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PREFACE
 

OBJECTIVE
 

The objective of this engineering study was to determine the practicability
 

of utilizing a Chamber "B" xenon source module for the radiation source
 

assembly on the Chamber "B" solar simulator system.
 

SCOPE OF WORK 

This effort was divided into three phases.
 

In Phase I, the geometric considerations required for successful interchange
 
of optical components were explored. This is covered by Section 1 of this
 

report.
 

Phase II evaluated the anticipated test volume performance of the Chamber "D"
 

solar simulator system utilizing the Chamber "B" xenon source module. 

Phase III, covered in Section 3, investigated the requirements for mechani­
cal interchange of the two source units and the changes necessary for utili­

ties interfacing with the "B" chamber source module.
 

CONCLUSIONS
 

The interchange of source modules presents no optical problems. A systen
 

efficiency analysis indicates that the Chamber "B" 
xenon solar module can be
 

utilized to provide a one solar constant irradiance within the Chamber "D"
 

test volume.
 

Comparison of the outline drawings of the source enclosure for "D" chamber
 

and the source module for "B" chamber suggests that modifications of the
 

enclosure might be relatively uncomplicated. More detailed information
 
about the enclosure, and more specific information concerning the "D" chamber
 

power supply, control console and utilities would be a prerequisite to
 

finalizing specifications.
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1.O 	 OPTICAL COMPATIBILITY
 

1.1 	 To del,ermbtc the eaibility o' fitting the 11 chambler source module 

into the D chamber solar simulator, it was prerequisite to examine 

any change of optical geometry which might occur. To assist in the 

examination the simplified schematic of Figure i was constructed. 

On this figure is shown the ellipsoid "E" and a pair of lenses 

"L-I" and 	"L-2". Rays from points on the ellipsoid which penetrate
 

the first 	lens will penetrate the second lens and form thereon an
 

image of the ellipsoid. This image 'is the limiting aperture of the 

system; rays which might penetrate the second lens outside this 

aperture would become stray light inside the vacuum vessel. 

1.2 	 The solid angle A'OB' formed by the ellipsoid image is equal to
 

the solid angle A OB formed by the ellipsoid; thusin order to
 

eliminate the possiblity of stray light a replacemeit collector must
 

fit inside, or match angle A OB . The large aperture of the 24-inch
 

ellipsoid is 23.16 inches diameter; the corresponding dimension of the
 

22-inch aconic is 22.16 inches. To match the angle of the ellipsoid,
 

which has been assumed to be mounted 50.0 inches from.'the mosaic lens
 

assembly, the aconic would be installed: 22.16 X 50.-0 47.84 inches

23116 x5.
 

from the mosaic lenses.
 

1.3 	 Figure 3 illustrates how the B chamber source module might be fitted
 

to the existing enclosure at the solar port of D chamber. By re­

moving the "conical" end of the structure, the new source.,module could
 

be installed with the aconic collector in the same location as the
 

ellipsoid. This location would obviate geometric problems and would.
 

afford better are utilization than would the 7.84 inch dimension
 

calculated above.
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2.0 	 PERFORMANCE CONSIDERATIONS
 

2.1 	 The probable power input required for the B chamber source module to
 

meet the operating specifications of D chamber was determined by
 

estimating the system efficiency. The method used is the one
 

.described in Section 5,pages 5-22 through 5-24, of the "Handbook
 

of Solar Simulation for Thermal Vacuum Testing", published by the
 

Institute of Environmental Sciences; these efficiency factors are
 

also listed and defined in Appendix A.
 

Results of this determination, listed in Table I, show that required
 

input power to the B chamber source module to be 15.46KW as contrasted
 

to the D chamber source assembly requirement of 12.09KW for one solar
 

constant intensity in the test volume.
 

2.2 	 Note that in Table I the two factors which differ are those associated
 

with the only optical element which was changed: the collector. The
 

collection angle of the aconie, 79.80, is less than the 90.40 angle of
 

the ellipsoid. The aconic surface starts at 52.10 and ends at 131.90;
 

the ellipsoid surface begins at 45.60 and terminates at 136.00. The
 
° 
6.50 starting difference and the 4.1 end difference lie in low energy
 

level regions of the lamp output; thus flux collection of the aconic
 

collector was conservatively estimated to be 94% of-that afforded by
 

the ellipsoid.
 

2.3 	 The second differing factor is arc image utilization. In the D chamber
 

application the aconic collector is to be used at 50 inches from the
 

mosaic lenses instead of the design distance of 72 inches. As ,aresult
 

the arc utilization factor is considerably degraded. Thattthis loss
 

may be appreciably reduced is shown in Appendix B. In this study, the
 

location of the lamp relative to the collector focus was varied in,
 

order to obtain an optimum distribution of lamp energy at the mosaic
 

lenses. Results suggested that the arc utilization factor of the aconic
 

might equal 83% of that of the ellipsoid.
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TABLE I 

SYSTEM EFFICIENCY COMPARISON 

FACTOR 
 VALUE 

ELLIPSOID ACONIC
 

Power Conversion 
 •52- .52
 

Flux Collection 
 .80 .75
 
Collector Reflectance .86 .86 
Obstructions 
 .98 .98
 
Arc Utilization 
 .84 .70
 

Packing Factor 
 .84 .84
 
Lens Transmission 
 .85 .85
 
Window Transmission 
 .92 .92
 

Spectral Filter 
 .70 .70
 

Vignetting and Spillover 
 .98 .98 
Collimating Mirror .86 .86 

System Efficiency .1141 .0892 

Power on target = target area (ft2) X solar constant/ft4 

Target area = hexagonal - 3.5 ft. across flats 

Area = (3.5 ft.) 2 (.8660254) = 10.609 ft
2 

Power on target 10.609 ft2 X 1301.3792 KWFt 2 1372K 

Input power = (power on target) - (system efficiency) 

ELLIPSOID ACONIC 
Input power (KW) 12.0 15.5 

Efficiency factor as listed and exblained in section 5 of the 
"Handbook of Solar Simulation for Thermal Vacuum Testing" and 

Appendix A. 
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2.4 Uniformity in the test volume is entirely the result of the integrating 

action of the mosaic lens assembly. Each individual successive lens 

pair completely illuminates the test volume, thus the intensities of 

all lenses are summed in the vacuum vessel. For this reason, the 

interchange of source modules will not affect test volume uniformity. 
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3.0 "B" CHAMBER XIH-300 SOURCE MODUI SPECIFICATION FOR "D" 
CHAMBER UTILIZATION 

3.1 Introduction
 

This specification describes the "B" chamber XH-300 self­
contained Xenon source module (Spectrolab Drawing 019131 and Fig. 2)
 
for illuminating the "D" chamber mosaic lens assembly.in
 
the "D" chamber solar simulator. The module is designed
 

around a Xenon short are lamp source and contains various
 

required components, including the lamp starter, lamp adjusting
 
mechanism, a metal aconic source collector, and all thermal,
 
electrical and environmental control systems necessary to
 
permit long-term safe operation of the lamp. (See Spectrolab
 

Drawing No. 01669).
 

The XMH-300 is designed to work in conjunction with a
 
power supply capable of meeting the Xenon short arc lamp
 
operating requirements (reference Spectrolab's I0-52).
 

3.2 Subsystem Description
 

The XMH-300 is composed of six major subsystems as detailed
 

in the following paragraphs.
 

3.2.1 Light Source
 

A high performance 25 KW xenon short arc lamp is used in
 
the XMH-300 source module. The lamp utilizes tungsten anodes
 
with high speed cooling passages and an aerodynamic cathode
 
to minimize arc/boundary layer interactions.
 

3.2.2 Starter 

The XMH-300 is protided with a 70 KV starter to ignite the
 
lamp. Lamp starting is provided by a 1J5V AC signal to the
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starter cij cuit. Upon starting of the lamp,,a current
 

sensing switch is required in the power supply to instantaneously
 

disconnect the starter.
 

3.2.3 Gas Cooling Convector
 

Special cooling gas paths control the flow of gas across the 

quartz bulb of the arc lamp. Controlled symmetrical forced
 

convection provided by this system eliminates arc wander caused
 

by uneven lamp envelope cooling. 

3.2.4 Aconic Collector
 

The high efficiency 22-inch aconic collector is positioned around 

the light source to collect the light and direct it upon the 

transfer optics aperture. The collector has a highly durable 

nickel electroformed optical surface and is overcoated with 

vacuum deposited aluminum. The collector is fabricated of 

composite material to provide an optimum combination of heat 

transfer and strength. Copper cooling tubes are thermally
 

bonded to the outside of the collector to transfer heat to the
 

liquid coolant system. 

3.2.5 Energy Absorber
 

The energy absorber is inserted into the small diameter 

of the collector to absorb arc imaged energy reflected from
 

the anode which would cause additional heating of the cathode
 

seal. The energy absorber is machined to an analytically 

determined shape, coated with high temperature resistant black
 

paint and cooled by the liquid coolant system.
 

3.2.6 Lamp Adjustment Mechanism
 

An X-Y-Z lamp adjustment mechanism is attached to the cathode 

end of the lamp and, in conjunction with the anode positioning 

spider, allows are adjustment. The adjustment mechanism is 

designed to be easily operated for quick adjustment of the lamp 

in the XNH-300 while in operation. Access to the mechanism is 

through a specially interlocked cover on the source module. 



3.3 Safety Interlocks and Instrumentation 

The following safety interlocks, instrumentation and controls
 

are provided as a part of the rMH-300 to provide the proper 

operating conditions while protecting the xenon lamp. 

3.,3.1 Flow Switch 

The water circuit within the source module (see Spectrolab
 

Drawing No. 019958) is equipped with a flow switeh to alarm 
upon low flow rate. Alarm contacts can be connected to an 

audio or visual circuit or utilizing a Spectrolab module
 

controller.
 

3.3.2 Light Output Sensor (Optional)
 

The XMH-300 source module is equipped with a special ultra­
linear high intensity photovoltaic cell positioned to measure 
the direct light output of the light source. This sensor output 

is wired to connect to the Spectrolab module controller. It can
 

be measured and recorded with a voltmeter during system preventa­

tive maintenance to record the condition of the light source.
 

3.3.3 Lamp Adjust Mechanism Interlock 

Removal of the lamp adjust mechanism cover activates an interlc
 

which prevents activation of the 70 KV starter. This system
 

allows quick adjustment of the lamp in an operating source 

module without exposure to the 70,000 volt starter pulse. 

3.4 Utility Requirements 

The following summary of utility requirements outlines the 
interconnections provided with standard Spectrolab water cooled
 

power cables and electrical control cables. 
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3.4.1 D.C. Lamp Power 

3.4.2 

Up to 650 amps and 65 volts DC is provided for the lamp anode 
and cathode by quickly removable Spectrolab liquid coolant 

carrying power cables, Figure 4B. Power is routed within the 
module to the anode and cathode with careful attention to assure 

less than 1 gauss of unsymmetrical magnetic flux at the lamp arc. 

(see alternate method of power and water cable hook-up, Figure 

4A.) See Spectrolab Drawings 019958 and 019142 for plumbing 
differences between chambers "B" and "D". 

Liquid Coolant 

Coolant to and from the JMH-300 is GFE. If lamp is Spectrolab 

supplied the coolant flow requirements are 5.5 GEM at 150 PSIG 

for the anode, cathode, starter, collector and energy absorber. 

Coolant temperature at the inlet must be below 1OOcF for the 

above flow rates, but should not be colder than 80WF to prevent 

condensation on the collector surface. See Drawing No. 019958 

for coolant flow diagram. 

3.4.3 Control and Alarm Cables 

Control and alarm cables are required through a single quick 

disconnect which also includes the 115V power. 

3.5 Codes and Standards 

3.5.1 All fluid coolant lines shall be designed to meet the National 

Elbctric Safety Code. 

3.6. Interchangeability 

3.6.1 The engineering study revealed that the Spectrolab "B" chamber 

source module could be fitted into the "D" chamber enclosure (See Fig. 

requiring only changes in the mounting configuration of the 

structure to provide interchangeability. The utility connections, 

also require modification o allow for the "B" chamber to "D" 

chamber power supply and control console differences. See Figures 

4A and 4R. 

3) 
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3.6.2 
 Utility interfaces for the"B" chamber XMH-300 source"module
 
will require re-design to utilize the present power supply
 
and control console. The degree of re-design to the environ­
mental enclosure could not be evaluated; but should require
 
only an adaptor ring or equivalent.
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APPENDIX A 

DEFINITION OF EFFICIENCY FACTORS 

1.0 EFFICIENCY FACTORS 

The basic efficiency factors which contribute to the overall system
 

efficiency for all approaches considered are described below. The
 

importance of system efficiency cannot be over-emphasized due to
 

its relationship to system cost and test volume irradiance require­

ments.
 

Those efficiency factors which make up the total system efficiency
 

are 	grouped into two basic categories consisting of those factors
 

associated with the conversion of electrical input power to radia­

tion incident on to a circular clear aperture at the transfer 

optical system, and those associated with the effectiveness of the
 

transfer optical system and collimating optics in transferring the 

radiation to the test volume. 

1.1 SOURCE SYSTEM EFFICIENCY 

Those efficiency factors associated with the source system efficiency 

are defined below: 

a. 	 Power Conversion - The conversion factor is defined as the ratio 

of plasma arc emission transmitted through the quartz envelope 

to the total electrical input power. The 20 to 30 KW xenon arc
 

source utilizing water-cooled electrodes is the basic source
 

considered in this study. From absolute polar intensity distri­

bution tests conducted at Spectrolab, the power conversion factor
 

has been computed to be in the range of .52 to .58. The lower
 

value of .52 has been selected for use in the system efficiency
 

computations for all approaches.
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b. Flux -Collection Factor - The fraction of radiation emitted from
 

the lamp that is intercepted by the collector mirror is defined 

as the flux capture factor. This efficiency factot will also
 

depend to some degree upon the design of the radiation source
 

used, since the solid angle in which the radiation source emits 

radiation is a function of the electrode configuration. With
 

the latest aero-dynamically designed electrodes, the radiation 

is emitted over a larger solid angle although none of this 

additional radiation transmitted from the radiation source is 

collected by the collecting mirror. This is due to the limited 

collection angle of the collector which will be on the order of 

55 to 130 based upon the angular orientation depicted in 

Figure A-i.
 

G MAX. 

S I.AX" /3o 

FIGURE A-1. ANGULAR ORIENTATION OF 
COLLECTION ANGLES
 

The minimum collection angle is restricted to an angle that will 

allow for an adequate clearance hole in the rear of the collector 

for lamp removal. The maximum diameter is established in the 

collector optimization program. 

c. Collector Reflectance - The collector mirror reflectance will 

depend upon the protective overcoating that is supplied to the
 

vacuum deposited aluminum film. Considerable development work 

is presently in progress to develop a durable overcoating which 

can withstand the ultraviolet and ozone environment, provide 

adequate spectral reflectance characteristics, and withstand normal 

cleaning maintenance. A value of .86 has been used for the total 

reflectance value for all mirrors utilized in the various system 

approaches evaluated.
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d. 	Obstruction Factor - An obstruction factor is utilized to account
 

for usable radiation that is rejected in an optical system due to 

the presence of physical obstructions in the optical path. An 

example of such an obstruction are the utility leads to the
 

radiation source that reduce the effective open aperture of the 

collecting mirror.
 

Are 	Utilization Factor - The ratio of the radiation which strikes
 

a circular aperture circumscribing the field lens eleients of the 

transfer optical system to the total radiation reflected by the 

collecting mirrors is defined as the arc utilization factor. This
 

efficiency factor will be a function of the collector design,
 

diameter of transfer optics' entrance aperture, collector diameter, 

and 	the distance between collector and aperture plane. 

OPTICAL TRANSFER EFFICIENCY 

Those efficiency factors associated with the transfer optical system 

in the collimating optics compose the optical transfer efficiency. 

These factors consist of the following: 

a. 	Packing Factor - The ratio of the radiation incident to the clear 

aperture of the field lens elements to the total irradiation inci­

dent upon the circular aperture circumscribing the field lens 

elements is defined as the packing factor. The D Chamber system 

utilized a 31 element field lens array. If the intensity distribution
 

across the field lens array were uniform, and if the lenses were
 

without chamfers or bevels, the packing factor would be equal to the
 

frontal surface area of the 31 lenses divided by the area of the
 

circumscribing aperture. 
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b. 	 Lens and Window Transmission Factors - Fused silica or fused I
 

quartz is used for window and lens material. The total trans­

mittance of these materials over the spectral range of interest 

is on the order of .92 depending .somewhat upon the thickness of 

the individual elements. The variations in transmittance is small 

since the total absorptance for the spectral range of interest 

is very small per unit thickness. The primary transmission losses 

are associated with the quartz-air interface reflections. 

- c. Spectral Filter Factor - For the systems analyzed, it has been 

assumed that the spectral filter would be deposited upon a separate
 

quartz element rather than deposited upon a lens surface. A filter
 

factor of .70 has been determined from experience to be a realistic 

value for obtaining a good spectral match. 

d. 	Vignetting and Spillover Factor - Vignetting in a well-designed
 

optical system should be minimu. However, in the design of the 

quartz lenses, which exhibit a significant change of index of 

refraction with wavelength, it is necessary to design for a nominal 

wavelength. Hence, in an optimized designed system some loss of 

radiation in the near ultraviolet and far-infrared will be experienced 

at the projection lenses. Also, to insure uniformity of irradiation 

and spectrum across the test volume, it is necessary to design the 

system for a slightly larger test volume. The variation of material 

index or refraction and efficiency gain obtained by minimizing the 

number of optical components are the primary factors associated with 

the 	need to overspill the test volume. The vignetting and spillover 

factor provide for the accountability for these losses. 
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APPENDIX 	 B
 

1.0 	 ARC UTILIZATION COMPARISON 

1.1 	 Figure I illustrates how the "B" chamber source module might be 

fitted into the enclosure at the solar penetration of "D" chamber.
 

By locating the 22-inch aconic collector at the same distance
 

from the mosaic lenses as the 24-inch ellipsoid any effect upon
 

the decollimation half angle would be minimized.
 

I 
1.2 	 To determine optical compatibility of the aconic collector rays 

were traced from a pair of points on the optical axis to selected
 

points on 	the collector and to an image plane at the mosaic lenses. 

The pair of points on the axis were spaced 12m apart to represent 

the typical electrode spacing of a 20 IW lamp. On the collector 

surface, one point was selected for each 50 zone; the zonal angle 

was measured between radial lines centered upon the focus of the 

collector. The intersection with the image plane of rays traced 

from the two points on the axis through a common point on the 

collector formed a magnified image of the electrode gap. Using 

the same procedure, image points were computed for the-ellipsoid. 

Results were plotted on Figure 2.
 

1.3 	 The abscissa of Figure 2 is arbitrarily divided into equal spaces 

in order to permit comparison of the actually superimposed electrode 

gap images formed by successive zones of the collectors. With the 

collector 	zones equally spaced at 50, the abscissa of Figure 2 

represents these angles. Thus, the aconic points which start at
 
45 .020 are offset from the ellipsoid points which start at 

43.9800 (see Appendix C and D). The ordinate is the 

elevation, relative to the optical axis of the intersection be­

tween a ray and the image plane at the mosaic lenses. 

1.4 	 Two sets of points for the aconic collector were plotted. The
 

difference between the two aconic curves reflects the effect
 

resulting from repositioning the lamp within the collector;
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the dotted curve was interpolated to illustrate an optimum 

positioning of the lamp. One set of points for the ellipsoid 
was plotted based on Section 10.3.5 of the chamber "D" Solar
 
Installation Procedure, which indicates that the lamp is 
located with the cathode at the focus, and the anode toward
 

the large 	end of the ellipsoid. The ray trace was based upon
 
this configuration; as a result, the cathode points for the 
ellipsoid 	lie along the optical axis.
 

1.5 	 Perusal of Figure 2 leads to the conclusion that tie energy 
throughput of the aconic collector is less than that of the 

ellipsoid. Points which lie outside the region indicated as 
the mosaic lens clear aperture indicate energy lost to the
 

system. Therefore, the intensity of the arc varies from high
 
at the cathode to low at the anode, "C" points outside the 

clear aperture represent a much larger loss of energy than 

do the "A" points. 

Again, referring to the curves for the aconic collector, the 
energy loss for the pair of "triangle" curves is greater than 
that for the :rcircld pair; i.e., the gain from the more intense 
cathode end of the arc exceeds the loss from the less intense
 

anode end 	of the arc. 

1.6 	 While the more rigorous investigation required to determine the 

relative energy ratio of the two different collectors is beyond 
the scope of this report, it was estimated that the loss of 
energy entailed through the use of the "B" chamber source module 

should not exceed 20%. 

1.7 	 Appendix A consists of a set of computer ray trace printouts 
from which the points of Figure 2 were taken. Data which was 

plotted is marked on the applicable copies. 
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88.980 
93.980 
98.980 

10 3 98V 
108.980 
113.980 
118.980 
123.980 
128.980 

16.6764 
14.2813 
12.3651 
10.8184 
9.5583 
8.5224 
7.6635 
6.9457 
6.3416 
5.8298 
5.3938 
5.0207 
4.6999 
4.4235 
4.1846 
3,9779 
3.7992 
3.6448 

11.5803 
10.7750 
10.0011 
9.2713 
8.5895 
7.9553 
7.3659 
6.8177 
6.3066 
5.8289 
5.3808 
4.9591 
4.5607 
4.1892 
3.8234 
3.4796 
3.1504 
2.8333 

11.9999 
9.3730 
7.2714 
5.5750 
4.1930 
3.0568 
2.1148 
1.3276 
0.6650 
0.1037 
-0.3744 
'0..7837 
-1,1354 
-1.4387 
-1.7007 
-1.9273' 
-2.1234 
-2.2927 

0.0000 
0.0000 
0.0000 
0'0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.000o 
0000 
0.0000 

-1.0627 
-1.4062 
-1.79b2 
-2.2325 
-2.7005 
-3.1912 
-3.6917 
-4.1876 
-4.6640 
-5.1059 
-5.4986 
-5.8290 
-6.0856 
-6.2591 
-6.3429 
-6.3327 
'-6.2268 
-6.0262' 

1.0628 
1.4062 
1.7982 
2.2326 
2.7006 
3.1913 
3.6917 
4.1877 
4.6641 
5.1059 
5.4986 
5.8290 
6.0856 
6.2592 
6.3430 
6.3327 
6.2269 
6.0262 

0.2125 
0.2812 
0.3596 
0'4465 
0.5401 
0.6382 
0.7383 
0.8375 
0.9328 
1.0211 
1.0997 
1.1658 
1.2171 
1.2518 
1.2686 
1.2665 
1.2453 
1.2052 

3.0776 
3.7614 
4.4993 
5.2855 
6.1142 
6.9789 
7.8731 
8.7901 
9.7227 
10.6640 
11.6068 
12.5438 
13.4680 
14.3724 
15.2500 
16.0941 
16.8984 
17.6567 

19 
20 
21 
"92 
23 
24 

.26 
27 
28 

13bU:4iw 
138.980 
143.980 

-148.8980 
153.980 
158.980 
15"163.980 
168.980 
173.980 
it&.980 

Z,3-Tl r8 
.3.3978 
3.3009 

-3.2195 
3.15Z3 
3.0983 

'-3.0566 
3.0266 
3.0079 
-3.0002 

2 
2.230C 

* 1.9411 
1.6591 
1.382E 
1.1113 
0.8435 
0.5785 
0.3154 
0.0533 

:2.4M86 
-2.5636 
-2.6698 
-2.7591 
-2.8328 
-2.8921 
-2.9379 
-2.970B 
-2.9913 
-2.9997 

-OW TO 
0. 
.O000 
O.o00O 
0Oo00o 
0.0000 
0.0000 
0.O00Q 
0.0000 
0.0000 

-5.7336 
-5.3b39 
-4.8936 
-4.3603 
-3.7697 
-3.1103 
-2.4131 
-1.6814 
-0.9258 
'-C.1574 

5.73P7 
5.3540 
4.8937 
4.3603 
3.7627 
3.1104 
2.4131 
1.6814 
0.259 
0.157Z 

1.1467 
1.0708 
019787 
6.8726 
0.7525 
0.6220 
0.4826 
0.3362 
0.1851 
0.0314 

18.3632 
19.0126 
19.5299 
20.1207 
20.5710 
20.9473 
21.2469 
21.4673 
21.6071 
21.6650 



337118,. NnASA MSC HOUSTON CH, 13ER D At .~4~F 

FILT ANGLE . 

£CLLECTUR 'FACE'TO 
GONJUGATE FOCAL PLANE 

:IELk LENS DIAM (UF 

3EMI-INTERFUCAL LENGTH 

IMI-MAJ0R AXIS 

CCENTRICITY 

= 

= 

= 

-5.73249 

179.09780 

5.00000 

91.99154 

95.24736 

0.96581 

DEGREES' 

Z COORDINATES OF RAYS n 183.062q8 

WIN At FOCUS 

r ANGLE 
DE6 

o3.02C 
2 60.020 
3 55.020 
4 50.020 
5 45.020 

-

,ARC LENGTH = -0,23622 

RADIUS AY AZ 

9.3896 8.5114 3.9651 
10.6075 9.1883. 5.3004 
12.1188 9.9297 6.9474 
14.0210 10.7440 9.0086 
16.4546 11.6394 11.6309 

RlY 

-18.3767 
-18.3166 
-18.3166 
-18:3766 
-18.3766 

kZY 

-14.25d0 
-14.9138 
-15.5361 
-16.09"1 
-16.633 

ARC IMAGE 
LE4GTH 

-4.1187 
-3.4627 
-2.84b4 
-Z.2804 
-1.7?32 

RArIT 
AACIM/DF 

-0.237 
-0.6925 
-0.5692 
-0.4560 
-0.354C 

0A4tIIT 

19.20'. 
1C.Y9b8 
14.71) 
12.563 
1^-57&9 

AUXILIARY PLANE AT A 53.96516 

.PT 

.1 
2 
3 
4 
5 

YIIR 

1.0048 
1.6420 
2.3727 
3.2224 
4.2271 

YI2R 

2.5900 
3.1326 

j3.81.4 
64 . 66 50 

YI1R-YI2R 

-1.1498 
-0.9479 
-0.7599 
-0.5890 
-0.4379 

YlIF/Dr 

-0.2299 
-0.1895 
-0.1319 
-0.1178 
0.0875 

T
1 1 

z ir A' /4r 



CLCTR 71-0031, 26 JAN 71, 22 IN. COLLECTOR 

JOB 37186,'NASA MSC HOUSTON CHAMBER D 

TILT ANGLE 

COLLECTOR FACE TO 

CONJUGATE FOCAL PLANE = 

-5.13249 DEGREES 

179.09780 

FIELD LENS DIAM (OF) 

SEMI-INTERFUCAL LENGTH 

5.00000 

91.99154 

SEMI-MAJOR AXIS 95.24736 

ECCEN4TRICITY - 0.96581 

Z COORVIttATES OF RAYS = 183.06298 

OtUGIN AT FOCUS 

PT ANGLE 
DEG 

I 65.020 
z 60.020 
3 55.020 
4 50.020 
5 45.020 

ARC LENGTH = 0.2362Z 

RADIUS AY AZ 

9.3896 4.5114 3.9651 
10.6075 9.1883 5.3004 
12.1188 9.9297 6.9474 
14.0210 10.7440 9.0086 
16.4546 11.6394 11.6309 

RIY 

-18.3767 
-18.3766 
-18.3766 
-18.3766 
-18.3766 

RZY 

-22.6122 
-21.9380 
21.3020 
-20.7167 
-20.1922 

ARC IMAGE 
LENGTH 

4.2354 
3.5614,' 
2.9254 
2.3401 
1.8156 

RATIO 
ARCIM/DF 

0.8470 
0.7122 

•0.5850 
0.4680 
0.3631 

THEORET 
MAGNIF­

.t9.2876 
16.1583­
14.7189' 
12.5863­
10.5769 

AUXILIARY PLANE AT Z = 53.96516 

PT 

1 
2 
3 
4 
5 

YIIR 

1.0048 
1.6420 
2.3727 
3.2224 
4.2271 

YI2R 

-0.1775 
I0.6671 
j'1.59117 
12.61801 
j3.7787 

YIIR-YI2R 

1.1824 
+ 0.9749 
0.7810 
0.6044 
0.4483 

YDIF/DF 

0.2364 
0.1949 
0.1562 
0;1208 

, &_nQA 

A77jfIT 



JOB 3718, NASAMSC HOUSTON CHAMBER 0 

TILT ANGLE 

CULLECbUR FACE TO 

CONJUGATE FOCAL PLANE 

= 

= 

-2.40138 DEGREES 

80.20614 

FIELD LENS UTAM (OF)-, = 5.00000 

SEMI-INIERFuCAL LENGTH = 42.12265 

SEMI-MAJOR AXIS 45.24736, 

ECCE1TRICITY = 0.93094 

Z COORDINATES OF RAYS = 84.17131 

ORIGIN AT FOCUS' ARC LENGTH = 0.231 

PT ANGLE 
DEG 

RADIUS AY AZ I1Y R2Y ARC IMAGE 
LENGTH 

RATIO 
ARCIM/OF 

THFOREI 
MAGNIF 

1 
2 
3 
4 
5 
6 
7 
B 
9 

10 
11 
12 
13 
14 

65.020 
70.020 
75.020 
80.020 
85.020 
90.020 
95.020 

.100.020 
105.020 
110.020 
115.020 
120.020 
125.020 
13u.020 

9.3897 
8.3933 
7.5678 
6.8780 
6.2973 
5.8052 
5.3859 
5.0269 
4.7184 
4.4525 
4.2230 
4.0247 
3.8535 
3.7061 

8.5114 
7.8882 
7.3106 
6.7739 
6.2735 
5.8052' 
5.3652 
'4.9502 
4.5572 
4.1835 
3.8267 
3.4848 
3.1558 
2.8382 

S.9651 
2.8678 
1.9560 
1.1918 
0.5465 

-0.0021 
-0.4713 
-0.8747 
-1.2228 
-1.5244 
-1.7861 
-2.0136 
-2.2114 
-2.3833 

.5297 

.5297 

.5297 

.5297 

.5297 

.5297 
-. 5297 
-3.5297 
-3.5297 
-3.5297 
T3.5297 
-3.5297 
-3.5297 
-3.5297 

-5.4265 
-5.7521 
-6.0825 
-6..089 
-6.7220. 
-7.0127 
-7.2715 
-7.4902 
-7.6612 
-7.7780 
-7.8354 
-7.83U0 
r7.7598 
-7.6243 

1.8967 
2.2224 
2.5528 
2.8791 
3.1923 
3.4d29 
3.7417 
3.9604 
4.1314 
4.2482 
4.3056 
4.3003 
4.2300 
4.0946 

0.3793 
0.4444 
0.5105 
0.5758 
0.6384 
0.6965 
0.1483 
0.7920 
0.8262 
0.8496 
0.8611 
0.8600 
0.8460 
0,818g 

8.6374 
9.7816 
10.957t 
12.1571 
13.370 
14.5884 
15.802t 
17.001 
18.178S 
19.3241 
20.4281 
21.4844 
22.4831 
23.4173 

AUXILIARY PLANE AT L = 53.96516 

PT YIIR Y12R YIIR-YI2R YOIF/0F 

1 
2 
3 
'" 

1.0050 
0.7122 
0.4530 
0.2209 

-0.1774 
L0.6844 
-1.1618 
-1.6101 

1.1824 
1.3967 
1.6148 
1.8311 

0.2364 
0.2793 
0.3229 
0.3662 

5 0.0112 -2 . 0 2 7 9  2.0392 0.4078 
6 -0.'1798 -2.4129 2.2330 0.4466. 
7 -0.3554 -2.7618 2.4064 0.4812 
8 -0.5178 -3.0717 2.5538 0.,107 
9 -0.6691 -3.3392 2.6700 0.5340 
10 -0.8109 -3.5617 2.7508 0.5501 
111 -0.9446 -3.7372 2.7926 0.5585 
12 -1.0712 -3.864J4 2.1931 0.5586 
13 -1.1919 -3.9428 2.7509 0.5501 
14' -1.3074 -3.97Jl 2.6656 .0.5331 

0 , A' 



CLCTR 71-003i, 26 JAN' 71, 22 'IN. COLLEC
 

JOB 3718, NASA' MSC. HOUSTON CHAMBER D
 

TILT ANGLE -5.73249 DEGREES
 

CULL[CTOR FACE TO
 
CONJUGATE FOCAL PLANE = .179.09780
 

FIELD LENS DIKM (OFI .= 5.00000 

SEMI-INrERFOCAL LENGTH = 91.49154 

SEMI-MAJOR AXIS' = 95.24736 

'ECCENTRICITY 
 0.96581
 

Z COORDINATES OF RAYS = 183.0.6; 

JRIGI. AT FOCUS ARC LENGTH -0.31496
 

PT ANGLE RADIUS AY Az R1Y' 

DEG 


1 65.020 9 3896 8.5114 3.9651 -18.3767 

2 60.020 10.6075 9.1883 5.3004 -18.3766 

3 55.020 12.1188 9.9297 6.9474 -18.3766 

4 50.b2O 14.0210 10.7440 9.0086 -18.3766 

5 45.02U 16.4546 11.6394 11.6309 .-18.3766 


AUXILIARY PLANE AT L = 53.96516 

PT YIIR YI2R Y.IR-YI2R 


1 1.0048 3 -1.5260 

.6420 12.90021 -1.2581 


32.3727 3. 13 -1.0086 

3,2224 00 -0.7820 


5- 4.2271 42J -0.5815 


,A "c-n's. 

I2Y 


-12.9104 

-13.7809 

-14.5985 

-15.3489 

-16.0215 


YIF/DF
 

-0.3052
 
-0.2516
 
-0.2017
 
-0.1564
 
-0.1163
 

ARC IMAGE 

LENGTH 


-5.4663 

-4.5956 

-3.7781 

-3.0276 

-2.3550 


RATIO THEORET
 
ARCIM/OF MAGN[F
 

-1.0932 19.2876
 
-0.9191 16.9583
 
-0.7556 14.7189
 
-0.6055 12.5863
 
-0.4710 10.5769.
 



CLCTR 71-0931. 26 'JAN 71, 22 IN. COLLECTOR
 

JOB 3718.,' NASA MSC'HOUSTON CHAMBER D
 

TILT ANGLE ' 	 -5.73249 DEGREES 

COLLECTOR FACE TO
 

CONJUGATE FOCAL PLANE = .179.09780 

FIELD LENS D3AM (DF) = b.O0000 

SEMI-INTERFOCAL LENGTH = 91.99154 

V SEMI-MAJOR AXIS 	 95.24736 

ECCENTRICITY 	 0.96581
 

Z 	COORDINATES OF RAYS = 183.06298 

ORIGIN AT FOCUS ARC LENGTH = 0.15748 

PT ANGLE RADIUS AY AZ RIY 

DEG 


1 65.020 9.3896 8.5114 3 9651 -18.3767 

2 	 60.020 10.6075 9.1883 5.3004 -18.3766 


- 55.020 12.1188 9.9297 6.9474 -18.3766 

4 50.020 14.0210 .10.7440 9.0086 -18.3766 

5 45.020 16.4546 11.6394 11.6309 -18.3766 


AUXILIARY PLANE AT Z = 53.96516 

PT YilR YI2R YIIR-YI2R 


1 1.0048 T 0.7845 
2 1.6420 0.6468 
3 2.3727 0.5182 
4 3.2224 0.4011 

4.2271 " 0.2977 

A W n 

R2Y 


-21.1869 

-20.7395 

-20.3178 

-19.9298 

-19.5822 


YDIF/DF
 

0.1569
 
0.1293
 
0.1036
 
0.0802
 
0.0595
 

ARC IMAGE 

LENGTH 


2.8101 

2.3628 

1.9412 

1.553Z 

1.2055 


RATIO THEORET
 
ARCIM/OF MAGNIF
 

0.5620 19.2876
 
0.4725 16.9583
 
0.3882 14.7189
 
0.3106 2.5863
 
0.2411 0.5769
 



JOB 371k, NASA MSC HOUSTO CHAMBlER 

TIL IANGLE 
COLLECTOR FACE'TO 

-2.40138 DEGREES 

CONJUGATE FOCAL PLANE 80. 6I4 

FIELD LENS DIAM '(DF) . b.OOUO 

SEMI-INrERFOCAL LENGTH =. 4.12265 

SEMI-MAJOR AXIS 41.24736 

ECCENTRICITY '0.93094 

Z COORDINATES OF RAYS 84.17131 

'OPIGIN AT FOCUS ARC LENGIH = -0.31496 

PT ANGLE 
DEG 

tAOIUS -AY AZ RiY 12Y ARC IM.GE 
LENGTH 

RATIO 
ARCIM/DF 

THEORET 
.PAYNIF 

1 
2, 
3 
4 
5 
6, 
7 
.8 
9 
I0 
I 
12 
13, 
14 

(5.02u' 
70.020 
75.020 
-80.020 
85.020' 
90.020 
95.020 

100.020 
105.02C 
110.020 
115.020 
120.020 
125.020 
130.0204 

9.3897 
d.3933 
7.5678 
6.8780 
6.2973 
5.6052 
5.3859 
5.0269 
4.7184 
4.4525 
4.2230 
4.0247 
'3.8535 
3.7061 

d.5114 
7.888Z 
7.3106 
6.7739 
6.2735 
5.6052 
5.3652' 
4.9502 
4.5572 
4.1835 
3.8267 
3.4848 
3.1558 
2.8382 

3.9651 
Z.t678 
1.9560 
1.1918 
0.5465 

-0.0021 
-0.4713 
-0.8747 
21.2228 
-1.5244 
-1.7861 
-2.0136 
-2.2114 
-4.3833 

3.5297 
3.5297 
3.5297 
3.5297 
3.5297 
3.5297" 
3.5297 
3.5297 
3.5297 
3.5297 
3.5297 
3.5291 
3.5297 
3.5297 

-1.081? 
-0.1569 
-0.21)9 
0.2196 
0.6517 
L.0556, 
1.4503 
1.7948 

.2.0877 

2.3184 
2.476' 
2.5530 
2.5398" 
2.43U9 

-2.4480 
-2.8728 
-3.3097 
-3.7493 
-4.Idl5 
-4.5954 
r4.9801 
-5.3246 
-5o6175 
-5.8462 
-6.0063 
-6.0828 
-6.0696 
-5.9607 

-0.4896., 
-0.574:5 
-0.6t19 
-0.7498, 
-0.d363 
-0.9190 
-0.9960 
-1.u649 
-1.1235 
-1.1696 
-1.?012 
-IZ.65 
-1.2139 
-1.1921 

8.637b 
9.781t 

10.957b 
12.1571 
13.3703 
14.5884 
15.8020 
17.0019 
18.1789 
19.3241 
20.4287 
21.4844 
22.4031 
23.4173 

AUXILIARY PLANE AT Z , 53.96516 

--PT . "YI[R Y2IR-YI2R YDIF/DF 

2 
.3 
4 
5 
6 
7 
8 
9 
10 
11' 
'12 
13 
'14 

'"1.0050 
0.7122 
0.4530 
0.2209 
'.0112 
-0.179 
-0.3554 
-0.5178 
-0.6691 
-0.8109 
-0.§446 
-4.0712 
-1.1919 
-1.3074 

2.5310 
2.5178 
2.5468 ' 

2.6055 
2.6823 
2.766,4 
2.8474 

H2.9155 
2.96-12 
2.9758 
2.9510 
2;8796 
2.7552 
2.5730 I 

1.5260 
-1.8055, 
-2.097 
-2.3845 
-2.6710 
-2.9463' 
-3.2029 
-3.4334 
-3.6304 
-3.7868 
-3,8956 
-3.14 09 
-3.9472 
-3.8005 

-0.3052 
-0.3611 
-0.4187 
-0.4769 
-0.5342 
-0.5892 
0.6405 
0.6866 
0.7260 
0.7573 
D.7791" 
D.7901 
0.7894 
0.7761 



OB 3718t NASA MSC HOUSTON CHAMBER 0
 

tlil ArIILt 

COLLbTOR FACE TO 
-4SU1I35 UttiRLtS 

CONJUGATE FOCAL PLANE = 80.20614 

FIELD LENS DIAM (DF) = 5.00000 

SEMI-INTERFOCAL LENGTH = 42.12265 

*SEMI-MAJOR AXIS 4 .24736 

ECCENTRICITY 0'.93094 

Z COORDINATES OF RAYS = 84.17131 

UIGIN AT FOCUS .ARC LENGTH = 0.15748 

)T' ANGLE 
DEG 

RADIUS AY AZ RIY R2Y ARC' IMAGE 
LENGTH 

RATIC 
ARCIM/DF 

THr(UREl 
PANYIF 

1 
2 
3 -

4 
-5 
6 
7 
8 
9 
LO 
11 
12 
13 
14 

65.020 
70.020 
75.020 
40.020 
85.020 
90.020 
95.020 
100.020 
105.020 
110.02G 
llfr.020 
120.020 
125.020 
130.020 

9.3897 
8.3933 
7.5678 
6.8780 
6.2973 
s.8052 
5.3859 
,5.0269 
4.7184 
4.4525 
4.2230 
4.0247 
3.8535 
3.7061 

8.511, 
7.888; 
7.31m 
6.773' 
6.273! 
5.805 
5.365; 
4.950; 
4.557 
4.183! 
3.826; 
3.4841 
3.1551 
2.838; 

3.9651 
2.8678 
.1.9560 
1.1918 
0.5465 
0.0021 
0.4713 
0.8747 
1.2228 
1.5244 
1.7861 
2.0136 
2.2114 
2.3833 

-3.5297 
-3-5297 
-3.5297 
-3.5297 
-3.5297 
-3.5297 
-3.5297 
-3.5297 
-3.5297 
-3.5297 
-3.5297 
-3.5297 
-3.5297 
-3.5297 

-4.7882 
-5.0047 
-5.2247 
-5.4426 
-5.6525 
-5.8482 
-6.0236 
-6.1732 
-6.2917 
-6.3747 
-6.4185 
-6.4204 
-6.3786. 
-6.2926 

1.2584 
1.4749 
1.6949 
1.9129 
2.1227 
2.3184 
2.4938 
2.6434 
2.7619 
2.8449 
2.8867 
2.8906 
2.8488 
2.7629 

0.2516 
t2949 
C.3389 
u.3825 
0.4245 
0.4(36 
O.'987 
0.5486 
0.5523 
0.5689 
0.5777 
0.5731 
0.5697 
0.5525 

8.637t 
9.781f 
10.9S7t 
12.157J 
13.7IM 
14.588A 
15.802( 
17.O0Wl 
18.17a% 
19.324j 
20.4281 
21.484A 
22.4831 
23.4172 

AUXILIARY PLANE AT I =. 53.96516 

PT YIIR 0Y- YILR-Y12R 'fDIF/DF 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
'12 
13 

14 

1.0050 
.0.7122 
0.4530 
0.2209 
0.0112 

-0.1798 
-0.3554 
-0.5178 
-0.6691 
-0.8109 
-0.9446 
-1.0712 
-1.1919 

-1.3074 

0.2204 
-0.2146 
-0.6191 
-0.9955 
-1.3446 
-1.6663 
-[.9593 
-2.2224 
-2.4541 
-2.6531 
-2.8182 
-2.9488 
-3.0446 

-3.1061 

0.7845 
0.9269 
1.0722 
L.2165 
L.3559 
1.4864 
L.6038 
1.7045 
1.7849 
1.8421. 
1.8736 
-
1.8526 

1,7987 

0.1569 
0.1853 
.0.2144 
0.2433 
0.2711 
0.2972 
0.3207 
0.3409 
0.3569 
0.3684 
0.3747 
U3755 
0:3705 

0.3597 

A -A- 0­


