7_ r8 r1 r~ 

IW4 - 1 0 00 0 0 -1/2 0 3/2-77213 -1 0-1/2 1/2 0 
-1 0 0 0 0 0 1 -1/2' 0 3/2 /2 .2 -1 0 -1/2 1/2 0 

3 1 0 0 1 0 0 0 -1 0 2 ­ -1 0 0 1 0 
0 0 0 0 0 0 0 1/2 - -1/2 /P0 0 01 2-1/21

1 -1 0 0 00 1o 0 0 0 2 - -1 0 -1 0 0 
2 0 00 0o0 0 0 0 0 0 11 -1 0 00 
3-1 0 0 0 1 0 0 -1 0 2-3 3 -i 0 -1 1 0 
2-1 0 0.0 0 0 0-1/2 0 5/P2-i/2 3-2 0 -1/2 1/2 0 

3 0 0 0 0 2 00 1/2 -1 -1/2 2/21 0 -1 1/2 -1/2 1 
0 0 0 0 0 0 0 1/2 2 3/ 3/2 01 2 1/2 3/2 0 

18 19 20 

1 1 1 

r3 r5 
-327/2-3 
-3 2 5/2 -2 
-2 3 -2 
1/2 -1/2 0 

-2 3 -2 
0 0 -1 

-2 3 -3 
-5/2 7/2 -3 

1/2-1/2 -1 
1/2 3/22 

21 

1 

r6 
1 
1 
1 
0 
1 
0 
1 
2 

0 
1 

22 23 

1 1 

rr. 
0 -172 
0 1/2 
0 0 
0 -1/2
0 1 
1 0 
0 1 
0 lip 

1 -1/2 

0 3/2 

Alternate Optima 

0. Soluti.on Interpretation 

== 0.o-- - - - =--2= r 
+ - r5 0- 1-1 

3 

'2 1 

ai=+1 = 

2 

al -

2 -. 

u1 3-'2= 11 

1 2 -1 
"7 = 

r7- r7"­ 20 -23214 

"3 =a 3 2 1 L3 (r) = Z0 = 3 

a =2 5 = .5 - = 2 =O 

00 Cu2-' 
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have a paired column of the opposite sign in formulation (5-1)). Col­

umns not in the optimal basis but having their associated (c. - z.) = 

0, (neglecting columns marked with P) indicate that an alternate opti­
mal solution can be attained with column 7 ( o ) in the basis and column 

9 (85) out of the basis. Figure 52 2A shows the tableau for this alter­

nate optimal solution. Note that the solution parameters have changed 

and the LUPF is -different. 

Figure 5-3 shows the same problem solved using formulation 

(5-2). The optimal solution is the same as that given in Figure 5-2 

using formulation (5-1). 

5.5 The Effects of Alternate Optima 

P.-e appearanace of aiter.nate optima- solut-ions to the L, -p 
. 

proximation problem. very simply means that we should-be indifferent to 

the effects of using different estimated LUPF's which might arise from 

the alternate optima. 

Each optimal LUPF gives the same 'best' L1 fit to the user 

assigned utilities in the training set, in the sense that Iril is 
i 

the same for each LUPF.
 

A search of the rest of the file with a different LUPF will un­

doubtedly yield different results, butwithout using extra information 

to eliminate the alternate optima, one optimal LUPF is as good as any 

other. The use of extra information to limit alternate optimal solu­

tions is suggested in chapter 9 as an extension of the present system
 

which might be investigated as a future research problem, 



88 

Figure 5-4 gives an example of the different utilities which
 

would be predicted for the various term combinations when two alternate 

optimal solutions are compared. All 32 combinations of five index 

terms T1,...T 5 axe listed in Fig. - (Term "T is fixed at 

T = 1 and hence does not affect 'the number of combinations. ) The 
0 

utilities which were assigned for the term combinations corresponding 

to the eight documents in the training set are shown separately. These 

combinations are numbered.2,3,13,21,25,27,29. Note.that two different 

documents were in the training set with the same index term combination 

(combination 25). The assigned utilities were different for the two
 

documents (one was relevant, the other was not). Solutions 1 and 2 of
 

Fig. 5-4 show the LUPF's which correspond to the alternate optimal LP 

solutions illustrated previously in Figs. 5-1 and.SA2. Each df'.these
 

solutions provide a 'best' (but different) fit to the training set
 

utilities. They also provide different utility predictions for docu­

ments outside the training set.. In some cases differences in the pre­

dicted utilities cause the predicbed document relevance category
 

(u > T = 0) to differ. For example, the term combinations 4,8,15,16, 

22,28,32 are predicted relevant using solution 1 but non-relevant using 

solution 2. Combination 17 is predicted non-relevant under solution 1 

but relevant under solution 2. 



FIGURE 5-4
 

EFFECTS OF ALTERNATE OPTIMAL SOLUTIONS ON PREDICTED UTILITIES
 

- Predicted Utility -

T0 T1 T2 3 T T5 User assigned Solution 1 Solution 2 
utility 

2 1 1 1 1 1 0 +1 

3 1 1 1 1 1 0 1 - -1 -1 

4 1 1 1 1 0 0 ..... 0 -1 
5 1 1 1 0 1 1 ----- 0 0 
6 1 1 1 0 £ o +--- 0 
7 1 1 1 0 0 1 -----1 -2 
8 1 1 1 0 0 0 ----- 0 -2 
9 1 1 0 1 1 1 ----- +1 +2 

10 1 1 0 1 1 0 -..... +2 +2 
11. 1 1 0 1 0 1 ..... 0 0 
12 1 1 0 1 0 '0 ----- +1 0 

13 1 1 0 0 1 1 +1 +1 +1 

14 1 1 0 0 1 0 - +2 +1 
15 1 1 0 0. 0 1 --- 0 -1 
161 0 0 0 0 +1 -1 
17 1 0 1 1 1 1 ----- 1 0 
18 1 0 1 1 1 0 ----- 0 0 
19 1 0 1 1 0 1 ------ -2 -2 
20 1 0 1 1 0 0 ------- -1 -2 

21 1 0 1 0 1 1 -l -1 -1 

22 1 0 1 0 1 0 ----- 0 -1 
23 1 0 1 0 0 1 ----- 2 -3 
24 1 0 1 0 0 0 --­ 1 "-3 
25 1 0 0 1 1 1 + ,-i 0 +I 
26 1 0 0 1 1 0 - +1 11 
27 1 0 0 1 0 1 -1 -1 -1 

28 1 0 0 1 0 0 0 -1 

29 1 0 0 0 1 1 -1 0 0 
30 1 0 0 0 1 0 -1--- +i 0 
31 1 0 0 0 0 1 -1 -2 
32 1 0 0 0 0 0 0 -2 

Solution 1 Solution 2 

=T I - T2 + T4 T5 u -2-+ Tj. - T2 + T3 + !T4 



so 

5.6 Secondary Feature Extraction
 

By referring to Figure 5-1A, note that the submatrix X has six 

columns. Each of these six columns represents a possible term in the 

LUPF. Five of these columns represent specific index terms which had 

been previously selected using the information measure of chapter 4. 

The optimal tableau shown in Fig. 5-1B indicates that only four 

(ofit of a possible six) columns of f (or.-i) are in the optimal basis. 

Four (out of a possible five) index terms have been assigned to the 

LUPF shown in Fig. 5-1C. A secondary index term selection has taken 

place. 

This secondary term selection (or feature extraction) process 

has the effect of discarding automatically index terms (columns) from 

the basis which are linearly dependent on other terms in the basis. 

If the least squares solution were used instead,.the linearly 

dependent columns of Xw.ould have to be eliminated before solving the 

noral e~iationSo The 1 formulation here eliminates this extra 

operation. 

5°7 More Efficient Algorithms
 

It can be noted that the parameter -vector b = - xO obtained 

with the L1 norm configuration has elements which are integral mult­

iples of 1/2, i.e., b = + n/2. This effect is obviously dependent oni 


or
properbies of the inverses of matrices whose elements awe all +-I, -1 
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zero, and of the-integral properties of the right hand side vector (the
 

-utilities).
 

The properties of x suggest that perhaps the LP problem for 

this type of matrix can be solved with a transportation or network type 

of algorithm. Investigation of this was outside the scope of this 

fork: 
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6.0 DY ERM--NATION Of TU.: OI D4AL BRS 

6.1 Scope and Organization 

The optimal BRS is a set of searching instructions which re­

trieves from a file only those documents having a predicted utility 

greater than or equal to a given utility threshold.
 

The optimal BRS is derived from the LPBI which is formed by
 

thresholding the document LTJPF. 

This chapter discusses mathematical properties of the LPBI and 

of its solutions. A composite algorithm is presented which finds all 

the solutions to the LPBI and groups these into solution families 

which are mutually disjoint. This composite algorithm is based on 

visiting the nodes of a binary tree in search of possible solutions to 

the inequality. It is called the Tree Pruning Algorithm (TPA), and 

uses a branch-and-exclude technique which allows all solutions to be 

found without constructing or exploring the entire binary solution
 

tree. 

The composite TPA can be broken down into two parts. The first 

part is a node-visiting sub-algorithm. Here decisions are made (after 

visiting a tree node) about which nodes of the tree to exclude from 

future visits. The second part of the TPA is a visit-scheduling sub­

algorithm which controls the sequencing of node visits. This sub­

algorithm guarantees that each non-excluded node is visited once and 

only once in a defined order. It also keeps node records necessary for 
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use by the node-visiting sub-algorithm. The visit-scheduling sub­

algorithm is necessary to implement the TPA on a digital computer.
 

The concepts and theory pertinent to solving a LPBI by a node­

,
visiting method have been given elsewhere by Hammer and Rudeanu(81 82
 

83) 8 Most of the mathematical details presented here are also from
 

these references. An.exception is section 6.323. Here some proofs are
 

presented which are related to transformations used to solve the LPBI.
 

These proofs are not given by Hammer and Rudeanu. Background theoret­

ical results and details of the node-visiting sub-algorithm are pre­

sented in the first part of this chapter, up to and including section
 

6.5.
 

The visit scheduling sub-algorithm is the Author's contribution
 

tc the TPA. it is a modified form nf * pre-order traversal algorithm 

for binary trees. This sub-algorihm allows dynamic visit-scheduling 

as portions of the binary tree are sequentially excluded from further
 

consideration. Development of tbis,sub-algorithm begins in section 6.6.
 

The operation of the composite TPA is illustrated with examples9 

and computational experience with a Fortran IV program is discussed. 

The use of the LFBI solution families to retrieve documents is 

discussed near the end of the chapter. 

6.2 The LPBI Arising from-the Document LUPF
 

It is assumed that a LUPF exists which adequately expresses 

the utility of documents in the file as a linear combination of
 



selected index term weights, i.e.
 

u= aTj _L 

j=0 -t < a. < 

which becomes a pseudo-Boolean inenuality when thresholded;
 

7 aT. > (T- ao ) 

j=l
 

< < V 

After conversion of the coefficients a. and the right hand side
 

(T - a ) to integers y and 6 by a scaling and truncating process,
 

n ~ I [jc (0,1} 

(6-1)Y Tj > 6;J=l 6.Yjs6 (V. 

where I is the set of all integers.
 

For all further results in this chapter the LPBI will be 

assumed to have integer coefficients. This represents no loss Df gen­

erality/because by scaling all coefficients and right hand sidey- ?nd 

then dropping the fractional parts, if. any, the coefficients can be 

converted to integers with any desired degree of accuracy. 

All solutions of inequality (6-1) are 0/1 vectors T ­

(T klTk ,'-Tkn) . There are at most 2 vectors T, satisfying2
 

(6-1). Solution by enumeration is always possible but becomqes
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impractical for all but small problems. 'Moreover, solution by enumera­

tion does not group solution vectors into families.
 

Grouping of solution vectors into families is iiportant for 

two reasons:
 

(a) one solution family provides a compact mathematical representation 

of many solution vectors; 

(b) the solution families are meaningful in the modeling of document 

retrieval systems. More will be said about this in section 6.7h.
 

6.3 Properties of.the LPBI and Its Solutions
 

As a prelude-to developing,an algorithm to solve the inequality
 

(6-1) for all of its solution vectors and/or families of solution vec­

tors, it is necessary to investigate a more general form of (6-l).
 

6.31 General Form of the LPBI
 

Let the-linear pseudo-Boolean inequality in its general form be
 

defined by: 

n 

7z.i . > 6 (6-2) 

j=l 

where aj, y. and 6 are given parameters with 

0.s {0,!} j=1,2," ",no 

yj,6e {Il the'set of all integers 
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and where z (j=l,2,n
 

1
 
'is a solution vector, with z s {0,i}
3 

The exponents are used to indicate Boolean complements with the 

following conventions: 

z 7. the complement of (6-3)z, zl; 


1 
zi 


z j 

o iz. = 1 - z.; 

(z)3 zj 

As a consequence of this exponent notation, note that:
 

z j Z' if a. = a. 
3 3 

zO if a,#. 

The inequality (6-1) arising from the LUPF is equivalent To
 

(6-2) if all a. = 1. The algorithm developed in this chapter will
 
J
 

solve form (6-2) of the I.PBI. 

The adjective pseudo-Boolean implies that while the variables­

z.3 of (6-2) are binary valued, the coefficients are not, and hence the
 

function
 

n 

L(zlZ ,,zn) = L(z) T z. j 

J=l
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is a mapping of the binary vector z into the set of positive or neg­

ative integers. This is in distinction to a Boolean function f(z) 

which would map the binary vector z into the binary set {0,1} 

6.32 Canonical Form of the LPBI 

Before solving the inequality (6-2) it is necessary to reduce
 

it to a standard or canonical mathematical form.
 

The canonical form is defined by
 

n 

c x .> d; (cj,d) E (1) (6-4)
 

j=l
 

where x = x), j-l,.-.,n is the solution vector and c > c > . 

cn > 0. This form has all positive coefficients c., ranked by order­

of magnitude. In addition, no complemented variables x. appear. 

6.321 Transformation of Parameters of the LPBI from the General Form
 

to the Canonical Form. The transformation from (6-2) to (6-4) proceeds
 

in two stages.
 

First, all negative coefficients are eliminated by the following 

transformation, (and all y. are relabeled e.): 

> 0 z (yj e.; a. ' a.) 

< 0 - (y4 -e.; a aj = 1 - aj) (6-5) 

(yj O) 
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where a - b is read "a Is replaced by b". At this point a new in­

equality may be defined by: 

n 

yLe. > d (6-6) 
j=lin' 

yi {O,JJYj1C OJ 

(e,,d) e fI)
 

e. > 0
 

The coefficients e. &re next permuted and relabeled so they
3
 

are in descending order as specified by (6-h). We define a transforma­

tion from e. to c. by
3 3
 

k PQ)(6-7) 

c - ek 

j=l,2, • ,n.
 

where P(j) is a permutation which puts coefficients ej in descend­

ing order. This completes the transformation of parameters to (6-4)
 

from (6-2).
 

For example, consider a pseudo-Boolean inequality whose para­

meters consist of:
 

IL ii 
1 -2 1
 
2 -3 0
 
3 5 0 6=0
 
4 -1 1
 
5 2 1
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Eliminating negative coefficients results in new parameters
 

e. a, 

1 2 0 
2 3 1 
3 5 0 
4 o a=6 
5 2 1 

Permuting and relabeling coefficients ej as cj gives:
 

JC.J)
 

1 5 3 
2 3 2 
3 2 1 d=6 
4 2 5 
5 1 4 

The permutation P(j) is obtained from a sort of the e.. if
a 

the indices j are sorted along t.th the ej. the result is P(j). 

Note that the aj are transformed into the a when the negative co­

efficients are eliminated. Permuting and relabeling does not modify
 

the a., 

We will be concerned with solutions = j) of thecon­

ical form (6-4). The approach is to find solutions to this form, then 

perform appropriate inverse transformations on these solutions to get 

vectors lk = (zl) which satisfy inequality (6-2). 

6.322 Transformation of Solutions of the LPBI from the Canonical Form
 

to the General Form. We have defined three inequalities by performing
 

the preceding transformations on the parameters. These are repeated 
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below for comparison.
 

I ~ y __ k 6-2) 

.> (6-6)
 

>x (6-4)>6d 

Solutions to (6-) will be appropriately transformed so they 

become solutions to (6-6) and finally (6-2). These inverse transform­

ations proceedin two steps, as follows: 

(a) from x to y where
 

..k p(j)/ ,.-r, 

.
(b)froz, zt
y-- wh-ere­

a i 1 l(69aj 0 I j ,
 

h aj­
that is: z.1 y.a
 

a a 



The transformations defined above can be depicted as shown be­

low. 

.,k an (6-), (6-) d 
I z_ kjyi ci' E 

-~ j=l
 

The solution transformation has as its object set all solutions of the 

canonical form (6-4), and as its'image set all solutions of the general 

form (6-2). 

6.323 Some Proofs of Results Related to the Transformations. It is 

easy to prove that a binary vector k = (z,,) is a solution to in­

equality (6-2) if and only if the corresponding vedtor (xk j) is 

a solution to inequality (6-4) when (6-5) and (6-7) are used to trans­

form the coefficients, and (6-8) and (6-9) are used to transform k 

to k That is, 

(> x e ) (6-10)j=l I \J=l 

To show this it is convenient to establish two preliminary re­

sults. First, note that we need consider only transformations from 

(6-6) to (6-2) instead of from (6-4) to (6-2). This is because a solu­

tion 2 to (6-4) is always transformed by (6-8) into a solution ., 
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of (6-6). Recall that transformation (6-8) is merely a permutation of 

.coefficients, i.e.
 

xcj yp(j)ep(j), 1,2-... 

n n 
1 1 

-/1'Lxyjej 
j=l j=l
 

< d)_ e (6-11)>(n > _ E jej_ . 

(j=l j j=1 

Another preliminary result is derived from the assumption with 

no loss of generality that the first p coefficients rj are positive 

and the.last (n - p) coefficients T. are negative, i.e. 

yj.-> 0; j=1,2,.*.,p (6-12) 

< 0; j=p+l,' ,fl. 

Then after the transformation (6-5), note that we can conveniently ex­

press ej . and d in terms of yj, a. end 6 as follows: 

n 
d=6- j 

j=p+l
 
(6-13) 

e. 
j=l,2,o 


,p 
a 
= a j 

j j=p+l' "n 

aj a j) 
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Now by using (6-3), it follous that: 

: y± j=l,2,.-,p 

I = y J (6-iI)j l)]l 
(a )a. j y = 1 -% zn1,..'k 

j j=p+l -.,n .
 

t":
 

By.using the above results, the first half of ( 6 -1), i.e. 

n a. 

yjej a zjyZ > (6-15)\j=1 /~ 

is proven as folloTs: / 

!5l - j-p pn n-­ye. > d y+ ]( + > 6 
=l j =l p+l p+l 

j=l p+l p+l 

z L it(Ya 

j =1 

ald using the fact that z =a. from (6-9) x¢e have the desired 

result. 
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Next we would like to prove the second part of (6-10) which is 

the converse of (6-15), i.e. 

t ye> d (6-16)
E ) U)j=l kJ=3 

However, this is equivalent to showing that 

yet t Y < 
pl . j=l 

and this result can be shown by exactly the same technique"used to 

prove (6-15). 

Nt e also that the transfo.,.tion (6-9) um i s 

one-to-one, i.e.
 

(Y-1 # 2)4=(z1-0 E2)- (6-17) 

This is obvious since (6-9) simply complements certain fixed elements
 

of y to get z. 

Results (6-10) and (6-17) are important because they guarantee 

that all solutions to the original inequality (6-2) will be found by 

first transforming the parameters using (6-5) and (6-7) to get the 

canonical inequality (6-4); solving this inequality for all its solu­

tions and transforming these solutions back. These transformations 

are summarized in Fig. 6-1.
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FIGURE 6-1 

FLOW CHART SHOWING TRANSFORMATIONS IW/OLVED IN THE SOLUTION OF A 
LINEAR PSEUDO-BOOLEAIT INEQUALITZ 

Start with parameters First parameter transformation
 
yj)
(remove negative
6 

Yj > 0 ej<y ; aj
YJ ACI a
 
yj < 0 
e -yj I ; j j
UjA{,l}
 

for j=l,2,...,n
 

d -(yO) Yo
 
<
 

Solve canonical inequality Second parameter transformation.Sort 
e into descending order (produce P(i)) 

__ x k -P(i). 

Gi ekfor m canonical solution families i=1,2,...n
 

FkC(X) =(xj) 

k I,2,' ,m
 

J=1,2,-" 
 K,n
 
First solution family transformation Second solution family transformation
 

Fk(x)- Fk(Y); k=l,2,",m Fk( ) - Fk(Z); k=,21**",m
 
1
,t - P(i) aj =O4z j - I 

1 -1 = __Zl j' 1
 
Yk ,k Xk,i I a, - Zk Yk,J 

kj
 

k1,2,*• • ,m I ~ ,, ••,
 

i=1,2,... ,n 
 l,'.a
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As an example of inverse transformations of solutions, observe 

that x = (0 l,i,Ol) is a solution to the canonical inequality used
 

previously in sedtion 6.321 as an example: x transforms to y= 

(i,1iOi',o) which transforms to z = (.0,1,1,0,0). This last vector 

satisfies the original inequality, since -2(01) - 3(19) + 5(1O ) ­

i1(+ 2(0 = 0. (Recall from (6-3) that z = Z.) 

Another result which will be useful later to relate values of 

y ej to y zj, before and after transformation (6-9) is
 
J j
 

given below 

n n 

7xc i zajy >00 (6-18)le -/ I'=8=-g - T- _ 
j=l- ( 06) 

This is easily proven by using preliminary results (6-11)
 

through (6-14) and (6-9) which gives:
 

n n 	 p n 
= 31 3 =3 1 e + y -j 

zj1y j 1j je P 
1 1 1 pA-l 

p n 

1 p+l
 
= 	..,. .]o 

n. n 

=L-	 yjej L Yj 
1 p+l 

n
 

1 j
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As a corollary to this we can state that the inverse trensform­

.ation (6-9) is order-preserving, i.e.

(n U 
for m t 

j=l Y>-
):
j=l 

e 

(6-19)
 

E' .3 & , 
p i j=1 

6.33 Families of Solutions.
 

A set Z of solution vectors formed from a given solution 

vector z0. (z01,z02 ... ) and a.set of indices I C {l,2 . ,n}
 

is called a fami- _r of solutions. All members of the set match the 

solution vector , at the indices in I and are free to vary at all
 

indices not in I.
 

For example, (0,0,0,1,0) is one solution of the example.
 

Let I = {1,2,3}. The set Z(z0I) of s'olutions contains four solu­

tion vectors (including 10) 

(0,0,0,0,0)
 

(0,0,0,0,o)
 

(0,0,0,1,1)
 

This family can also be noted as F = (0,0,0,-,-) where i-)ndi­

cates either 0 or 1.
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If contains only one vector, namely Z., it is said to be a 

deenerate family of solutions, The number of vectors in E is given 

- rby 2n where r is the number of fixed variables (elements) in I. 

. ,
A group of solution families .1l 12' n is disjoint
 

if each solution vector belongs to one and only one solution family.
 

Our goal is to find all solution points z. to the inequality
--I 

(6-2) grouped together into families. It can be shown (see section
 

6.352) that the method used to group solution points into families re­

sults in mutually disjoint solution families.
 

Families of solutions will be found to the canonical inequality
 

(6-4), and these families will be transformed to solutions Of (6-2),
 

using the inverse transformations (6-8) and (6-9). A family of solu­

t.ons is transformable by (6-8) and (6-o) ,Ti+h the obvious convention 

that in (6-9) if y. = (-), then z. <-y. = () irrespective of 

whether aj = 0 or a= 1. 

6.3 The"Relationship between Binary Trees and Solutions of a LPBI
 

Certain isomorphisms exist between binary trees(
84) and solu­

tions to pseudo-Boolean inequalities. These relationships prove in­

valuable for developing algorithms to solve inequalities and to visu­

alize the solution process. 

Each possible
6.341 Isomorphism of Tree Paths to Possible Solutions. 


asolution to a pseudo-Boolean inequality may be pictured as path 
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through a bina solution tree. This is illustrated in Fig. 6-2A 

for the, inequality 

3xI + 2x2 + x3 > 4 

Starting from the root node r, if we proceed to the left to 

node *a, then xI = 0. If we go to b from r, then xI = 1. This 

takes us to stage 1. To go to stage 2, we can move to c or d from 

node a, or from node b to either node e or node f. The stage of a node 

in the solution tree is the number of levels which the node is removed 

from the root node. There are n+l". stages in the complete solution 

tree associated with an inequality having n variables. 

If we traverse the tree from the root node r to node i in 

the path r - a + d + i, we'have enumerated one of the . = J binary 

vectors x = (xl,x2,'x3) (0,1,0). A move along a left branch from one
 

stage to the next implies that the variable x. associated with that
 

stage is to be set at zero. A move to the right implies that the var­

iable is to be set at 1.
 

By traversing a path from the root to each of the terminal ­

nodes (leaves) of the tree, each binary vector x can be enumerated. 

Each x could be tested -to find only the x which are solutions to 

the inequality. We conclude that each path from the root node to a 

terminal (leaf) node is isomorphic to a possible solution point x. 

By inspection, nodes lm and n represent solutions to the
 

inequality.
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FIGURE 6-2 

SOLUTION TREE AND ASSOCIATED DATA FOP A SIMPLE INEQUALITY 

3X1 + 2X2 + x 3 4 
Fixed
 

Stage variable 

,A:. Solution tree 0
 

def2 
 X2
 

9 h i j k "i m n 3 X3 

Value ZCX 0 1 2 3 3 41 5 6
 

Binary X1 0 0 0 0 1 1 1 1
 

Vectors I 0 0 1 1 0 0 1 1
 

0 1 0 1 0 1 0 1 

B. Partial Path Records and Partial Inequalities Asociated -4th 'Tree oades 

Partial Partial
 
Node Stage Path record. Inequality
 

r 0 -) 3X1 + 2X2 + X > 4 

a (0,-,-) 22 + 4 

b (-,-) 2X2 + X3 > 1 

c 2 (0,0,-) X3 4 

d 2 (ol,-) X3 2 

2 (i,o,-) X3 3 ­

f 2 (1,1,-) x 3 -1 

g 3 (0,0,0) 

x 3 

h 3 (0,0,1) 
i 3 (o,1,o) 
j 3 (o,1,1) 
k 3 (1,0,0)
 
1 3 (1,0,) 
m 3 (1,1,0) 
n 3 (1,1j)-------------------­
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6.342 Isomorohism.of. Tree Nodes to Partial Path Records and Partial 

Inequalities. Associated vith each node in the tree is a set of fixed 

binary 	variables and a set of arbitrary binary variables. 

The fixed set .of variables represents a partial path record 

(PPR) from the root node to any other node in the tree. PPR's become 

complete path records when the path is traced from the root to the 

terminal (leaf) nodes. See Fig. 6-2B for an illustration. The set 

of arbitrary variables are those necessary to specify a complete path 

record from a PPR. For example, at node d, the fixed variables are 

x1and x 2 ' while x3 is arbitrary. 

A partial inequality (PIN) can also be associated with each 

node in the solution tre&. The variables in these PIN's-are those in 

the set of arbitrary variables, while the set of fixed variables and 

their coefficients are absorbed into the right hand side of the PIN. 

At any 	p th stage node there are p fixed variables and 
• th
 

(n-p) arbitrary variables. The PIN associated with a p stage node
 

is given by:
 

j=p+l , =l 

As an example, node e of Fig. 6-2A has an associated PIN given 

by: 

1x 3 > I- [3(1) + 2(0)1 x 3 >1. 

http:Isomorohism.of
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Fig. 6-2B lists the partial PWB's and PIN's associated with
 

'all nodes of the solution tree shown in Fig. 6-2A.
 

It is possible to construct a binary solution tree for any
 

pseudo-Boolean inequality, whether it is in general or canonical form.
 

Fig. 6-3 shows a solution tree for an inequality in a general form, 

Fig. 6-4 shows the solution tree for the same inequality after trans­

formation to canonical form. 

The canonical form solution tree has special properties which 

enable, families of solutions to be built up automatically from spec'ial 

types of solution tree paths known-as basic.solution paths (BSP's).
 

These will be discussed extensively in the following sections. 

6.35 Solutions of the Cano'ical Form
 

Fig. 6-4 shows the solution tree associated with the canonical 

form of the inequality used as an example in section 6.321. For the 

canonical inequality all solution values are bounded betweei 0 and 

n
 
c.. There are no negative values. There are 19 solutions to the 
1
 

canonical inequality, just as there were to the original inequality.
 

6.351 Basic Solutions.* Of the 19 solution vectors x, seven have 

special properties. These solutions are called basic solutions. They 

are formally defined as follows, 

A basic solution to the canonical inequality (6-4) is a solu­

tion x* = (xlx-,x*) such that for each index ± with x. = 1
 

the vector (x.... i-l* 0 ,xY) is not a solution of (6-4),
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FIGURE 6-3 

SOLUTION TREE ASSOCIATED WITH AN LFBI IN 
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BINARY SOLUTION TREE ASSOCIATED WITH N LPBI IN CANONICAL FORM
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6.352 Canonical.Solution Families, Given a basic solution 4 it is 

,possible 	to define a family of solutions k ) in a special 

manner which exploits the minimal property of the basic solution. 

A solution family F = ( I k ) constructed from a basic 
k ~ ik
 

solution 4 using the following rules will be called.a canonical
 

solution f amily Let A,(l < £ < n) be the last'index for which 

1, where Ik 


then defined to be the set of all indices i < 2.
 

The basic solution is a minimal solution vector xt in the
 

1 	 is a basic solution. is
 

sense that changing any of the variables from 1 to 0 gives a new vec­

tor x which is not a solution. It is defined o for the canonical
 

form of the LPBI, where all coefficients are positive and all vari­

ables are 1neomplemented. / 
In terms of the solution tree, aibasic solution corresponds to 

a solution path through the tree which does not remain a solution path 

if any right branch is changed to a left branch. In Fig. 6-4, the 

basic solutions corresponds to tree paths numbered 12,1h-,15,18,19,21 

and 25. A path through the tree corresponding to a basic solution will 

be referred to as a basic solution path (BSP)o 

Referring to Fig. 6- , path number 21 through the binary tree 

corresponds to solution vector x~l = (1,0,1,0,0). This solution is

21
 

basic and path number 21 is a BSP. It can be made into a canonical
 

solution family by allowing arbitrary values for the last two O-valued 



vector elements. We can denote this family by F 1 = 1=
 

(lOl-- ),'he ,211 = {1,2,3}
 

2n-
Canonical solution family F21  contains k =25-3 =4
 

solution vectors as members. These are shown as paths numbered 21-24. 

The BSP is seen to be the left-most tree .path in the family. Some can­

onical solution families have only one member (the BSP) and are said to 

be degenerate solution families, In Fig. 6-4, paths numbered 12 and 14 

are families of this type. 

It can be seen that by knowing only the basic solutions that 

all other solutions to the canonical inequality can be enumerated 

This is formalized by the following result which has been proven by 

*Hammer and Rudeanu (85 ).
 

*Eer-= solution to the. canonical inequality belongs to one and
 

only one canonical solution family.
 

Because the inverse transformation of canonical solutions is
 

one-to-one (see (6-17)), the above result holds after the transform­

ation. Thus, when the canonical solution families are subjected to
 

the inverse transformations (6-8) and (6-9), we get mutually disjoint 

solution families to the original inequality,
 

The problem of solving the pseudo-Boolean inequality is now re­

duced to the problem of identifying all basic solutions of the canon­

ical inequality, This will be the subject of the next section.
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6.36 Summary of Solution Procedure for the LPBX 

Section 6.35 shows that the solutions to the LPBI (6-2) may be 

obtained in mutually disjoint families by the following procedure: 

(a) transform the original inequality to canonical form; 

(b) determine all basic solutions to the canonical form; 

(c) construct canonical solution families using each basic solution; 

(d) inversely transform the canonical solution families and get solu­

tion faxnili!s to the original LPBI (6-2). 

6.4 Determining Basic Solutions of the LPBI by Searching
 

the Binary Solution Tree
 

6; 41 P-review of the Tree Pruning Algori+hm (TPA) 

The method used to determine basic solutions of the canonical' 

inequality is based on finding all BSP's in the associated binary 

solution tree. This method relies upon systematically 'visiting' 

nodes of the tree, starting at the root node and moving in a downward 

direction "toward the terminal (leaf) nodes. When a node is 'visited', 

the parameters of the associated PIN are examined., This gives inform­

ation about which nodes to visit next.
 

For each node visited, it may be possible to eliminate further
 

downward motion in the tree through one of the following two devices: 

(a) by determining that no BSP can exist using a branch directed down 

to the left, right (or both) of the current node;
 

(b) by enumerating dll complete BSP's which employ branches directed 
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down to the left, right (or both) of the current node. This makes fur­

ther downward movement unnecessary. 

When all downward paths through the solution tree have been 

blocked by (a) or (b), it follows that all BSP's have been found, and
 

the node visiting operation stops.
 

The elimination of downward (away from the root) movements in 

the tree through results obtained higher up (closer to the root) in the
 

tree can be called a 'branch-and-exclude' scheme. The subtree whose 

nodes are actually visited is then a small segment of the original so­

lution tree. This subtree can be considered to arise from the original
 

tree by a branch-cutting or pruning operation. For this reason the
 

final algorithm developed is called a tree pruning algorithm (TPA).
 

At a given node, the decision to prune and/or to enumerate 

BSP's is based on a classification Acheme to be applied to the para­

meters of the PIN associated with-the node. The classification scheme
 

is due to ammar and Rudeanu and is discussed in section 6.52.
 

When they are identified, comnlete BSP's are constructed using
 

both the PIN and the PPR at any given node. This is discussed in
 

section 6.51.
 

Development of the TPA can be broken down logically into two
 

parts. Definition of what is done when a node is visited is one part. 

The other part is concerned with the scheduling of node visits. Al­

though these two logical parts are linked (node visits can alter the
 

schedule of remaining visits), it will be convenient to consider the
 

node visiting portion first.
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Section 6.5 provides theory and methods relating To what is 

'aone at an individual node when it is visited, This includes construc­

tion of BSP's and pruning of the solution tree. 

The scheduling and record keeping,details related to node 

visits are deferred to section 6.6. 

6.5 Solution Construction.and Node Visits
 

6.51 Constructing Complete BSP's from Partial BSP's
 

As nodes in the subtree axe visited, the PPR is maintained.
 

Thus suppose at some node currently being visited, a basic solution to
 

-the P1N is identified by the scheme to be presented in section 6.52.
 

Then the complete BSP consists of two par,-s and is constructed in the
 

following manner.
 

The first part of the complete BSP is the PPR to the current
 

node. The second part is the basic solution of the PIN associated
 

with the current node.
 

These remarks may be formalized by the following results (see
 

Hammer and Rudenu
(86)
 

p
(A) Let (X, 2 1 ',xp+ 1 ,.'o.,) be a basic solution of the 

canonic'al inequality (6-). Then (4+... x*) is a basic solution of 

The inequality 
n p
 

AC. > d Cki.
 

j=p+l k=l
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(B) If (X x + ,X) is a basic solution of the inequality 

p+CVx 4,
+2 
 n 

j=p+l 

then (o,...,o,xP+l, X) is a basic solution of the complete canoni­

cal inequality (6-4). 

(C) If d> 0-and (x 2 ,-...xn) is a basic solution of 

nZ Cjx, >- C, 

j=2
 

then (l,x2,x3,..,x,) is a basic solution of (6-4).
 

Result .(A) allows partial paths to be excluded from further 

consideration when they are "dead-ended" by a PIN which has no solu­

tion. (Use the contrapositive form of statement (A).)
 

-Repeated applications of (B) and (C) allow construction of
 

complete BSP's from PIN basic solutions and PPR's. By repeatedly ap­

plying (B) and (C), one starts with a basic solution of the PIN and 

constructs a complete BSP by prefixing one element of the partial path 

record at a time to this basic solution. Results (B) and (C-)validate 

the formation of a complete BSP by simply prefixing the PPR to the ba­

sic solution of a PIN at the node being visited. 
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6.52 Node Visits Summarized in Terms of PIN Parameters 

(87,

By using (A),(B) and (C) of 6.51 above, Hammer and Rudeanu 

88,89) have built up the clever Solution Decision Table shoun on Fig. 

6-5. This table is important because it permits inferences to be made 

about the solutions of a PIN simply by inspection of its coefficients 

ald right hand side. 

The flow chart on Fig. 6-6 presents a modified version of this 

decision table which shows the sequence of calculations which are per­

formed on the parameters of the PIN associated with the current node. 

This flow chart is applied when the node is 'visited'. Examining the 

parameters leads to a classification of the PIN into one of 7 mutually 

-exclusive cases. Each of the 7 cases gives information about basic so­

lutions and exclusion of neighboring nodes in the tree.
 

Thus at any node of'the solution tree p basic solutions to
 

the PIN may be identified where p < n.' In addition, one or both of 

the branches extending from the current node may be excluded from fur­

ther consideration . 

Fig. 6-6 defines exactly what is done when a node is visited. 

This completes the discussion of this part of the TPA. Scheduling of
 

node visits is next considered.
 

6.6 Scheduling Node Visits in the Binary Solution Tree
 

This section develops methods for the following items:
 

(a) scheduling node visits in the binary solution tree;
 

(b) maintenance of PPR's corresponding to the node being visited;
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FIGURE 6-5
 

SOLUTION DECISION TABLE'
 

Case Conclusions Validation 
d<0 The unique basic solution is 

xI = x2'= ... = xn = 0 Obviously 

d>O and o<) For every k = 1,2,...,p: Obviously
 
= 
el.>p>/>p+l>..>-c Xk=lxl=f ..=Xkkl ...=Xn=0
n 


is a basic solution.
 

A) The other basic solutions by (A) and (B)
 
(if any) are characterized by
 

the property: xl= ...=xp = 0,
 

and (Xp+l,...,Xn) is a basic
 

solution of n
 

2 cjX.>d
j=p+l
 

d>O,ci<d(i=l,2,...,n)
 

n No solutions Obviously
and r ci<d 

i=l
 

d>O,ci<d(i=l,2,...,n) The unique-basic solution is Obviously
 
. n 

andZ c. = d x I = x 2 =...=x
 

d>O,ci<d(i=1,2,...,n) 	 The basic solugions (if any) by (A) and (C)
 
are characterized by the
 

n n property: = I, and
x1 


ci d and j (x2,...,xn) is a basic solution
 
il j=2 of
 

n
 

E cjxjPd - cI 
j=2 

d>0,ci<d(i=l,2,...,n) The basic solutions (if any) by (A), (B),
 
are characterized by the and (c)
 

n ne property: either x, =1
 
EidandE jd


i=l j=2 	 and (x2,...,Xn) is a basic
 

solution of
 
n
 

cjxjd - c or:
 
j=2
 

xl=O and (x2 ,.-,Xn) is a
 

basic solution of
 

) 'cjxjpd
 

j=2
 

1From: Peter L. Hawmner and Sergiu Rudeanu, Pseudo-Boolean Methods for 
Bivalent Progranaing!,Lecture Notes in mthematics, Vol. 23, (Berlin, 
Heidelberg, New York: Springer-Verlag, 1966), page 27. 
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FLOW CiART 

FICUHE 6-6 

ShOWIITG THE VODIFIED SOLUTI:O; UECISION 

CLSSIFNIIG PARTIAL TUEQUALITIES 

TABLI FO 

Start wath 
CJa 

(<0) 
Case 1. 

Unique basic solution; 
XI=X =..=Xn=0: 

c =S(=d)Case 2; Unique basic solution; 

Exclude left and right 

(1d) 

Case 3. No basic solutions: 

E:clude left and right 
branches. 

S C sCase Ii. n basic solutions, 

> 

2 > - C° 

, > Cn 
p~l ­ - (=) 

for --.­cry K=1,2,",n; X4-3 

and X1 
= 

.. = XK_1 = xK+1 

and righ branches. 
and. X =0: Exclude left 

(=0) 

(O (<n) J Case 5. p basic solutions; 
-0for ejery K=l.2,.. ,P; X= 

and Kx =1K'1 K1 K-1 

." X = 0: Exclude right 

branch nadvance p stages 
down left branch. 

1 

5 
(<d) 

n 
(>") Case 6. No basic solutions: 

Ex de left branch,advance 

one stage down right branch, 

__right 

Case 7. Nfobasic solutions: 
Exclude neither left nor 

branch. Pdvance ore 
stage don both left and
sight branches. 
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(c) maintenance of a PIN coefficients list corresponding to the node
 

being visited:
 

Item (a) above is developed by first considering a simple al­

gorithm for scheduling pre-order binary tree traversal. (Tree traver­

sal is the process of visiting all nodes in some specified order(90)).
 

This simple algorithm is presented in section 6.62. It does not allow
 

the outcome 'ofnode visits to alter the schedule of other node visits.
 

The entire tree must be defined prior to traversal in this simple al­

gorithm.
 

Section 	6.63 discusses modifications to the tree traversal at­

gorithm (TTA) to permit tree pruning. Tree pruning "is the process 

whereby the tree traversal schedule is modified by results obtained 

when tree nodes are Visitedj 

Finally section 6.64 gives details on how the dynamic PPR and 

PIN records are maintained during the traversal. 

Section 6.61 precedes all the above wTith a simple example of 

how the 	TPA should work to illustrate the problem of dynamic scheduling 

of node 	visits.
 

6.61 A 	Simple TPA Example Problem
 

Consider the tree shown in Fig. 6-2A. One method of starting
 

at the root node and sequentially visiting each node in the tree only 

once is 	called pre-order tree traversa(91).
 

The pre-order traversal sequence applied to the tree gives the
 

following order for node enumeration: r+ac-*g-h+d-i +jbe+k4l+mn9 
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At each node in the order given above, the PIN is classified using Fig.
 

6-6.
 

For node r, we have case 6 of Fig. 6-6 since d > 0; C d; 

Ci > d; and Ci < d. The basic solutions, if .any, are found by 

"i=l i=2 

setting x I = 1 and advancing one stage down to the right to node b, 

We have bypassed the entire left branch of.the tree (where xI o). 

Thus we have eliminated nodes (ac,d-g,h,i,j) from further considera­

tion. This is an illustration of the pruning operation. 

The revised schedule for pre-order traversal of the remainder 

of the tree is b+e+k4-*fm-+n. At node b we consider the. PIN: 2xI + 

x3 > 1. This inequality matches case 4 of Fig. 6-6, since C1 C = 

d ==p = 2 = n. Thus the basic solutions of the PIN are given by (1,0) 

and- (0,1). Since (xlx 2 ,x3) = (l,---) is the PPR at node b, the BSP's 

to the original inequality are given by (1,1,0) and (1,0,1). This con­

eludes the traversal process since all other nodes have been excluded, 

and the algorithm terminates after node b has been visited 

Thus by analyzing PIN's at two nodes of the 15-node tree, all
 

the basic BSP's have been found. The ideas presented in -this example 

represent the basic procedure used to identify all the BSP's in a solu­

tion tree. 
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6.62 The Pre-Order Tree Traversal Algorithm (TTA)
 

The genera LPBI solution procedure has been illustrated in 

the preceding section. An important characteristic of this procedure 

is the successive re-definition of the traversal schedule which oc­

curs as a result of node visits. A separate sub-algorithm to handle 

dynamic changes in the traversal schedule is needed. 

The algorithm for dynamic scheduling used in the final TPA
 

has been derived from a simpler algorithm called the pre-order PTA.
 

The TTA allows no dynasie modification of the tree structure and re­

quires that the entire tree be defined before node visiting begins.
 

To promote understanding of the final TPA, the simpler TTA is pre­

sented here in detail.
 

There are three principal ways to traverse a binary tree,
 

visiting each node once and only once. These methods all give rise
 

to a specific ranking of the tree nodes in the order in which they
 

will all be visited. They are termed pre-order, post-order and end­

order traversal(92). Pre-order traversal will be used here. It is
 

defined by the following successive steps:
 

(a) visit the root;
 

(b) traverse the left subtrec;
 

(c) traverse the right subtree. In the example stated previously in
 

section 6.61, the tree of Fig. 6-2A has a pre-order traversal schedule
 

given by: (racgh~dib~e~k~lfm~n)o
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Before describing tne method used to guarantee pre-order trav­

ersal, it is cotivenient to discuss bbtree data structures required, 

namely a link table, a pushdowrn 1ist and a single working storage 

location. The link table is necessary to show how the tree nodes are 

linked to each other. For the tree of Fig. 6-2A we can show a link 

diagram and corresponding lirk teble (see Fig. 6-7). The tree struc­

ture is completely defined by the link table. Each tree node has a 

left and a right link to other nodes. Tree nodes are given en integer 

tag for internal machine use, but this tag can be related to other 

symbols via a-look-up table. The null link is represented here by -1. 

The data structure STACK is a push-down, pop-up list with last-in, 

first-out (LTFO) discipline. STACK functions as a 'memory' for nodes 

remaining to be visited. I single storage location labeled P is also 

required to define the node currently being visited. 

The following conventions will be used to describe data storage 

and data movement instructions. We readP-LL-iX(P) as "replace the 

contents of memory location P with the contents of the memory location 

LLr(P)" . Memory location ttfIlK(P) is not modified by the preceding 

operation. For push-down list operations, we read '-STACK as "replace 

contents of memory location P with the contents of whichever memory 

location is at the top of the push-do,rn list STACK". After 'this opera­

tion, the list STACK is -o be popped up, or shortened by one item. The 

da+a tramsferred to P is no longer stored in STACK after The list is 

popped up. The list operation STACKt-P means that "the contents of mem­

ory location P are to become the first item in the list STACK, on top 
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(A) Tree Diagram 

TREE WITH 

FIOURE 6-q 
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(B) Link Diagram 

[Ta [e[H 

(a) Link Table 

Node 
9~ Uh 

a 
b 
c 
d 
e 
f 
g 
h 
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S 14! 
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-1
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of elements already in STA(K)" This pushes down the list by adding one
 

more element. The contents of memory location P are not modified.
 

The TA is described by the flow chart of Fig. 6-8. (This de­

scription is similar to that for a post-order TTA given by Knuth(93).)
 

Operations shown in this flow chart are numbered. Written descriptions
 

of these operations are given below. These descriptions are numbered
 

to correspond to the numbers of Fig. 6-8.
 

(1) <-ROOT The number of the current node is replaced by the
 

number of the root node. This is an initialization step. STACK is as­

sumed empty.
 

(4) VISIT P. Some operation is performed at node P (such as
 

investigating the parameters of an inequality).
 

(5) STACKP. The node number in P is put on-the push-down
 

list STACK. (Note that the contents of P are not modified.)
 

(2) P,-LLIAK(P). The node number in P is replaced by the node
 

number in LLIRK(P) which is defined in the link table. This prepares
 

for a move down the tree and to the left.
 

(3) P = -1?. Test to see if the contents of P are the null
 

link. If yes, go to step (6) to determine whether STACK is empty. If
 

no, go to step (4).
 

(6) STACK EMPTY?. If the push-don list STACK is empty, the
 

algorithm is terminated. If STACK is not empty go to step (7).
 

(7) P-STACK. Replace the contents of P with the node number at 

thi top of the push-down list STACK, This pope up the list. The tree 

move is upward and to the right,back to.the pivot node. 
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FIGURE 6-8 
FLOWCHART SHOWING AN ALGORITHM FOR PRE-ORDER TRAVERSAL OF BINARY TREES 

P-RLINK(P) P+STACK.
 

F 

P<LLINK(P) F T EPTY? 

T 

STACK-P 'VISIT'
 

P STOP
 

S P'ROOT 

START 

Note: The tree is assumed defined by a complete link table, with -1 as null link 

Note: Algorithm steps are numbered to correspond to the descriptions given in the text 
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(8) P+RLINTK(P). Replace the contents of P with the right link 

number of the current link in P. The tree move is downward and to the 

right., away from the pivot node. 

Operation of the TTA can be further illustrated with an example 

using the tree of Fig. 6-2A. Fig. 6-9 shows a "snapshot" of the con­

tents of the various memory locations after each step of the algorithm 

(as shown on Fig. 6-B) is completed.- Thirty-nine sequential steps are
 

shown, which caused nodes ra,c,g,h,d to be visited in that order.
 

Traversal of the rest of the tree in pre-order can be continued in the 

same way until node n has been explored, at which time the algorithm 

terminates. 

The pre-order TTA consists of 2 types of operations: 

(a) mno-ving downward and to the left in the tree, one node at a time 

while retaining a record of downward moves (node numbers) in the push-, 

down list; and 

(b) moving back Ip to the right, one node at a time, by popping up 

the pushdown list, then moving down to the right, one stage. This is a 

'back up and go round the corner' type of move. 

Note that the push-down list STACK never contains more than 

(n+l) elements, where n is the number of levels (stages) in the tree.
 

6.63 Modifying the TTA to Permit Tree Pruning 

The pre-order TTA presented in section 6.62 provides the basic 

framework for the TPA. How.zever, there are two modifications of the TTA 

which must be made. These are discussed below. 



132 

IGIURE 6-9 

EXAI4PLE PROBELT ILLUSTRATING THE TREE PRE-RDER TRAVERS L ALGORITM 
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6.631 Elimination of the Pre-Determined Link Table. The traversal al­

gorithm requires that the link table be defined before traversal. In 

the search for BSP's, many of the tree nodes will never be visited,
 

since they will have been excluded (pruned away) from further consider­

ation by results obtained at nodes nearer the root of the tree. Link
 

table information for nodes to- be excludedis not needed- To avoid de­

fining the tree completely ahead of time, the tree is constructed by
 

the algorithm itself, and the only nodes which are defined in the link
 

table are those which must be -isited, i.e. those which have not been 

pruned away by previous results obtained higher up in the tree. Thus 

the structure of the tree is actually determined as it is traversed. 

Necessary modifications to the algorithm shown on Fig. 6-8 in­

volve only the insertion of a new operation between the blocks labeled 

(4) and (5) as shown below:­

(5) (4*) 

DEFINE 
STACK <P LLINK(P) "'VISIT' 

RLINK(P) P 

This new operation is the definition of left and right links of node P.-


It can be considered as part of block (4) (IVISIT'tF) if desired.
 

6.632 Storage Allocation Modifications. Defining a link table as the
 

tree is traversed introduces practical considerations. How can identi­

fication numbers be assigned to new nodes? And, how much storage space
 

is required for a link table used with a tree of given size? 

One obvious method for assigning node numbers is to define a
 

new sequential integer for each new node that is discovered. The size
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of the link table is then proportional to the size of the set of vis­

ited nodes, i.e. 

n
 

1+2+4+.+2l+24-1+"+ n = ~ -2 kk = 2nfl - 1
 

k=O
 

for a tree with all nodes visited. This is the maximum size of the
 

link table and several values are shown below.
 
n 

2k 2n+1 

-n .k=0
 

5 63 
10 20h7 
15 65,535 

Clearly this method is unworkable, since maximum storage space 

requirements are much too great.
 

The -method used in the TPA is to use node iumbers over 

again. The node number (index in the link table) is assigned to a 

new node once the node it originally was assigned to becomes inactive. 

From the description of the pre-order TTA, it can be seen that once a 

tree node is removed from the push-down list STACK (a 'back up and 

around the corner' move), this node is not Utilized for any further 

processing and will be defined as being inactive. (Active nodes are 

defined as those nodes which are in the push-down list STACK, or those 

nodes which are rih links of nodes in STACK, since right link nodes 

may become occupants of STACK.) Once nodes become inactive, their node 

numbers become eligible for re-assignment to new nodes. 
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Since the maximum number of nodes in STACK at one time is (n+), 

'and since each node has only one possible right link, the maximum num­

ber of active nodes will be 2(n+l). Thus, the dynamic link table will
 

contain at most 2(n+l) node link records. Also only 2(n+l) unique
 

node numbers will ever be needed at one time.
 

In order to assign node numbers as needed during traversal of 

the tree, a second push-dovn list PLIST is initially loaded with 2(n+l)
 

consecutive integers so that the first integer removed is 1. As the
 

tree is traversed, new nodes may be identified. These new nodes Will
 

be assigned numbers taken from the top of PLIST which pops up the list.
 

Numbers from inactive nodes are placed on the top of PLIST 

which pushes down the list. This occurs as soon as the nodes become in­

active, or between steps (T)and ,,C), of Fig- 6- (beetween the 'move 

-backup', and the 'move down-right'). 

The TPA with the modifications necessary to provide for the 

dynamic link table is shown in Fig. 6-10.
 

6.64 Maintaining the Dynamic PPR and PIN Records 

6.641 Maintenance of the PPR. As was discussed in sections 6.41 and
 

6.51, a complete BSP of the canonical inequality is constructed from 

two components. The PPR from the root to node - P is required together 

with a basic solution of-the PIN associated with node P. 

In addition, the PPR is required to form the right hand side 

of the PIN from the right hand side of the complete canonical in­

equality. 
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SFIGDRE 6-io 

OF THE TREE TRAVERSAL ALGORITH1m4 AFTER MODIFICATION TO PERMITFLOWCHART 
GENERATION OF A DYNAMIC LINK TABLE 

! PLiSTlP" 

,P<-R7InK (P) ![P+-STACK 

P+LLINK(P) > STOP 

PLIST STARTSTACKxP 
.PROOT-

iVISIT'P
 

LLII(P
( P)+i 
ei T LL U4-K(P) - 1j

.LL TN"K(P 

LLINK(P LIflK() )-PLIST()-PLIST 


--- K[I ( )- t _P)K-PLI 
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The above two uses require that the PPR be recorded and updated
 

as the various tree nodes are sequentially visited. This represents an
 

addition to the pre-order TTA.
 

The PPR is an ordered list of O's and .s (let and right'
 

branches) along the path from the root node to the current node P.
 

A running record of the partial path is kept in a binary vector
 

Y(J) having n elements. The index of the last element of Y(J)
 

which is recorded represents the 'level' in the tree-where the current'.
 

node P' is located. Recall that the 'level' associated with any node
 

P ranges from 0 (the root node) to n (the leaf nodes). This level
 

is called STAGE(P) in the trees of Figs. 6-2, 6-3, and 6-4. The var­

iable STAGE(P) is assigned as an attribute to each new node P in
 

the dynamic link table at the same time LLINK(P) and RLINK(P) are de­

fined. STAGE(P) is retained as part of the node record in the dynamic
 

link table.
 

As -the partial path grows downward and to the left, O's are 

added to the list Y(J). As the partial path is retraced back up the 

tree and downward to the right, the list Y(a) is first shortened and 

then expanded with l's reflecting the rightward move.
 

To permit the list Y(J) to be modified as the tree is trav­

ersed, two pointers PTI and PT2 (,called the following .and,lead,pointers
 

respectively) which refer to elements in Y(J) are used.
 

As movement proceeds downirard and to the left in the tree, the 

pointers and the PPR are revised according to the following rules: 
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PTI - PT2
 

PT2 STAGE(P) (6-20)
 

Y(J) +-0 =~~,-P2 

These operations expand the list 'Y(J) by adding zeros.
 

Fig. 6-i1 illustrates how the PPR is dynamically modified. 

Suppose the partial path and PPR shown in Fig. 6-11A exist at some 

time during enumeration of the tree. This is to be regarded as initial 

data. Next, suppose a move is made extending the initial partial path 

down two stages to the left. Revised data is given in Fig. 6-11B, af­

ter using (6-20). 

As movement 'proceeds back up the tree and then downward and to 

the right, the pointers and the PPR are revised according to the fol­

lowing rules: 

P -c-STACK
 

PTl + STAGE(P)
 

P PLI1K(P) (6-21) 

PT2 - STAGE(P)
 

Y(J) -'l; J=PTl+I-, ,PT2
 

For example, starting with the data shown in Fig. 6-11B, assume' 

a move is made back up the tree and down to the right. The final re­

sults axe shown in Fig, 6-11c. The PPR Y(J)*= 0 is erased as move­

ment proceeds back up the tree, and overwritten with Y(J) = 1 as
 

movement proceeds down and to the right.
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FIGURE 6-11
 

DETAILS OF PPR AND PIN DYNAMIC MODIFICATIONS
 

A. Initial Data
 

PIN Parameters
 
Path Stage 

l 

. . . 2 

o-
PPR 

o,:---

J 
1 

2 
3 

C(J) 
8 

6 
3 

C'(J) 

d 

/2 

3 4 
4 

5 
PT2 5 

6 
2 

1 

6 D=7 D'=-

B. Data After First Revision
 

Path Stage PPR J C(J) Cu(j)l
 

Y (0.1 1,OO0 -) 2 6 4 

-2 
 3it3
 
3 PTl 4 3 

4 PT2 5- 2/ 

5 6 1 

D=7 D'=-2
 

C. Data After Second Revision
 

Path Stage PPE J C(J) C'(J)
 

7----0 a 2 
1 Y = (0,!,ii,--) 2 6 1I 

V- 2 3 3 
3 P1 14 3 

4 P2 5 2/ 

5 6' ± 
6 

D=7 D '=­
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6.642 Maintenance of PIN Coefficients. Provisions are also made for
 

dynamically updating coefficients and right hand side of the PIN as the
 

tree is traversed. This is another addition to the TTA. 

A list of coefficients C'(J), J=l,2,-"M is maintained by 

using the list of coefficients C(J), J=1,2,.--,N for. the original 

inequality. The C'(J) are copied from the list of C(J) as follows: 

M + N - PT2 

K PT2 + L (6-22) 

C'(L) C(K); L=1,2,...,M
 

The right hand side D' of the current PIN is then given in
 

.terms of the original right hand side D as-:
 

PT2
 

D! + D -Z[C(J)*Y(J) (6-23) 

J=l 

An example of PIN parameter revision using (6-20) and (6-22)
 

is shown in Fig. 6-11B. Fig. 6-11C uses (6-21), (6-22) and (6-23).
 

This completes the discussion -of modifications and additions
 

necessary to convert the pre-order TTA to the TFA. A flow chart of
 

the TPA is shown in Fig. 6-12. A detailed description of this flow
 

chart is presented in the next section.
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FIGURE 6-12 
FLOW CHART OF TIM TREE PRUINlG ALGORITIW4 FOR SOLVING PSEUDO-BOOLEAI 

INEQUALITIES IN CAIIONICAL FORM 
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6.7 The Tree-Pruning Algorithm (TPA)
 

"6.71 Detailed TPA Description-

The TPA is described by'the flow chart of Fig. 6-1-2. The var­

ious operations shown in this flow chart are numbered and the written 

descriptions given below refer to these numbered operations. 

Wi) Initialize. The push-down list of new node numbers PLIST 

is loaded with sequential integers i,2,.. ,2(N+I). The first integer 

(unity) is removed from PLIST and placed in P to correspond to the 

root node. STAGE(P) - 0 for the root node. 

The PPh is undefined at the'root node. The pointers PTi and
 

PT2 are both set to zero.
 

The PIN pars-ters /C'(J) and D' are set equal to tbhe can­

onical inequality parameters C(J). and D. 

(2) Visit P. 'The PIN associated with node P is -c'lassified 

using Fig. 6-6. Xl is the classification case number and X2 is the 

number of PIN basic solutions identified. If nodes linked to P are 

identified, they are assigned numbers from the push-down list PLIST. 

These node numbers are entered in the dynamic link table as LLINK(P), 

RLINK(P) or both. They appear as part of the node -V record. Also 

each node linked to P has its attribute STAGE(LLINK(P)), STAGE(LINK 

(P)), or both recorded in the dynamic link table at this time.
 

(3) Test for basic solutions,. If X2=0, then no PIN basic
 

solutions were identified when P was visited. 
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() Construct and record all complete BSP's discovered. All
 

PIN basic solutions (X2 of them) identified in step (2) are used here.
 

Each complete BSP is constructed using the PPR and a PIN basic solution.
 

The form of each PIN basic solution is determined indirectly by Xl
 

from step (2). "
 

(5) STACK P. The number of the node just visited is placed
 

on the top of the push-down list STACK.
 

(6) P LLINK(P). The number of the node just visited in step
 

(2) is replaced by the number of its left link node. The movement is
 

downward and to the left in the tree.
 
9 

(7) Test for null link.' Here the test -P - 1 is performed 

to determine whether the node visited in step (2) has a left link to a
 

new node. If no link node exists .downwardto the left, then control
 

transfers to step (8) for a move back up the tree to the node visited
 

in step (2). This is followed by a move down and to the right. If a ­

left link'does exist to a node further down the tree, then control
 

transfers to step (19) for updating the PPR and the PIN parameters.
 

(8) P-STACK. The number of the node visited-last is removed
 

from the push-down list. This node is the pivot node for a move around
 

the corner and down to the right.
 

(9) PTl-STAGE(P). The following pointer in the PPR is moved
 

back to the stage of the pivot node (sometimes this step results in no
 

actual movement of the pointer).
 

(10) PLISTP, Since the pivot node will not be needed again,
 

it becomes inactive and its node number is released for future use by
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new nodes. This is done by placing the node number back on the push­

. down list PLIST. 

(11) P*RrTIK(P). The number of the pivot node P is replaced 

by the number of its right link for a move down the tree and to the 

right. 

(12) Test for null link. Here we test whether the fight. link 

of the pivot is non-null. If it is null, then go to step (13) to 

test for an empty STACK. If it is not null, then go to step (15) to 

prepare to visit the node. 

(13) Test for empty STACK. If the push-down list STACK is
 

empty, then the algorithm is terminated at step (14) and the tree has 

been completely traversed. 

(14) STOP. The tree has been traversed
 

(15) PT2 - STAGE(P). The lead PPR pointer is moved ahead to
 

correspond to the move down the tree. (STAGE(P) was established in
 

step (2)).
 

(16) Y(J) 1;1 J=PTI+I,-.-,PT2. The PPR is expanded to re­

flect the move down the tree and to the right.
 

(17) M N - PT2; C'(L) C(L+PT2), L=l,...,M. The PIN coef­

ficients are updated to correspond to the node P which-Qil.be visited. .
 

PT2
 

(18) D' <- D - Z [Y(J)xC(J)], The right hand side is adjusted 

J=l
 
to correspond to the PIN associated with the node P which will be
 

visitsed. 

http:which-Qil.be
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(19) PT1 - PT2;PT2 - STAGE(P). Advance both leading and fol­

,lowing PPE pointers to correspond to a move down the tree and to the
 

left.
 

(20) YWJ)- O;J=PTl+l-" ,PT2o The PPR is expanded to reflect
 

the move down the tree and to the right.
 

6.72 Example Problems
 

Two example problems are given here. First, the very simple
 

example used in section'6.61 and shown in'Fig. 6-? is presented here
 

in detail. This example shows step-by-step operation of the TPA. It
 

is discussed in 6.721 below.
 

The second-example (in section 6.722 below) illustrates the
 

entire LPBI solution process. This includes:
 

(a) illustration of the parameter transformation to canonical form;
 

(b) an overview of basic solution determination using the TPA;
 

(c) generation of canonical solution families from basic solutions; 

(d) transformation of canonical solution families to'general solution 

families. 

The LPBI used in the second example is the same one discussed 

in section 6.352 and illustrated in Figures 6-3 and 6-4. 

6.721 A Detailed Example of the TPA. Fig. 6-2A shows the complete 

solution tree for the inequality
 

3x l + 2x 2 + x 3 >4 

http:section'6.61
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By applying the TPA of Fig. 6-12 to this tree, we can solve the in­

equality. The general method of doing this was illustrated in section
 

6.61. Fig. 6-13 shows the detailed results as the TPA of Fig. 6-12 is 

applied. Each step of ig. 6-13 corresponds to a numbered block in the 

flow chart of Fig. 6-12. The status of all data structures except the 

-link table is shown in Fig. 6-13. The status of the dynamic link table 

is illustrated in Fig. 6-14 as it is modified during the tree traversal.
 

Only two records appear in this link table because only two tree nodes
 

are visited before all solutions are found.
 

6.722 Solving the General Form Inequality. This example follows the 

solution of the inequality 

-2z1 - 3z 2 + 5z 3 - z4 + 2z5 > 0. 

The solution tree to this general form inequality is illustrated in
 

Fig. 6-3. The transformation of the inequality parameters to canon­

ical form is shown in Fig. 6-15A. The same transformations were used 

as an example in section 6.321. They are presented again in 6-15A 

with other transformations required for the complete solution of this 

inequality. The solution tree associated with this canonical inequality
 

is shown on Fig. 6-4. 

The- application of the TPA of Fig. 6-12 is illastrated below to 

find the seven basic solutions indicated in Fig. 6-15B and in Fig. 6-4.
 

Node visits are presented sequentially and detailed results are shown. 

Each paragraph below corresponds to a single node visit. The growth of 



FIGURE 6-13 

EXAMPLE PROBLEM SHOWING DETAILS OF THE TREE PRUNING ALGORITHM
 
FOR THE INEQUALITY 3X, + 22 3+ X3 >4
 

[ n Step P PLIST 'y W STACK pTl PT2 DATA RUS NCOEF Xi X2 Comments 

1 1 l(r) 2,3,4,5,6,7 (-,-,-) ---. 0' 0 3,2,1 4 3 - INITIALIZE 

2 2 l(r) 3,L,5,6,7 ---- 0-,-,-)0 0 3,2,1 4 3 6 0 VISIT P; MODIFY LINK TABLE 

3 1(r) 3,4,5,6,7 (-,-,-) l(r) 0 0 3,2,1 4 3 6 0 TEST X2 
4 5 l(r) 3,4,5,6,7 (-.,-,-) l(r) 0 0 3,2,1 4 3 6 0 STACK P 

5 6 -1 3,4,5,6,7 (-,-,-) l(r) 0 0 3,2,1 4 3 6 0 P LLINK(P) 

--
7 
8 
9 

10 

7 
8 
9 

10 
11 

-1 
(r) 

1Cr) 
1(r) 
2(b) 

3,4,5,6,7 
3,h,5,6,7 
3,4,5,6,7 

1,3,4,5,6,7 
1,3,4,56,7 

(-,-O-) 

(--0-'-) 

(-- -) 

l( 
- ----
.... 
----

..-. 

0 0 3,2,1 
0 0 3,2,1-
0-,-,-)0 0 3,2,1 
O 0 3,2,1 
0 0%3,2 

4 
4 
4 
4 
4 

3 
3 
3 
3 
3 

6 
6 
6 
6 
6 

0 
0 
0 
0 
0 

TEST P 
P-STACK 
PT1-STAGE(P) 
PLIST P 
P4-RLINK(P) 

iI 
12 
13 
14 

12 
15 

I16 
17 

2-(b) 
2(b) 
2(b) 
2(b) 

1,3,67 
1,3,i,5,6,7 
1,3,4,5,6,7 
a,3,k,5,6,7 

(-,-,-)
0-.-,-) 
(1,-,-) 
(0,-,-) 

-.-. 

.--. 

0 
0 
0 
0 

0 
1 
1 
1 

'3,2,1 
3,2,1 
3,2,1 

2,1 

4 
4 
4 
4 

3 
3 
3 
2 

6 
6 
6 
6 

0 
0 
0 
0 

TEST P 
PT2-STAGE(P) 
ADJUST Y(J) 
ADJUST COEF . LIST 

15 18 2(b) 1.3,4,5.67 - . ----- - 2--1- 2 6 0 ADJUST RIGHT HAND SIDE 

i6 2 2(b) 1,3,4,5,6,7 (1,-,-) .... 0 1 2,1 1 2 2 2 VISIT P ; MODIFY LIhK TABLE 

17 
18 
i9 
20 
2-1 

3 2(b) 
4 2(b) 
5 2(b) 
6 -1 
7 -1 

1,3,4,5,6,7 
1,3,4,5,6,7 
1,3,4,5,6,7 
1,3,4,5,6,7 
1,3,4,5 

1,-,-) 
(1,-,-). 
C1,-,-) 

- -) 
W7(1,-,-) 

. 
2(b) 
2(b) 
2i2(b) 
2(b) 

0 
0 
0 
0 
0 

1 
1 
1 
1 
1 

2,1 
2,1 
2,1 
2,1 
2,1 

1 
1 
1 
1 
1 

2 
2 
2 
2 
2 

2 
2 
2 
2 

2 
2 
2 
2 

TEST X2 
RECORD BASIC SOLUTIONS 
STACK-P 
P LLINK(P) 
TEST P 

22 
23 
24 
25 

8 2(b) 
9 2(b) 

10 2(b) 
11 -1 

1,3,4,5,6,7' 
1,3,4,5,6,7 
2,1,3,L ,5,6,7 
2,1,3,4,5,6,7 

C1-,-) 

(l1-,-) 
(1,--) 

.... 
-'--. 

--.-

--.. 

0 
1,-,-). 
1 
1 

1 
1 
1 
1 

2,1 
2,1 
2,1 
2,1 

1 
1 
1 
1 

2 
2 
2 
2 

2 
2 
2 
2 

2 
2 
2 
2 

P-STACK 
PTI STAGE(P) 
PLIST P 
P-RLINK(P) 

26 12 -1 2,1,3,4:5,6,7 -­ ) ---. 1 1 2,1 1 2 2 2 TEST P 

27 
28 

13 
14 

-1 
-1 

2,1,3,4,5,6,7 (1,-,-) 
2,1,3,4,5,6,7 Jl1-,-) 

... 

.... 
. 

1 
1 
1 

2,1 
2,1 

1 
1 

2 
2 

2 
2 

2 
2 

TEST STACK 
STOP 

*Step refers to algorithm step shown on flow chart and described in the text
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FIGURE 6-1h
 

CONTINUATION OF EXAMPLE PROBLEM SNIWING'DgTAILS OF TREE PRUNING ALGORITHMf 

Original Data (Canonical Form) Exploration Path 

3 1 

basic solutions.-

DYNAMIC LINK TABLE CONSTRUCTION FOR EXAMPLE PROBLEM 
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the pruned subtree resulting from the node visit is also shown graph­

ically. 

(A) Visit node 1 (root). The node records give PIN = 5x1 + 

3x 2 + 2x3 + 2x 4 + X5 > 6 and PPB = Y =(-,--,-). Rode classifica­

tion parameters are given by: d > 0; sl = 13 > d; p = 0; and s 2 = 8 > 

d. Node classification is case 7. There axe no basic solutions and no 

exclusions. Advance one stage down both right and left branches. De­

fine two new nodes. Label them 2 and 3. The tree is now defined as: 

1 0 

2 3 1. 

(B) Visit node 2 at stage 1. The node records give: PIN 

3x2 + 2x3 + 2x4 + x5 > 6. and PPR = Y = (0,-,-,-,-. Node classifica­

tion parameters are given by: d > 0; sl = 8 > d; p 0; s2 =5 < d; 

and n = 4 > 1. Node classification is case 6. There are no basic 

solutions. Exclude the left braheh, and advance one stage down the
 

right branch. Define a new node. Label it 2, since the pivot node 2
 

has become -inactive, and its number may be used over again, The tree 

is now defined as:
 

-1 O 

2 3 1 

2. 

(C) Visit node 2 at stage 2. The node records give: PIN = 

2x I + 2x 4 + x 5 > 3 and PPR =.Y = (0,1,r,-,-)o Node classification 

parameters are given by: d > 0; s I = 5 > d; p 0 and s 2 = 3 > d 
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Node classification is case 7. There are no basic solutions. Exclude 

neither the right nor left.branches. Advance one stage down both the
 
I 

left and right branches. Define two new nodes. Label them 4 and 5. 

The tree is now defined as: 

1 0 

-2 / 3 12\ 
 2 

14 5 3, 

(D) Visit node 4 at'stage 3. The node records give: PIN = 

2x 4 + x > 3 and PPR = Y = (0,1,0,-,-). Node classification pam­5­
meters are given by d > 0 and .s = 3 = d- Node classification is 

case 2. There is a unique 'asic solution. Exclude both left and right 

branches. Define no new nodes. The PIN basic solution is (x 4 ,x 5 ) = 

(1,1) and the BSP is x= (0'1,0,1,1). The tree is now defined as: 

I 6 

23 1 

2 2­

4 5 3. 
1BSP
 

(E) Visit node 5 at stage 3. The node records give: PIN = 

2x4 + x5 > 1 and PPR Y= (0,1,1,-,-). Node classification para­

meters are given by: d > 0; = 3 > d; and p = 2 = n. Node class­sI 

ification is case h. There are two basic solutions. Exclude both left 

and right branches. Define no new nodes. The.PIN basic solutions are: 
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(x4 ,x 5 ) (1,0) and (0,i). The BSP~s are: x (0.i,i,i,0) and 

(0,1,1,0,1). The tree 'isnow defined as:
 

1 -0 

2J \6 3 	 1 

/ 
4" 5 	 3 
IBSP 2BSP ts
 

:(F) Visit node 3 at stage 1. The node records give: PIN = 

32 + 2x3 + 2x4 + x5 > 1 and PPR = Y (l,-,---) . Node classifica­

tion parameters are given by:" d > 0; -sI = 8 > d; and p = 4 = n. Node 

classification is case 4. There are four basic solutions. Exclude 

both right and left branches. Define no new nodes. The PIN basic 

solu1tions are (x.x t-,X5 ) = (,0,0) and (0:loO.Q) and (0.,1,0) 

and (0,0,0,1). The BSP's are: x = (i,i,0,0,0) and (1,0,1,0,0) and 

(1O,O,,o) and (1,0,0,O;1). The tree is now defined as: 

1 	 0 

2 31
 
4BSP s
 

2\ 2
 

4 	 5 3. 

1BSP 2BSP's 

(G) The tree traversal ends. All nodes which were defined 

have been visited.
 

By visiting six nodes in a subtree (out of a possible 63 nodes
 

in the complete tree), seven basic solutions were found.
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---Figure 6-4 shows thatthere .are 19 binary solution vectors 

to the inequality. These solution vectors are clustered in families 

to the right of the basic solution path. There are an average of
 

19/7=2S solution vectors per family for this-problem. Fig. 6-15B
 

illustrates the conversion of the basic solutions to canonical solution
 

families. All trailig O's are changed to (-) to indicate arbiirary
 

(0/l) variables. Fig. 6-15C shows the transformation of the can'onical 

solution families back to the general form. This transformation takes 

place in two steps. tirst is the inverse permutation. Next, the com­

plemented variables are.accounzed for.
 

6,73 Miscellaneous,
 

Fig. 6-'0 is an enuaeration of the transformation from canon­

ical form solutions to general form solutions for the example problem,: 

of Fig. 6-h. In the left column-of Fig. 6-16 are the 32 binary vectors 

X = x In the right column are the correspondingtrans­(>l x.5) 


formed binary yectors z L(zI''. The families of solutions
( ) 

indicated-on Fig. 6-!5B and 6-15C are shown grouped in Fig. 6-6.
 

Using Fig, 6-16, the following items can be noted.
 

5 5 

(,A) u-=7 c.4, =Y zq. + g; where g- Y. = 6. 

j=l j=l (y.<0) 

This is an illustration of result (6-18). By (6-19) the transforma­

tion is order preserving.
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FIGURE 6-16
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(B) The canonical form vectors are shown in standard order, 

'but note that
 

~5 

S7 C'j'j cjxij for k > k, 

j=l j=l 

which shows that the sequence uk, k=l,2,- ,32 is not monotonically 

increasing. For example, u29 ' u 2 8. Note also that 12 = 6, so 

212 is a solution vector. However, x13 and x7 are not solutions. 

Now consider an enumeration scheme to determine all xk such that 

uk > o, where w is a given constant. Seauentially select binary 

vectors x starting at the top of the list (k = 2n), form uk and 

work downward until uk < w. This scheme will not guarantee that all 

uk > w have been found. It is not an acceptable alternative to the 

TPA.
 

(C) Associated with each famil of solutions is a r2Ln-e_ of
 

values
 

(F) 
a < u(F) < b 

instead of the single value uk associated with an individual solution 

vector. Even though two families are disjbint, their ranges of u(F.)
 

may be overlapping, For example, using Fig. 6-16, 8 < u(F4) < 13 and
 

7 < u(F5 ) < l0 It can be seen that if the range of a canonical fam­

il Fk(x) is uk u(Fj(x)) < u ,, the range of the correspondi.ng 

http:correspondi.ng
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general form solution family Fj (z) is given by uk - g < u(Fj (z)) < 

uy - g, where g = - Y-" This is a convenient computational re­
(yhO) 

suit. 

6.T4 The Use of Solution Families in a Document Retrieval System 

We can identify each binary solution vector k with a partic­

ular combination of' index terms. Each z. may have m documents 

associated with it, m=Ol - and-.each of thise m documents is 

predicted to be relevant. 

A family of solutions F. (z) specifies a group of index berm
 

combinations which has relevant associated documents. The BES con­

sisting of the union of all the solution families will retrieve all 

documents foom the file which are predicted relevant (have a utility 

u>r). 

When the solution families F. (z) are considered with respect 

to a document'retrieval system, several observations can be made about 

the usefulness of a BES as derived from the LPBI. 

(A) The DRS which consists of the union of FJ(z) has the
 

same exact form as the heuristically generated BBS which is the man­

machine link in many existing systems. This provides a model with 

analytical end cesults which parallels the end results of a human being 

in current systems. 

(B) The solution families F.(z) are mutually disjoint. This 

means that the BBS derived from the union of the F. (z) will never 
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retrieve any document more than once, The BES which is heuristically 

generated cannot be guaranteed to have this property. 

(C) The cost of searching the file using a family of solutions 

F. (z) is much less than, the cost would be if am equivalent search were 

run using each member k of the 'family separately. 

(D) A disadvantage of searches made using solution families is
 

that any documents retrieved b r a solution family F. can have a pre­

dicted utility spread over the range a < u(F) b. and the predicted 

utility of a given retrieved document can be obtained exactly only with 

increased computation. The individual document utilities may be desired
 

when a large number L of documents are cited as being relevant (pre­

dicted) by a BRS. The user may not have enough time to review all re­

trieved documents and may want only the subset of documents having t he I 

highest predicted utility. In this, case the utility Wk can be deter-
I u 

mined for each document in The retrieved set by using the index term 

weights. The set of L documents can then be ranked and the N docu­

ments with the highest predicted utility presented to the user. in 

this case enumeration of document utilities is restricted to onl the 

set of those predicted relevant, and this is usually a very small sub­

set of the entire file.
 

6.75 Computer Implementation of the TPA 

A computer program for solution of the LPBI using the TPA has 

been vritten in Fortran IV for the IBM 7094/70h0 Direct Couple System.
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Four subroutines control the solution of the LPBI and the out­

put of data. 

(A) The first subroutine forms the LPBI from the LUPF and con­

verts all LPMI coefficients to integers, The LUPP as passed to this
 

subroutine has real coefficients y and no complemented variables
 

(a 1- for all j). This subroutine converts all yj to integers by
 

scaling and truncating. Accuracy of the conversion process is variable
 

and is set by program parameters.
 

(B) The second subroutine transforms the integer LFBI para­

meters to canonical form, and finds all basic-solutions to the can-­

onical form. The basic solutions are written in groups of fixed size to
 

an output 'device for temporary storage.
 

(' - tne .ir. canonical solution familiessub'-ouLine prso.uces 

from the basic solutions, and transforms the canonical solution fam­

ilies -to get solution families to the general form LPBT. Basic solu­

tions are read from the sborage devide to core in groups, are con­

verted to- general form solution famlies in core and then are again 

stored in groups on the output device. The range of u(Fj and SIZE 

n 

S (F,) = F,. are also recorded with each solution family. 

(D) The fourth subroutine will output solution families to a
 

printer, or other device and which if desired will screen solution
 

families -on the basis of range or size and suppress printing of certain
 

solution families if desired.
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All four subroutines are under the exclusive control of a 

driver program. (No subroutine calls any other subroubine.) The re­

sulting modular system is convenient to use and modify, 

6.76 Computational Experience with the TPA
 

Experience'with the TPA has been rather limited. Table 6-1 

gives some performance data for 14 sample problems. The largest prob­

lem solved had only 14 variables. 

By using these sample problems and by making some assumptions 

which seem reasonable based on the data of Table 6-1 rough estimates 

were obtained for larger problems. The assumptions are listed below. 

A) The number NV of nodes visited during solution of a 

LPFI increases exponetially -,wth the number of probJem variables n. 

NV = A e 0n	 (6-24)
0-

Peameters Ao and To are experimentally determined constants. 

(B) The number of basic solutions identified is proportional
 

to the number of nodes visited. 

BSOL = a2NV 	 (6-25)
 

The parameter a2 is a constant. 

(C) The total number of solution points TS is, on the aver­

age, 	 a fixed fraction aI of the total possible 2 solution points. 

MSa2=n = 0.693n 
TS =a2 U I e n 	 (6-26) 
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TABLE 6-1
 

DATA ILVJSTAFTIIJC CO!UTATIONAL EXPERIENCE WITH THE TPA
 

Case 
nu"ber 

n - n,,bcr of 
varxanles 

Nodes 
vJsited 

BasaL 
solutions 

Degenerate 
basic solutions 

Nonde&enerate 
basic solutions 

Total point& in 
nondegenerate 

Total solation 
points 

failies 

1 1, 16 2 3 1 2 12 13 
2 8 256 44 38 20 18 108 128 
3 5 32 3 4 1 3 26 27 
4 12 4096 206 318 100 218 3622 3722 

5 3 8 2 2 1 1 2 3 
6 8 256 17 18 8 10 200 208 
7 4 16 3 2 1 1 2 3 
8" 1o 1024 76 87 33 54 744 807 

9 5 32 2 3 i 2 24 25 
1011 93 I 5128 252 351 120 231 456h 684 

12 14 16384 632 733 317 416 14546 14863 

13 4 16 4 3 2 1 2 4 
14 12 4o96 250 216 116 100 652 768 



'(D) A constant fraction a3 of all-basic solutions will be 

degenerate and (i - a3) will be non-degenerate. 

BSOL = DBSOL + NDBSOL 

DBSOL a3BSOL (6-27)
 

NDBSOL = (1 - 3 )BSOL 

(E) The average number of solution points in a non-degenerate
 

solution family is an increasing function of n, FS(n). The analy.­

tical form of this function can be derived from assumptions (A) - (D) 

above as follows. 

For the total number of solutions we can write two equivalent
 

.expressions-;
 

TS = a, e0.693n (6-26)
 

and TS DBSOL -K(NDBSOL)FS(n) (6-28) 

= 2Ae L1 - a3 ) 2 Ao eYOFS(n)Tn 


Equating (6-26) to (6-28) and solving for FS(n) gives 

n

0 693n aAoeye0

FS(n) = aI e 0 (6-29)
y 0n
 

a3)Aoe
-
a2 (l 
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TABLE 6-2 

SMOOTHED AN4DEXTAPOLATED ESTIMATES OF TPA PERFORMANCE 

A. Estimated Solution Tame as a Function of Prbblem Size 

Number of Expected i Total node visiting tame (see) at node visit­
variables node visits ing rates (R) shown below (nodes/sec) 

n NV R = 500 E = 1000 fE = 2000 

10 85 0.17 1 0. 0850 o.0oh25 

15 121 2.42 1.21 .605
 
20 1.,8oo 35.60 17.3 8.65
 
25 250,000 500. 250. 125.0
 
30 3,627,000 7260. 3630. 1815,
 

(121 min) (60.5 min) (30.25 min)
 

B. Number and Type of Solutions as a Function of Problem Size 

Number of Basic Ifondegenerate Degcnerate Average Total solutions Total number 
•ariab solutions basic solutions basic solutions sols/famf in families 

BO NBOOL DBSOL FS (n) (NDBSOL)FS(n) TS 

59 39 10.3 6.O8xl02 6.h7x10 2 
n 

10 98 

23.4 1.97x10 2.03x104
1,400 8h0 560
15 
52.4 6.b7x105 6.55XIQ S
 

20 20,000 12,350 8,250 

2.04bxl07
25 289,000 173,500 115,500 117.6 2.03x10 7 


30 4,200,OO0 2,520,000 1,700,000 260.3 6.56x1 8 j 6.58xlO 8
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From the data of Table 6-1, estimates of the parameters 
are:1 

a, = o.622 

= 1-155 

= 

a2 


a3 o.4oo (6-30) 

A = o.403
0 

y- = 0.5345
0 

and it follows that (6-29) then becomes:
 

0 "158 5n 
FS(n) = 2.23 e - 0.67 . (6-3'1) 

The results of applying the above assumptions (6-24) to (6-31) 

for selected values of n a-e shown in Table 6-2B. If one computer 

word is used to-store each basic solution, i t appears that,the- storage 

problem for the 25 variable -problemis excessive, with 289,000 basic 

solutions expected. The 20 variable problem appears more reasonable,
 

with 20,000 basic solutions expected.
 

Table 6-2A shows the expected processing time based on three
 

different average node visiting rates. The current node visitin_ rate 

is about 500 nodes/second, With some very trivial program modifica­

tions, this can be extended to 1000 nodes/second or abov. The 25 

variable problem at 1000 nodes/second will require an estimated 250 

seconds for solution. This is considered excessive, and the 20 

1 The reader is cautioned that the variawes of the parameter 
estimates are oite large. Smoothed and extLraolated -t,. onbase,) 
these parameters is intended for rough estimates only. Data is also 
peculiar to the application here, ,There index term weights are derived 
using approximation theory, 
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variable problem again appears more reasonable with a 17.3 second 

total.
 

Times given are for the TPA which finds basic solutions to the
 

canonical form. Subroutines which transform parameters to canonical 

form and which transform basic solutions to general solution families
 

require auch less time than the TPA. Their contribution to total
 

processing time is ignored here.
 

In conclusion, the TPA appears adequate for solving LPBI's 

with up to 20 variables. For the 20 variable problem, the expected 

processing time is 17.3 seconds (at a node visiting rate of 1000 

nodes/second). For the same problem, expected storage space is 20,600 

.words, assumfng one basic solution per word. Both solution time and 

storage re.irements appear reasgnable for arplications related to 

document retrieval systems. 



i65 

7.0 E)XERIMENT DESIGN AND PRESENTATION OF DATA 

This chapter discusses the experiment design configuration se­

lected for test purposes and presents the raw response data. Test ob­

jectives and the various measures'of search effectiveness are also
 

discussed.- Analysis of the experimental data is deferred to chapter 

8.o. 

7.1 Test Objectives
 

The test program had three objectives.
 

(A) First; to determine whether significant differences in
 

search effectiveness exist between searches performed using machine­

generated DRS's a and searhes using BBS's gener:ated heuristically by 

humans.. 

(B) Secondly, to help _determine-the causes of these differ­

ences, if they exist.
 

(C) Finally, to provide an overview of the whole process and
 

suggest areas for further research. 

Before presenting test details, it is convenient to discuss 

figures of merit used to 'evaluate the effectiveness of document re­

trieval systems. 
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7.2 Measuring Search Effectiveness
 

Three measures of effectiveness are used here to evaluate test
 

results. All are based on entries in the following 2 x 2 contingency
 

table. 

Retrieved Not Retrieved 

Relevant n11  
__ 

n1 2  

. 
n1 . 

(7-1) 
Not Relevant n21 22 n2. 

n1 n,2 -

For each sesrch, a contingency table identical to (7-1) can be con­

structed. This assumes tha all relevant documents are knoim" whether 

retrieved or not.
 

7.21 Recall and Precision
 

Tw¢o standard measures of search effectiveness based on the con­

tingency table are recall and precision. These measures have been pro­

posed and used by several authors (9 4 ,95).
 

The definitions are:
 

Reca11 = nl =1relevant retrieved
nl total relevant 

Precision = 1 1 relevant retrieved (7-3)
n1 total retrieved
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Roughly, recall is a measure of how well the system retrieves
 

all the relevant material, while precision is a measure of the economy
 

of the retrieval process. Variations of the above definitions of re­

call and precision are occasionally used. See, for example, Salton(96)
 

-7.22 The Information Statistic as a Measure of Search Effectiveness 

A disadvantage of recall and precision is that a pair of num­

bers are involved instead of a single. figure of merit. An alternate 

measure based on the 2 x 2 contingency table has been proposed and used
 

by A. R. Meetham,(9 7 ) which gives a single figure of merit for the
 

search effectiveness.
 

It is identical to the information measure R described in
 

chapter )4j
 

-(X)Z i Tog (cni.) (4-8)
±j ji 

This computational formula was derived in section 4.25.
 

Recall that R. is the ga-in in information (reduction in'en­

tropy) which occurs (on the average) each time new information p(Y) 

is used to convert a prior distribution p(X) to a posterior distribu­

tion p(X/y). The prior distribution p(X) is an initial assignment
 

of probabilities to states of nature and the posterior distribution 

p(X/y) is the revised probability distribution after observing aux­

iliary data, or the results of an experiment y. (See chapter .0.) 
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The information measure R is used in chapter 4 to select the (most
 

discriminating) index terms for inclusion in the decision function.
 

is used here to evaluate document retrieval system effectiveness. This 

allows a new view of the retrieval process as a prior to posterior 

probability distribution adjustment. The prior distribution is the 

probability of a document in the file being relevant, given that it is 

drawn -at random, and with no knowledge of index terms etc., which are 

associated with the document. The posterior distribution is the prob­

ability that a document which is selected by the retrieval system is 

relevant. (This selection is based on the index terms.)
 

The retrieval system can be viewed as an- automatic processor 

vhich performs -an auxiliary experiment on the index terms associated 

with a document,.and then by using a built-in decision rule on these 

experimental results, offers a suggestion to the user as to whether th'4d 

document is relevant or not. After seeing the document the user makes 

a final decision about its reldvance. The degree of agreement which ex­

ists between the judgements made by the retrieval system and the user 

is the measure B of how well the system operates. 

A perfect retrieval system would make decisions (suggestions)
 

about document relevance which would always agree with the user judge­

ment. The system suggestion would then remove all uncertainty (for the 

user) about document reievance. In this case B = H(X). Any real 

system of course will not be perfect. As a consequence we will have 

0 < R< 1 M 
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Define: 

= lO0[R/I{(X)]. 

Then we have:
 

0 < a < 100. 

'The variable a is-the normalize& information statistic (NIS) and is 

interpreted as the percent effectiveness of the retrieval system. It
 

cap be thought of as the average percent reduction in uncertainty about 

document relevance, if the system suggestion regarding document rele­

vance is followed. The moeasure (7-1) will be used in the experiment 

described here to evaluate the retrieval system, in edition to recall 

(h7-2 , pi,reisiona N-S 

The relation of the NIB tc recall and precision is shown in 

Fig. 7-1, for a file similar to the one used for test purposes. It
 

can be seen that recall and precision are bothr strictly increasing
 

functions of the NIS. Thus, increasing the NIS will never degrade 

either recall or precision. 

7.23 Other Applications o. the information Statistic 

The NIS as described here vas used by Shirey(98) to evaluate 

the efficiency of document abstracts and first - last paragraph com­

binations at predicting document relevance. After reading these rele­

vance cue indlcators, the users were asked to make a.judgment aboub 

the relevance of the Pull document. After this firsr judgmenti was 
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FIGURE 7-1
 

RECALL AMD PRECISION VS. THE NORMALIZED INFORMATION STATISTIC (HIS)
 

Recall 

FOR N 5100 A\D n1 1 

A. Recall vs. NIS 

" 2 

0.9 

0.6 

0.5 

0.4­

0.3 

0.2. 

0 10 20 30 

NIS = 100 

40 A0 60 

00[IR/H(x)] 

70 80 §0 100 

Precision 

i.0 

0.9 

02:8 of 

0.6 

0.5 

0 

B. Precision vs. NIS 

0/ 0/47 1; 

0.4 

0.3 

0.2 

0.1 

0 10 20 

NIS 

30 40 

100 a 

50 60 

100R/A(x)] 

70 80 90 100 



171 

obtained, the users were shown the full document and asked for a second
 

final opinion of relevance. The preliminary and final results were 

analyzed and P'1(X) was computed. In this application the use of 

relevance cue indicators constitutes an experiment performed to provide 

more informatio, about document relevance. 

R. H. Shumway (99 ) has also noted the potential use of the in­

formation statistic R as an overall measure of retrieval system 

effectiveness. In addition, he 're-analyzes the Shirey data assuming a 

three-ay table relation. He demonstrates that the two-way table used
 

by Shirey for his analysis is really a .special case of iulti-way con­

tingency tables. These can be -analyzed using an information measure 

which is partitioned in. a manner similar to the sum of squares in the 

anialysis of varxarice. The genera ,-ethod is treated by IK-ullback (100) 

7.24 Summary 

The information statistic R described above was developed in 

chapter 4 for selection of index terms (a form of feature extraction), 

It is used again here in its normalized form (7-4) as a figure of merit 

for evaluating retrieval systems. 

It has been both used and proposed by others for extraction of 

pattern features (see section 1.4), evaluation of search effectiveness, 

evaluation of relevance cue indicators, and general contingency table 

analysis. 
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7.3 Experiment Design
 

7.31 General
 

A 2 factorial e2periment, was designed to determine whether 

retrieval system effectiveness is influenced by:
 

(a) methods (BRS's generatedby machine-vs. BPS's generated by
 

people);
 

(b) number of index terms used in the model (a high level of about 15 

terms end a low level -of about 5 terms); and 

(a) number of documents.in the training set (50 documents at a high
 

level and 25 documents at a low level).
 

The 23 factorial configuration was replicated four times, with 

each replication (of. 2- =18 points) being a separate query to tne 

system. This allowed variability existing between questions to be 

accounted for. 

One month of the NASA file (a total file size of 4881 documents) 

was searched using the different BES's. All the documents relevant to 

the four queries.wvere identified before the searches were performed. 

The figures of merit for each search were Then computed from the 2 Y 2 

contingency tables (7-1) constructed after completion of the searches; 

7.32 Selection and Preparation. of Test Questions
 

The four questions used as replicates were selected at random
 

from a group of actual queries in an information system. Eoch question 

selected had an existing assoociated group of abstracts rated relevant 

http:documents.in
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or non-relevant by a user. There were enough existing abstracts to
 

'construct a 50 document training set.
 

Before the.training set was finalized, the month to be searcbed 

(March, 1969) wis chosen at random. and all- abstracts in the training 

set for this month were removed. The 50 abstracts remaining in the
 

training set were from within six months before and after the search
 

month of March, 1969.
 

By using the training set abstracts, a detailed question des­

cription was written. Nine meaningful and identifiable subcategories 

for each question were devised, and each subcategory was assigned a 

utility from 1 to 9. Each of the 50 abstracts was then placed in one 

of the nine subcategories, and a utility threshold T was introduced 

-whichdesignated which of the sdbcategories were reievanq and which 

were not. With the questions well defined by the training sets and the ­

written descriptions, a complete manual .searchwas performed over the 

March, 1969 portion of the file and all relevant documents for each 

query were identified. 

A 25-document training-set was created for each question by se­

lecting 25 documents from each 50-document training set. (The 50 docu­

ments were ordered sequentially by their file numbers, and then every 

other number was chosen. Since file numbers are unrelated to utilities, 

this selection method is believed unbiased.) This gave eight training 

sets, one of 50 and one of 25 documents for each of the four test ques­

tions. Preparations for testing were completed by assembling a 'pack"­

age' for each of the eight training sets. This package consisted of: 
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(a) a sequential listing of all document numbers, the uzility assigned 

to each, and the set of associated index terns;
 

(b) the utility threshold T defining relevance;
 

(c) full abstracts of each training set document, grouped by utility 

sub-category, with each group also marked- as being relevant or non­

relevant; 

(d) one-sentence abstracts of each training set document, grouped and
 

marked as in (c) above.
 

- The 32 experimental BRS's were next derived using the above 

training sets. For-each of the eight training sets two BRS's were con­

structed; one using five index terms and the other fifteen. This was 

repeated for two methods of BRS construction (machine and analyst) to 

give a total-of 32-.combinations. 

The machine generated BES's (16 of them) were constructed using 

the methods described in previous chapters. First, best single index 

terms were selected. Next, the LUIPF.was fit to the assigned document 

utilities. Finally, using the utility threshold, the LPBI was formed 

and all solution famiJlies were found. Only items (a) and (b) in the 

training set packages were utilized by the machine system.
 

Another 1.6 BRS's were constructed heuristically by four exper­

ienced information analysts. Each analyst was assigned one particular 

combination of training set size (25 or'50) and number of index terms 

(5 or 15) for each question. There are four such combinations per 

question; one per analyst- 'Each analyst was assigned only once to 

dach of the four combinations. 
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The analyst was then requested to construct a BF.3 for this par­

•ticular 	 combination.. The effect of different analysts is considered to 

be an integral iiart of.the subjective method (method 1). The analysts 

utilized items (a), (b) (e) and (d) of the training set packages. 

They were not, however,. given the question description. They. were re­

quired to infer the question meaning by reading the abstracts for rel­

evant and non-relevant documents and by noting the utilities assigned 

to each abstract. Each analyst vas given a maximum of one hour to 

.rite the BRS assigned to him. 

Finally, the file was searched using, each of the 32 BRS's. 

Searches, using the.BRS's generated by the information analysts were 

made with an existing computer program. The machine-generated BRS's 

were t 	 a larch instrunctions. instead, the equivalentused directl- e 

sets of index term weights were used, 

7.33 Classification of. Variables in the Problem 

It is convenient to. place the problem variables into three 

groups.
 

7,331 independent Variables Controlled.as.Par-t, of the Problem. This 

includes Methods (M), where I is the subjective method using human 

analysts and M2 is the machine method. This factor is fixed and 

1alitative. Analysts cppear imlicitly as part of nthis factor. 

Also controlled were the nximber of index terms (T) appearing 

in the training set. T1 refers to the lower level (about 5 terms) 

and T2 refers to the higher level of Thout 15 terms. Tb, s factor is 
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fixed and qualitative-because the number of terms varied slightly, but 

wvas identifiable at either a high or low level. 

Documents in the training set (D) were run at two levels. A 

lower level D1 of 25 documents and an upper level D2 of 50 docu­

ments was used. Factor D is fixed and quantitative. 

Questions (Q)-were run as the replication (or block) variable
 

to lower the error variance. The entire experiment is conveniently 

classified as a 23 factorial run in a randomized block design.(lO1) 

Fo-u questions (replications or blocks) were.used. Factor' Q is ran­

dom and qualitative. 

7.332 Variables.Held-Constant.as.,Boundazy-Conditions on the Problem.
 

'This includes the fraction of the training set which is relevant (about 

O01o%th tbime allowed each analyst -to constr-uc the MS. and the), 

method of query presentation to the analyst. Other variables held con­

stant are the extent -of file searched (one month, -or 4881 documents) 

and the particular time period of the file (March, 1969). 

7.333 Uncontrolled-Factors Contributing to the-Error Variance. In this
 

group are the syst~m indexing, compatibility of the question to the
 

system, and consistency of the question itself. Also, the variation
 

betweeD analysts within method 1 contributes to error variance.
 

7.34 Factors and Variables Not Considered in the Experiment 

The following important-items were not considered in this ex­

perimental program.
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(A) The effect of adaptive refinement of the BRS through add­

itions and/or deletions from the training set, followed by repeated 

searches, was not investigated. BRS's refined over several searches
 

by supplementing the training set would be expected to produce better
 

results than the BRS,'s used here.
 

(B) Experienced information analysts were used to construct
 

BBS's for test purposes instead.of casual.system.users. The effect of 

user experience was. not investigated, but casual lasers would not be 

expected to construct BRS's which would be as effective as those of
 

more experienced users.
 

(C) Most of the L1 problems solved for index term weights (M2 ) 

exhibited alternate optimal solutions (see section 5.5). The retrieval 

efficiecy of these alternate optimal solutions was not nvestIgated. 

The initial optimal solution was always used for retrieval purposes. 

7.35 The Model Equation and Expected Mean Squares Table'
 

The model equation for the factorial experiment is given by:
 

YijkZ =j + T . + D. + TDij + N + TMik + +D jk + TDMijk + ijki 

(7-5)
 

where i = 1,2 and fi=] 5 index terms(
 
(i=2 15 index terms
 

j= -i1,2 and fj=l . 25 documents in training set 

j=2 > 50 documents in training set 

http:instead.of
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kI= 1,2 and (k=l method 1 (analysts produce BRS) and 

k=2 method 2 (machine produced BRS) 

-,=2,3,) for 4 questions each functioning as a replication. 

All factors except Q are fixed. .Q is a ranidom factor. The
 

expected mean square table is showrn below( 1 0 2 ) 

Factor Fixed or Degrees of Expected 
-.random freedom mean square 

T(index terms) F 1 02 
e 

+ ' 16oF 
T 

D(documents) F 1 a2 + 16a2 
e P 

TD- F 1 U2 + 82 
e TD 

M(methods) -I U2 +_16a2­e M (7-6) 

DM F .. 1 ee + 8 P2DMI
 

e TPMA 

Q(questions) R SF2 + 8U2 
e Q 

error R 21 92 e
 

Note that an exact F test exists for each of-the effects in terms of 

the error mean square. 

7.36 Choice of Sample Size
 

The sanple size was determined by choosing acceptable risk 

levels associated with the test for a difference between treatment
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means for main effect M (mechods). This test between means is sum­

'.marized by the following hypotheses: 

H: tNs&Y-N IS(M9 0 (T-7) 

H NIS(M1 ) -1KIS(M2)I > 0. (T-8) 

Here NIS(P1) and .flS.Mf) are the true mean values. of the normalized 

information statistic for method 1 (subjective) and method 2 (machine). 

Estimates of the mean and variance of the HIS for a one month 

search of the NASA.file were"first determined subjectively. These 

estimates were 28.3-per.ent for the average NIS and 177 = 02 for the
S 

- NIS variance. 

The tC for a &ifcrance 6 betw;een HIS treatment 

means is given as:(lO3
 

r- rs(M)] 
... a + 1 ' 

twhich is distributed as Stud.ent s t with v degrees of freedom
 

where,
 

(a) T t), NHY(M2 ) are the treatment means (averageNIS responses 

for methods M and. 'f); 

(b) rlr 2 are the number of replications in each treatment mean; 

(c) S2 is the error variance (of the NIS response) as estimated from
 e
 

the experiment;
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(d) S is the true difference between the treatment means (difference 

between HIS responses for methods M and M2) and 
1 2' 

S 2 . (e) v is the nmber of degrees of freedom in 
e 

The null hypothesis (7-T) now-becomes - H S = 0. 
0 

After some deliberation, it was decided that a true difference 

6 = 10% between NIS response to zhe-two different treatments would be 

meaningful to retrieval system operation and-should be. detected by Lhe 

experiment. Also, -the type-! error (alpha) was fixed at 0:'0. Because 

the cost in both time and effort of experimentation is great, a com­
0 

promise was reached for four- replications of the 2 factorial, or 32 

data points (searches). This gave r 1 = r 2 = 16; v = 21; and Ce = 

13.3, which is the previous subjective estimate of the NIS standard 

An operating characteristic curve constructed for the t-test 

(7-9) using this data is summariied below, where the type II error 

(beta) or. not detecting a true difference 6 is given as a function of 

6. 

True 
-.. = 

difference 
(n/H)IOo 

Type II error 
(beta) 

0 0.90 
2 .81 
5 

10 
15 

.62 
.23 

- . 05 

(7-io) 

20 .01 

In summary, for the chosen configuration, it can be seen that 

if the true 6 = 10, the probability of not detecting this difference 



is 0.23 (the beta error). Alternately, there is a probability of 0.10
 

(the alpha error) of falsely detecting a significant difference, given
 

that there is none.
 

7.37 A Sub-Experiment to Determine the Effect of Analysts within 

Method 1 

Analyst's are considered to be an integral part of method 1 for 

the 23 factorial experiment. However, when method 1 is considered 

alone, it is meaningful to isolate the effects of the analysts. 

To consider this effect,, it was necessary to-control the 

arrangement of analysts, questions and treatments within method 1.
 

(104)

This was done with.a latin square configuration The model eqii­

tion is: 

Yijk = 1 + Ai A- Qj + Tk + ijk (7-11) 

where A.: i=1,2,3,4 are analysts; 

Q. j=1,2,3,4 are questions; 

and T1: k=1,2,3,h are treatment combinations.
 

Figure 7.2A shows the particular latin square configuration chosen.
 

One combination shown in this figure is query 1 (Q1 ) with analyst 3 

(A3 ) using treatment 4 (T4 ) , which consists of a training set of 50 

documents and a BRS with 15 index terms. 
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7.4 Presentation of the Experimental Data
 

.7.41 Factorial 	Experiment Response Data
 

Table 7-1 shows the response data from the 32 experimental 

searches. Each response is given in terms of contingency table entries. 

-This is followed by the NIS,'the recall and the precision of the search, 

all of which are computed from the contingency table. 

:-'For example, consider data point -8of table 7-1 (read across 

line 8). This point corresponds to a search with a BPS formed using 

nominally 15.index terms -(T. =-15); from a training set with 50 docu­1 	 2. 

ments" (D2 50); using method 2 (M2 for a machine BRS-); and searching
 

query 1 (Q-).' The corresponding 2 x 2 contingency table is given by:
 

Not 
Relevant Aelevant 

televant 3 12 

Not relevant 	 29 4840 86 (7-12) 

32 4849- 4881 

This table corresponds to (7-1'). The I1S is ceqmphted from (7-12) using 

the same methods presented in the example of Fig. 4-2, and described-in 

section 4.55. For search 8, the NIS is 10.15 (percent). The search 

recall and precision are also computed from (7-12) by 'using (7-2) and. 

(7-3). These are 	given as 0.333 and 0,091, respectively. 



TABLE 7-1. - RESPONSE DATA FROM FACTORIAL EKRPIMSNT
 

Data 
point 

Treatment 
combination 

Contingency 
table 

I 
I 

Response 

Q M D - T nl n1 2 12 1 n2 2 NIS Recall Precision 

i5 
2 
5 1 

5 
15 
5 

3 
4 

10 

9 
8 
2 

19 
27 
21 

4850 
4842 
4848 

11.54 
15-35 
55.90 

0.250 
.333 
.833 

0.136 
.129 
.323 

4 

7 
8 

1 

2 

so 

25 
25 

50 

15 

5 

5 
15 

6 

8 
5 
4 
3 

6 

4 
7 
8 
9 

34 

27 
26 
23 
29 

4835 

4842 
4843 
4846 
4840 

25.00 

39.10 
20.94 
16.05 
10.15 

.500 

0.667 
.420 
.333 
.333 

.150 

0.229 
.161 
-.148 
.094 

9 
l10 1 

25 
5

15 
5 

22 
2 

22 
2 

33 
9 

48744874 
4868 

35.3535.35 
29.65 

0.667.667 
.667 

0.5000500 
.500 

12 

13 
14 
15 

2-2 

2 
25 

15 

5 
15 
5 

2 

0 
0 
0 

2 

4 
4 
4 

79 

74 
116 
60 

4798 

4803 
4761 
4817 

16.90 

0.19 
.30 
.15 

.667 

0.000 
.000 
.000 

.053 

0.000 
.000 
.000 

16 50 I 114 4763 27.77 1.000 .036 

17 
18 
19 
20 
-­
21. 
22 
23 
24 

3 

1 

2 

25 

50 

* 

50 

5 4 
15 1 
5 8 

15 'l 

5 1 
s2515 4 
5 8 

15 6 

8 
1! 
4 

11 

11 
8 
4 
6 

90 
3 

115 
27 

25 
136 
227 
247 

4779 
4866 
4754 
4842 

4844 
4733 
4642 
4622 

9.98 
4.53 

26.36 
2,14 

2.22 
8.15 
20.16 
"11.68 

0.333 
.083 
.667 
.083 

0.083 
.333 
.667 
.500 

0.042 
.250 
.065 
.036 

0.038 
.028 
.034 
.024 

25 
26 
27 
28 

25 

50 

5 
15 
5 

15 

0 
2 
0 
3 

5 
3 
5 
2 

1 
2 
0 
1 

4875 
4874 
4876 
4875 

0.00 
29.08 
0.00 

49.65-

0.000 
.400 
.000 
.600 

0.000 
.500 
.000 
.750 

29 
30 
31 
32 

2 
25 

50 

5 
15 
5 

15 

0 
0 
0 
1 

5 
5 
s. 
4 

68- 4808 
127 4749 
69 4807 
73 4803 

0.18 
.34 
.18 

4.45 

0.000 
.000 
.000 
.200 

0.000 
.000 
.000 
.014 

Mean responses: 15.90 0.353 0.148 



7.42 Latin Square Experiment Response Data 

Table 7-2B gives the response data (NIS only) for this exper­

iment. For example, the BRS submitted by analyst 2 for question 3 re­

sulted in a search having an NIS response of 26.36. (This is search 19 

of table 7-1.) 

TABLE 7-2. - RESPONSE DATA FOR LATIN SQUARE 

DESIGN WITHIN METHOD 1 

A. Latin Square Layout 

Qi 2 Q3 Q4 

A1 T1 3 4 2 T= 2/5 

AT T 2 25'15±2 T2. T3 T T2 =25/15 Treatment 

A Ir- rp T2 -5m TQT4 == 50/550/15J definitions-3 1-4 T 

A4 T5 Tg T1 T 

B. Latin Square Response Data (NIS) 

Q Q Q3 Q4 

A1 11.54 29.65 2.14 29.08
 

A2 15.35 15.90 26.36 0.003 

A3 25.00 35.35 4.53 0.000 

A4 55.90 35.35 9.98 49,650 
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7.43 Predicted Document Utilities vs. Known Document Utilities
 

Half (16) of the experimental searches were performed using a 

machine derived-BS (M ). Recall that either the index tem weights or2 

an equivalent BRS can be used to search the file, For the 16 M2 data 

points, the file was searched using the term weights., This was done as 

a matter of practical convenience. (The equivalent BRS's were also de­

rived and will be discussed in section 7.45.) 

When searching with term weights, a predicted utility u is 

computed for each document in the file. Becausethe utility threshold 

T varies from question to auestion, it-is convenient to compare pre­

dicted utilities by using (u - -E)instead of u. Here (C - T) > 0 

if the document is predicted to be relevant and (u - T) < 0 otherwise.. 

When ireighted index term searches are n±-A file of 

documents, any given document from the file ends up in one of three 

categories. 

(A) No index terms with assigned weights match index teims in 

the given document. 

(B') One or more of the index terms associated with the given 

document matches index terms in the search strategy, and (u - T) >'.0 

(Relevance is predicted.) 

(C) One or more of the index terms associated with the given 

document matches index terms in the search strategy, and (u - i) < 0. 

For the 16 weighted term searches, an average of 5.72 Tercent
 

of all documents fell into categories (B) or (C) above; 3,82 percent
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had Cu - T) < 0 and 1.90 percent had (u - ) >_-0, For the file of 

h881 documents, this gave an .average per-search yield of 93 documents 

with (u - T) >.0 (category B) and 186 documents with, (. - r) < 0 (cat­

egory C). 

Table 7-3A shows the relative frequencies P(1 - T) of the pre­

dicted utilities for all m searches in categories (B) or (C) above.
 
2 

Since coefficients of the LUPF are integral multiples of 1/2, so are 

the values-of-(u - T). (See section 5.7.) For example, 16.45 percent 

of all documents in categories (B) or (C) had predict'ed utilities of 

-3.0 or -2.5". The distribution of P(u - t) tends to be bimodal, 

having separate'modes for the documents with (u - T) > 0, and for those 

with Cu t) < 0. 

Rle-v~n~ o ume s in the file had been identi-fied and assigned 

utilities before the searches ;iere run. It is possible to compare the 

prelassigned values of (u- r) for these relevant documents.with the 

values of_( - T)-predicted by the system. 

Tables 7-3B and 7-3C compare the predicted (u - T) with the 

assigned (u - T) for the relevant documents only. Table ,7-3B gives a 

coarse cross-classification showing Cu- T) grouped into categories 

(A), (B) or (C) above. For example,.13 relevant documents with an 

assigned (u - T) = I were placed by the ]6 M2 searches into category 

(B). There were a total of 132 relevant documents associated 'ith the 

group of 16 142 searches. 

Table 7-3C gives a more detailed breakdown of cross classifica­

tion information contained in table 7-3B. For example , three relevant 

http:example,.13


TABLE 7-3. - COMPARISON OF PREDICTED DOCUMENT UTILITY 

WITH ACTUAL DOCUMENT UTILITY 

A.. Relative Frequencies of Observed Values of (u -̂

I A 

[ -r P(-3- T) C.- - P(u- T) 

-8.0 0.0007 0.0 0.0459
 
-7.0 .0013 1.0,1.5 .0985
 
1-6.0. .0018 2.0 .1410
 
-5.0 .i014 3.0 .0378
 
-4.0 .1072 4.0 .0054
 
-3.0,-2.5 .16h5 5.0 .OOQ9 
-2.0,-1.5 .1386 6.0 .0020
 
-1.0,-0.5 .1518 7.0 - 0007 

8.0 .0004 

B. 	 Comparison of Preassigned Document Utilities (u - T) With 
Those Predicted-by the Linear Model (u - T) for Relevant 
Documents
 

Predicted Utilities -(Coarse) 

ju - 0 < 0 
match(A-) (B) (C)
 

True 0 23 19 6 48
 
Utilities 1 22 13 9 44
 
(u -	 T) 2 15 7 1---2T 

3 4 5 	 3 12
 

64 44 	 24 132 

C.-	 Detailed Breakdowm of Table 7-3B Above 

Predicted Utilities
 

-4 	 -3 -2 -1 0 1-2 3 4 5 6 (A)
ofl7Th4 iiT TT 

True" 5 11313 5 j1 22 44 
Utilities 2 lI3 21 2 1 22 1 28 
(u- T) _3 2 1 1±1 2 12 

1 	 1081 3 0 164- 132 



"=
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ments had an assigned or true (u - T) = 0. 

documents had a predicted utility - )u All four of these docu­

7.44 Values of E for Index-Terms in the Training Sets
 

Table 7-4 shows the distribution of R = H(X) - H(X/Y) for the 

index terms which appeared with documents in the eight different train­

ing sets used for the experiment. An ayerage of 148 different terms 

were found with each 25 document training set and an average of 250 

terms were found with each 50-document training set. To illustrate the 

use of table 7-4, there are two index terms with 0.15 < B < 0.19999 in 

the 25,document training set (D = 25) associated with query 1 (01).. 

TABLE 7-4. - DISTRIBUTION OF ,B= H(X) - H(X/Y) FOR INTEX 

TEEMS APPEARING IN THE TRAINING SETS 

D = 25 D =50
 
R(bits) QI 2 Q2(3 Q3 4
 

.0.00 - 0.04999 110 
 91 121 141 195 210 280 254
 
.05 .09999 7 28 36 1 15 10 13
 
.10 .14999 6 2 V 2 6 1
 
.!5 .19999 2 3 2 95 % 1 1 
. 20- .24999 conT.
 

.25 .29999 c 1
 

Total terms 128 128 166 168 208 225 298 269
 

7.45 BRS Descriptions
 

The BS is a union of index term solution families. It is con­

venient to describe a BRS by using some particular attribute of the
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solution families from which it is formed. One useful attribute of an 

individual solution family is the number of index terms which must-be 

simultaneously present in a document to cause the document to match 

the family and hence be retrieved. This attribute will be called the 

SIZE (S) of the family and will be used to compare machine-generated 

BES's with those heuristically generated by users. 

Let the SIZE S of a solution family be the number of fixed
 

variables Fkj which equal unity in the family Fk. That is 

n-

S= Z for Fkw #--) (7-13) 

j=l
 

The following simple example illustrates this definition.
 

Family (T1T2 T3TJ) SIZE(S),' 

F1 (l,O,-,1) 2
 

F (0,-,-) 1 (7-) 

F (,i±-) 3 

Families with -S = 1 are those which specify the presence-of 

only one matching index term in order to retrieve the document. Fam­

ilies with S = 2 - require a specified pair of index terms to be pres­

ent. Note that variables in the, family which are fixed at zero require 

the absence of the corresponding index term in order that the document 

will be retrieved.
 

Table 7-5 shows the distribution of solution families having a 

size S within a BRS for 30 of the 32 BRS's used in the experiment.
 



(BRS data was lost for data points numbered 29 and 30. ) For example, 

consider data point 14 (question 2, M2 (machine), a 25 document train-

Ing set, with a-nominal 15 index terms used for the BRS). There were 

12 solution" families in the associated BRS. Foiuof these families had 

S =1, six had S=2 and two had S = 3o 
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TABLE 7-5. - DISTRIBUTION OF SOLUTION 

FAMILTES HAVING SIZE S-

Data Treatment Solution family size
 
point combination
 

Q M D T3 4 5 6 7 8 910 

2 I 06 62555 
115 14 0 45 F 

3 50 5 6 6 o 
4 1 0 15 13 0 64 
5 25 54 3
 
6 2 15 8 3 8 1i0 4 2
 
S5 5 2 2
 
8 50 15 12 1 36 li64 77 35
5 


109 1 255 15 5116 o 622 I .
 
111 50 5 50- 6
 
13 51515 0 56
.13 2 25.5...
 

14 25 " " 3 2
25 15 7 4j 6 2 

.... ____ 50_ 15 !0 26 17 13 8 2- '50 i ~ - - - - - ISI4 

18 25 5 1 5
 
1S 15 15 0 56 

19 1 5. 1
 
20 -3 5o 545 54


25 5 2 -0 . 1 
21 2 5 19 12 I22 219112 66 

235 5 31 
524 50 14 4 291 70 1 8.1541 57 123 60 26, 2 
25 25 5 50 6 
26 1 15 15 0 50 
27 5o5 o6 
29 91 042 
29 25 5 l ... .
 

31 2 15 1 -i
 

32 50 15 123 1 61,62261302 

Methods M -I 
-totas the i n_?11 1 26s 28 

L. is the actual number of index terms in the DRS.
 
T '5 or 15 is the nominal number
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8.0 EXPERIMvENTAL DATA ANALYSIS 

8.1 Analysis o Variance for the Factorial Experiment 

The response data for each of the 32 experimental searches 

appears in Table 7-1. Three different measures of search effectiveness
 

are considered (NIS, precision and recall). The experim~ntal data of 

Table-7-1 is analyzed separately for each measure of effectiveness. 

Three corresponding analysis of variance (ANOVA) tables are shown in 

Table 8-i.; These will be 'discussed below. Only effects which are 

significant at an alpha level of at least 0.10 (confidence level of
 

90%) will be discussed.
 

8.11 Dependence o the IS on Methods
 

The ANOVA table fot this measure of effectiveness is shown i-i 

Table 8-1A. The only factor significantly affecting the NIS is that 

of search methods (M). Heuristic BRS's (M,) gave than'ette'Qrslts 

did machine BRS's (M2). The experiment treatment means are: 

NIIM l) 21.67
 

NIS(M) = 10.13 

6NIS(M) - I((M 2 ) = K.54 
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TABLE 8-1. - ANALYSIS OF VARIArCE TABLES FOR FACTORIAL EXPERIMENTS 

Sourc of 
variation 

Sums of 
squares 

Degrees of 
freedom 

Mea 
squares 

F F(O .90) 

A. Normalized Information Statistic (NIS) 

T 
D

TD 

6.79 
218.43 I

8.2 

1 
1
1 

679 
218.43

8,20 

< 
<1 
<1 

m 1o67.37 1 1067.37 4.52 [ 2.96 

DM 63.87 
TDM 176.36 
Q 1055.93 

ERROR 54959.60 

1 
1 
3 

21 

63,87
176.36 
351.97 
236-17 

<1 
<1 

1.49 

TOTAL 7556.97 31 

B., Re call 

T 0.283 1 O.02832' <1 

TD 
M 
TM 

.247461 
.00720 
.15318 
.03920 

1 
1 

1. 
11 

•.24767 
.007201 
.15318 
.0392 

3.17 
<1 I 
1 i_96 
<1 

2 

i 

D-M .01B9 
TDIvI .07801 
Q .5o867 

ERROR, 1.63775 

1 

-
3 
1077 

.00189 <1I 

.07801 1.002 

.16956.1 2.17 2.38 

TOTAL 2.70169 31 

C. Precision 

T 0,01565 1 0.01565 <1 

TD 
! 

TV' 
DM 

TDM 
Q 

TBOT 

D00262 
.00902 
.30574051 
021r97 
.00017 
.01374 
08 i-01 
.275 

1. 

1 

197 
11 
1 . 

3 
21 

.00262 
j .00902 

.30574 
0249 
.00017 
.01374 1 
.02700o 
0361 

<1 
<1 

8.48 

<1 
<1 
<1_t 

2.96 

TOTAL 1.20959 31 
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Confidence limits for the true difference A = [NIS(I%) 

.NIS(M2)] between the treatment means at the (1 - a) confidence level 
by(105) 

are given by:
 

wrl
t(va/2)S + /2] 6 < A+ t(v./)(8 

where 

6 = the true difference in treatment means; 

A = the observed difference in treatment means; 

S =-the square root of the mean square due to error;
e 

r r2 = the number of data points used to compute the treatment 

means; 

a = the error probability; and 

t(va/2) = the student's t statistic with v degrees of freedom. 

For the differencein XIS mean response we have Se = V236.2 = 

15.4,a = 0.10, r- = r = 16, v = 21 and t(21,0.05) = 1.721. The 90 

percent confidence interval for the true NIS -difference -is thus. 

2.19 < [NIS(MI) - PIS(M2)] < 20.89. 

Note that although AIS(MI) is estimated to be twice'as large as 

NIS( 4)2 there is considerable room for improvement in TM1 since this 

method is operating only at 21.67 percent efficiency. 

http:t(21,0.05
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8.12 Dependence of Precision on Methods
 

The ANOVA table for search precision is shown-in Table 8-1C. 

The only factor significantly affecting search precision is methods CM). 

The treatment means are: I 

P(M1 ) = 0.245 

T(M2) = 0.050
 

T = P(M) - (M2 ) = 0.195
 

The difference A is significant at the 99 percent confidence level.
 

By using (8-1), a 99 percent confidence interval can be established for 

the true difference in search precision: 

0.065 < [P(m P( A< 0.385. 

For this application, c(va/2) t(210,005) = 2.83,S = O-03e 

0.190 and = = 16.r1 r2 


The mean precisions given above are for individual searches,, 

Comparing pooled M1 and M2 searches pxov-des an illustration of the 

large difference in search precision, ' A total of 484 documents were 

predicted relevant by the 16 M1 searches, and 50 of these Were actually 

relevant. For the 16 M2 searches, ih84 documents were predicted rele­

vwant, with 43 being actually relevant. 
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8.13 Dependence of Recall on Training Set-Size
 

The ANOVA table for search recall is shown in: Table 8-1B.
 

Only the number of documents in the training set (factor D) signifi­

cantly affects search recall. The training sets with the most docu­

ments lead to searches with better recall. The experiment treatment
 

means are:
 

_,T(D) = 0.264 

n(n ) = o.44o 

A (=2 1 - !CD1) = 0.176 

The-90 percent confidence interval for the true difference be­

tween treatment means is given below by (8-1) with r, = = 16,r2 


t(va/2) = t(21, 0.05) = 1.721 and S = Jo,68 = 0.279: 
e 

0.07< [(D) - R(D1)] < 3450 

Comparing pooled D1 and D2 searches further illustrates the
 

observed differences in search recall. A perfect retrieval system 

would have found 132 relevant documents for either the 16 D searches 

or the 16 D2 searches. in the-experiment, the 16 D1 searches found 

only 36 of these, while the 16 D2 searches located 57 of them.
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8.1h Lack of an Effect Due to the Number of BRS Index Terms 

The number of BPS index terms (factor T) did not have a signif­

icant effect on either the search NIS, precision, or recall, This is 

somewhat unexpected, and may.be due in par.t to an unfortunate scurwce of 

uncontrolled variation in the experiment. 

The nominal levels of factor T were set at 5 and 15 because 

these levels were approximate upper and lower limits 'for the number of 

index terms used normally by analysts in their BRS's. Accordingly, the 

machine system selected the 'best' 5 or 15 index term column vectors 

for inclusion in the Ll approximation problem. Unfortunately, these 

chosen binary column vectors were not often linearly independent, and 

thus the optimal basis in the linear programming problem contairs 

fewer than 5 or 15 index term vectors with non-zero weights. (For a 

further discussion of this, refer to section 5.6.) The final number of 

terms in the M2 BRS's was correspondingly reduced to less than 

T1 = 5 or T2 = 15. This is illustrated by the data of Table 7-5, 

here the column labeled L shows the actual number of index terms 

appearing in the BRS. The average 'high' level (T2) is lO. index terms 

(instead of 15), and the average low level (T1 ) is 3.8 instead of 5. 

Experimentally, this would have the effect of 'smearing' the 

level of factor T, and might mask effects of variation due to this
 

factor. The levels of factor T in the experiment must be considered 

qualitabively a 'high' or 'low' instead of quanitatively as was orig.­

inally intended. Suggestions are offered in section 5.6 for overcoming 

this difficulty in future applications by modi fying the LB program. 



198 

8,15 Summary of the Factorial Experiment 

The factor M (methods) had a significant effect'on both the
 

search precision and NIS. Furthermore, it was the onlv experimental
 

factor which had an effect on precision or the NIS. The 16 M1 searches
 

"heuristic BBS's) had an average NIS response of 21.67 and an average 

precision of 0.245. The 16 M2 searches (machine BRS's) had an average 

NIS of 10.13 and an average precision of 0.050. From Figure 7-1, 

virtually the entire observed average difference in NIS response be­

tween M1 and M2 can be attributed to the observed average differ­

ence in precision between M1 ad M2. This large observed difference 

in average sear,-h precision between 14 and 1 2 is felt to be related 

to differences in selection of index terms snd structural form of the 

BBS. Evidence for this will be presented in subsequent sections.
 

Search recall was observed to significantly depend on the nun­

ber of documents in the training set, and to be independent of the 

search method. The average search recall for the 25 document training 

set (D ) was 0.264, while the 50 document training set (D2 ) led to 

searches with an average recall of 0.440. 

The number of index terms (nominally T1 = 5 and T. = 15) ex­

tracted from the training set and used for subsequent.BRS formation had 

no observed significant effect on the search recall, precision or NIS.
 

The levels and varied somewhat during experimentation. ThisT1 T2 

may have helped to obscure a true effect if one were actually present.
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8.2 Analysis of Variance for the Latin Square Sub-Experiment 

This experiment, as discussed in section 7.37 was designed to 

determine whether there are significant differences between analysts, 

questions or treatments when method M1 (heuristic BRS formation) is 

considered alone. Response data for this experiment appears in Table 

7-2B. The ANOVA is shown below in Table 8-2. 

Conclusions are simple. There are no significant effects
 

attributable to either analysts, questions or treatments which are dis­

cernible from the experiment data at the chosen 90 percent confidence 

level (or even at the 75% confidence level).
 

TABLE 8-2. - ANALYSIS OF VARIANCE TABLE FOR LATIN SQUARE EXPERIMET 

Source iFixed or Expected df. SS MS F F(0752I
of variation random mean squares 
AAALYSTS(A) R + 16U2 3 465.66 i78
2 1396.98 .5 

ANALSTS() He Af]6.J158 

QUESTIONS(Q) a +.16a2 3 837.90 279.30 <1 
TREATkMTS(T) F a. + i65 3 394.85 131.62 <1 

,RO 6 1766.94I 294.49 

TOTAL 15 4396,66
 

8.3 Extraction of Best index Terms
 

8.31 Distribution of R 

Table 7-4 was discussed in section 7.h4. This table shows the 

relative frequencies of observed values of = H(X) - H(X/Y) for rhe 

eight training sets which were used to generate the experimental BRS's. 
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The quantity (0.693)(2NR) is asym'potically distributed as a chi-squared 

variate with one degree of freedom (when R is in bits), under the null
 

hypothesis that R = 0. (See section 4.54.) If the alpha error is
 

fixed at 0.05, this null hypothesis can be rejecred when R is greater 

than 0.1105 for index terms in a 25 document training set (N=25), or 

when R is greater than 0.0504 for the 50 document training set (N=50), 

Index terms meeting the above criteria can be considered statistically 

significantpredictors of document relevance at the 95 percent confi­

dence level.
 

From-Table 7-4, the average number of index terms having a 

statistically"significant value of R at the 95 percent confidence 

level is eight terms for each 25 document training set and 1.5 terms 

for each 50 document training set. These averages are in line with
 

the nominal values (T1 = 5 and T2 = 15) chosen for the experiment
 

using another criterion. (See section 8414.)
 

8.32 Differences in Index Term Selection between Methods 

There are two major differences between index terms selected 

using M1 and M2 . These are: differences in R' evaluated over the 

training set; and differences in the annual frequency of index term use.
 

8.321 Differences in R. The individual index terms selected for the
 

BES using M2 (machine methods) are those having the highest values of
 

R. The average value of R for index terms extracted heuristically
 

(M1 ) vas only about half that of the average R using 142. The 

overall search effectiveness (iKS), however, is better for I than 
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M2 - It follows that the index terms chosen by analysts are becter in­

dicators of document relevancy over the file as a whole than are those
 

selected by the M2 machine methods. This suggests the use of extra
 

information by analysts from outside the training set during the term 

selection process.
 

8.322 Differences in Frequencies of Term Occurrence. The frequency of 

tern occurrence over the file as a whole was not a selection factor for 

method M2 (machine). The annual frequency of occurrence for the M2 

index terms has a mean of 773 and a variance of 597,100. For method 

'If the population of index .terms selected by analysts and used to con­

struct BRS f milies with S = 1 (see section 7.45) has a mean annual 

frequency of occurrence of 177 and a variance of 31,300. The hypoth­

esis that the mean frecuencies of occurrence are the same'for M1, and
 

M. index terms can be rejected at the 99.5 percent confidence level. 

This implies that the analysts of M1 are utilizing frequency of. 

occurrence information (which is not available from the training set) 

when they choose index terms. To summarize, the M analysts select1 

terms to use in their BRS's which have a frequency of occurrence lower
 

by a factor of 773/177 4.37 than those terms selected for the BES's
 

of method N
2 .
 

8.33 The Sampling Problem
 

The problem of choosing a representative training set is one of 

sampling from the document file. A random sample is usually assumed 

for the training sets of pattern recognition systems. However, in a 
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large document retrieval system, a randomly chosen sample for the 

training set is infeasible for practical reasons. To il'astra-t e 

assume 500,000 documents are in a file, and that 100 of them are rele­

vant. Now it would require5 on the average, a random sample of 5,000 

documents from this file to provide a training set which would include 

one relevant document. Clearly, a sample of this size is unmanageable. 

A training set with only 25 to 50 documents is considered typical.
 

Some reasonable percentage (near half) of all training set documents 

should probably be relevant to insure reasonable retrieval results0 

Thus a typical training set with 50 documents (and 25 relevant) con­

stitutes a highly enriched sample, as opposed to a random chosen 

training set.
 

The Results of section 8.32 indicate that the analysts of M, 

are using supplementary informatior to select index terms, It is in­

teresting to relate this observation to the phenomenon of non-random
 

sampling discussed above. 

The data presented in sections 8.321 and 8.322 suggests that 

the supplementary information is of two forms. First, the analysts' 

knowledge of term occurrence frequency is used to avoid those terms 

which occur frequently, even though" they have a high value of R over 

the enriched training set. Perhaps the analyst 'feels' (for example) 

that there are only 15 relevant documents in a one-month section of 

the file. This leads him to reject any index terms which he knows have 

more than 50 associated documents (on the average) in a one-month sec­

tion of the file. If the training set size were greatly increased, it
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is felt that the sane low frequency index terms would also be selected 

by method M2. 

Secondly, pure sampling error of a random nature may cause 

terms to appear to be good discrimnators, w¢hen in fact, with a larger 

training set they would net be. These terms are excluded by the M

I 

analysts because they do not 'fit in' with the analyst's concept-of the
 

query. Here the analysts supply information based on their prior know­

ledge of the query and their prior knowledge of language use.
 

In conclusion it is hypothesized that the supplementary inform­

ation used by the analysts of M1 to select -indexterms compensates
 

for the small size and non-randomness (enrichment) of the training set. 

A high index term frequency of occurrence would tend to reduce the 

value of R for this term in M2 if the sample size were increased. 

Also, the probability of observing inrelated index terms with a high RB 

decreases as N, the sample size increases. 

8.4 Analysis of the BRS 

8.l Dependence of BRS Solution Family Size on Methods 

Table 7-5 shows the SIZE=S distribution of constituent families 

of the BRS's for all 'the experimental searches (see section 7.45). 

There are several striking differences between the BRS's for M1 and 

1 2 when they are compared using the SIZE(S) of their constituent solu­

tion families. Table 8-3 presents this comparison. 
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(A) The M1 analysts use (on the average) 27.2 solution fam­

ilies to make up a BBS (recall that each solution family is a 'matching
 

templatet ). On the other hand, each N42 BRS is composed of an average 

of'082 solution families. 

(B) The M, analysts composed their BES's using only solu­

tion families having S < 2. Of 435 solution families, only 15 (or
 

3.45%) had solution families with S = 1. For the M2 BRS's, solution 

families with S < 10 were observed, with S = 5 being the most 

likely value. There were 121 , (out of 1515) families with S = 2 (or 

8.19%) and 36 with S = 1 (or 2.38%). 

Because the M1 analysts used fewer solution families per BPS, 

the number of M1 solution families with S = 1 is less per BBS than 

the families witn .94 verus 2.5 This causes thc
2
 

total number of documents retrieved per BBS to be less (on the average)­

for M1 than 12 

TABLE 8-3. - COMPARISON OF BRS SOLUTION FAMILY SIZES FOE AND M2M1 

I 
2 

Solution Average Average Average Average 
.family number percent number percent 

size per BRS of BRS per BRS of BBS 

S=1 0 .9 3.45 2.57 2.38
 
S=2 26.26 96-55 8.86 8.19
 
S>3 96.77 89.43
 

Total 27.20 1100.0O 108,20 100.00
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8.42 Effects of BRS Family Size on Retrieval System Operation
 

The SIZE=S of the solution families making up the BBS has an 

effect on retrieval system operation. The expected number of documents 

which a given family (or template) will matcnh decreases as S in­

creases. With S=l, only one term in a document is required to match 

the solution family. Thus, the expected number of matching documents 

in a file covering a given time span is simply the total number of doc­

uments indexed with the term in that time span. When S=2, all match­

ing documents are required to have a pair of matching terms. One would 

expect (on the average) less documents to match a family with S=2 

thani,ith S=l. 

The following ap.roximate model is useful for descriptive pur­

poses. tet p << 1 be +the average probability that any given index 

term will be used to index a document. Then q = l -- p is the prob­

ability that- a given term will n6t-.be used to index a given document, 

This assumes, all terms are independentr. 

Consider a solution family F which has S variables fixed
 

at 1, k variables fixed at 0 and the rest arbitrary. Then, the .prob­

ability of matching the given berm combination in the family with a com­

bination of terms in a document is p(F)=pcf - pa since q 1 - p =-1. 

For a file with N documents, there will be (on the average) 14 = 

Np(F) = Npo documents matching the solution family F. Now, by using 

log p-5- p (since p f 0) in the expression log M = log N-+ a log p 
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we have:
 

M = Ne- s/p . (8-2) 

To a rough approximation then, the number of documents matching (or 

retrieved-by) a given BRS solution family decreases exponentially as 

the STZES of the family increases. 

By minimizing the use of solution families with S=1., the 

analysts of M1 have cut down drastically on the number of documents 

hfnich will be retrieved by the BBS. This should increase the M1 

search 2recision. By avoiding the use of families with S > 3 they 

have cut down the search costs by neglecting those documents which have 

a very low probability of matching the BBS. 

8.5 Predicted Utilities of Relevant Documents for 12
 

8.51 Factors Affecting the Recall of the 142 System 

Table 7-3B (discussed in section 7.43) shows That for the 

known relevant documents (with (u - T) > 0), 33.4 percent were cor­

rectly predicted to be relevant by the system (had (U- z) > 0), 18.1 

percent were incorrectly predicted to be non-relevant (had (u - r) < 0), 

and 48.5 percent were missed because they had no index terms in common 

with index terms in the BRS. This data shows how the recall of the I2 

system is affected by errors, -since only the relevant documents are 

analyzed. 
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The system made errors with 66.6 percent of the relevant docu­

ments. Of these 18.1/66.6 = 27.2 percent were misclassified by the 

LUPF ehd 48.5/66,6 72.8 percent were eliminated by the feature ex­

traction process. This indicates that the feature extraction process 

very critically affects the M2 system recall. Improvements in 14 

recall ar.e most likely to be brought about by efforts to improve the 

feature extraction process instead of the LUPF estimation process. 

8.52 Effects of Increasing the Vocabulary Size 

Although not directly supported by data here, the vocabulary 

size (or number of index terms in the system master list) would seem 

to have an effect on the number of documents having no terms in common 

with the BRS. Some conjectures are made below. 

As index terms are added to the master list, al relevant docu­

ments associated with'a given query'would show (on the average) less
 

overlap in their index term sets, This implies that the relevant docu­

ment index terms would also have less overlap with a 'best' BRS of 

given size. (It is assumed that indexing remains at a constant quality 

level, that the same number of index terms are assigned to a document 

before and after the master list is expanded, and that the method of 

BRS formation remains the same.) The reason for this is simply that 

there would be more terms for an indexer to choose from and hence the 

average frequency of individual term use would be reduced, assuming a
 

constant file size.
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As the term master list is reduced in size, term 'overlap' in 

the set of relevant documents should become greater. This would cause 

fewer relevant docunents to be missed but more unrelated documents to, 

be retrieved by a 'best' BRS of fixed size. This is because the terms 

and term combinations would be less s-ecific with a reduced vocabulary. 

Stated another way, decreasing the vocabulary size should increase 

recall and decrease precision. 

8.6 Summary of the Data Analysis 

Many aspects of the experimental data have been analyzed in 

this chapter. Only the results which are felt -to be most important are 

reviewed here.
 

From section 8-1 it is concluded that search effectiveness (in 

terms of the NIM) is significantly greater for method ML (analysts) 

than for method 1 (machine). It is shown that this difference can,2 

be attributed wholly to the significant differences in search precision 

between M1 and M In other' words, M1 and M2 recover nearly the1 2 

same'fraction of relevant documents (recall is the same), but method 

M1 retrieves many more non-relevant documents (a lower search pe-­

cision).
 

Section 8.3 shows that index terms selected by analysts differ 

significantly from those selected by machine methods. The major dif­

ference is that the 142 terms have a much higher frequency of occur­

rence. This is undesirable, since it causes more documents to be re 

trieved, which reduces M2 search precision. By using supplementary 
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information about term occurrence, the analysts are apparently able to 

eliminate index terms which would have been eliminated had the training 

sets been randomly chosen, and hence been much larger.
 

Section 8.4 demonstrates that the index term chosen by the M1 

analysts are combined in a much different manner (to form a BRS) than 

are the M2 terms. In particular,-a greater number of solution fam­

ilies appear in the M2 BBS's. Also, the M2 BES's are constructed 

largely of solution families with S > 3, wAile for M1 , nearly all 

families have S = 2. Families with S = 1 appear an average of 2.57 

times per BBS with N2 , and only 0..94 times per BRS with M1 . 

The selection of terms with a low freguency.of- occurrence, to­

gether with the avoidance of solution families with. S = 1 constitute 

the major differences between M and M_" These two differences 

working jointly would account for large differences in search precisib"n.. 

between M1 and M2. It appears that any attempt to make the machine 

method M2 comparable with M1 will have to resolve these differences. 

Section 8.5 analyzes errors which reduced the M, search re­

call. About 73 percent of the relevant documents were missed because 

they had no index terms in common with the BRS. This indicates again 

that improvements in the term selection process would have a major 

effect on search effectiveness.
 

http:freguency.of
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8.7 Conclusions
 

The results of the experimentation illustrate the basic applic­

ability of pattern recognition techniques to the document retrieval 

problem.
 

Test results conclusively show the superiority of the analysts
 

to the machine recognition system developed here. The clear super­

iority of humans to machine systems for recognition of visual patterns 

is well known. It is one of the reasons for the enduring academic in­

terest in pattern recognition processes. Thus it is not surprising that 

patterns consisting of index terms should be recognized more efficiently 

by humans than by machine methods. 

What is surprising and encouraging is that the resolution of 

the current differences in system effectiveness does -not appear to be
 

.out of the realm of possibility. The current best estimated difference
 

of 11.5 percent in the NIS can possibly be resolved by extending and
 

refining'the model. In particular, two refinements-are felt to be most 

promising. 

First, the methods of index term selection should be extended 

to incorporate term frequency of occurrence information. This would 

tend -to compensate for the non-randomness of the training or sample 

set. 

Secondly, restrictions should be placed on the BRS to reduce
 

the number of solution families with S = 1 and S > 3.
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.The above refinements are discussed in chapter 9. They both 

should improve the search precision of M2 relative to M1 , and make !2
 

the differences in overall effectiveness less for the two methods. A 

number of other reasonable extensions to the present M2 system are 

also mentioned in chapter 9. 
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9.0 SUGGESTIONS FOR FURTHER RESEARCH 

9.1 General
 

Several suggestions for further research can be made as a re­

sult of this study. These can be more or less divided into five dis­

tinct areas, which are summarized very briefly below before details are
 

given.
 

(A) The information statistic for selecting index terms can be
 

modified to take term frequency of occurrence into account.
 

(B) Instead of selecting the best single index terms; term 

pairs or triplets, etc., can be selected which have a high information 

content over the training set. This is a form of.higher order feature 

extraction. 

(C) The approximation theory model can be altered. Possible 

modifications include a change "of norm from L1 to L or L2 ; use of 

{0,1,21 variables for x.. based on 'major' or 'minor' terms in the 

training set; use of rougher utility estimates (say +1 or -1) for doc­

uments in the training set; and secondary selection of alternate opti­

mal solutions based on frequency of occurrence of index terms. Also, 

alternate algorithms can be investigated for more efficient solution of 

the approximation problem.
 

(D) The solutions of the LPBI can be constrained so that only
 

solution families with S < 2 or S = 2 will be found. This is 

easily done by solving a two-inequality system instead of a single in­

equality. 
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(E) The important effect of iterative improvement of the
 

training set by repeated searches of the file.can be considered as an
 

extension of the previous test methods.
 

9.2 	Modifications to the Information Statistic
 

for Selecting Index Terms
 

9.21 	Incorporating Information about Frequency 

of Term Occurrence - " 

A revised measure of goodness for index term selection wfnich 

utilizes index term frequency of occurrence information is desired. 

One such measure would be (R./f.) which would replace (R.). Here f. 

is the expected frequency of occAn-rence of te-m j, over the sectio.0 

of file to be searched. This measure would reduce the estimated effec­

tiveness 	R. of the individual term if it occurred very frequently. 

For example, the. term 'computer-program' might be judged excellent
 

based on 	the training set value of R, but knowing that it occurred
 

1000 times 	per year might change this judgment. This would be espec­

ially true if a prior user estimate were available to the effect that
 

no more than 50 documents were relevant in the annual file.
 

9.22 	 Utilizing More Refined Document Utility Measurements 

It is also possible to derive a more refined B without using 

information about frequency of term occurrence. .The present scheme 
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assumes a binary utility measure (relevant or not relevant), and de­

rives the information statistic from bhe 2 x 2 contingency table shown 

below. The entries in the table are obtained from the training set. 

Term present Term absent
 

Relevant (u > T) nnl n 
12 

n 
1­

(9-1) 
Not relevant (u < T) n21 n22 n2 . 

nl 1 n.2 N 

Since more refined utility measures are available, a more 

extensive table could be set up as shown below: 

Term present Term absent 

u =1 nllu1n1 n 1 n2­

u =2 - n21 n22 n2 *
 

(9-2) 

u 9 n91 92 '9. 

n-I N
2 


Table (9-2) can be used instead of (9-1) to determine R = 

H(X) - H(X/Y) by direct calculation.. 
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9.3 	Applying the Feature Selection Process
 

to Different Types of Features
 

9.31 Higher Order Features
 

Either single index terms or term combinations can be consid­

.
ered as 	pattern 'features The system tested extracted the -best
 

single-term features. It is possible to consider other types of index 

term 'features'. For example, all training set index terms can be 

arranged in paris (Ti T. ), triplets (Ti T ,Tk ), etc., having fixed 

configurations. Any one-of "these fixed configurations can be consid­

ered as a binary 'feature' and an information statistic R can be 

derived for it. 

For2 an example Of two-ten -.. .. ur... consider t..e tern nair 

(T. ,T.). There are four fixed configurations in which to arrange this' 

pair of terms, i.e. 

(TnT 	 = (TCT. 

(Ti 	 ) = (Ti. j ) 

(TinT) 	 =(T.T7) 

Since the same information is contained in TiT ) as. is contained in 

(fi), 	 there are only three different fixed configurations to consider.
F j 

For a training set with 200 different terms, there would be 
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3(200) = 3(19,900) = 59,700 term-pair features tocosdriiv­

ually. Each of these features would require a corresponding R com- ­

putation. 

Methods to avoid complete enumeration when searching for good
 

(io6)
terr-pair features have been'discussed by Swonger 1 . If the 

'features' extracted are of the multiple index term type, the LUPF will 

be of the form 7 f. = yi where f are features such as (T T ). 

.When this LUPF is thresholded, the resulting pseudo-Boolean inequality
 

is no longer linear. Luckily, solving a non-linear pseudo-Boolean in­

equality'can be accomplished as a simple extension of the linear theory.
 

This will be discussed in section 9.42.'
 

9.32 Selection of Features for-Training Set Coveragd
 

The results of section 8.51 showed that 48.5 percefit of the ­

relevant documents were missed because they had no terms in common with
 

those in the set of selected lnaex terms. This suggests that perhaps
 

single-term features or term-pair features be chosen not only for their
 

good discrimination qualities, but also for their degree of 'coverage' 

of the training set. One way of insuring better coverage is to choose
 

features with high information statistics, but with low pairwise corre­

lation coefficients. This type of correlation screening has been
 

studied by Maltz(107) foiE binary features extracted from two-dimensional 

patterns.
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9.33 Major and Minor Index Terms in the NASA System 

Al index terms occurring in the NASA system are assigned as 

either 'major' or 'minor' terms. Major terms are intended To indicate 

major concepts in the document, while minor terms are used in a sup­

porting role. Selecting only from the set of major terms would be one
 

way of utilizing this built-in form of feature extraction. 

9.4 Modifications to the BRS Structure
 

9.41 Avoiding Solution Families with S = 1
 

By changing the structure of the BRS to avoid solution families 

with S = 1, the precision of the search may be increased. One way of! 

doing this is to incorporate Iconstraints directly on the binary vaxi­

ables of the LUPF. For example, to restrict the SIZE of all solution-. 

families to be less than or equal to 2, we can solve the-system given by 

Z ajT. > - a ) 

I T. < 2 
j -

Another, more indirect way of restricting the use of frequently
 

occurring index terms would be to solve a system such as the following:
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where N is the.maximum (expected) number of documents desired per 

time neriod and the f. are expected frequencies of term occurrence 

for the same time period. 

Methods for solving systems of linear pseudo-Boolean inequal­

ities are discussed by Hammer and Rudeanu. (108) 

9.42 Solving the Nonlinear Pseudo-Boolean Inequality
 

As mentioned in section 9.31, choice of other than single-term
 

features leads to a pseudo-Boolean inequality which has the form 

a)
I a.f. >(T a 
j=!
 

As an example, consider 

al(TIT2T5 ) + a2(T T) +a 3-(I4T5) >T -a °
 

This nonlinear inequality may be solved by using simple extensions of
 

the methods used for linear inequalities in chapter 6. See, for in­

stance, Hammer and Rudeanu(109). To solve the nonlinear inequality,
 

define new binary variables y.:
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=
y2 T2T 3 

Then solve the linear inequality given by
 

2 

L ajy. >( r - a) 

j=1
 

After the m solution families FK( ); K = 1,2," ,m aie.obtained 

for this linear inequality, the original variables are substituted
 

into the expressions for the linear families FK(Y) as follow-s 

y - f 

Finally, after simplifying the resulting expressions for PK(T), we 

have the desired solution families for the nonlinear inequality. Thus
 

the specification of multi-term.features does not introduce severe com­

putational difficulties.
 

9.5 Derivation of the LUPF
 

Several modifications and extensions are discussed below, all 

of which retain the linear model for predicting document utility. 
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9.51 Choice of Norm 

Parameters in the LUFF could be estimated from the training set 

by using the minimal value of the L or L norm as a measure of
2 

goodness of fit instead of the minimal L norm. The L problem 

also has a formulation as a linear programming problem 

9.52 Selection "Among Alternate Optimal Solutions 

Both L and L problems suffer from the 'disadvantage' of
 

admitting alternate optimal solutions. This .couldbe used to advantage 

by selecting among alternate optimal solutions as a post-optimal pro­

cedure. A secondary function based on frequency of term occurrence 

coul. be used for this purpose. 

9.53- Choice of Independent Variables 

The- choice of independent variables x.. was very simple for 

the problem tested. Here xi s{O,1} depending on whether or not a 

feature (term) j is .presentwith document i. A simple extension is 

to let xij{0,1,2} where now x.. = I if term j is -a minor term 

with document j and x . = 2 if term j is a major term. (See 

section 9.33.)
 

When the LUFF (formed using, xi. J{0,1,2}) is thresholded, it no 

longer gives a pseudo-Boolean inequality. This difficulty can be over­

come by cvt the integer inequality to an equivalent system of 

pseudo-Boolean inequalities. See, for instance, Hammer and 

(1l-2)
Rudeanu 
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9.54 Choice of Dependent Variables 

I 

The dependent.variable yi is document utility. In the test
 

configuration y. s{l,2,.. "9}. A much simpler form and one which might 

work just as well would be to let yiS{-l,+l1 as a measure of rele­
1 

vance for documents in the training-set. Then a value of T = 0
 

could be used to form the Boolean inequality.
 

9.55 LP Problems with Unequal Slack Costs 

With the L approximation problem formulated as a linear pro­1 

gramming problem, the initial basis is composed entirely of slack 

vectors. As these slack vectors are driven out of the basis the L1 

-normis minimized; When each slack vector has unit weight (or cost) 

in the objective function, there is no preference given to one slack 

vector over another. 'Each has an equal opportunity -to be driven from 

the basis. Every slack vector is associated with one row of the con­

straint matrix, which represents a single document in the training set.
 

When a slack vector is driven out of the basis, the residual for this
 

row drops to zero and a perfect fit to the predicted document utility
 

is realized.
 

By assigning different objective funcbion weights to slack
 

vectors, it is possible to force a better fit to the part of the
 

training set with the higher weights, at the expense of the part of 

the training set with the lower weights. This can be used in at least 

two ways. 
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9.551 ForcedFitting.to the Relevant Documents. By assigning higher
 

weights to slack associated with the training set which are relevant,
 

and lower weights to those documents which are non-relevant, the util­

ities of the relevant documents will be fit at the expense of the non­

relevant ones. This may result in improved search quality. 

9.552 Application to Iterative Retrieval. With iterative retrieval 

the training set grows in size following repeated retrieval efforts on 

the same file. Consider an exponential decrease in the weights of slack 

vectors corresponding to sample documents according to the time which 
-T n th 

they have remained in the training set (i.e., w. = e for the n 

time in the training set). The relative importance of training set 

documents decreases as they become 'older'. Thus, the older documents 

are graduially 'forgotten' ,end the I.UJPF derived is more closely tpued 

to the most recently acquired members of the training set. This is one
 

way to effectively limit the size of a large training set, and also to 

following the changing interests of a user. 

9.56 Improved Algorithms 

While only marginally related to the document retrieval problem, 

more efficient methods of solving the L1 approximation problem are 

suggested by the nature of the basis inverses arising from the LP prob­

lem. In particular, it has been observed that elements of the basis
 

inverses are integral multiples of integral powers of 1/2 when the .doc­

ument utilities are specified as positive integers. The LP solution 

variables have been observed to be integral multiples of 1/2. 

http:ForcedFitting.to
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9.6 Experimental Investigation of Iterative Retrieval 

The ability of a document retrieval system to adapt to changing 

user needs has become especially important with the advent of time­

sharing search systems which allow rapid implementation of successive 

BRS's.. 

The system tested in this dissertation has been of the 'statict ,
 

single search type, In an iterative configuration the same file would
 

be repeatedly searched a number of times, with modifications being
 

made to the training set after each search. Following a sequence of
 

searches, it is hypothesized that an asymptotic level of search effec­

tiveness would be reached, which would be significantly greater than 

that of a 'single search' system. 

Test methods for use with an iterative configuration could be 

the same as those employed for the testing here,- except for two com­

plications. First, rules regarding additions and deletions to the 

training-set would have to be established. Perhaps the size of the
 

training set would be limited, with new additions forcing an equal
 

'number of-deletions. Alternately, the training set size could b 
un­

restricted, and the 'older' documents 'forgotten' as outlinied in section
 

9.552, Secondly, a stopping rule would have to be imposed to restrict 

the number of iterations. This could be simply a limit on the allowable
 

number of searches. The effectiveness of the final search could become 

the dependent variable, instead of the effectiveness of the 2 search 

as was done here.
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APPENDIX A - All EXAMPLE PROBLEM 

To provide an overview of system operation, the solution of a 

representative problem is presen-ted here. A training set of pattern 

vectors (representing documents having user assigned utilities) is 

processed. First, index terms are selected in a feature extraction 

operation. This is folloed by solving an Li approximation problem 

for document utility as a function of index term 'weights'. Finally, 

the LUPF is thresholded to give an LPBI. This is solved for solution 

families (inddx term matching templates). The union of these templates 

is a BRS. Results are illustrated with actual computer output., The 

system has been programmed in Fortran IV for the IBM 7094/7044 Direct 

Couple System.
 

A.1 Input Data 

The input data to process a 28 document training set is shown
 

on Figs. A-i to A-4. The firsb card read in (not showp) gives the num­

ber of documents in the training set (28) and the utility threshold
 

(T - 3) which defines relevancy on the scale of 1-9 (integer) used to 

rate all documents in the training set. A document is considered rel­

evant if its utility is greater than or equal to 3 and not relevant
 

otherwise.
 

For each document in the training set, the following items are 

read in: 

(a) document number (treated as an alphanumeric character string);
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(b) number of index terms;
 

(c) user assigned utility; and
 

() actual index terms (also treated as alphanumerid character
 

strings)-


The training set documents are processed in sequential order. 

Each document number is read and stored as a character string and 

assigned a new number (an integer) which is used by the program for 

further processing. Fig. A-5 shows the document data summary. 

A.2 Processing of index Terms
 

Figures A-6 to A-8 show an-alphabetical listing of all index
 

terms occurring in the training set and their associated information
 

statistics (see chapter 4). Each index berm is read In a-nd stored as 

a character string but for all further processing is represented by an 

internal -index term number (an integer). A total of 155 index terms 

were found with the 28 documents of the training set. 

Figures A-9 to A-11 show the same list of index terms sorted on
 

their information statistics instead of alphabetically. (The larger the 

the information statisticthe more effective the index term is at dis­

criminating between relevant and nonrelevant documents.) 
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A.3 The Document-Term Matrix and Computation of B 

Figures A-12 to A-14 show the document-term matrix which it 

will be convenient to denote as T = (tij). Each row corresponds to 

an index term and each column represents a document in the training set. 

If index term i appears in document J, then tij =l 

otherwise t.. = 0. At the top of Fig. A-12 the document utilities are
 
.-j
 

shown over the document category designation (1 for a relevant document, 

0 otherwise). This category vector is formed by applying the utility 

threshold T = 3 to the document utilities. 

To compute the information statistics, the 0/1 row vector in 

T for each index term is compared with the 0/1 category vector in a 

2 x 2 contingency table. The information statistic 'R is a measure of 

the similarity of the two vectors. 

A.4 Solving the L1 Norm Approximation Problem 

Index term weights are determined by solving a linear approx­

imation problem using the L1 norm as the criterion of goodness. This
 

approximation problem is set up as a linear programming problem and
 

solved using the simplex algorithm (see chapter 5). Prior to solving
 

the problem, all index terms are discarded except those ten having the
 

highest information statistics. Only these ten terms appear in the 

approximation problem, They represent extracted features and are used
 

to best approximate assigned document utilities as a linear combination 
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of term weights. The linear programming problem has the following form: 

i 
minimize z = c'X
 

subject to Ax = b 

and x> o. 

Figures A-15 to A-17 show the matrix A and the vectors b and 

c which result from setting up the approximation problem using only 

the ten best terms. There are 28 rows in the matrix A and 78 columns. 

Data is listed by columns. (A(13,6) for example is -1.00). Cost data 

(c) are listed with each matrix column. All.costs are either 0 (non­

slack cols. 1-22) or 1 (slack cols. 23-78). The right hand side (b)
 

is shown in Fig. A-!7.
 

The elements of the right hand side vector b = (bi ) are the 

utilities assigned to the documents. The first eleven columns of the
 

matrix A (I,J) correspond to a constant a0 (first column) plus the
 

0/1 vectors from the document term matrix corresponding to the ten in­

dex terms with the largest information statistics.
 

Figure A-18 shows a solution summary printed after the linear 

programming problem was solved. This figure relates the basic var­

iable numbers (structural columns in the optimal basis) to the actual 

index terms and the slack variables.
 

The value of the objective function is the length of the resid­

ual vector in the L1 sense (that length is L1 = 7 in the problem
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solved here). Based on data shown here, the best L1 LUPF is:
 

+ 	 a T (A-1) 

j=l 

=1.0 + 4. OW1 - 4.5T2 + 4.0T 3 + 2.oTh + 5.5T 5 + 25T6 + 3.T7 . 

where u is the predicted utility, a0 = 1.0 is the constant term 

weight and a, are the weights for index terms 1 to 7. Although the
 

L1 approximation problem was set up to determine veights of ten terms, 

only seven terms have non-zero w&ight in the optimal solution. This 

phenomenon is discussed in chapter 5. It occurs because of linearly 

dependent index term columns in the original structural matrix. Fig.
 

A-19 shows a conpoutation of residuals using the derived utility pre­

diction equation. A comparison can easily be made between the user 

assigned document utilities and the utilities predicted by the linear 

model. For example, document ten has an assigned utility of four and 

a 	predicted utility of three.
 

A.5 Solving the LPBI
 

The LUPF derived previously can now be thresholded to give an 

LPBI (see chapter 6). Using the threshold T 3 read in with the
 

data, we get 

4.o, I - 4.5T 2 + 4.0T 4 2.0T4 + 5o5T 5 + 2 -5T6 + .0T 7 > 2.0 (A-2) 
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Before this LPBI can be solved, it is necessary to convert all
 

coefficients to integers. Multiplying the inequality by-l0 gives
 

40T1 - 45T 2 + 40T3 + 20TI[+ 55T 5 + 25> 20 

These data are summarized in Fig. A-20. 

(The notation used in the program here to describe the para­

meters of the LPBI (A-3) on Fig. A-20 is slightly different than that 

used in chapter 6. The exponents aj given in (6-2) are referred to 

as COYMLEMET(J) in the program here. Also, when ai = l, COMWLEMENT 

() = O.) 

The next step in the solution of the LPBI is to convert it to 

canonical form (see chapter 6). This form has no negative coeffic­

ients, ed al! coefficinrts are sorted according to magnitude. The 

coefficients of the canonical form are also shovn in Fig. A-20. 

The branch-and-exclude algorithm described in chapter 6 gives'
 

17 basic solutions to the canonical form. These are shown in Fig. A-2J.A. 

The basic solutions are converted to canonical families of 

solutions and then transformed back to their original (non­

canonical) form. The 17 non-canonical families of solutions are
 

show-m on Fig. A-21B. Each solution family represents a Boolean template
 

of index terms which can be used for retrieving from an inverted file.
 

The 1Vs are interpreted as the required presence of a term, the O's in­

dicate the required absence of a term and the 2's indicate indifference 

as to wfnether the term is present or absent. The l's and O's corre­

spond to fixed variables, while the 2's correspond to free or arbitrary
 



230
 

variables. For example, solution family 12 specifies the retrieval of 

all documents which have term 5 present and term 2 absent, and with 

indifference as to whethert terms 1,3,4,6g7 are present or not. The 

complete BES is given by the union of all solution families.
 

A.6 Miscellaneous Results
 

Near the right margin of the page on Fig. A-21B are sho -the 

variables MIN-, BASE, MAX and SIZE, which pertain to each of the' 

solution families listed near the left margin of Fig. A-21B. The var­

iables MIN, BASE and MAX are related to the range of predicted utilities 

associated with each of the solution families.' (See Section 6.73) The fol­

loving terminology is introduced to describe this relationship.
 

We are given the LPBI from-the linear programmirg solution 

(A-2): 

aKaT J>(T ao).(4) 
j=l
 

We multiply this inequality by the appropriate constant y, giving 

a new inequality ('A-,) with integer coefficients: 

n 

j=l 

where a "= ya, j=0,,2,-,. -,n (A-5) 

and t* = yT 
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(In'the sample problem; y = 10, T* = 30, n = 7 and a* = 10 from (A-1) 

.through (A-).) Next, we solve this inequality for its M families of 

solutions Fk(T), k=1,2, . ,M. (In the example problem, M = 17.) 

kt h Designate the set of fixed indices j associated with the 


solution family as Ski and the set of free indices as Sk2. (For ex­

ample with k = 12; Sk = {2,51 and Sk 2 = {l,3,4,6,7}.) Now define 

for each family k the following: 

BASE(k) a (A-6a*T 

MAX(k.) max [T aT.l ;(A2'7) 

k2L-- J 

and r- n
 

MIN(k) rin axTj (A-8)
 
Sk2 Lj=1 

(For the sample problem, BASE(12) = 55, MAX(12) 210 and KIN(12) -= 

55y'as shown on Fig. A-21B.) 

Quantities (A-6) through (A-8) can be related to the end points of 

the-range of predicted utility u(k) .fo' the k-solution family-,of-the
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original inequality (A-1) as follows:
 

= minou(++) 

Sk ijl
2 


[Y + mi aT] j)I [a* + MiN(k)] (A-9) 

and" max u(k)= max a + T 

jesk2l 
 ji
=l 
 I 

- -aJ
1" x-+ max T a'% + MAX(k)]. (A-10) 
o 
 iS 2\ -

For the sample problem, using (A-9) and (A-l0) gives:
 

miin u <) = 1' [10 + 55] = 6.5 (Aga) 

a-ad max (l2) = 1 [10 + 210] = 22. 

Thus we have 6.5 < 1(12) < 22. In a similar manner ranges of Pre­

dicted utility,can be established for each of the solution families 

shown in Fig. A-2!B by using (t-9), (A-10) aid the given data. 

BASE(k) is used as a preliminary result in the computation of 

MII-(k) and "*2(k). To illustrate this, consider 
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MAX(k ) ma a Tj
 

"k2Lj=l<
 

S T 

3k2 Li S Je 
• Jk k2
 

=BASEWk + maxFZa*Ti (A-12) 

A similar result holds for 1IN(k). 

The SIZE of a solution family is defined as the number of 

l's in it. This variable is shownon Fig. A-21. Each 1 specifies the 

required presence of an index term in any document vector which would 

match the family (or template).. Very roughly', the probability P , of 

finding a document which matches a given template is given by (see 

section 8.42) 

- s / PP(match) = e (A-IS) 

where p is the average probability that an index term will be used,
 

and s is the SIZE of the family. The larger the SIZE of a solution
 

family, the greater are the chances that no documents will be found 

which will match it. 
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Each solution family has the pleasant property that any docu­

ment retrieved using it will not be retrieved by any other reduced sol­

ution family, This can be verified by noting that each solution family 

of Fig. A-21 dif-fers from the others by at 'least one 1 being dhanged to 

0 or vice versa. 
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DOCUMENT INDE: TEIII DOCUMENT 
HUYER COUNT UTILITY
 

68N10674 10 07 
BIBLIOGRAPIIES CHFMICAL ANALYSIS 
CONTAMINANTS INORGANIC COMPOUNDS 
MICROWAVE SPECTRA MOLECULAR SPECTROSCOPY 
MOLECULAR STRUCTURE ORGANIC COMPOUNDS 
SPACELPAFT CABIN ATMOSPHERES CATEGORY 23 

6BN12280 07 01 
FIRE PREVENTION HAZARDS 
MISSILE SILOS hONFLARMASLE MATERIALS 
OXYGEN SAFETY DEVICES 
CATEGORY I 

68N12312 07 05
 
CAPACITORS DETECTORS
 
INSULATORS METAL OXIDE SEMICONDUCTORS
 
SEMICONJDUCTING FILMS THIN FILMS
 
CATEGORY 9
 

68N15206 13 09
 
AIRCRAFT SAFETY COMPUTER DESIGN
 
DISPLAY DEVICES FAILURE
 
FIRE PREVENTION INFRARED DETECTORS
 
INTEGRATED CIRCUITS LOGIC CIRCUITS
 
MICROELECTRONICS TEMPERATUE IIEASURING IISTRUMENTS
 
ULTRAVIOLET RADIATION PANNING SYSTEMS
 
CATEGORY 8
 

68N15670 06 01 
ACCIDENT IN"ES1IGATION APOLLO SPACECRAFT 
CABIN ATMOSPhERES FIRES 
OXYGEN BREATHING CATEGORY ii 

68M16903 11 05 
AIR ALTITUDE 
GAS MIXTbRES IIVOROGEI 
IGNITION IGNITION LIMITS
 
IGNITION TEMPERATURE SPACECRAFT CABIN ATMOSPHERES
 
SPACECRAFT CONTAMINATION TEMPERATURE DISTRIBUTION
 
CATEGORY 14
 

68N17367 1l 01 
CABIN ATMOSPHERES EXTRATERRESTRIAL RESOURCES 
FIRES PLAME PROPOGATIOI
 
FLIGHT HAZARDS NEllU'
 
IGNITION NITROGEN
 
OXYGEN STORAGE
 
CATEGORY 31
 

68N17360 16 01 
EMERGENCY L.IF SUSTAINING SYSTEMS ENVIROiEIITAL TESTS 
FIRE PREVENTION FIREPROOFING 
FLAME PROPOGATION HELMETS 
HUMAN FACTORS ENGINEERING IUMAN FACTORS LABORATORIES 
IGNITION TEMPERATURES MATERIALS TESTS 
SPACE ENVIPONHENI SIMULATION SPACE SUITS 
SPACECRAFT CABIN ATMOSPHERES SPECIFICATIONS 
SPONTA.EOUS COMBUSTION CATEGORY 5 

FIGURE A-I 

INPUT DATA FOR SAMPLE PROBLEM 
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DGcUIMJiW INDEX TERN DOCUMENT
 
100112 COUNT UTILITY
 

&I1725 13 02 
BURNING RATE CONTAMInANTS
 
FIREPRCOFING FLAMMABILITY
 
TIAZARDS OUTGASSIN5
 
PLASTICS SPACFCRAFT CABINI ATMOSPHERES
 
SPACECRAFT CABINS SPACECRAFT CONSTRUCTION MATERIALS
 
SPACECRAFT CONTAMINATION IOXICITY
 
CATEGORY 5
 

68N18744 28 04
 
ACCIDENT INVESTIGATION ACCIDENT PREVEIITION
 
BURNS (INJURIES) CABIN ATMOSPHERES
 
CONFERENCES CONTROLLED ATMOSPHERES
 
ELECTRICAL FAULTS 
 EHERGENCY LIFE SUSTAINING SYSTEMS 
FIRE CONTROL FIRE EXTINGUISHERS 
FIREPROOFING FLAMMABILITY 
FREON GAS COIPOSITION 
-GLASS FIBERS HIGH PRESSURE OXYGEN 
HUMAN FACTORS ENGINEERING NONFLAMMABLE MATERIALS 
OXYGEN PRESSURIZED CABINS 
PROTECTIVE CLOTHING SAFETY DEVICES
 
SPACE SUITS SPACECRAFT CABIN SIMULATORS
 
SPONTANEOUS COBUSTION THERMAL INSULATION
 
PRESSURE CHAMBERS CATEGORY 5
 

68NM8745 13 01 
ACCIDENT INVFSTIGATION CHEMICAL ANALYSIS
 

CONFEPENCES FIRES-

HIGH PRESSURE oXYGE HUMAN PATHOLOGY
 
PRFSSURE CtAHBERS RESIDUES
 
SPACECRAFT CABIN SIMULATORS SPONTANEOUS COMBUSTION
 
ILECTRICAL FAULTS FLAMMABILITY
 
CATEGORY
 

6BN1746 14 03 
CABIN ATMOSPHERES CONFERENCES
 
EMEIGECY LIFE SUSIAIMING SYSTEMS FIRE CONTROL
 
FIRE EXTINGUISHERS FIREPRODFING
 
HIGh PRESSURE OXYGEN HUMANFACTORS ENGINEERING
 
INONFLAMMABLEMATERIALS PROTECTIVE CLOTHING
 
SAFETY DEVICES SPACECRAFT CABIN SIMULATORS
 
SURVIVAl CATEGORY 5 

68NI6747 12 03 
ACCIDENT PREVENTION CABIN ATPOSPHERES
 
CONCERENCES EHEPGENCY LIFE SUSTAINING SYSTEMS
 
FIRE CONTROL FIRE EXTINGUISHERS
 
HUMnN FACTORS ENGI4FERING PRESSURIZED CABINS
 
PROTECTIVE CLOTHIIIG SAFETY DEVICES
 
SPACECRAFT CABIN SIMULATORS - CATEGORY 5 

6BNIB75O 12 01 
ACCIDENT PREVENTION CAHIIl ATMOSPHERES
 
EMERGE&CY LIFE SUSTAINING SYSTEMS I-IRECONTROL
 
FIRE EXTINGUISHERS GAS COMPOSITION
 
HUMANFACTORS EI4GINEERING PROTECTIVE CIOTHIIG
 
SAFETY DEVICES SPACECRAFT CABIN SIPULATORS
 
SPONIMhEOUS COMBUSTIO CATEGOPY 5 

FIGURE A-2 

INPUT DMA FOR SAMPLE PROBLEM 
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DCUENT ll;DSX TEHB DOCUXENT 

NUMBPR COUNT UTILITY 

68HIS75L 14 01 
CABIN ATMOSPHERES CONFERENICES
 

LHERGE4CY LIFE SUSTAINING SYSTEFS FIRE CONTROL
 

FIREPROOFING 
 GAS COMPOSITION 
HUMANFACTORS ENGINEERING MATERIALS TESTS 

JDNFLAMMABIE MATERIALS PROTECTIVE CLOTHING
 

SAFETY DEVICES 
 SPACECRAFT CABIN SIPULATORS
 

SPONTANEOUS COMBUSTION 
 CATEGORY 5 

6BN20005 12 01
 
ENVIRDNRFEIT SIhbLATION 
 FIRE PREVENTION
 

FLAPE PROPAGATION 
 FLAMMABILITY
 

FLAPHABLE GASES 
 FLASH POINT
 
HUMAN FACTORS LABORATORIES
HIGH PRESSURE OXYGEN 


IGNITION 
 PRESSURE DISTRIBUTIOI
 

PROTECTIVn CLOTHING 
 CATEGORY 5
 

6BN20058 12 01
 
BROMINIE COMPOUNDS
 

CARBON TETRAFLUORIDE 

AIRCRAFT HAZARDS 


CHLORINE FLUORIDES
 

DIFLUORD COMPOUNDS 
 FIRE EXTINGUISHERS
 

FIRE FIGHTING 
 HALOGbN COMPOUNDS
 
OXYGEN
PSTHANE 

CATEGORY 6
PYROLYSIS 


68H20970 10 01
 
EXPLOSIONS
 

FIRES 

COMBUSTION 


FLAMMABILITY
 

HAZARDS 
 OXYGEN
 

PROTECTIVE CLOTHING 
 SAFETY
 
CATEGORY 3a
SPACECRAFT CNVIRONEIITS 

68N21752 11 01 
FIREPROOFING
FIGE PREVE:I!TI0? 
rLAICIAZILITY
 

IUMIIA FACTORS LABORATORIES MICE
 
FLAFE PROPAGATION 

OXYGCIHIONFLARMABLE MATERIALS 

SPACECRAFT CABIN ATMOSPIERESPROTECTIVE CLOTHING 

CATEGORY 5
 

01687.24756 15 

FIRE EXTINGUISHERSBIBLIOGRAPHIES 

FLIGHT CREWS
 

HEAT TRANSFER 

FLAPMABILITY 


HIGH PRESSURE OXYGEN
 

hUMAN TOLERANCES 
 LIFE SUPPORT SYSTEMS
 

SPACECRAFT CABIN ATMOSPHERES 
 SPACECRAFT CONSTRUCTION MATERIALS
 
STATIC ELECTRICITY
 

TOXIC HAZARDS 

SPACECRAFT CONTAMINATION 


WEIGHTLESSNESS
 

CATEGORY 5
 

68f;24871 10 01 
FIRE PREVENTION
CONFERENCES 
GREAT BRITAII 
SPACECRAFT CABIN ATROSPIIERES

FIRES 

IGNITION LIIIITS 
SPONTANEOUS COMBUSTION 
 THERAPY
 

UHITED STATES OF AMERICA CATEGORY 5
 

68N29668 07 06
 
ELECTROCHEMICAL CELLS
 

ELECTROLYTES 

AIRCRAFT SAFETY 


FIRE PREVENTION
 

FIGURE A-3 

INPUT DATA FOR SAMPLE PROBLEM 
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DOCUMENT INDEX TERM DOGUUIENT
 
NUMBER COUNT UrTLTTY
 

TEMPERATURE SENSORS WARNING SYSTEMS
 
CATEGORY 14
 

'68N29947 10 03
 
CALIBRATING CORRFCTION
 
CURRENT AMPLIFIERS GAS FLOW
 
INERTIA SEMICONDUCTOR DEVICES
 
TEMPERATURE MEASURING INSTRUMENTS TEMPERATURE SENSORS
 
TRIODES CATEGORY 14
 

68B30134 07 01
 
BURNING RATE FIRE PREVENTION
 
FLAMMABILITY - IGNITION TEMPERATURE
 
SPACECRAFT CABIN ATMOSPHERES SPACECRAFT CONSTRUCTION MATERIALS
 
CATEGORY 33
 

6BN34881 11 08
 
ATMOSPHERIC COMPOSITION CLOSED ECOLOGICAL SYSTEMS
 
ELECTRICAL PROPERTIES GAS ANALYSIS
 
ORGANIC COMPOUNDS POLYMERIC FILMS
 
SEHICONDUCTING FILMS SPACECRAFT CABIN ATMOSPHERES
 
SPACECRAFT CONTAMINATION THIN FILMS
 
CATEGORY 5
 

681436272 07 01
 
AIRCRAFT FUEL SYSTEMS CONFERENCES
 
EXPLOSIONS FIRE PREVENTION
 
IGNITION POLYuRETNANE FOAM
 
CATEGORY 2
 

60M36274 12 01
 
AIRCRAFT FUEL SYSTEMS CARBON'DIOXIDE
 
COMMERCIAL AIRCRAFT CONFERENCES 
ELECTRIC DISCHARGES FIRE PREVENTION
 
FUEL TANKS LIGHTNING
 
LIQUID NITROGEN SAFETY DEVICES
 
VENTS CATEGORY 2
 

68N36275 08 0l 
AIRCRAFT FUEL SYSTEMS AIRCRAFT HAZARDS 
AIRCRAFT INDUSTRY CONFERENCES 
FIRE PREVENTION JET AIRCRAFT
 
SAFETY DEVICES CATEGORY 2
 

FIGURE A-4 

INPUT DATA FOR SAMPLE PROBLEM 



DOCUMENT DATA 

NO. OF DOCUMENTS PROCESSED=28 

CATEGORY THRESHOLD= 3 
tDOCUMENTS WITH WEIGHTS GREATER THAN OR EQUAL TO THRESHOLD ARE IN CATEGORY 1) 
PROGRAM ACTUAL DOCUMENT DOCUMENT NO. OF NEW 
DOC. NO, DOC NO. WEIGHT CATEGORY TERMS TERMS 
I 68NIO674 7 1 10 10 
2 68N12280 1 0 7 7 
3 68N12312 5 1 7 7 
4 68N15206 9 1 13 12 
5 68Ni5620 1 0 6 5 
6 68N16903 5 1 11 10 
7 68N17367 1 0 11 7 
8 68N17380 1 0 16 13 
9 68NI7925 2 0 13 7 

10 68N18744 4 1 28 16 
1i 68N18745 1 0 13 2 
12 68N18746 3 1 14 I 
13 68NI8747 3 1 12 0 
14 68N18750 1 0 12 0 
15 68N18751 1 0 14 0 
16 68N20005 -1 0 12 5 
17 68N20058 1 0 12 10 
is 6NZO870 1 0 10 5 

'19 68N21752 1 0 11 1 
20 68N24756 1 0 15 7 
21 6BN24871 1 0 10 3 
22 68N29668 6 1 7 3 
23 68N29947 3 1 10 7, 
24 68N30134 1 0 7 0 
25 68N34881 8 1 13 5 
26 68N36272 1 0 7 3 
27 6SN36274 1 0 12 7 
28 68N36275 1 0 8 2 

FIGURE A-5 

DOCUMENT DATA SUmmARY FOR SAMPAPLE PROBLEM (q 
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INDEX TERM DATA
 
ALPHABETICAL SORT
 

NO. OF TERMS DISCOVEREO=155
 

= 

SOURCE ENTROPY H(X) 0.940 

PROGRAM INDEA INFORMATION 
TER! NO. TERM STATISTIC 

37 ACCIDENT INVESTIGATION D.00022 
79 ACCIDENT PREVENTION o.03441 
25 AIRCRAFT SAFETY 0.11340 
103 AIRCRAFT HAZARDS 0.0071 
144 AIRCRAFT FUEL SYtTEMS 0.OT337 
154 AIRCRAFT INDUSTRY 0.02329 
42 AIR 0.05479 
43 ALTITUDE 0.057. 
38 APOLLO SPACECRAFT 0.02329 
139 ATMOSPHERIC COMPOSITION 0.05479 

1 BIBLIOGRAPHIES 0.0"474 
104 BROMINE COIWOUNDS 0.0Z329 
72 BURNING RATE 0.04771 
BC BURNS [INJURIES) 0.0579 
39 CABIN ATMOSPHERES 0.00526
 

132 CALIBRATING 0.05479 
II CAPACITORS 0.05479 

105 CARBON TETRAFLUORIDE 0.02329 
147 CARBON DIOXIDE 0.02329 

10 CATEGORY 23 0.05479 
17 CATEGORY 11 0.0,771 
24 CATEGORY 9 0.05479 
36 CATEGORY 8 0.05479 
51 CATEGORY 14 0.17649 
58 CATEGORY 31 . 0.02329 
71 CATEGORY 5 0.00669 
iiz LATEGGR$ 6 0.02329 
117 CATEGORY 33 0.0771 
146 CATEGORY 2 0.07337 
2 CHENICAL ANALYSIS O.O04T4
 

106 CHLORINE FLUORIDES 0.02329 
140 C.OSED ECOLOGICAL SYSTEM 0.05479 
113 -COMBUSTION 0.02329 
148 COMMERCIAL AIRCRAFT 0.02329 

26 CORPUTER DESIGN 0.05479 
81 CONFERENCES 0.00085 
3 CONTAMINANTS 0.0474 

82 CONTROLLED ATMOSPHERES 0.05477
 
133 CORRFCTINu 0.05479
 
134 CURRENT AMPLIFIERS 0.05479
 
19 DETECTORS 0.05479
 

107 DIFLUORO COMPOUrIDOS 0o0232R 

27 DISPLAY DEVICES 0.05479 
83 ELECTRICAL FAULTS 0.00474 

129 ELECTROCIiEMICAL CELLS 0.01479 
130 ELECTROLYTES 0.05479 
141 ELECTRICAL PROPERTIES 0.05479 
149 ELECTRIC DISCHARGES .0.02329 
59 EMERGENCY LIFE SUSTAININ 0.01693 
60 ENVIRONMENTAL TESTS .0.0329 

FIGURE A-6 

ALPHABETICAL LISTING OF INDEXTERMS INSAMPLE PROBLEM TRAINING SET 
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INDIX TER h TVDFX Ed3 INFOR7,APIOI 
ZUF.-ER STATISTIC 

9B ENVIROINMENT SIMULATION 0.02329 
114 EXPLOSIONS 0.04771 
52 EKIRATERRESTRIAL RESOURC 0.02329 
28 FAILURE 0.05479 
61 FIREPROOFING 0.00049 
11 FIRE PREVENTION 0.06593 
40 FIRES 0.1289784 FIRE C0TROL 0.03867 
85 FIRE EXTINGUISHERS 0.0169B 
OB FIRE FIGHTING 0.02329 
53 FLAME PROOOGATION 0.04771 
99 FLAME PROPAGATION 0.04771 
73 FLAMMABILITY 0.07586 

100 FLAHMAbLE GASES 0.02329 
101 FLASH POINT 0.02329 
54 FLIGHT HAZARDS 0.02329 
.19 FLIGHT CRFWS 0.02329
 
US FREON 0.05479
 
150 FUEL TANKS 0.02329 
87 GAS COMPOSITION 0.00022 
112 GAS ANALYSIS 0.05479 
135 GAS F.OW 0.05479 
44 GAS MIXTURES 0.05479 
80 GLASS FIBERS 0.05479 
126 GREAT BRITAIN 0.02329 
109 HALOGEN COMPOUNDS 0.02329 
12 HAZARDS 0.07337 

120 HEAT TRANSFER 0.02329 
55 HELIM 0.02329 
62 SELHEIS 0.02329 
09 1lI1H PRESSURE OXYGEN 0.U012 
63 HUMAN FACTORS EHGIIIEERIH 0.01698 
64 HUMAN FACTORS LABORATORI 0.07337 
95 IIUMAN PATHOLOGY 0.02329 

121 HU14AN TOLFRAmEFS 0.02329 
45 HYDROGEN 0.05419 
46 IGIJITIOI4 0.0063D 
47 IGNITION LIMITS 0.00A74 
48 IGNITIGI TEMPERATURE 0.00474 
65 IGNITION TEMPERATURES 0.02329 
13b IINERTIA 0.05479 
29 INFRARED DETECTORS 0.O549 
4 INORGANIC COMPOUHDS D.05479 

"20 INSULATORS 0.05479 
30 INTEGRATED CIRCUITS 0.05479
 
155 JET AIRCRAFT D.02329
 
122 LIFE SUPPORT'SYS1EBS 0.02329
 
151 LIGHT1NING 0.02329
 
152 LIQUID NITPOGEN 0.02329 

31 LOGIC CIRCUITS D.05479 
66 MATERIALS TESTS 0.0 71 
21 METAL OXIDE SEHICOUDUCTO 0.05479 
110 METIHAINE 0.02329 
I18 MICE 0.02329 

5 MICROWAVE SPECTRA 0.05479 
32 MICROELECTRONICS 0.05479 
13 hISSILE SILOS 0.02329 

6 HOLECULAR SPECTROSCOPY 0.05t79 
7 MOLECULAR STRUCTURE 0.05479 
56 NITROGEN 0.02329 

FiGURE A-7 
ALPHABETICAL LISTING Or INDEX TERMS INSAMPLE PROBLEM TRAINING SET 
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INDEX TERM INDEX TUllE INIFOX.ATION 
NUMBER STATISTIC 

14 NONFLAMMABLE MATERIALS 0.00124
 
8 ORGANIC COMPOUNDS 0.1134
 

74 OUTGASSING 0.02329
 
15 OXYGEN 0.03412
 
41 OXYGEN BREAT1ING 0.02329
 
75 PLASTICS 0.02329
 
143 POLYMERIC FILMS 0.05479
 
145 POLYURETHANE FOAM 0.02329
 
90 PRESSURIZED CABINS 0.1L340
 
94 PRESSURE CHAMBERS 0.00,474
 
102 PRESSURE DISTRIBUTION 0.02329
 
91 PROTECTIVE CLOTHING 0.00043
 
111 PYROLYSIS 0.02329
 
96 RESIDUES 0.02329
 
16 SAFETY DEVICES 0.00040
 

115 SAFETY 0.02329
 
22 SEMICONDUCTING FILMS 0.1134a
 

137 SEMICONDUCTOR DEVICES 0.05479
 
9 SPACECRAFT CABIN ATHOSPH O.0085
 

49 SPACECRAFT CONTAMINATION 0.01032
 
67 SPACE ENVIRONMENT SIMULA 0.02329
 
66 SPACE SUITS 0.00474
 
76 SPACECRAFT CABINS 0.02329
 
77 SPACECRAFT CONSTRUCTION "0.01331
 
92 SPACECRAFT CABIN SIMULAT 0.01698
 

116 SPACECRAFT ENVIRONNENTS 0.02329 
69 SPECIFICATIONS 0.02329 
70 - SPONTAN.EOUS C-BUSTION.. 4.z 

123 STATIC ELECTRICITY 0.02329
 
57 STORAGE 0.02329
 
97 SURVIVAL 0.05479
 
33 TEMPERATURE MEASURING IN 0.11343
 
50 TEMPERATURE DISTRIBUTION 0.05479
 
131 TEIPERATURE SENSORS 0.11340 
127 THERAPY 0.02329
 
93 THERMAL INSULATION 0.05479
 
23 THIN FILMS " 0.11340
 
78 TOXICITY 0.02329
 
124 TOXIC HAZARDS 0.02329
 
138 TRIODES 0.05479
 
34 ULTRAVIOLET RADIATION 0.05479
 
128 UNITED STATES OF AMERICA 0.02329
 
153 VENTS 0.02329
 
.35 WARNING SYSTEMS 0.11340
 
125 WEIGHTLESSNESS 0.02329
 

FIGURE A-8 

ALPHABETICAL LISTING OF INDEX TERMS INSAMPLE PROBLEM TRAINING SET 
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INDEX TERM DATA
 
INFO. SEAT. SORT
 

NC. OF TERMS DISCOVERED=tS5
 

SOURCE ENTROPY NIX). 0.940
 
PROGRAM INDEX INFORMATION
 
TERM NO. TERM STATISTIC
 

51 CATEGORY I, 0.17644 
40 FIRES 0.12997 
131 TEMPERATURE SENSORS 0.11340 
90 PRESSURIZED CABINS 0.11340 
35 WARNING SYSTEMS 0.11340 
33 TEMPERATURE MEASURING IN 0.1134D 
25 AIRCRAFT SAFETY 0.11340 
23 THIN FILS 0.11340 
22 SEMICONOUCTING FILMS 0.11340 

8 ORGANIC CORPOUNOS 0.11340 
73 FLAMMABILITY 0.07586 
146 CATEGORY 2 0.07337 
144 AIRCRAFT FUEL SYSTEMS 0.07337 
IT SPACECPAFT CONSTRUCTION 0.07337 
64 HUMAN FACTORS LABORATORI 0.07337 
12 HAZARDS 0.07337 
11 FIRE PREVENTION 0.06593 

143 POLYI4ERIC 91LtS 0.05479 
142 GAS ANALYSIS 0.05479 
141 ELECTRICAL PROPERTIES 0.05479 
140 CLOSED ECOLOGICAL SYSTEM 0.05179 
139 ATMOSPHERIC COMPOSITION 0.05479 
138 TRIODES 0.05479 
137 SEMICONDUCTOR DEVICES 0.05A72 
136 INERTIA 0.05679 
13 GAS FLOW 0.05479 
134 CURRENT AMPLIFICRS 0.05479 
133 CORREC I 51. 
13 CALIBRATING 0.05479 
13D ELECTROLYTES 0.05479 
129 ELECTROCIIEIICAL CELLS 0.65479 
97 SURVIVAL 0.05479 
93 THERMAL INSULATION 0.05479 
88 .GLASS FIBERS 0.05479 
86 FREON 0.05 79 
8 CONTROLLED ATItOSPHERES 0.05479 
80 BURNS (INJURIES) 0.05479 
50 TEMPERATURE DISTRIBUTION 0.05479
 
5 HYDROGEN 0.05q79
 

41 GAS MIXTURES 0.05479 
43 ALTITUDE 0.05479 
42 AIR 0.05479 
36 CATEGORY 0 0.05479 
34 ULTRAVIOLET RADIATION 0.05479 
32 MICROELECTRONICS 0.05419 
31 LDGIC CIRCUITS 0.05479 
30 INTEGRATED CIRCUITS 0.054T3 
29 IFRARED DETECTORS 0.05479 
28 FAILURE 0.05479 
27 DISPLAY DEVICES 0.05479 

FIGURE A-9 
INFORMATION STATISTIC SORT OF INDEX TERMS INSAMPLE PROBLEM TRAINING SET 
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INDEX CERII INIDEXZ9EFI INORMATION
 
WONDER STATIST0
 

26 COHPIJTrR DESIGN 0,05479 
24 CATEGORY 9 0.05479 
21 41TAL OXIDE SEMICOIUDUCTO 0.05479 
20 INSULATORS 0.05479
 
19 DETECTOqS 0.05479 
18 CAPACITORS 0.05479 
I0 CATEGORy 23 0.05473 
7 MOLECULAR STRUCTURE 0.05479 
6 MOLECULAR SPECTROSCOPY 0.05479 
5 MICROWAVE SPECTRA 0.05479 
4 , INORGANIC COMPOUNDS 0.05474 

117 CATEGORY 33 0.04771 
114 EXPLOSIONS 0.04771 
103 AIRCRAFT HAZARDS 0.04771 

09 FLAME PROPAGATION 0.04771 
72 BURNING RATE 0.04771 
66 MATERIALS TESTS 0.0771 
53 FLAME PROPOGATIOtI 0.0771 
17 CATEGORY 11 0.04771 

84 FIRE CONTROL 0.03867 
79 ACCIDENT PREVENTIOII 0.03441 
70 SPONTANEOUS COHEUST1O' 0.03412 
is OXYGEN 0.03412 
155 JET AIRCRAFT 0.02329 
154 AIRCRAFT INDUSTPY 0.02329 
153 VENTS 0.02329 
152 LIQUID NITROGEN 0.02329 
151 LIGHTNIIG 0.02329 
150 rUEL TANKS 0.02329 
149 ELECTRIC DISCHARGES 0.02329 
148 COMMERCIAL AIRCRAFT 0.02329 
147 CARBONDIOXIDE 0.02329 
145 POLYURETHANE FOAM 0.02329 
128 UNITED STATES OF AMERICA 0.02329
127ThApY 6.02321
 

126 GREAT BRITAIN 0.02329
 
125 WEIGHTLESSNESS 0.02329
 
124 TOXIC HAZARDS 0.02329 
123 STATIC ELECTRICITY . 0.02329 
122 LIFE-SUPPORT SYSTEMS 0.02329 
121 hJMAN TOLERANCES 0.02329
 
120 HEAT TRANSFER 0.02329
 
119 IIGIlT CREWS 0.02329
 
IIi NICE 0.02329
 
116 SPACECRAFT ENVIRONMENTS 0.02329
 
115 SAFETY 0.02329
 
113 COMBUSTION' 0.02329
 
112 CATEGORY 6 0.02329
 
III PYROLYSIS 0.02329 "
 
110 METHANE 0.02329
 
109 HALOGEN COMPOUNDS O.O23z9
 
108 FIRE FIGHTING 0.02329
 
107 CIFLUORO COMPOUNDS 0.02329 
106 CHLORIN1E FLUORIDES 0.02329 
105 CARBON TETRAFLUORIOE 0.02329 
104 BROMINE COMPOUNDS 0.O2329
 
102 PRESSURE DISTRIBUTION 0.02329
 
101 FLASH POINT 0.02329
 
100 FLAMMABLE GASES 0.023z9
 
98 ENVIRONMENT SIMULATION 0.02329
 

FIGURE A-10 

INFORMATION STATISTIC SORT OF INDEXTERMS INSNAPLE PROBLEM TRAINING SET 
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INDEX TERM INDEX TERM INFORMATION 
NUMBER STATISTIC 

96 RESIDUES 0.02329 
95 HUMAN PAIHOLOGY 0.02329 
TO TOXICITY 0.02329 
76 SPACECRAFT CABINS 0.02329 
75 PLASTICS 0.02329 
74 OUTGASSING 0.02329 
69 SPECIFICATfCONS 0.023z9 
67 SPACE ENVIRONMENT SIULA 0.0a329 
65 IGNITION TEMPERATURES 0.02329 
62 HELMETS 0.02329 
60 ENVIRON4ENTAL TESTS 0.02329 
58 CATEGORY 31 0.02329 
57 STORAGE 0.02329 
56 NITROGEN 0.02329 
55 HELIUM 0.02329 
54 FLIGHT HAZARDS 0.02329 
52 EXTRATERRESTRIAL RESOURC 0.02329 
41 OXYGEN BREATHING 0.02329 
38 APOLLO SPACECRAFT- 0.02329 
13 MISSILE SILOS 0.02329 
92 SPACECRAFT CABIN SIHULAT 0.01698 
85 FIRE EXTINGUISHERS 0.01698 
63 HUMAN FACTORS ENGINEERIN 0.01698 
59 EMERGENCY LIFE SUSTAINIM 0.01698 
49 SPACECRAFT CONTAMINATION- 0.01032 
1i CATEGORY 5 0.00669 
46 IGNITION 0.00630 
39 CABIN ATMOSPHERES 0.00526 
94 0OESrUNE tHAMBERS 0.00T47 
03 ELECTRICAL FAULTS 0.0047 
68 SPACE SUITS 0.00474 
48 IGNITION TEMPERATURE 0.00474 
47 IGNITION LIMITS 0.00474 

3 CONTAMINANTS 0.00474 
2 CHEMICAL ANALYSIS 0.00474 
1 BIBLIOGRAPHI4ES 0.00474 

89 HIGH PRESSURE OXYGEN 0.00124 
14 NONFLAMMABLE MATERIALS 0.00124 
81 CONFERENCES 0.00085 

9 SPACECRAFT CABIN ATMOSPH 0.00085 
61 FIREPROOFING 0.00049 
91 PROTECTIVE CLOTHING 0.00040 
16 SAFETY DEVICES 0.00040 
87 GAS COMPOSITION 0.00022 
37 ACCIDENT INVESTIGATION 000022 

FIGUREA-11
 

INFORMATION STATISTIC SORT OF INDEXTERMS INSAMPLE PROBLEM TRAINING SET
 



DOCUMENT-TERM MATRIX
 

UTZLTaY 7 1 5 9 1 5 1 1 2 4 1 3 3 1 1 1 1 1 1 1 1 6 3 1 0 L 11 
CATEGORY 1 3 1 L 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 

OO0UMEN9 NUMBER . INFORMATION 
T7X 1 2 3 4 5 6 7 8 9101112131415161718192021222522522728 STATISTIC 

S100 0 00000 000 0000000100000000 0.00474 
2 10 00000000100000000000000000 1.00474 
3 1 00 0000 1 0000000000000000000 0.00474 
4 100 0000000000000000000000000 0.05479 
5 100 0000000000000000000000000 0.05479 
6 1 00 000 000 000000 00 0000000000 0.054r9 
7 100 00 00000 0000 000000000000 0.05479 
S 130 000 000 00 0000000000000 1000 0.11340 
9 1 00 0 0 0 1 0 00 0 0 0 0 011 1 0 0 110 0 0 0.00085 

10 130 000000000000000000000000 0.05479 
11 010 1000100000001001011010111 0.06593 
12 010 000001000000001000000000 0 0.07337 
13 0 1 0 00000 000 000000000 00 00000 0.02320 
14 010 0 0 0 0 0 1 0 1 0 0 1 0 0 0 100 0 0 0 00 0 0 0.00124 
15 010 00100 000000 1 1000000000 0.03412 
16 0 10 00000 01 0 11 1 00000000000 1 1 0.00040 
17 0 1 00 1 00000000000000000000000 0.04771 
1 001 000000000000000000000000 0.05479 
19 0u1 000000000000000000000000 0.05179 
20 03 000000000000000000000000 0.05479 
21 03 1 000 000 00 0000 000 0000 000000 0.05479 
22 00 0000000000000000000001000 0.113,40 
23 031 0000000000000000000001000 0.1134A
 
24 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0.05479
 
25 000 000000000000000001000000 0.11340
 
26 000 0 00 00000 00000 00000000000 0.05479
 
27 000 10 00 00 00 00000000 00000000 0 0.05479
 
28 030 0 00 00000 0000 000000000000 0.05479
 
29 030 00000000 0000000 00000000 0 0.05479
 
30 000 1000000000000000000000000 0.05479
 
31 030 100000000000000000000000 0.05479
 
32 000 000000000000000000000000 0.05479
 
33 000 0 0000000 0000000 00010000 0 0.11340
 
34 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05479
 
35 000 100000000000000000 1 000000 0.11340
 
36 0D0 000000000000000000000000 0.05479
 
37 000 100001100000000000000000 0.00022
 
38 0000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02329
 
39 0 0 0101001011110000000000000 0.00526
 
40 000 0 010001000000 1 0010000000 0.12897
 
41 0000 100000000000000000000000 0.02329
 
42 0 00 010000000000000000000000 0.05479
 
43 0000 010000000000000000000000 0.05479
 
44 000 0 0000000000000000000000 0.05479
 
45 000 010000000000000000000000 "0.05479
 
46 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0.00630
 
47 000 0100000000000000 1 
48 030 0010000 0000000000000 
£9 000 0 01 0 010 00 0 00 0 00 010 

0 000 0 0000000000000000000000 
51 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 00 
52 0000001000000000000000000 
53 000 0001100000000000000000000 

0000000 0.00474
 
0000 0.00474
 

0 0 0 10 0 0.01032
 

0.05479
 
1 1 0 0 00 0 0.17649
 

0 0.02329
 
0.04771
 

FIGURE A-12 

DOCUMENT-TERM MATRIX FOR SAMPLE PROBLEM
 



nnS DOCU2NT NUOGER INFOhATON
 
EY, 1 2 3 4 5 6 7 a 910111213141516171819202122232425262728 STATISTIC 

54 0300001000000000000000000000 
 0.02329
 
55 030000100000000000000000000O 
 0.02329
 
56 0D00001000000000000000000000 
 0.02329
 
57 oo oo ooooo oooo oooooooo0 0.o329
 
50o 0000001000000000000000 

59 0000000101011110000000000 

0 0000000100000000000000000000 

61 0000000111010010001000000000 

62 00000001000a0000000000000000 

63 0000000101011110000000000000 

64 0300000100000001001000000000 

6 0000000100000000000000000000 


00 0 2329
 
0.01698
 
0.02329
 
0.00049
 
0.02329
 
0.01696
 
G.07337
 
0.0Z329
 

60 0000300 1000000 10000000000000 0.04771
 
67 0oDoo0oo0oxooo0o00o0oo00o00oooo0 ooooo0 0o 0.02474
68 0000000100000000000000000000 
 0.023?9
60 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 a 0 0 0 00a 0 0 a 0.00474
 

69 0 000000100000000000000000000 0.02329
 
70 0000000101100110000010000000 
 0.03412
 
71 0000 00111111111001110001000 0.00669
 
72 0300000010000000000000010000 0.04771
 
73 0000000011100001011100010000 
 0.07586
 
74 0D0 0000 10000000000000000000 0.02529
 
75 0000000010000000000000000000 
 0.02329
 
76 0000000010000000000000000000 0.02329
 
77 0a00000010000000000100010000 
 0.07337
 
78 0000000010000000000000000000 
 0.02s29
 
70 0 0000100110000000000000,0 003.l 
s0 0 000 00001000000000000000000 0.05479 
31 0 0090000111 1010000010000111 0.00085 

0 D0 00000000000o0000000 0 0.05479
000000 

83 00 0000 01100000000000000000 0.00474
84 00 0000 001a 1110000000000000 0.03661
85 O 0o0i0 0
o0 0 o100100100000000 0.01698
 
s 0 0 0000 000000000000000000 

l 0 0 000 0 1000110000000000000 


0 0 0 000 00 000000000000000000 

a9 0 0 0 00 01110001000100000000 

90 0 0 0000 
91 0 0 0000 
92 0 0 0000 
9 00 0000 

94 0 0 0000 

.5 0 0 0000 

96 00 0000 

97 00 00000 

98 0 0 0000 

99 0 0 0000 


i00 0
00000 

101 0 0 0000 


01001000000000000000 

01011111011000000000 

01111110000000000000 


0000000000000000000 

0 1100000000000000000 

00 100000000000000000 

0000000000000000000 


0000000000000000000 

00000001000000000000 

00000001001000000000 

000 00001000000000000 


00000001000000000000 

102 000 0000 00000 0 000000000000 

i03 00 0000 

104 0000000 


0000000000 

16 o000000000 

10; 0 0000000 

109 00000000 
a0e 0000000 
110 0000000 
111 0 00000000 
11 0000000 

113 00000000 


00 000000100000000001 

000000000000000000 


000000 0 00000000000 

000000100000000000 


0 000000100000000000 

000000010000000000 

00000000100000000000 

00000000100000000000 


000000100000000000 

00000000100000000000 

0 000000010000000000 


0.05479
 
0.00022
 
0.05479
 
0.00124
 
0.11340
 
0.00040
 
0.01690
 
0.05479
 
0.00474
 
0.02329
 
0.02329
 
0.05'79
 
0.02329
 
0.04711
 
0.02329
 
0.02329
 
0.023Z9
 
0.04 (71
 
0.02329
 

0.02329
 
0.02329
 
u.0232q
 

00.02329
 
0.02329
 
0.02329
 
C.02329
 
0.02329
 
C.02329
 

FIGURE A-13 

DOCUMENT-TERM MATRIX FO-? SAMPLE PROBLEM 



DOOCUENT NU BER INFORMATION' 
T M 2 5 4 5 6 7 8 910!11213141516171819202122232425262728 STATISTIC 

114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0.04771 
115 0D000000000000000 0000000000 0.02329 
116
117 

0000000000000000010000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 

0.02329
0.04771 

11i81198 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 a 00000000000000000001000000000 0.023290.02329 
ls 000 00 00000000000000 00000000 0.02329 
120 000000000000 0000000100000000 0.02329 
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.02329 
122 0000000000000000000 1 00000000 0.02329 
125 0000000000000000000 1 00000000 0.02329 
124 0000000000000000000i00000000 0.023-29 
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.02329 
1.26 oooooooooooooooooooo0iooo00oooo1 0 0 0 0.02329 
127 000 000000 0000000000 0 1000000 '0.02329 
129 000000000000000000000 1 000000 0.05479 
120 030000000000000000000 1 000000 0.05479 

151 0000000000000000000001100000 0.11340 
152 0000000000000000000000 1 00000 0.05479 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 00 0 05479 
154 0000000000000000000000100000 0.05479 
135 
158 

0000000000000000000000 1 00000 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 0 a 0 0 

0.05479 
0.05479 

157 0000000000000000000000 1 00000 0.05479 
148 
1S9 

0000000000000000000000 1 00000 
0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 v 0 1 0 0 0 

0,05479
0.05479 

140 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05479 
141 0o00 0000o00000000000000001 00 0.05479 
142 
143 

000 0000000000000000000001000 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0.05479 
0.05479 

144 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 a 0 0 0 0 0 0 0 0 0 1 1 1 0.07337 
145146146 

0 00000000000000000000000 0000 0000000000000000000000100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

0.023290.073370.07337 

147 0 Q0O000000000000000000000 10 0.02329 
148 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.02329 
149 00000000000000000000000000 1 0 0.02329 
150 000000000000000000 0 00000 0 1 0 0.02329 
151 0000000000 0000000000000000 0 0.02329 
152 0ooooo 0oO0OO0O00OO0OO0O00OOOO0OO0 0ll1O 0.02329 
155 0000000000000000000000000010 0.02329 
154155155 

00000000000000000000000000010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 10000000000000000000000000001 
0.023290.023290.02329 

FIGURE A-14 
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DOCUAENT-TERM MATRIX FOR SAMPLE PROBLEM 



COLUAN MATRIX COLUMN E MENTS COST 
NDIME 

4
COErIC-NTS 

I i.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 0. 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 	 0. 0. 0- 0. 0. 1.00 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. j. 
0, 0. 0. 1.00 1.00 0. 0. 0. 0. 0. 

3 0. 0. 0. 0. 1.00 0. 1.00 0.0. 0. 1.00 0. 0. 0. 0. 0. 0. 1.00 0. 
0. 0. 1.00 0. 0, o. 0. 0. 0. 0. 

4 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
0. 0. 0. 1.00 1.00 0. 0. 0. 0. 0. 

5 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0000 0. 1.O0 0. 0. 0. 0. 0. 0. 
0. 0. 0, 0. 0. 0. 0. 0. 0. 0. 

& 0. 0. 0. 1.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
0. 0. 0. 1.00 0. 0. 0. 0. 0. 0. 

7 0. 0. 0. 1.00 0. 0. 0. 0, 0. 0. 0., 0. 0. 0. 0. 0. 0. 0. 0. 
3. O 0. 0. 1.00 0. 0. 0. 0. 0. 

a 0. 0. 0. 1.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. D. 0. 0. 
0. 0. 0. 1.00 0. 0. 0. 0. 0. 0. 

9 0. 0. 1.00 0. 0. 0, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 
0. 0. 0. 0. 0. 0. 1.00 0. 0. 0. 

10 	 0. 0. 1.00 0. 0. 0. 0. 0. 0. 0. 0, 0. 0. 0. 0. 0. 0. 0. 0.
 
0.- 0. 0. 0. 0. 0. 1.00 0. 0. 0.
 

11 	 1.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 
0, 0. 0. 0. 0. 0. 1.00 0. ,0. 0.
 

12 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 " 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.
 
-1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.O0 -1.00 -1.00
 

13 -0. -0. -0. -0. -0. -0.00 -0. -0. -0. -0. -0. -0. -D. -0. -0. -0. -. -0. 0.
 
-0. -0: -0. -1.00 -1.00 -0. -0. -0. -0. -0.
 

14 -0. -0. -0. -0. -1.00 -0. -1.00 -0. -0. -0. -1.00 -0. -0. -0. -0 -0. -0. -1.00 0.
 
-3. -0. -1.00 -0. -0. -0. -0. 0 -O -0.
 

.5 -0. -0. -0. -0. -0. -0. -0. -0. 0. -0. -0. ".Q -0. -0. -0 -0 . -0. 0.
 
- . . -0. -1.00 -1.00 -0. -0. -0. -0. -0.
 

16 -0. -0. -0. -0. -0. -0. -0. -0. -0. -1.00 -0. -0. -1.00 - 0 . -0. -0. 0.
 
-0. -0. -0. -0. -0. 0. - - -0. -0.
 

"17 -0. -0. -0. -1.00 -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. 0.
 
-1. -0. -0. -1.00 -0. - -0-. -0. -0.
 

is -0. -0. -v. -. 00 - 0.-0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. 0.
 
-0. -0. -0. -0.-1. 00 -0. -0 -0. -0. -0.
 

19 -0. -0. -0. -1.00 -0. -0. -0. -0. -0. -0. -0, -0. -. -.-0. -0. -0. -0. 0.
 
-2. -0. -0. -. 00 -0. -0. -0. -0. -00 -.
 

20 	 -0. -0. -1.00 -0. -0. -0. -0. -0. -0. -0. -0 . -0. -0. -0. -0. -0. -0. 0.
 
- 0 -0. -0. -1.00 -0. -0.
. R0 -D. -0. 


22 - . .00 -0 . -0. -0. -0. -0. -0.0. .00. -0. -0. -0. -0. 0.
 
-3. -0. -0. -0. -0. -0. -1.00 -0. -0. -0.
 

22 -1.00 -0. -0. -0. .0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. 
 D.
 
-0. -0. -0. -q. -0. -0. -1.00 -0. -0. -0.
 

23 1.00 0. 0. 0. 0. 0. 0. 0. 0- 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0000 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.000024 0. 0.00 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

S0. 0. 0. 1.00 0. . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0000 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

6 0. 0. 0. 1.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0000 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2"7 0. 0. O. 0. 1.00 0. 0. 0. 0. 0. 0. 0. O. 0. 0. 0. O0 . 1.0000
 
D. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 

28 0. 0. 0. 0. 0. 1.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0000 

FIGURE A-15 

LP STRUCTURil. MATRIX 



CO'INMATRIX COLMNM MEM TS Cos-, 
W"uBER COEFFICIEMPS 

D. 0. 0. 0. 0. O. 0. 0. 0. 0. 
29 O. 0. 0. 0. 0. 0. 1.00 0. 0. O. 0. 0. 0. O. 0. O. 0. O. 1.0000 

D. O. 0. O. 0. O. 0. 0. 0. O. 
30 0. 0. O. 0. 0. 0. 0. 1.00 O. 0. O. 0. O. 0. 0, 0. 0. 0. I .0000 

a. 0. 0. 0. O. 0. 0. 0. O. O. 
IL 0. 0. 0. 0. O. O. 0. 0. 1.00 0. O. a. 0. 0. 0. 0. O. 0. i .0000 

0. O. 0. 0. 0. O. 0. - 0. 0. 0. 
32 0. 0. 0. O. 0. O. 0. O. 0. 1.00 0. 0. 0., O. O. D. 0. 0. ,1.0000 

0. 0. 0. O. "a.- 0. O. 0. 0. 0. 
33 O. 0. 0. 0. 0. 0. 0. 0. 0. 0. I.Ou 0. O. O. 0. O. 0. D. 1.0000 

O. 0. 0. 0. 0. 0. O. 0. . 0. 0. 
34 0. 0. O. 0. 0. O. 0. O. 0. 0. 0. 1.0a0O. O. 0. O. 0. 0. 1.O0000 

0. 0. - O. 0. 0. 0. 0. 0. 0. 0. 
35 V. 0. U. a. O 0 . Q* 0. a. V. U. O. 1.00 0. U. 0. U. U. 1.0000 

O. O. 0. 0. 0. 0. 0. 0. 0. 0. 
36 0. 0. 0. O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.00 0. O. 0. 0. 1.0000 

0. O. 0. 0. O. 0. 0. O. 0. 0. 
37 0. 0. 0. O. 01. O. 0. O. 0. 0. 0. O. 0. O* 1.00 0. 0. 0. L.0000 

0. 0. 0. 0. O. 0. 0. 0. 0. 0. 
35 0. 0. O. 0. 0. 0. 0. O. 0. Q. 0. 0. O. D. O. 1.00 0. D. 1.0000 

D. 0. 0. 0. O. O. 0. 0. 0. O. 
39 0. 0. 0. 0. 0. 0. 0. 0. O. O. 0. 0. 0. 0. O. Q. 1.00 0. 1 .0000 

O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
,#0 0. O. 0. 0. 0. 0. O0 . 0. 0. O. O* 0. 0. 0. 0. O. 0. ,1.00 1.0000 

O. 0. O. 0. 0. O. O. O. O. 0. 
41 O. O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. O, 0. 0. 0. 0. 0. 1.0000 

1.00 O. 0. 0. 0. 0. 0. O. O. O. 
42 0. 0. 0. 0. 0. 0. 0. O. O. 0. 0. O. 0. 0. O. 0. O. 0. 1.0000 

0. U700 0. O. O. D. O. 0 0.° 0. 
43 0. 0. 0. O. O. 0.. 0.* 0. 0. O. 0. 0. 0. O. 0. D. 1.0000 

O. 0. I.O 0 . O. O. 0. 0. 0. 0. 
44 0. 0. 0. O. 0. O. 0. 0. 0. 0. O. O. 0. O. 0. 0. O. 0. 1.0000 

3. 0. 0. 1.00 0. 0, 0. 0. 0. O. 
45 0. 0. 0. 0. O. 0. 0. 0. 0. 0. O. 0. 0. D. 0. 0. 0. D. 1.0000 

0. 0. 0. . 0. 1.00 0. 0. 0. 0. 0. 
46 0. 0. 0. 0. 0. 0. 0. 0. O. 0. 0. 0. 0. 0. 0. 0. 0. 0. L.OOOO 

D. O. O. 0. O. 1.00 0. 0. 0. O. 
47 0. 0. 0. 0. 0. 0. 0. O. 0. 0. O= . O. 0. 0. 0. 0. 0. 1.0000 

D. O. 0. O. 0. O. 1.00 0. 0. 0. 
48B 0. 0. 0. 0. 0. 0. 0. O, 0. O. 0. 0. 0. 0. O. 0. 0. O° 110000 

O. 0. 0. 0. O. O. O. 1.00 O, 0. 
4,9 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. O. 0. 0. 0. 0. 0. O. D. 1.0000 

O. O. 0. 0. 0. 0. O. O. 1.00 O. 
50 0. 0. O. O. 0. 0. 0. O. 0. O. 0. 0. 0. 0. O. 0. 0. O. 1.0000 

0. 0. 0. O. 0. 0. O. O. 0. 1.00 
51 -l.0D 0. 0. 0. 0- O. 0. O. 0. 0. 0. O. 0. 0. 0. 0. 0. 0. 1.0000 

0. O. O. O. O. O. O. 0, 0. 0. 
5Z 0. -1.00 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. O. 0. 0. 0. 0. O. 1.0000 

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
53 O. O, -I.00 0. 0. 0. 0. 0. 0. O. O. a. D. 0. 0. 0. 0. D. 1.0000 

0. 0. 0. 0. 0. 0. 0. 0. O. O. 
54 0. 0. 0. -Z.00 0. O. 0. 0. 0. 0. 0. 0. O. 0. 0. 0. 0. 0. 1.0000 

0. 0. O. 0. 0. 0. O. O. O . U. 
55 0. 0. o. 0- -1.00 o. 0- 0. o0 .0 o. o 0.. 0. o. 0. D. 1.0oo0o 

D. 0. 0. 0. 0. O. 0. 0., 0. 0. 
56 0. 0. 0. 0. O. -1.00 0. 0. 0. O. O. 0. O. O. 0. O. O. 0. 1.0000 

0 0.. O. 0. 0. 0. O. 0. 0. 
57 0. 0. 0. 0. O. 0. -i.00 0. 0. 0. 0. 0. O. 0. 0. 0. O. 0. 1.O0000 

O . 0°. 0. 0. 0. 0. 0. O. O. 
58 0. O 0. 0. O. O. 0. -1.00 0. 0. 0. 0. a. 0. 0. 0. 0. 0. 1.000D 

FIGURE A-') 
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COU021 MATRIX COLTh ELEMENTS COST 
NUMBER OOEFFIOIENTS 

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
59 0. 0. 0. 0. 0. 0. 0. 0. -1.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0000 

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
60 0. 0. 0. 0. 0. 0. 0. 0. 0. -1.00 0. 0. 0. 0. 0. 0. 0. 0. L.0000 

61 
0. 0. 

0. 0. 
0. 

0. 0. 
0. 0. 0. 

0. 0. 0. 
0. 0. 0. 

0. 0. 
0. 

0. -1.00 0. 0. 0. 0. 0. 0. 0. 1.0000 
0.. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

62 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1.00 0. 0. 0. 0. 0. 0. 1.0000 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

63 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1.00 0. 0. 0. 0. 0. 1.0000 

64 0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0, 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0., 0. 0. -1.00 0. 0. 0. 0. 1.0000. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

65 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.° .0. 0. 0. -1.00 0. 0. 0. 1.0000 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

66 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1.00 0. 0. 1.0000 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

67 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0,. 0. 0. 0. 0. 0. -1.00 0. 1.0000 

68 0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 0. 0. 0. 0. 0. 0. -I.VO 1.0000 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

69 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0000 
-1.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 

70 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0,. 0. 0. 0. 0 0. 0. 0. 1.0000 
0. -1.00 0. 0. 0. 0. 0. 0., 0. 0. 

71 0. 0. 0. 0. 0. 0. 0. 0. 0. , 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0000 

72 
0. 

0. 
0. 

0. 
-1.00 

0. 0. 
0. 0. 

0. 0. 
0. 0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. -- 0 0. 0. . 0. 0. 0. 0. 1.0000 
0. 0. 0. -i.00 0. 0. 0. 0. 0. 0. 

73 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0000 
0. 0. 0. 0. -1.00 0. 0. 0. 0. 0. 

74 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. O. 0. 0. 0. 0. 0. 0. 1.0000 
0. 0. 0. 0. 0. -1.00 0. 0. 0. 0. 

75 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0000 
0. 0. 0. 0. 0. 0. -1.00 0. 0. 0. 

76 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0., 0. 0. 0. 0. 0. 0. 0i 1.0000 
0. 0. 0. 0. 0. 0. 0. -1.00 0. 0. 

77 0. . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0000 
0. 0. 0. 0. 0. 0. 0. 0. 4 -1.00 0. 

78 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0000 
0. 0. 0. 0. 0. 0. 0. 0. 0. -1.00 

RIGHT HAND SIDE 
7.00 1.00 5.00 9.00 1.00 5.00 1.00 .1.00 2.00 4.00 1.00 3.00 3.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 6.00 3,00 1.00 8.00 1.00 1.00 1.00 

FIGURE A-I, 

LP STRUCTURAL MATRIX 01 



BASIC SOLUTION SUMMARY 
(PROGRAM TERM NO.=-1 FOR SLACKO FOR CONSTANl,-2 FOR ARTIF.) 
(BASIC VAR. NO.=O FOR ARTIF. VAR.) 

BASIC PROGRAM INDEX TERM BASIC VARIABLE 
VAR NO. TERM NO. TERM WEIGHT TYPE INF. STAT. 

23 -1 68N10674 SLACK 3,00000 REG. 
1 0 CONST. 1100000 REG. 0. 
9 23 THIN FILMS 4.00000 REG. 0.11340 

15 131 TEMPERATURE SENSORS -4.50000 REG. 0.11340 
24 -1 68N12280 SLACK 0. REG. 
2 51 CAIEDORY 14 4.00000 REG. 0.17649 
55 -1 68N15620 SLACK -0. REG. 
3 40 FIRES 0. REG. .0.12897 
31 -1 68N17925 SLACK 1.00000 REG. 
32 -1 68N18744 SLACK i.00000 REG. 
57 -1 68NI7367 SLACK -0. REG. 
24 -1 68N10746 SLACK 2o00000 REG. 
5 90 PRESSURIZED CABINS 2.00000 REG. 0.11340 

64 -1 68N18750 SLACK 0. REG. 
65 -1 68N18751 SLACK 0. REG. 
66 -1 68N20005 SLACK 0. REG. 
67 -1 63N20058 SLACK 0. REG. 
40 -1 68N20870 SLACK 0.. REG. 
69 -1 68N21752 SLACK 0. REG. 
70 -1 68N24756 SLACK 0. REG. 
43 -1 68N24871 SLACK -0. REG. 

6 35 WARNING SYSTEMS- 5.50000 REG. 0.11340 
7 33 TEMPERATURE MEASURING IN 2.50000 REG. 0.11340 
74 -1 68N3014 SLACK 0. REG. 
11 8 ORGANIC COMPOUNDS 3.00000 REG. 0.11340 
48 -1 68N36272 SLACK 0. REG. 
49 -1 6BN36274 SLACK 0. REG. 
50 -1 63N36275 SLACK 0. REG. 

OPTIMAL VALUE OF OBJECTIVE FUNCTION= 7.00000 

FIGURE A-18 
LP SOLUTION SUMMARY " 
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DEPENDENT MEASURED PREDICTED 
VARIABLE VALUE VALUE RESIDUAL 

1 7.00000 4.00000 3.00000 
2 1.00000 1.00000 0. 
3 5.00000 5.00000 0. 
4 9.00000 9°00000 0. 
5 1.00000 1.00000 0. 
6 5.00000 5.00000 0. 
7 1o00000 1.00000 0. 
.8 1.00000 1.00000 0. 
9 2.00000 1.00000 !00000 
10 4.00000 3.00000 1.00000 
11 1.00000 1.00000 0. 
12 3.00000 1.00000 2.00000 
13 3.00000 3.00000 0. 
14 1.00000 1.00000 0. 
15 1.00000 1.00000 0. 
16 1.00000 1.00000 0. 
17 1.00000 1.00000 0. 
18 1.00000 1.00000 0. 
19 1.00000 1.00000 0. 

20 1.00000 1.00000 0. 
21 1.00000 i.00000 0. 
22 600000 6°00000 0. 
23 3.00000 30 
24 1.00000 1.00000 0. 
25 8.00000 8.00000 0. 
26 1.00000 1.00000 0. 
27 1.00000 1.00000 0. 
28 1.00000 1.00000 0. 

LENGTH OF RESIDUAL VECTOR (LI SENSE)h 7.00000
 

F[GURE A-19 

COMPUTATION OF RESIDUALS FOR FITTED MODEL 
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A. ORIGINAL COEFFICIENTS
 

RIGHT HAND SIDE= a0
 
VAR INDEX INTEGER
 
NO. TERM COEFFICIENT COMPLEMENT
 
I THIN FILMS 40 0 
2 TEMPERATURE SENSORS -45 0 
3 CATEGORY 14 40 . 0 
4 PRESSURIZED CABINS 20 0
 
5 - WARNING SYSTEMS 55 0 
6 TEIIPERATURE MEASURING IN 25 0 
7 ORGANIC COMPOUNDS 30 0 

B. CANONICAL FORl4 COEFFICIENTS 

RIGHT HAND SIDE= 65 
J COEF(J) COMPL(J) ORDER(JI. 
1 55 0 
2 45 
3 40 0 3 
4 40 0 1 
5 30 0 7 
6 25- 0 6 
7 20 0 4 

FIGURE A-20 

INITIAL AND CANONICAL FORM COEFFICIENTS FOR THE PSEUDO-BOOLEAN INEQUALITY 



A. BASIC SOLUTIONS OF CANONICAL INEQUALITY 

SOLUTION VARIABLE
 
NUIBER 1 2 3 4 5 67 

1 0 000 111 
2 000 1100 
a 0 0 0 1 0 10 
4 0 0 1 1 000 
5 00 1 0 100 
6 00 1 0 1010 
7 0 1 1 0000 
8 0 10 1000 
9 0100100 

10 0 100 010 
11 0 100001 
12 11 0 0 000
 
13 1 0 10 000
 
14 1 0 01 0 00
 
15 1 0 00 1 00
 
16 1000010
 
17 1000001
 

B SOLUTION FAIILIES OF ORIGIIAL INEQUALITY 

SOLUTION VARIABLE HIN BASE MAX RHS SIZE
 
NUMBER *1 2 3 4 5 6 ' 

1 0 I 0 I 0 111 30 30 30 65 4 

2 1-' ' 0 2.1 P5 As 70 65 3 
3 1 10 20 0 0 20 4G 65 3 
4 1 1 1 2 0 2 2 35 35 110 65 3 
5 0 1 1 2 0 2 - 25 25 70 65 
6 0 1 1 2 0 1 0 20 20 40 65 
7 2 1 20 22 40 40 155 65 1 
8 1 0 U 2 0 22 40 O 115 65 1 
9 0 0 0 2 0 2 - 30 -30 75 65 1 

I 0 0 0 2 0 1 0 25 25 45 65 1 
11 0 0 0 1 0 0 0 20 20 20 65 1 
12 2 0 2 2 1 2 2 55 55 210 65 1 
13 2 1 1 2 1 2 2 50 50 165 65 3 

14 1 0 2 12 2 50 50 125 65 3 
15 0 1 0 2 1 2 1 40 I0 85 65 3 
16 0 1 0 2 11 0 35 35 55 65 3 

17 0 1 0 1 1 0 0 30 30 30 65 3 

FIGURE A-21 

SOLUTIONS TO THE PSEUDO-BOOLEAN INEQUALITY 
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