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pebe

SYMBO! S

area

magnitude of the charge of an electron

electric current (unsubscripted and ursuperscripted
it refers specifically to the neasured current
flowing between the probe and reference electrode)

dimensionless ion-current, defined by Eq. (5)

ion-current density collected by an electrode

the Boltzmann constant

charge-normalized ion mass, mi/Z2

particle mass

undisturbed electron density

radius

temperature

applied potential normalized to kTe/e

multiplicity of ionization

AL/A

minimum value of o for which electron temperature
measurement is not greater than +2% inaccurate

R/xD

permittivity of free space

9 1/2

electron Debye length, (e kTe/nee )

electric potential

dimensionless potential measured with respect to the

plasma, e(¢-¢o)/kTe

iii



X

AX

AX

shift in dimensionless reference potential away
from tt.e floating potential necessary to
establish 1¥ = -iP when the probe is operating
anywhere in the transition region of the current-
voltage characteristic

total change in dimensionless reference-electrode
pctential which is necessary to establish

i¥ = -ip when the probe is operated from its

floating potential to the plasma potential

difference between the plasma potential and the
p P

= =)

probe's floating potential, AX

SUBSCRIPTS

for o < 10%

electron component

used to designate the dimensionless floating potential

ion component

of the plasma or evaluated at the plasma potential
of or at the probe

of or at the reference elec:trode

SUPERSCRIPTS

measured or apparent
of or at the probe

of or at the reference electrode
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Area Influences and Floating Potentials
in Langmuir Probe Measurements

Edward P. Szuszczewicz+
Laboratory for Planetary Atmospheres
National Aeronautics and Space Administration
Goddard Space Flight Center, Greenbelt, Maryland 20771
ABSTRACT
An analysis nhas been conducted on the influence
of a relatively small reference electrode in a Langmuir
probe measurement of plasma density and temperature.
It is shown that a ratio o of reference-electrode
area to probe area of 104 will guarantee no distortion
of the measurement as a result of a shifting reference-
electrode potential. It is further shown that the
constraint on o can be relaxed by approximately two
orders of magnitude when the ion mass 15 decreased
from 200 to 1 amu and the ratio of reference-electrode
radius to Debye length, Rr/xD, is decreased from 100
to 0. An additional result of the analysis 1is the
dependence of a probe's floating potential on its
geometry and radius as well as on the properties of

the plasma.



I. INTRODUCTION

The experimental methods of plasma diagnostics,
together with the corresponding theoretical foundations,
have over the years seen consicderable treatment in the
literature. The techniogue which seems to have received
broadest application is that of the electrostatic prche,
better known as a Langmuir probe because of the pioneer-
ing work of Irving Langmuir1 in the first quarter of this
ceatury. The Langmuir probe is most simply described
as a conductor (generally of planar, cylindrical or
spherical geometry) which collects current from a plasma
when a voltage is applied. The current drawn by the
probe from the plasma is a function of the probe size
and geometry, the probe voltage, and the plasma properties
nof charged-particle number densities, particle distribu-
tion functions, and collision frequencies. Consequently,
a current-voltage characteristic of a probe imbedded
within a plasma is potentially rich with information
aoout that plasma. If one understands the behavior of
plasmas in the presence of an electrostatic probe, then
in principle the plasia parameters mentioned above can

be extracted from a probe characteristic.



The Langmuir and Langmuir-type probe has played
an important role in the diagnostice of space plasmas2
and consequently considerable attention has been directed
to the response of probes operating in the collisionless
limit. From the theoretical point of view the behavior
of probes immersed in this type of plasma is well
understood - particularly through the work of Laframboise3
The transition from understanding through theory to
application involves considerable depth in technique
as well as knowledge oif secondary influences which tend
to distort the Langmuir probe characteristic. The
literature has given considerable treatment to the
many experimental complications which can yield erroneous
results (see Ref. 4) but nothing quantitative and broad
in applicaticn has been reported which considers the
distortion oi the Langmuir probe characteristic that re-
sults when tte electrode with respect to which the probe
voltage is measured has a finite area when compared
to the area of the probe. It is therefore the object
of this work to establish guidelines within which
accurate measurements of electron density and temperature
can be realistically made when the ratio of reference-

electrode area tc probe area is finite. (Finite is here



considered to be less than approximately 3000.) This
is an issue which is of particular importance to
rocket- or satellite-borne probe experiments in the
ionosphere or in the interplanetary plasma environ-
ment since the vehicle itself generally takes on the
role of reference electrode. In this case the ratio
of reference electrode area to probe area is limited
at the reference end by spacecraft size and at the
probe end by the sensitivity of the instrumentation
for current measurement. Practical considerations

in laboratory plasmas can also restrict the area ratio

to a value far less than ideal.

I1. THEORETICAL CONSIDERATIONS

The Langmuir probe is the smaller electrode of a
two-electrode configuration with the ratio of the two
areas approaching a value which for all practical purposes
should be considered infinite. When the two electrodes
are in electrical contact with a plasma a current will
pass between them which is a function of an applied
voltage difference. When this cufrent is plotted as a
function of the applied voltage difference the resulting

curve is referred to as the probe characteristic. Figure 1



shows a schematic representation of a Langmuir probe
circuit as well as a typical characteristic. (In a
laboratory situation the reference electrode can in
fact be the container of the plasma volume.) The
potential of the reference electrode is here defined
as zero and it is of paramount importance to the
measurement technique that this potential remain
constant (wiih respect to the plasma potential) for
all values of current. When the area of the reference
electrode is sufficiently small its potential will
shift, resulting in a net distortion of the probe's
current-voltage characteristic.

From the considerations to be introduced here the
change of potential of the reference electrode is a
function of the area ratio a = Ar/Ap and the circuit
current i where A  and Ap are the reference and probe
areas respectively. 1In every case the total current

collected by the probe system must equal zero; that is,

ir = -ip where ir and ip are net currents collected from

the plasma by the reference electrode and the probe
respectively. This constraint yields the identity given

by Eq. (1) where the subscripts i and e

T T p .p
li - le - ii + 1o (1)



are used to designate the ion and electron components to
the net current. By assuming that both electrodes are
operating at potentials which are less than or equal

to the plasma potential and that there are just two
charged species - positive ions and negative electrons
(the electrodes are therefore ion-attracting) - Eq. (1)

can be written in the form shown in Eq. (2a). Rearrangement

and appropriate cancellation of terms then yield Eq. (2b).

j r r, .

a[neeVRTe/ZnM Ii(Br,T,x ) - nee~/kTe/2nme exp(x ) J
(2a)

- T /o P, _ m /oM P

neevae/Zmne exp(x ) neerTe/ZnM Ii(sp,v,x )

exp(x") - Vm /M 1 (8 ,7,xP)
Vm /M I, (B ,7,x ) - exp(x’)

In Egs. (2), xr and xp are respectively the probe and
reference electrode potentials, ¢p and ¢r’ measured with
respect to the plasme potential ¢0 and normalized to

kTe/e (see Egs. (3)), whiie Br and Sp are the corresponding
radii divided by the electron Debye length \p (see Egs.(4)).
(Only spherical and cylindrical geometries will be con-

sidered explicitly.).



xP = e(0,-0,) /T, x' = e(g,-0,) /KT (3)

- ) - 4,
Bp Rp/ D’ £ Rr/xD (4)

T is the ratio of ion-to-electron temperature Ti/Te’ m, is
the mass of an electron, M is the charge-normalized
ion mass defined by M = mi/Z2 where m, and Z are the

ion mass and multipticity of ionization, and Ii is the
dimensionless ion current (defined in Eq. 5) which in
the collisionless 1limit is available in numerical form

from the calculations of Laframboise3

/2 I

i (5)

A 1
Jy nee(kTe/ZnM)

In Egqs. (2a), (3) and (5) the quantities as yet
unudefined are the undisturbed election density ne,
the magnitude of the charge of an electron e, the
Boltzmann constant k, and the experimentally observed
ion-current density collected by an electrode Ji'

The results of the collisionless theory of Laframboise3

will be employed for values of 1 La framboise assumed

i
that each specie of charged particle has a Maxwellian
velocity distribution with its own characteristic tempera-

ture. His calculations are based on the Boltzmann-Vlasov

equation for the two species, coupled with Poisson's



equation. He assumed that no magnetic fields are
present, that the charged species wre cotally abso;bed
at the probe surface (an exception is the zero ion-
temperature solution for spherical probes where it was
assumed that the repelled species is totally reflected
at the prokte surface) and that trapped orbits, if any,
are unpopulated.

In order to establish a quantitative approach in
determining the degree to which a probe characteristic
can be distorted by finite values of ¢, only that region
of the probe's characteristic between the floating and
plasma potentials (i.e. the transition region) will
be investaigated. (The floatring potential of an
electrode immersed in a plasma is defined to be that
potential at which no net current flows to the electrode
from the plasma.) This is not a serious restriction
since it is this region which is normally of prime
importance in probe analysis. It is also to be
expected that with « > 1 there will be no significant
distortion of the characteristic for potentials of the
probe less than its floating potential.

In moving from the floating potential (xp = x?),
where nc net current flows, to the plasma potential
(xP = 0), where the random thermal flux of electrons

is collected, the probe will experience a change



in current given by AP = +n e A VKT_/2rm_. This
e ' p e e

change in current corresponds to a change in the probe's

dimensionless potential which is given by axp = - X?-
Since |2iP| = |7i"|, the reference electrode must also

undergo the same absolute change in current and the

shift in its potentinl "x , which is necessary to achieve
this éir, is a measure of the distortion in the probe's
characteristic. Axr is given by Eq. (6), where xg is the
solution to Eq. (2b) for finite a when xp = 0, and x§

is the corresponding solution when a - .

!\r_—.r r
A% Xg — Xf (6)

The analysis of net distortion is herein presented
for cylindrical reference-electrodes with Br £ 3, =10,
= 100 while for reference electrodes of spherical geometry
the lowest limit is Br = 2. (For the calculation of
Axr the probe geometry is unimportant.) For both
geometries the temperature cases of 1 = 0 and 1 were
studied for charge-normalized ion masses M [in amu, of
1, 16, 64 and 200. This spans the spectrum of possible
cases from the proton plasma of the solar wind to a

singiy-icnized mercury plasma.



III. RESULTS AND DISCUSSION
A. Cylindrical Reference Electrode
The potential X; of a reference electrode of
cylindrical geometry is shown as a function of a for
the cases Br ~ 3, = 10,>= 100 in Figures 2-a, 2-b and
2-c, respectively. In each figure the running parameter
is the charge-normalized ion mass expressed in amu and
the results for + = 0, and 1 are presented. x; is the
value of the dimensionless pctential which the reference
electrode must assume in order to guarantee that
ip = -ir when the probe is at the plasma potential.
The total shift in x  which results when the probe is
operated over the entire transition region is given by
Eq. (6) for cny given (Br’ T, M, a) and the quantities

necessary for calculating .x° are readily obtained from

Figs. 2 where x; can be taken as the value of x: at

a = 104. As an jillustration consider the cylindrical
case when (Br. i, M, a) =100, 0, 16, 200). 1In this

: . r r r )
situation ~x = X, ~ Xg = -6.3 + 5.0 = -1.3, which would

correspond to a voltage snift of -11.2 volts if Te = 105 k.

In Figures 2 it can ireadily be seen that for a given
(Br, M, a) the value of -x: is always smaller when

1 = 1 than when 7 = 0. This results from the fact that

10



the ion-current response of cylindrical electrodes

is an increasing function of 7. The reference elect-
rode can thercfore maintain a given ion-current level
at a smaller value of -xthen T = 1 than when 7™ = 0.

The results of Figs. 2 at o = 104 can be used to
generate curves which present the dimensionless floating
potential xf as a function of M for 7 = 0 and 1 and
B <3, =10, = 100. (Here xg 1s not superscripted nor
is B subscripted since the results apply to any elect-
rode.) The results of this approach are presented
in Fig. 3 which shows that -xf increases with
increasing B for a given (7,M). This reflects the
reduction in the relative sheath size for increasing
values of B and consequently a reduction in the
dimensionless ion current to the electrode.

Since the general procedure for analyzing a Lang-
muir probe characteristic in the transition region
involves a simple plot of ln(ig) versus the applied po-
tential5 an important question concerns the exact manner
in which the Ax' shift manifests itself. .nat is, in the
presence of a Axr shift is the distortion more dominant
in any particular portion of the transition region? This

point is of considerable importance since it is possible

that a changing reference potential can render inaccurate

11



the determination ot Te or ne, or both. To answer

this question it is necessary to define a potential

which is applied between the probe and the reference
eiectrode. This potential will be designated as Va

and in keeping with the use of dimensionless parameters
will be considered normalized to kTe/e. The relationship
of Va to other dimensionless potentials is given in

Eq. (7)

p r

r ~
Vo =t X0 - Xp T X

(7)

where éxr is the shift in reference potential

necessary to balance the current collected by the

probe operating at any point in the transition region

The behavior of /Xr is such that cerxpgxg = 0 and
'erxpno = ;xr. A representative example of the exact
form of the distortion is shown in Fig. 4 as a solid line.
Figure 4 is a plot of the logarithm of electron current
collected by the probe normalized to its value at plasma
potential versus the applied dimensionless potential Va'
The result, which is typical of the response which should
be anticipated in the presence of a ixr, has been calcua-
ted for a reference electrode and probe of cylindrical
geometries with assumed conditions such that (a, Bp, Sr,
r, M) = (150, T 3, 100, 0, 16). For purposes of easy

12
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comparison the case for a2 — « is shown in Fig. 4 as

a dashed 1line. The latter case points out that the
plasma potential is only 4.3 units of dimensionless
potential positive with respect to the floating
potential of the probe. On the curve for a = 150 the
probe does not attain plasma potential until Va = 8.2,

reflecting a -?xr equal to 3.2 and a difference of 0.7

p
A

dimensionless units between x_, and X;—

The bend in the curve in the region 4 < Va ~ 6
could easily and erroneously be interpreted in an
ex,,erimental situation as the "knee' which normally
exists near the plasma potential and the portion of
the curve for Va > 6 taken as the electron-saturation
current response of the probe. It can be seen that
a straight line can be drawn through the curve in the
region V_ S 4 thus indicating the presence of Boltzmann
electrons with a Te which is approximately 8% higher
than the real value.

It is interesting to discuss the possibility of
locating the plasma potential on the measured curve.
If the point of break-away from the straight line (for

discussion of this technique see Ref. 6) is used to

locate the measured value of the plasma potential Va(O),

13



then 3.5 = v, (0) X 4.0, while it appears that the

plasma potential is at Va(O) ~ 5 if one uses the
intersection of the two tangents (the dotted lines
in Fig. 4) in the two-tangent technique (see Ref. 3).

In this example the latter technique yields no error

in locating the plasma potential with respect to xg
whereas the former technique yields a -20 to -30% error
or approximately a -9 to -13 volt error in the measure-
ment when T_ = 10° k.

Another important consideration is of course the
determiration of ng, from what appears to be ig(O).
Using the break-away point6 one would find n: ~ 0.2 n

e

while the intersection of the two tangents would yield

a

a |, :
n, = 0.7 n, - Here n, is the measured {(i.e. apparent)

value of the undisturbed electron density.

B. Spherical Reference Electrode

The results analogous to Figures 2 for a reference
electrode of spherical geometry are presented in Figures
5 and as before the value of X; can be taken as the value
of ¥ at a = 10%

a

In contrast to the results for cylinders it can be
seen that the value of -x: is larger when 17 = | than

when ' = 0 (at least for B. < 100). This is a reversal



in the trend of results for cylindrical geometry with
the reason for the difference partially lying in the
theoretical models employed by Laframboise.

As mentioned earlier Laframboise assumed a totally
absorbing probe for all cases except when T = 0 in the
presence of a spherical probe. In the latter case it
was assumed that the repelled species (the electro: s
in the transition region) is totally reflected at the
probe surface. The zero collection of the repelled
species results in an increase in its density near the
probe and decreases the steepness of the electric potential
there, allowing more of the attracted particles (icus)
to reach it. The net result is an increzsze of attracted-
particle (ion) current above cciresponding values calcula-
ted for a completely absorbing probe. This difference
in collection properties then yields smaller values of
-x; (and similarly smaller values ‘Xf) in the case of a
reflecting electrode than those for an absorbing elect.ode.

It should be pointed out that the difference in
theoretical models as discussed above cannot in itself
completely explain the treand reversal in the role of 7
in determing xz when comparing the results of spherical

and cylindrical geometries. This point bares itself when



one considers that the totally-reflecting electrode
solution should converge to the totally-absorbing
electrode results with increasing values of -xi and
Xy In fact it should be expected t:at at a retarding
dimensionless potential of -5 the two solutions should
have mergea. The role of ' and its relative influence
at greatier reiayding potentials is more easily observed
in Figure 6 where “X¢ is plotted for spheres uas a luuc-
tion of M for +r = 0 and + =1 and 8 = 2, 10 and 100.
I1f for any given value of 3 the sole reason that xf(w=0)
Z X ¢ (1=1) was a difference in the assumed theoretical
models, it would be expected that the difference xf(w=0)
- xf(wfl) would become smaller for increasing values of
X and any given value of 3. Figure 6 shows clearly that
this in fact does not take place.

A larger contribution to the observed difference
in the influence of ;1 on the two geometries lies in the
fundamental differences in the ion-current response of
cylinders versus that of spheres. The detailed results
of Laframboise show that the ion-current to a cylindrical

electrode is a monotonically increasing function of 1.

This was indirectly observed in the results of Figs. 2 and 3.

16



In contrast to the results for a cylinder, the
nature of the ion-current dependence for spheres on 7
is non-monotonic. Laframboise has in fact shown that as
T is decrecased from unity, the ion collection to a sphere
passes through a small minimum at ™ ~ 0.25 and then in-
creases very ropidly as 7™ =2 0 He has pointed out that
the reason for this behavior is that as 7 decreases from
unity, the dominant influence is at first the decrease
of rand~m ion flux through a decrease of ion thermal
motion; as T decreases further, the absorption boundaries7
move outward to infinity, slowly at first, then very
rapidly, so that the increase in ion-collection volume
becomes the dominant influence. This increase in
collection volume is such that the current collected
at T = 0 is greater thar that at 7 = 1. The consequence
of this 1s of course observed in Figures 5 and 6.

Figure 6 is the spherical counterpart of Figure 3
and both figures display the same type of dependence
for constant 7 on B and M.

IV. COMMENTS AND CONCLUSIONS
A. Relative Probe Size

The results of the analysis presented in Figures 2
and 5 show that a value of o = 104 will puarantee a
fixed reference potential. As evidenced by these Figurcs
the constraint on o can be relaxed with decreasing valaes
of M and Br" A guideline can be established by requiring
| ax® | <o0.1 | x; |. By linearly extrapolating the results

of Fig. 4, this constraint implies a worst-case error in

17



electron tcumperature measurement > +2%. A minimum value
of o can be estavlished from Figure 2 and 5 which guar-
antec the above condition of constraint. This value of
a is defined as a. ani is plotted in Fig. 7 as a function
of M for both cylindrical and spherical reference elect-
rodes. For all values of Br except Br = 2 1in spherical
geometry the curves are valid for both 7™ = 0 and 1 with
an accuracy on the value of a* being +10%. The exception
is plotted separately for T = 0 and 1 since the accuracy
of #10% could not be achieved with a single curve. The
values of a* can therefore be taken as a working lower
limit for meaningful Langmuir probe characteristics.
B. Floating Potential

Figures 3 and 6 make it quite clear that the
floating potential of a body immersed in a plasma is
a function not only of the plasma parameters but also
of the body size and geometry. This is a result which
should be anticipated in any attempts to determine rocket
or satellite potentials as inferred by the floating
potential of an on-board Langmuir probe. As an example
consider a plasma volume in the limit T - 0 with
n_ ~ 10°/cm’, T, ~ 2(10%) °K and M = 16. (This situation
would represent conditions that are encountered in the
ionosphere at an altitude of approximately 250 km.)
If the measurement is made with a cylindrical probe
such that B S 3 and if a 22.9 cm (9.0 in.) diameter

rocket (Br ~ 10) is employed as a reference electrode

18
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the resulting floating potentials would be x? = -4.3
and x; = -.4.6. The floating potential of the probe
would then be 52 mv (= 0.3 kTe/e) more positive than
the rocket potentiai. (Other possible influences,
such as contact potentials and photoemission, have
not been included in this example for purposes of
simplicity,)

The difference in probe and reference electrode
floating potentials can be significantly larger in a
laboratory plasma. As an illustration consider an
Ar*(M=40) plasma with n_ = 10" /cm, T, - 10° °K and
1 - 0. If a cylindrical probe with Rp < .021 cm(.008 in.)
is employed and probe voltages are applied with respect

to a large planar electrode in electrical contact with

the plasma, the corresponding floating potentials would

p
4

electrodc has been approximated by the spherical case

he ¥ -4.7 and x; = -5.0 The result for the planar

ey

with B, = 100 and it has been assumed that no density

gradients are present in the plasma. 1In this illustration
the floating potential of the probe is approximately 2.6
volts more positive tha~ the corresponding potential of

the reference electrode.

19
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C. Other Area Considerations

In addition to the area considerations presented
here it must be remembered that the very size of the
probe and reference <clectrode may influence the ambient
plasma parameters of density and temperature. The
possibility of this type of irfluence has been studied
by Waymouth9 who has pointed out that the very act of
measurement will perturb the undistributed charged-
particle energy distribution if the current collected
by the probe is large in relation to the processes
which maintain the plasma. Consequently both the re-
lative and avsolute sizes of a probe are important
considerations for the integrity of a Langmvir piobe

measurement of plasma properties.

20
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Fig. 1
Fig. 2.
Fig. 3.
Fig. 4.

F1GURE CAPTIONS

Schematic representation of a Langmuir probe
circuit and a corresponding theoretical current-
voltage characteristic.

The dimensionless potential x; of a cylindrical
reference-electrode as a function of a(EAr/Ap)
for 8 .(=R./Ay) = 3 (Fig. 2a), = 10 (Fig. 2b)

and = 100 (Fig. 2c). M is the charge-normalized
ion mass (in amu), T = Ti/Te and the Langmuir
probe is assumed to be operating at the plasma
potential.

The dimensionless floating potential X g of a
cylindrical body immersed in a collisionless,
Maxwellian plasma plotted as a function of the
charge-normalized ion mass M (in amu) for ratios
of ion-to-electron temperature equal to O and 1.
B is the ratio of body radius-to-Debye length.

A semi-logarithmic plot of the normalized
transition-region electron-current response of

a cylindrical Langmuir-probe. The reference
electrode is assumed cylindrical and the ratio
of its area to trat of the probe taken as 130.
The dashed line represents the undistorted

response when a(EAr/Ap) - o,

22



Fig 5. The dimensionless potential x; of a spherical
reference-electron as a function of a(EAr/Ap)
for Br(ERr/xD) = 2 (Fig. 5a), 10 (Fig. 5b) and
100 (Fig. 5¢). M is the charge-normalized ion
mass (in amuw), T = Ti/Te and the Langmuir probe
is assumed to be operating at the plasma potential.

Fig. 6. The dimensionless floating potential X¢ of a
spherical body immersed in a collisionless,
Maxwellian plasma plotted as a function of the
charge-normalized ion mass M (in amu) for ratios
of ion-to-electrmon temperature equal to O and 1.

B is the ratio of body radius-to-Debye length.

. 7. i ;

Fig. 7. A guideline on the minimum area ratio (Ar/Ap)nlin
which will limit errors in Te measurements, that
can result from shifting reference-electrode
potentials, to +2%. Except for the spherical

case when Br = 2 the results apply within a

*
+10% accuracy in ¢ to both 7 = 0 and 1.
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