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S YMBO* S

A	 area

e	 magnitude of the charge of an electron

electric current (unsubscripted and upsuperscripted

it refers specifically to the Lcasured current

flowing between the probe and reference electrode)

I j 	dimensionless ion-current, defined by Eq. (5)
J i 	ion-current density collected by an electrode

k	 the Boltzmann constant

M	 charge-normalized ion mass, mi/Z
L

M	 particle mass

n 
	 undisturbed electron density

R	 radius

T	 temperature

V	 applied potential normalized to kTe/e

Z	 multiplicity of ionization

a	 Ar/Ap

:	 minimum value of a for which electron temperature

measurement is not greater than +2% inaccurate

R/XD

e	 permittivity of free space
2 1/2

^D 	electron Debye length, (E kTe/nee )

electric potential

X	 dimensionless potential measured with respect to the

plasma, e(O-0o )ATe

- a	 iii



bxr shift in dimensionless reference potential away

from tt.s floating potential. necessary to

establish it = - i p when the probe is operating

anywhere in the transition region of the current-

voltage characteristic

AX total change in dimensionless reference-electrode

prarential which is necessary to establish

r
it = - i p when the probe is operated from its

floating potential to the plasma potential

pxp difference between the plasma potential and the

probe's floating potential, Axp ° -%:f

SUBSCRIPTS

a for	 < 104a

e electron component

f used to designate the dimensionless floating potential

i ion component

o of the plasma or evaluated at the plasma potential

P of or at the probe

r of or at the reference ele-.strode

SUPERSCRIPTS	
I

a measured or apparent

p of or at the probe

r of or at the reference electrode

iv



Area Influences and Floating Potentials

in Langmuir Probe Measurements

Edward P. Szuszczewiczt
Laboratory for Planetary Atmospheres

National Aeronautics and Space Administration
Goddard Space Flight Center, Greenbelt, Maryland 20771

ABSTRACT

An analysis has been conducted on the influence

of a relatively small reference electrode in a Langmuir

probe measuremE.,nt of plasma density and temperature.

It is shown that a ratio 01 of reference-electrode

area to probe area of 10 4 will guarantee no distortion

of the measurement as a result of a shifting reference-

electrode potential. It is further shown that the

constraint on a can be relaxed by approximately two

orders of magnitude when the ion mass is decreased

from 200 to 1 amu and the ratio of reference-electrode

radius to Debye length, Rr/XD , is decreased from 100

to 0. An additional result of the analysis is the

dependence of a probe's floating potential on its

geometry and radius as well as on the properties of

the plasma.

1	 7-
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I. INTRODUCTION

The experimental methods of plasma diagnostics,

together with the corresponding theoretical foundations,

have over the years seen considerable treatment in the

literature. The technique which :seems to have received

broadest application is that of the electrostatic probe,

better known as a Langmuir probe because of the pioneer-

ing work of Irving Langmuir I in the first quarter of this

century. The Langmuir probe is most simply described

as a conductor (generally of planar, cylindrical or

spherical geometry) which collects current from a plasma

when a voltage is applied. The current drawn by the

probe from the plasma is a function of the probe size

and geometry, the probe voltage, and the plasma properties

of charged--particle number densities, particle distribu-

tion functionk), and collision frequencies. Consequently,

a current-voltage characteristic of a probe imbedded

within a plasma is potentially rich with information

about that plasma. If one understands the behavior of

plasmas in the presence of an electrostatic probe, then

in principle the plate--.a parameters mentioned above can

be extracted from a probe characteristic.
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The Langmuir and Langmuir-type probe has played

an important role in the diagnostic of space plasmas 

and consequentl y considerable attention has been directed

to the response of probes operating in the collisionless

limit. From the theoretical point of view the behavior

of probes immersed in this type of plasma is well

understood - particularly through the work of Laframboise3.

The transition from understanding through theory to

application involves considerable depth in technique

as well as knowledge of secondary influences which tend

to distort the Langmuir probe characteristic. The

literature has given considerable treatment to the

many experimental complications which can yield erroneous

results (see Ref. 4) but nothing quantitative and broad

in application has been reported which considers the

distortion of the Langmuir probe characteristic that re-

stilts when tI.e electrode with respect to which the probe

voltage is mEasuired has a finite area when compared

to the area of the probe. It is therefore the object

of this work to establish guidelines within which

accurate measurements of electron density and temperature

can be realistically made when the ratio of reference-
,

electrode area to probe area is finite. (Finite is here

3



curve is referred to as the probe characteristic. Figure 1

4

considered to be less than approximately 3000.) This

is an issue which is of particular importance to

rocket- or satellite-borne probe experiments in the

ionosphere or in the interplanetary plasma environ-

ment since the vehicle itself generally takes on the

role of reference electrode. In this case the ratio

of reference electrode area to probe area is limited

at the reference end by spacecraft size and at the

probe end by the sensitivity of the instrumentation

for current measurement. Practical considerations

in laboratory plasmas can also restrict the area ratio

I	 to a value far less than ideal.

II. THEORETICAL CONSIDERATIONS

The Langmuir probe is the smaller electrode of a

two-electrode configuration with the ratio of the two

areas approaching a value which for all practical purposes

should be considered infinite. When the two electrodes

are in electrical contact with a plasma a current will

pass between them which is a function of an applied

voltage difference. When this current is plotted as a

function of the applied voltage difference the resulting



shows a schematic representation of a Langmuir probe

circuit as well as a typical characteristic. (In a

laboratory situation the reference electrode can in

fact be the container of the plasma volume.) The

potential of the reference electrode is here defined

as zero and it is .if paramount importance to the

measurement technique that this potential remain

constant (with respect to the plasma potential)	 for

all values of z.urrent . 	 When the area of the reference

A
electrode is sufficiently small its potential will

shift,	 resulting in a net distortion of the probe's

current voltage characteristic.

From the considerations to be introduced here the

change of potential of the reference electrode is a

function of the area ratio a 	 A /A	 and the circuit
r	 p

current i where A 	 and A	 are the reference and probep

areas respectively.	 In every case the total current

collected by the probe system must equal zero; that is,

it = - i p where i t and i p are net currents collected from

the plasma by the reference electrode and the probe

respectively.	 This constraint yields the identity given

by Eq.	 (1) where the subscripts i and e

it - i t = - i i + ie(1)

5



are used to designate the ion and electron component g to

the net current. By assuming that both electrodes aee

operating at potentials which are less than or equal

to the plasma potential and that there are just two

charged species - positive ions and negative electrons

(the electrodes are therefore ion-attracting) - Eq. (1)

can be written in the form shown in Eq. (2a). Rearrangement

and appropriate cancellation of terms then yield Eq. (2b).

r	 r
a Cneey kTe/2nM I 

i 
(S r , T , X ) - neeVkTe/2nme ex p (X )

(2a)

neev kTe/2nme exp (Xp ) - neeV' kTe/2nM I i (S p , T, Xp)

a

exp(Xp) - y me /M I i ( S , T Xp)
_	 p	 (2b)

time/M I i (S r 9 T ,Xr1 - exp(Xr)

In Eqs . (2) , Xr and Xp are respectively the probe and

reference electrode potentials, 0 p and 0 r , measured with

respect to the plasma potential 0o and normalized to

kTe/e (see Eqs . (3)) , whi 9 S r and Sp are the corresponding

radii divided by the electron Debye length 
XD 

(see Egs.(4)).

(Only spherical and cylindrical geometries will be con-

sidered explicitly.).

6
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X  = 0 (0 p -00) /.:Te	 Xr - e ( m r -mo ) ATe 	(3)

8 p ` Rp/a D,
	 ^ r = R_ A D	 (4)

T is the ratio of ion-to-electron temperature T i /Te , me is

the mass of an electron, M is the charge-normalized

ion mass defined by M = m i /Z 2 where m  and Z are the

ion mass and multipticity of ionization, and I i is the

dimensionless ion current (defined in Eq. 5) which in

the collisionless limit is available in numerical form

from the calculations of Laframboise
3

.

j i	 nee (kTe /2TTM) 1/2 I 1	 (5)

In Eqs. (2a), (3) and (5) the quantities as yet

unuefined are the undisturbed electron density ne,

the magnitude of the charge of an electron e, the

Boltzmann constant k, and the experimentally observed

ion-current density collected by an electrode ji.

The results of the collisionless theory of Laframboise3

will be employed for values of I i . Laframboise assumed

that each specie of charged particle has a Maxwellian

velocity distribution with its own characteristic tempera-

ture. His calculations are based on the Boltzmann-Vlasov

equation for the two species, coupled with Poisson's

7
0%•	 "'S. 
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equation. He assumed that no magnetic fields are

present, that the charged species Lre totally absorbed

at the probe surface (an exception is the zero ion-

temperature elution for spherical probes where it was

assumed that the repelled species is totally reflected

at the probe surface) and that trapped orbits, if any,

are unpopulated.

In order to establish a quantitative approach in

determining the degree to which a probe characteristic

can be distorted by finite values of a, only that region

of the probe's characteristic, between the floating and

plasma potentials (i.e. the transition region) will

be investigated. (The floating potential of an

electrode immersed in a plasma is defined to be that

potential at which no net current flows to the electrode

from the plasma.) This is not a serious restriction

since it is this region which is normally of prime

importance in probe analysis. It is also to be

expected that with a > 1 there will be no significant

distortion of the characteristic for potentials of the

probe less than its floating potential.

In moving from the floating potential (k.p ° Xf)

where no net current flows, to the plasma potential

(xp = 0), where the random thermal flux of electrons

is collected, the probe will experience a change

8
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in current given by Q p _ +nee A
P 

kTe/2rme . This

change in current corresponds to a change in the probe's

dimensionless potential which is given by ,:XP 	 f.

Since 1Li P I = /' i r l, the reference electrode must also

undergo the same absolute change in current and the

shift in its potential 'X r , which is necessary to achieve

this Ai r , is a measure of the distortion in the probe's

characteristic.	 ,tir is given by Eq. (6) , where Xr is the
a

solution to Eq. ('b) for finite a when x . p = 0, and Xf

is the corresponding solution when a

	

r_ r _ r	 (6)-X	 Xa X f

The analysis of net distortion is herein presented

for cylindrical reference-electrodes with 3r < 3, = 10,

= 100 while for reference electrodes of spherical geometry

the lowest limit is Hr = 2. (For the calculation of

LX  the probe geometry is unimportant.) For both

geometries the temperature cases of T = 0 and 1 were

studied for charge-normalized ion masses Mi [in amu j of

1 2 16, 64 and 200. This spans the spectrum of possible

cases from the proton plasma of the solar wind to a

singly-ionized mercury plasma.

9



III. RESULTS AND DISCUSSION

A. Cylindrical Reference Electrode

The potential Xr of a reference electrode of

cylindrical geometry is shown as a function of a for

the cases 3 r	3 9 = 10, = 100 in Figures 2-a, 2-b and

2-c, respectively. In each figure the running parameter

is the charge-normalized ion mass expressed in amu and

the results for ► = 0, and 1 are presented. X  is the

value of the dimensionless potential which the reference

electrode must assume in order to guarantee that

i p = -ir when the probe is at the plasma potential.

The total shift in X  which results when the probe is

operated over the entire transition region is given by

Eq. (6) for any given (s r , T, M, a) and the quantities

necessary for calculating .%-X are readily obtained from

Figs. 2 where Xf can be taken as the value of Xa at

a = 104 . As an illustration consider the cylindrical

case when (fi r , 1 , M, a) = (100, 0, 16, 200).	 In this

situation ^Xr
	

Xr - Xf = -6.3 + 5.0 = -1.3, which would

correspond to a voltage shift of -11.2 volts if T  = 10 5 oK.

In Figures 2 it can readily be seen that for a given

(fi r , M, a) the value of -X ra is always smaller when

= 1 than when T = 0. This results from the fact that

10
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the ion-current response of cylindrical electrodes

is an increasing function of T . The reference elect-

rode can therefore maintain a given ion-current level

at a smaller value of -X rwhen T - 1 than when T - 0.
Ct

The results of Figs. 2 at a - 10 4 can lie used to

generate curves which present the dimensionless floating

potential X  as a function of M for T - 0 and 1 and

S	 3, - 10, - 100. (Here x_ f is not superscripted nor

is	 subscripted since the results apply to any elect-

rode.) The results of this approach are presented

in Fig. 3 which shows that 
-Xf 

increases with

increasing 0 for a given ( T ,M). This reflects the

reduction in the relative sheath size for increasing

values of ^ and consequently a reduction in the

dimensionless ion current to the electrode.

	

Since the general procedure for analyzing a Lang- 	 I

muir probe characteristic in the transition region

involves a simple plot of ln(ie) versus the applied po-

tential 5 an important question concerns the exact manner

in which the AX  shift manifests itself. gnat is, in the

presence of a AX  shift is the distortion more dominant

in any particular portion of the transition region? This

point is of considerable importance since it is possible

that a changing reference potential can render inaccurate

11



the determination of T e or ne , or both. To answer

this question it is necessary to define a potential

which is applied between the probe and the reference

electrode. This potential will be designated as V 

and in keeping with the use of dimensionless parameters

will be considered normalized to kT e/e. The relationship

of V  to other dimensionless potentials is given in

Eq. (7)

V  = + Xp 	 Xf - _
Xr	

(7)

where 6X  is the shift in reference potential

necessary to balance the current collected by the

probe operating at any point in the transition region

The behavior of kr is such that 
?Xr- XP°Xp 

= 0 and
f

X 
r 
J X P.0 = X r . A representative example of the exact

form of the distortion is shown in Fig. 4 as a solid line.

Figure 4 is a plot of the _logarithm of electron current

collected by the probe normalized to its value at plasma

potential versus the applied dimensionless potential Va.

The result, which is typical of the response which should

be anticipated in the presence of a 'X r , has been calcua -

ted for a reference electrode and probe of cylindrical

geometries with assumed conditions such that (a,, 8 p , ?r,

T, M) = (150, ` 3 9 100, 0, 16). For purposes of easy

12	 _ _ M.



comparison the case for a	 m is shown in Fig. 4 as

a dashed line. The latter case points out that the

plasma potential is only 4.3 units of dimensionless

potential. positive with respect to the Boating

potential of the probe. On the curve for a = 150 the

probe does not attain plasma potential until V  = 8.2,

reflecting a -",X
r
 equal to 3.2 and a difference of 0.7

dimensionless units between X p and Xf'

The bend in the curve in the region 4 V 	 6

}	 could easily and erroneously be interpreted in an

ex ►;erimental situation as the "knee" which normally

exists near the plasma potential and the portion of

the curve for V  > 6 taken as the electron--saturation

current response of the probe. It can be seen that

'	 a straight line can be drawn through the curve in the

region V 	 4 thus indicating the presence of Boltzmann

electrons with a T  which is approximately 8% higher

than the real value.

It is interesting to discuss the possibility of

locating the plasma potential on the measured curve.

If the point of break-away from the straight line (for

discussion of this technique see Ref. 6) is used to

locate the measured value of the plasma potential Va(0),

1
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then 3. 5	 V  (0)	 4.0, while it appears that the

plasma potential is at V a (0) " 5 if one uses the

intersection of the two tangents (the dotted lines

I	 in Fig. 4) in the two-tangent technique (see Ref. 3).

In this example the latter technique yields no error

in locating the plasma potential with respect to Xp
f

whereas the former technique yields a -20 to -30% error

or approximately a -9 to -13 volt error in the measure-

ment when T iv 10 5 oK.e

Another important consideration is of course the

determination of ne from what appears to be ie(0).

Using the break-away point  one would find n  ^ 0.2 ne

while the intersection of the two tangents would yield

ne	 0.7 ne . Here ne is the measured (i.e. apparent)

value of the undisturbed electron density.

B. Spherical Reference Electrode

The results analogous to Figures 2 for a reference

electrode of spherical geometry are presented in Figures

5 and as before the value of X  can be taken as the value

of Xr at a = 10 4 .
a

In contrast to the results for cylinders it can be

seen that the value of -Xa is larger vrhen -r = 1 than

when 1 = 0 (at least for p r < 100). This is a reversal

14
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in the trend of results for cylindrical geometry with

the rea-ion for the difference partially lying in the

theoretical models employed by Laframboise.

As mentioned earlier Laframboise assumed a totally

absorbing probe for all cases except when '* = 0 in the

presence of a spherical probe. In the latter case it

was assumed that the repelled species ( the electrot.^

in the transition region) is totally reflected at the

probe surface. The zero collection of the repelled

species results in an increase in its density near the

probe and decreases the steepness of the electric potential

there, allowi»g more of the attracted particles (Jobs)

to reach it. The net result is an increase of attracted-

particle ( ion) current above corresponding values calcula-

ted for a completely Absorbing probe. This difference

in collection properties then yields smaller values of

r and similarly smaller values-Xa ^	 y	 -Xf) in the case of a

reflecting electrode than those for an absorbing electrode.

It should be pointed out that the difference in

theoretical models as discussed above cannot in itself

completely explain the tread reversal in the role of T

in determing Xr when comparing the results of spherical
of

and cylindrical geometries. This point bares itself when

1



t
r

one considers that the totally-reflecting electrode

solution should converge to the totally-absorbing

electrode results with increasing values of -Xr and
rX

-X f . In fact it should be expected i 3 at at a retarding

dimensionless potential of -5 the two solutions should

have mergea. The role of r and its relative influence

at grewi,cr reLa:• d_ng potentials is more easily observed

in Figure 6 where -X f is plotted for spheres ab a fug&%,-

tion of M for r = 0 and i = 1 and $ = 2 1 10 and 100.

If for any given value of j;. the sole reason that Xf(J=0)

X f. ( 1=1) was a difference in the assumed theoretical

models, it would be expected that the difference Xf(r=0)

- X f.(i=1) would become smaller for increasing values of

-X f, and any given value of s. Figure 6 shows clearly that

this in fact does not take place.

A larger contribution to the observed difference

in the influence of 1 on the two geometries lies in the

fundamental differences in the ion-current response of

cylinders versus that of spheres. The detailed results

of Laframboise show that the ion-current to a cylindrical

electrode is a monotonically increasing function of T.

This was indirectly observed in the results of Figs. 2 and 3.

16	 K



In contrast to the results for a cylinder, the

nature of the ion-current dependences for spheres on T

is non-monotonic. Laframboise has in fact shown that as

T is decreased from unity, the ion collection to a sphere

passes through a small minimum at 1* _— 0.25 and then in-

creases very rapidly as T -^ 0	 He has pointed out that

the reason for this behavior is that as T decreases from

unity, the dominant influence is at first the decrease

of randnin ion flux through a decrease of ion thermal

motion; as T decreases further, the absorption boundaries?

move outward to infinity, slowly at first, then very

rapidly,	 so that the increase in ion-collection volume

becomes the dominant influence. This increase in

collection volume is such that the current collected

at T - 0 is greater that that at T - 1.	 The consequence

of this is of course observed in Figures 5 and 6.

Figure 6 is the spherical counterpart of Figure 3

and both figures display the same type of dependence

for constant T on 0 and M.

IV. COMMENTS AND CONCLUSIONS

A. Relative Probe Size

The results of the analysis presented in Figures 2

and 5 show that a value of oe 1= 104 will guarantee a

fixed reference potential. As evidenced by these Figures

the constraint on a- can be relaxed with decreasing valaes

of M and fi r ,. A guideline can be established by requirinf;

OXr	 50.1 I Xf	 By linearly extrapolating the results

of Fig. 4, this constraint implies a worst-case error in

17



electron temperature measurement -)f +2%. A minimum value

of' a can be established from Figure 2 and 5 which guar--

antee the above condition of constraint. This value of

a is defined as a* an:: is plotted in Fig. 7 as a function

of M for both cylindrical and spherical reference elect-

rodes. For all values of ^ except S r	2 in spherical

geometry the curves are valid for both T = 0 and 1 with

an accuracy on the value of a being t lO%. The exception

is plotted separately for T - 0 and 1 since the accuracy

of t1O% could not be achieved with a single curve. The
*

values of a can therefore be taken as a working lower

limit for meaningful Langmuir probe characteristics.

B. Floating Potential

Figures 3 and 6 make it quite clear that the

floating potential of a body immersed in a plasma is

a function not only of the plasma parameters but also

of the body size and geometry. This is a result which

should be anticipated in any attempts to determine rocket

or satellite potentials as inferred by the floating

potential of an on-board Langmuir probe. As an example

consider a plasma volume in the limit T -* 0 with

n  - 105/cm3 , T  -,,- 2(103) 0  and M = 16. (This situation

would represent conditions that are encountered in the

ionosphere at an altitude of approximately 250 km.)

If the measurement is made with a cylindrical probe

such that ^p 1_. 3 and if a 22.9 cm (9.0 in.) diameter

rocket ( S r	10) is employed as a reference electrode

18



the resulting floating potentials would be Xf = -4.3

and Xf	 -4.6. The floating potential of the probe

would then be 52 my (° 0.3 kTe/e) more positive than

the rocket potentiat. (Other possible influences,

such as contact potentials and photoemission, have

not been included in this example for purposes of

simplicity.)

The difference in probe and reference electrode

floating potentials can be significantly larger in a

laboratory plasma. As an illustration consider an

Ar♦ (M=40) plasma with n  = 10 11 /cm 3 , T  - 10 5 o  and

T	 0. If a cylindrical probe with R 	 .021 cm(.008 in.)

is employed and probe voltages are applied with respect

to a large planar electrode in electrical contact with

the plasma, the corresponding floating potentials would

be Xf = -4.7 and Xf = -5.0 The result for the planar

electrode has been approximated by the spherical case

with ^r = 100 and it has been assumed that no density

grad ients are present in the plasma. In this illustration

the floating potential of the probe is approximately 2.6

volts more positive than the corresponding potential of

the reference electrode.

19



C . Other Area Considerations

In addition to the area considerations presentee

here it must be remembered that the very size of the

probe and reference electrode may influence the ambient

plasma parameters of density and temperature. The

possibility of this type of influence has been studied

by Waymouth9 who has pointed out that the very act of

measurement will perturb the undistributed charged-

particle energy distribution if the current collected

by the probe is large in relation to the progresses

which maintain the plasma. Consequently both the re-

lative and ausolute sizes of a probe are important

considerations for the integrity of a Lan gm»ir ,robe

measurement of plasma properties.

20
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FIGURE CAPTIONS

Fig. 1. Schematic representation of a Langmuir probe

circuit and a corresponding theoretical current-

voltage characteristic.

Fig. 2. The dimensionless potential X 

reference-electrode as a funct

for 
9 r (=Rr /XD) 

'_ 3 (Fig. 2a) ,

and = 100 (Fig. 2c). M is the

of a cylindrical

ion of ct(=Ar,'Ap)

10 (Fig. 2b)

charge-normalized

ion mass (in amu), T = T i/Te and the Langmuir

probe is assumed to be operating at the plasma

potential.

Fig. 3. The dimensionless floating potential X  of a

cylindrical body immersed in a collisionless,

Maxwellian plasma plotted as a funt-tion of the

charge-normalized ion mass M (in amu) for ratios

of ion-to-electron temperature equal to 0 and 1.

S is the ratio of body radius-to-Debye length.

Fig. 4. A semi-logarithmic plot of the normalized

transition-region electron-current response of

a cylindrical Langmuir-probe. The reference

electrode is assumed cylindrical and the ratio

of its area to teat of the probe taken as 150.

The dashed line represents the undistorted

response when a( =Ar /A p)

+1 ,

22



Fig 5. The dimensionless potential X  of
a

reference-electron as a function

for 0r(=Rr/^D) - 2 (Fig. 5a) , 10

100 (Fig. 5c). M is the charge-

a spherical

of a(=Ar /A p)

(Fig. 5b) and

normalized ion

mass (in aMLI), T = T i /Te and the Langmuir probe

is assumed to be operating at the plasma potential.

Fig. 6. The dimensionless floating potential 
X  

of a

spherical body immersed in a collisionless,

Maxwellian plasma plotted as a function of the

charge-normalized ion mass M (in amu) for ratios

of ion-to-electron temperature equal to 0 and I.

S is the Patio of body radius-to-Debye length.

Fig. 7. A guideline on the minimum area ratio (A /A )	 ar p min
which will limit errors in T  measurements, that

can result from shifting reference-electrode

potentials, to +2%. Except for the spherical

case when Sr = 2 the results apply within a

+10% accuracy in a* to both T = 0 and 1.
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