g 970
a’///,\ . NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - 7
f ; ,/“{t) ’ Waswnevon, 0.8, 26546

ATTR & o]
O3 USI/Scientific & Technical Information Division
Attentions Mise Winnie M., Morgan
FROMe Gp/Office of Assistant General Counsel for

Patent Matters

SUBJECT: ° Announcement of NASA-Owned U. 8. ?atenhs in 8TAR

In accordance with the procedures agreed upon by Code GP
and Cocde USI, the attached NASA-owned:-U. 8.° Patent is being
forwarded for abstracting and announcement in NASA STAR.

Tho Sollowing &nﬁermati@n'ia.érovidads

U. S. Patent No.] k. ‘ f

Gl Zost. af Seck.
Government ox : / & /
Coxporate Employee 1 2 S 4&@4? 2. {
Supplementaxy Corporate ”

Source {(if appliicable) 8 m '

NASA Patent Casa No. e /Y/@ "/457:5

HOTE = If this patent covers an invention made by a corporate

employee of a NASA Contractox, the following is applicable:s
Yes &l No[] o

ursuant to Section 305{a) of the National Aeronautics and

Space Act, the name of the Administrator of NASA appears on

the first page of the patent; howsever, the name of the actual

inventoxr (author) appears at the heading of Column No. 1 of

the Specification, £ollowing the words . . with respect to
an invention of . - » ‘

Leabeth . &%‘éfz

Zlizabeth A, Carter
Enclosure
Copy of Patent eited above

F1G.

SHEEY 3 OF 2

FIG. 2

Lo < lfyo sa
C g - I
— < 6 O I o ©
(&] [&] a >z
w O] |L_ — NG
[« A {e] (g Q
¢ o — o
- @
¥ omg 5 B O ps
o w» I
o II—J@—{-—— o
O o o 1@ o
(2] [CKS)
— 2
1878 8 8 i
] A L S A
. a 2 (j‘
C IG O [e: 2T« 0 X O
[©
T lo " o — o? o n_o (@)
® O L ®»_ O -
] = m
G 1o T 0° %
//*—-ou.lo S ST 2 O
Q ml lo AAllé S Iﬁgol
O
(¢ e] 0 I | : !
o o C I
L | [T - fa) -
& 9O 8:3 T1° > BT
[&]
Q.- T 1 %) Ol
QA e <
NS —
R & - n | 9 ol
) ™ i M
v:Il-:E—; li = =
o O~ — |3
N|=-=-=-=-00=--0-00-0000~0-0~-=-=-0=-—-000 —— =
»|=-—--00-—-0-00~0000~-0~-0=-==-00~-~000——— —
X[==00=——0=-00-0000—-—0=—Q===0==000 —— — — —
2|-00--0~00~-0000-0=-0~-—=0 =000 — == = — ~
3 =0 = Q= == 0 ~-=—000 = = = = =~ O0-=—0=-00—-—00000 ~—
e
- - m &~ O—NWF 1O —
ﬁo NmgDOMNOOO - NRTR ORGSR LAaRT8RC
n
INVENTOR.

JAMES 0. DUFFY

BY 7 - oz %
%K{ &,

ATTORNMNEYS

i

/
PATENTED #aR 9197 3.569.956
SHEEY 2 OF 3
52 FIG. 5 50
] CLOCK /
CLOC K CLOCK¢%
C{.oC =
“624 8% sc 0 sc Q sc o
L B M
Ce @ ce Q@ Cc Qi
e, DL i,
CLOCK NP =By HeY fr o
FIG. 6 L & ..
— Sc Q& L —18 Q@;— :
a—f | ®] =
Cc. Q U:i}_Cc Q b
cLoCcK ¢34 ¥ l—-* Co Cik ?
B j
T ; ;
N K :
—— ;
Sl | 66 :
63 c zj} :
65 “Ise @ S¢ Q@}—— CODE !
G _ 5 H . f
W cc @ ‘}D"’ cc &l —CODE
N : — cix Cik
67 I
8 {—62 eB Jf
p o cLOCK ¢2/4 % "

LMN}| F E D c B | A u | T S R P

oco||lmse LsB||MsSB LsB

100||LSB |MSB LSB (MsSB

110 LSB |MSB LSB |MSB

b LSB|MSB LSB |MsSB

oil LSB |WSB LSB |MSB

00! LSB |MSB LSB|mMSB
INVENTOR.

JAMES O. DUFFY
FIG.7 g
S

ATTORNEYS f./

/,/j)

3,569,956

PATENTEDMAR 9197

SHEET 3 OF 3

FIG. 8

m ~ i - * ~
Lo _ | _
M o |- | Q _m o
o) | | _
8 |
t ___ i il _= _=
| + _ |
0 loooocoo|-o00000 _OIlloo o-————|—-==—=== |0
€ |0000—-=000000 _l||0|| iiiiii —-—-——-00]|o0
o OGOlOEOOOOIl_ ——0—== l—————— lslooo_o
- OOIOOQOOOIOO__iOIIII_ llllll —--o0o0o0o0 |0
> |0-0000|00-000 |0 -~ =~~~ _ llllll |ooooo‘o
“ — __ _2 m
ri |- cooool-—coo0o0 _IOI||| ~00000|—=————=— | -
| o n |
z 000|!L000|||__0001!i_ 000~——=|00C0—-—-—|0
= 001||i00|l|o _00|||O__OO||IO co---o0]o
4 o......looo....looM

OI.II.OO_

M _

O-—=—00 OI..IE.OO*O

-3 |
183

INVENTOR.
0. DUFFY

JAMES

BY

e A AP
ﬂ?ﬁ;m&
ATTORNEjzwi

United States Patent

(11 3,569,956

[72] inventors T.O.Paine OTHER REFERENCES
Acting Administrater of the National W, Peterson, Error-Correcting Codes, 1961, pp: 73— 77;
Aeronsutics and Space Administration with M. L T. Press.
respect 1o an inventien of; S. Golomb, Digital Communications: With Space Applica-
James O. Duffy, Pasadena, Calif, tions; ** Introduction to Digital Communications,” Prentice-
[21] Appl.No. 771,760 Hall, 1964, pp: 8~ 13.
Eig% }l;gteednte d g;::z, 3§ ’ ;3;6 ig Primary Examiner—Maynard R. Wilbur
T Assistant Examiner—Michael K. Wolensky
Attorneys—J. H. Warden, Monte F. Mott and G. T. McCoy
[54] MIMNIMAL LOGIC BLOCK ENCOBER
1@ Cialms, 8 Drawing Figs.
[52] U.B.LCh.. . v 340/3¢7 ABSTRACT: An encoder incorporating a minimum number
(511 Emte Choveni HO3X13/24 of Jogic circuits to convert 64 6-bit data words into 64 32-bit
[50] Fieldof Bearch....c.cocoeviimmcininenniicinniiciennian, 340/347, code words, forming a 32, 6 biorthogonal code. Each code bit,
179/15 (OR), (81G), (APC), (ASYNC); 235/92 generated during a multiclock-period-code-bit-period, is logi-
70 cally combined, at the end of the code bit period, with a code
56 el Cited bit of a comma free vector code to produce a code bit of a
156 elerences Lite code word in a 32, 6 comma free biorthogonal code. The en-
UNITED STATES PATENTS coder implements an algorithm in accordance to which each of
3,025,350 3/1962 Lindner........cccnvvennee. 179/15(0) the six data word bits is incorporated in a modulo-2 summa-
3,030,614 4/1962 Lehanetal... - 340/347X tion, as a function of the code-bit number and number of logic
3,413,452 11/1968 Schiein 235/92 ones in the code-bit number in binary form.
cLock e
—d S @ L _-J Sc ce Qr—
o K _ s J 1
cLock 624 ¥ e, @ Um— ey @
e el il
N K
&1
86
83 I c
85 Sc 6 Q f_jfr" Se¢ Qf—— CODE
& cc @ z cc @}—ZobE
n] Cik clk
67
64 62 r_}_‘ 68 |
s~ cLock 62, a3 N
N71-25
o
2 (ACCESSISN NUMBER) (THRU)
z 10
2 {PAGES) (copE
= S
=) y
g {(NASA CROR TMX OR AD NUMBER) (CATEGORY)
LA

3,569,956
i Z

MINIMAL LOGIC BLOCK ENCODER as compared with other encoders designed to generate a
comma free 32, 6 biorthogonal code.
ORIGIN OF THE INVENTION A further object of the present invention is to provide novel
The invention described herein was made in the per- circuitry for generating bits of code words of a biorthogonal

formance of work under a NASA contract and is subject to the > code with a minimum of logic elements. .
provisions of Section 305 of the National Aeronautics and These and other objects of the invention are achieved by

Space Act of 1958, Public Law 85-568 (72 Sta’c 435; 42 USC providing Ci!‘Cl.litl'y, incorporating a minimum number of logic
2457). elements, to serially generate the bits of a code word as a func-

tion of the bits of the data word which the code word is to
BACKGROUND OF THE INVENTION 10 represent and the number of the code bit in the code word.
Briefly, the circuitry implements an algorithm which was
discovered during a thorough analysis of the 32, 6
biorthogonal code. Based on this algorithm, the logic circuitry
{5 operates during each of six successive clock periods, defining
a code-bit period, to provide an output which is either a one
(1) or a binary zero (9), depending on the bits of the data
word and the number in binary form of the code bit, in the 32- -
bit code word. The code bit is then logically combined with a
20 bit of a comma free vector code, generated by an appropriate
code generator to produce the desired code bit of a code word
of a comma free 32, 6 biorthogonal code.

The novel features of the invention are set forth with par-
ticularity in the appended claims. The invention will best be
understood from the following description when read in con-
junction with the accompanying drawings.

1. Field of the Invention

The present invention relates to encoders and, more par-
ticularly, to an encoder for generating a n, m biorthogonal
code, where n=20""Y with a minimum of logic circuitry.

2. Description of the Prior Art

The relative merits of block encoding for a digital communi-
cation channel are well known. Briefly, to decrease communi-
cation error due to noise, multibit data words are transmitted
as multibit code words, where the number of bits of each code
word is significantly greater than the number of bits of the cor-
responding data word. Herebefore, in some of the space ex-
ploration communicative applications, biorthogonal and
comma free biorthogonal codes have been generated by ap- 25
propriate encoders in order to transmit 6-bit data words as 32-
bit code words.

In designing an encoder for such purposes, as well as in
designing other logic circuitry, designers often strive to BRIEF DESCRIPTION OF THE DRAWINGS

minimize the conceptual complexity of the implementation, 30 FIG. 1 is a table of the binary states of stages of a comma

often at the price of an increased number of required elements free vector code generator, during 32 successive states;

such as logic gates and related components. Such a design may FIGS. 2 through 6 are logic block diagrams of a specific em-
be thought of as one employing a brute force approach. For bodiment of the invention;

space exploration applications however, where weight and FIG. 7 is a table useful in explaining the content of stages of
size are often of primary consideration, circuits with fewer ele- 35 registers shown in FIGS. 2, 3 and § during six clock periods,
ments are generally desired even at the price of increased defining each code bit period; and

complexity. The present invention is directed to provide en- FIG. 8 is a table useful in explaining the counting operation
coders, designed to generate a comma free biorthogonal performed by the circuitry of FIG. 3.

Reed-Muller type code, by means of which 64 6-bit data 40

words are converted f municatio into 64 32-

bt ool vords oo on purposes 1o DESCRIPTION OF THE PREFERRED EMBODIMENTS

Before proceeding to describe the logic circuitry of the
OBJECTS AND SUMMARY OF THE INVENTION novel encoder of the present invention, reference is first made

It is primary object of the present invention to provide a 45 to the following Table 1 containing a block encoder 32, 6

new encoder for generating a comma free n, m biorthogonal biorthogonal code dictionary of 64 32-bit code words cor-
code, where n=2(m1D- responding to the 64 6-bit data words. This table is presented

Another object of the present invention is the provision of as one example of an n, m biorthogonal code wherein n =32
an encoder incorporating a reduced number of logic elements and m=6.

TABLE 1
Data Word Biorthogonal Code Word

fede b a 313 202 27 2 2 24 23922 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 210
060 00 0 00000 ©60O0O0 000O0 O0O0O0O0 02000 0000 0000 00200
000001901901 01901 0101 ©1¢1 0101 0101 0101 0101
0000100011 09011 ©0011 o090 11 6011 0011 0011 0011
9 0 00 11 01 10 01 106 01 10 0110 01 10 0110 01106 0110
060 01090069090 11,1 1 0000 1 111 0000 1 111 0000 1111
0001 0101101 1010 0161 120106 01201 1010 0101 1010
0001 100 01 1 1 %0 o 0 0 1 1 1 1 06 0 0 0 1 1 1 100 0011 1100
6 0 01 1 1 0 1 1 0 18“01 01 1 0 106 61 ©01 10 1001 0110 1001
060 1000 O0O0O0 0 0 6 6 11 11 1131 1 06000 0000 1111 1111
001001 01061 00 1 1 01 0 1 010 01 01 06101 10106 1010
0010100911 00111 11020 1 1006 0011 0011 1100 1100
00101101100 o611 160 10601 10001 01120 0110 1001 1001
0011000000 1:4 1 1 1111 0006 0000 1 111 1111 0000
00 1101901901 10190 1010 0101 ©¢1 01 1 010 1010 0101
00 11100011 1% 9090 11060 02011 ©00 1 1 1 100 1100 0011
00111 10110 1901 106061 01 10 01 1 0 1001 10061 0110
01 06000 00O0OO O0OGo0OC 000006 09006 11 311 1 111 1111 1111
0100061 0161 o010 1 01901 0101 1010 101G 1010 1010
01001000111 001 1 o001 1 00 1 1 1100 1 100 1100 1100
0100110110 ©1 10¢ 0110 0110 10601 1 001 1001 1001
01010000960 1111 90206 1 1 11 1 I 1 1 00600 1111 0606200
010101 01 ¢1 1010 0101 1010 1010 0101 1010 0101
01011900011 11090 0011 1 1900 119006 06011 1100 0011
0101 110110 10071 o011 19001 10601 01106 1001 0110
01 100 00O 60 ©¢606w0w90 11! 1!1 1111 1111 1111 0000 0000
01 100190131901 0101 10610 10106 1010 10106 0101 0101
01101000011 0011 110606 11020 1100 1 100 06011 0011
06t 101 10110 01190 1001 1 0071 1001 1001 0110 0110
01110000900 1111 @111 09000 1 1 1 1 00600 00600 1111
¢ 1110 1071601 1010 1010 0101 16106 0101 0101 1010

3,569,956

TABLE 1-Continued

Data Word Biorthogonal Code Word
f ede b a 31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 i1 10 9 8 76 5 4 3210
01 106 1 0 0 0 1 1 1 0 0 1 1 0 ¢ 0 0 1 1 1 1 06 O 0 011 -0011 1100
01 11 1 1 06 1 1 0 1 0 0 1 1 0 0 1 ¢ 1 1 9 1 0 0 1 9 110 063110 1001
1 0 00 0 0 1 0 0 1 0 1 1 ¢ 0 1 1 0 1 0 0 1 ¢ 1 1 ¢ 1 001 1001 0110
10 00 0 1 1 1 0 0 0 0 1 1 0 6 1 1 1 1 0 0 0 0 1 1 1 100 1100 0011
10 00 1 0 1 0 1 o0 0 1 ¢ 1 0 1 0 1 1 0 1 0 0 1 0 1 1 010 1010 0101
1 ¢ 00 1 1 1 1 1 1 0 0 0 0 0 0 0 0 I 1 1 1 ¢ 0 0 0 1 111 1111 C 000
1 0 01 0 0 1 0 0 1 T 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 110 1001 1001
T 0 01 0 1 1 1 0 0 1 1 0 ¢ ¢ 0 1 1 0 0 1 1 0 0 1 1 0 011 1100 1100
1 0 01 1 ¢ 1 06 1 ¢ 1 06 1 9O o 1 0 1 0 1 0 1 0 1 0 1 0 101 1010 1010
10 01 1 1 1 1 1 1 11 1 1 0 0 0 0 0 0 0 0o 0 0 0 0 0 000 1111 1111
1 ¢ 10 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0601 0110 1001
10 10 0 1 1 1 0 0O 0 0 1 1 11 0 O 0 0 1 1 0 0 1 1 1 100 0011 11 00
10 10 3 0 1 ¢ t 9 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 010 0101 1010
1 0 10 1 1 1 1 1 1 0 0 0 O 11 1 1 0 0 0 0 0 0 0 0 1 111 0000 1111
10 11 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 © 0 110 0110 0110
1 ¢ 11 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 o 0 ¢ 1 1 0 6011 0011 0 0 11
10 11 1 0 1 0 1 0 10 1 0 1 01 0 1 0 1 0 0 1 0 1 ¢ 101 0101 0101
1 ¢ 11 1 1 1 1 1 1 11 1 1 11 1 1 1 1 1 1 o 0 0 0 0 000 0000 0000
1100 0 0 1 0 0 1 0 1 1 0 0 1 1 o 1 0 0 1 1 0 0 1 ¢ 1106 0119 1001
11 60 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 o 011 0011 11200
11 00 1 0 1 0 1 0 6 1 0 1 0 1 0 1 1 0 1 0o 1 0 1 0 ¢ 101 0101 1010
1100 1 1 1 1 1 1 0 0 0 O 0 0 0 © 1 1 1 1 1 1 1 1 0 000 0000 1111
11 01 6 ¢ 1 0 0 1 1 0 0 1 ¢ 1 1 ¢ 0 1 1 ¢ 10 0 1 1 001 0110 0110
11 01 0 1 1 1 0 ¢ 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 100 0011 0011
11 01 1 0 1 0 1 0 1 06 1 0 0 1 0 1 0 1 0 1 1 0 1 ¢ 1 01 ¢ 0101 0101
11 01 1 1 1 1 1 1 1 1 1 1 0 0 0 O 0 0 0 0 1 1 1 1 1 111 0000 0000
11 10 0 0 1 0 0 1 ¢ 1 1 ¢ 1 0 0 1 0 1 1 0 i 0 0 1 0 110 1001 0110
11 10 0 1 1 1 0 0 0o 0 1 1 11 0 0 0 0 1 1 1 1 0 0 6 011 1100 0011
1110 1 0 1 0 1 0 01 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 101 1010 0101
11 10 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 000 1111 00200
11 11 0 0 1 0 O 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 06 1 1 001 1001 1001
11 11 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 100 1100 1100
11 11 1 ¢ 1 0 1 0 1 0 1 0 1 0 1 0 1 ¢ 1 o 1 0 1 0 1 010 1010 1010
11 11 1 1 1 1 1 1 11 1 1 11 1 1 1 1 1 1 11 1 1 1 111 1111 1111

The letters a through f are used to designate the six bits of
each data word and numerals O through 31 designate the 32
code bits of each code word. An analysis of the dictionary in-
dicates that a definite algorithm can be used to obtain the bits
of each code word from the six bits of the data word with
which it (the code word) is associated. Using the designations
a through fand O through 31 it may be shown that,

0=a@bBcPdde

1=bDcDdPed®f

2=aB B dDe D f

3=cPdPe

4=aBbDdDedf

16=adbPcPdBf

30=a

31=f

That is, the code bit O is binary 1 only if the modulo-2 sum
of bits a, b, ¢, d and e of the data word is a binary 1. The con-
ventional sign €D represents modulo- 2 addition. Likewise, the
code bit 1 is a binary 1 only if the modulo-2 sum of data bits b,
¢,d,eand fisa binary 1.

The complete pattern is shown in the following table 2 in
which the x’s represeni the bits a through f of the data word
which are included in forming the modulo-2 summing logic
operation.

TABLE 2
Biorthog- Modulo 2 sum of—
onal code

bitnumber f e d ¢ b a
00000= 0 x
0000l=1 x x
00010= 2 x x
00011= 3 _.._ x
00100= 4 x x
0010l=5 ... x
00110= 6 ... x
00lll=7 x x
01000= 8 x x
01001= 9 ... x
01010=10 ... x
01011=11 x x
01100=12 ___. x
01101=13 x x
01110=14 x x
Ollll=15 ... x
10000=16 x X
10001=17 _.......

TABLE 2 —Continued

Biorthog- Modulo 2 sum of —
onal code

bit number

f e d

11111=31

From Table 2 it can be seen that the g data bit enters into
the modulo-2 sum of all even numbered code bits (8, 2, 4 etc.)
and in none of the odd numbered code bits (1, 3 etc.).
Likewise, data bit b enters into the mod-2 sum of the first two
(such as O and 1 or 4 and 5) of each group of four code bits
{such as O through 3 or 4 through 7), data bit ¢ for the first
four (O through 3) of each group of eight code bits (such as O
through 7), data bit d for the first eight (O through 7 or 16
through 23) for each group of sixteen (O through 15 or 16
through 31), while data bit e for the first 16 (O through 15) of
the 32 code bits. The algorithm for data bit f may be seen to be
dependent on the number of binary zeros in the binary form of
the code bit number. Data bit f enters the modulo-2 sum of
each code bit which in binary form has an even number of
zeros (9's). Thus, for example, it enters the modulo-2 sum for
code bits 1, 2 and 4, since these code bit numbers have binary
forms 00001, 86910 and 00100, each one of which has an’
even number of O’s.

The principles of this algorithm may be applied to provide
other n, m biorthogonal codes in which n and m assume values
other than 32 and 6 respectively. For example, a 64, 7
biorthogonal code can be produced with the same algorithm.
In such a case, the first five bits (starting with the least signifi-
cant) of the data word will enter into the mod-2 summation as
herebefore described. The sixth bit (or second most signifi-
cant bit) will enter the mod-2 summation of the first 32 (&-
—31) of the 64 code bits, while the seventh or most significant
bit will enter the mod-2 summation as a function of the
number of §’s in the code bit number binary form, in a manner
similar to bit f, herebefore described.

3,569,956

5

In accordance with the teachings of the present invention,
the algorithm or pattern shown in Table 2 is implemented by
storing the input data word in a data shift register and by con-
taining the code bit number, in binary representation, in a shift

&

Reference is now made to FIGS. 2 through 6, which
represent block diagrams of different portions of the encoder
circuitry of the present invention. FIG. 2 is a block diagram of
a six-stage shift register 29 consisting of flip-flops A, B, C, D, E

register binary counter, hereafter also referred to as the code 5 and F, and three control input gates 21, 22 and 23. The gates
bit number shift register. The contents of the two registers are control the entering of a new input data word designated
cycled around once every code bit period, in a way which will DATA into the register during a last of 32 code bit periods,
be described hereafter in detail, so that at the end of each (when a flip-flop J, to be described hereafter in conjunction
period, the binary or logic output of one set of modulo-2 ad- - with FIG. &, is a binary one) during which the first code bit is
ders, which is associated with the two registers, represents one 10 produced. The gates also control the cycling of the register
of the code bits, of a code word of the biorthogonal code. This content during the other code bit periods, i.e., when I is a bi-
code bit is modulo-2 added to a bit of a fixed 32-bit comma nary zero.
free vector code to produce the desired code bit of a code FIG. 3 is a block diagram of code bit number shift register
word of the comma free biorthogonal code. 3% in which the code bit number, in binary representation, is

The comma free vector code is generated by a 5-bit shift re- 15 storedin flip-flops P, R, S, T and U at the start of each code bit
gister with modulo-2 feedback logic, one example of which - period. Flip-flop I indicates whether bits should be inverted as
will be described hereafter in detail. The example of a comma they are shifted around the end of the register 30, while gates
free vector code which may be generated isshownin FIG. 1in = 31, 32 and 33 are inverter 34 invert or do not invert bits (in-
which the 1’s and &’s under the columns headed by V, W, X, Y 20 puts to flip-flop U) as indicated by flip-flop 1. Gate 35 is used
and Z represent the binary states of flip-flops V, W, X, Y and to inhibit the shifting of the content in the register during the
Z of a 5-bit vector code shift register, during code bit periods transition between the fifth and sixth of six intervals or clock
O through 31 when code bits O through 31 of the desired code periods, which define each cede bit period.
word are generated. The code bit in the comma free FIG. 4 is a block diagram of a comma free vector code shift
biorthogonal code is obtained by modulo-2 summing the Z bit ,5 register 40, comprising five flip-flops V, W, X, Y and Z
with the code bit of the biorthogonal code. The complete dic- wherein the input to flip-flop V is a function of the modulo-2
tionary of the comma free biorthogonal code is included in the sum of its output and the output of Z, while the input to W is
following Table 3. - function of the modulo-2 sum of its own output and that of V.

TABLE 3
Data Word Comma-Free Biorthogonal Code Word .

f e de b 2 31 3 29 28 27 2 25 24 23 2221 2 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10
6000900109090 1101 1101 01098 06108 06161 10061 1111
000001 1101 1000 1000 0601 01 11 0000 1100 1010
0000190190111 11190 111490 o111 000 1 0110 1010 1100
00900111110 1011 101! 0010 ¢ 100 0011 11131 1001
¢ 001 001000 0010 11901 160611 ¢010 1 010 10601 0000
6090190111101 0111 10096 1 110 011 1 ¥ 111 1100 0101
6001101011 09001 1116 1000 0001 1 0601 1010 0011
0001 111 110 0100 1011 1101 0106 1 100 1111 0110
00 100 01 0090 1101 90186 1 011 0010 0101 0110 0000
00100111901 1696090 0111 1110 071T1T1 ¢ 000 0011 0101
90101019011 1110 0001 1 000 0001 0 110 0101 0011
¢ 0101 11110 1011 0166 1 101 0100 0011 0000 0110
00 11001 00G0 00196 007106 0100 001 0 1 010 0110 1111
0011611101 0111 ¢1 11 002901 0111 1 111 011 1010
¢ 011101011 0001 0001 6111 000 1 1001 6101 1100
0 0 11111110 010090 0100 0010 0100 1 100 0000 1001
01000019009 1101 1101 0100 1101 1 010 0110 0000
6100 01 11901 160600 1000 O0UO0O0OT1 1000 1 111 0011 0101
010019019011 11190 1116 o011 1 11 1 ¢ 1 001 0101 00711
06100 11 11190 10111 1011 ¢ 10 1011 1 100 0000 0110
0610106010000 090190 119011 1011 1101 0101 01310 1111
061019011101 0111 10060 1 110 1000 0000 0011 1010
¢ 101 1019011 00901 1110 109006 1110 01106 0101 1100
¢ 101111110 01090 1011 11901 1 611 06011 00060 1001
0110090190090 1101 ©001¢6 16 11! 1101 1 010 1001 1111
061109011101 1900 o011 1 1 1 10 10600 I 111 1100 1010
61101019011 1110 0001 16 00 1110 1 001 1010 11200
01 10111110 1% 11 o010 0 1 1 01 1 0 1 1 1 100 1111 1001
01 1100 1 000 0450 1 0 001 0 ©1 060 I 101 0101 1001 0000
01119011101 07111 0111 ¢ 0001 1 000 00006 1100 01C01
01 11190 1011 O0goDo 01 o006 031 ©0 1 1 1 1 1 1 0 0110 1010 0011
61 11111110 g2 00 0100 0010 1011 0011 1111 0110
10000 00 9 01 o 11 101 1 1101 01 00 1 100 00060 1001
1000 01 01 0 0 hplroo 1110 1000 0001 1001 0101 1100
10001 0 0 0 1 0 ¢ 00 1000 1110 011 1 1 111 0611 16010
10001190111 4 1901 1101 1011 0010 1 016 0110 1111
1001 0 0 0 0 0 1 g 1006 1011 0010 011 0 0 011 0000 0110
10010101090 ¢ 001 1110 6111 0001 0 110 0101 0011
1001 1 00 0 1 0 @ 1111000 000l 0111 0000 0011 0101
10 061 1 1 0 1 1 1 0 r ¢ 1101 0100 001 0 0101 0110 0000
t 91000000 1 =011 01000 060010 0100 1 100 1111 0110
10100190100 .11 10 o001 01 11 0001 1 001 1010 0011
1¢ 1019090607110 't 000 0111 ¢o00711 01 1 1 1 111 1106 0101
10101190111 1!01 06010 901060 0010 1 010 1001 0000
101100090901 0100 0100 11901 ©¢100 0011 1111 16001
1013101019060 0001 066001 1 000 ©0O0OCT1 0110 1010 1100
10111009010 0111 ©¢1 11 1116 01 1 1 0000 1100 1010
1011116111 90010 060710 1011 06010 0101 1001 1111
11000900900 ! 10111 1011 1101 1901 1 ¢ 0611 1111 0110
110090190100 1116 1119 1000 1 1 10 0 110 1010 0011
110010090010 100G 106 0¢ 1110 10060 0O0D00 1100 0101
1190011901 11 13190131 1361 1011 1 101 9 1061 0001 020200
110190009001 61902¢ 1011 00106 101 1 1 100 1111 1001
11010190100 69086 ! 110 0111 11! 10 1001 1010 1100
1101100901 ¢ 01 1 1 1000 0061 1 0006 ! 111 1100 1010
1161119011131 ¢! 6 1 195¢t 91006 1101 1 610 10601 1111
111009090001 I © I 1 o0 i DO 006106 1811 06011 00600 1001
11199010100 1110 662901 0111 1116 0110 06101 1100
11101009019 ! &G ¢ €3 L1 0001 1000 0000 00611 1010
t11¢ 110111 131931 ¢6 10 © 1006 1101 0101 0110 1111
111100000661 63106 61006 11 01 10611 1 100 0000 0110
111101010090 ©209¢1 ¢00661 1060060 1110 10061 01061 00711
1111100961 ¢ 06111 o111 1 1 106 1600 1 111 00611 0101
11111190111 @010 ©0010 10171 11061 1010 0110 0000

3,569,956

7

The output of a gate 41 is used to shift the content of the re-
gister’s flip-flops during a specific clock period of the six
periods of each code bit period.

FIG. § is a simple shift register 80 consisting of three flip-
flops L, M and N, which are clocked by clock pulses from a
clock 52. The function of register 58 is to divide each code bit
period into six clock periods, represented by six unique com-
binations of the states of flip-flops L, M and N. These are
shown in the left-hand column of FIG. 7 to which reference is
made herein.

The clock 52 which is shown in FIG. 5, is not intended to be
part of the encoder disclosed herein. However, it is dia-
grammed in order to show the three outputs thereof required
to control the registers or gates shown in FIGS. 2 through §.
Basically, the clock 52 has one output, designated CLOCK, at
which are provided clock pulses which are used to clock the
stages of register 20 (see FIG. 2), register 30 (see FIG. 3), re-
gister 59 (see FIG. 5) and flip-flops I and K. The clock also has
outputs designated CLOCK® 2/4 and CLOCK® 2/4 and &
3/4. The clock € 2/4 designation indicates that the output line
is high or active during the second quarter of the clock period,
while the clock @ 2/4 and @) 3/4 designation means that the
output line is high without slippage or “glitch” during the
second and third quarters of the clock period. These outputs
may be conveniently obtained by employing a conventional
clock whose output is divided by four by a two-stage divide-
by-four Johnson-type counter used in external shared count-
down chain.

FIG. 6 is a block diagram of four separate flip-flops X, G, H
and J, flip-flop G being associated with three input control
gates 61, 62 and 63. Gate 62 is in turn controlled by the output
of a clock-period-defining gate 64 whose output, after being
inverted by inverter 65, controls gate §1. Briefly, at the end of
each code bit period, the Q or true output of G is a logic 1
whenever the derived biorthogonal code bitisto be a 1.

Flip-flop H associated with three input control gates 6§, 67
and 68 performs, at the end of each code bit period, the modu-
lo-2 addition of the biorthogonal code bit represented by the
output of G and the comma free vector code bit represented
by the output of flip-flop Z (see FIG. 4). Flip-flop K is used to
sense the number of binary zeros (8’s) in the code bit number,
in binary representation, which is necessary to determine
whether the f data bit is to be included in the modulo-2 sum-
mation for the biorthogonal code bit. Flip-flop J is used to pro-
vide a true output during the last code bit period during which
a new data word may be clocked into register 20, one bit per
clock period, as well as to reset register 40 (see FIG. 4) to its
initial state of 91111 (in binary form).

Before proceeding to describe the operation of the logic cir-
cuitry, shown in FIGS. 2 through 6, reference is first made to
the following lead designations which are used for the flip-
flops: S; = clocked set (active = high), C. = clocked clear
(reset), where the S, or C, inputs of any flip-flop are logically
combined in an AND gate (not shown) in the flip-flop, S, =
direct (asynchronous) set (active = low), C, = direct clear,
Clk = clock puise (negative transition), Q = “true” output
which is assumed to be a logic 1 when the flip-flop is set and Q
“false” output. Input leads to the encoder are DATA,
representing a data word, serially supplied bit by bit, and the
three outputs of clock 52, herebefore explained. A flip-flop
letter designation such as N represents a connection to the Q
terminal of flip-flop N while a letter designation with bar
above it such as N represents a connection to N’s Q terminal.
The encoder output is designated CODE representing the Q
output of flip-flop H. CODE is the complementary encoder
output.

The particular lead designations are for specific circuits
which were actually used in reducing the invention to prac-
tice. The circuits used included low power diode transistor
micrologic (LPDTML) integrated circuiis of the type manu-
factured and sold by Fairchild Semiconductor of Mountain-
view, Cal. These circuits are extensively described in copy-
righted publications of Fairchild Semiconductor. It should be

10

15

20

25

30

35

40

45

50

55

60

65

70

75

8

pointed out that the particular circuits are presented only as
an example of one embodiment of the invention. It should be
clear that other like circuits may be employed to practice the
teachings disclosed herein. .

As stated previously, the function of flip-flops L., M and N of
register 59 of register 58 (FIG. 5) is to define, by the binary
states of L, M and N six discrete clock periods which together
define one code bit period. The six clock periods are shown, in
terms of the states of flip-flops L, M and N, in the left-hand
column of FIG. 7. During the first clock period when L, M and
N are all ¢’s, the least significant bit (LSB) of the data word, is
in the A flip-flop of data word register 29 (see FIG. 2) while
the next least significant bit is in flip-flop B, etc., so that the
most significant bit (MSB) is in flip-flop F. During the same
clock period, namely, the first of the six clock periods, flip-
flop U of the code bit number shift register 38 (see FIG. 3)
contains the most significant bit of the code bit number in bi-
nary form, and, at the same time, flip-flop P of the same re-
gister contains the least significant bit of the same number, in
binary form.

As should be apparent from columns A through F in FIG. 7,
the data word, contained in flip-flops A through F, is cycled
through the shift register 20 once every code bit period, so
that during the sixth clock period (when L, M and N are 801,
respectively) the most significant bit and the least significant
bit are in flip-flops A and B, respectively. Consequently, dur-
ing the next clock period, namely the first clock period of the
next code bit period, the most significant bit and least signifi-
cant bit are against stored in flip-flops F and A, respectively.
The content of the flip-flops P through U is also advanced by
one stage per clock period. However, since register 39, con-
sisting of flip-flops P through U is only a five-stage shift re-
gister, and there are six clock periods per code bit period, one
of the six clock pulses per code bit period must be disabled.
This is done by utilizing gate 35 (see FIG. 3) to disable the re-
gister 30 from advancing the content of its various stages
therein, in response to the clock pulse supplied thereto.

The binary counting produced by register 3¢ in conjunction
with the inversion-controlling flip-flop I, is accomplished by
using the following algorithm:

1. Starting with the least significant bit, then the second least
significant bit, etc., change all ones to zeros until the first zero
is detected.

2. Change that zero to a one.

3. Do not alter any of the bits in the subsequent, more signifi-
cant positions.

The changing or inverting is controlled by flip-flop I and ac-
complished by gates 31, 32 and 33. For a more complete ex-
planation of the implementation of the algorithm by means of
register 3§ (flip-flops U through P), shift register 50 (flip-flops
L, M and N) and the flip-flop I, reference is made to FIG. 8
which is in table form showing the binary states of the various
flip-flops during the six clock periods of each of code bit num-
bers or periods @, 1, 14, 30 and 31. As seen therefrom, during
code bit period O, during the first clock period, a zero, in bi-
nary form (§2069) is stored in the shift register consisting of U
through P. In accordance with the algorithm, since P stores a
O, during the next code period when L, M and N = 100, the
zero () is changed to a one (1) and is stored in U and flip-flop
Iis reset (from 1 to a §). Thereafter, the content of U through
P is advanced at the end of each clock period (except at the
end of the fifth), so that in the sixth clock period, when L, M
and N=19, 0, 1, respectively, U through P store the logic com-
bination of $8019. Then, at the start of the next clock period,
representing the first clock period of the next code bit number
or period, the content of U through P is again advanced by one
stage, so that at the start of this code bit period a one, in binary
form (G0681) is stored in U through P. Also, flip-flop I is set
again to contain a logic one. This counting sequence continues
until, at the end of code bit period number 31 when L, M and
N are 0, § and 1, respectively, flip-flops U through P store the
logic combination $899%. Consequently, when the next clock
pulse is received, all zeros are stored in U through ? to

3,569,956

9

represent, in binary form, a code bit number O.

From the foregoing it should be seen that during the first
five of the six clock periods of each code bit period, the first
five bits of the data word, starting with the least significant bit
are sequentially stored in flip-flop A. Whether the bit is a logic
1 or 9 is indicated at the output of gate 23 (see FIG. 2), the
output being represented by B. Likewise, during the first five
clock periods of each code bit period, the various bits which
represent the code bit number, in binary form, are sequen-
tially stored in flip-flop P whose binary state, is indicated by
the output of gate 33 and is represented by the letter a. Since,
as hereinbefore explained in conjunction with Table 2, the
decision to incorporate any of the data word bits in the modu-
lo-2 sum to produce the bit in the biorthogonal code is a func-
tion of the code bit number, it is the outputs & and 8 which are
used to control the toggling of flip-flop G, during these clock
periods. The output a is also supplied to flip-flop K whose
function, in essence, is to count the number of logic zeros in
the code bit number.

The manner in which the outputs a, 8 and the binary state
of flipflop K are used to obtain the code bit in the
biorthogonal code, using flip-flop G and the gates 62 through
§5 in front of it, may now be explained. Briefly, at the start of
each cycle period, G is reset. It is wired to toggle whenever the 25
output of the OR gate §3 to the left of it is a logic one. That
gate is a 1 whenever any of the following conditions apply:

1. Data bit a is a one and the code bit number is even (i.e., o
and B are both one during LMN = 000).

2. Daia bit b is a one and the code bit number is the first two of 30
a group of four (i.e., @ and B8 are both one during LMN =
100).

3. Data bit ¢ is a one and the code bit number is the first four
of a group of eight (i.e., @ and B are both one during LMN =
110).

4. Data bit d is a one and the code bit number is the first eight
of a group of 16 (i.e,, al and B are both one during LMN =
111).

5. Data bit e is a one and the code bit number is one of the first
16 (i.e., a and B are both one during LMN=011).

6. Data bit fis one and the code bit number, in binary form,
has an even number of zeros (i.e., K is zero and B is one during
LMN = 001; the even number of zeros is indicated by the fact
that the K flip-flop, after the reset during LMN = 000, toggled 45
an even number of times in response to the a input).

If the OR gate 63, leading to G, has been a one an odd
number of times, G will have toggled accordingly and will be a
one at the end of the code bit period; the opposite is true if the
gate was one an even number of times.

Ignoring for the present the function of the comma free
code shift register 40 shown in FIG. 4 and the function of flip-
flop H in FIG. 6, from the foregoing it should be appreciated
that the algorithm, necessary to obtain a code word in the
biorthogonal code from a 6-bit data word is implementable
with a single set of modulo-2 adders (G and related gates).
This is true since the modulo-2 summations of the various data
word bits, necessary to produce the code word bits is not done
in parallel but, rather, sequentially during six successive clock
periods, which define each code bit period. The serial opera-
tion is realizable by cycling the data word through shift re-
gister 20 once every code bit period, while at the same time
the code bit number, in binary form, which is in shift register
390, is similarly cycled. During each of the first five clock
periods, the contents (binary states) of flip-flops A and P are
used, while during the sixth period the contents of A and K are
utilized.

As previously stated, once the bit of 2 code word in the
biorthogonal code is obtained as the output of G, the cor-
responding bit of the code word in the comma free
biorthogonal code is obtained by mod-2 adding the output of
G with the output of Z (FIG. 4). This is achieved by flip-flop H
and gates 66, 67 and 68, in front of it.

After a complete code word is generated during a succes-
sion of 32 code bit periods, flip-flop J is set in the last clock bit: 7>

—

0

20

35

40

50

60

¢

period to enable, by means of gate 22 (FIG. 2), a new data
word to be clocked in while at the same time resetting the
comma free vector code generator 40 (FIG. 4) to an initial
state in order to produce during the next 32 code bit periods
the desired comma free vector code as the output of Z.

In the particular implementation shown in FIG. &, the logic
controlling flip-flop J is such that J will be reset during all code
bit periods except the 31st. This would normally be accom-
plished very simply using a s-input logic gate, but hardware
considerations dictated the use of 2-input gates. From FIG. &
it is seen that during the last five of the six clock periods of
code bit 3¢, U, S and P are binary ones, implying that the C,
input of flip-flop J is a one, i.e., C; is inactive, and the C, input
is a ZERO, i.e., C, is inactive, meanwhile the S, input is active
(logic one) until the fifth clock period. When both of the S,
and C, inputs are inactive at the clock negative transistion, the
state of the flip-flop is determined by which input was last ac-
tive. Thus, in the 31st. code bit period S, is active last, causing
the J flip-flop to be set. This condition for setting the flip-flop
is not satisfied in any other code bit periods.

Although particular embodiments of the invention have
been described and illustrated herein, it is recognized that
modifications and variations may readily occur to those skilled
in the art and, consequently, it is intended that the claims be
interpreted to cover such modifications and equivalents.

I claim:

1. An encoder of the type for converting an m-bit data word
into a corresponding n-bit code word herein n=2 ™9 1), the
encoder 2

clock means for defining m clock periods during each of a

sequence of # code bit periods;

first means for storing said m-bit data word and for cycling

said data word therethrough during the m clock periods
of each code bit period;

second means for storing, during each code bit period, a

code bit number in binary form corresponding to the
code bit in said sequence to be produced, and for cycling
said number therethrough during each code bit period;
and

control means coupled to said first and second means for

utilizing the contents of parts thereof during each of said
m clock periods, defined by said clock means to provide
at the end of each code bit period a code bit in said n-bit
code word, as a function of the data word and the binary
representation of the code bit number in said second
means.

2. The encoder as recited in claim I wherein said second
means comprises a shift register of m-1 stages and said first
means comprises and m-stage shift register.

3. The encoder as recited in claim 2 wherein said control
means includes a single bistable element whose output at the
end of each code bit period is either a logic one or a logic zero
representing the code bit at the end of each code bit period.

4. The encoder as recited in claim 3 wherein said control
means includes a plurality of gating means, responsive to the
binary states of the least significant stages of the shift registers
of said first and second means during at least some of the
clock periods of each code bit periods for controlling the state
of said single bistable element.

8. The encoder as recited in claim 4 wherein m =6, n= 32,
and said code bit period sequence includes periods O through
31 with said second means storing an § through 31 in binary
form in the 5-stage shift register of said second means during
the code bit periods @ through 31 respectively, with said con-
trol means responding during each of the clock periods of
each code bit period to at least the state of the least significant
stage of said first means shift register to control the state of
said single bistable element as a function thereof.

6. The encoder as recited in claim 8 wherein said control
means include means for performing modulo-2 summation on

from one to five of the data word bits for controlling the final
state of said bistable element at the end of each code bit

period.
7. The encoder as recited in claim § wherein the six data

3,569,956

i1

word bits are definable as a—f, a, being the least significant
bit, and said control means incorporate in the modulo-2 sum-
mation said bit q, during all even-numbered code bit periods,
said b bit for the first two of each group of four code bit
periods, the first group starting with period €, said ¢ bit during
the first four of each group of eight code bit periods, said d bit
during the first eight of both groups of 16 code bit periods,
said e bit during the first 15 code bit periods §— 18, and said f
bit during each code bit period whose number in binary form
includes an even number of zeros.

8. The encoder as recited in claim 4 further including
generating means for generating during each of said code bit
periods §—31 a different bit of a preselected 32-bit code
word, and means for logically combining, at the end of each
code bit period, the code bits from said generating means and
said single bistable element.

10

20

25

30

35

40

45

50

55

60

65

70

75

12

The encoder as recited in claim 8§ wherein said control
means include means for performing modulo-2 summation on
from one to five of the data word bits for controlling the final
state of said bistable element at the end of each code bit
period.

i8. The encoder as recited in claim ¢ wherein the six data
word bits are definable as a—f, a being the least significant bit,

-and said control means incorporate in the modulo-2 summa-

tion said bit a, during all even-numbered code bit periods, said
b bit for the first two of each group of four code bit periods,
the first group starting with period 9, said ¢ bit during the first
four of each group of eight code bit periods, said 4 bit during
the first eight of both groups of 16 code bit periods, said e bit
during the first 15 code bit periods §—15, and said fbit during
each code bit period whose number in binary form includes an
even number of zeros.

