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AMPLITUDE DISPERSION AND STABILITY OF
DISSIPATIVE WEAKLY NON-LINEAR WAVES

Ferdinand F. Cap
Theoretical Studies Branch

Goddard Space Flight Center
Greenbelt, Maryland 20771

ABSTRACT

A perturbation method to solve nor,-linear dissipative wave equations

using ideas of Krylov and Bogolyubov is presented. The method is compared

to Whitham's theory. Dispersion relations for non-linear dissipative

waves, including amplitude dispersion, are discussed, Furthermore,

stability problems of such waves are investigated.

INTRODUCTION

Mathematical progress during the last years makes it possible to

investigate the dispersion of non-linear T.vave equations. Non-linear

oscillators and waves are important models in hydrodynamics and in

plasma physics. By the term "non-linear" we want to express that the

orainary differential equation describing the propagation of the waves

are assu:-rnd to be non-linear equations. The terms "dispersion" and

"weakly non-linear" will be discussed later.

H. Lashingsky1 has discussed in detail the motivation to investi-

gate mathematical models for non-linear nxAes in plasmas a,;id he also

presented such a model  starting from a non-linear oscillator equation

4

4
x+w2X=- EF(X, x)

To discuss the solutions of this equation, Lashinsky used the method

of averaging in conjunction with the technique of variation of para-

meters (Krylov-Bogolyubov met1od 3 ). For s=0, Equation (1) has the
t

(1)	 %
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solution

x = A cos (wt + 0	 (2)

where now A->A(t) ,	 (t) for s+0. Under the assumptions s«l, A/A«w,

which express a weak non-linearity, by the so-called method

of averaging (over one period) the leading terms in a Fourier expansion

can be found and finally

•	 2Tr
< A > _ - E	 J F (A cosh - ^.,A sinO) sin6 dO	 (3)

2Tr w 0

where 0= wt + 4,

The right hand sides are functions of the amplitude A only since

the time was averaged out over one period. From (3), the amplitude A(t)

as a function of time t can be computed 2 . Lashinsky also considered

non-linear waves in bounded plasmas. He investigated the equation

1 2 Ott - 
02 ^ 	 EF (^, ^t )	 (4)

by using expans ions of the type

= E a^ (t) $^ (x)	 (5)
a

i

The orthogonality conditions of the ^X and the

process result in similar equations like (3).

The averaging over the period was also used by

the propagation of non-linear dispersive waves in a

plasma. He uses a perturbation technique and intro

period averaging

Tam4 . He considers

cold non-dissipative

3uced fast and slow

t

%1

variables giving the periodic and the non-linear (averaged) part of the

solution. Also Luke  uses this method in his investigation of the non-

linear wave equation
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12 Ott - 02 ^ = F	 (6)
c

He demonstrates that his perturbation technique is equivalent to

Whitham's averaged Iagrangian method. 6, 7, F s

In this paper we extend Whitham's theory of the averaged Lagrangian

to dissipative waves. Tam 
16 

points out that the effect of collisional

dissipation on non-linear dispersion is important. Collisional damping

may reduce the effect of non-linear instability.

DISPERSION RELATION AND AVERAGED LAGRAISIAN

i
We consider waves f (x, t) which satisfy a non-linear partial differ-

ential equation of such a form that the linear wave equation can be split

off. Rotating our coordinate system so that the Y-ave vector k points

into the direction of the x-axis we write for our wave equation

12 tt - xx +b^	 t+g^ - V' (fl + N(^ t ) +
c

	

^tG	 (7)

where V', N and G are non-linear functions, V' = j , c, b and g are

const:lnts which may depend on w. We now define a phase surface

0(x, t) = const	 (8)

•	 which has the property that all points (x, t) on it have the same value

•	 of the wave function ^. From (8) we have

d0 = 0 dx + 0tdt = 0	 (9)

so that points moving with the speed

dx - -0t	
(10)

3't	 0
x

X
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see a constant phase 0. Defining wave number and frequency by

Ox =k, -Ot=W	 (11)

we see that (10) is the phase speed. In the three dimensional case

we have DO = k, and therefore

curl k=0
	 (12)

which indicates that wave crests are neither vanishing nor splitting into

two or more crests. 9 From (11) and (12) the conservation equation of

wave crests, Equation (13),follows:

at
+Ow= 0	 (13)

In a similar way it can be shown 9, 10 that a point moving with the

group velocity

(at) = dk	 (14)
g	 1

sees w unchanged. After this disgression, we return to Equation (7).

Its Lagrangian reads

L	 t) = 1	 2 
^t2 - 2 ^x2 -

b 	 ^ 2 - V (^)	 (15)x	 c ,

Since the system is dissipative, th , ^ Euler Lagrange equations read 11, 12

Tx aF + at a^ - a 	 get + N (fit ) + ^t G (^)	 (16)
x	 t

Z
where N(¢t ) may be of the form

N ( fit) _ _ C ^ 2n-1	 (17)
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where n = 1 112, 2, 2 1/2 ...	 Substituting the Lagrangian (15) into (16)

s	 we immediately obtain our wave equation (7). we will now make a classifi-

cation of our wave equation:

I. N = 0, V' = 0: The equation is linear; k and w are independent of

x and t.

1. b = 0, g = 0: No dispersion, no dissipation.

^ = Aeikx-iwtF	 w = + ck	 (18)

2. b 4 0, g = 0: Frequency dispersion, no dissipation.

= Aeikx-iwt^ w = + c
k̂ 	 (19)

Any function w (k) - with exception of the definition (18) , is called

a dispersion relation of a linear wave equation. Such dispersion relations

may also be found by a Laplace- Fouriex transformation of the linear wave

equation. 13

b = 0, g 4 0: Dissipative Case.

= Ae ikx-iwt	 igc2 + Cw = - 2	 -	 k2^- g2c2
4

(20)

i

ai l 	 .

4. b + 0, g + 0: Dissipative case, like in (20).

2
G(w, k)-- c - k 2 - b + giw = 0	 (21)

II. If neither N, G nor V vanish, the wave equation is non-linear and

solutions cannot be given (except in special cases 5 ). If, however, the

non-linearity is weak, which we define by

__ 1 
27r	 2Tr

_ 1

0 x > 2^r o Oxx = 0, Ott > 2^* o OttdC = 0

(22)

6
\i



i

If

- 6 -

so that Ox = k and Ot = - w become constant "in the average," i.e. when
2Tr

appearing under an integral j. . . d0, then a dispersion relation of a
0

non-linear wave equation can be derived. It turns out, that w is not only

a function of k (frequency dispersion) but also of the amplitude A (amp-

litude dispersion).

In the dissipationless case (g = G = N = 0), Whitham suggested 6,7,15

the existence of a variational principle

a a^	 a 3^
at aot + 2x T5-= o

for the averaged Lagrangian
t

1	 2Tr
2^ J L(0, Ox , Ot , A) dO = X ( Ox , Ot , A)	 (24)

0

and he assumed that the variation of 'f with respect to the amplitude A

or to the energy E = A 2/2, i.e.

E = 0 or	 A= 0
	

(25)
II

gives the dispers"on relation of the non-linear equation. Equations

(13) , (23) and (25) determine the 3 functions k (x, t) Ax, t) and A (x, t)

for exactly linear non-dissipative vibrations and waves the

condition (25) becomes 15

= 0
	

(26)	 t

This is trivial since L = T-U and the virial theorem states for per-

iodic motion that < T > = < U > so that the dispersion relation for linear

motions, i.e. Equation (26) follows from the virial theorem.

(23)

WN
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In the dissipative case a principle analogous to the Whitham principle

(23) may be found by averaging (16). A proof of the result will be given

in the next chapter. We first rewrite (16) using

^=^(0)	 (27)

6

Substituting into (16) we get

a dD aL	 a d0 aL	 aL d0
ax (d^ DOx ) + 7t (d Ô—t) - a0 d^ -

9	 + N - d0 (LG	 (28)

Averaging now Equation (28) with 2x I. . . d^ and using (24) gives

a a; + a a4 _ g fT'd^ 
a^ +

ax a^x at aOt 2^r o d0

1^ )" 
Nd^ - 

2^r 
f^ 

d d¢
	

(29)

-27-T
	 0

This is the variational principle which replaces (23) in the dissipative

case. (13) remains unchanged and an equation replacing (25) will be

derived in the next chapter in the course of proving (29).

PERTURBATION APPROACH

As mentioned earlier all equations ner–ssary to determine k(x, t),

w (x, t) and A(x, t) of (18) can be derived 
4,5 

using a perturbation

i►
technique and without using a Lagrangian. We now extend this pertur-

bation technique to the dissipative case. We prefer this technique because

Whitham's method gives wrong results in special cases. If one considers

e.g. (7) , (15) for V = N = G = g = 0, then (25) or (26) do not give the

right dispersion relation which is given by (19). Whitham thinks' that

Of
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this restriction of the form of the Lagrangian presumably corresponds

to the assumption of separability if the Hamilton-Jacobi equation in

the classical theory of adiabatic invariants. Following Luke  we intro-

duce stretched variables by

X = ex,	 T = ft
	

(30)

where e is a small parameter which may give a measure of the wave

amplitude. 4 In order to include relatively fast local oscillations

(through the dependence on the variable 0) and to take care of the slow

variations of A, k and w(through the dependence on the stretched variables

X a- T) we make the expansions

^ (x, t) = U (0, X, T) + CU  (0, X, T)	 (31)

V (f) = V' (U) + EU1V" (U)	 (32)

N t ) = N (-U0W) +e 
(UT U10w) N' (-U0w )	 (33)

G (f) = G (U) + sU1 G' (U)	 (34)

Substituting (31) to(34) into (7) we obtain by equating the various

powers of E (and neglecting e 2 ...)

2

U00 (c - 
k') + bU - gw UO = - V' (U) +

N (-U0w) - G (U)U0w	 (35)

which replaces (25) and

U100 (^ - k 2 ) + bU 1 - gWU10 + U1 V11 (U) +

U10UN' + U0WU1G' + U10(,G = F	 (36)

r

i

4L

%1

I^
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where

F = ^ UOTW + 2UOX}c + F i1OWT + UOkX - gUT +

0
	 UTN' + G(U)UT	(37)

The dispersion relation is contained in (35). In order to show

that (36) is equivalent to (29) we first show that U 1 = U  is a solu-

tion of the homogeneous equation (37). This is done by derivating

(35) with respect to 0 and showing that the result is identical to

(37) for F = 0. In order to solve (36) we then write

U1 = W(0)U0 	 (38 )

substituting into (36) one receives

	

w2	
2

(C - k ) (WOOUO + 2W6U0O3 - gl,^OUO + wN' WOUO +

GWOUO= F	 (39)

Using the identity

(UO 2wn) = w00UO 2 + 2w0UO0U0	 (40)

and multiplying (39) by U O we obtain after elimination of w by (38) and

integrating

.	 2

(c - k2) (U1OU0 - UlUOO) _ f (U1OU0 - U1U00 ) (g - N' - G) dO

+ f FU ON(41)

In order to avoid 
17 

secular terms proportional to integer powers of 0

U1 and 
U 
1 must be bounded. But U  or U10 are not periodic and are unbounded

unless the integrals in (41) -,re bounded for large 0. ?Vow, if U (and UO ,

N

i
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UT = -UU0) are periodic, then the integrals are bounded. For weak non-

linearity and weak linear damping	 we may assume that U is periodic.

Since any nonperioC'c function multiplied by a periodic function is itself

a periodic function and since integrals over periodic functions over one

period are bounded we have from (41) the condition

I FUOdO = 0	 (42)

or using (37)

27T	 2Tr

T( I U2 0) + X (kI UO2 
d0)

0	 0
2Tr	 2Tr

I (gw - UG)T1OdU + I NdU	 (43)
i	 0	 0

From (15)	 and	 (24) we see that this is equivalent to (29). So now

(13) ,	 (35) - instead of (25)	 - and (43) determine w(x, t) , k (x, t), A (x,	 t) .

APPLICATIONS

In some special cases the non-linear equations can be solved exactly. In

these cases f(0) is known and (25) can be used. So Luke  gives the disper-

sion relation for the case N = G = g = b = 0. This dispersion relation

is derived from (25) and also from (35). Another case which can be integra4ed

exactly is b = V' = G = 0. Substituting U  = W it (35) and integr=tion

yields

2	 2T

(c _;t) 
^7T 

I g
^kW

dW N =O-00 	(44)
0

•

	

	 For bouncizess we have (D - 0 0 = 1 and (44) gives a dispersion relation.

If, however , M2 ) is unknown , .-A: cannot be calculated and (29) cannot be used.

t

ti
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In these cases either an expansion of -,f- can be. , used, e.g. for stability

problans18 or the ordinary differential equations (35) and (36) have

to be solved, e.g. by the Krylov-Bogolyubov method 3, 17 or by the Lie

series method. 19

I. Nonlinear conservative etiruation (N = g = G = 0

From (7) and (27) , or from (35), we have

2
UOO (c - k 2 ) + bU + V' (U) = 0	 (45)

An exact solution (by multiplication by U0 ) gives from (24) , (25)

the dispersion relation (amplitude dispersion)

^z	 2 r
E _ 3 c _ k2 f	 dU	 - 27 = 0	 (46)

0 22 (^) _ W2

where E is the energy integration constant. So A =2E = const. The

functions w(x, t) and k(x, t) can be obtained from (13) and (43) . The

result A = const for conservative equations may also be derived by the

Krylov-Bogolyubov method. For V' = 0, (45) has the generating solution

A sin (a + f),	 U0 = Aacos (aO +	 (47)

where A, a, ^ are constants and

2

c	 k2	 (48)

Now, according to Krylov-Bogolyubov we let A-+ A(0),  q.+ !0) and we

then have from (47)

Aacos (aO+fl = Asin(aO+f) + A(a+^) cos(aO+f)	 (49)

6

11
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and therefore (A = ^)

Lin (a0+f) + A$cos (a0+f) = 0

Substituting U00 = Aacos (a0+f) - A a ( a} W) sin (a0+f) into (45) gives

A = - , V' cos wo)

_ h V's^;_n(a0+^)

Extending V' (U) sin (a0+f) resp V' (U) cos (a00) into Fourier series and
21T

integrating 
2- 

I ...0 gives
0

27T

< A > = b — 2^ J' V' (U ) cos'P&
0

which might be compared to (3) and

2Tr
<	 > _	 1 I V' (U) sinVadV^Ab 27To

Using (47) , (53) can be written f V' (AsinOdsin^ = 0, and we then

have THEOFFM I: For any non-linear conservative wave equation of the

type (7) the art.-ilitude A (and therefore the er 4Y E) is constant.

Def iiiing an effective frequency

9 = a + ^

we may write (47)in the form

U - A (0) sin (fQ d0 +
^ 0)

where
0
 = const. Equation (54) and

0(x, t) = k(x, t)x - w(x, t)t	 (57)

(53)

(54)

(55)

(56)

r,

(50)

r

(51)

(52)
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then give a dispersion relation for Q, see however (46).

II. Non-linear Dissipative Case (V' = 0)

From (35) we now have

2

U00(c k 
2 ) + bU - guU = N ( -U Ow) - G (U)U Ow	 (58)

so that V' in (53) and (54) has to be replaced by

V' —gwA (0) acos (a0+^)+uG (Asin [(x0+ f)) +N (-wAacos [ a0+ fl )

Then from (54) we have < V > =0 and the THEORFM II: For any non-linear

dissipative wave equation of the of the type (7) the frequency w is

not modified by the dissipation terms.

III. Other Problems

The case b = 0 presents problems here, since in this case the Krylov-

Bogolyubov method cannot be applied to (35). Another interesting problem is

-Ut + U^ = bu + of (u)	 (59)

This equation is of interest in turbulence theory. It can be treated by

the methods discussed here.

STABILITY

In many cases the equation (35) cannot be solved exactly or the wave

equation is not of the type (7). In these cases Lighthil1 18 proposed for

conservative systems an expansion of.Y.. We would like to follow up a similar

way for the dissipative case. In general,f = -1(w, k, A). We are, however,

able to eliminate, e.g., A from one of the three equations determining w, k,

A or from the amplitude dispersion relation. With ,7' = ^C(w, k) we rewrite

a,

NI



i

6
i

- 14 -

(29) by exchanging the order of differentia ion

00xt  k + ^ lc)c 2 T52	 (60)
tt ^^!^

This is a partial differential equation forO(x, t). We now expand

)E. Since Glyn = 0 according to (36),, measures exactly the derivation from

the dispersion relation of the linear equation. In order to make this more

explicit we expand

-t(c,), k) =,(T, k) = aTZ = a (u^-f !''c)	 (61)

1P	 where w-- f (k) is the dispersion relation of the linear equation, e.g. (21) .

We then have the correspondence. a - f' 	 ^ -* ^ where T and k are

now two independent variables. Since then k = O, T = 2aT ,.lT T = 2a, (60) takes

the form

Ott +

Since f=f(k), Ox

equation for 0 (x, t) . App

ene may write (62) in the

2f'0 xt  + (f' 2- f 1 T) 0 x =Tr Q/a	 (62)

= k(x, t). This is a quasilinear partial differential

Dlying usual characterics method, see e.g. Ref. 20,

fonn

AOxx + BOxt + COtt = 7Q/a	 (63)

Then the characteristics are: 	 X

Real - (hyperbolic equation), if B 2 - 4 AC _ 4f"T > 0

Complex (elliptic equation), if B 2 - 4 AC _ 4f"T < 0

We see that the dissipative te-;n Q does not enter into this condition.

So we have the following THBORI M III:

f



- 15 -

a. The effect of non-linear te=ns on the stability behavior is described

by f"(k).( w- f[k]). The stability behavior of the linear equation, described

by w = f(k) is not altered by non-linear terms, if f"(k).( w- f[k]) > 0.

If however f"(k).(w - f[k]) < 0, then the non-linear terms may destabilize

an c herwise stable solution of a linear equation.

b. The inclusion of dissipative term Q does not by itself modify the

character of the stability behavior, but the time behavior of unstable and

stable modes is modified.

Examples and applications of this theorm will be given in forthcoming

papers.
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