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FOREWORD
 

The experimentation described herein was performed at the Nuclear
 

Systems Programs Department of the General Electric Corporation, under
 

NASA Contract NAS 3-13451 Mr. A. Getz of the Reactor Experimental
 

Section, NASA-Lewis Research Center, functioned as the Project Manager
 

ABSTRACT
 

Electron beam (EB) and gas tungsten arc (GTA) welding techniques
 

were investigated to determine the feasibility of manufacturing a T-111
 

alloy model honeycomb structure. The study model configuration was
 

representative of the core of a compact nuclear power plant assembly.
 

The tentative tube-to-header design of that assembly necessitated that
 

three distinct weld areas be studied, i e , welds joining 1) thin-walled
 

honeycomb tubes to each other along axial lines of contact, 2) thin­

walled ring inserts, containing internal projections, to the honeycomb
 

tubes, and 3) relatively massive simulated header components to the ends
 

of the honeycomb tubes Optimum weld conditions were selected by de­

structive evaluation of parameter study specimens Mechanical properties
 

tests, performed on representative samples, demonstrated the satisfactory
 

load carrying capabilities of each type of weld. Dimensional inspection
 

of subsequent tube-to-tube and tube insert-to-tube sample assemblies,
 

using full length honeycomb tubes, established that distortion from weld
 

shrinkage would be a major difficulty in full scale assemblies. The
 

study also demonstrated that visual examination of the face and root
 

sides of the weld joints could adequately define weld quality Fixtures
 

required to construct full scale model assemblies were prepared and
 

checked out during preparation of full length tube samples.
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PRECEDING PAGE BLANK NOT FILMED
 

I. INTRODUCTION
 

The fabrication of the honeycomb core structure of a lithium work­

ing fluid, nuclear power plant from the tantalum base alloy, T-111
 

(Ta-8W-2Hf), requires the development of the techniques to be used in
 
4 

joining the integral components. In accordance with the most recent
 

conceptual design for the power plant, the core structure would contain
 

more than 200 thin-walled T-111 honeycomb tubes, 0.850-inch OD by 0.010­

inch wall by 17 inches long, positioned in a hexagonal pattern. Oper­

ating requirements dictate that all tubes be metallurgically bonded 1)
 

to each other along common lines of axial tangency, and 2) to a common
 

header flange on one end. The power plant heat source will be cylindrical
 

nuclear fuel elements, inserted in each of the honeycomb tubes. The
 

lithium working fluid will flow axially through the core structure in
 

the annular spacings between each tube ID and the OD of the respective
 

fuel elements, and through the tr-fluted interstices between a group
 

of three tubes Avoiding possible localized overheating from insufficient
 

lithium coolant flow in a restricted volume dictates that the fuel elements
 

be centered in the tubes, and the straightness and roundness of the tubes
 

be maintained over their entire length Thus, each tube must contain
 

sized internal protrusions at specific locations to center the fuel
 

pins and minimize their bowing during service. Flow through the tri­

fluted channels will also be regulated by means of limiting orifices
 

machined through the common header flange. Obviously, the joints
 

between the individual tubes, and those between the tubes and the common
 

header flange, must prevent lithium cross-flow.'
 

The overall purpose of the program was to evaluate candidate join­

ing processes and procedures to be potentially applied in the fabrication
 

of the described T-1ll honeycomb structure. The temperature/time service
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operating conditions for the power plant will be 22000 R for up to
 

50,000 hours. The candidate joining processes selected for study were
 

gas tungsten arc (GTA) and electron beam (EB)welding. Numerous welding
 

have indicated that this alloy has excellent weldability.(l)
studies on T-ll 


Fabrication of numerous T-ll systems at GE-NSP confirmed this evaluation
 

with the exception of the problem of microcracking which has been observed
 

in multipass GTA welding of material with thicknesses of 3/8-inch or more.
 

No welding of this type was required in this study. Other fabrication
 

techniques, such as brazing, were considered inappropriate, because no
 

foreign materials were permitted in the joint areas. Diffusion bonding
 

was also rejected, primarily because major modifications in existing
 

facilities would be necessary to accommodate full scale hardwaie assemblies
 

The specific goals of the program were to develop techniques for
 

producing 1) fuel element spacers in each T-ill tube, 2) welds between
 

tubes, and 3) welds between the tubes and T-ll plate stock to simulate
 

tube-to-header attachments. The design, construction, and checkout of
 

fixtures, needed for preparing representative model honeycomb assemblies,
 

was a further program requirement. Pursuant to weld parameter studies,
 

testing and examination of typical sample weldments were required to
 

establish weld load carrying capacities, and to determine postweld non­

destructive inspection methods. Preparation of scaled-up sample assemblies
 

was also necessary to provide data regarding the extent of distortion
 

expected in model assemblies fabrication. This information provided a
 

basis for determining the suitability of the processes and fixtures,
 

and indicated the extent of post-fabrication machining potentially
 

required in hardware assemblies.
 

(1)Lessman, G G., Determination of the Weldability and Elevated Temperature
 

Stability of Refractory Metal Alloys, Tasks I and II - The Weldability of
 
Refractory Metal Alloys, WANL-PR-013, October, 1969, p. 3.
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I. E X P E R I M E N T A L P R O C E D U R E S
 

TECHNICAL APPROACH
 

The T-Ill fabrication study program was conducted to determine the
 

feasibility of fabricating the reactor core of the Nuclear Reactor
 

Assembly shown in Figure 1. Two tentative core design configurations
 

were originally considered for study. The tube-to-header design con­

figuration of a 19 tube model assembly, presented in Figure 2, was
 

selected for detailed consideration, in preference to the tube-pad-flange
 

concept, shown in Figure 3, for the following reasons:
 

1. 	Components machining costs would be lower.
 

2. 	Weld distortion would be minimized because the total amount
 

of welding would be reduced.
 

3 	 Difficult to fixture weld joints would be eliminated.
 

4. 	Machining after welding would be reduced.
 

Information, regarding three specific joining areas in a tube-to-header
 

core structure, was required to establish the feasibility of fabricating
 

a full size assembly. Those areas were developing techniques for pro­

ducing 1) fuel pin spacers in each tube, 2) welds between honeycomb tubes,
 

and 3) attachment of the tubes to a T-1ll header.
 

Each honeycomb tube in the reactor core must contain five stations
 

of three internal projections or fuel pin spacers, equally spaced on the
 

tube ID circumference, also shown in Figure 3.
 

Three techniques for manufacturing such fuel pin spacers in the tubes
 

were initially contemplated. The first was mechanically indenting the
 

5
 



Control Honeycomb
 
Drum Core Structure
 

Figure 1. Compact Fast Spectrum Reactor.
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tube wall, followed by backfilling of the dimple cavity with T-Ill re­

inforcing material using either an EB or GTA fusion process. The second
 

entailed the insertion of machined T-111 buttons through holes in the
 

honeycomb tube wall, and EB welding around their peripheries for attachment.
 

The third method was indenting and reinforcing (backfilling) short lengths
 

of reduced diameter T-1ll tubing inserts (wall doublers), and subsequently
 

EB welding, adjacent to the indentations, to attach them to the 0 850-inch
 

OD tube wall at specific locations. The latter technique was selected for
 

evaluation and development, because it incorporated the best features of
 

the other candidate methods The employment of doublers would result in
 

an assembly configuration having superior strength characteristics at the
 

critical locations adjacent to the fuel element retainers in a honeycomb
 

structure Strengthening the honeycomb tubes at these locations would
 

also reduce the extent of fuel elements bowing, which might tend to occur
 

during reactor operation. The doublers would slightly reduce the fuel
 

element-honeycomb tube ID annular separation, thereby restricting the
 

channels, through which the alkali metal working fluid would flow during
 

operation. This was not considered a significant drawback because of
 

the relatively low pressure drop and lithium flow rate expected in
 

service. Further advantages of the doubler approach were that 1) only
 

a short length of T-Ill tubing would be destroyed if a failure occurred
 

during the backfilling process, whereas a complete tube could be lost
 

during reinforcement of indentations in full length tubes, and 2) the
 

expense involved in machining the radius faced buttons would be elimi­

nated To study the indented and backfilled ring insert approach for
 

producing fuel pin spacers, both GTA and EB processes for indentation
 

reinforcement were considered. The different projection depths at
 

various axial tube positions were produced during the backfilling
 

process by employing a special water-cooled molybdenum fixture contain­

ing machined recesses, whose donfigurations matched the respective pro­

jection contours. The form and amount of T-ll filler metal, GTA arc
 

voltage and amperage, EB accelerating voltage, beam current, and beam
 

manipulation, were the process variables investigated for indentation
 

reinforcement.
 

The high voltage EB process was selected for attachment of the
 

doubler inserts to the honeycomb tube wall. Two types of EB attachment
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welds were explored, i.e., circumferential welds around each doubler
 

edge, and "circular" welds around each indentation for the spacer to be
 

located at the mid-length of the honeycomb tubes in a subsequent hard­

ware assembly The latter of these welds was considered the most critical
 

structurally, and was therefore required to be capable of withstanding
 

greater shear stresses than the circumferential welds in the service
 

application. Mechanical testing was conducted to insure that the load
 

carrying capability, in shear, of representative welds met or exceeded
 

prespecified values These quality assurance weld specimens were pre­

pared using process variables selected from initial parameter studies
 

data.
 

Dimensional inspection of a full length honeycomb tube having five
 

inserts EB welded in place, coupled with microstructural examination of
 

single weld samples, were employed to establish the suitability of the
 

process for manufacturing the tubing ID protrusions. The fixture used
 

during EB welding was required to 1) maintain desired contact of the
 

inserts with the tubing wall without producing an excessive "heat sink"
 

effect, 2) not interfere with the insert rings indentations and 3) be
 

removable subsequent to the welding operation. A special, expandable
 

molybdenum mandrel was designed and fabricated to fulfill those fixturing
 

requirements during doublers attachment to full length tubes. That
 

design configuration was based on data obtained from initial program EB
 

welding trials with shorter tube sections.
 

Three different processes were initially considered for producing
 

the axial tube-to-tube metallurgical bonds, i.e., automatic GTA and EB
 

welding, and diffusion bonding. The latter two methods were rejected as
 

candidates in this feasibility study primarily for the following reasons:
 

First, EB welding could not be utilized completely in the buildup of
 

multiple (more than 3) tube assemblies because some joints would be in­

accessible, second, the diffusion bonding method would present high
 

materials and fixtures costs, in addition to the possibility of destroy­

ing a complete assembly during the elevated temperature bonding cycle
 

Alternately, the GTA technique could be used for joining any number of
 

tubes because the welding torch could be placed inside an individual tube.
 

Further, such welds could more readily be nondestructively inspected for
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quality than EB welds, potentially using only visual examination In
 

addition to these reasons, the GTA process was considered the most
 

reliable means for producing multiple tube-to-tube joints exhibiting
 

satisfactory strength, while resulting in minimum distortion.
 

The initial exploration of tube-to-tube GTA welding consisted of
 

parameter studies to establish the effects of welding current, electrode
 

shape and positioning, shielding gas, and travel speed on the resultant
 

welds. These parameters were varied to establish those which yielded
 

the desired weld characteristics, relative to the tubing distortion.
 

The results were also used to define the type and extent of fixturing
 

required for welding of multiple tube assemblies. Thereafter, additional
 

samples were prepared to determine the spacing between tubes which could
 

be tolerated during the welding process. Selected specimens were inspected
 

using visual, ultrasonic, radiographic and dye penetrant techniques, prior
 

to their sectioning for microstructural examination. The results obtained
 

were used to evaluate the welding conditions, and to establish necessary
 

postweld nondestructive inspection methods. Other samples were prepared
 

for subsequent mechanical testing to certify the shear load carrying capacity
 

of tube-to-tube weldments. Finally, a full length, seven tube array was
 

assembled on prepared fixtures, and welded using the developed optimum
 

conditions, to determine the extent of tubing distortion, reliability of
 

the welding process, and suitability of the welding fixtures employed.
 

Those fixtures were designed for usage in the tube-to-tube joining for
 

a 19 tube model assembly.
 

The investigation of tube-to-header joining was conducted using
 

only single tube and simulated header specimens. The geometry of the
 

simulated header components was modified, from that initially conceived,
 

until a configuration amenable to welding was developed. The automatic
 

internal GTA welding process was also selected for evaluation to produce
 

satisfactory tube-to-header joints. A special tungsten arc torch for
 

this internal tube welding was designed, fabricated, and mated with a
 

motor drive head. In addition to the header joint configuration changes,
 

the process variables of electrode shape and position, welding current
 

and rotational travel speed were systematically evaluated. After
 

satisfactory weld conditions had been realized, additional specimens
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were prepared using a fixture, which held the corresponding tube and
 

header in desired relative positions. These tests were conducted to
 

simulate conditions at the header weld joints in a multiple tube assembly,
 

in which the tubes had been previously bonded to each other. All weld
 

specimens were visually inspected for weld contour and surface defects,
 

and selected samples were submitted for mcrostructural examination to
 

assist in the determination of optimum welding parameters. Three weld
 

specimens, prepared using the established optimum conditions, were
 

mechanically tested to certify their load carrying capacities.
 

All fixtures and materials, required for the fabrication of a 19
 

tube T-Ill model honeycomb structure (see Figure 2), were supplied to
 

NASA-LRC for further trial efforts. The sequence and details of some
 

processing operations, tentatively to be used in the fabrication of such
 

model assemblies, were generated as a result of this study program. Also
 

identified were other fabrication areas needing further investigation or
 

development to complete the assemblies.
 

MATERIALS AND PROCESSES
 

MATERIALS PROCUREMENT AND QUALITY ASSURANCE
 

The T-l1l alloy tubing, 0.850 inch OD by 0.010 inch wall by 18 inches
 

long, used in this program was supplied by NASA-LRC per specification
 

C-393643. A section of the as-received tubing was submitted for metal­

lographc examination to ascertain whether the prior vendor processing
 

had produced the desired microstructural characteristics. The examina­

tion indicated that the T-ill material had not received a final 3000'F/1
 

hour thermal cycle, normally required to produce the best heat treat
 

condition for T-lll alloy components prior to welding. The remaining
 

tubes were therefore exposed at 30000 F/I hour before being used in this
 

welding investigation. A typical microstructure of this tubing after
 

heat treatment is presented in Figure 4.
 

Three representative, as-received, T-1ll tubes were dimensionally
 

inspected to determine variations in their straightness, circularity and
 

wall thickness. These measurements, as shown in Table I, indicated that
 

the diameters were consistent within ± 0.002 inch, and no sizing of tubes
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Figure 4. Microstructure of 0.850-Inch-OD x 0.010-Inch-Wall T-111
 
Tubing After 30000F/l-Hour Heat Treatment (Longitudinal
 
Section). (G56012A) Etchant: NH4F, HNO3, H20
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TABLE I 

MEASUREMENTS OF AS-RECEIVED T-ll1 HONEYCOMB TUBING
 

Outside Diameter Measurements (Inches) at Indicated Wall Thickness Measurements at 
Tube~t \Distances From One End of Tube End of Tube 
Number 2 Inches 4 Inches 6 Inches 10 Inches 14 Inches (Inches) 

77 0.8505 0.8503 0.8522 0.8508 0.8500 0.0102 

0.8513 0.8506 0.8515 0.8515 0.8518 0.0105 
0.8500 0.8515 0.8503 0.8505 0.8521 0.0102 
0.8511 0.8510 0.8503 0.8505 0.8500 0.0108 

(Overall tube bow = 0.004 inch) 

75 0.8510 0.8524 0.8519 0.8505 0.0100 
0.8512 0.8510 0.8512 0.8500 0.0103 
0.8520 0.8512 0.8524 0.8525 0.0100 
0.8525 0.8518 0.8523 0.8525 0.0108 

(Overall tube bow = 0.010 inch) 

78 0.8522 0.8540 0.8533 0.0110 
0.8530 0.8535 0.8535 0.0112 
0.8535 0.8520 0.8525 0.0110 
0.8530 0.8522 0.8525 0.0115 

(Overall tube bow = 0.006 inch) 

Maximum Variation in Outside Diameter = 0.8535 - 0.8500 = 0.0035 Inch
 

Maximum Variation in Wall Thickness = 0.0115 - 0.0100 = 0.0015 Inch
 

Variation of Specific Tube Inside Diameter: 	 Tube #77 - 0.8292 to 0.8310 Inch
 

Tube #75 - 0.8292 to 0.8317 Inch
 

Tube #78 - 0.8296 to 0.8311 Inch
 

(1) Tubing Material Control Number - MCN 18A-001-(l to 133)
 



would be necessary for their usage in the construction of a multiple
 

tube-to-common header hardware assembly. However, some slight axial
 

bowing was observed (maximum of 0.010 inch), which pointed out that
 

maintaining the required axial contact between tubes for tube-to-tube
 

welding would necessitate bundling in some instances.
 

In addition, thirteen of the 133 supplied T-lll tubes were visually
 

inspected at lOx to check for possible surface defects. Nothing of a 

rejectable nature was observed, although a few minor pits and/or scratches 

(- 0.0005 inch maximum depth) were detected on the outside surfaces of 

some tubes. No further quality assurance testing was performed on the 

tubing material. 

The 0.625-inch thick T-Ill plate material, required for program
 

studies and eventual usage in fabrication of 19 tube model honeycomb
 

assemblies, was procured per GE-NSP Specification 01-0040-02-D. Con­

firming quality assurance testing of this plate stock consisted of
 

interstitial gas analysis, metallographic inspection, and determination
 

of tensile properties. The results of these analyses indicated the
 

acceptability of the procured material. Typical microstructures of the
 

T-ill plate are shown in Figure 5. The molybdenum and stainless steel
 

materials, used for welding fixtures, were procured to applicable GS-NSP
 

specifications; no quality assurance testing was performed on these
 

materials.
 

WELDING, ASSOCIATED PROCESSES, AND EQUIPMENT
 

The gas tungsten arc (GTA) and electron beam (EB) welding employed
 

in this T-l1l investigation, were conducted in accordance with the follow­

ing NASA specifications:
 

1. 	C-393666-1, "Welding of Columbium, Tantalum, and Their Alloys
 

by the Tungsten Arc Process," 2-18-69.
 

2. 	C-393666-4, "Electron Beam Welding Refractory Metals and Their
 

Alloys," 2-18-69.
 

The cleaning of T-111 components for welding, and required postweld
 

annealing treatments, were done in accordance with NASA Specifications,
 

C-393666-2 and C-393666-3, respectively.
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GTA Welding Equipment
 

The GTA process was used for tube-to-tube and tube-to-header weld
 

studies, and for backfilling of indentations in fuel pin spacers to
 

provide reinforcement. The vacuum-purged, water-cooled, inert gas-filled
 

welding chamber is shown in Figure 6. The helium fill gas was purified
 

by passing sequentially over molecular sieve and heated titanium. The
 

oxygen and water vapor levels in the gas were reduced to less than 1 ppm
 

each by that method. The helium supply and purification train for this
 

have been described in a prior report. (2 ) The chamber atmosphere was
 

analyzed before welding for oxygen, nitrogen, hydrocarbons, and water
 

vapor, using an electrolytic hygrometer and gas chromatograph, shown in
 

Figure 7. Welding was initiated if the analyses indicated concentrations
 

of oxygen, nitrogen, and water vapor less than 5, 15, and 10 ppm, respectively.
 

During extended welding operations or tests, these impurities were monitored
 

appropriately, to insure against the potential contamination of the T-ll
 

alloy. The arc welding machine employed is depicted in Figure 8. That
 

machine supplied automatic programmed, constant direct current, power for
 

welding and provided up and down current slope control. Special voltage­

and current-limiting features of the machine were beneficial to prevent
 

destruction of an assembly by welding machine malfunction. The GTA weld­

ing of both tube-to-tube and tube-to-header assemblies was conducted
 

automatically, using impulse arc initiation and selected timed delays at
 

the start of a cycle. These capabilities were also integral electronic
 

portions of the welding machine circuitry. Manual GTA techniques were
 

employed for reinforcement of doubler indentations. The fixtures used
 

for the inert gas welding will be described, in relation to the specific
 

areas studied, in later sections of this report.
 

EB Welding Equipment
 

High-voltage EB welding techniques were studied primarily for
 

attachment (circumferential and circular welds) of reduced diameter ring
 

inserts, or doublers, to the wall of the basic honeycomb tubing. The
 

method was also briefly used to explore potential backfilling of doubler
 

indentations. The high-voltage (150 kv-6 kw) machine is depicted in
 

(2)Lyon, T. F., Purification and Analysis of Helium for the Welding
 

Chamber, NASA-CR-54168, July 1, 1965, p. 25.
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Figure 6. 	Vacuum Purged Inert Atmosphere Welding Chamber - 3 Ft Diameter x 6 Ft 
Long. (C65040928) 
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Figure 7. Gas Chromatograph for Analysis of Helium in the GTA Welding Chamber.
 
(P68-9-44B)
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Figure 8. Automatic Tungsten Inert Gas Welding Machine Controlled Welding
 

Sequences. (C67020850)
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Figure 9. The circumferential welds were made using a rotating chuck,
 

which is an integral part of the basic EB welding unit. An externally
 

located beam polypattern generator was also used to puddle the T-ll
 

reinforcement material in the doubler indentations, and to a limited
 

extent for beam modulation when studying the circular EB doubler attachments.
 

Postweld Annealing
 

The postweld annealing of selected specimens was performed in the
 

cold wall vacuum furnace shown in Figure 10. These specimens were
 

wrapped with Cb-lZr foil prior to annealing to prevent possible environ­

mental contamination during the furnace cycles.
 

Inspection Test Equipment
 

The inspection of representative weld joints, by destructive and
 

nondestructive methods, was performed to establish satisfactory non­

destructive techniques to be used for inspection of prime hardware
 

assemblies. The nondestructive testing methods and equipment used for
 

inspection included the following:
 

1. 	A Sperry No. 721 Reflectoscope with a 50 w pulser-receiver
 

and a special search unit for pulse-echo ultrasonic inspection
 

of tube-to-tube welds.
 

2. 	A GE No. OX250 X-ray unit with an 85 to 250 kv, 10 ma, peak
 

capability, for radiographic inspection of tube-to-tube welds.
 

3. 	A GE model M-60 helium mass spectrometer for helium leak test­

ing of tube-to-header welds.
 

4. 	A borescope for visual examination of internal weld surfaces.
 

5. 	A booth for fluorescent penetrant inspection of exterior weld
 

surfaces.
 

Destructive metallographic examination of specific samples was performed
 

and 	compared with nondestructive results to establish the degree of data
 

correlation, and thereby the acceptable nondestructive method to be
 

employed for subsequent weldments.
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Figure 9. High Voltage Electron Beam Welder, 150 KV, 6 KW. (P69-2-3AG)
 



Figure 10. High Temperature Vacuum Furnace. (C65081918)
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WELDING PROCEDURES
 

The three joining areas of the honeycomb core support structure
 

investigated were fuel pin spacers fabrication and tube-to-tube and
 

tube-to-header welding. Each of these areas were studied separately
 

to develop techniques which could be directly applied in the fabrication
 

of an integrated model assembly. Evaluation of initial weld samples
 

established optimum welding conditions, which were used in processing of
 

further specimens to determine distortion effects in samples more
 

representative of the final hardware assembly. The fixtures, required
 

for the fabrication of a 19-tube model assembly (refer to Figure 2),
 

were defined, constructed, and checked for effectiveness by preparing
 

these latter specimens. Welding equipment modifications were made, as
 

required, to facilitate the welding operations. Dimensional examination
 

of welded specimens was used to determine the extent of postweld machining,
 

or process alteration, potentially necessary to compensate for welding
 

distortion in the fabrication of a multiple tube-to-common-header model
 

assembly. Ensuing paragraphs will describe the procedures used in
 

studying each of the above indicated joining areas.
 

Fuel Pin Spacers Fabrication
 

The method, selected for development to produce fuel pin spacers in
 

the 0.850-inch-OD by 0.010-inch-wall T-1ll honeycomb tubes, involved
 

the use of dimpled and reinforced ring inserts or wall doublers. Usage
 

of the tube doubler technique required the investigation of methods for
 

1) mechanically indenting reduced diameter ring inserts to produce three
 

equally spaced internal projections around their periphery, 2) backfilling
 

of the doubler indentations with T-ill reinforcing material, and 3) EB
 

welding to attach the inserts to the honeycomb tube wall at five separated
 

axial stations. The desired contours of the projections are depicted in
 

Figure 11; note that the diameters at the projection nodes are different,
 

dependent on the axial station along any tube. The method chosen to
 

achieve those depths involved indenting each insert to a single fixed
 

depth, and then utilizing the heat produced during backfilling to cause
 

the insert material to sag and conform to the shape of machined recesses
 

in a water-cooled molybdenum fixture. The pattern of the EB attachment
 

welds for doublers in full-length honeycomb tubes is indicated in Figures
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12 and 13; two cylindrical and three circular welds are required for the
 

doublers at the tube midpoints, while only two cylindrical welds are
 

needed at other doubler locations. Note that the section view, shown in
 

Figure 12, displays the doubler positioned closest to the header, in
 

accordance with one of the various design modifications conceived during
 

the 	study program. Figure 13, indicates the positions of the circular
 

and 	circumferential welds in relation to an indentation in the center
 

tube doubler
 

Indentation Procedure
 

Several of the as-received T-111 tubes were cold drawn to a 0.827­

inch OD and cut into selected lengths (0.5-inch for the majority of trials),
 

to provide material needed for inserts. As indicated in later paragraphs,
 

longer inserts were needed to facilitate tube joining to relatively massive
 

header components. A sufficient number of inserts were indented to pro­

vide those needed for backfilling experiments and potential fabrication
 

of a 19-tube model assembly The indenting fixture is schematically
 

shown in Figure 14, it consists basically of a stainless steel die with
 

a 0.83-inch-diameter cylindrical bore, a stainless steel ram and backup
 

ram, and three hardened steel spherical balls at partially recessed
 

locations in the die body The ball recesses in the die body are axially
 

tapered to permit ball retraction before removal of an indented ring.
 

The general dimpling procedure was as follows.
 

1 	 With the balls in position for indenting, insert the backup
 

ram in the die cavity,
 

2. 	Place the cylindrical T-111 insert atop the backup ram,
 

3 	 Place a loose-fitting cylindrical rubber stopper in the insert ring,
 

4 	 Insert the ram until contact is made with the top of the
 

rubber stopper,
 

5. 	Apply sufficient pressure to the ram (- 10,000 psi -gauge
 

pressure on a hydraulic press) to cause radial upsetting of
 

the insert, thus causing it to conform to the contour of the
 

distended ball surfaces;
 

6. 	Remove pressure and withdraw ram and backup ram,
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NOTE: X Dimension varies with diameter tangent to button surfaces.
 

Doubler at tube end nearest header plate shown - Remaining doublers are 1/2"
 
wide and symmetrical about 0.250 inch-centerline and as shown.
 

Figure 12. 	 Interim Conceptual Design Configuration of Insert Doublers in
 
T-1l Honeycomb Tubes.
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Figure 14. Fixture for Indenting 0.83-Inch-OD T-11l Inserts.
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7. 	Push out formed inserts after retracting the balls,
 

8. 	Repeat steps No. 1 through No. 7 for preparing additional
 

insert rings.
 

All 	inserts were cleaned after forming by degreasing with acetone and
 

ethyl alcohol, and then pickled in a nitric-hydrofluoric-sulfuric acid
 

solution. The majority of the formed inserts were prepared for follow­

up experimentation at NASA-LRC.
 

Indentation Backfilling Methods
 

The electron beam process was the first method investigated for
 

backfilling reinforcement of the doubler indentations. The geometric
 

requirements for the depth and contour of the reinforced dimples are
 

specified in Figures 12 and 13. The basic procedure consisted of melt­

ing 	T-ll reinforcing material in the dimpled OD surface of the doublers.
 

The 	beam accelerating voltage and current were adjusted to produce a
 

molten puddle. The T-Ill backing material was preplaced in the indenta­

tion in the form of small chips. Examination of the initial samples
 

prepared by this process indicated several problems which were cause
 

for 	investigating an alternate method for the backfilling operation.
 

Later paragraphs, indicating the results of all backfilling experiments,
 

will describe these problem areas.
 

The gas tungsten arc method was investigated as an alternate for
 

backfilling doubler indentations, because of the difficulties associated
 

with the EB filling process. A chill fixture was designed and fabricated
 

for use during the GTA backfilling operations to avoid catastrophic melt­

ing of the insert walls. The fixture, shown in Figure 15, consisted
 

basically of a water-cooled molybdenum bar containing machined recesses,
 

over which the indentations were positioned for backfilling. The contours
 

of the machined recesses matched the different geometries of the internal
 

doubler surfaces at the indentations. The copper, water-cooling lines on
 

the back of the main molybdenum piece, were attached by brazing at 1820'F
 

with a gold-18% nickel braze alloy. The usage of the chill fixture
 

simplified the overall task for producing doublers because only a single
 

tube indenting fixture was necessary.
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The GTA doubler reinforcement experimentation was conducted using
 

manual control of the welding heat and preplacement of the T-111 backing
 

material into the doubler dimples. A 0.062-inch-diameter tungsten
 

electrode and helium fill gas were used for all trials, measured lengths
 

of 0 0 62-inch-diameter T-111 filler were cut, dependent on the depth of
 

the indentation being filled. The individual lengths were then formed
 

into spherical balls by applying heat from the welding torch. The
 

spherical T-111 filler was then placed in the appropriate indentation
 

for backfilling. The desired melting and flow of the filler in the
 

dimple cavity was achieved by gradually increasing the welding current to
 

140 amps with the electrode positioned over the center of the indentation.
 

Spiral motion of the welding torch was used to produce the necessary
 

puddling action and filling of the dimple cavities. After reinforcement,
 

the rings were sized to produce a uniform outside diameter, using the
 

previously described indenting fixture (balls retracted), with a re­

placement pedestal, or lower ram (shown in Figure 14) in position. The
 

sizing process was the same as that used for indenting the ring inserts,
 

the replacement lower ram positioned the inserts above the plane of the
 

indenting balls. Several of the prepared ring inserts were sectioned
 

through the protrusions for microstructural examination to certify that
 

the desired filling characteristics has been obtained.
 

Insert Welding Methods
 

The procedure for development of the electron beam process to attach
 

reduced diameter inserts to the honeycomb tube wall consisted of 1) pre­

liminary parameter studies with short tube sections and single inserts,
 

2) selection of optimum welding conditions from metallographic inspection
 

data, 3) preparation and mechanical'testing of specimens welded using the
 

developed parameters to certify load carrying capabilities, and 4) pre­

paration and dimensional inspection of a full-length honeycomb tube,
 

having doublers welded in place at five separated axial positions, to
 

determine distortion effects. A special, segmented and axially sectioned,
 

expandable mandrel, molybdenum fixture was designed and fabricated to
 

implement the EB welding operations. One section of that fixture, and
 

the tapered drive pin, constructed for welding in full-length tubes, is
 

shown schematically in Figure 16. The fixtures were axially split along
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Figure 16. 	 Section of the Expandable Molybdenum Fixture, With Tapered Drive Pin, Used in Electron
 

Beam Welding of Doublers to Honeycomb Tubes.
 



three radial planes to permit their removal from the tubes after welding,
 

the fixtures also were machined in the areas directly under the weld
 

lines to prevent possible bonding of the tubes to the fixture. The fol­

lowing sequential steps were used in EB welding:
 

1. 	Assemble the doubler, split mandrel, and tapered drive pin,
 

2. 	Slide the doubler and mandrel assembly into the honeycomb tube
 

to preset positions,
 

3. 	Apply pressure to one end of the drive pin to produce the
 

necessary contact between the doubler and tube;
 

4 	 Place the exposed end of the drive pin in the chuck of a
 

rotating drive inside the welding chamber,
 

- 5
5. Evacuate the chamber to less than 5 x 10 torr and weld.
 

The process variables of beam current, accelerating voltage, deflection,
 

modulation, and rotational speed were investigated during parameter
 

studies.
 

Test Specimen Procedure
 

Representative parameter study specimens were metallographically
 

examined through both circular and circumferential welds to select best
 

conditions for subsequent preparation of three mechanical test specimens.
 

An approximately 3-inch length of the reduced diameter tubing was used
 

for 	each of those specimens, along With an equal length of the standard
 

0 850-inch-OD tubing. Holes were machined through one end of each tube
 

section to provide for insertion of load transmission pins needed in
 

mechanical testing. The smaller diameter tubes were inserted in the
 

standard tubes to produce a 3/8-inch overlap prior to EB welding. The
 

first mechanical test specimen was fabricated using a single circum­

ferential weld; the remaining two specimens contained three equally
 

spaced circular welds each. Figure 17 depicts the three mechanical
 

properties test specimens. All three samples were postweld vacuum
 

annealed at 24000F/I hour before tension testing. The sample, contain­

ing the circumferential EB weld, was included for testing to establish
 

a quantitative measure of weld transverse shear strengths. This informa­

tion was necessary because 1) axial loading of the samples, having
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circular weld attachments, made such a determination impossible, and
 

2) the stresses induced across the circular welds during hypothetical
 

service exposures would be transverse shear in nature. After mechanical
 

testing had certified the acceptability of the welding parameters, a full­

length honeycomb tube and five indented and backfilled inserts were pre­

pared for additional EB welding trials. Those doublers were welded to
 

the tube at predesignated locations along its length. The pattern of
 

the welds was identical with that previously specified for fabrication
 

of model assemblies. The tube was dimensionally inspected to determine
 

the effects of doublers welding on tube distortion (roundness and straightness).
 

Tube-to-Tube Welding
 

GTA Welding Procedure
 

The internal, automatic, gas tungsten arc welding process was
 

selected for study to develop a method for bonding 0.850-inch OD by
 

0.010-inch wall T-1ll tubes to each other along common lines of axial
 

contact. The GTA process variables of welding heat input, fixturing,
 

travel speed, spacing between tubes, and welding electrode position,
 

were evaluated by the fabrication and inspection of various tube-to-tube
 

weld samples. The choice of the optimum shielding gas was to be based on
 

results from sample welding conducted in helium and argon environments,
 

while maintaining otherwise identical preparatory conditions. However,
 

only welding in a helium atmosphere was performed, based on the con­

sideration of the maximum current which the welding torch could carry,
 

as indicated below. The effects of doublers on the axial tube-to-tube
 

welds was documented by preparing additional samples, which contained
 

EB attached inserts in each tube. The desired intertube contacts for
 

GTA welding were obtained by wire strapping in preliminary parameter
 

experiments; later welding trials were conducted using hose clamps and
 

a T-1ll dummy header flange to maintain contact. In general, 6-inch
 

long tube sections were used for experimentation, except for the pre­

paration of mechanical test specimens, and in final trials to determine
 

distortion effects from tube-to-tube welding of full length honeycomb
 

tubes.
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The welding torch size and selection of shielding gas were the
 

initial considerations in the GTA tube-to-tube weld parameter study.
 

For these internal welds, it was necessary that the torch be small
 

enough to pass through the inside of the 0.850-inch OD by 0.010-inch
 

wall T-111 tubes. The welding torch utilized in this investigation is
 

shown in Figure 18. The maximum current carrying capacity was low for
 

a torch of that size. That fact was of primary significance when con­

sidering the type of weld shielding gas, because the arc temperature
 

would vary for an otherwise fixed set of parameters, dependent on the
 

shielding gas present. Thus, during the initial GTA welding performed
 

in a helium atmosphere, currents close to the maximum torch limiting
 

value were necessary to achieve fusion of the tubes. Welding in an
 

argon atmosphere would have required higher currents to produce equiva­

lent joint characteristics. Further, the inert gas purification and
 

chromatograph analysis systems for the welding chamber were set up
 

primarily for helium usage. For these reasons, all GTA processing in
 

this study was performed in helium, including tube-to-header welding
 

and doubler indentations reinforcement.
 

Tungsten electrodes, 0.040-inch diameter, were employed in the
 

tube-to-tube welding trials. After grinding to produce sharp conical
 

tips, all electrodes were hot formed into the right angle configuration
 

shown in Figure 18. To produce the most stable welding arc, the spacing
 

between the electrode tip and the weld surfaces was set and maintained
 

at 0.04 to 0.05 inch for most of the tube-to-tube joining. This spacing
 

was reduced to 0.03 to 0.04 inch in tubes which contained EB attached
 

doublers. The 0.03-inch clearance was considered the minimum point of
 

approach to prevent possible extinguishing of welding arc, which could
 

occur if excessive weld distortion were encountered.
 

Two, 4-tube bundle, sample assemblies were automatically GTA welded
 

to explore primarily the effects of welding current and voltage. The
 

tubes were cleaned for welding by acid pickling, in accordance with the
 

previously indicated specification. The welds in these specimens were
 

non-destructively inspected by visual (borescope), radiographic and
 

ultrasonic techniques to measure not only their quality, but also to
 

establish an acceptable method for subsequent inspection of hardware
 

tube-to-tube welds, and to tentatively select the best welding power
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input conditions. These tube bundles were then sectioned for micro­

structural examination to verify the selection of the optimum welding
 

parameters.
 

Mechanical Properties Test Specimens
 

At this juncture, three T-111 tube-to-tube specimens were GTA
 

welded in preparation for mechanical properties testing. Each assembly
 

was prepared from three sections of honeycomb tubing (three-inch-lengths),
 

positioned such that their centerlines were located on the same axial
 

plane. Two, one-inch long, welds were made to join the center tubes to
 

the outer tubes of each specimen along their lines of mutual contact.
 

The tubes were held in place for welding with the adaptors shown in
 

Figure 19. These adaptors were subsequently used for conducting the
 

shear tests on these specimens. The welding parameters of amperage,
 

voltage, and speed were selected from the results of the previous
 

parameter study specimen examinations. The completed tube-to-tube mechan­

ical properties specimens are shown in Figure 20. The quality of the
 

welds produced in these specimens was somewhat below that desired,
 

because of a momentary lag between the start of welding and the start
 

of motion of the assembly being welded. The result was the formation
 

of circular weld spots at the start of the cycle, which had larger cross
 

sectional dimensions than the remainder of the tube-to-tube welds. These
 

specimens were considered satisfactory for mechanical properties testing,
 

since the actual stresses carried by the axial tube-to-tube welds could
 

be determined by comparisons of the weld cross sectional areas. Thus,
 

the three samples were postweld vacuum annealed at 24000F/l hour, and
 

subsequently tension tested at room temperature. The mechanical testing
 

was performed in a Tinius-Olsen tensile machine; using a crosshead travel
 

speed of 0.01-inch/minute.
 

Tube-to-Tube Clearance Effects
 

Up to this point in the tube-to-tube welding investigation, effec­

tively zero clearances between tubes had been maintained. This condition
 

was believed to be a prerequisite for achieving sound welds. For the
 

assembly of a full size tube-to-header honeycomb core support structure,
 

the practical tolerance controls for tubing and header preparation
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Figure 19. Stainless Steel Adaptors for Mechanical Testing of GTA Tube-to-Tube Weld Specimens.
 
(70-1-9E)
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Figure 20. T-l1l Tube-to-Tube GTA Weld Specimens for Mechanical Properties Testing - Before Test. 
(70-4-3A) 



dictated that some greater clearance between tubes would be present.
 

Therefore, a test was implemented to determine the maximum permissible
 

spacing between tubes during welding. The test consisted of preparing
 

a seven tube bundle, using six-inch-long, 0.850-inch OD by 0.010-inch
 

wall, T-ill tube sections. The tubes were inserted in a T-ll1 core
 

support header to provide the necessary support at their ends. That
 

header was prepared such that the intertube clearance was zero immediately
 

adjacent to its top surface. The configuration of the T-1ll core support
 

fixture is schematically shown in Figure 21. A 0.006-inch T-ll shim was
 

then inserted between a tube pair at the unsupported end of the bundle
 

to create a zero to 0.006-inch tapered clearance from end to end. A
 

0.020-inch diameter Cb-lZr wire was used to hold the bundle at the end
 

opposite the header, after the shim had been inserted. The seven tube
 

bundle and core support header assembly was placed on the X-Y positioning
 

fixture in preparation for welding, as shown in Figure 22. The internal
 

automatic GTA welding of the tapered joint was initiated at the zero
 

clearance end. The orientation of this joint in the seven tube array,
 

and those of subsequent tube-to-tube joints prepared to study the effects
 

of clearance variations on weldability, are shown in Figure 23. The
 

welding parameters were adjusted, from those previously employed, to
 

compensate primarily for the presence of the relatively massive end
 

support header. The last tube-to-tube weld in this trial series was
 

performed between two tubes, each containing two EB weld attached, in­

dented and backfilled doubler inserts. Shims had been placed between
 

the tubes at both ends, to maintain the maximum clearance which could be
 

tolerated in GTA welding. The purposes of this test were to establish
 

the effects of welding over doubler locations, and to produce a specimen
 

for metallographic inspection to certify that the final GTA weld parameters
 

were acceptable for joining tubes having relatively large separations.
 

The metallographic sections were made 1) transverse through the GTA tube­

to-tube weld, and 2) transverse through a doubler at a reinforced in­

dentation site.
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Figure 21. Sketch of the T-111 End Support Flange.
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Axial GTA Tube-to-Tube Welds. (70-6-13E) 
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Figure 23. 	 Identification of Tube-to-Tube Welds in Seven Tube
 
Bundle Sample Array.
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Multiple Tube-to-Tube Welding Procedure
 

After the metallographic inspection of the above joint was completed,
 

another seven tube bundle was prepared for welding. All tubes contained
 

two dimpled and backfilled inserts, EB welded in place at the ends of the
 

6-inch-long tube sections. The assembly was prepared for welding in the
 

manner anticipated for fabrication of a nineteen tube model honeycomb
 

assembly. The tube-to-tube clearances, and the bundle width as a function
 

of length, across three tubes whose axes were in the same plane, were
 

measured prior to welding. All tube-to-tube joints were automatically
 

GTA welded, making three center tube welds first, with the welding torch
 

positioned inside the center tube. Welds were then made in each of the
 

six outer tubes; i.e. either one or two welds in each tube as illustrated
 

in the sketch below:
 

3 A7t 

'44 
B 

A-Weld Sequence: l-A,B,C 
2-A 

5 A 1 4 A 4 3-A 

B 4-A 

~ B5-A, A># B 
6-A,B 

2 A 6 7-A,B 

The assembly was removed from the welding end support header , and
 

inspected to determine distortion, shrinkage, and quality of the tube­

to-tube welds.
 

The final experimentation in the tube-to-tube joining study con­

sisted of welding a seven tube bundle, using full-length T-111 honeycomb
 

tubes without doubler inserts. The fixturing for this assembly was
 

different from that originally conceived for welding full-length tube
 

hernust machined 

f'or use as an end support. To best indicate the actual fixturing used, 

several comments will be made relative to the setup for welding a 19­

tube-to-common header model assembly. For that assembly, opposite ends 

of the honeycomb tubes would be inserted into the model header flange 

tI'ttltltas, ritiulrI bo no T-1ll header flange was available 
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and the previously mentioned T-111 end support header, respectively. The
 

welding torch would be inserted through a hole in a stainless steel in­

dexing plate, and then through the support header for internal access to
 

the tube-to-tube joints. The stainless steel plate with two attached
 

cylindrical studs would be positioned immediately adjacent to the outside
 

face of the end support header, such that the studs would penetrate to
 

the mid-thickness of the flange. For the seven-tube array sample assembly,
 

the torch guide, or indexing plate was modified and used to support one
 

end of the bundle. The modification consisted of machining six additional
 

studs to fit the inside diameter of the 0.850-inch-OD by 0.010-inch-wall
 

T-ll tubes. Prior to assembly for welding, specific surfaces of the
 

plate and studs, which contacted the tubes, were wrapped with protective
 

tantalum foil. The opposite end of the bundle was supported by the end
 

support header. Thus, the welding torch penetration for the full-length
 

tube sample assembly was opposite to that for previous assemblies (refer
 

to Figures 18 and 22). Twelve other full length honeycomb tubes were
 

also positioned around the seven tube array to 1) produce a heat rejec­

tion or conduction condition in the seven tube array equivalent to that
 

anticipated during welding of a nineteen tube model honeycomb structure,
 

and 2) provide mid-length support for the interior tube cluster. Five
 

equally spaced hose clamps around the outside of the 19-tube array were
 

used to maintain contact of the tubes between the end support fixtures.
 

To distribute the clamping forces, two-inch lengths of 0.25-inch-diameter
 

molybdenum rod were inserted in the generally triangular zones formed by
 

the inside clamp surfaces and the underlying tubes. Also, tantalum foil
 

was wrapped around the bundle, under each hose clamp, to avoid possible
 

damage or contamination of the outer T-111 tubes. The welding parameters
 

utilized were those established as acceptable during earlier trials. The
 

pattern or sequence of the welds was the same as that previously indicated
 

for welding of the seven tube bundle, which contained EB attached doublers.
 

The assembly was examined after welding to determine distortion effects
 

and weld qualities, and to establish possible procedural variations which
 

might improve the overall fabrication processing.
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Tube-to-Header Welding
 

The development of a method for bonding thin-walled T-111 tubes to
 

a common T-1ll header was explored using the internal, automatic, gas
 

tungsten arc welding process. The process variables of welding heat
 

input, electrode position and configuration, and rotational travel speed,
 

were studied in conjunction with the design of simulated header components,
 

to establish the conditions required to produce sound weldments. Postweld
 

examination of trial specimens was used to select optimum parameters. All
 

welding was conducted in a purified helium atmosphere in the previously
 

described vacuum purge chamber, using a 0.062-inch-diameter bent tungsten
 

electrode. Figure 24 presents a typical weld set up and depicts the
 

position of the welding electrode in relation to a simulated header
 

component. A potential arrangement for making tube-to-header welds in
 

a multiple tube assembly is schematically shown in Figure 25. The ro­

tating motor drive mechanism, torch mounting plate, and refractory metal
 

(Cb-lZr) support block actually used in the study are shown in Figures 26
 

and 27. Only single tube-to-header weld specimens were prepared in the
 

investigation. Machined simulated header components and T-ll tube
 

sections were cleaned for welding by acid pickling. The header components
 

were machined such that the weld joints were self-fixturing, although a
 

special tubing restraint fixture was used in later welding trials. The
 

restraint fixture was used to a simulate conditions at the tube-to-header
 

joints, which would be encountered in welding a multiple tube assembly
 

after the tubes had been welded together. Visual (borescope) examination
 

was the technique generally used to measure the relative quality of the
 

welds. Metallographic examination of selected specimens was also employed
 

to obtain more definitive analyses of the weld specimen characteristics,
 

and thereby permit the selection of optimum preparatory conditions in
 

subsequent specimens.
 

Header Configuration Development
 

The first GTA welding trials for joining the 0.850-inch OD by 0.010­

inch wall T-111 tubing to simulated T-111 header pieces were conducted
 

ostensibly to determine only the weld power input and travel speed re­

quired to produce sound weldments. The configuration of the initial
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Figure 25. Internal Tube to Header Welding Arrangement.
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Figure 27. 	 Tube-to-Header GTA Welding Setup with Drive Unit for Electrode Rotation-After
 
Positioning Specimen and Tantalum Restraint Fixture in Place for Welding.
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header pieces was identical with that portion of an originally conceived
 

nineteen tube header flange where an individual honeycomb tube would be
 

inserted; refer to Figure 2. Thus, the pieces contained 0.125-inch-deep
 

circular slots for tube insertion, conical shaped sections with holes to
 

simulate eventual lithium flow passages, and recessed rectangular slots.
 

Because the welds in these initial specimens were unsatisfactory, addi­

tional header pieces were machined to remove material from the conical
 

shaped sections immediately adjacent to the inside diameter of the tubing
 

slots, as shown in Figure 28. The welds obtained from preparing specimens
 

with this modified header configuration were partially acceptable. Metal­

lographic examination of the last of these specimens indicated that
 

further minor geometric changes would be economically and technically
 

advantageous. Thus, four additional header pieces were machined to an
 

alternate configuration; i.e., the slot depth was reduced to 0.08-inch,
 

and the height of the rib at the inside of the slots was reduced by
 

0.015-inch to permit welding below the top surface of the header pieces. 

Subsequently, unsatisfactory joints were produced in the first two 

specimens, implying that some further processing changes were needed to 

protect the thin-walled T-ll tubes. Thus, the GTA welding of the 

remaining two specimens from the second group was attempted after 

doublers had been EH welded to the ID of the 0.850-inch OD tube, in 

such a manner that the base of each doubler and the top of the corres­

ponding header ribs were in contact when the tubes were inserted in the
 

header slots. The unsatisfactory nature of the resultant welds dictated
 

that additional geometric alterations were needed.
 

Three simulated header pieces, containing slots for tube insertion,
 

as shown in Figure 29, were machined for continuation of the tube-to­

header welding investigation. The slots for these samples were machined
 

to a depth of 0.140 inch using electrical discharge machining (EDM)
 

techniques. Two of the header pieces were counter bored inside the ID
 

of the slots to produce ribs having increased thicknesses (maximum
 

possible thickness was 0.026 inch at the minimum counter bore diameter,
 

0.776 inch). The ID slot dimension for the third specimen was smaller
 

than the other two specimens, such that the inside rib thickness was
 

approximately 0.010-inch. Reduced diameter ring inserts were EB welded
 

to the T-111 tube sections, such that the base of the inserts butted
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against the top of the internal slot ribs for the first two specimens,
 

when the 0.85-inch-OD tubes were positioned for welding. The insert
 

ring was located at the end of the tube for the third specimen, such
 

that both the tube and ring were positioned inside the header slot before
 

welding. The GTA welding of these three trial specimens was again
 

unsatisfactory. These results were directly associated with the poor
 

fitup of the tubes in the header slots.
 

Since the EDM process proved unsatisfactory for machining of the
 

0.140-inch-deep slots, a new sample header geometry was devised, which
 

permitted the usage of more conventional machining techniques to produce
 

the desired interior rib dimensions. The new configuration eliminated
 

that portion of the header which formed the outside of the slots. Thus,
 

the interior rib was above the main body of the header pieces. Three
 

additional specimens were prepared for further GTA welding; diametric
 

spacings between the ribs' OD and the tubes' ID were set at 0.005, 0.010,
 

and 0.005 inch, respectively. Again, prior to GTA welding, reduced
 

diameter ring inserts were EB welded to the tubing, such that the end
 

of the inserts butted against the top of the ribs. The tungsten welding
 

electrode was positioned 0.035 inch below the top of the rib for the
 

samples with 0.005-inch diametric spacing, and 0.045 inch below for the
 

sample with a 0.010-inch spacing. The welds produced were only partially
 

acceptable indicating that a further variation in the tube-to-rib
 

diametric clearance would be necessary to produce satisfactory welds.
 

Reducing the tube-to-rib diametric clearance to less than 0.005-inch
 

appeared to provide a possible solution to the tube-to-header joining
 

problem. However, such reductions were not compatible with tube bundling
 

requirements in a multiple tube-to-common header honeycomb assembly, and
 

a new approach was therefore considered. The result of that consideration
 

was the tube-to-header joint configuration, shown in Figure 30. That
 

design concept has three significant features; first, welds would be
 

made between the header and an extended doubler insert; second, the
 

clearance (0.005-inch), required for honeycomb assembly bundling, would
 

be present between the insert OD and the header ID; and third, weld
 

filler metal would be provided by the machined horizontal rib in the
 

header.
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Figure 30. Detailed Dimensions of T-111 Simulated Header Components Prepared
for Tube-to-Header GTA Welding Study (Final Design Configuration). 
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Two trial samples were prepared to the configuration shown in
 

Figure 30. The insert extension into the header (dimension A, Figure 30)
 

was varied to be nominally 0.035 and 0.060 inch, respectively. In each
 

case, the insert OD was measured and the respective header machined to
 

provide a 0.005-inch diametral clearance. Welding trials were conducted
 

using the restraining fixture to prevent tube motion in the axial direction
 

during welding. Figures 31 and 27 show a schematic drawing and a photo­

graph of the actual restraint fixture, respectively. Visual examination
 

of the first two specimens indicated that further experimentation was
 

required to produce reliable welds. Therefore, additional samples were
 

prepared with the EB attached insert extension set at 0.06 inch into
 

corresponding header pieces. The parameters of electrode tip shape,
 

radial distance from the electrode tip to the header rib, axial position
 

of the electrode relative to the header rib, as well as welding heat
 

input, were systematically evaluated with these samples. The prior EB
 

welding, to attach the extended length inserts, was performed without
 

benefit of a welding fixture, because the expandable mandrel fixture had
 

been fabricated for EB welding of short inserts only. The fixture was
 

used to EB weld short inserts at the opposite ends of the tubes for wall
 

reinforcement.
 

Testing Procedure and Specimens
 

Holes were machined through these reinforced areas after tube-to­

header welding, to permit insertion of load transmission pins during
 

postweld mechanical testing. In all, six tube-to-header mechanical test
 

specimens were GTA welded in the restraint fixture. All were vacuum heat
 

treated at 2400°F for one hour prior to mechanical testing. Three of the
 

specimens, prior to test, are shown in Figure 32. Selected specimens
 

were also submitted for metallographic inspection to establish weld
 

quality, and to determine whether parameter variations were required. The
 

adaptors used for load transmission in the mechanical testing trials are
 

depicted in Figure 33.
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SUMMARY OF PROGRAM PROCEDURES
 

During the course of the investigation of the honeycomb core support
 

structure fabrication, detailed procedural plans were formulated and used
 

for the following program experimentation areas:
 

1. 	Indenting and Reinforcing of Tubing Wall Doublers
 

2. 	Electron Beam Welding of Five Wall Doublers to a Full Length
 

Honeycomb Tube
 

a. 	Dimensional Inspection of Honeycomb Tube After Doublers
 

Attachment
 

3. 	Gas Tungsten Arc Tube-to-Tube Welding
 

4. Gas Tungsten Arc Tube-to-Header Welding
 

In addition, a plan was generated for the EB welding of fuel pin retainer
 

rings to a header flange. Joints of this nature would be encountered in
 

the fabrication of a tube-to-header honeycomb assembly, as described
 

later. The detailed plans for each of the proceeding areas are presented
 

in the Appendix.
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III. R E S U L T S A N D D I S C U S S I O N
 

The basic purpose of the study program was to determine the feasi­

bility of fabricating thin-walled T-ll alloy tubing into an integral
 

honeycomb structure, for a potential nuclear power generating system
 

application. The major tasks were the development of optimum techniques
 

for producing (1) internal reinforced projections (fuel pin spacers) in
 

thin-walled T-111 tubing, (2) welds between the T-1ll tubes along mutual
 

axial lines of contact, and (3) welds between the T-111 tubes and T-ll
 

plate stock (simulated header components). These three fabrication
 

areas were representative of portions of a proposed compact nuclear
 

power plant. Thus, all processing and fixturing development was conducted
 

with that assembly in mind. The three described fabrication areas were
 

studied individually to generate reliable joining parameters, which
 

would yield structurally sound trial assemblies exhibiting minimum
 

distortion. Further aims of the program were to establish suitable
 

postfabrication nondestructive inspection methods for determining the
 

quality of the different joints, by comparing nondestructive and
 

destructive (microstructural) examination data, and to certify that
 

the developed parameters provided weldments, capable of withstanding
 

applied mechanical stresses equivalent to those expected in service.
 

FUEL PIN SPACERS FABRICATION AND WELDING
 

Experimental determination of the operating stresses in the honey­

comb core of a proposed compact nuclear reactor indicated that rein­

forcement of the 0.875-inch-OD x 0.010-inch-wall tubing would be necessary
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at the center fuel element alignment projections. That necessity ini­

tially appeared to complicate the situation regarding the manufacture
 

of fuel element spacers. However, further consideration resulted in
 

the evolvement of the dimpled insert, or wall doubler, approach for
 

producing all of the spacers. As previously indicated, the advantage
 

of the doubler method far outweighed the disadvantages, and it was
 

therefore selected for evaluation. Reiterating, the three areas of in­

vestigation for producing fuel pin spacers by the wall doubler technique
 

were (1) indenting of reduced-diameter T-ll ring inserts, (2) reinforcing
 

the indentations with T-1ll filler material, and (3) EB welding the pre­

pared doublers to the wall of the basic T-111 honeycomb tubing.
 

INDENTATION OF INSERTS
 

The most recent design configuration of a honeycomb core support
 

structure indicated that the diametric variation to the nodal points of
 

the internal tube projections ranged from 0.746 inch to 0.7625 inch.
 

Two ways for achieving the different internal projection diameters were
 

considered. Indenting inserts to the different depths prior to back­

filling reinforcement was one candidate method. That technique would
 

have necessitated the manufacture of at least two expensive indenting
 

fixtures. The alternate, more economical, approach of indenting inserts
 

to a fixed configuration, followed by backfilling on a water-cooled
 

molybdenum fixture having machined recesses of different depths and
 

contours, was devised and implemented to produce the desired projection
 

diameters. The heat generated in backfilling caused the insert material
 

to melt and conform to the fixture recesses, thus yielding the required
 

internal spacer dimensions. Achieving the final spacer dimensions in
 

prime hardware assemblies would require machining because the backfilling
 

process is essentially a welding operation and compensation for the
 

normal shrinkage attendant with that operation must therefore be made.
 

The required contour of the internal projections, shown in Figure
 

12, included a 0.295-inch-radius face. The previously described tube
 

indenting fixture incorporated a 0.291-inch-radius ball for indenting
 

the insert rings because the smaller size hardened balls were standard
 

shelf items and could therefore be more easily procured. The desired
 

quantities of T-111 ring inserts were indented, and subsequent dimensional
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inspection of several formed pieces demonstrated that the required interim
 

configuration had been successfully produced. Thereafter, backfilling of
 

the doubler indentations with T-ll1 reinforcement material was explored
 

by employing both the EB and GTA fusion processes for preparing samples.
 

INDENTATION BACKFILLING 

Radiographic and microscopic examination of the initial T-111 ring 

samples prepared by the electron beam process indicated several problems,
 

which were cause for investigating the alternate GTA technique for back­

filling the indentations. First, the surface contour of the solidified
 

backing material did not meet the specified geometric requirements. The
 

molten metal at the center of some indentations was attracted to the
 

electron beam which produced an objectionable peak in the backfilled
 

material when solidification occurred. Secondly, voids were detected
 

at the bottom of several depressions, where the temperature had not
 

reached a sufficient level to produce complete melting and flow. Over­

coming this latter difficulty necessitated fusing a small portion of the
 

required T-ll filler into the dimple cavity, then adding more material
 

and repeating the cycle to achieve complete filling. This double cycle,
 

coupled with the fact that each required evacuation of the welding
 

chamber, were further reasons for rejecting the EB backfilling technique.
 

The GTA processing to backfill the doubler indentations was generally
 

straightforward, and very few of the insert rings were rejected. Radio­

graphic and dimensional inspection of a few inserts showed that the
 

desired filling characteristics had been achieved. For a prime hardware
 

assembly, each backfilled indentation should be radiographed to insure
 

that filling was complete. Figures 34 and 35 display the contour and
 

microstructures present at two typical indented and GTA reinforced doubler
 

locations, both after the doublers had been attached to T-111 honeycomb
 

tube sections in other program joining trials. As the figures demonstrate,
 

excellent fill and flow were present. It was necessary to size all of the
 

indented and backfilled inserts used in subsequent trials to study tube­

to-tube, tube-to-header, and tube-insert-to-tube welding. The sizing was
 

required because weld shrinkage effects from reinforcement had resulted in
 

objectionable ring distortion which could not be tolerated during the
 

following joining operations.
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TUBE INSERTS-TO-TUBE EB WELDING
 

The development of a method for attaching the T-1ll reduced diameter
 

ring inserts or wall doublers to the wall of the basic T-1ll honeycomb tub­

ing entailed the high-voltage EB welding of various samples to establish
 

optimum process conditions. Two types of attachment welds were required,
 

i.e., circumferential welds around each doubler edge and "circular" welds
 

around the doubler indentations. After the best processing conditions of
 

fixturing, welding current and accelerating voltage, and welding speed
 

were established from preliminary parameter studies, additional specimens
 

were prepared to determine weld mechanical properties and distortion
 

effects in a full-length (18 inches) honeycomb tube with five EB attached
 

doublers.
 

Circumferential Welding
 

The first EB welding trials were performed using single, 0.5-inch-long
 

reduced diameter ring inserts without indentations. The rings were in­

serted into 3-inch lengths of the 0.850-inch-OD by 0.010-inch-wall T-111
 

tubing and circumferentially EB welded in place, using the parameters
 

shown in Table II. An expanding, refractory metal, mandrel was utilized
 

to maintain contact of the inserts with the tubing ID prior to welding.
 

The welds were made immediately adjacent to the end of the fixture, over
 

which the inserts were extended, to avoid bonding of the tubes to the
 

fixture. Visual examination (lOx) of these initial specimens indicated
 

that satisfactory weld characteristics were associated with (1) particular
 

welding variables and (2) maintaining sufficient diametric pressure to
 

insure adequate contact of the inserts and basic tube wall. Thus, the EB
 

welds around the circumference of the specimens were satisfactory only
 

where the necessary contact had been maintained. Improvement of the
 

contact could be more readily realized by reducing the rigidity of the
 

insert rings. Two techniques were considered for achieving that goal;
 

i.e., heat treatment of the inserts to remove stresses induced during
 

tube reduction and axial splitting of the inserts. To check out the
 

effectiveness of the first of these potential methods for enhancing the
 

EB welding, several inserts were vacuum heat treated at 2400°F for 1 hour
 

prior to their EB attachment in tube sections. Examination of the
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TABLE II 

RESULTS OF T-ill TUBE-INSERT-TO-BASIC-TUBE-WALL INITIAL EB WELDING PARAMETER STUDY
 

Joint Beam Power 

Number (kv) (ma) 


1 90 2 


2 90 4 


3 100 5 


4 100 6 


5 100 4 


(1)


( 1)
Welding Variables


Target 
Welding Speed Height 
(Inch/Minute) (Inches) 

58.5 0.25 

58.5 0.25 

58.5 0.5 

58.5 0.5 


58.5 0.25 


Remarks,2 ,
 

Penetration not established.
 

Penetration not established.
 

Variable penetration, target height
 
changed to defocus beam.
 

100 	percent penetration, weld too
 
large.
 

Beam power reduced to obtain smaller
 
welds; target height changed to re­
focus beam, weld appearance excellent,
 

penetration not established.
 

a. 	Welding performed using a Hamilton-Standard Company high voltage (6 kw) electron
 
beam welder.
 

b. 	Welds were circumferential through the basic T-111 tube wall.
 

c. 	Target height = distance from focusing target to work piece. 

(2) Observations based on visual examination of specimens.
 



samples, prepared by that technique, demonstrated essentially the same
 

results as initially obtained. Thereafter, trials were conducted, uti­

lizing split insert rings to improve the contact between them and the
 

tubing wall. The results were again unsatisfactory. The electron beam,
 

when moving over the split portion of the inserts, caused burn-through
 

of the 0.85-inch-OD tube wall to occur, even though adjustments were
 

made in the welding parameters, and the methods used to force the insert
 

ends together.
 

Achieving the necessary contact between the inserts and the basic
 

tube wall required an increase in the applied force, since reducing the
 

rigidity of the inserts proved unsuccessful. Therefore, a second re­

fractory metal, expanding mandrel, welding fixture identical with that
 

to be used for doubler attachments in the full-length T-111 honeycomb
 

tubes was prepared and utilized for the completion of the weld parameter
 

study. The new fixture and adjustments in the initial welding parameters
 

were utilized to minimize tube distortion and eliminate tube burnthrough.
 

These additional trial welds were also the circumferential type. The
 

results of the further parameter study, presented in Table III, show
 

that minimum distortion was associated with complete penetration welds
 

made using a sharp focused electron beam. The evaluation of those
 

samples was based on visual examination of their exposed surfaces. On
 

that basis, the following EB weld parameters were superior: accelerating
 

voltage - 110 kv, beam current - 2.5 ma, rotational travel speed - 58.5
 

inches per minute. For quality assurance, additional samples were prepared
 

using those parameters. Examination of these welds indicated that some
 

alteration in the parameters might be beneficial for producing smoother
 

weld contours. Thus, additional tube insert-to-tube samples were circum­

ferentially EB welded using a wider range of process variables (including
 

deflecting the beam parallel to the weld). Metallographic sections
 

were prepared from pertinent parameter study specimens for a micro­

structural determination of the best welding conditions. The results of
 

that determination will be discussed in a later paragraph.
 

Circular Welding
 

Further EB welding trials were conducted to explore the circular EB
 

weld attachments of indented and backfilled T-111 ring inserts to the ID
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TABLE III 

RESULTS OF ADDITIONAL EB WELDING PARAMETER STUDIES
 
FOR ATTACHMENT OF T-111 INSERTS TO BASIC T-111 TUBE WALL
 

( 1 )
 
Welding Variables


Target
 
Joint Beam Power Welding Speed Height
 
Number (kv) (ma) (Inch/Minute) (Inches) Remarks(2,
 

1 100 6.0 58.5 0.125 	 Weld too wide, penetration not established.
 

2 100 6.0 58.5 0 	 Sharp focus produced narrow weld; partial through
 

penetration; distortion not large.
 

3 110 4.0 58.5 0 	 100 percent penetration, weld too hot, some tube
 
distortion evidenced - weld power should be
 
reduced.
 

4 110 3.4 58.5 0 	 100 percent penetration, weld too hot, some tube
 
distortion evidenced.
 

5 121 2.0 58.5 0 	 Power input too low, penetration not established.
 

6 110 3.0 58.5 0 	 100 percent penetration, weld power slightly high,
 
some tube distortion observed.
 

7 110 2.5 58.5 0 	 100 percent penetration, optimum weld appearance ­
minimum tube distortion and through weld 

penetration. 

(1) 
a. Welding performed using a Hamilton-Standard Company high voltage (6 kw) electron beam welder.
 

b. Welds were circumferential through the basic T-111 tube wall.
 

c. Target height = distance from focusing target to work piece. 

(2) Observations based on visual examination of specimens.
 



of the honeycomb tubing. The range of welding parameters used in these
 

trials was the same as that used in the study of circumferential EB weld
 

attachments, and produced generally equivalent weld characteristics; i.e.,
 

the conditions which produced satisfactory circumferential welds also
 

yielded satisfactory circular welds. However, the extent of distortion,
 

associated with the circular welds, was somewhat greater than that
 

experienced with circumferential welds, prepared under otherwise identical
 

conditions. Selected circle weld parameter specimens were also submitted
 

for microstructural study.
 

Weld Microstructures
 

Representative microstructures from selected circumferential EB
 

welds are presented in Figures 36, 37, and 38; typical circle EB weld
 

microstructures are shown in Figure 39. Measurements of the weld
 

dimensions and other pertinent comments for all parameter study specimens
 

are presented in Table IV. The data show that the face and root dimensions
 

changed from one location to another on the same specimen; i.e., consider­

ing the welds made at 110 kv - 2.5 ma, the weld face width varied from
 

0.018 to 0.022 inch, and the root width from 0.009 inch to 0.015 inch
 

at the same respective positions (see Figure 36). These variations
 

were possibly caused by changes in the power output, associated with
 

slight fluctuations in beam current (< 0.5 ma). Since low power levels
 

were needed to join the thin-walled materials, current variations of
 

that magnitude may have produced the observed effects on the size of
 

the welds. Another plausible cause was associated with the variation
 

in spacing between the tube and insert at the different positions. Thus,
 

a larger separation resulted in a smaller weld cross section because the
 

total volume of material present to solidify was effectively a constant.
 

Weld dimensional changes of this magnitude were not considered detrimental
 

from the standpoint of the structural requirements of a given EB attach­

ment weld, regardless of the cause. A further observation from the
 

microstructural study was that the face of the EB welds was depressed
 

below the outside diametric surface of the honeycomb tube for certain
 

specimens. This effect was quite pronounced in some cases, e.g., a
 

depression of 0.007 inch was present in the sample welded at 90 kv - 5 ma
 

(see Figure 37). The depressed portion of the weld was diametrically
 

opposite to the starting location of the EB weld. Depressions were
 

found at the face of the welds in most of the other specimens examined,
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EB Weld
 

Honeycomb
 

Tube 
 0.002"
 

44 

EDl Weld
 

Figure 36. Microstructuresof ER Welds (Circumferential) for Doublers Attachment
 
Showing Effects of Slight Variations in Spacing Between Parts on Weld
 

Fusion Zone Characteristics. Welding Parameters Were: 110 kv - 2.5 ma
 

-No Beam Deflection. Etchant: NH4F HN03, H20
, 
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EB Weld
 

EB Weld Parameters:
 
Honeycomb 90 kv - 5 ma - No
 

Tube Beam Deflection
 

Doubler
 

H70071A 	 1OOX
 

EB Wl
 

EB Weld Parameters:
 

Honeycomb 120 kv - 4 ma - Beam
 
Tube 	 Deflection 0.05"
 

Perpendicular to
 
Weld
 

H70051A 	 10OX
 

Figure 37. 	 Microstructures of EB Welds (Circumferential) for Doublers Attachment
 
Showing Effects of Relatively Large Spacing Between Parts on Weld
 
Fusion Zone Characteristics. Etchant: NH 4F, HNO3 , H20
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FB Weld 

EB Weld Parameters: 
90 kv - 5 ma - No 

RomeyombTube Beam Deflection 

Doubler 

H70071B lOOX 

IM Weld 

EB Weld Parameters: 
90 kv - 5 ma - Beam 
Deflection 0.05" 

~Weld Perpendicular to 

H70071A lOOX 

Figure 38. Microstructures of EB Welds (Circumferential) for Doublers 
Attachment Showing Effects of Beam Deflection on Weld 
Surface Contour. Etchant: NH4 F, HNO3v H2 0 
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EB Weld 	 EB Weld Parameters: 
90 kv - 5 ma - No
Beam Modulation
 

Honeycomb
 
Tube
 

Doubler 

H95021B 	 50X
 

ED Weld EB Weld Parameters: 
110 kv - 4 ma - Beam 

HModulation 
Honeycomb


Tube 

Doubler 

H95021C 
 50X
 

EB Weld Parameters: 
90 kv - 5 ma - Beam 
Modulation
 

ioeycomb 	 i~i 

Doubler i-vi~i~i~
 

H95011A 	 50X
 

Figure 39. 	 Typical Microstructures of T-ll1 Insert-to-Tube EB Welds Around
 
Reinforced Indentations in Doubler (Circle Welds).
 
Etchant: NH4F, HNO3 $ H20
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TABUE IV
 

DUmnSzOlAI CHARAGTKIBTOS OF E180RON ISLA WSWDFUSION ZONES FMR DOUSES AVTACWETS
 

Spacing Between Weld Zeroe Dimensiona 

ED Welding Parameter, Doubler Insert and Depreaaion 
( 3 ) 

Weld Type of power nr,,uttJ seem eflection
( 2 )  

Honeycomb Thbe Wall Face Root Face Root 
Nber IS Weld (Cv) (en) (Ina) (Inch) (Inch) nc (-Inh) (Inch) Remarks 

1 Circumferential SO 3.0 0.05 0.0006 to 0.003 ----- Not Measured ' Insufficient penetration. 

2a Circunferential 90 4.0 0.05 0.0012 0.022 0.016 0.0012 -- FUll penetration, excellent weld appearance. 

2b Circumferential 90 4.0 0.03 .o07z 0.020 0.010 0.0054 0,002 Wide spacing between Insert end tube resulted in objection­
able face and root aide depression of solidified weld metal. 

3, Circueferential 90 5.0 none 0.0008 0.022 0.016 0.0012 --- Excellent weld characteristics observed. 

3b Circumferential 90 5.0 none 0.005 0.013 0.014 0.0068 0.0032 Weld widest at midpoint between insert and tube; wide spacing 
again caused poor weld zone contour. 

4. Circumferential 90 5.0 0.05 0.0012 0.025 0.020 0.0016 --- Good weld; deflection of beem produced wider dimensions and 
rougher face contour. 

4b Circumferential 90 8.0 0.05 0.0024 0.026 0.022 0.002 --- Good weld; 0.0024-inch 
0.0015-inch distention 

separation could be tolerated, 
observed on root aide. 

Sa Circumferential 110 2.5 none 0.001 0.022 0.015 0.0012 --- Good weld, although some root distention (C 0.001-inch) 
evidenced; weld face contour seooth. 

3b Circumferential 110 2.5 none 0.002 0.018 0.009 0.002 - Narrower weld resulted from slight power fluctuation; or 
apace between components; 0.002-inch distention observed on 
root side; again smoth face contour. 

5c Circumferential 110 2.5 none 0.0015 0.019 0.012 0.001 -- O.001-inch distention on root side, good weld. 

5d Circumferential 110 2.5 none 0.002 0.018 0.012 0.0015 -- oenerally good weld. 

se Circumferential 110 4.0 0.05 0.0048 0.020 0.016 0.004 0.0005 Wide spacing (0.0048-inch) again resulted in large depression 
on face older although less than with 
Weld widest between insert and tube. 

SO kv beam voltage. 

Gb Circumferential 110 4.0 0.05 0.002 0.022 0.021 0.0004 -- Weld zone exhibited least face-to-root taper. Depression in 
face aide was not gradual a with other apecimeas. 

6c Circumferential 110 4.0 0.05 0.0032 0.019 0.019 0.0016 - Root side of weld was smoothest of all specimens; results 
also indicated that 110 kv - 4 ma parameters were better 
when welding over relatively large spacing (0.0032-inch 
separation). overall excellent welds. 

7 Circuaferential 120 3.0 0.05 0.001 to 0.005 - Not Measured Lack of penetration observed, effect caused by low heat flux 
denaity, related to improper beam focus adjusteent. 

a. Cim ...erential 120 4.0 0.05 0.0016 0.030 0.020 0.002 -- Weld ene.rally oodF, although face depreston a sharp: 
dimensions largest observed. 

8b circumferential 120 4.0 0.05 0,002 0.030 0.024 0.002 - Approximate 0.02-inch distention noted on root side: again 
sharp demarcation in contour of face. 

Sc Circumferential 120 4.0 0.05 0.006 0.030 0.026 0.004 - Root side asaooth, beat parameters for welding over wide 
spaced tube and(0.04-inch). insert even though face depression we large 



TASI* IV (WfThNJl) 

eld 
Number 

Type of 
ED Weld 

e aramters Spacing Between 
Weld Type ofParDeflction k2 oubler :Lat on 

power Input 
1 

seam uerlectlon(2) ioneycosh Thbe Wall 
Qk { h (Inch)) (Inch) 

Pace 
(Ic 

Weld Zone 

Root 

Dimensions 
Depression 

( 3 

Face Root 
(inch) Remarks 

9 Circular S0 5.0 none 0.0001 0.034 0.020 --- --- Face of weld mo thest observed; 0.02-inch distention noted 
on root side., larger fusion come dimensions resulted fro 
beau angulation; face-to-root shape not Symmetrical. 

los Circular 90 5.0 0.005 modulated 0.W008 0.032 0.019 --- --- Excellent weld, Sane as Specimen No. 9. 

10b Circular 0 5.0 0.005 modulated 0.0002 0.036 0.022 -... O.O015-inch root side distention noted, otherwise good weld. 

1 Circular 110 2.5 none 00002 to 0.0014 - - Not Measured - Lack of penetration observed, travel speed was too rapid for 
fusion to occur. 

12 Circular 110 3.0 0.005 modulated 0.0001 to 0.0008 0.044 Not Measured -. Lack of penetrationj beam focus out of adjustment. 

13 Circular 110 4.0 0.005 modulated 0.0015 0.035 0.02 0.002 --- Full penetration observed; face depression was sharp variation 

from tube contour; 0.003-inch distention of weld noted on root 
side; root contour very poor weld not synmetrical. 

14 Circular 120 4.0 0.005 modulated Not Messured c Not Measured -0 Extremely poor contour on both face and root aides. 

NITE: (1) Weld Travel Speed Was 58.5 inch/minute for all Trials. 

(2) Deflectiona Indicated Were Parallel to Weld Path. 

Depressions In Weld Fusion Zones Were Measured at Maximum Depths. 



but to a lesser degree. The root sides of the fusion zones in some
 

specimens were also recessed, whereas others were distended. The
 

magnitude of the face and root contour variations was directly related
 

to the separation between the tube and doubler at the particular site;
 

thus, a larger separation resulted in a greater contour change in the
 

weld fusion zone. The separation was attributed to an initially poor
 

fitup between the parts. At the start of welding, the two components
 

were pulled together at one point, which thereby forced any initial
 

radial clearance between them to be gathered at a diametrically opposite
 

position. The basic difficulty was that the tolerances on the honeycomb
 

tubing, and the variation in doubler diameters, could result in large
 

clearances at assembly (up to 0.006 inch). For the preparation of sub­

sequent honeycomb tubes and inserts for EB welding, sufficient force was
 

exerted on the expandable mandrel to cause upsetting of the inserts, thus
 

causing them to conform to the ID of the honeycomb tube and also produce
 

the necessary intimate contact.
 

Deflection of the electron beam parallel to the weld path was uti­

lized to determine whether the surface texture of the weld zone could be
 

enhanced. As shown in Figure 39, such beam deflection actually produced
 

an undesirable rippling effect on the circumferential weld surfaces.
 

Beam modulation during circle welding at 90 kv - 5 ma also detracted from
 

the weld appearance, also shown in Figure 39. That figure also displays
 

the circular weld made at 110 kv - 4 ma, with beam modulation, which had
 

the worst root side contour of any weld inspected. Beam modulation refers
 

to the dilating and contracting of the circular electron beam while
 

tracing the weld pattern.
 

Microstructural examination of the circular weld made at 110 kv ­

2.5 ma showed insufficient penetration. The electron beam rotation was
 

fixed at 60 cycles per minute for all circular weld parameter trials.
 

The diameter of the circular weld path was greater than 0.31 inch for
 

that specimen. Since a constant rotational beam motion was maintained,
 

the linear weld travel rate for that specimen exceeded that employed in
 

producing the circumferential welds (58.5 inches/minute). Thus, the unit
 

heat flux on the surface of the above indicated specimen was too low to
 

produce complete fusion.
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Incipient melting was noted in the T-ll grain boundaries next to
 

the weld fusion zones (heat-affected zones) of some specimens. With
 

that exception, all welds examined were satisfactory from a metallurgical
 

standpoint; i.e., no porosity, grain boundary separation or other
 

anomalies were detected. 
A further conclusion of the microstructural
 

study was that visual examination of the face and root of a given EB
 

weld could satisfactorily define its acceptability.
 

Optimum Weld Conditions
 

Based on the microstructural study of the EB welded parameter speci­

mens, several parameter combinations could be potentially used to produce
 

metallurgically sound, complete penetration welds. For that reason, the
 

selection of the optimum welding conditions for attaching doublers was
 

based on the following factors:
 

1. The extent of assembly distortion;
 

2. The contour of the welds;
 

3. The relative reliability of the welding operation.
 

Increasing the EB welding power and the corresponding heat generated,
 

normally results in greater assembly distortion. From that consideration,
 

the parameters of 110 kv - 2.5 ma were superior, although the observed
 

effects in the actual specimens was slight. The beam accelerating voltage
 

has the most significant effect on the weld geometry; i.e., decreasing
 

the voltage produces smoother but wider welds. Visual examination of the
 

parameter study specimen's outer weld surfaces indicated that this effect
 

warranted more consideration than the assembly distortion. The surface
 

texture of the welds, prepared at 90 kv - 5 ma, was much superior to that
 

obtained by using other variables. The wider welds, attendant with the
 

lower voltage - higher amperage condition, were considered advantageous,
 

because greater transverse shear stresses could be tolerated in service.
 

Variations in accelerating voltage have a more pronounced effect on
 

the electron beam characteristics than a proportional change in any other
 

parameter. A minor fluctuation in voltage at higher levels would be more
 

deleterious than the same variation at lower levels. Thus, the parameters
 

of 90 kv - 5 ma represent the most reliable combination for EB welding
 

of doublers. Since superior geometries were also associated with welding
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at that power level and distortion effects slight, those parameters were
 

selected for subsequent program usage. The validity of the selection
 

was verified by the preparation and examination of multiple insert-to­

tube specimens.
 

Tests of Load Carrying Capacity
 

The testing to determine and qualify the shear load carrying capa­

bility of the EB doubler welds was conducted at room temperature, using
 

specimens fabricated from three-inch-long sections of reduced diameter tubing
 
and basic 0.850-inch-OD tubes. Three specimens were tested - two each
 

having three circle welds, and the third, a single continuous circumfer­

ential weld. As indicated previously, the most critical of the EB
 
doubler welds in the final nuclear power plant core structure are those
 

around the fuel pin retainer located at the mid-point of the tube. The
 

radial force from the fuel elements on the honeycomb tube internal pro­

trusions during service would impose shear stresses on those circle welds.
 
Further, axial stresses across those welds would be encountered during
 

launch. Thus, the testing of the indicated EB weld samples, by the
 

application of axial loads, provided qualitative strength date pertinent
 

to the launch requirements, and also yielded a quantitative measure of
 

the weld shear strength. No weld failures were observed in any specimen
 

under applied loads to 1000 pounds (failure occurred through the pinholes
 

of the tubing at the indicated load). The shear stress applied to the
 

circumferential weld was determined as follows:
 

S = P = 20 2 
s -x 1 (5(0.830200 16,700 pounds/(inch)c x- 1 ( Y(0)(.025) 

where S = shear stress in pounds/(inch)2 

P - applied load, in pounds;
 

1 = axial width of EB weld between tubes;
 

c = circumference of weld between tubes.
 

The 1000 pound test load, applied to the specimens with three circle
 

weld each, induced a 3,030 pounds/(inch)2 shear stress over one total
 

weld, as determined from the following:
 

S 13P(1/3)(1000)

=[D -Di (7) [(0.375)2-0.325)2] - 3,030 pounds/(inch)2 
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where Do = outside diameter of circle weld between tubes, in inches; 

Di - inside diameter of circle weld between tubes, in inches. 

those stress values, the shear load carrying capability of theBased on 


EB doubler welds was considered satisfactory.
 

Distortion Examination
 

kxamination and dimensional inspection of the full-length T-ll
 

honeycomb tube, containing five EB welded (90 kv - 5 ma) doublers, was
 

conducted to determine the extent of distortion, and establish whether
 

postweld sizing would be necessary for subsequent assembly operations
 

(tube-to-tube and tube-to-header welding). The welding was conducted,
 

using a randomly selected tube, and indented and backfilled ring inserts.
 

The inserts had been sized, after backfilling, to provide an adequate
 

fitup with the honeycomb tube for EB welding. The specially constructed,
 

split, expandable molybdenum mandrel (Figure 17) was employed during
 

this processing. The pattern of the EB welds was the same as that
 

required in the honeycomb tubes of a full-scale assembly; i.e., two
 

circumferential welds around each doubler edge, and three circle welds
 

The results of the
around the indentations of the center doubler only. 


dimensional measurements will be discussed in ensuing paragraphs.
 

The tube was inspected at the following processing stages:
 

1. As-received;
 

2. After installation of welding fixture;
 

3. After EB welding, prior to fixture removal;
 

4. After fixture removal.
 

The average outside diameter of the as-received tube was 0.855 inch, with a
 

variation of ± 0.0012 inch. The average diameter became 0.8540 inch
 

after the fixture installation, and the variation became ± 0.0014 inch.
 

After welding and removal of the fixture, the average diameter was 0.8537
 

inch, and the variation was ± 0.0024 inch. The net diameter change was 

0.0015 inch. 

The tube straightness measurements at the four stages of fabrication 

yielded maximum deviations from perfect straightness of 0.007, 0.0087,
 

0.0101, and 0.0107 inch, respectively. The net overall straightness
 

change was thus 0.0037 inch. Axial distortion of this extent could
 

probably be accommodated in the subsequent GTA tube-to-tube welding
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operations, based on the results obtained from concurrently conducted
 

welding trials on a seven-tube bundle (6-inch-long tubes). Those results
 

showed that satisfactory GTA welds could be achieved between tubes initially
 

separated an amount in excess of 0.006 inch. Further comments related to
 

the tube-to-tube GTA welding are made in later paragraphs.
 

In addition to the above overall dimensional measurements, the
 

doubler areas were inspected in detail. The maximum distortion observed
 

from these measurements was at the heat-affected zone (HAZ) of the EB
 

welds. The maximum surface straightness variations across the five
 

doubler stations are summarized in the following tabulation:
 

Doubler Station* Maximum Variation in Surface Straightness 
(Inches) 

1 0.0043 

2 0.0053 

3 0.0088 

4 0.0033 

5 0.0196 

Increasing station number indicates increasing distance from
 
a stop at the end of the split, expandable, molybdenum mandrel.
 
Positions correspond to desired doubler locations in the model
 
assemblies.
 

The greater variations at Stations 3 and 5 better indicate the localized
 

straightness variations across any given doubler, because the axial
 

spacing between measurements at those positions was less than at the
 

others. Thus, the maximum differential tubing distortion across the
 

narrow EB weld areas was measured at two stations only. The distortion
 

at Station 5 (0.0196-inch straightness variation) indicated that the
 

employment of different EB parameters might be advantageous. The most
 

appropriate substitute parameters would be 110 kv - 2.5 ma, and a welding
 

speed of 58.5 inches/minute. No additional sample assembly was prepared
 

to determine if those parameters were superior to the 90 kv - 5 ma
 

combination.
 

Graphs depicting all of the above described dimensional inspection
 

data were prepared and sent to the NASA Program Manager for review and
 

dispensation.
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The molybdenum fixture was broken in two places during its removal
 

from the tube. Although it was still usable for additional EB welding
 

experimentation, consideration should be given to the construction of
 

an alternate fixture. Such a fixture could be constructed of stainless
 

steel with molybdenum inserts in the immediate vicinity of the weld areas.
 

The tube-to-header joining problem was resolved though the use of
 

extended length doublers which protrude past the end of the tube section.
 

The fixture mandrel was modified to accommodate these longer doubler
 

attachments to full-length honeycomb tubes.
 

TUBE-TO-TUBE GTA WELDING
 

The automatic internal GTA welding process was studied for joining
 

of 0.850-inch-OD by 0.010-inch T-1ll honeycomb tubes to each other along
 

mutual lines of axial contact. The results of the initial parameter
 

study are presented in Table V. Two, 4-tube-bundle sample assemblies
 

were employed in the study; effectively zero axial clearances were
 

maintained between the tubes prior to welding. Short tube sections were
 

used because the weld positioning fixture had not been completed at that
 

time. Visual examination of these preliminary tube-to-tube welds indi­

cated that a power input of 34 amperes and 24 volts produced complete
 

penetration when coupled with an axial travel speed of 33 inches per
 

minute. The welding arc was initiated at the extreme ends of the tube
 

sections, to obtain maximum weld lengths. Since no internal end support
 

fixture had been used, the effective welding heat flux was larger than
 

desired at those locations, and resulted in a large amount of end distortion.
 

The observations made for the initial parameter studies were therefore based
 

only on the remaining portions of the welds. Thus, the above indicated
 

welding parameters produced the minimum tubing distortion of those
 

combinations which yielded complete penetration welds.
 

Visual, ultrasonic, fluorescent penetrant, and radiographic inspection 

were employed to define the quality of the welds produced in the initial
 

parameter study. Comparison of the results from these tests established
 

that defective or acceptable tube-to-tube GTA weld areas could be identified
 

by visual examination of the root sides of the welds. To guarantee the
 

acceptability of tube-to-tube welds in a hardware assembly, the ultrasonic
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TABLE V
 

RESULTS OF INITIAL GTA WELD PARAMETER STUDY FOR JOINING OF T-111 TUBES
 
ALONG AXIAL LINES OF CONTACT
 

Fusion Zone Dimensions

Welding Variables

( 1) 	
(3 )
 

(2)

Joint Current Voltage Axial Travel Speed Face Root
 

Number (Amperes) (Volts) (Inch/Minute) (Inch) (Inch)
 

5-8 25 21.5 33 	 0.060 -­

6-7 25 21.5 33 0.070 0.035
 

5-6 28 22.0 33 Not Determined
 

7-8 30 23.5 33 	 Not Determined
 

1-2 33 23.0 33 Not Determined
 

2-3 34 24.0 33 0.076 0.038
 

1-4 35 23.5 33 0.080 0.045
 

6-8 35 24.0 33 Not Determined
 

3-4 35 24.0 33 0.080 0.026
 

(1)

a. 	All welds made in a helium environment, using a Miller, Inc. Welding Machine - Model ESR 400.
 

Tubes GTA tack welded at their ends to maintain contact along axes.
 

b. 	An existing special constructed water-cooled torch was modified for this study, using a 1/16-inch
 
bent tungsten electrode.
 

(2)
a. 	Eight individual tubes used to form two four-tube bundles.
 
b. 	Tubes were 0.850-inch-OD x 0.010-inch-wall x 8-inch-long T-1ll.
 
c. 	Joint number identifications were arbitrary.
 

(3) 
 Weld dimensions obtained from microstructural examination.
 



technique could be employed as a supporting quality assurance measure.
 

The metallographic examination of the initial specimens demonstrated
 

that the welds were metallurgically sound, regardless of the parameters
 

used in preparation. Typical microstructures of two of the initially
 

GTA welded tube-to-tube specimens are shown in Figure 40. That exami­

nation also confirmed that the visual inspection of the root sides of
 

GTA welds could satisfactorily establish their integrity.
 

STRENGTH REQUIREMENTS
 

The strength requirements for the axial tube-to-tube welds were
 

that each be capable of withstanding an applied axial load of 33 pounds
 

per inch of weld length. Three test specimens were welded using the
 

following parameters: power input - 34 amps and 24 volts; travel speed ­

33 inches per minute; zero clearance between tubes. The special adaptors,
 

prepared for load transmission during mechanical testing, were also used
 

to maintain the alignment and fitup of the test specimen tubes for welding.
 

Excluding the circular weld spots at the start of the axial fusion zones
 

in the mechanical test specimens, the characteristics of the remaining
 

portions were equivalent to those observed in earlier specimens, prepared
 

using the same parameters. This was true because the fixtures were well
 

removed from the actual weld locations. However, greater localized de­

formation was present in the weld heat-affected zones of the mechanical
 

test specimens. This behavior was attributed to a small difference in
 

axial alignment of the tubes in relation to the adaptors during welding,
 

which produced radial forces on the tubes greater than desired. After
 

one hour postweld annealing at 24000 F, the three specimens were subjected
 

to 1000-pound axial loads (crosshead travel speed during loading was
 

maintained at 0.01 inch per minute) for qualification; no weld failures
 

were observed. The shear stress induced in the welds of the test specimens
 

was determined as follows:
 

= shear area of the circular weld spots =Ao 


Ft x (spot diameter between tubes)2]x 2 

x (0.23 inch)2] x 2
 

2
inch

- 0.083 
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Weld No. 2-3 (34 amps - 33 Inches Per Minute)
 

O.850"-OD X 0.Ol"-Wal 
T-111 Tubes 

087011A 

Weld No. 1-4' (35 amps -

10oX 

33 Inches/Minute) 

G87011B 

NOT REPRODUCIBLE 

0.850" -OD x 

T-111 
0.01"'-4all 

Tubes 

G87031B 10OX G87031A 

Figure 40. Representative Microstructures of Initial GTA Tube-to-Tube T-11i Weld Parameter Specimens. 
Etchant: NH4F, HNO3, H20 



= shear area of axial welds -A1 


[(length of welds) x (width of welds between tubes)] x 2
 

= [(0.77 inch) x (0.065 inch)] x 2
 

= 0.100 inch
2
 

% of load carried by axial welds = 0.100 0 x 100 = 55% 
0.100 + 0.082
 

PI (0.55)(1000))

A .0. 1 5,500 pounds/(inch)
 
Al 0.1 

Assuming a weld with a shear cross sectional area equal 
to 0.065 inch

2
 

(weld width - 0.065 inch, weld length - 1.0 inch), the stress induced
 

by a specified qualifying load of 33 pounds would equal 500 pounds per
 
2 .
inch Comparing that figure, with the above shear strength value,
 

demonstrated the excellent capability of tube-to-tube welds, prepared as
 

described, to withstand the stresses expected in service.
 

EFFECT OF INTERTUBE SPACING
 

The effects of intertube spacing on the tube-to-tube GTA welding
 

was studied by the preparation of a seven-tube bundle, using 6-inch-long
 

tubes without doubler inserts. The purpose of the test was to determine
 

the maximum clearance between tubes, which could be tolerated during
 

welding. The tube bundle was held together and supported at one end
 

using the end support flange shown in Figures 18 and 22. The special
 

weld positioning fixture, developed for fabricating tube-to-tube welds,
 

was used for the first time in this portion of the study. The clearance
 

between tubes was varied by inserting appropriate shim stock between a
 

given tube pair opposite to the supported ends.
 

The results of the welding trials are presented in Table VI; Figure
 

23 shows the orientation and identification of the joints. It was apparent
 

from the initial weld No. IA that the previously established welding para­

meters required modification to compensate for the effects of the end
 

support fixture, which was used for the first time in these trials. The
 

second weld No. lB was therefore made at essentially double the weld heat
 

input by decreasing weld speed to 15 inches per minute. This weld and
 

weld No. 7A produced excellent weldments with no indication of burnthrough
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TABLE VI
 

RESULTS OF TUBE-TO-TUBE GTA WELD TRIALS FOR DETERMINATION OF ALLOWABLE JOINT CLEARANCE
 

Weld No. 
(Refer to Welding Parameter* 
Figure 23) amps Speed - ipm Joint Clearance (Inches) Results 

IA 34 33 Zero to 0.006 (shim). No weld along entire middle 
sections; sample clamped at 
both ends. Center clearance 
increased from 0.002 to 
0.009 inches. 

lB 34 15 0.006 shim at end, center clear- Full penetration weld 
ance not determined, entire length. 

7A 34 15 Zero to 0.013 at center. Full penetration weld entire 
length. 

7B 34 24 Zero to 0.008 at center. Full penetration weld entire 
length. Narrower weld bead 
than 15 ipm joints. 

1C 34 24 < 0.001 at end, center clear- Full penetration for , 3 
ance not determined. inches from start, no pene­

tration this point to end. 

1D 34 24 0.001 at end, center clearance Full penetration weld entire 
not determined, length. 

Special weld Zero - No wire bundling at Full penetration weld entire 
two tubes in 34 20 free end. length. Tube ends parted 
fixture during welding, then rejoined 

as weld approached. 

All welds made in helium atmosphere, using Miller, Inc. Model ESR400 welding machine and Honeycomb Core
 
weld fixture, drawing 47R199412.
 



even at clearances between tubes of 0.013 inch initially. Weld No. 7B was
 

an attempt to produce a more optimum weld width by increasing the speed to
 

24 inches per minute. Again, an excellent weld resulted. Welds IC and lD
 

were made to evaluate welds between tubes already joined to a third common
 

tube. For example, weld IC joined tube 1 to tube 4, each being previously
 

welded to tube 7. No burnthrough was found on either weld; however, weld
 

IC had complete fusion over only one-half its length. It was concluded
 

that a 24 ipm weld speed produced a weld heat input slightly below the
 

optimum. Therefore, a special weld joint was made at 20 ipm, 34 amps.
 

These parameters produced the best overall joint characteristics. That
 

final tube pair contained EB attached doublers at both ends; welding was
 

initiated at the doubler location nearest the end support header. A
 

further observation was that the distortion, at the end of the bundle
 

next to the support header, was considerably less than experienced in
 

previous trials. The distortion was also less there than at the other
 

end of the test bundle.
 

The latter tube pair sample was sectioned for metallographic exami­

nation, as shown in Figure 41, to determine microstructurally, the effects
 

of GTA welding over doublers, and to compare the weld at the mid-length
 

of the tubes with previously fabricated welds. Figures 35 and 42 show
 

the microstructures present at various positions along the tube-to-tube
 

weld path. Complete weld penetration was evident at the center tube
 

position, and through the doubler wall and tube at the end of the tubes,
 

although the fusion zone dimensions varied considerably. The smaller
 

weld at the end of the tubes may be attributed to either or both of the
 

following reasons:
 

1. 	The heat conduction path at the ends was much greater than
 

at the mid-point of the tubes;
 

2. 	The time between arc initiation and the start of motion was
 

too short to allow sufficient heat buildup at the doubler
 

locations.
 

Since the doublers are to be attached by prior EB welding in construction
 

of hardware, the described effect was considered of no consequence, re­

gardless of the cause. The weld fusion zone dimensions at the tube mid­

length were larger than those from previous trials; i.e., face = 0.096
 

94
 



EB Doubler 0.850 Inch OD x 0.010 Inch Wall EB Doubler
 
Welds T-111 Tube Section Welds
 

Wall Doubler I

Fuel Pin I
 

IB-IID I 

- -J - -- __
 
CIA Wel -

I I I I 

D B I I-"I II
 

III
 
- --- 1---

-- . . . . . . . . . ...... .i , , -

Section A-A: Transverse Through GTA Weld and Wall Doubler Indentation/Fuel Pin Spacer.
 
Section B-B: Transverse Through GTA Weld Only.
 
Section C-C: Longitudinal Through GTA Weld/Transverse Through Doubler EB Welds.
 
Section D-D: Same as Section C-C, Except Through Opposite Doubler.
 

Figure 41. Metallographic Planes of Examination in Tube-to-Tube GTA Welded Specimen.
 



Q PAFuio Zn Zoneuio 

H700411 H70041H 

H70041G 50X 

Figure 42. Microstructure Through GTA Tube-to-Tube T-111 Welded Tube Pair at Doubler 
Location Showing Transverse View of Doubler EB Weld and Longitudinal View 
of GTA Weld. Etchant: NH4F, HNO3, H20 



inch and root = 0.065 inch for 34 amps and 20 inchers per minute versus
 

face = 0.076 inch and root = 0.038 inch for 34 amps and 33 inches per
 

minute (see Figures 35 and 40). These measurements demonstrated that
 

smaller welds were attendant with lower unit weld heat inputs, which
 

also tend to reduce distortion effects. From that standpoint, the 33
 

inches per minute travel speed appeared superior for tube-to-tube GTA
 

welding. However, it was necessary to employ the lower rate to achieve
 

complete fusion of joints over their entire lengths, during the previous
 

welding trials on tube-to-tube assemblies having intentionally tapered
 

clearances. Thus, the 20 inches per minute travel speed, in combination
 

with a welding current of 34 amps, appeared to be the most reliable,
 

and those parameters were selected for subsequent preparation of full­

length tube-to-tube sample joints containing no doublers. For the
 

fabrication of a full-scale honeycomb core structure, varying the travel
 

rate or heat input could be employed to achieve satisfactory tube bonds
 

and also avoid excessive distortion. Further parametric studies would
 

be necessary to establish optimum interrelated welding conditions. The
 

microstructural examination of the above tube pair sample also demonstrat­

ed that the backfilled indentations of doublers located in the tubes
 

adjacent to those containing the welding electrode were unaffected by the
 

GTA tube-to-tube processing. The pattern of the tube-to-tube welds and
 

the required indentation locations, at final assembly, would present
 

situations equivalent to those encountered in the welding of the des­

cribed sample. Thus, it is indicated that the fule pin spacers, or
 

tubing ID protrusions, in the final hardware assembly would be unchanged,
 

during the multiple tube-to-tube welding that would be conducted.
 

MULTITUBE ASSEMBLY
 

The effects of GTA welding in multiple-tube assemblies was further
 

studied by the preparation of another seven-tube bundle from 6-inch-long
 

tubes each containing two EB weld attached doublers. The doublers were
 

located 0.5 inch from either end of both tubes. The assembly, ready for
 

GTA welding, is displayed in Figure 19. The individual tubes were in­

serted in the end support flange, and the opposite end of the tubes held
 

together with Cb-lZr wire. Note that no shims were placed between tubes
 

in this test. The welding of the tube-to-tube joints was initiated over
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the doublers next to the supported ends. The welding parameters of 34
 

amps and 20 inches per minute were used for all welds. The welds pro­

duced were examined and found satisfactory. The overall distortion,
 

which occurred in this assembly, was noticeably less than that observed
 

for the seven-tube bundle containing no inserts. However, the deformation
 

at the unsupported ends was generally the same as that detected in the
 

earlier trials. This was attributed to the fact that the welding had
 

been allowed to progress completely to the end of the bundle. The
 

effect could be minimized in future assemblies by stopping the cycle
 

at the last doubler location.
 

The final experimentation performed, with regard to the T-ll1 tube­

to-tube GTA welding, was the preparation of a seven-tube bundle from
 

full-length (18 inches) honeycomb tubes, which contained no doublers.
 

The GTA welding of the assembly was performed using 34 amps and a travel
 

speed of 20 inches per minute. Individual welds were started immediately
 

adjacent to the dummy header flange, and stopped approximately 0.25 inch
 

from the other end of the tubes. The welding sequence was the same as
 

that which would be used in the fabrication of a model or hardware
 

assembly. The completed, seven-tube assembly is shown in Figure 43.
 

No detailed inspections were performed on the bundle, but visual exami­

nation did provide the following observations.
 

OBSERVATIONS AND CONCLUSIONS
 

1. 	The quality of the welds appeared generally satisfactory.
 

2. 	Longitudinal weld shrinkage had produced severe buckling
 

at the mid-point of one of the outer tubes. Distortion,
 

to a lesser degree, was also prevalent in the remaining
 

outer tubes.
 

3. 	Considerable deformation was evident at the ends of the tubes.
 

Considering all of the data generated in the various GTA tube-to­

tube welding trials in relation to the construction of a full-size core
 

structure, the following comments are made:
 

1. 	The usage of either a welding power input or travel speed,
 

which reduces the size of the weld fusion zone along the
 

tube length, would be advantageous. Changing of those
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4 Vx x 

Figure 43. 	T-111 Seven-Tube GTA Welded Bundle - Full-Length Honeycomb Tubes. (Note Pronounced
 
Buckling on Exposed Surface of One Tube.) (70-9-9)
 



parameters, while welding of any given joint is in progress,
 

could be employed to compensate for variations in mass or
 

heat rejection characteristics, thereby yielding more uniform
 

welds, potentially exhibiting less overall distortion. The
 

choice of parameters, other than those indicated, would
 

necessitate additional parametric studies.
 

2. 	Welding should be initiated as far as possible away from
 

the ends of the tubes, preferably over doubler locations.
 

3. 	All welds should be stopped as far from the tube ends as
 

feasible. Alternately the end effects could be circumvented
 

by using longer tubes, and removing the excess lengths after
 

welding.
 

4. 	Intermediate in-process weld annealing cycles may be advan­

tageous to minimize distortion.
 

5. 	The employment of minimal force to maintain the necessary
 

contact of the tube would appear beneficial.
 

6. 	Conducting the individual weld operations on a start-stop-start
 

basis, logically at the five doubler locations, would be
 

desirable.
 

7. 	Improvements in the fixturing might be appropriate, especially
 

along the length of the tube bundle.
 

TUBE-TO-HEADER WELDING
 

The fabrication of satisfactory T-111 tube-to-header welds was more
 

difficult than initially contemplated. The basic problem of joining
 

thick-to-thin sections by welding, required considerable experimentation
 

to establish the combination of welding conditions and joint configuration
 

which would reliably yield sound weldments. This problem was accentuated
 

by the relatively high melting point and thermal conductivity of the T-111
 

alloy.
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All of the tube-to-header welding was performed by the automatic,
 

internal GTA process. The trials were performed using simulated T-ll
 

header components, and short sections of the 0.850-inch-OD by 0 010-inch
 

T-ill tubing. The initial configuration of the simulated header pieces
 

was representative of a section through the originally conceived model
 

assembly header flange, shown in Figure 2. Thus, it contained a 0.125­

inch-deep circular slot for tube insertion, a conical-shaped section
 

with holes to simulate eventual lithium flow passages, and recessed
 

rectangular keyway slots. This configuration proved totally unacceptable
 

for welding. Various geometric modifications were made in subsequent
 

parts, and finally resulted in a satisfactory design All of the
 

variations were considered with the final honeycomb core support
 

structure in mind, such that the eventual product could be constructed
 

using a header component having the developed detail design. Figure 44
 

presents schematically the transition configurations of the simulated
 

header components used in the study. After the joining problem was
 

resolved, tensile tests were conducted on several prepared assemblies
 

to verify the weld load carrying capability. Following paragraphs will
 

discuss the details of the tube-to-header joining development. The
 

results of the tube-to-header welding trials are summarized in Table
 

VII, excluding those pertaining to the final design configuration,
 

which are presented in Table VIII. Figure 45 shows a schematic view
 

of the initial simulated header components design configuration, and
 

includes the general dimensional measurement locations, indicated in
 

Table VII for a reference. Figure 46 displays the final general header
 

configuration, and should be examined when considering the data presented
 

in Table VIII. Figure 47 shows a representative tube-to-header parameter
 

sample after GTA welding.
 

INITIAL JOINT CONCEPT
 

Six header pieces were initially machined to the configuration
 

previously mentioned Welding of the first of these specimens, P-1
 

and P-2, provided the first indication that geometric changes would be
 

necessary to achieve satisfactory fusion The unsatisfactory nature
 

of these welds was attributed to the drastic changes in total material
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Configuration A
 

I -- __-	 ----

Configuration B
 

Configuration C
 

Figure 44. 	 Sketch Showing Transition of Design Configuration for
 
Simulated Header Components.
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TABLE VII
 

SUMMARY OF RESULTS OF T-111 TUBE-TO-T-1ll SIMULATED HEADER GTA WELDING TRIALS 

INCLUDING INTERIM HEADER GEOMETRY VARIATIONS 

Pertinent Header Dimensions (Inches) Welding Variables/Conditions 

Sample Number A 
Refei to Figure 45 

Dia B Dia C Dia D B Electrode Position Doubler Position Amps 
Welding Parameters 

Volts Travel Speed (rpm) Remarks 

P-1 0 125 0 850 0 828 .. .. Intersection of tube and None 50 16.5 2 5 Hole blown thru tube at 

header keyway 

P-2 0 125 0 850 0 828 .. .. 0 02" away from tube/head- None 80 20 2 5 Hole blown thru tube at 

er intersection, below keyway 

surface "F" 

P-3 0 125 0 850 0 828 0 810 0 03 Inteasection of tube and None 60 17 2 5 Hole blown thru tube at 

header keyway 

P-4 

a) Frst Pass 0 125 0 850 O 828 0 810 0 08 Intersection of tube and 
header 

None 40 16 2 5 Insufficient heat to 
cause fusion 

b) Second Pass 
o) Thid Pass 

60 
75 

17 
18 

2 5 
2 5 

No fusion evidenced 
Satisfactory weld but 
tube buldged above 
fusion zone 

P-5 0 125 0 850 0 828 0 810 0 08 Intersection of tube and None 75 18 2 5 Too much tube melting 

header 

P-6 0 125 0 850 0 828 0 810 0 08 0 03" away from tube/header 
intersection, below suiface 

None 75 18 2 5 Good weld characteristics, 
minimal distortion 

-r­

1 This and all sub- 0 08 0 850 0 828 0 810 0 08 0 01" below top of inner None 45 16 2.5 Holes blown thru tube 

quent samples 
machined with square 
end on rib 

slot rib, or 0 025" below 
surface "F" 

at keyway Top of 
inner rib removed to 
permit welding below 
top surface of header 
to minimize tube bulging 
above weld 

20 08 0850 0 828 0 810 0 08 0 02" below top of inner None 45 16 2 5 Electrode stuck in weld 

slot rib, or 0 035" below zone, remaining weld 

surface "r" unsatisfactory, 

3 0 08 0 850 0 828 0 810 0 08 0.03" below top of inner Base of insert 454104 16)21 2 5 Weld power increased to 

slot rib, or 0 045" below ring at top of cause fusion, arcing to 

surface "r" inner slot rib face of counterbore 
occurred at high-energy 
input Sporadic welding 
evidenced 



TABLE VII (CONTINUED)
 

SUMMARY OF RESULTS OF T-ill TUBE-TO-T-Ill SIMULATED HEADER OTA WELDING TRIALS
 

INCLUDING INTERIM HEADER GEOMETRY VARIATIONS 

Pertinent Header Dimensions (Inches) 
Refer to Figure 45 

A Dia.B Dim C Dia D E Electrode Position 

Welding Variables/Conditions 
Welding Parameters 

Doubler Position Amps Volts Travel Speed (rpm) Remarks 
4 0 08 0 850 0 828 0.810 0 08 Same as Sample No 3 Base of insert 60 17 2 5 Unsatisfactory welding 

ring at top of of rib to tube observed 
inner slot rib poor results from 

SamplesNo 1 thru 4 
attributed to greater 
heat conduction, as 
associated with shallower 

0.140 0 870 0 5828 0 776 0.140 
0slots 

0.015" below surface 
"F"(top of inner slot 
rib at surface "F") 

Base of insert 
ring at top of 
inner slot rib 

50)45 16 2 5 Rib melted without fusing 
to tube *EDN slot axially 
tapered 

0.140 0 870 0 828 0.776 0 140 0 035" below surface1F" (top of inner slot 
Base of insert 
ring at top of 

45 16 2.5 Rib melted without fusing 
to tube. *EDM slot axially 

rib at surface "F") inner slot rib tapered 
7 0 140 0 870 0 805" 0.776 0 140 0 035" below surface Base of insert 45 16 2.Z Tube and Doubler Ring 

1r"(top of inner slot ring at top of inserted to bottom of 
rib at suiface "F") inner slot lib Header Slot *EDM slot 

axially tapered Thin 

8 Header piece machined to produce a 
single rib, 0.140" high by approxi-
mately 0 02 thick, above the main 
body (no slot) OD of rib machined 
to produce 0 005" diametric cleai-

0 035" below top of 
rib 

Base of inseit 
ring at top of 
rib 

45 16 5 2 5 

rib intermittently melted 
away, Poor weld 
Satisfactory weld obtained 
except for last 1/8" of 
joint No fusion noted 
over that part of Jointbecause of separation of 

ance between ID of tube and OD of be f tepri 
rib prioi to welding tube from the rib 

9 Header piece machined as with Sample
No, 8, except that diametric clear-

0.045" below top of 
rib 

Base of insert 
ring at top of 

4060 Not Determined 2.5 Completely unsatisfactory 
weld characteristics 

ance (tube ID - rib OD) was 0 010" rib 
10 Eeadei piece machined identically 

with Sample No 8 
0.035" belov top of 
rib 

Base of insert 
ring at top of 

45-)50 16 5 8 5 Same iesults as obtained 
from Sample No 8, even 

rib though opposite sides of 
joint were tacked welded 
to potentially eliminate 
the tube/rib separation 
at end weld pass 



TABLE VIII 

RESULTS OF T-1ll TUBE-TO-T-11-SIMULATED-HEADER GTA WELDING TRIALS UTILIZING 
SELECTED HEADER DESIGN 

Welding Parameters 

Sample 
Number 

Weld 
Pass 

Electrode Position 
Radial Axial 

Current 
(amps) 

Travel Speed 
(rpm) Remarks 

11 1 0.04" to 0.05" 0.050" from sur- 25 2.5 Very slight melting 

from tip to rib face of header of filler ring. 

2 40 2.5 Same as first pass. 

3 60 2.5 Erratic fusion of 
Hjoint tube distorted 
o1and cracked 

12 1 0.04" to 0.05" 0.065" from sur- 80 2.5 Complete fusion of 

from tip to rib face of header joint. Approximately 
1/8-inch-diameter void 
near end of weld. 



TABLE VIII (CONTINUED)
 

RESULTS OF T-1ll TUBE-TO-SIMULATED-HEADER GTA WELDING TRIALS
 

Welding Parameters 
Sample Weld Electrode Position Current Travel Speed 
Number Pass Radial Axial (amps) (rpm) Remarks 

13 1 0.04" to 0.05" 0.005" from sur- 80 2.5 Very poor weld; axial electrode position 

from tip to rib face of header shift noted. Electrode set at 0.065" below 

header face originally. Electrode tip was 
sharp. Electrode reset at 0.065" for 2nd 

pass. One-second time delay between arc 
initiation and start of electrode rotation. 

2 0.065" from sur- 90 2.0 No appreciable improvement noted in weld. 

face of header No further electrode shift observed. 
Some time delay used as in first pass. 

14 1 0.04" to 0.05" 0.065" from sur- 80 2.5 Good weld; except that hole developed at 
from tip to rib face of header on 1800 rotation from start of weld. 0.005" 

the filler ring diametric gap between insert OD and header 
ID set prior to welding. Arc initiated 

at 0.005" gap location. One-second time 
delay used, as with Sample #22. No electrode 
shift noted; electrode tip was sharp. 

2 0.065" from sur- 90 2.0 Hole remained somewhat wider weld 

face of header obtained. 

3 0.065" from sur- 110 2.0 Heat input too high, weld width too 

face of header large. Electrode burnback evident, 
indicates successive weldswith one 
electrode are limited. 



TABLE VIII (CONTINUED)
 

RESULTS OF T-111 TUBE-TO-SIMULATED HEADER GTA WELDING TRIALS
 

Welding Parameters
 

Sample Weld Electrode Position Current Travel Speed
 
Number Pass Radial Axial (amps) (rpm) 


15 1 	 0.04" to 0 05" 0.065" from sur- 90 2 

from tip to rib face of header 


2 	 0 075" from sur- 100 2 

face of header 


16 1 	 0.04" to 0.05" 0.07" from sur- 100 2 

from tip to rib face of header 


Remarks
 

Generally good weld, except that holes
 
were detected at 1800 rotation from
 
start of weld Plane 	of weld not parallel
 
to the face 	of the header, weld inter­
sected with 	doubler EB weld at point of
 
greatest deviation Electrode tip was
 
sharp. Axial electrode position shift
 
noted Electrode originally set at 0.065"
 
below header face, estimate position at
 
end of weld 	at 0 050" below face Arc
 

initiated at 0.005" gathered gap between
 
insert OD and header ID
 

Some improvement noted in weld, although
 
hole remained at original position. Elec­
trode position too low, caused some arcing
 
to header piece at sharp corner. Weld
 

satisfactory for determination of weld
 
strength-specimen tensile tested. Shift
 
in electrode position again noted - final
 
position was 0.065" from header face
 
Overall weld width too large.
 

Equipment malfunction caused arc initia­
tion between electrode base and surrounding
 
Cb-lZr block. First 900 of weld were very
 
poor because weld heat was too high
 

initially. Electrode tip was sharp.
 



TABLE VIII (CONTINUED) 

Sample 
Number 

Weld 
Pass 

Electrode Position 
Radial Axial 

Welding Parameters 
Current Travel Speed 
(amps) (rpm) Remarks 

Axial electrode shift again observed 
Electrode burnback from this test and 
others indicates that a tip configuration 
change is needed Reducing the weld width 
requires placement of the electrode tip 
closer to the rib. Electrode shifting 
apparently caused by stress relaxation 
during welding Specimen will be used as 
dummy piece in subsequent welding to 
compensate for electrode relaxation 

0 
00 

17 1 0.02" from tip 
to rib 

0.065" from sur-
face of header 

95 2 Excellent weld characteristics observed. 
Welding heat may need to be increased 
Electrode tip hemispherical, no burnback 
evidenced. Weld width approximately 0.08" 
Electrode shift circumvented by making 
initial pass with new electrode on dummy 
piece (Specimen #25). Sample tensile 
tested and sectioned for metallography. 

18 1 0.02" from tip 
to rib 

0.065" from sur-
face of header 

100 2 Excellent weld characteristics. Welding 
heat increased as a result of metallographic 

examination of Sample No. 17. 
tested. 

Sample trials 

19 1 0.02" from tip 
to rib 

0.065" from sur-
face of header 

100 2 Generally good weld obtained, although 
slight burnback of the tube (above the 
weld line) was detected at one location. 
Results from last three tests indicate 
that an increased doubler thickness 
would be desirable. 
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Figure 45. T-1l1 Simulated Header Specimen Configuration.
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Figure 46. T-Ill Simulated Tube-to-Header Joint Configuration.
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Figure 48. 	Microstructures of Tube-to-Header Weld Joint P-6; Note Extent of Tube Distortion Above Header
 
Top Surface. Etchant: NH4 F, HNO3,120
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thickness, (encountered on rotation of the welding torch) which could
 

not be accommodated; i.e., when the torch passed from the conical-shaped
 

section to the keyway slot, the power input was too great and caused
 

excessive melting and burn-through of the thin-walled T-111 tubes. To
 

potentially circumvent this difficulty, the remaining four simulated
 

header components of the initial group were remachined to remove material
 

from the conical shaped sections immediately adjacent to the inside
 

diameter of the slots for tube insertion, as schematically shown in
 

Figure 28 and 44. Thereafter, welds, P-3 through P-6, were made, using
 

various parameter combinations to establish optimum conditions. The
 

welding current and the axial position of the welding electrode were
 

the main parameter variables in these trials. Visual examination of
 

the latter specimens indicated that positioning of the welding electrode,
 

0.03 inch away from the tube and header intersection, over the header
 

machined recess, produced the best weld characteristics, when coupled
 

with a welding current of 75 amps.
 

Specimen P-6 was sectioned for microstructural examination to verify
 

the quality of the GTA weld produced under the above indicated conditions.
 

The examination was also used to determine whether some reduction in the
 

slot depth could be made in subsequent samples and assemblies, to poten­

tially reduce machining costs. The microstructure of the tube-to-header
 

joint, P-6, is shown in Figure 48. The metallographic examination re­

vealed that prohibitive tube distension had occurred above the weld,
 

although an otherwise generally acceptable weld had been made. It was
 

further indicated that a reduction in the depth of the slots for tube
 

insertion could be made (from 0.125 inch to 0.08 inch), since no fusion
 

was found 0.08-inch below the top surface of the header piece.
 

MODIFIED JOINT CONCEPT
 

Based on the preceding observations, additional modifications in the
 

geometry of the header pieces were considered to potentially eliminate the
 

tube distension problem, and at the same time yield a configuration which
 

could be more easily and inexpensively machined. The modifications
 

were (1) reducing the slot depth to 0.08 inch, and (2) reducing the
 

height of the vertical rib at the inside of the slots by 0.015 inch to
 

allow the welds to be made below the top surface of the header. The
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latter variation appeared appropriate for minimizing tube swelling above
 

the welds because that area would be protected, in part, by the more
 

massive header material. Four simulated header pieces were machined to
 

this new configuration,ostensibly for preparation of mechanical test
 

specimens. The new header design, relative to the original configuration,
 

can be most readily compared by referring to Figure 44 - Views A and B.
 

Subsequent GTA welding of the first two of these assemblies (Samples #1
 

and #2) proved to be completely unsatisfactory; i.e., holes were blown
 

in the tubing in both samples, even though adjustments in parameters
 

(power input) were made. The difficulty was attributed to an increase
 

in the heat conduction or rejection path in the header pieces, associated
 

with decreasing the depth of the header slots. When the power levels
 

in welding were increased to compensate for that effect, the 0.010-inch
 

tube wall immediately above the weld could not withstand the exposure
 

to the welding plasma. To provide protection for the 0.850-inch OD
 

tubing at that locatio4 reduced diameter ring inserts were EB welded
 

to the ID of the tube, as shown in Figure 49. These wall doublers were
 

located such that the top of the header ribs were in contact with the
 

base of the rings when the tubes were inserted. Again, the welding
 

(Samples #3 and #4) was unsuccessful, implying that further geometric
 

or welding technique variations were needed, primarily to provide either
 

more protection for the basic tube above the weld than had been realized
 

by the presence of the doubler inserts, or to diminish the heat rejection
 

through the header, thereby allowing lower weld power levels to be
 

employed. The processing variations investigated to potentially achieve
 

the above described conditions were (1) increasing the depth of the
 

slots for tube insertion, at least to that of the originally machined
 

parameter study specimens; i.e., 0.125 inch, (2) increasing the thick­

ness of the rib at the inside of the slots, and (3) positioning of the
 

welding electrode further below the top surface of the header pieces.
 

Three more simulated header pieces were machined to configurations
 

which incorporated the above design concepts, to continue the tube-to-header
 

welding investigation. The slots in those parts were machined to a depth
 

of 0.140 inch using electrical discharge machining (EDM) techniques.
 

Two of the header pieces were counter bored inside the ID of the slots
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EB Doubler Attachment Welds
 

Wall T-l1l Tube
 

Figure 49. T-111 Honeycomb Tube Section with EB Attached Doubler. (70-l-9C)
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to produce ribs having thicknesses greater than those of preceding
 

specimens (consistent with final hardware requirements, the maximum
 

possible thickness was 0.026 inch at minimum counter bore diameter,
 

0.776 inch). The ID slot dimension of the third header piece was
 

smaller than the other two, such that the inside rib thickness was
 

approximately 0.010-inch. Inspection of the parts after machining
 

indicated that the sides of the slots were tapered (base of slots
 

narrower than at the top). This effect was attributed to electrode
 

wear during EDM processing. Reduced diameter ring inserts were posi­

tioned and EB welded in two T-111 tube sections in the same manner
 

that was indicated for earlier specimens. An insert ring was located
 

and EB welded at the end of the tube for the third specimen, such that
 

both the tube and ring were positioned inside the header slot before
 

welding. The GTA welding of these three trial specimens (Samples #5,
 

6, and 7) was unsatisfactory. These results were attributed to the
 

poor fitup of the tubes in the header slots.
 

Since the EDM process was unsatisfactory for machining of the
 

narrow, 0.140-inch-deep slots, a new sample header geometry was devised,
 

which would permit the usage of more conventional machining techniques
 

to produce the desired interior rib dimensions. The new configuration
 

eliminated that portion of the header which formed the outside of the
 

slots. Thus, the interior rib was above the main body of the header
 

pieces. Three additional specimens (Samples #8, 9, and 10) were
 

prepared for further GTA welding; diametric spacings between the ribs'
 

OD and the tubes' ID were set at 0.005, 0.010, and 0.005 inch, respectively.
 

Again, prior to GTA welding, reduced diameter ring inserts were EB welded
 

to the tubing, such that the end of the inserts butted against the top of
 

the ribs. The tungsten welding electrode was positioned 0.035 inch below
 

the top of the rib for Samples #8 and 10, and 0.045 inch below for
 

Sample #9. The specimens, having the 0.005-inch diametric clearance,
 

welded satisfactorily around most of the joints' circumferences, but
 

tube expansion and separation from the ribs produced gaps which could
 

not be bridged. The welding of the specimen with 0.010-inch diametric
 

spacing was completely unsuccessful. These results indicated that a
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further reduction in the tube-to-rib diametric clearance would be nec­

essary to produce satisfactory welds. However, this concept would not
 

be compatible with tube bundling requirements for a model assembly.
 

Therefore, further trials using the "second generation" design concept
 

(Figure 44-B) were abandoned, and a new approach conceived, which led
 

to the final header configuration (Figure 44-C).
 

Prior joints were designed with the honeycomb tube on the OD of the
 

header rib. This approach was selected because bundling of a honeycomb
 

core in a hardware assembly required tube-to-tube line contact at the
 

tube outside diameters. Tube dimensional tolerances also required
 

approximately 0.005-inch diametral clearance between the tube ID and
 

header rib OD prior to welding.
 

During the welding of samples #8,9, and 10, it became apparent that
 

tube expansion during welding was the critical problem. This resulted
 

in an increased joint gap which could not be accommodated as the joint
 

neared completion. This effect had been partially masked in previous
 

weld samples because the material on the outside of the slots in the
 

header pieces tended to restrain tube expansion.
 

FINAL TUBE-TO-HEADER CONCEPT
 

Based on the above analysis, the final tube-to-header joint design
 

configuration, shown in Figure 46, was formulated. Three principal
 

features of that design should be noted, (1) the weld is made between
 

the header and an extended insert, (2) clearance (0.005-inch) to permit
 

tube bundling is provided between the insert OD and header ID, (3) weld
 

filler metal is provided by the machined ring feature on the header.
 

Initially, two tube-to-header samples were prepared to the Figure
 

46 configuration. The inserts extensions into the headers (dimension A,
 

Figure 46) were nominally 0.035 and 0.060 inch, respectively. In each
 

case, the insert OD was measured and the respective header machined to
 

provide a 0.O05-inch diametral clearance. Welding trials were conducted
 

using the restraining fixture to prevent tube motion in the axial direc­

tion during welding. This simulated the expected condition in a tube
 

bundle after tube-to-tube welds had been made. Refer to Table VIII for
 

the results of these and all subsequent tube-to-header weld trials, con­

ducted using the final header design geometry (Figures 44C and 46).
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The initial trials were run with the 0.035-inch insert extension
 

joint (Sample #11). Three weld passes were made before the weld current
 

parameter was established that resulted in significant joint fusion. At
 

that time, the tube was severely deformed and cracked by the multiple
 

welding cycles.
 

The 0.060-inch insert extension joint (Sample #12) was then run.
 

Complete fusion of the joint was achieved except for an approximate
 

1/8-inch-diameter void near the end of the weld. The joint was sectioned
 

for metallographic examination and visual examination. The photomicrograph,
 

Figure 50, illustrates the excellent joint quality achieved. Visual
 

examination of the void area indicated a tight fit between the insert
 

and header. The void was probably caused by erratic joint fusion at
 

the start of the weld or by interaction between the weld puddle and filled
 

dimple located adjacent to the void. Additional welding trials were
 

necessary to verify the joint reproducibility.
 

The insert extension in the simulated header pieces was set at
 

0.06 inch for the next two specimens (Samples #13 and #14). The header
 

pieces of those assemblies were machined to produce a 0.005-inch dif­

ference in diameters between the extended doubler OD and header ID. As
 

with the Samples #11 and #12, a restraining fixture was employed to
 

prevent axial tube motion during welding. The restraint fixture was
 

also used, with appropriately spaced 0.005-inch-thick shim stock, for
 

Sample #14, to produce a 0.005-inch diametric clearance between the insert
 

OD and header piece ID at one location, which represents the worst antici­

pated condition for model assemblies tube-to-header welding.
 

The weld produced with Sample #13 was very poor; i.e., melting 

of the doubler occurred with only Hpradlc tus t, 'rp . : ii s 

behavior was attributed to the mislocating of the tungsten electrode at
 

a position above the filler rib. No significant improvement was observed
 

after a second weld pass.
 

The results obtained for Sample #14 were markedly improved,
 

although a small hole (- 0.03-inch-diameter) was detected in the fusion
 

zone approximately 1800 from the starting position, after the first pass.
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12.
Figure 50. 	 Typical Microstructure of Tube-to-Header CTA Weld Joint No. 


(H61011 A & B) 50 X Mag. Etchant: NtH4F, tHNO 3 , H2 0
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Since the fit-up of the insert and header forced their close contact in
 

this area, and no filled dimple in the insert was close by, the hole
 

formation was probably associated with a slightly insufficient welding
 

heat. The defect noted in the weld of Sample #12 may also have
 

occurred for the same reason. Additional weld passes on Sample #14
 

were not completely successful in repairing the defective area, although
 

improvements in weld quality were noted.
 

Additional welding trials were necessary to establish whether in­

creased power levels could eliminate the above described difficulty.
 

These further studies of the tube-to-header joint were also required
 

to provide information relevant to the electrode shape and position,
 

and the interrelated effects of welding speed variations. Thus, three
 

more samples were prepared for welding (Samples #15, #16 and #17). The
 

insert extension into the headers was set at 0.06 inch for all three
 

specimens. Two of the three header pieces were machined to produce a
 

0.005-inch difference in diameters between the OD of the doubler extension
 

and the ID of the header; the diametric difference for the third specimen
 

was 0.01 inch. Electron beam welding, to attach the extended inserts at
 

the ends of the tube sections, was difficult because the previously
 

prepared expandable molybdenum mandrel could not be employed. As a
 

result, the EB welds, while generally satisfactory, contained some
 

visible defects. Short doublers were EB welded at the opposite ends
 

of the 3-inch tube sections for reinforcement. Holes were machined
 

through the reinforced tube areas after tube-to-header welding to
 

permit insertion of load transmission pins for postweld mechanical
 

testing of these latter sample joints. A restraint fixture was used
 

during GTA welding to prevent axial tube motion. Also, T-111 shim stock
 

was inserted in each specimen before GTA welding to produce desired
 

spacings between the doubler OD and header ID at specific locations.
 

The weld obtained with Sample #15 was generally good, but
 

several small holes were observed in the fusion zone at approximately
 

1800 rotation from the start of the weld. Some improvement was noted
 

in the weld characteristics after the second pass, although complete
 

fusion across the defective areas was not realized. An equipment mal­

function caused the first 900 of the weld in Sample #16 to be very
 

122
 



poor. Multiple welding trials were performed, using that defective speci­

men, to investigate relative effects of welding beat input, electrode tip
 

configuration and position, and rotational speed on the weld characteristics.
 

OBSERVATIONS AND CONCLUSIONS
 

Considering these latter trials, and all of the previous data
 

generated in relation to the tube-to-simulated header specimens having
 

the final header design configuration, the following observations and
 

conclusions were made:
 

1. 	An axial shift (Rs0.015-inch) in electrode tip location
 

occurred during the initial welding pass, because of stress
 

relaxation in the formed tungsten electrode. The difficulty 

can be circumvented by making the initial pass with a new 

electrode on a dummy specimen. 

2. 	The axial width of the welds varied with, not only the
 

power input and rotational speed, but also with the
 

distance from the electrode tip to the welds. Thus, with
 

fixed power and speed, the burnback of the electrode
 

(starting with a sharp tip) during welding resulted in welds
 

varying from 1/8-inch to 1/4-inch wide. These widths were
 

produced when the original tip-to-rib distance was set at
 

0.04 inch. Realizing a smaller weld and maintaining a constant
 

weld contour required the use of a rounded electrode tip
 

positioned closer to the rib in the header pieces; i.e.,
 

approximately 0.02-inch separation.
 

3. 	The types of weld defects encountered generally indicated
 

that higher power inputs (- 95 to 100 amps) were required
 

to achieve sound welds.
 

Each of the above described factors, which influence weldment
 

characteristics, was carefully considered before preparing Sample #
 

17. A hemispherical tipped electrode was selected to avoid burnback.
 

The electrode tip was positioned axially at a point 0.005 inch below
 

the top edge of the rib in the header piece (0.065 inch from the header
 

bottom surface) and radially 0.02 inch from the rib ID. Residual form­

ing stresses were eliminated from the formed electrode by making a prior
 

123
 



weld pass over a dummy header sample. A relatively high heat input was
 

chosen for the welding operation. The tube-to-header weld, produced by
 

adhering to the described conditions, was the first completely sound
 

weld generated, and the assembly was helium leak tight. Sample # 17
 

was subsequently sectioned for microstructural examination transverse
 

through the plane of the GTA weld. Figure 51 shows a typical micro­

structure of the sample weldment. That examination verified the excel­

lent quality of the weld in that specimen and also pointed out that an
 

increase in welding heat input could favorably be employed during the
 

processing of future assemblies.
 

Two final tube-to-header weld specimens ( #'s18 and 19) were GTA
 

welded to determine the reliability of the processing. All preparatory
 

conditions were the same as those utilized for the welding of Sample #
 

17, except that the welding current was increased to 100 amps. The weld
 

produced in Sample # 18 was excellent; however, in Sample # 19, a
 

slight burnback of the tube (above the weld plane) was noted at one cir­

cumferential position. Avoiding this difficulty in the future could
 

best be realized by using a heavier (up to 0.020 inch) walled, extended
 

doubler.
 

Tensile testing was conducted on Samples 14, 15, 17, 18 and 19,
 

after 2400F for 1 hour heat treatments, to determine the load carrying
 

capability of the tube-to-header welds. The results of these tests are
 

summarized in Table IX. As the data point out, the tube-to-header weld 

in Sample # 15 could withstand stresses in excess of 25,000 pounds 

per inch2 . The failure of that sample occurred through a defective area 

in one of the prior EB doubler welds. The remaining four joints exhibited 

load carrying capabilities equal to, or greater than, the required quali­

fication stresses for tube-to-header weld joints; i.e., - 40,000 pounds per 
2

inch
 

The T-1ll simulated header components for the tube-to-header welding
 

studies did not include the machined grooves, which would be required in
 

final hardware assembly headers to permit locking of the nuclear fuel
 

elements. It was initially intended that the simulated headers contain
 

these fuel element retainer recesses to more closely approximate the
 

final configuration. However, during the preparation of the header
 

samples, it was demonstrated that the required internal recesses could
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J02011A 	 J02011B 50X
 

Figure 51. 	Microstructure of Tube-to-Reader GTA Weld Specimen No. 17.
 
Etchant: NH 4F, HNO3' H20
 



TABLE IX 

TENSILE TESTING OF TUBE-TO-HEADER GTA WELDS 

Applied Load Applied Stress 
Specimen No. (Pounds) (ksi) Remarks
 

14 1320 50.8 Failed through pinholes
 

15 615 23.9 Failed through lower
 
EB doubler weld
 

17 1000 38.8 No failure - specimen
 
sectioned for
 
metallography
 

18 1995 77.3 Failed through pinholes
 

19 2010 77.9 Failed through pinholes
 

Stress based on 0.83 inch OD x 0.81 inch wall.
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not be machined into a solid T-111 plate section, and an alternate
 

technique was necessary for producing the retainer grooves in the header
 

flanges The header geometry, schematically shown in Figure 52 was
 

therefore devised to circumvent the machining problem and still meet
 

the fuel element locking requirements. Pertinent features of that
 

design configuration are as follows:
 

1. 	Conventional machining techniques can be employed to fabricate
 

the component parts.
 

2. 	The side of the headers for tubes attachment would be identical
 

with that required to produce satisfactory tube-to-header welds,
 

as described above.
 

3. 	The cylindrical plug sections or fuel element retainers having
 

the nozzle configuration at their centers would be electron
 

beam welded to the basic headers.
 

A plan was formulated to determine the EB parameters for attaching the
 

fuel element retainers to T-111 header flanges, although the experimental
 

efforts were not implemented in the course of the study program.
 

HONEYCOMB FABRICATION
 

Each of the manufacturing operations utilized to fabricate the
 

T-111 honeycomb structure will have an obvious influence on those to
 

follow. The extent of these influences must be established and taken
 

into account during fabrication to meet the necessary assembly requirements.
 

Thus, the processing procedures and sequence of welding must be carefully
 

selected and followed to achieve that goal. In this study program, the
 

techniques were developed for producing three distinct types of T-1ll
 

alloy weldments, which would be integral joints in the construction of
 

a multiple tube-to-common header honeycomb fabrication. The investi­

gation of each of those weld areas was conducted essentially separate
 

from the other two, although efforts were made, where possible, to
 

simulate the interrelated assembly conditions. Following paragraphs
 

will discuss the honeycomb fabrication, from the standpoint of the
 

integrated effects of the various joining processes, to indicate the
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Figure 52. 	 Final Developed Geometry of T-ll1 Header Components for a
 
Honeycomb Assembly.
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appropriate applications of the developed techniques, and to show some
 

of the areas requiring further experimentation. Data from these addi­

tional trials would be necessary to define optimum overall procedures.
 

FUEL PIN SPACERS IN HONEYCOMB TUBING
 

During the course of the investigation, most aspects of the fuel
 

pin spacers production were considered and studied, relative to the
 

honeycomb structure processing. As a result, the following procedures,
 

sequence of operations, and pertinent processing details were generated
 

and their implementation should result in the reliable production of
 

these parts of the honeycomb assembly
 

1. 	Cut necessary T-ll rings for wall doublers from 0.827-inch
 

OD by 0.010-inch wall tubing. Each honeycomb tube will
 

require four 0.5-inch long insert rings and one 0.55-inch
 

long insert ring.
 

2. 	Indent each T-Ill ring at three equally spaced circumferential
 

positions, using the tube indenting fixture (refer to Figure 14).
 

The axial location of the indentations will be at the center of
 

the 0.5-inch long rings, and offset approximately 0 06-inch
 

from the center of the 0.55-inch rings. The depth of the
 

dimples will be a constant for all rings - approximately
 

0.025-inch.
 

3 	 Cut sufficient 0.375 inch and 0.500 inch lengths of 0.062-inch
 

diameter T-1ll wire to provide the material required for back­

filling the dimple cavities in the doubler inserts. These
 

individual amounts of the reinforcement material are needed to
 

completely fill the indentations which have different required
 

depths in the model honeycomb tube inserts.
 

4. 	Clean formed insert rings and reinforcement material, per NASA
 

Specification C-393666-2.
 

5. 	Place insert rings on the water-cooled molybdenum fixture
 

(refer to Figure 15) in the GTA welding chamber and backfill
 

outside dimple cavities with T-ll reinforcing material using
 

heat from GTA welding plasma to cause flow and filling. Prior
 

to these backfilling operations, the filler metal should be
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formed into spheres by individually melting the cut lengths
 

of T-111 rod in the machined recesses of the molybdenum fixture.
 

Use a 0.062-inch diameter tungsten electrode centered over the
 

indentations, helium shielding gas, and a welding current of
 

140 amps for the backfilling operations. Backfill individual
 

dimple cavities over specific machined recesses in the moly­

bdenum fixture to produce the required 0.033-inch and 0.043­

inch indentation depths.
 

6. 	Visually inspect the reinforced rings to insure that desired
 

filling characteristics have been produced.
 

7. 	Size all indented and backfilled inserts (doublers) to produce a
 

uniform outside diameter (refer to Figure 13). Perform these
 

operations in the tube indenting fixture, using the replace­

ment lower ram/pedestal (refer to Figure 14).
 

8. 	Select 0 850-inch OD by 0 010-inch wall T-Ill honeycomb tubes
 

for use in models construction - 19 minimum required. Clean
 

tubes and prepared doublers per NASA Specification C-393666-2.
 

The amount of metal to be removed in cleaning should not exceed
 

0.0001-inch from the different surfaces.
 

9. 	Assemble five doublers for each honeycomb tube on the molybdenum
 

expanding mandrel with the tapered drive pin in place (refer to
 

Figure 16), and insert into the tubes Doublers positions are
 

those necessary to place internal projections at required axial
 

and 	radial locations in the honeycomb tubes (refer to Figure 3).
 

The 	doublers at the tube ends, to be subsequently welded to the
 

T-111 header flange, must extend out of the tubes a distance of
 

0 062-inch to facilitate fabrication of those welds. The EB
 

welding fixture was constructed such that its usage will result
 

in the required inserts protrusion past the ends of the honey­

comb tubes.
 

10. 	Apply force to the drive pin to insure necessary contact of the
 

doublers and honeycomb tube wall. Insert free end of drive pin
 

in the chuck of the rotating drive carriage in the electron
 

beam welding chamber. Carefully note subsequent weld positions
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in relation to the end of the fixture and indexed scale placed
 

alongside and parallel to the tube in the chamber.
 

11. 	 Evacuate the chamber to a pressure < 5 x 10- 5 torr, and
 

electron beam weld all five doublers to the honeycomb tubes
 

per NASA Specification C-393666-4, using the following
 

parameters*
 

a) Beam accelerating voltage - 90 kilovolts 

b) Beam current - 5 milliamps 

c) Beam focus - sharp 

d) Beam deflection/modultion - none 

e) Welding speed - 58.5 inches/minute. 

Two circumferential welds are necessary for each doubler
 

attachment, center doubler also requires three equally spaced
 

circular welds around each indentation (refer to Figure 13).
 

12 	 Visually inspect (borescope) root and face of all welds to
 

certify their quality, radiographically examine any weld
 

which has questionable penetration or appearance. Dimen­

sionally check tubes for distortion - both localized and
 

overall, spot check weld face dimensions - should measure
 

from 0.020 to 0.030 inch wide. Reject any tubes having poor
 

welds or prohibitive distortion.
 

13 	 Temporarily store prepared tubes in polyethylene bags in
 

readiness for following operations.
 

FABRICATE TUBE-TO-TUBE AND TUBE-TO-HEADER WELDS
 

Following is a listing of some additional experimental tests that
 

should be conducted to identify conditions most appropriate for fabri­

cation of a multiple tube-to-common header T-Ill honeycomb assembly
 

(refer to previous sections of this report for certain other recommended
 

tests pertinent to the individual joining areas):
 

1. 	Determine the optimum sequence for tube-to-tube and tube-to­

header joints welding.
 

Determine parameters for EB attachment of 0.020-inch wall
 

doublers to the ends of the honeycomb tubes. Indentation and
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reinforcement procedures will also require study for these
 

heavier walled insert rings.
 

3. 	Establish the effects of axial weld shrinkage from tube-to-tube
 

joining on the tube-to-header weldments. Investigate prior
 

tube tacking of the tubes to the header to maintain their
 

desired positions, if necessary.
 

4. 	Determine the best method for locating fuel pin spacers in
 

relation to the header during setup and welding.
 

5. 	Determine the necessary machining tolerances for the preparation
 

of the header flanges, as required for producing the desired
 

intertube stackup for tube-to-tube welding. This information
 

would be of vital importance for the preparation of a full­

scale nuclear reactor core structure having 200+ component
 

tubes
 

When conducting these welding or processing experiments, other areas
 

requiring study will no doubt become evident. Careful consideration
 

should be given to the selection, planning, and performance of these
 

and any associated tests to provide the most significant evaluation
 

data with a minimal expenditure of effort. Although numerous realms
 

of investigation still exist, many of the assembly requirements have
 

been considered. The following procedural outline was therefore pre­

pared based on those considerations to provide a tentative general
 

guide for completing the construction of a model honeycomb assembly
 

(further recommendations for testing are also indicated in the outline).
 

1 	 Machine a T-1ll model header flange to the configuration
 

necessary to produce tube-to-header welds (refer to Figure 52);
 

counter bored holes on the rear side of the flange should be
 

undersize to permit cleanup machining in those areas after
 

tube-to-header welding. Dimensionally inspect the prepared
 

component.
 

2. 	Prepare the T-ll dummy header flange, having the configuration
 

shown in Figure 21. Note that the dummy header flange has an
 

effective pyramid configuration on the side containing the
 

counter-bored holes. This geometry will be advantageous for
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the 	assembly of the tube bundle prior to welding.
 

3 	 Clean the machined model header and the previously prepared
 

dummy header flanges per NASA Specification C-393666-2.
 

4. 	Heat treat the model header flange at 24000F for 1 hour in
 

vacuum per NASA Specification C-393666-3. Wrap the component
 

in Cb-lZr protective foil prior to heat treatment to prevent
 

possible environmental contamination.
 

5. 	Position 19 honeycomb tubes with attached doublers on the model
 

header flange, such that the bases of the extended doublers
 

intersect with the top of the machined ribs in the header,
 

the plane formed by the honeycomb tube ends should be 0 002
 

inch above and parallel to the top header surface (refer to
 

Figure 52) An assembly tool will probably be required to
 

properly locate the doublers indentations in relation to the
 

header flange (refer to Figure 3). Inspect the tube bundle­

header flange assembly to insure that desired setup positions
 

have been produced. Wrap temporary Cb-lZr straps around the
 

bundle to maintain tube positions.
 

6. 	Insert the free end of the tube bundle into the counter-bored
 

holes of the dummy header flange. Because of the pyramid
 

surface configuration of the dummy header, each concentric
 

row of tubes will intersect with the header at different
 

intervals, starting with the center tube and ending with
 

the outside row of tubes.
 

7 	 Mount the tube bundle-header assembly on the studs of the
 

indexing plates, which are integral parts of the vertical
 

supports of the weld positioning fixture (refer to Figure 22).
 

Adjust the screw slide between the vertical supports to
 

produce desired end-to-end support. Replace the Cb-lZr
 

temporary straps around the bundle with five hose clamps
 

axially located over the doublers along the length of the
 

tubes Prior to tightening the clamps, position protective
 

tantalum foil strips under the clamps and insert short lengths
 

of 0 25-inch molybdenum bar into the generally triangular
 

133
 



9 

areas formed by the clamp and each pair of touching tubes in
 

the outer row. Adjust the clamp pressure to produce the
 

desired contact between the tubes along their lengths. Insert
 

the gas-cooled welding torch through the dummy header flange
 

in preparation for GTA tube-to-tube welding.
 

Achieving the necessary intertube contacts depends on the radial
 

force exerted in clamping, as well as the location and number
 

of clamps used Since these process variables were not explored
 

in this program, it is recommended that experimentation be con­

ducted to establish the best clamping conditions, as defined by
 

the resultant tube-to-tube weld characteristics.
 

8. 	Transfer the weld positioning fixture, with mounted tube bundle,
 

to the GTA welding chamber, connect welding power cables and
 

other necessary electronic equipment. Verify that the desired
 

conditions of travel speed, weld start and stop locations,
 

electrode position, etc., have been set correctly. Evacuate
 

the chamber, backfill with helium gas, and check to insure that
 

impurities in the fill gas are at acceptable levels.
 

Weld the tube-to-tube joints, using the automatic internal GTA
 

process, in accordance with NASA Specification C-393666-1
 

Make three center tube welds first, with the tungsten electrode
 

located in the center tube. Reposition the electrode in one of
 

the 	middle row tubes for the next welding operation. Repeat
 

the 	repositioning and welding operations, as required, to
 

complete the tube-to-tube joining. Some of the other tube-to­

tube processing details are as follows:
 

a) 	Use a 0.040-inch diameter bent tungsten electrode with a
 

sharp conical tip (refer to Figure 18).
 

b) 	Set the electrode tip to weld surface distance at 0.04 to
 

0.5 	inch.
 

c) 	Initiate welding in each tube at the doubler located closest
 

to the model header flange.
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d) 	Use a start-stop-start technique to fabricate each tube-to­

tube weld. Start and stop locations should coincide with
 

the doublers positions along the axes of the tubes.
 

e) 	 Use a welding current of 34 amps and a travel speed of 20
 

inches per minute.
 

It is recommended that the effects of varying the welding
 

current during the actual cycle be studied to potentially
 

establish conditions which would result in less distortion.
 

The 	prior testing may indicate that tack welding of the tubes
 

to the header flange would be necessary before starting tube­

to-tube welding Also, only a specific number - less than 19 ­

of the tubes may be more advantageously joined before proceed­

ing with tube-to-header welding.
 

10. 	 Visually inspect the tube-to-tube welds with a borescope to
 

determine their quality. Ultrasonically inspect typical welds
 

for verification. Visually inspect the fit-up of the tubes with
 

the model header to insure that the necessary conditions for
 

fabricating tube-to-header joLnts have been maintained. These
 

checks should be performed at various stages in the tube-to-tube
 

weld processing As a further quality assurance measure, dimen­

sionally inspect the overall assembly at different processing
 

stages If objectionable torque or twisting of the tube bundle
 

is noted, changes in the end-to-end support should be considered.
 

Probable longitudinal weld shrinkage in the tube bundle may
 

result in the separation of the model header flange from the
 

tube ends. Compensation for that effect might be achieved,
 

after completing the tube-to-tube welds, by the application of
 

pressure (axial) to return the parts to their original relative
 

positions. The validity of such processing, to produce the
 

required tube-to-header fitup for subsequent welding, must be
 

experimentally determined.
 

11. 	 Remove the T-ll1 dummy header flange from the end of the tube
 

bundle and perform final inspection of welds.
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12. 	 Automatically GTA weld the 19 tube-to-header joints in accord­

ance with NASA Specification C-393666-1. Pertinent details of
 

the processing are as follows:
 

a) Use a 0.062-inch diameter bent tungsten electrode with a
 

hemispherical tip (refer to Figure 24). Make a welding
 

pass with the formed electrode on a dummy header specimen
 

to insure that forming stresses have been relieved, prior
 

to actual tube-to-model header welding.
 

b) 	Set the electrode height to a point 0.005-inch below the
 

top of the machined ribs (0.065 inch below the top header
 

surface) in the header, set the radial tip-to-rib distance
 

at 0.02 inch.
 

c) 	Use a welding current of 100 amps, and a welding speed of
 

2 revolutions per minute.
 

The indicated sequence and procedures for fabricating the tube­

to-tube and tube-to-header welds was based on the assumption that
 

no prior GTA tack welding of the tubes to the header would be
 

required. If previous support experimentation shows that pro­

cessing step (tack welding) to be advisable, then the procedure
 

might be as follows:
 

a) 	Mount seven tubes of inner hexagonal pattern on the header
 

flange and tack weld extended doubler ends at two 1800
 

separated locations to the internal header ribs.
 

b) 	GTA weld seven tubes together along their mutual contact
 

lines.
 

c) 	GTA weld seven tubes to the header.
 

d) 	Add twelve outside tubes to the tube bundle, clamp in place,
 

and tack weld to the header.
 

e) 	GTA weld these twelve tubes to their mutually adjacent tubes.
 

f) 	GTA weld these twelve tubes to the header.
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COMPLETE HONEYCOMB ASSEMBLY
 

Visually inspect the tube-to-header welds with a borescope to 

determine their quality. Dimensionally inspect the overall model 

assembly at this processing stage to determine the extent of post­

weld machining required, particularly in regard to the fuel pin 

spacers. 

2. Machine the internal tube protrusions or fuel pin spacers to 

produce the required diameter at their nodal points (refer to Figure 2). 

Finish machining of the counter-bored holes in the model assembly 

header, machine the corresponding T-ll fuel element retainer rings 

to fit with the counterbored holes. Take appropriate measures to 

avoid contamination of the assembly during these operations. 

3. Clean the retainer rings and the freshly machined surfaces in the 

model header flange by acid pickling per NASA Specification C-393666-3. 

4 Place the welded tube bundle-model header subassembly, and retainer 

rings, in the electron beam welding chamber and weld per NASA Speci­

fication C-393666-2. Parameters to use in these operations require 

development. 

5 Visually inspect the retainer ring-to-header electron beam welds to 

establish their quality. After removal of the hose clamps from the 

tube bundle, dimensionally inspect to determine final assembly 

machining requirements. 

6 Finish machine the model assembly to the required dimensions and 

inspect for conformity (refer to Figure 2). 

7 Clean the completed assembly by sequentially rinsing or flushing 

with reagent grade acetone, ethyl alcohol and deionized water. 

Immerse the assembly in Freon "TF" bath and ultrasonically agitate, 

remove the assembly, flush with Freon "TF", and sample the efflux 

liquid for particulate matter. Repeat these latter steps until 

the desired cleanliness levels have been attained, as indicated by 

a particulate matter ("dirt") count. 
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8. 	Place the finished assembly in a clean polyethylene bag and seal
 

closed while purging with dry argon gas.
 

NOTE. The last two steps were not based on data from this study
 

program, but rather on generally standard, commercially
 

applied, contamination control procedures.
 

138
 



IV, S U M M A R Y A N D R E C O M M E N D A T I O N S
 

This study program demonstrated the feasibility of producing three
 

weldment types required for honeycomb fabrication as described previously.
 

Weld tooling was developed and demonstrated Weld joint strengths were
 

also determined and proven adequate for the intended application
 

Two significant problem areas were identified. First, the tube-to­

header weldment proved to be more difficult than anticipated. Although,
 

0.040-inch-thick wall T-111 tubes had previously been welded to headers,
(3 )
 

the 0.010-inch-thick honeycomb tubes were much more susceptible to arc
 

burn-back This condition was complicated by the tube-to-header joint
 

clearances required to effect bundling for tube-to-tube welding The
 

lack of intimate contact between faying surfaces increased the likeliness
 

of uneven fusion.
 

Several iterations of joint configuration and stringent welding
 

process control were required to produce defect free weldments repeatably.
 

It is doubtful that all tube-to-header welds required for a full-size
 

honeycomb core could be made with equivalent precision. It is therefore
 

recommended that future multi-tube welding trials incorporate a heavier,
 

i.e , 0.020-inch-thick tube insert, to improve welding process reliability.
 

A second problem area was the significant tube distortion associated
 

with tube-to-tube welding trials The design conditions which required
 

full-length weld attachment along the tube axes limited the techniques
 

available for distortion control, such as intermittent welding. It is
 

recommended that future welding studies include the doubler stations to
 

provide distinct weld segments as well as start and stop locations.
 

Bond, J. A., ed. Topical Report: Design and Fabrication of a Three-

Loop Advanced Rankine Cycle Boiler Test Rig, Contract NAS 3-9426
 
(To be published).
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To summarize, this study established the feasibility of welding
 

the three basic joint types required for T-111 honeycomb fabrication.
 

These were tube-to-header, doubler-to-tube, and axial tube-to-tube welds.
 

Visual, metallographic, and mechanical strength characteristics of each
 

weld type indicated the basic acceptability of the techniques employed.
 

Although weld tooling to perform model honeycomb fabrication was perfected,
 

the full application of the welding processes was not realized. Additional
 

fabrication trials will be required to fully qualify the welding processes
 

developed.
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APPENDIX
 

Program Plans
 

A. Indenting and Reinforcing of Tubing Wall Doublers
 

Objective: 	 To produce T-ll doubler insert rings which meet the
 

Internal Tubing Projection requirements specified in
 

the NASA Honeycomb Core Support Structure Drawing
 

indicated in Figure 2.
 

Procedure:
 

1. 	Prepare tubing for inserts by cold drawing the 0.850­

inch OD T-111 tubes to a final 0.827-inch 0D.
 

2. 	Machine 0.500 ± 0.002-inch long rings from the reduced
 

diameter tubing.
 

3. 	Dimple each of the machined insert rings to a fixed
 

depth in the special indenting fixture (shown in
 

Figure 14), using 5000 pounds load in a hydraulic press.
 

4. 	Clean each formed insert by acid pickling per NASA
 

Specification C-393666-2.
 

5. 	Place inserts (15 each load) on special backfilling
 

fixture (shown in Figure 15) in the vacuum purge welding
 

chamber.
 

6. 	Cut 0.375-inch lengths of 0.062-inch-diameter T-ll wire
 

for 0.033 to 0.034-inch deep indentations. Place the
 

ware segments on a molybdenum bar and manually GTA fuse
 

into a spherical shape.
 

7. 	Place formed balls of T-ll filler in the dimples and
 

manually fusion weld per NASA Specification C-393666-1,
 

holding the arc centered over the indented dimples until
 

the molten metal conforms to the machined recesses in the
 

molybdenum fixture. Use a 0.062-inch-diameter tungsten
 

electrode and a welding current of 140 amps.
 

8. 	Rotate insert rings 1200, after the first 15 indentations
 

arc backfilled, and repeat Steps 6 and 7 until all
 

impressions have been reinforced.
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9. 	Repeat Steps 5, 6, 7 and 8 to form and backfill 0.042 to
 

0.044-inch-deep indentations, except increase the quantity
 

of 0.062-inch diameter T-ll filler metal wire to 0.5-inch
 

lengths.
 

B. 	Electron Beam Welding of Five Wall Doublers to a Full Length Honeycomb
 
Tube
 

Objective: 	 To determine the extent of distortion in a honeycomb tube
 

as a result of EB welding to attach five doubler rings.
 

Procedure:
 

1. 	Dimensionally inspect a 0.850-inch OD by 0.010-inch wall
 

by 18 inches long T-ll1 honeycomb tube to establish its
 

diametric and straightness characteristics. Inspection
 

to be performed in accordance with the quality control
 

plan shown below.
 

2. 	Clean five doubler insert rings and the honeycomb tube
 

by acid pickling per NASA Specification C-393666-2.
 

3. 	Assemble five doubler rings on molybdenum expandable
 

mandrel used in EB welding, and insert in the honeycomb
 

tube.
 

4. 	Reinspect dimensionally as in Step #1.
 

5. 	Electron beam weld the five inserts to the honeycomb tube
 

wall, per NASA Specification C-393666-4. Use two cir­

cumferential welds at each of the inserts, and three
 

circle welds around the dimples at the center insert
 

location only.
 

6. 	Reinspect dimensionally as in Step #1, before removal of
 

the welding fixture.
 

7. 	Reinspect dimensionally as in Step #1, after removal of
 

the welding fixture.
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B.1 /Quality Control Plan - Dimensional Inspection of Individual Honeycomb 
Tubes 

A ~Mid-Point B 

.1590 	 315 0 0 450o0 

1800
 

8.390
 

.
1. 	Scribe aft end face with degree marks every 450 Mark
 

zero degrees at aft end on OD approximately 1/8" from end.
 

2. 	Scribe an X at points A and B on the OD of the tube in
 

line with 00.
 

3. 	Use the shortest "V" blocks available and position the
 

tube in the V blocks with the blocks centering at A and B.
 

4. 	Position points A and B at top dead center (zero degrees)
 

and zero out points A and B by placing shim stock under
 

the V blocks as required.
 

5. 	Measure and record the tube OD at points A and B at 
00
 

and 900.
 

6. 	With points A and B up, zero out an indicator and height
 

gage (For the remainder of the checks do not change the
 

indicator zero point.)
 

7. 	Move height gage to Points 1 through 6 at zero degrees
 

and record the indicator readings as + or - from the AB
 

zero setting.
 

8. 	Rotate the tube to 450 and again record the indicator
 

readings as + or - from the AB zero setting.
 

9. 	Repeat Step #8 every 450, recording indicator readings
 

at points 1 through 6.
 

10. 	At points 1 through 6 measure the tube diameter at 0, 45,
 

90 	and 1350.
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C. Gas Tungsten Arc Tube-To-Tube Welding
 

Objectives:
 

1. 


2. 


3. 


Procedure:
 

1. 


2. 


3. 


4. 


5. 


6. 


7. 


To determine the maximum clearance between T-ill tubes
 

allowable during GTA tube-to-tube welding.
 

To document the effect of welds across doubler locations.
 

To determine the shrinkage and distortion which occurs
 

in a seven (7) tube bundle during welding.
 

Machine or acid pickle a T-ll end support header until
 

seven 0.850-inch OD by 0.010-inch wall T-111 tubes can
 

be bundled with zero clearance at their intersections
 

with the header.
 

Assemble seven (7), 6-inch tubes without doublers in a
 

center cluster on the end support header.
 

Apply a strap at each end of the bundle, measure tube­

to-tube clearances with feeler gages, and record.
 

Release the strap at the end of the tube bundle opposite
 

to the header and place a 0.006-inch shim in one tube-to­

tube joint to create an axially tapered joint clearance
 

from zero to 0.006-inch.
 

Automatic GTA weld the tapered joint, starting at the
 

zero clearance location, per NASA Specification
 

C-393666-1. Perform the welding using the following
 

parameters: 34 amps, 24 volts and a 33 inch/minute
 

travel speed. Use a 0.062-inch diameter tungsten
 

electrode with a sharp conical tip; set the electrode
 

tip-to-inside tube wall surface spacing at 0.04-inch.
 

Repeat Steps #4 and #5, using varying shim thicknesses
 

and total welding heat input, to define the maximum
 

tolerable joint clearance.
 

After maximum allowable joint clearance and welding
 

parameters have been established, assemble a second
 

seven tube bundle (6-inch long tubes); each tube having
 

two dimpled and filled doublers, electron beam welded in
 

place. Weld one tube joint with maximum allowable joint
 

clearance maintained with shims at both ends of the tube
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bundle. Remove the two tubes welded for metallographic
 

examination of the weld joint, particularly at doubler
 

locations.
 

8. 	Reassemble the seven tube bundle with two replacement
 

tubes and strap to bundle tubes as anticipated for
 

fabrication of a model assembly. Measure and record
 

tube-to-tube clearances with feeler gages, also measure
 

and record tube length and bundle width across each
 

3-tube axis as a function of length.
 

9. 	Automatic GTA weld all tube-to-tube joints, making three
 

(3) center tube welds first, then one or two weld joints
 

in each of the outer tubes as illustrated below. After
 

each weld is made use feeler gages to determine any
 

change in joint clearance.
 

AB 

4)A B

K.1t1A 1 4
ThK C 

A B 

2 ~A 6 

10. 	 Inspect the seven tube bundle to determine distortion,
 

shrinkage and weld quality.
 

D. 	Gas Tungsten Arc Tube-To-Header Welding
 

Objectives:
 

1. 	To determine the clearance between tube and header
 

required for reliable weld joint.
 

2. 	To compare the clearance required for welding with the
 

clearance required for bundling of tubes during tube-to­

tube 	welding.
 

3. 	To produce tube-to-header weld joints for metallographic
 

examination and strength evaluation testing.
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Procedure:
 

1. 	Machine two (2) T-ll1 simulated header pieces, to the
 

configuration shown in Figure 44c, to produce 0.0025 and
 

0.005-inch radial clearances between them and the ID of
 

0.827-inch OD by 0.010-inch wall tube inserts, at
 

assembly. Dimensionally inspect to assure desired
 

geometries have been produced. Clean header pieces by
 

acid pickling per NASA Specification C-393666-2.
 

2. 	Clean six, 6-inch long honeycomb tube sections, and six,
 

extended length, indented and backfilled doublers by
 

acid pickling per NASA Specification C-393666-2.
 

Electron beam weld each doubler to the honeycomb tube
 

sections at specific end locations per NASA Specification
 

C-393666-4.
 

3. 	Assemble one tube with doubler, and a simulated header, in
 

the joint restraining fixture, schematically shown in
 

Figure 31, using appropriate T-ll shim stock to produce
 

a gather 0.005-inch clearance between the components.
 

4. 	Automatic GTA weld the specimen with 0.005-inch gathered
 

clearance in the restraint fixture, per NASA Specification
 

C-393666-1. Weld with the following parameters: 45 amps,
 

16.5 	volts, and a travel speed of 7 inches/minute. Use
 

a 0.062-inch diameter bent tungsten electrode, with a
 

sharp conical tip. Position the electrode 0.035-inch­

below the intersection of the header piece and the bottom
 

of the extended doubler, and 0.040-inch away from the
 

inside diameter of the machined rib in the header piece.
 

5. 	Repeat Steps #3 and #4, using the header component which
 

produces 0.010-inch header-to-doubler clearance. Adjust
 

welding parameters, dependent on results from previous
 

trial.
 

6. Section and metallographically examine the prepared
 

tube-to-header weld joints to establish weld quality
 

and determine if parameter adjustments are necessary.
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7. 	Machine four additional header components to produce the
 

configuration most amenable to welding, and having the
 

largest tolerable spacing, at assembly, with the extended
 

doubler inserts ID surface.
 

8. 	Automatic GTA weld four additional joints in the restraint
 

fixture to establish process reliability, using appropriate
 

parts of processing Steps #3 and 4.
 

9. 	Compare results of tube-to-header welding study with
 

clearance values obtained from engineering study of the
 

tube bundling requirements in full scale assemblies.
 

Recommend proposed approach to NASA Program Manager.
 

10. 	Machine three (3) tube-to-header tube joints to the
 

selected configuration and GTA weld per NASA Specification
 

C-393666-1.
 

11. 	 Heat treat the specimens prepared in Step #8 at 24000 F/
 

1 hour, per NASA Specification C-393666-3, and sub­

sequently determine joints tensile properties.
 

E. 	 Electron Beam Fuel Pin Retainer Ring-To-Header Welding
 

Objectives:
 

1. 	 To determine the electron beam parameters for producing
 

sound fuel pin retainer ring-to-header welds.
 

2. 	Tq produce specimens for metallographic examination and
 

strength evaluation testing.
 

Procedure:
 

1. 	Machine simulated retainer rings from T-ll bar per
 

configuration shown in Figure 52.
 

2. 	Machine counterbore in single tube headers for retainer
 

ring weld parameter tests.
 

3. 	 Dimensional inspect and acid clean parts.
 

4. 	 Electron beam weld the rings-to-headers as required to
 

establish parameters, per NASA Specification C-393666-4.
 

5. 	 Section and metallographically examine to determine
 

penetration depth and optimum weld conditions.
 

6. 	 Using the established best parameters, EB weld simulated
 

rings in the three tensile specimens used for prior tube­

to-header weld mechanical properties testing.
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7. 	Postweld anneal the three test specimens at 2400°F/i hour
 

in vacuum per NASA Specification C-393666-3.
 

8. 	Tensile test the prepared specimens, using a pin (similar
 

to fuel retaining pin) inserted in a machined groove of
 

the rings for load transmission, and evaluate the results.
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