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•	 A DYNAMIC EQUATION FOR STOCHASTIC

MAGNETIC FIELD LINES IN THE GALAXY

Frank C. Jones

Theoretical Studies Branch

ABSTRACT

It has been pointed out by previous authors that the turbulent motion of the ion-

ized interstellar gas will cause a given line of force of the galactic magnetic

field t+, wander in a random manner even though the average field may be quite

regular. We derive here an equation that describes the development of the

probability density of a given field line as a function of distance along the aver-

age field. We demonstrate that a Fokker- Planck type of equation is quite un-

suitable in this case and that the answer must be sought in the theory of station-

ary Gaussian processes. We also derive the distribution function for the "end

points" of a field line that starts on the galactic central plane. End points in

this context means the point where the field line first wanders so near the sur-

face of the galactic disk that it can no longer confine cosmic-rays.
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OR

A DYNAMIC EQUATION FOR STOCHASTIC

MAGNETIC FIELD LINES IN THE GALAXY

I. INTRODUCTION

The earth is situated near (-- 20 pc) the central plane of the galactic disk. The

average galactic field (-, 2-3 p- gauss) appears to lie mainly in the disk and run

approximately parallel to the spiral arms (Davis and Greenstein 1951; Hiltner

1956; van de Hulst 1967; Davis and Berge 1968). There are also theoretical

arguments that it should lie essent i ally in the azimuthal direction (Parker 1969,

Roberts and Yuna 1970). However, a given flux tube such as the one that passes

through the earth and its immediate vicinity will not, in general, follow the pat-

tern of the average field but will wander in a random manner about the galactic

disk. This random wandering of a given field line or group of lines has been

discussed at length by Jokipti and Parker (1969 a, b) and has been related by

there to the problem of cosmic-ray propagation in tale galaxy. Briefly the re-

lationship is as follows: the random wondering of the field line to the surface of

the galactic disk provides a means whereby a cosmic-ray particle, which at the

position of the earth is buried deeply (,10 7 cyclotron radii) in the disk, may es-

cape the disk in a time of the order of 10 6 years. At the point where the field line
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reaches the "surface" the cosmic-ray particles can escape presumably via the

bubble blowing instability ( Parker 1965). Since the galaxy does not have sharp

edges the notion of the surface of the disk is necessarily a bit vague but it is
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 assumed that when a field line reaches a point sufficiently far from the

central. plane ( ^-100 pc) the instability will occur and the cosmic-ray particles

will escape.

The positions of the ends, for cosmic-ray purposes, of the flux tube passim

through the earth are important parameters in any discussion of the cosmic-

ray anisotropy, whether from a smoothed out source point of view (Kulsrud and

Pearce 1969) or from a statistical source point of view (Jones 1970 a, b). in

either case the average cosmic-ray streaming observed at the earth will depend

on the position of the earth relative to the end points of its associated flux tube.

Unfortunately a determination of the actual positions of these end points is im-

possible, at least by present techniques, and we must turn our attention to their

probability distribution function. Jokipii and Parker (1969 b) discuss this ques-

tion and give a rough estimate of where a given field line might end. Their esti-

mate was very crude, however, and was of no value in determining where the

maximum likelihood position would be.

in this paper we will consider this end point problem in more detail and obtain

a probability distribution function for the end points of the flux tube passing

through the earth.

in their analysis Jokipii and Parker (1969 b) determine that a field line while

mean position lies in the central plane of the galactic disk has a probability of

2
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being found between z and z + dz above (or below) the central plane grven

by

f (z) dz = exp (_ I Z i f z 0 ) dz ZO.

The general problem we wish to consider is: given that the field line in question

is at z = 0 at a point y = 0, where y measures the distance along the mean field,

what is the probability distribution in z as a function of y. Our specific question

is the following: given that the field line is at z = 0 9 y = 0, the position of the

earth, what is the probability that it continues a distance y down the mean field

direction without reaching a distance ; z! = z l from the central plane and thuss

terminating its role as a cosmic-ray container.

The equation that we shall derive will be a dynamic equation in the sense that

it will describe the development of the probability function along the direction y

starting with some given form at y = 0 in a manner completely analogous to the

development in time of dynamic stochastic systems. We shall not consider the

actual time development of the stochastic field in this paper. Typical rms

velocities of the gas clouds that carry the magnetic fields are rt 5 Km/sec which

correspond to motions of about 13 pc in a typical cosmic ray lifetime of 106

years . We cannot claim that such a motion is truly negligible, however, we would

not expect a pronounced effect from ignoring it at the present time.

We shall first, following Jokipit and Parker (1969 a), consider the dynamic equa-

tion to be of the Fokker- Planck type. The requirements that the asymptotic

3
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probability distribution be of the form exp (- Iz IIz 0) requires that the diffusion

coefficient be of the form exp (I z !/z 
O) 

(indeed any asymptotic form d(z) with the

requirement of no probability current requites a diffusive coefficient of the form

d `•1 (z)). It will turn out that because of this and the fundamental assumptions in-

herent in a Fokker- Planck type equation the results will be quite unsatisfactory.

They will indicate a far too rapid transport of the field lines to the boundary. At-

tempts to patch up this problem will be seen to be also unsatisfactory.

It will turn out that we can construct a model of the wandering *of field lines based

on the theory of Gaussian processes from which we can extract a dynamic equa-

tion that is free of the objectionable characteristics of the Fokker- Planck approach.

II. THE FOKKER-PLANCK APPROACH

The probability that a given field line can be found between z and z + dz above

the galactic central plane at a point y along the direction of the mean field will

be given by f(z; y) dz where f is the probability density function. We shall assume

initially that f satisfies a Fokker-Planck equation of the form.

1
We shall adopt the notation of Feller (1966) in distinguishing between a probability density f(x)
of a random variable,

b

P(e <- X:< b) =	 f (x)dx,
e

and its distribution function F(x),

X

P(X —< x) = F(x) =	 f (
y ) dy

u

t
G

i

e

i

The various variables of a multivariate density or distribution function will usually be separated
by commas though we will sometimes use a semicolon to indicate that the variables to its right
are to be considered as parameters in this particular instance. In a conditional probability density
the variables to the right of a vertical slash are the one that ore fixod, i.e.,

P(x_5X_<x+dx I Y=y) =f (xIy)•
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trz}f(z.y))--	 z2 (d2(z)f(z.y)) - 0

y

where d, (z) _ c z' l - y and d2 (z)` ,z2> y. We require that

f ( z , y	 exp (— : z I"z 0 )2zo as y,,

At

(1)

i

I a 31

f 11

we therefore have

2
z ^di(u)exp (- IzI'z0)- 

2 
^

2 
[d 2 ( z)exp (— IzI lzo)] = 0 .	 (2)

^ a

The first integral of equation (2) is the probability current or

d,(z)exp(- I ZI,/z 0 ) -- 1 ;^

2 z [d
2 ( z)exp(- Iz j 1,/a O )] = j = const.	 (3)

j could be an overall constant which would destroy the symmetry of the problem

with respect to plus and minus z and would add a decidedly unphysical aspect to

the solution. A i which changed sign at z = 0 in order to preserve the symmetry

would involve a Source or sink of probability at z = 0 and would be equally un-

physical. We therefore choose j = 0 everywhere.

From (3) with j = 0 we obtain finally,

d l (z) _ 2d2(z) } 
^1 
^da (x) = 0	 (4)

U
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where

d3=d(d.) 'daand (a)-±1 for z>0

respectively. If we divide the galaciic magnetic field into an average field Bo

and a small fluctuating part B 1 we have (Jokipii and parker 1969 a)

d l (?)	 <yz >r"_y 
<Bl

>/Ba

dz;`) < $ 2 >,,, y - 2L ^B?:''fBo

where L is the correlation length of the random field B 1 . Since we must have

<VsB l >=d• 
<Bl>=0.

this gives

d<Bl s> 	 c► <Bly>

Z	 -Y

(we are considering two dimensions only but similar considerations would apply

to the three dimensional case). If we wish our problem to be stationary, i.e. all

statistical parameters are independent of y we must require

-6s$ is>	 c^cBiy>
-	 =0 and <Biz>=const.

z	 ^y

9
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Once again we require -- B I > - 0 to preserve symmetry and we are left with

d (z) -1) d,( z) - d,(z) - v exp( 1z I 'z,)
z 0

where

Z 2> , ,, ^ y

We have arrived at the equationt-1,

fit,

r f (Z' y	 2
exp( z	 f (Z. Y )j	 0	

(6)Y	 2 ^Z2

with the initial condition f(z. 0) 	 (z) as our fundamental equation. If we make

the substitution

f (Y. z ) = exp (— I z I /Z o) U ( Z - Y

we have the equation

y
-
2-
-exp(-Izl/Zo )	

-0
	 (7)

  -t) Z 2

with the initial condition
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Equation (7) may be solved by the standard techniques of constructinir a Green

function after Laplace transforming the y variable. The solution is

u( IzI •Y)	
1	 JO111-n exp(- Izr/`,zO)) 

cxp ^ - ' ^2y `
 8 z2 )	 ($)

2z, T.	 J I ]	 a

where JO (x) is the Bessel function of order zero that is regular at x = 0 and - ,

is the nth root oa* the equation J 1 (x) = 0 with i^ 0 0. It is easy to see that the

effective length for relaxation of the initial probability distribution is y 
U

8 zo v"1.

We now wish to use the dynamic equation (6) to compute the probability F l (y; z 1)

that a field line has reached the point y without ever having made an excursion

in I z I as great as z 
1

6
 

If one thinks a moment about standard particle diffusion

with totally absorbing walls one will realize that after a time t all those particles

that are left are just those that have survived a time t without ever having

reached the absorbing wall. We therefore wish a solution of equation (6) with the

boundary condition

f 1 (z,y) w 0 for z = ±zl

and then
zl

F 1 (y ; 2 1 ) =	 fI(z,y) dz.
fXl
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(9)

(10)

M 4,

The distribution function for the endpoints is

F') (Y z l ) = 1 - F 1 (y. z l }

and since the endpoint density is

f 2 (Y I z l )	 ,IF 2{ 
'4Y

we have using (6)

Z1 _,f
f 2 (Y+ z l ^	 -- F I(Y} i t ) a _	

r ^(z,Y) 
dz

Y	 s	 Y

z 1	 2

-	 --- [exp z fz o) f,(z.Y)IdZ

_Z1

^utau

2 ('au^z z 	z
lZI	 'tt	 tt

Once again using standard techniques we find that f 2 (y; z t) is given by

V	

do 
exp[_V/3'2y,'$z2)

f 2(Y ; zt)
27. 

z 0
2 T,
 not	 C d.b /d7'j l 71=,61n

r
where the ,6n are the zeroes of the function

D(-q; z ) ` J 1 ( 77) Y O (71x t ) - Y t (77) J O(ry7xt)

wbo-re Y. is the mth order Bessel function of the second kind and x t = exp

(- z t /2zo ).

9



a

v

r

i

a

One can now compute the distribution function of the end points i.e. the proba-

bility that the position of endpoint Y is less than or equal to y:

P ( Y :^ Y) = F z (Y; 
21)

However, since this approach will turn out to be unsatisfactory we will not waste

time examining F  (y; z l ) in detail but will take a simpler approach.

It is easy to see that the various moments < (y/yo )m > are given by

OD

(Y I/ 	 =	 (Y/y0)m f 2 (Y* z 1) dy
0

(11)
OD

=4m, E 1	 1
77 

na 1 ( j n s ) m+1 FdD fd-gl71 Can

and they are, of course, functions of z l /zo.

TA Table I we have liated various values of z  /z o and the corresponding values

of < y/yo > or the mean length of a field line.

One notices immediately that the mean lengths of a field line are considerably

less than the characteristic length yo even for an absorbing wall as much as

four characteristic heights z 0 away. To evaluate the length yo = 8 z o /v we note

that

v w 2L <B ia >fBo :so. But <B2 >/Bo 1 :o 2 z^ /L2

10
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Y o , 2L

This says that for zl /z o = 2.2 (the case considered by Jokipii and Parker

1969 b) an average field line will reach one of the surfaces z = f z 1 in a distance

<y>  = .65L.

Jokipii and Parker 's estimate was abou,& ten times this or 6L. Furthermore

this says that an average field line has a. slope 2.2 z o /.65L - 3.4 z o/L whereas

we initially assumed a mean slope of I z 0 /L so we have an internal contradiction

as well as an external one.

The difficulty arises because we have a situation that violates the basic assump-

tion underlying all diffusion type equations. The assumption is that there exist

at least two scales in the problem: a microscopic scale of the forces driving the

system (the random field TI 1 is the force in our problem), and a macroscopic

scale on which the forces and the response of the system are completely un-

correlated. The diffusion type equation describes the behavior of the system on

the macroscopic scale only. We can see that this is not the case here; the

microscopic and macroscopic scales are both characterized by the correlation

length L. It is this violation of the two scale requirement that causes the Fokker-

Planck approach to yield self contradictory results.

s^
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One could attempt to patch up the Fokker- Planck equation by replacing the

constant diffusion coefficient c> = 2L < B> / Bo by a generalization iiu ►t is y

dependent,

Y
P (y ) = ( 2,182) 	 C:, (y') dy

fo

where Cs$ (y) is the zz component of the random field correlation tensor, i.e.

C 1j ( y ) <B, (x) B^ (x + y) >
IN, ti

Using v (y) in equation (1) is equivalent to replacing the variable y with the vari-
Y

able 77 where r;(v) = (v(x))-1 v(y') dy' in the original solution of equation (1).
0

This is only an ad hoc procedure and cannot be considered completely satisfac-

tory. it does, htwever, modify the rapid initial dispersion of probability, the

dispersion is proportional to y rather than yi fa for small Y. The ovc •x.11 effect

is small though and only incr3ases the mean field line length by an addition of

approximately L/2. y	 'd

We should, therefore, turn to an entirely different approach to the problem, one

in which there is no need to postulate two length scales, a microscopic scale and	 t

a macroscopic scale. Such a procedure can be found in the theory of stationary,

Gaussian processes which we shall discuss in the next section.

f
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III. THE GAUSSIAN PROCESS APPROACH

The random wandering of the galactic magnetic field is produced by the turbulent

motion of the gas to which the field is frozen. We shall, therefore, turn our at-

tention to a particular model of this underlying interstellar gas. This model

will not necessarily be a correct picture of the turbulent galactic gas, however,

it is at least a physically realizable model and from it we can calculate, without

any mathematical approximations, the statistical properties of the magnetic field.

This means that while the results we obtain for the field line wandering may not

correspond exactly with reality, they will at least be physically realizable and

will contain no unphysical properties introduced via some mathematical approxi-

mation scheme. As we have seen in the last section not all methods of generating

dynamic equations for probability densities can make this claim. The hope is,

of course, that our results will constitute a reasonable approximation to the situ-

ation that exists in our galaxy.

Consider the following two dimensional situation. A quiescent gas has a uniform

magnetic field Bey embedded in it. The field lines may be labeled by the value
^J

of their z coordinate at the y = 0 plane. Now imagine that the gas is displaced

in the z direction by an amount s which varies from one point to another depend-

ing on the value of the y coordinate thus s = s(y). We now consider an ensemble

of such situations and let s(y) be a random function on this ensemble. We shall

assume s(y) to have► the following properties: it is expressible as a Fourier

series

13
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S(Y)	 s i cos (k i y+ C 1 ).
i

and the phase angles 0 i are random variables, uniformly distributed between

0 and 277. From these properties it can be shown (Rice, 1944, 1945) that s(y) is

a stationary, Gaussian processes. This means that the multivariate probability

density for the N quanitities x 1 , x 2 . . . x N where the x i are values of the

function s or any of its derivatives with respect to y taken at N points y It

Y2 ... Yn (where some or all of the yi may be identical) is given by the N

dimensional Gaussian density

f (x) dx - (2rr)-N/2 (M1 -1t2 exp _	 x M -1 x dx	 (12)

where x and x are the row and column vectors respectively with components

x 1 , x 2 ... x N and M is the matrix M i = < x i x j> . The process is stationary

because the quantities < x i x ; > are functions of the relative separation only.

From this it is evident that the probability density function is a Gaussian rather

than an exponential as inferred by Jokipii and Parker (1969 b). Of course, what

is observed is the velocity distribution of the interstellar gas clouds which is

approximately an exponential function of cloud velocity (Spitzer 1968). The

position and velocity distributions will have the same form only if the dynamic

(in the time development sense) system is a linear one and it is tempting to

argue that non-linearities could cause the velocity distribution to be exponential

even though the position distribution is Gaussian.

14
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This argument is dange .,vus, however, for if the system is appreciably non-linear

the Fourier modes will not be normal modes in the dynamical sense and even if

they are started with random phases mode coupling can produce correlations in

the phases as time advances. 5o it appears that we must simply acknowledge

that this model departs somewhat from observation and hope that the departure

Vi not too serious.

From equation 12 the distribution of probability for a field line passing through

y = 0, z = 0 inay be readily obtained. For if a field line passes through y = 09

z = 0 9 at y we have z(y) = s(y) - s(0) = A (y). If we define the correlation function

t, (y) as

S(x) 5 (x + Y) > =	 S (0 ) S (Y) > 	 <S> '' (Y)

the probability density for s o s(0) and sl r_ s(y) is given by

exp -	 (S -0 + S i — 2s0sS1IY)/<S2>(i—^''z)
f(s o , S l )ds ods 1 =

	

	 dsodsl
2-n ^s^> C1 — y^] i

where

< s 0 > - <s 1 >
^	 <S a> and ,ra = ^(Y)

yA
F

4

0

(13)

IA

i ^	
v

If we express s 1 as s 1 = s0 + d in equation (13) we may then integrate over all

values of s o holding A fixed to obtain the probability density for A

15
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If

exp- 2 A2 '< S 7 > (1 - qs)
f 
(°) d©	 [2m <S2>  (1 - > 11.12 d	 (14)

,!

We see immediately that this is not the same as the probability density for s 1

under the condition that so is zero. This would be given by

f (S 1 I S O ) .O .0 = [f (St. S o)/f(S O )] . 0 e O

1- 2
	 (15)

[2,n<S2> (1 _ 
w j )] 

1/2

and can be seen to differ from expression (14) fn containing the factor (1 - 0 2)

rather than (1 - 0). The reason that expression (14) must be used rather than

(15) is that the knowledge that a field line passes through the point y = 0, z = 0
k

does not tell us that s 
O 

= 0; we do not know the value of s O and hence must

average over all possible values.

Our next problem is to find the probability that a field line has not reached a

point z 1 above or below the central plane in a distance y along the mean field.

Unfortunately the absorbing wall analogy will not serve us in this Instance.

There to a dynamic equation governing the development of the density in equa-

tion (14). It is easy to verify that (14) Is the Green function for the equation

Bf (	
z

By	 ao

ti

a	 `

l
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with the initial condition f(" , , 0)	 ( ) and where N ' ' = &' /dy. In the appendix

we show that the diffusion equation (16) may be derived directly using the formal-

ism of hubo (1961). It can be seen that equation ( 16) is equivalent to a standard
,a

3
sin.	 ,S

diffusion equation wit' diffusion coefficient <82>  and a "time" variable (1 - 	 )

f
y

which varies only between 0 and 1. This means that the diffusion only turns on

for a finite time (actually length y in our case) of order L after which nothing

more happens. In the absorbing wall problem a field line has a finite probability

f of reaching the wall in a distance of order L but if it doesn't reach the wall by

this distance there is a good chance that it never will.

rr.
The reason for this difficulty is that equation (16) describes a process that is

4
fdecidedly non-Markovian; the evolution of the probability density f(r, y) depends

f^not just on the immediate form of f but on how far f has developed from its initial	 p

G m form f(b, 0), e.g. on its past history. It can be seen that if one starts with an
If

initial f(A, 0) = 6 (A) the solution relaxes asymptotically to the form of equation

(14). However, this is not a stable solution for if one starts with this form for

f(L, 0) equation (16) will relax it further to a Gaussian with a dispersion twice as

' large as before. So we see that the analogy with particle diffusion completely
a,

breaks down here and we must turn to another method for solving this problem. 	 I,.

4µ

The answer is found in the solution of the zero crossing problem as given by Rice

(1945). Bice shows that for a random function z(y) with a probability density for

z and z	 = dz/dy at a given y, f(z, z ; y) the probability that the curve crosses

17
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the zero axis with a positive slope between y and y + dy is given by

dy	 z' f(0. z' ; y) dz'.	 (17)
u

Expression (17) may be immediately generalized to our case to determine the

probability density for a field line displacement to cross the z = z 1 axis with

positive slope (since the first crossing must be outward we are only interested

in outward crossings). We have

f (Y : z 1 ) dy = dy	 u` f (z 1 , A' ; y) dA' .	 (18)
0

The probability density f(z 1 ,,^ ' ; y) may be derived as follows: Starting with the

trivariate Gaussian density for so  s  t and si,

f (so . s 1 . s	 3	 r -1, 2 

i

where

t

I

I

e

k

X = (Sol sl.sl)

and

	

1	 `

	

M= s2> 0	 1	 0

0 -VI
(o)

wo may express s l = B  + b and s	 We may then integrate over all possible

18
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values of the s o in a straightfoivard though tedious calculation to obtain

^2

f (k' .	 . y'}	 CrN )
K 

( s	 U	 C.	 --	 --.Dxp

	

	 (19)D 

where

Expression ( 19) may now be inserted into expression (18) and the indicated

integration may be performed analytically to obtain

11	 2

Di 2 ex p
	2p. 0)

f(y:^)	 y
4'r(i - A)

.. 
`^ 2	 (20)

 ]

--e x p	 _.
a ;f(1 - 111)	 ^°	 1 - e rf	 ^ f

4r,i ' 2 (1 - „ ) 3, 2	 2(1 ” ,'

t

)D ,

where	
-

zl r 2 ,.S2>1s2

To proceed beyond this point an explicit form must be chosen for the cor elatio

function ,, = Y71(y). This Function is not known for the motions of the gas in our
f

galaxy so we shall have to choose one as an ad hoc procedure. This should not

be a serious disadvantage since we shat: see that the main features of the func-

tion in expression (20) do not depend on the detailed form ofq(y) but can be

understood on the basis of the scale of the correlation function, or correlation

length L.	 19
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If the correlation length is defined Iiy

L -	 ,p(y) dy

we may choose a Gaussian as a typical form for pow (y) to obtain

4'(Y) = exp (-"-y 
2 '4L 2 ) -- exp (-x 2 ) .

With this choice we may now write the probability (per unit x) as an explicit

function of x

f (x	 ) _ exp (--4c 2 °'D(x)) D i 2 (x)	
x exp(- x 2 } exp [ -" 

2.`1-
exp(-x2 )1

2r [ 1 - exp ( -x2)]	 n L,2 1 - exp (-x 2 ) ] 3,'2

(21)
1

X 1 - er f	
-2x6 exp (-0)

L1 - exp (x2 ; ] 1:°2 Di.f2 (x)

9

a

Where we have multiplied expression (20) by a factor of 2 to allow for the fact

_. a
that we are interested in the two surfaces z i: z 1 . In Figure 1 we have plotted

the function f(x,) for three different values of 6 . The choice a = 0.8 was made

jfor purposes of comparison with the results of Jokipii and Parker (1969 b) for

there is the same unconditional probability finding a given field line outside of

this distance from the central plane as there was for finding it beyond one scale

height (-130 pc) in their model. The major features ^Pf these curves are readily

understood, for values of x >> 1 (y >> L) the flat portion

;t
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f(x; ,): (2-x)' 1 rxp( - ^,2)

simply reflects the fact that initial conditions have become forgotten and the

probability has relaxed to its asymptotic state.

The peak at x = c can be seen to be due entirely to the ballistic propagation of

initial conditions. At y = 0 the slope L` has a probability density function

f(©')dA, r f 2-,r.- 5 2, ,P " (0) j-1!2 exp (L1212<S2>q," (0) ) d ZY.	 (22;

if we assume that the field line continues with the same slope , until it interests

the surface z = z 1 it will interest at y = y l = z, /A . Substituting ^ ^ z, /y,

into expression (22) we obtain a probability density for y,, using 4)" (0) = 77/2L2

2 1 exp ( z12L2 /ny12 <S2>)dy,f(y,)dyI
yi 2	 [ 772 <S2> /L 2 ) 1:`2

(23)

77 -1 '/2 (61x, 2 ) exp (_82/X 1 2 ) dx 1 .

It is easy to see that this expression fits the initial part of the curves in Figure

1, rather well at least up to the maximum at x , = h . Of course as 6 gets larger

the peak gilts smaller because the ballistic propagation of initial conditions

washes out as the field hue has to go a distance of the order of L or further

before interesting the plane z = z 1•

21
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The probability expressed by the density f(x; :^ ), expression (21), is the proba-

bility that the field line will cross the surfaces z = -+ z, between x and x + dx

with no concern as to whether or not it is the first crossing since x = 0. Since

the probability that the field line has not crossed the surfaces anywhere between

0 and x is given by

x

exp -	 f W; 6) dx

0

the probability that a field line crosses the surfaces between x and x + dx for

the first time is given by

X

dF	
f (x;	 exp -	 f (x'; G N dx 	 (24)

COX
fo

We call this expression d F/dx since the integral F is the distribution function

for the "end point" X of the field line, i.e.,

X

P (X :^ x) ^ F(x) _ 1 - exp - 	 f (x", b ) dx'	 (25)

0

dF/dx and F(x) are plotted in Figures  and 3 respectively. In Figure 3 we have

marked the values of x for which F(x) = 1/2 for the three values of b. For b

0.8, the case corresponding to that considered by dokipii and Parker, we see

that x is slightly less than 4 or in other- words the field line has a 50% chance
V2

of getting out after about 4 correlation Lengths. This is somewhat less than the

A

it
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estimate of 6 correlation lengths made by Jokipii and Parker (1969 b). The

discrepancy originates in the fact that the previous authors asked a somewhat

different question, namely how many observations, each one a correlation length

apart, must be made for there to be a 50% chance of catching the field line out-

side the surfaces z = :E z 1 . It is clear that this question does not count those

cases where the field line goes out and comes back in between successive obser-

vations and hence otrerestimates the distance required for the field line to pass

through the critical surfaces for the first time. All in all the discrepancy does

not appear to be a large one and it is a bit surprising that the results are as

close as they are considering the rough nature of the original estimate.

IV. CONC LUSION

We have seen that the model of a Gaussian process for the galactic gas motions

allows us to make exact calculations about the probability density of the galactic

magnetic field. Whereas the model does not exactly represent reality the fact

that no mathematical approximations need to be made assures us that our results

are at least physically realizable and presumably not too far from the truth.

With this approach we have been able to calculate the distribution function for

the "end points" of the field line passing through the earth, and points meaning

with respect to cosmic ray confinement. The point x 1/2 of 50% escape proba-

bility was seen to be roughly consistent with a previous estimate. More important

a probability density function was obtained which should prove useful in investi-

gating the stochastic aspects of galactic cosmic rays .

6
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APPENDIX

We start with an initial density of field lines f(z, y) (for one field line f(z, y)

6 (z - z o ) where z  is the position of the field line). If the material carrying the

Zeld lines is displacod in the z direction as a function of position y as s(y) the

density function becomes a function of y as

f (z, Y) = f o ( z - S Y) + S (0))
	

(A-1)

where fa (z) is the density function at y =; 4. This may be written as a Taylor

expansion using the Taylor expansion operator as

f (z, Y) = exp- ( S (Y) - S(p)) 
^Z- 

fo (z)	 (A-2)

where expanding the exponential in a power series of its argument will generate

the conventional Taylor series.

We may now take an ensemble average of (A-2) over the ensemble of possible

displacements s(y) assuming that the initial o (z) is statistically independent

from s(y) we have

<f ( z • Y )> = <exp- (SW - S(0)) aZ' <f o (a) >	 (A-3)

It has been shown (Kubo 1961) that if s(y) represents a Gaussian process the

average of the exponential operator greatly simplifies and we have

i

o

a

^^ l

r.

F
_

.a
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<(-XP	 (S (Y) — S(0)) --	 Cxp 1 (s(y) - S(0) ) 2 ' ^	 (A-4)2	
71 1

j

'	 assuming < s(y) > = 0. Expanding

S(0))2 > = <S 2 (Y) + s 2 (0) - 2s(Y) s(0 )> = 2rs'>(1-°,'(Y)) (A-5)

so

	

<f(z,y) = exp <s 2 > (1 -+)--'	 <f o (t)> .	 (A-6)
z 2

If we differentiate equation (A-6) with respect to y we can obtain the differential

equation for which (A-6) is the solution.

<f>- 
^s 2 > 

^ a2 
exp < S 2 > (1 -'V) = <f o >	 rs2 > 

a 
<f>.(A-7)

ay	 dy 3 Z2	 cl 2	 ^Z2

We can immediately see that this is just equation (16) whose solution is expres-

sion (14). If we had taken ensemble averages over only that subset of the ensemble

for which s(0) = 0 we would have obtained a more complicated differential equa-

tion, one that is satisfied by expression (15) as we would expect.

2 - -

tr	 {

j
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FIGURE CAPTIONS

Figure 1. Outward crossing rate per unit x a 4 "7 Y/2L of field line crossing

surfaces z = + z I . Curves for three values of	 z1 /2 < s2 > 1 '`2 are shown

as functions of x.

Figure 2. Outward first crossing rate of field line. Probability density per unit

x = V7 y12 L for three values of 6 = z1 /z < s 2> 1-` 2

Figure 3. Probability that first crossing point is less than x =v n y/2L for three

values of b= z /2 < s 2 > 1/ 2.
1



Table I

Mean Length of Field Line

zI/Zo Y/Y o

0.5 .027

1.0 .092

2.0 .284

2.2 .326

4.0 .754

i	 4
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Figure 1. Outward crossing rate per unit x =v;Y/2L of field Iine crossing surfaces z - ±z .
Curves for three values of 8 = z ^/2 < $a > 1/2 are shown as functions of x.
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