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ABSTRACT

Straightforward relationships among Weinstock's

propagator UA , the Vlasov propagator U, and the en-

semble average Vlasov Propagator <U> are derived.

U and <U> are related to the characteristic trajec-

tories of the Vlasov Equation.
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PROPAGATORS IN STRONG PLASMA TURBULENCE

In Dupree's 1 theory of strong plasma turbulence, the fundamental role is played

by the operator <Ut, t o)>, the average of the Vlasov propagator U(t, to) over an

ensemble of plasma realizations. <U(t, t o)>, as we shall see, can be related to

various statistical correlations of the turbulent fields.

Weinstock2 amplified Dupree's ideas and obtained several formally exact , results,

all involving yet another propagator U A (t, to ). A pair of complicated non-linear

integro-differential equations implicitly relate U A , U, and <U> in the general

case. 2 Specific application of the theory 3 is however, limited to the weak

coupling approximation, where UA is expressed explicitly in terms of (U> (and

hence in terms of fluctuation correlations): 1J A = <U> to lowest order m a per-

turbation series in b F. the amplitude %)f the fluctuations.

In this note we first show how in the weak coupling limit U A can be expressed

straightforwardly in terms of <U> to arbitrary order in a F. Calculation of

higher order corrections to Dupree's l plasma kinetic equation and dispersion

relation is thus facilitated. We relate U A to <U> in two steps, first relating UA

to U and then relating U to <U>• Our results are a significant simplification of

Weinstock's equations.

We next show the relationship between U (and <U> ) and the characteristic tra-
*1^,

	 jectories of the Vlasov Equation. The value of these latter relationships is that
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the propagators can be visualized in terms of the Newtonian orbits of Vlasov

fluid elements and properties of the plasma turbulence.

Consider an ensemble of Vlasov plasmas. For each realization, f, the deviation

of the one particle distribution function from its ensemble average <f>, obeys the

equation

at	 -	 ^L	 aVw	 v	 ...

L

	

'	 Here < > is the ensemble average and 6 indicates the fluctuation of a quantity

from its average value. F is the total force per unit mass on the plasma element

at the phase space point r, v.

Weinstock 's formal solution to Eq. (1) is

	

kl	

«

• .	 ^(, ,t) = UA (E)to)d'fCx, V 0 fc-') - S dt' Ur(t,Z:) LC } ^fC'^, V,T)> tz>
tc;

where b f Q , v, t o) is the initial value of 8 f, L(T) = 6 F (T) • d / ay , and UA (t, to)

is defined by Weinstock 's 2 Eq. (8).

Alternatively we can place the	 6 f > term on the right hand side of

Eq. (1), recognize a /at + ti • 0 + (<F> + bF) • a /av as the Vlasov operator,

and iterate with respect to the <S F • a 8 f/ a  > `term. The solution obtained in

this way is

t
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r	 t
d X̂,, v., t) = U (f, to) d'^Cx , V, to) — dr U (t, T) Ur) ^f^ Cr)

TO
to

otr, d^ .	 ^ , Utt	 L	 UCti' ^z) L (ra	 (3)
to 	 to	 Ea

YII*C(rmr, uC^^,,z,^^) I' Cz^^^) t ^Cr,^^,) — (^Cr^, to)d'flx, ^^fo^
to

The Vlasov propagator U(t, t o) satisfies the equation

^u t Ir. V u ^ 	 U fo to = I V	 C , )

The averaging operator A in Eq. (3) averages everything to its right over the

ensemble of plasmas. If the term <S F • a 8 f / ay^> were neglected in Eq. (1),

the solution, Eq. (3), would just be

fC1 Ct,to) ^'f (x , V, to) - dr U (t It) SP (r) - ..	 (5)
to	

d V

After reversing the order of integrations in Eq. (3), changing the variable Tn + 1

to -r, and comparing the resulting form with Eq. (2), we conclude

(4)

q,	 f	 t

^^ C^,) = u Ctto) +	 atr,„ d r,„_ .. , d r,
	 o

m=1 th
	 ZM	

^^	

(S)

uCt,r,) A LCr,) U	 AL;^)	 UtZ,„,to)
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Equation 6 is an exact relationship between U A and U. It becomes approximate

only when the series is truncated. Here A also operates on whatever function

U  is propagating.

An equation relating U and <U> is obtained by averaging Eq. (4) and subtracting

the resulting equation from Eq. (4) itself:

Equation (7) formally integrates to

t

	

J'dt  ^t 1 ĵ ^^.,^^^ u l(, to)> — ^^^^ <U(r, to^, 	 (8)
tc

It is straightforward to itbrate Eq. (8) to determine U in terms of <U> to any

desired order in W.. The term quadratic in U on the right side prohibits us,

however, from writing U succinctly in terms of <U> to all orders in bF (i.e.,

writing an equation analogous to Eq. 6 between U. and U). Iterated through

0( 6F )2 , Eq. 8 is equivalent to Dupree Is I Eq. (4.1).

By combining Eqs. (6) and (8), it is possible to obtain directly a relationship

between UA and <U> . Through (b F)2

t

04 (t j to) - U 61 tO
Y #	

ip	

A) L (rt) <U(z, tc,)^

	

t d d -C U tte r. [(j ",i)L(ra)^U tea, Cĵ (I -A)4TO l Cro	 (9)
to	 it

r	 L^T, ) Otr, , t" O

))k

1" t
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As a check, it is readily shown that with this form of UA inserted into Eq. 2,

A b f = 0 + b (6F) 3 . This must, of course, be the case, since 6 f has by definition

zero ensemble average.

We finally indicate the relationship between U and <U> and the characteristic

trajectories of the Vlasov Equation. If <8F • '0a f /aX> is neglected in Eq. (1)9

the solution to this equation is

^' X V t	 x , U' to 	_ ^^' F' ^' () Z d r
	 qO)

dLr (0.

Here x` and * are solutions to the characteristic equations

ciX	 V	 clv"	 ^,^	
(11)._._V	 dr F ?^ v,

(The boundary conditions to be applied are x' (-r = t) = x , v' (-r = t) _ X).

Next we Taylor expand the x`, v` dependence in Eq. (10) about x, x Compar-

ing the result with Eq. (5), we conclude

^1 j to) 	p	 t0 ^-^ ' T7 f̂ ^r a(12)C]	 1 au
Operating on an arbitrary function tP (x, v ), U(t, to ) translates the point at which

is `,evaluated to x' (to ), v" (to), the t to phase space coordinates of the plasma

element located at the point x, v at time t. The trajectory from x" (to), v` (to)

to x 9 v (Eqs. 11) is the enact, fluctuating Vlasov orbit for the element.

1
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For conciseness of natation we introduce, the six component phase space

`	 vector. Thus

t l fit, tv^	 *p 	 — it	 -	 ['6' Tfftrtt.) 	 a^atr

a 1 	 ^` ^1T to 	 <°?#(G^)

^^	 (13)
m=3

In the last form of Eq. (13), we have, following Weinstock 2 , made a cumulant

expansions . Cn is the cumulant of <Lzr^ i') '	 ,

We have explicitly written out C2 in Eq. (13). By integrating the characteristic

equations, Eqs. (11), A 7r` (to ) can be expressed in terms of the fluctuating fields

along a particle trajectory. <U(t, to)> can thus be represented in terms of

statistical correlations of the fluctuating field 2.6 . One can then further make

reasonable estimates about the strength of these correlations.

i
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