TO: USI/Scientific & Technical Information Division
Attention: Miss Winnie M. Morgan
FROM: GP/Office of Assistant General Counsel for Patent Matters
SUBJECT: Announcement of NASA-Owned U. S. Patents in STAR

In accordance with the procedures agreed upon by Code GP and Code USI, the attached NASA-owned U. S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U. S. Patent No. : 3,541,479

Government or Corporate Employee : Metcom, Inc.
Salem, Massachusetts

Supplementary Corporate Source (if applicable) : JPL

NASA Patent Case No. : XNP-09771

NOTE - If this patent covers an invention made by a corporate employee of a NASA Contractor, the following is applicable:
Yes [x] No [ ]

Pursuant to Section 305(a) of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent; however, the name of the actual inventor (author) appears at the heading of Column No. 1 of the Specification, following the words "... with respect to an invention of...

Elizabeth A. Carter
Enclosure
Copy of Patent cited above
TUNING ARRANGEMENT FOR AN ELECTRON DISCHARGE DEVICE OR THE LIKE

Filed Jan. 17, 1968

FIG. 1

FIG. 2

VINCENT J. MARTUCCI
INVENTOR.

BY

ATTORNEYS
ABSTRACT OF THE DISCLOSURE

A tuning arrangement consisting of a tuning sleeve to which a tuning element is attached. The alignment and rigidity of the sleeve are controlled by a retainer to which a bellows is attached to provide a vacuum seal. Axial motion of the sleeve is provided by a shaft axially to which a tuning element is attached.

The tuning arrangement is able to eliminate gear backlash and to provide a positive locking force on the shaft after tuning in order to maintain the arrangement locked in place even under severe vibration and shock.

BACKGROUND OF THE INVENTION

The invention described herein was made under a contract with the U.S. Government and is subject to the provisions of Section 305 of the National Aeronautics and Space Act of 1958, Public Law 85-568 (72 Stat. 435; 42 USC 2457).

OBJECTS AND SUMMARY OF THE INVENTION

Accordingly, it is a primary object of the present invention to provide a new arrangement for tuning a magnetron or like device.

Another object of the present invention is to provide a novel arrangement with which a tuning element may be precisely positioned and secured within a magnetron for tuning the frequency thereof.

A further object of the present invention is to provide a new arrangement for securely positioning a tuning element in a magnetron and maintain it at the selected position even under relatively severe environmental conditions.

These and other objects of the present invention are achieved by providing an arrangement consisting of a tuning sleeve to which a tuning element, such as a ceramic ring, is attached at one end. The other end of the tuning sleeve is connected to one end of a bellows which is substantially enclosed within a bellows retainer. The retainer also encloses the tuning sleeve which slides within the retainer so that the sleeve’s rigidity and alignment is precisely maintained. The other end of the bellows is also connected to the head of the bellows retainer and thereby maintains the vacuum within the interior of the device or tube, while allowing vertical movement of the tuning sleeve with respect to the housing.

As will be explained hereafter in detail, the bellows retainer and tuning sleeve are so designed that accurate alignment and rigidity of the tuning sleeve within the bellows retainer is maintained while allowing free movement of the tuning sleeve within the vacuum without galling. Attached to the other end of the tuning sleeve is a tuning shaft which is axially movable by means of rotatable gears to which the shaft is threadably meshed. A locking assembly is also included in the novel arrangement of the present invention to provide sufficient balancing torque to the shaft in order to eliminate any backlash in the tuning mechanism as well as to halt the tuning shaft and thereby produce the accurate positioning of the tuning element within the magnetron during the severe environmental conditions to which the magnetron may be subjected.

The novel features that are considered characteristic of this invention are set forth with particularity in the appended claims. The invention will best be understood from the following description when read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified cross-sectional view of the tuning arrangement of the present invention; and

FIG. 2 is a cross-sectional view along line 2—2 of FIG. 1.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1, there is shown a magnetron 10 having a housing 12, in which conventional elements of a magnetron tube are assumed to be located. For ex-
plenary purposes, only an anode 34 is shown since tuning of the magnetron is generally accomplished by controlling the position of one or more tuning elements with respect to cavities formed in the anode. In the drawing, such a tuning element is represented by a cylindrical tuning ring 16. The ring, which in one embodiment is of ceramic, serves as a dielectric material which when moved within an anode cavity tunes the magnetron. It is assumed that tuning is accomplished by varying the position of the ring along axis 20.

The housing 12 defines a cylindrical aperture 22 whose longitudinal axis coincides with that of axis 20. A retainer 24 in the form of a hollow cylinder is securely fixed in opening 22. The function of the retainer 24 is to protect a bellows 26 movable therein, as well as to control the rigidity and alignment of a tuning sleeve 30 to which the ring 16 is attached at one end. It is the axial motion of the sleeve 30 which is controlled and transferred to the ring 16 to precisely position it within the housing 12.

The end of sleeve 30, opposite to the end to which the ring 16 is attached, is connected to a lower end of a tuning shaft 32, which forms a header for end 26a of bellows 26. The other end of the bellows 26, designated 26b, is connected to end 24a, at the end of an axial axis coincident with that of axis 20. The retainer 24 is fastened in opening 12 by means including gear means meshed with the threads thereof defining lows from a second end thereof; an aperturbed element of the tuning assembly which is top movement, such as rotational to axial motion of the tuning element, is backlashed in the gear assembly. Such backlash is particularly present when the magnetron is subjected to vibration and shock. In the present invention, this source of tuning error is eliminated by incorporating in the arrangement a locking assembly which applies a force to top 32r of shaft 32 extending out of the tuning housing 35.

The locking assembly is diagrammed in FIG. 1 and is shown comprising a locking screw 50, secured to tuning housing 35 by fastening screws 51. Top 32r of tuning shaft 32 extends into a central, internally threaded opening 52 in housing 50. A stud 54 is mounted on the top 32r and is biased against it by a biasing spring, such as a Belleville washer 56. A locking screw 58 is threadable in opening 52 to exert a downward force on the shaft 32 by means of the washer 56 and stud 54.

In practice, the Belleville washer 56 acts as a downward biasing spring which allows the tuning of the magnetron by the axial alignment of ring 16, while maintaining a high torque force on the tuning shaft 32. Such force completely eliminates any back lash in the tuning mechanism. After the tuning is completed, locking screw 58 is further tightened, providing an additional locking force on the tuning shaft 32. As a result, the shaft 32, and sleeve 30 to which the tuning ring 16 is attached remain securely in place even under relatively severe vibration and shock. To minimize frequency changes due to temperature variations, all materials used in the arrangement are selected to compensate for the overall expansion or contraction of the tuning assembly which may be expected to occur as a result of extreme temperature changes and heat radiated by the magnetron in operation. The use of such a locking assembly and the guiding of the tuning sleeve 30 in retainer 24 have been found to greatly contribute to the advantages of this tuning arrangement over prior art assemblies.

There has accordingly been shown and described herein a novel arrangement for tuning an axial type device, such as a magnetron, by accurately positioning a tuning element therein. It is appreciated that those familiar with the art may make modifications and/or substitute equivalents in the arrangement as shown without departing from the spirit of the invention. Therefore, all such modifications and/or equivalents are deemed to fall within the scope of the invention as claimed in the appended claims.

What is claimed is:

1. In an electron discharge device of the type including a tuning member for controlling the frequency of operation of said device, an arrangement for controlling the position of said member in said device comprising:
   a housing of said device defining an opening;
   a cylindrical sleeve having first and second ends;
   a tuning member coupled to the first end of said sleeve and extending into said device through the opening in the housing thereof;
   a bellows;
   a cylindrical tuning shaft coupled at one end thereof to the second end of said sleeve and to one end of said bellows, said shaft extending through said bellows from a second end thereof;
   retainer means coupled to said housing for connecting the second end of said bellows to said housing and for fractionally engaging the outer surface of said sleeve between the first and second ends thereof, the external surface of a portion of said tuning shaft extending from said bellows being screw threaded; and
   control means for controlling the lateral position of said shaft along its longitudinal axis, said control means including gear means meshed with the threads on the surface of said shaft.

2. The arrangement as recited in claim 1 further in-
5 including locking means coupled to the tuning shaft at an end, opposite said one end, for exerting a force on said tuning shaft directed toward said one end so as to minimize backlash between said tuning shaft and the gear means with which it is meshed.

3. The electron discharge device as recited in claim 1 wherein said retainer means defines a plurality of inwardly extending fingers for frictionally engaging the outer surface of said sleeve.

4. In an electron discharge device of the type including a tuning member for controlling the frequency of operation of said device, an arrangement for controlling the position of said member in said device comprising:

a housing of said device defining an opening;

a cylindrical sleeve having first and second ends;

a tuning member coupled to the first end of said sleeve and extending into said device through the opening in the housing thereof;

a bellows;

a cylindrical tuning shaft coupled at one end thereof to the second end of said sleeve and to one end of said bellows, said shaft extending through said bellows from a second end thereof;

retainer means connecting the second end of said bellows to said housing, the external surface of a portion of said tuning shaft extending from said bellows being screw threaded;

control means for controlling the lateral position of said shaft along its longitudinal axis, said control means including gear means meshed with the threads on the surface of said shaft; and

locking means coupled to the tuning shaft at an end, opposite said one end, for exerting a force on said tuning shaft directed toward said one end so as to minimize backlash between said tuning shaft and the gear means with which it is meshed, said control means comprising a substantially hollow cylinder, the outside surface thereof being in contact with said housing in the opening thereof, said sleeve extending through said hollow cylinder and frictionally engaging the inner surface thereof, whereby said cylinder controls the alignment and axial movement of said sleeve and the tuning member coupled thereto.

6. The electron discharge device as recited in claim 5 wherein the hollow cylinder comprising said retainer means defines a plurality of longitudinal fingers which frictionally engage the outer surface of said sleeve.

7. In an electron discharge device of the type including a tuning member for controlling the frequency of operation of said device as a function of its position within the device, an arrangement for controlling the position of said member through an opening in the housing of the device comprising:

a substantially hollow cylindrical retainer element fixedly positioned and axially aligned in the opening of said housing;

a tuning sleeve retained in and maintained by said retainer element, by frictional engagement therewith, said sleeve being axially movable within said retainer element having a first end in the housing of said device;

a tuning member connected to said first end of said tuning sleeve;

a tuning shaft coupled to said tuning sleeve, said shaft having a portion thereof extending out of said retainer element;

flexible vacuum sealing means in said retainer element, having one end coupled to a second end of said tuning sleeve and an end, opposite said one end, coupled to said retainer element whereby the interior of said vacuum sealing means and said tuning shaft in a first vacuum environment and the exterior of said vacuum sealing means, the interior of the retainer element and the exterior of said tuning sleeves which frictionally engages said retainer element are in a second vacuum environment;

a tuning assembly coupled to said housing and including position control means coupled to the shaft extending from said retainer element for controlling the axial position of said tuning shaft; and

a locking assembly having a housing fixedly connected to said tuning assembly and biasing means for applying a locking force on said shaft to retain it in the axial position determined by said position control means.

8. The electron discharge device as recited in claim 7 wherein the retainer element defines a plurality of fingers which frictionally engage said tuning sleeve.

9. In an electron discharge device of the type including a tuning member for controlling the frequency of operation of said device as a function of its position within the device, an arrangement for controlling the position of said member through an opening in the housing of the device comprising:

a substantially hollow cylindrical retainer element fixedly positioned and axially aligned in the opening of said housing;

a tuning sleeve retained in and maintained by said retainer element, said sleeve being axially movable within said retainer element having a first end in the housing of said device;

a tuning member connected to said first end of said tuning sleeve;

flexible vacuum sealing means in said retainer element, having one end coupled to a second end of said tuning sleeve and an end, opposite said one end, coupled to said retainer element;

a tuning shaft coupled to said tuning sleeve, said shaft having a portion thereof extending out of said retainer element;

a tuning assembly coupled to said housing and including position control means coupled to the shaft extending from said retainer element for controlling the axial position of said tuning shaft; and

a locking assembly having a housing fixedly con-
7. Connected to said tuning assembly and biasing means for applying a locking force on said shaft to retain it in the axial position determined by said position control means, the housing of said locking assembly defining an aperture threaded about the interior surface thereof, a locking screw threadably engaging the housing of the locking assembly, a stud in contact with the top of said tuning shaft and spring means, between said stud and screw for biasing said stud against said shaft to apply the locking force thereto.

10. The arrangement as recited in claim 9 wherein said spring means is a Belleville spring and said position control means includes a rotatable gear threadably coupled to said shaft to control the axial position thereof.

References Cited

UNITED STATES PATENTS

2,466,060 4/1949 Spencer 333—83
2,752,576 6/1956 Hilliard et al. 333—83
2,837,685 6/1958 Dalman 333—83 X
2,884,602 4/1959 Speake et al. 333—83 X
2,911,602 11/1959 Hayter 333—83
2,996,690 8/1961 St. Clair 333—83
3,444,486 5/1969 Banes et al. 333—83

ELI LIEBERMAN, Primary Examiner
W. N. PUNTER, Assistant Examiner

U.S. Cl. X.R.

315—5.53, 39.61