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ABSTRACT

Title of Thesis: Multi-color Phctometry of Supergiants and Cepheids
Thomas Kelsall, Doctor of Philosophy, 1971

Thesis directed by: Roger A. Bell, Associate Professor of Astronomy

The results of photometry of supergiants and cepheids in a‘seven
filter system are presented. A color index is used in combination with
other colors to produce four indices freed from the effects of inter-
stellar reddening. These four indices give measures of the Balmer
discontinuity, effects of the metallic line absorption in the vioclet
region of the spectra, break in the spectrum acrosé the G-band, and
the strength of the cyanogen band head at 42168.

The separation of supergiants from stars of other luminosity
classes is possible. This is performed by a non-linear mapping of the
colors onto an Mv,logTe H~R diagram.

Populafion discriminstion for cepvheids appears impossible from a
study of the colors. However, it is shown that the values of various
color-color loop areas can be used to distinguish cepheids of Pop. I
and Pop. IT. This procedure 1s superior as it is independent of
interstelliar reddening.

The Balmer discontinuity index for superglants and cepheids is
insensitive to the effects of line blanketing. We speculate that this
will allow for a precise calibration in terms of gravity. The strengths
of the metallic line absorption and C¥ absorption are strongly corre-
lated.

Wo obvious correlation is found between galactic position and



and chemical composition, as indicabed from the strength of the metallic

line indeX.
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CHAPTER I

INTRODUCTION

1-1l. Preamble

The study of cepheids starts with the visual recognition of the
variability of 8 Cep by Goodricke in 178k, and continues through the -
present day. The data is of great usefulness, and is applied to a
variety of problems - determination of galactic structure, compositional
discrimination between galactic systems, evaluation of the extra-~
galactic distence scale, verification of evolutionary stellar models,
eticetera. In this introductory chapter no attempt is made t0 sumarize
all the available data and their interpretations. We limit ourselves
t0 an abbreviated discussion of a selected set of facts, observationmal
and theoretical, representative of our knowledge; and, to a statement
of this investigation's goals. A more complete picture of cepheid
research is given in the works of Aller (1954), Christy (1966a, 1968),
Kraft (1960, 1963, 1965}, Ledoux and Walraven (1958), Payne-Gaposchkin

(195L), Rosseland- (1954), and Zhevakin (1963).

1-2. Theoretical Work and Its Mobtivaitional Basis

We begin with a review of cepheid theory, as it gives us an under-
standing of the type of stars involved and introduces concepts utilized
in the interpretation of the raw observational data.

As ig characteristic of astronomy the first attempts to explain
variable gtar phenomena were geometric in structure. A main contender
was the binary star hypothesis. However, by the 1920's the body of

observational data could not be explained by a singlé, encompassing,
1



goemetric theory. A correct theory must explain the following:.

(a)

(b)

(c)

(a)

{e)
(£)

(g)
(n)

(1)

the nearly linear relationship hetween absolute magnitude
and the log of the period;

the Doppler shifting of the spectral lines with phase;
the wirror image in time and structure of the light and
velocity curves (maximum light at minimum recessional
velocity, and the converse);

in the mean a smooth progression of light curve forms
with period;

the time invariance of the periods;

the phase-dependent changes in the spectrum, which closely
mimic at each phase a class of sharp-line, non-variable
stars (the pseudo-cepheids which we refer to today as
supergiants);

the coxrelation of light smplitude with peridd;

the strong, linear correlation belween light and velocity
amplitudes;

the restriction of the cepheids 0 a naryrow region in

the H-R diagram.

On the basis of these data the main theoretical thrust was directed

toward a pulsational solution. With the strengthening of the concept

that stars doubtless possess spherical symmetry, the main emphasis was

directed foward pure radial pulsational theories. The major credit in

promulgabing these ideas must be given to Eddington.

On relatively simple arguments we can relate the expected periods

of pulsating stars with their internal structure. The period should be

related to a characteristic length, the diameter of the star, and the



time needed for a compressional wave to traverse that distance --
P @ 2R/v, (1-1)

where P is the period, R the radius, and v a mean sound veloeity in the

star. In the guasi-static, adiabatic iimi? we have ~-

v o= YP/p r o (1-2)

where Y 1s the ratio of specific heats, p is the pressure, and 2 the
gas density. For an equilibrium, gaseous sphere with zero pressure ab
the surface, so surface integrals vanish, the wvirial theorem gives for

the potential enexrgy --

W = 5fpdv = Ej(p/P)dm = 5I(v2/v)dm

or

-~ 372M/y : (1-3)
where M is Tthe mass of the star. From simple potential theory we have --
W = 36M%/((5-n) *R) = kGMZ/R , (1-1)
where n is the polytroplc index, and G the constant of gravity. Using
Egs. (1-3) and (1-4) in Bq. (1-1) gives --

P EJ(B/VG)*J(l/k)*R5/2M']‘/2 . (1-5)

As k increases with the degree of central concentration, Bg. (1-5)
predicts that P decreases for a fixed M and R. Substituting the

equality --

— LR35 /30
M = 4mR%P P /30



in Eq. (1-5) Wwe develop the well~knowmn period density relationship --

B/(0p/Pg) & 2/(3/¥k)//(hmGh/3) = q . (1-6)

The congtant Q is often referred to as the pulsation counstant. With
Pe Bqual. to 1.5 gr/cms, n equal to 3 (Pc/5 = 55), and v equal to 5/3,
we find @ = 0.039. This value is very close 4o resulbs from the most
sophisticated calculations for +the cepheids.

Dimensional arguments, while powerful in their ability to illuminate
basic physical relationships, are incapable of demonstrating the
dynamical causes of pulsation. The demond of the dynamics for a periodic
solution is shown by 2 crude first order theory as applied to a homo-
geneous star. PFor any point r in the star undergoing small, radially

synchronous pulsations, Newbon's equation of motion is --

$ = -g - p tdp/dr , (1-7)

g being the instantaneous value of the gravitational acceleration.
Expanding r about 1ts equilibrium value (ro), recognizing the assumed
homogeneous configuration, and assuming adisbatic pulsations so p ~'py

we have --

T = ro(l+6(t))
g = g,(148)72 ~ g (1-28)
_ -3
P =p_(1+3) P (1-38)
P = po(l+6)'3y ~ p,(1-3v8),



where 6(t) is a time-dependent function. Substitubting in Eq. (1-7),

and dropping terms of order 8% and higher gives --

5+ Ego(ﬁv-h)/rolﬁ =0
or _

.6‘+K_6 =0, ’ (1—8)

where use is made of the equilibrium relation --

dp /dr, =g P -

The general solution to Eg. (1-8) is of the periodic form --

aele*t . be—le*t

2

but considering only real displacements we can write ~-
8 = const.¥sin(/k*t) = const.*sin(2mt/P) .

Here P, the period of the oscillations, is given by --

1
2

P = [3n/(ee (3v-1))17, (1-9)

as go/rO = hﬂGPO/3 . In this case, an evaluation gives a Q of the order
of 0.10. A wmore rigorous analysis using for the star model a polytrope
of index 3 gives a value for Q of 0.039.

A wultiplicity of investigations of adiabatic pulsations was



performed from 1874 (the time of Ritter's original suggestion that
gaseous spheres might be pulsationally unstable) up through the early
1950's. A classiec and virtually terwinal discussion along thege lines
is well represented by Epstein’s work (1950). Epstein incorporated a
number of features intc his models corresbonding to the increased
awareness of the physical characteristics of giant stars. The models
possess large radii and luminosities, and high central temperatures and
degrees of central concentration. In addition, distinct from the older
models, the chemlcal composition more nearly approximates present day
estimates for the mass fractions of hydrogen, helium, and the heavy
elements. The investigation shows beyond doubt that only the extéernal
portions of the star are effective in governing the basic form of the
pulsations. The pulsational amplitudes are virtually zero at the center,
and largest at r ~ R. As the stars are of a centrally condensed type,
the mass involved in the larger amplitude excursions is one-tenth or
less of the total mass of the star. For a wide range of reasonéble
physical parameters the pulsational constant, Q, is nearly invariant,
and of value 0.035 + 0.005. The ratio of first harmonic period to the
fundamental period is 0.69, in good agreement with the existing data.

A salient feature of Epstein's work, and all prior investigations,
is its inability to account for The persistence of the pulsations.
That the escapement mechanism ig the variation of nuclear enexrgy re;
lease is unitenable because of the non-participation of the central
regions in the oscillations. Damping times are so precipitously sﬁort,
amounting to hundreds of years, the possibility of ever observing a
variable star is excluded. And all these calculations fail in explain-~

ing the "cepheid phase lag", the occurrence of light maxirmm a gquarter



of a period after minimum radius.

What motivated theorists to continue their labors, as the returns
while exciting were meager? To be sure, geometric model solutionsg Lo
the problem could in no way account for the list of observational
characteristics, but neither could the preliminary theoretical pulsa-
tional models. The impetus to continue was the fruitful observational
search for corroborative evidence of the pulsational hypothesis.

One of the most compelling pieces of direct evidence for pulsations
is the observatiomal verification of the P/p = Q relation. The in-
gredients needed are the masses, radii, and periods of the stars. We

can determine the masses and radii by using the relations --

(R/Bx)® = (L/Lo) (T /T )*

(L/Lg) ™ "®

M/M

to give

1)

p/p®

u/M/(R/R)®

where the constant b in the mass-luminoéity equation is usually taken
to be near zero (see, for example, Payne-Gaposchkin and Gaposchkin
(1938)). The values of T, end L are observables, although some as-
sumptions are required to obfain them from the raw obsexrvational data.
From the determined values of P and P we find a Q of approximately 0.09
for the cepheids, and a wide variety of other variables. While this
value is in disagreement with most theoretical determinations, it is
noted.thét the discrepancy can easily result from mincr errors in the

values assigned o Te, and less critically, to the luminosity.



Baade (1926) proposed a test of the pulsabional hypothesis using
color, light, and velocity measures. From the color observations it is
possible to obtain bolomebric corrections (BC's) and effective temper-
atures. From the measured visual light magnitudes (m) at any two

phase points the ratio of the radii at the two points is given by --
Ro/Ry = Anti-log((ml+Bcl—m2%B02-lO*log(Tee/Te )Y/5). (1-10)
1

From the velocity cuxve, assuming the star to be a radial pulsator,

we have --
P2
Re/R1 = (R1#0R312)/Ry = [Ry + d..l\ (Vr"‘{':r)d(ﬂ/ﬂl s (1~11)
$1

where 4 is the limb-darkening correction term (usually taken as 24/17),
and Vo Gr are the observed and the average observed radial velocities,
respectively. Using R; as the unit of length, the results from Egs.
(1-10) and (1-11) are comparable, and if equal, the idea of radial
pulsation is supported. The first attempts were ineconclusive, and
the realization grew that the primary difficulty resides in the
evaluations of the BC's and Te's. Wesselink (1946) modified Baade's
method by pointing out that if the two phase points are points of
egual color, which aré assumed to represent pointsof z2qual temperatures,
the difference in light can be attributed purely to radius variations.
Under this assumption Egs. (1-10) and (1-11) are combined to give -~
P2

(my-mn) = 2.17*[dj (vr-ﬁr)d¢}/§
P



Am = 2.1T*AD/(R/4) . (1-12)

Wesselink's formulabion gives, with few exceptions, excellent con-
firmetory results. For illustration, the application to & Cep is
shown in Fig. 1.l. From the slope of the curve, and with 4 = 24/17,
the mean radius of & Cep is found equal to thirty-nine solar radii.
Schwarzschild (1938) argued that a strenuous test of the pulsation
hypothesis would be the demonstration that the light curve can be
directly predicted from a knowledge of the velocity curve. His
derivation of the test is not amenable to simplified presentation.

Suffice it to say That starting from the fundamental equation --

L = -(16mr3cT>/3up )aT/dr ,

and using the egquation of motion %o give the density variations in
lterms of the radius variations, we are able ‘o find an expression
relating the luminosity L(®), in units of L, to quantities derivable
from the velocity curve - T, ¥, and r-r. The final expression contains
three free parameters, which fortunately can be specified with reason-
able precision by recourse to simple physical arguments. The ap-
Plication of this method to & Cep is shown in Fig. 1.2. The observed
and predicted curves are in excellent agreement.

In 1919 Shapley and Nicholson (1919) argued that an unambiguous
test of pulsation would be found in observations showing a tight

relationship between line asymmetries and Doppler velocities. The

definitive application of the idesa was delayed for thirty-three years,
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but finally giveﬁ in the excellent work of van Hoof and Deurinck {1952).
They devised, from a reduction of high dispexsion (2.9 R/mm) spectra of
M Agl, two independent tests from stuﬁying two separate sub-groups of the
weak Fe I lines. The first test is the consideration of the weak Fe I
lines lying on the linear portion of the curve of growth. At each phase
point, seven weak, parrow lines in the range L4376 K to 587 2 are re~
duced, normalized, and averaged. The averaging procedure greatly
reduces measurement errors. On visual inspection alone the correspond-
ence between predictions -~ blue excess on expansion, red on contraction
- and observations is good. Detailed calculations, which incorporate
the effects of the pulsation hypothesis, strengthen the impression of an
agreement to present the fact of' agreement. In addition the line. shapes
for equal but opposite velocities are mirror images of one another.
I1lustrative results are shown in Fig. 1.3. As a check, a repeat of the
ghove is performed on the Fe I lines situated on the horizontal portion
of the curve of growth. In this case, profile averaging is impossible,
so0 lines must be considered individually. The results are as satisfac-
tory as in the first test .

As the observabions inexcrably point to the correcteness of the pul-
sational hypothesis, the theories must be deficient in some essential
ingredient. A physical process that is, as Eddington (1930) said, "fan-
tastic in an ordinary engine but not necessarily so in a star'. The
resolution came through the works of Zhevakin (see Zhevakin (1963) for a
comprehensive review), and Cox and Whitney (1958) who found that the
necessary destabilization results from the conversion of thermal energy
into mechanical energy in the surface lonization zones of hydrogen and
helium (10%* < T < 10° %),

In the main body of a star (T > 10° °K) the opacity obeys a
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Kramer's type law --
o
%=HopTB,

where @ ~ +]. and P ~ -3.5. Upon compression the temperature rises,

the opaclity decreases, and heat energy leaks out. This loss of heat
on compression reduces the pressure during the expansion stage, and
subsequently damps oubt the pulsgtion ~ a mechanism referred to as
"radiative damping"”. The process in the nydrogen and helium ionization
zones 1s most dlfferent, as the contribution of these zones to the
pulsations is to balance the negative dissipation of the deeper adia-
batic layers. The valving action of the ionization zones results from
two distinct processes. Compressional heating goes not into the
raising of the temperature but into the ionization of the medium.

Thus, these regions are coocler Than their surroundings and can absorb
heat. This process is signaled by a decrease in the ratio of the
specific heats (y -~ 4/3), and is called the “gamma effect”. It wight
better be called the‘bp effect', as it is the increased heat capacity
of the lonization regilons that aid in the driving. The Cp or gamma
effect is most proncunced in the second helium lonization zome, and is
unimportant in the hydyogen ionization zone, which is closer to the
surface, thinner, and contasins appreciably less mass. In addition,

on compression the opacity increases, & and & are both positive, and
energy is stored up in these zones. This is called the "kappa effect'.
Both the gamma and kappa effects work in unison to increase the pressure
upon subsequent expansion, and thus help maintain the pulsations. The

relative dissipative effects of the deep adiabatic layers and the outer
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ionization zones, for a parbicular model teken from Christy (1968), are

shown in Fig. 1.k.

The complete set of equations, in Lagrangian form and standard

aotation, governing the pulsations are

equation of motion: 3%r/3tZ = ~GMr/r2 - (hﬂrz)BP/BMf (1-13)
contimuity equation: Br/BMr = 1/(4me3p) (1-14)
radiative diffusion: L. = “(64“2a0r4T3/3%)3T/3Mr (1-15)
energy equation: aL /oM, = (P/p®)3p/3T - 2B/3t (1-16)
equation of state: P = kpT/uH + am*/3 (1-17)
internal energy/gram: E = 3kT/2pH + a™/p + I, (1-18)

where I is the ionigzation eﬁergy. The subsidiary relation giving kappa
as a function of p,T and composition is usually in the form of a Lable.
It is important to note that while the equations are coupled, the first
two are related to the mechanicalfeatures and the second two to the
thermal features of the stellar configuraiion.‘ In the energy equation
the nuclear energy generation is not included, because all studies

show the region of interest is only the outer envelope (T < 10° %K).
The complement to the radiative Transport equation, the convective
transport equation, is not shown. The gquestion of the inclusion of

time dependent convection is most complex, and an adeguate prescription
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is yet to be formmlated. A recent attempt is that by Umno (1967). A

normal set of surface boundary conditions are --

M, =M: P =0; a(T*)/ar = /A ,

where T is the optical depth {ar = -dei/hﬂra) and the constant A is
usually taken to be 2/3 so the temperature distribution satisfies
Eddington's gray atmosphere spproximation., The interior boundary is

defined by =--
T = consbant (~ 10% %K) or M_ = constant (~0.5M): d3r/ot =0; L =1L

where Lo is the Iuminosity emanating from the interior.

The methods of abstracting information from Egs. (1-13) through
(1-16) are referred to in the litersture by a useful, descriptive
nomenclature. The names, major features, and a particular modern study
of these procedures are as follows;

(a) Tinear, adiabatic - The structure equations are linearized
{r(t) = ro(1+dv(t)), etec.), the ones describing the thermal
properties are eliminated by imposing the adiabatic condition
Pd pY, and a single second-order differential equation
developed for the pulsations - Epstein (1950);

(b) Linear, quasi-adiabatic - The same as in (a), except that
the adiabatic solutlons are used to estimate the non-
adiabatic effects by substituting into the therwmal

equations - Baker and Kippenhahn (1965);
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(e) Linear, non-adiabatic =~ The four linearized structure
equations are solved in their entirety - Cox (1963);
(&) Full, non-adiabatic - The structure equations are attacked
without approximation - Christy (196L4).

A full review of all the theoretical work is not feasible, We limit
our discussion below to a single, current, comprehensive investigation.

Recently, Stobie (1969a, b, ¢), in a series of beautifully pre-
sented papers, has studied the effects of variations in the five prime
parameters - mass, luminosity, effective temperature, helium content
(Y), and heavy metal content (Z) - on theorebical cepheid models. The
parameter list really comtains only four, as the effects of Z variations
are minor, and any reasonable (0.02 < 0.06) value is adequate to
the discussion. The calculations include radiation pressure and the
three ionization zones of hydrogen and helium, but neglect convective
transport. The omyissiOn of convection restricts commentary to the
high and mid-Te region of the cepheid instability strip in the H-R
diagram. There are seven observational controls imposed on the
theoretical models --

(a) 1location of the strip's high Te boundary;

(b} position of the strip in the M, (B-V) diagram;

{c) form of the ¥ _~logP relation;

(d) dependence of the velocity amplitude with period;

(e) correlation of (B-V) with period;

(f) 1ocation of secondary bumps on the light curves;

(@) occurence of the famous cepheid phase lag.

The choice of the basic parameters in ref. (1969b) is taken from

evolutionary model calculations. For this choice the cepheid model
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results disagree with the observatiocnal data, and no adjustment of the
parameters, within the frame~work of the evolutionary calculations,
can achieve consistency. However, the results can be made compatible
with the observations by increasing the light to mass ratio. In ref.
(1669c) a reduction of approximately two in mass from the evolutbionary
calceulations is made, and the effects on the cepheid models analyzed.
The mass is the most likely candidate for change as it is the one
parameter not accessible to observational evaluation. The results of
the new study are most encouraging.

The controls sensitive to Y - the strip's high—Te boundary, its
overall location in the Mv’ (B-V) diagram and the positioning of the
equal-period lines, M _-logP relation (mainly the zero point), and the
(B-V)~logP correlation - all indicate a Y of approximately O.45. In
fact, the comparison between the theory and the observations is improved
for a ¥ of 0.45 in the M _-logP case, if use is made of Geyer's (1970)
recent re-evaluation of the zero point. 8tobie compared his results
with Kraft's older M%—logP relation. The location of the secondary
bump ie fine - bump on the descending portion for Td <P << 1od, at
light maximum for P ~*1Dd, and on the ascending part of the light
curve for P = lOd. The velocivy amplitudes and their inter-relation-
ship with period is improved. The Ffamous cepheld phase lag test is
inconclusive. This feature is the most difficult to match theoretically,
but the situation is satisfactory.

Thig reduction in mass from that expected from evolutionary
calculations has alsc been noted by Christy (1966b), who studied
pulsational models for & Cep and T Agl. He could get good agreement

with the observations only for masses ~ 2 times smaller than those
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predicted from evolubionary models. The justification for this mass
reduction is usuwally made by invoking mass loss during a star's
evolution. Bubt is this absolutely essential? We note that even for
the sun the effects of line absorption translate into an eguivalent
reduction in g of approximavely thirty percent in the cool photosphere,
as has been calculated for the Fe II ions by lambert (1968). In the
cepheid ionization zones the temperature is appreciably higher, the
upper abtomic levels of hydrogen and helium are populated, and resuliting
line absorption may easily account for some of the needed reduction in
g. Obviously, this effect is restricted to the outer layers as it is
negligible in the deeper, hotter, adiababic regions. It should also
be noted that part of the difficulty may arise from errors in the

opacities used in the model calculations.

l-3. Basic Cepheid Parameters from Observations

We understand a group of variable stars if we can interpret
observational measures to give us period, luminosity, radius, mass,
compositlon, and evolubtionary status. In this section we describe the
evaluations of ‘these prime characteristics, along with some derived
inter-relationships., We discuss the pure photometric obseréations in
1-k.

The periods of well observed cepheids are specified to 2 remark-
able precision, seven to nine significant figures. This stems from
the long time of study as compared to the characteristic pulsational
periods - e.g., eighty years as compared to ten days. As is usual we
define the period as fthe time between sucessive light maxima. If we
let T be the time of maximum light (Julian days), To be an axrbitrary

time of initial maximum, P3; be a first approximation to the period,
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then a predicted time of meximum after W cycles is --

T = To + Py*N .

A study of the residuals, T - T

b as & function of time gives

cal?
us all the data necessary for correcting P;. In practice this procedure
is sufficient for a majority of the cepheids. For a small nunber, a

better £fit to the time of maxima is --

T = Ty + Py ¥N + axN= ,
S0
P = TN+1 - TN =P, + 23N + & .

Again a study of the residuals allow for the evaluabtion of the consbants
P, and a. In the main & is very small (~1% x 107). We note that
neither of the above representations is a physical statement, they are
Just convenient fitting expressions. However, a secular term is
reagonable. The cepheid phenomena is an evolwtionary stage of a
short-1lived massive star. The evolutionary studies indicate a star
traverses the instability strip in 107 to 10% years, depending on the
star's mass (L to 9 MO)' During the traversal the period varies by
approximately a third. Thus, detectable secular changes in the period
of the order of seconds per year are to be expected,

A most striking cepheid relationship 1s the correlation between
luminosity and period, the period-luminosity (P-L) law. This was first
noted by Miss Leavitt around the the turn of the century in her study

of cepheids in the Small Magellanic Cloud (SMC). The P-L relation for
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almost any magnitude ~ photovisual, photographic, the B, V magnitudes

of the UBV system, ebc. - is of the form --
m = a + b¥logP , (1.-19)

for a wide range in logP. The magnitude m is most often taken as the
magnitude of the intergrated wmean intensity. Non-linear logP Lerms

in Bg. (1~19) should be small. We can demonstrate this by a crude
calculation. We assume that In The mean & cepheid can be represented
by & black-body at a particular temperature (Tbb)' As cerpheids of
longer period are in the mean cooler, decreasing logTbb is equivalent,
"in a rough sense, Lo increasing logP. We calculate for values of lOgTbb
the bolometric, B, and V magnitudes. Now physically Eqg. (1-19)
probably best represents the variation of Mbol with period. If such
is the case and the B luminosity is a constant fraction of the bolo-
metric Iuminosity for all logT, (logP), then the B magnitude would
also vary linearly with logP. For pure black-bodies this is an im~
possibility. The true change of the B magnitude with 1ogTbb, assuming
Mbol = const. lOgTbb’ is shown in upper left panel of Fig. 1.5 as the
golid line, with arbltrary normalization so the Mbol’ dashed line, and
the B curves are equal at T = 7000 %K. In the lower left panel of
Fig. 1.5 the results for V are shown. The prediction from this simple
caleulation is that there should be a discernible downward turn at low
Logl, (large logP) values. This is in good agreement with the photo-
metric P-L relations for V and B determined from a combined study of
cepheids in our galaxy, SMC, IMC, M31l, and NGC 6822 by Sandage and

Tammann {1968). ‘he Sandage-Tammann results are shown in the right panels
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of Fig. 1.5, where the dashed line represents the straight line which
passes through the greatest segment of the respective P-L curves.

The usefulness of the P-L reilation is contingent upon precise
evaluations of the zero point, a, and slope, b, in BEg. (1-19). The
paucity of absolubte megnitudes, in any photometric system, for cepheids
in our galaxy precludes the simulbtanecus determination of these
constants. The usual. assumption has been that the slope can he taken
from the extensive observations of cephelds in the SMC. This ad hoc
assumption is now reasonably well-supported by the observational
(Gandage and Tammann 1968) and theoretical (Stobie 1960b) results.
Though the observational results are still a little unsettled, es-
pecially for V, as can be seen in Table 1.1,

Some of the deviation in the slope determinations results from
the small samples, the assumed form of internal absorxrption corrections
in the SMC, and the intrinsic difficulties working with faint stars.
But the major problem is probagbly the presently impossible task of
selecting a homogeneous and representabive sampling of cepheids - i.e.,
cepheids which are chemically similar, pulsating in the same mode or
combination of modes, and are non-binaries. This problem is most
likely illustrated by the differing results found by the Gaposchkin's
(1966) when they separately analyzed cepheids with maxima preceding
the minima by 0.3P (= & - ¢) and less, and cepheids with & - ¢ > 0.3
(solutions #2 and #35 in their Table 9).

Once the slope of the P-L relation is known the galactic cepheids
can be employed in two methods to give the zero point. The first and
older method is through the study of the proper motions and radial

velocities. A recent investigation is by Geyer (1970). CGeyer first
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analyzed the proper motions of one hundred and eighteen cepheids,

broken up imto five distance groupings, From each grouping the solar
motion, SG(PM), is foumd., The analysis incorporates into its structure
a. distance scale determined by an assumed velue of the zero point. As
a second step the solar motion is evaluated from the radial velocities,
SG(RV), a procedure which is distance scale independent, If the
distance scale, based on the assumed zZexro point value, in finding SG(EM)
is correct, the S@(PM) should equal SC}BV). If the equality is not
found, the distance scale must be corrected by the factor SG(PM)/SGCRV)
= A, Or equivalently a correction made to the zero point of 5logh.

A second method, by Kraft (see Kraft (1960) and references there-
in), is constrﬁétei from UBV data on the five cepheids in five dif-
ferent galactic clusters, Assuming chemical homogeneity the main-
sequences of the clusters are fitted to the Hyades standerd, thus
giving the clusters' (B-V) reddening excesses, Assuming & ratio for
the total to selective absorpiion, we find the disbance moduli, These
data give directly the absolute magnitudes for the associated cepheids.,
On the further assumpbion that the slope of the mean P-L relation is
the same as for cepheids in the SMC the zero point is easily evaluated

from the data on the five cluster cepheids to give the P-L relation --

M= ~1.67 - 2,54%1ogP ,

Geyer would modify the zero point to -1,88.
A variation on the use of the cluster cepheids in our galaxy is
that employed by Sandage and Tammann (1968). Their analysis is nob

governed by considering Eg. (1-19)} as being fundsmental, They determine
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a hest mean P-L relation for cepheids -in our and other galaxies, using
the cluster cepheids in our galaxy as a control on the distance moduli
of the external galaxies. The control procedure is to adjust the
moduli until the scatter in the P-L diagram shows na systematic 4if-
ferences relative to the cluster cepheids. Their results have already
been presented in the right panels of Fig. 1.5.

A third, and rather novel, approach is that taken by Fernie (196L,

1965, 1967c). Starting with the prime equation --

M, = Mb01@ - 5log(R/R®) - 10logT  + 1010gme@ R

he introduces observable guantities through a series of substitutions.

These substitutions are as follows:

(1) logT = -0.168%(B-V) + 3.87

Moo =M, - 0.36*(B-V) - 0.09 ,

which are derived from a combination of spectrophotometry and a study

of model atmoépheres (Oke 1961);
(2) 1og(R/Ry) = 0.550%10gP + 1.260 ,

a result of studying the radii derived from use of Wesselink's method

(Fernie 1968b) ;
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(3) T, = 5800 “k
O

and

Mbole = 4?72 R

the solar constants (Allen 1963). Using these secondary relations

in .the expression For Mbol gives --
M, = -2.56 + 2.04*(B-V) - 2.79%logP . (1-20)

However, the observations indicate a dV/3(B-V) which is color dependent,
and of value 2.79 - 1.55%(B~V). Using this as the coefficient for

(B-V) in the sbove gives -~
M, = -2.56 + 2.79%(B-V) - 1.55%(B-V}Z -~ 2.79%1ogP . {1-21)

Applying Eg. (1-21) to the eight cepheids with well determined Mv's in
binaries, associztions, and clusters it is found that the average
residual is not zero. However, minor improvements in the coefficients
of Eq: (1-21) can be made to force the average residual to zero. The

final period-luminosity-color (P-L~-G) equation is ~-
M, = -2.55 + 2.75%(B-V) - 1.60%(B-V)2 - 2.85%1logP . (1-22)
Fernie makes a series of secondary checks on Eg. (1-22) and finds it is

in excellent agreement with observations. To reduce Eq. (1-22) to a

simple P-L relation we use the correlation --
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(B-V) = 0.2% + 0.Lg¥logP ,
50 Bg. (1-22) becomes ~-
M, = ~1.99 - 1.89%logP - 0.38%(1ogP)%. (1~23)

Geyer's investigation indicates a small change in the zero point to
-2.05 is needed. The non-linearity in Eq. (1-23) is obvious, but is
it real? In form it produces a curvature opposite from our simple
black-body analog to the cepheids, and it is in disagreement with the
results of Sandage and Tammann (1968). It does agree with the results
of Payne-Gaposchkin and Gaposchkin (1966). However, Sandage and
Tammann consider the Gaposchkins' results to be vitiated by their over
correcting for internal reddening in the SMC. A final resolution will
have ©to await the time when the nuwber of cepheids with good Mv's and
intrinsic colors is sufficient to calculate from them alone the form
of the P-L-C and P-I. relations.

A resume of the M, evaluations is shown in columns two, three,
and four of Teble 1.2.

A major source of informabion on radii is from the application of
Wesselink's method. The method is not without difficulties, and some-
times gives startling anﬁ ambiguous answers. The procedure rests on
two suppositions that are not necessarily met in every case. The first
assumption is that points of equal color are identical to points of
equal temperature. But this is refubed by the observation thait color-
color plots in any photometric system are not lines, but loops. It is

incunbent or us to make a most judicious choice of color. Invariably,
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in the UBV system the color (B-V) is the one chosen, as all observa-
tional data indicate this to be better than (U-B) as an index of
temperature. A second assumption is that the relative separatvion of
the phobosphere and the line-forming reversing layer remains constant
during the pulsation. Abbt (l959b) considers this condibion is satisfied
only if the pulsational expansion is twenty to hundred times the
atmospheric scale height, an expected situation for the bulk of the
classical cepheids. However, Christy (1968) finds from his non-linear
model representation for B Dor that the motion of The photospheric
layers is approximately ‘ten percent less than for the line forming
region. This differential motion requires the Wesselink radius be
reduced by ten percent. A third obstacle in utilization is observa-
tional, as the radial velocity and photometric observation are almost
inevitably performed at different epochs, and by different observers.
This difficulty is surmountable only if the velocity and photometric
results can be matched in phase to within O?Ol, otherwise the radius
determinations are severely degraded (Fernie and Hube 1967). Overall
the expected accuracy of Wesselink radii is of the order of ten to
iifteen percent.

As stressed by Reddish (1955), a fundamental relation should
exist between period and radius. Fernie (196%, 1965, 1968b) has
analyzed the set of best determined radii and finds a strong correlation
between period and radius (this relation was used above in deriving

Eq. (1-20)) --

log(R/R,) = 0.558*10gP + 1.260 . (1-24)
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The dispersion about this linear relation is markedly larger for a
fraction (1/5) of the cepheids than would be expected on any set of
reasonable premises. Fernie then mekes the ad hoc assumption that the
stars with large deviations - T Agl, W Sgr, 8 Dor, X Cyg - are pulsating
in other than the Tundawmental mode, and adjusts their periods by
dividing by 0.71, the ratio of the first overtone to the fundamental.
For one star, U Car, the adjustment is made assuming the star is
pulsating in the third overtone, This process greatly reduces the
scatber, but whether any legerdemsain of this nature is a valid indicator
of overtone pulsation is, we believe, debatable, In fact, in one in-
stance, for § Dor, the situation is ambiguous, Fernie gives a value of
79 R, Christy (1968) using recent data finds a radius of 69 R, which
he further reduces by ten percent as mentioned above, to give a final
value of 62 RO. Evading the issue whether the ten percent redwmction is
applicable to all cepheids with periods near ten days, Christy's evalua-
tion are both very close to the value of 65 Rc)predicted by Fernie's
P-R relation (Eg, (1-24)).

A period-radius relation can be derived reasoning as Fernie 4id in
creating his P-L relation. Frowm the usual expression for Mbol we have

the instantaneous relation --

5%1log(R/R O) =M, . - 10%logl_ + Const. (1-25)

&

into which we substitute

M, =M +a *(B-V) + a
ol v 1 2

and

logl = b *(B-V) + b
e 1 2
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Averaging over a pulsational cycle gives --
5%({1og(R/By)? = -G ) - (814100, }*{B-V? + (Consty-82-10bz) . (1-26)

Assuming an ensemble average is ob¥ained upon substituting the mean

relations ---

<MV> = Cl*lOgP + Cp
and

(B-V)= d,¥1logP + dz ,
we have

5% (20g(R/R;) 1= -ca~21d; ~10b1d; )*1ogP + (Const. -az-10ba-cp-a1dz-10b1dz).

(1-27)

Accepting Sandage and Tammann's expressions for Mbol and lOgTe, cor-
recting their Eg. (7) for (B} - (V) by 0.02 to make it correspond more
closely to (B-V) (Kraft 1961), and linearizing their (MV> - log?P
ridge line ((Mv> = -1.50 -~ 2.75%logP) we find upon substituting into

Eq. (1-27) that --

(log(R/R,)? = 0.655%10gP + 1.131 . (1-28)

Investigators coften give rather small error estimates for their values
of the coefficients a,, as, ete.; but a comparison of results betﬁeen
equally compebent researchers reveals that systematic errors can be

larger than the quoted internal errcrs. It is expected that the mean

errors of the constants in Eq. (1-28) can easily be of the order of
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1+0.1. A comparison between Egs. (1-24) and (1-28) is shown in columns
five and six of Table 1.2,
The masses of the cepheids can be inferred from the pulsational

equation ~-
P—)é-,\/(p/po) = P*(M/MO)'J@(R/R@)‘% .

Christy's (1968) theoretical results indicate that a reasonable ex-

pression for Q is of the form --
i 1
Q = Ax(M/M ) %(R/R )F . (1-29)

Substituting EBq, (1-29) into the pulsaticnal equation, and letting

log[R/RCQ = aqxlogP + ap gives --
1og(M/M®) = (7/3%a: - 4/3)xlogP + T7/3%as + 4/3%1logh . {1-%0)

We note that Eq. (l«BO) predicts a decrease in mass with period for all

a7 less than h/T (0.571). If we accept Fernie's P-R relation, we would
have this result; and the same would occur whether Q@ is a pure constant,
or obeys the observational relationshlp with period as determined by
Kraft (1963) [logQ ~ 0.lxlogP + Const.]. To circumvent this difficulty,
and as the radius results are comparable to those found by Fernie, we use
Eq, (1-28) for the variation for legR with logP, To fix the constant A

in Eq, (1-29) we take Q = 0.042 at a period of two days, forcing agree-
ment with the observed ratio (Oosterhoff 1964, Leotta-Janin 1967) of first

overtone to fundamental (P,/P, = 0.71) for short period cepheids.
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The final expression for log(M/M ) is --
log(M/M,) = 0.195%10gP + 0.570 . (1-31)

An glternative estimation procedure is to make usze of the mass-
Juminosity relationship. For the zero-age-main sequence we have, from
the work of Kelsall and .Stromgren (1966), for a composibion appropriate

for young Pop. T stars (X = 0.60, ¥ = 0.36, Z = 0.04) --
Mooy = 353 - 8.hhx1log(M/M) .

Assuming the cephedids lie one magnitude above their initial ZAMS
position, and using the appropriate subsidiary equations from Sandage

and Tammann we find the above equation resulis in the relation .-~
log(M/My) = 0.34k¥*logP + 0.475 . (1-32)

A comparison of the mass estimates derived from the equations
developed here, the evolutionary calculations of Iben (1965, 1966a,b,c)
and the pulsational calculations for & helium content of 0.45 by
Stobie (1969c) is shown in columns seven through ten of Table 1.2,

On the whole the discrepancies at any period are tolerable, never ex-
ceeding forty one percent.

The more direct method of mass determination from the study of
binary motions can not presently be carried out for cepheids.

Thiessen (1956) interpreted the 27 day variation in the light of the

A5 supergiant BM Cas as arising from a cepheid companion. Under this
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assumpbion the cepheid mass would be approximately twenty three times
that of the sun. The data is scant, and the analysis therefore of
doubtful gquality. For those cepheids with distinduishable physical
companions (8 Cep (Fernie 1966a, Worley 1966, Vitrichenko and Tsarevskii
1969), o UMi (Fernie 1966b), % Car (Fernie 1967b)) the separations are
so great that the orbital periods are too long to be useful in mass
determinations. There is the exciting double cepheid CE Cas a and

CE Cas b in the galactic cluster NGG T790. Both are cepheids with the
nearly equal pulsational periods of 5‘?14 (a) and u‘?w (b). But here
the orbital period is minimally hundred thousand years. An analysis
by Sandage and Tammann (1969) incorporating a study of the stars'
magnitudes and colors, and a comparison with evolutionary tracks, is
only capable of indicating a mass ratio - Mb/Ma': 1.007.

However, the observational determination of cepheid masses looks
promising. Iloyd Evans (1968) has recently re-evaluated. the frequency
of spectroscopic binaries among classical cepheids. The study wakes
use of the variability of the radial velocilty, and the verified cor-
relation between photometric anomalies and binary occurrence. Lloyd
Evans finds that at least fifteen percent of all cepheids are spectro-
scopic binaries. This estimste is almost an order of magnitude larger
than that suggested by bt (1959a} in an earlier discussion.

To capitalize on this situation will require a substantial amount
of observational work. Two new technigues can be of great aid.
Griffin (1967, 1969) has constructed a photoelectric radial-velocity
spectrometer capable of determining six to eight velocity measures per
hour, with a precision of approximately one kilometer per second. Thig

tremendous enhancement of the data gathexring rate is such as to make a
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large, systematic program feasible. In addition, it may be possible to
rise above the statistical limitation of spectroscopic binary mass
analysis by the use of space-scanning photometers (Rekos 1965, Franz
1966). With a scanning photometer we could detect close, faint binaries
which are "lost" in more conventional procedures due to the intrinsic
brightness of the cepheids.

The growth of photographic spectroscopy, and the desire to fathom
the complexities of cepheid behavior were coeval. Much of the spectro-
scopic results for the cepheids was, however, of a transitory nature,
but & significant portion of the researches were of such merit that
they are still cited in the most current investigations. We here
briefly review the more salient findings. For a more complete review,
with extensive reference citations, see Kraft (1960). - s

Radial velocities have been determined by workers since the '1890's.
large, ambitious, and precise programs have been carried out by men
such as Joy, Jacobsen, Sanford, and Stibbs (see Lloyd Evans (1968) for
detadled references). At present there is data for some two hundred
cepheids of all types. There is a strong linear correlation betwéen
light and velocity amplitude up to a velocity amplitude of-~ 50 km/sec
and light amplitude of ~'1?5, after this point the velocity amplitude
increases more slowly with the light amplitude (maximum light
amplitude is ~ 270). The velocity and light curves are virtual-mirroxr
images of one another, with maximum velocity at minimum light, etcetera.
Though there does appear a systematic phase lag in the velocity of
~ ?l with respect to the light variations. The radial velocity data
in conjunction with photometry allows for the determination of radii,

as we have seen above. A second major use of the velocity data is the
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detection of companicns.

At classifieation dispersions (~ 100 E/nmﬂthe spectra of cephelds
very closely resembles that of their non-variable counterparts, the
supergiants. This feature is agreed upon by even the most astute ob-
servers. At light maximum the cepheids, independent of period, are
equivalent to F5 - F8 Ib stars. Anomalies are noticeable, particularly
in stars with periods greater than five days, in that the hydrogen
lines are coaspicuously stronger than expected from the estimate of
the spectral type from the metal lines. There is also a slight en-
hancement in the Ti IT and Fe II lines. At light minimum the spectral
types go toward the later types smoothly with period.

Eigh dispersion (2 - 20 K/mm) work gives much daba on line shapes.
It is found that the profiles can be accounted for by invoking the
effects arising from the geometry of pulsation, "level effects" re-
sulting from a velocity gradient in the atmosphere, and phase dependent
turbulence (micro and macro) strengths. The inclusion of rotational
effects appears unnecessary on the basis of evolubionary arguments
(Kraft 1966). The model atmosphere analyses utilizing the high dis-

persion results show that the physical parameters Texc, T

, P and
ion” Te

turbulent velocities are similar to those of supergiants at the same
equivalent spectral type. There are two interesting transitory
instances during the pulsational cycle where the cepheids differ
markedly from the supergiants. One is the peculiar doublings in the

low excitation lines of Fe I, Ti II and H, which appsrently indicates
that material is falling back onto the star. Second is the anomalous
behavior of the Ca II emission. In essence the emission 1s just totally

distinct from that observed in the supexrgiants. This is most puzzling
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for it is then difficult to argue for a common mode of origin, yet
every other indicator points to the great similarities in the atmos-
pheric structures. As an example of the divergence, if we calculate
the absolute magnitudes for cepheids via the Wilson-Bappu procedure
the prediction is that the cepheids are two to three magnituvdes
brighter than is conceivable by any other mode of magnitude evaluation,.
Our more pressing inberest in the elemental abundances for cepheids
is not well satisfied by the present literature. An indirect argument
that indicates solar or Hyades like metal abundances is the virtual
similarity of the cepheid spectra as compared to normal supergiants.
More substantive work during the last decade is slight. Three
southern cepheid variables have been metlculously studied by Bell and
Rodgers. While their analyses do incorporate the assumption of ap-
proximate solar metal abundances, by a system of Ingenious checks and
balances They are able to iunsure that a systemetic indication of over
or under @bundance will be correct. For x Pav, which is probably of
old Pop. I type, they find a deficienc'y in [Fe/H] of -0.42, and for
elements synthesized by slow neutron capbure the [s.n.c./Fel is = ~1.0
(Rodgers and Bell 1963, 1968b). For 8 Dor they find no inconsistency
with the idea of solar abundances, though the line strengths for -Bu IT
are anomalous (3odgers and Bell 196L). In a first paper on L Car they
report finding a lithium line at 6707 K, a "first" for cepheids. The
strength of the line indicates a [Ii] of -0.4 (Rodgers and Bell 1968a).
This implies an abbreviated extent for the photospheric convection
layer, otherwise the lithium would have been burned up. In a2 second
paper (Bell and Rodgers 1969), heralding for them the use of computer

synthesized spectra, they are able to determine differentially the near
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equivalence in metal abundances for 4 Car and ¢ CMa, with some 1likeli-
hood that 4 Car possesses a higher abundance of mebals, but still in
the Hyades range. Abt et al. (1966) have analyzed the short period
cepheid TV Cam. In TV Cam the metal lines appear weak. In addition,
the star's light amplitude is large for its period. This combination
led some to propose that if the SMC cepheids were similar to TV Cam,
their large light amplitudes relative o their periods could be ex-
plained on the haslis of chemical anomalies. This appears to be
incorrect from the Abt et al. work, for they find TV Cam is of normal
metal abundance. The weakening of the metal lines can be explained
by & low value for the micro-turbulent velocity. However, it is
admitted by Them That the erection or rejection of an hypothesis on

the basis 0f a single star is of dubious value.

1-4. Intrinsic Colors

The precise removal of interstellsr-reddening effects is of
paramount importance, 1if observed colors are to attain their maximm
usefulness. There are nuomerous methods used by observers, bub we here
described briefly the four predominant procedures.

A useful assumption is that a particular color for the cepheids
is constant at maximwm light, independent of pericd. This is reason-
able as it reflects the observed constancy of spectral type at light
maximim. The determination of a color excess is simply obtained from
the observations under this assumption, if we know, either by analysis
or substantial qualiitative evidence, the value of the particular colox
gt light maximum. Once a color excess is found, all other excesses
maybe deduced if color excess rabios are known. This procedure has

been used by Gascoigne and FEggen (1957) for classical cepheids. They
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took (P-¥) = 0.25 at light meximum, 2 valve indicated by the SMC cepheids.
An interesting study which indpendently demonstrates the reason-
ableness of near color constancy of (P-V) at light maximum is that of

Stibbs (1955). The distance modulus of a cepheid is given by --

(m-M) = 5%log(r) + X1¥E;(xr,b) - 5,

vhere E; is the selective sbsorption in the six-color system as a
funetion of distance and galactic latitude, and ¥; i1s the knowm ratio
of Hotal to selective absorpbion in the six-color system. The
functional dependence of E; on distance and galactic latitude can be
found from a galactic obscuration model (Stibbs chose a model by
Parenago). Given an obscuration model, we have all that is needed for
a self-consistent, boot-strap determination of E;. We first determine
the distance modulus using the m from the observabtions and the calcu-
lated absolube magnitude, assuming the correctness of the P-L relation.
The second step is to guess at r, derive E; from the obscuration model,
and calculate an . (m-M). We compare the calculated (m-M) to the
observational evaluation, and continue to guess at r undil the two
determinations for (m~M) are identical. The resultant E, is only as
precise as the cbscuration model, and the assumpbion that the P-L
relation is valid for any particular star. Once E; is given we use

it in the relation --

(P-v) = (PV) e - (X, /X)*E, ,

ob

where X is the ratio of total to selective extinction in the P,V system.
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From a study of approximately thirty cepheids it is found that --
(P-¥),, = 0-17 + 0.18%¥logP .

In the range 1.2 = logP = 2.0 the above relation gives a (P—V)max
close to the observed SMC value of 0.25.

A second method is that employed by Kron (1958), and Kron and
Svolopoulos (1959). In the six-color system (UVBGRI) the F through K5
supergients are dispersed in a (V-B) versus (R-T) diagram by reddening,
which moves a star's color away from the thermal locus, as is shown
in Pig. 1.6. Breaking the stars up into subgroups the evalua$i$n ot
an adeguate mean reddening line in the diagram is possible. To fix
the pogition of The thermal locus as simply the blue boundary of the
scattered points is imprecise, as even the brightest and nearest super-
giants are probably reddened. Kron emphasizes the idea that stars at
the higher galactic latitudes are the least reddened, and thus a best
choice is to position the thermsl locus slightly to the blue side of
these high latitude stars. His thermal locus is shown in Fig. 1.6 as
the solid line. On the assumption that at each phase point a cepheid's
colors are equivalent to those of a supergiant, the color excess at any
phase point can be estimated. The final color excess for a cepheid is
thé average value of all excesgses at a number of phase points (usuvally
ten evenly spaced points are sufficient).

A third procedure is that proposed by Kraft (1963). The combina-
tion of T and UBV photometry in a two step process 1s capable of giving
accurate inbtrinsic colors for cepheids. Gamma photometry measures the

G-band strength in a mamer insensitive to the effects of reddening.l
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There is a swooth and strong correlation between the T magnitude and
the MK spectral type for supergiants. To derive an intrinsic (38-v),
(B-V)o, relationship with respect to spectral type, use is made of the
cepheids in galactic clusters. At meny phases I and (B-V) are observed.
From & knowledge of the EB-V’ ag derived from the B stars in the
clusters, the observed (B-V) is simply converted to (BJV)O. The
spectral type at each phase is assigned from the observed value of T.
By this procedure Kraft developes a (B4V)O versus spectral type relation.
To determine the EB—V for any cepheid, or supergiant, we first assign
a spectral type from the value of I'; second, we read off the associated
(B-V)o, and then simply take the difference between the observed (B-V)
and (B-V)O. This procedure is illustrated in Fig. 1.7. A criticism
of Krafit's results ig that the (B-V) excesses found from the B stars in
the clusters are not directly applicable to The cepheids. This .is an
inherent problem in a broad-band system where the cclor excesses are
a function of spectral type. Corrections to Kraft's work taking into
account the variation of EB—V with spectral type are given by Fernie
(1965). A additional refinement is the allowance for the variation
of EB—V with phase for a cepheid. This improvement has been performed
by Nikolov (1967a,b). In these last investigations attempts are also
made to determine (U-B)O for both cepheids and supergiants through a
relationship connecting Bp y to Eyp°

A Tinal method is one, originally proposed by Becker (1938), which
tries to eliminate the effects of reddening by an appropriate combi-

nation of colors. The procedure is best recognized by the construction

of Q in Lhe UBV system --



51

Q = (U-B) - 0.72%(B-V) ,

where Tthe coefficient of (B—V) is simply the slope of the reddening
line in the (U-B), (B-V) diagram. By this process § becomes statis-
tically independent of reddening. Similar reddening free colors have
been used by the Walravens (1560) in their five-color system, and by
Stromgren (1966) in his four-color work. This is the method used in

our investigation and is discussed subsequently.

1-5. Aims of the Investigation

Having determined intrinsic colors in a photometric system we
search for internal systematics, and for correlations with stellar
properties. In the UBV system the internal relations linking colox
and period, and blue amplitude and position in the instability strip
are priwery findings. Deviations from the mean relations are useful
as indicators of chemical anomalies, and in detecting unseen compenions.
Using external. information we are able to calibrate (B-V) with logT_,
and form a meaningful P-L relation, so as to give us the unambiguous
location of the cepheid strip in the H-R diagram. This information is
of great use in creating theoretical pulsabion models, and in evaluating
the correctness of theoretical evolutionary tracks. Much similar
information is gathered by other broad pass-band photometric systems.

Further ground based photometry is justified only if it is per-
formed within the framework of a phobometric systen designed primarily
t0 evaluabe basic physical parameters in a reasonably direct manner.
The composite photometric system of this investigation satisfies tThis
prime condition. We have four msjor objectives for a further in-

vestigation of the photometric properties of cepheids and supergiants.
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The four-color system of Stromgren (1966) allows one colox. to be
used to eliminate the effects of interstellar reddening, and u§es‘the
remaining two cglor indices to give data on the strength of the Badmer
discontinuity (gravity) and the abundance of metals. This gystem is
used here in conjunction with the three-color system of Crawford (1961}.
Crawvford's system gives two colors relevant to the study of supergilant
and cepheid stars. The colors measure the strensth of the G-band and
the break in the spectrum caused by the CN band head at 1215 K. With
this composite system we try to do the following:

(1) Find where the cepheids and supergiants fit in the Stromgren
system, in order to complement the careful studies for
main-sequence stars;

(2) Ascertain whether the composite system is an adequate
survey Lo0l, in the sense that 1t 1s possible to segregale
stars, particularly supergiants, into their respective
luminosity classes;

(3) ‘Determine if the strong, unexplained, coxrrelation between
metal, and C and N abundances for main seguence stars as
found by vaen den Bergh and Sackmann (1965) is also
evidenced in supergiants and cepheids;

(4) TUse the Stromgren metal index to investigate variations
in relative metal abundances in cepheids and supergiants
as a function of galactic location.

The compleﬁe satilsfaction of Tthe first point is not possible. The

colors of this investigation are neither identical to or transformable
to the standard Stromgren system. However, the range in the Balmer

and metal indices for the stars studied are far larger than the
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deviations between our systems at any Fixed célor, or spectral type.
Thus, the difficulty is of little lmportance for delineating gross
features and in the interpretation of the indices, but it is bother-
some vwhen comparing minor details.

Relevant to the last objective, Conti and Deutsch (1966, 1967)
raise the issue that differences of Stromgren's metal indeﬁ between
similar stars do not necessarily arise solely from relative metal
abundance differences. Their objection is thet the differences can
arise from variations in the micro-turbulent velocities. This point
is critical, for if true it vitiates the use of the metal index. The
micro-turbulent velocities for the supergiants are appreciable, have
strengths correlated with spectral type, possess a substantial dis-
persion at any one spectral type, and vary in a quasi-periodic manner
for any one star (Rosendhal 1970). The micro-turbulent velocities are
phase dependent for the cepheids. Stromgren points out that even if
the Conti and Deutsch proposition is true, the trouble can be un-
important if the micro-turbulence is not an independent parameter.

The problem is addressed in a quantitative manner in the studies by
Barry (1967), McWamara (1967}, Kraft et al. (1968), and Chaffee (1970)
for main-sequence stars. Their sum opinion refutes, except in a few
cases, the Conti and Deubtsch hypothesis. As Rosendahl (1970) finds
mich gualitative similerity in his rouvgh model of miecro-turbulent
motion in supergiants as compared to Chaffee's for main-seguence stars,
we are encouraged to believe that use of Stromgren's metal index is
viable.

The body of this study is broken up into six self-contained

chapters. In Chapter II we discuss the characteristics of the filters
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and the method of data gathering. Chapter III is devobed to the data
reduction process. Particular emphasis is placed on the method of. the
meshing of the various cobservational runs, vhich were carried oubt over
a period of two and one~half years. The reduction procedure is de-
signed to give the best possible results for the standard stars. The
standard star results are graphed to show the difficulty of any
transformations between the observational system and the standard -
Stromgren system.

Chapter IV gives the primary results for the supergiants stars
in terms of colors freed from the effects of inter-stellar reddening.
In addition, the color excess for each star is defermined by reference
to a simple linear thermal locus in a particular color-color diagram.
Some comments are made on the difficulty of the physical inberpretation
of the colors on the Crawford photometric system.

A major aim of this investigation is the possibility of separating
the supergiant stars from those of other luminosity classes. This
problem is attacked in Chapter V. The meaﬁ ¢olor curves for luminosity
classes V through I are developed. The data on the supergiants come
from this investigation alone. Data on the other Iuminogity classes
are implemented by transformation of daba from the work of other
investigators. A study of various color-color curves indicate that
precise separation of I-II stars is Impossible. However, we find that
a mapping of the mean color curves over into a H-R diagram gives.some
improvement in luminosity class discrimination. This mapping is cal-
led the 'supercolor' method.

The basic cepheid results are presented in Chapter VIi. New’

periods are determined from analysis of published V data in combination
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with our visval magnitude results. The periods for five of the program
cepheids have discernably varied from the values listed in the

(feneral Catalog of Varisble Stars (Kukarkin et al., 1958). The
cepheid colors are shown to be similar to those for the supergiants.

A new and novel population discriminant is found through a study of
selected color-color loop areas. This discriminant has the advantage
of being unaffected by interstellar absorption. Color excesgsses are
determined from an analysis of the location of the c019r~color loops
in s G,(b~y) diagram relative to a simple linear thermal locus. This
thermal locus is virtually identical to that found independently for
the supergiants. The correlation between Stromgren's (b~y) color and
(B-v)} is linear, and indicates that effective temperatures can be well
determined.

Chapter VII concludes the presentation with inbterpretations re-
lying on the combination of supergiant and cepheid data. The super-
color method is re-introduced and applied to the data of individual
stars. The method is found to locate the average position of a cepheid
in the vicinity of the instability strip, and to separate approximately
two~thirds of supergiants from a1l other classes of stars. The correls~
tion between metallic and CN absorpiion is pronounced. The value of
the Balmer discontinuity index is shown to be insensitive to the ef-
fects of line blanketing. No clear correlation belween galactic
location and chemical composition is shown by‘the supergiants or

cepheids.



TABLE 1.1

SLOPE OF THE P-I REILATION FOR SMC CEFHEIDS.

Source v B
Arp {1961) -2.47 -2.23
Kron & Gascoigne {1965) -2.95  —mm--
Payne-Gasposchkin & Gasposchkin (1966)  ~m-n- ~2.153
Sandage & Tammann (1968) -2.75* -2.405F

s
‘Slope of the gtraight line which best fits the P-L
ridge line data given in their Table Al.

b2



TABLE 1.2

PHYSICAL PROPERTIES OF CLASSICAL CEPHEIDS.

——e M, ~===  ==w= RfRy mmom wens M/M, ————

Sandage & Ea. Eq. Eq. Iben Stobie

Period Kraft* Tammann§ Fernie TFernie (1-28) (1-31) (1-32) (¥=0.45)
ot 2T 257 -2T6p 27 21 .2 5.8 4.3 3.2
5 -3.66 -5.38 -3.56 45 39 5.1 5.1 5.6 L.6
o mp  hzo  -h3a &6 6L 5.8 64 7.0 5.k
20 -5.18 ~5.06 ~5.15 97 06 6.7 8.1 8.6 6.1
50 ~6.20 -5.22 -6.36 161 175 8.0 11. 11. 7.8

ﬁwith zero corrected according to Geyer (1970) .
§from fheir Table Al (Sendage and Tammann 1968).

¢n
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CHAPTER IT

THE OBSERVATIOWS

2-1. The Filters

The observaticonal system contains seven filters. Four are similar
to those forming the StrUmgren uvby photometric system. These include
an ultra-violet glass filter (u), and three - violet (v), blue (b), and
yellow (y) - interference filters. The remaining three filters are those
of Crawford's photometric system. These last filters (A, B, and C) are
narrow pass-band interference filters, all located within the short wave-
length base of 200 & extent centered about 4275 A.

The transmission characteristics of the filters were measured twice
during the period of the observations. The measurements were taken in
June 1964 and Ngvember 1966 on the Cary spectrometer at the Kitt Peak
National Observatory (KPNO) office in Tucson, Arizoma. The two trans—
mission scans indicate no evidence of aging effects, which sometimes are
bothersome when dealing with interference filters. The transmission
curves for the gseven filters are shown in Fig. 2.1. The figures show
only the regions where the transmission is measurable, but the full scan
for each filter covers the range from 3000 A to 7500 A to make sure there
exist no red leaks, etcetera. Pertinent filter characteristics are pre—
sented in Table 2.1.

The uvby filters, KPNO uvby set #2, are not those used by StrBmgren,
KPNO uvby set #1, in defining his photometric system. In fact, they are

not even 'duplicates' in the sense of being ordered from the initial
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source to the original specifications. They are close facsimiles pro-
duced by Baird-Atomic, Inc. of Cambridge, Massachusetts. In fable 2.2
the two sets of uvby filters are compared. The b filter is tﬁe most dif-
ferent, but it is the differences in the v filter which, as we shall see
in section 3.4, cause the two uvby systems to be linked by non—linear

transformations.

2-2. Equipment and Data Gathering

The observations were carried out over a period of approximately two
and a half years, starting in June of 1964. The dates of the individual
observational rumns and other related informaéion is compiled in Table 2.3.
All the observ;tions were made at the Kitt Peak installation of the KPNO,

Two different sixteen inch telescopes were used. Both instruments
are off-axis mounted, possess Cassegrain optical gystems, and are manu-
factured by Boller and Chivens. They are scaled down versions/iof the #1
thirty six inch and the eighty two inch Kitt Peak telescopes, with focal
ratios of 13.5 and 7.6, respectively.

The optical arrangement of the single-channel photometers.is!of a
standard format - focal plane diaphragm, movable beam-interceptor mirror
with its associated small angle microscope, field lens, filter .bolt,
fuzed quartz window, and phetomultiplier in a dry ice, refrigerated box

b
(see Johnson (1962), Fig. 1, for the standard instrument arrangément).

The focal plane diaphragms were selected each night on the basis of

-

4

seeing conditions. It was sometimes necessary, if the seeing improved
or deteriorated, to change the diaphragm during the course of a night.
As the star fields are not dense the changing of the diaphragm size had

no detectable effects, except on the magnitude of the sky readings. The
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majority of the observations were made with a diaphragm diameter of
approximately fifteen seconds of arc, with an occasional use of dia-
phragms of eight or thirty seconds of arc diameter.

The detectors used were RCA 1P21 photomultipliers, cooled with dry
ice. The dry ice was packed into the refrigeration box at least two
hours' before the beginning of each night's run, and replenished through-
out the night as needed. The tubes were operated at a working voltage
of nine hundred volts.

The constant-amplified photomultiplier output is accumulated for a
preset time interval by a discretized, variable-gain, integrator module,
and the resultant value of the integtrated charge on an RC circuit is
recorded on a standard twelve inch Honeywell strip chart recorder. The
gain steps on the integrator module are in units of 0.500 magnitudes,
with a total range of 10 magnitudes. Response settings are designated
Al, A2,...,A6;B1,....,B6; C1,....,C6; D1,....,D6. The response at Ab is
approximately equal to that at Bl, etc.. The gain calibration of the
integrator module consists of determining the difference in the response
at A6 as compared to that at Bl, at Bé compared to ClL, and at C6 as com~
pared te Dl. This is easily implemented, and was done twiece during each
obgervational run and average values of the gain calibration used in the
reduction of that run.

The observation of a star was executed in the Following manner:
integrated star readings (ten seconds) of filters vy, b, v, u, A, B, C;
sky readings on C, B, A; hour angle‘and MST noted on the chart; sky read-
ings on v, v, b, y; star readings of y, b, v, u, A, B, C. TFor bright

stars the sky readings are eliminated. For faint stars double-symmetrie

readings for each filter are made. The gain step for each filter is
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chosen so that the height of the chart response is greater than, or equal
to sixty percent of the maximum reading possible on the chart. The sky
readings were taken at a siﬁgle gain setting ten times more sensitive
then ‘the most sensitive filter gain setting, or at the maximum possible
gain (D6) when this ten times ratio was impossible. This procedure in
effect reduces the chart reading errors (*0.1%)in the sky deflections by
a factor of tem relative to chart reading errors in star deflectioﬁs, and
thus are more appropriate to the level of the sky contribution. The
larger sky deflections also aid in detecting instances when a faint star
has been inadvertently positiomed in the diaphragm. It is also -easier to
discern from the telescope anomalous behavior in the sky deflections.

A cleaned up replica of an observation of a single star is shown in
Fig. 2.2. b

A total of 1619 cbservations were made, of which 701, 303, and 615
-are on standard, ordinary, and variable stars, respectively. The average
number of star and sky deflections per observation are 16.2 and 3.7,
respectively. This number of deflections indicates that the telescope
was devoted exclusively to observations approximately forty percent of
each night. The remainder of the time was spent in choosing the next
star to be observed, locating and centering the star in the diaphragm,
annotating the strip chart, etc.. The reduction procedure is discussed

in the next chapter.



TABIE 2.1

TRANSMISSION CHARACTERISTICS OF THE FILTERS

USED IN THIS INVESTIGATION.

Half Power Full Pover
Filter  <\> Mid-wavelength  Half-width
Y shosh - shoeR 1184
b 47700 4700 L3
v 4108 4106 71
u 3k55 3453 192
A L5377 4375 40
B 4279 ‘ 1277 43

C L1166 4165 27



Filter

Set

TARIE 2.2

COMPARTSON OF THE TRANSMISSION CHARACTERISTICS

OF uvby FILTER SETS NO. 1 AND NO. 2.

Peak Wavelength of Half-trans.

Trans.

52%
T2

Ly
85

46
60

i
57

Peak Trans.

55218
5498

L5668
4700

Logh

4310

31433
3451

Points
y Filter ---
5355, 55968
5378, 5612
b Filter ~---
4588, 4762
4655, HT45
v Filter ---
Loo7, 4205
4038, 4169

w Filter

3267, 36T
3267, 3641

Central

Full Trans.

Wavelength Half-width

S4TER
5495

4675
700

4106
40k

3h57
345k

ol 38
o3y

L7k
90

198

131

380
37h

5k



TABLE 2.3
SUMMARY OF THE OBSERVATIONAL RUNS AT KITT PEAK NATIONAL OBSERVATORY.

-------- Observation Dates L T

June ‘64 Dec. '64 Teb. '65

6/3=15 Oct. '64 Jan. '65 Mar. '65 Oct. '65 TFeb. '66 Nov. '66

6/18-21 10/17-26 12/29-1/10 2/26-3/7 10/12-22 2/17-26 11/2-16  Totals

Total Nights
in Run 17 10 13 10 11 10 15 86
Expected Useful
Nights 12 T 6 6 8 6 9 5l
Useful Nights 12 6% 0 e 6 5% 6 43%
Useful/Total 0.71 0.65 0.00 0.75 0.54 0.55 0.40 0.51
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CHAPTER III.

THE STANDARD SYSTEM

3~1. Photometric Quantities

Initially, we hoped to reduce our data making direct use of the uvby
standards listed in the Str¥mgren-Perry catalog (1962), and in the supple-—
mental standard star data lists prepared by KPNO. For the ABC gystem it
is necessary to construct a standard system, as no standard values have
been published by Crawford. However, after a preliminary reduction of
the first observational results (June 1964) it became obvious that the
uvby data gathered using the four-color filéer set #2 is not directly com—
parable with the Strbmgren system as defined by the StrbmgrenzPerry
catalog., The transformations connecting the observational system to the
Strfmgren system are non-linear, of high dispersion, and strongly (b-y)-—
color dependent. These difficulties preclude the usefulness of the
Strbmgren system's results in the data reduction, and dem§nd that the ob-
servational system be totally self-contained.

We need a reduction procedure which incorporates the disjointed o§~
servation runs into a coherent body of observational quantities. To
accomplish this a variety of schemes were tried, all of which produce
observational systems which agree within the determined mean error of a
single observation for any specified color. The two-stage, bootstrap
process described below is the one that produces the smallest error per

observation for every color.
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The observational quantities are the following:

y — a photovisual magnitude determined totally by the response
of the y £ilter. It is adjusted so as to agree in the
mean with the V given in the Yale Bright Star (YBS) catalog
(1964).

cy - a color index created from the difference of two colors,
ey = (u~v) -~ (v-b). The value of ¢y is strongly corre-
lated to the strength of the Balmer discontinuity.

m] — a color index which measures the effects of metal line
absorption in the violet band as compared to the essen-
tially metal clear regions in the blue and yellow bands.
The index is formed by the difference (v-b) - (b-y).

b-y — a blue minus yellow color, similar to (B-V), which is rela-
tively insensitive to metal content.

G ~ a color formed from (B-A), which measures the break in the
spectrum acress the G-band.

N - the color defined by (C-B), which detects the break in the

\ spectrum arising from the CN-band head at 4216 A.

3-2. Basic Processing Procedure

Prior to discussing the overall reduction procedure, we describe the
mechanism of reducing the data for a single star, and the reduction of
all the star data on a single night.

For a single star the individual filter intensity readings are trans—
formed to a common gain setting (Al) via the gain calibration of the
integrator module. This is alsc done for the sky deflections. The sky

deflections are then subtracted from the appropriate filter deflections.
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For example, the raw data depicted in Fig. 2.2 give the following sky-
corrected filter deflections - 2 for v, v, and b; 4 for u; 2 for A and

B; and 4 for €. Each of these deflections are converted into magnitudes,
and the filter magnitudes are averaged. The magnitudes are averaged as
the major source of the differences in the deflections for a single
filter result from variations in the optical depth of the atmosphere.
These optical depth variations are reflected as linear pexrturbations in
the magnitudes, this is not true for the deflections. The average magni-
tudes are utilized in forming the desired photometric quantities. These

quantities are corrected to’zero air mass in the mamner described below.

To reduce a night's data the first step is the formation of single
star data in the manner outlined above. %fter all star colors are re-
duced to zero air mass the individual differences between the calculated
colors and the standard colors are determined. These differences are
averaged to produce the commonly-called night corrections. Strbmgren
and KPNO observers find it is often possible to detect a time variation
in the night corrections. These variations can be quite discontinuous.
For example, it might be hetter to—use one set of night corrections for
all observations between 8 PM and 1 AM, and another set from 1 AM to dawn.
We find no obvious time discontinuities in the night corrections, probably
a result of using a minimum number of standard star observations per night.
For each night we use only a single, gross set of night corrections.

Once the set of night corrections are determined, all individual colors

of the standard stars are improved by the addition of the appropriate

night correction to the zero air mass color.
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We note that in the first stage of the homogenization process the
correction to zerc air mass 1Is performed using average extinction coeffi-
cients, and not the extinction coefficients determined for a particular
night. These coefficlients are the averages determined from all the extine-
tion star observations gathered in the six runs from June 1964 to November
1966. At a high altitude observatory with clear skies it is better to
use average extinction coefficients. In Table 3.1 the average coeffi-
cients are displayed. The results in row two of the table are those
formed from the average magnitude coefficients. It is noteworthy that
these are virtually identical to the color coefficient averages found
from the extinction star, or the total standard star color data. This
equivalence is a strong indicator of the stability of the absclute sensi-
tivity in the photometric equipment, and the superb quality of the photo-
metric nights at KPNO. The variation of the average magnitude coeffi-
cients with wavelength is smooth, and agrees reasonably well with a Ray-
leigh like AH4 dependence. This is illustrated in Fig. 3.1, where a
A—4 dependent extinction coefficient is shown by the solid line (normal-
ized to agree with the observational results at 4375 ﬁ, the A filter).
The large value of k at 5480 R (v) is discordant with the KPNO average
and the Rayleigh curve. No simple explanation is possible, but it is
true that a recent re—evaluation of k(y) by KPNO does indicate a highex
value is more appropriate, something of the order of 0.14 to 0.16. In
the first stage of the overall reduction the averages shown in row

three of Table 3.1 are the relevant ones.

3-3. Construction of the Observational System's Standaxrds
§

To start the homogenization of the rums, a particular initial group
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is chosen. This is found to be a non-critical choice, and the February-
March run of 1965 was used. The nights in this run are reduced fo}low~
ing the scheme given above. At the end of the run's reduction the colors
for each star are averaged over all the nights observed. To these aver-
ages a constant is added so that in the mean they agree with the standards
in common with the Strfmgren uvby system, and the V system given in the
YBS. The resulting colors and magnitude are then retained as those
standard values which are the basis for the determination of the night
corrections. The whole procedure is repeated, and new provisional stan-
dard values produced. This iterative boot—strapping is ceased when the
(n-1)-iterate's standard values agree with the n-iterate's standard values
to better tham 0,00l in all quantities for all stars.

The next step is to meld this run with yet another. The June 1964
run is chosen. The average values of the February-March 1965 run are
used in the first iteration as the standard values. At the end of the
first iteration stendard values are formed from the June 1964 stars alomne.
These are adjusted so that in the mean, as determined from stars observed
at least three times in February-March 1965 and three times in June 1964,
they are in agreement with the February-March 1965 run. Using these June
1964 results as the standards the whole procedure is iterated until the
07001 level of agreement is reached. )

At this juncture the February-March 1965 rxun and the June 1964 run
standards are joined into a weighted standard star system, and used as
the basis for coalescing the October 1964 run. The mean zero point ad-
justment is made only through stars observed at least three times in
October 1964 and three times in the combined February-March 1965 plus

June 1964 standard star catalog.
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The above process slowly meshes the runs in the following order:
February-March 1965, June 1964, October 1964, October 1965, February
1966, and November 1966. After this level of coherence is obtained, all
the runs are processed at a single time and iterated three times to pro-
duce a single smoothed standard star catalog. Thig preliminary smoothed
total catalog of standard values differs in the mean from the.six run
merged total catalog by less than 07001 in all quantities.

To obtain the final standard gtar results the following last stage
of the boeot—strap reduction procedure is performed. The stars from all
the runs were processed in a single group. The only distinction from the
previous stage ig that on each night both the night corrections and the
extinction coefficients for all quantities are determined from the stan-
dard star data. The average of these coefficients for all the nights in
all the runs is listed in row four of Table 3.1. This total reduction
of all the data was iterated three times to yield the final standard

photometric quantities. The final results are presented in Table 3.Z,

3-4. Final Comments

Some general supplemental comments are relevant. The two stage re-
duction procedure described was written by the author in Fortran IV
language, and run on the IBM 360/91 at GSFC.

The probable errors for the ohbservational quantities are listed in
Table 3.3. It is encouraging that the accuracy attained in this study
is comparable to that of the StrBmgren-Perry results, for in the latter
case observational nights of dubious quality could be totally removed as
they were working with a much more extensive set of data than in this

investigation, where it is essential to use every bit of informatiecn
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gatheredl It is to be stressed that no subjective weighting factors
were used in the reduction, and all indications are that any such manip-
ulation are ineffective in changing the results listed in Table 3.2.

In Figs. 3.2 through 3.5 comparisons between the cobservational photo-
metric system and that of StrBmgren's uvby system, and the V system in
the YBS are shown. The differences in the & versus (b-y) plots are in
all cases formed by subtracting this investigation's results from- those
of the external system's. It is impossible, as has been remarked:before,
to make transformations of high accuracy from this gystemto the Strfmgren
system, except perhaps for the color (b-y). The case of representing V
by the y magnitude is quite satisfactory. However, there is the striking
anomalous point for the G5 V star HR 7504. This star was observed on
eight nights, and its value of y is 57990 + 0.003 pe. There is no possi-
bility of misidentification,,which leads us to the conclusion the star
has significantly varied since the YBS catalog was compiled. The entry
in the YBS ¢atalog does not appear to be in error as the value of 652 is
given in other contemporary sources. The average difference of (V-y) is
~070094 if the non-photoelectric V observations are included (+'s in
Fig. 3.2), and ~0"0067 if only the photoelectric determinations of V are
considered. Thus, some improvement in making y match V could be made by
the systematic subtraction of 0.0067. However, as this is below the
listed accuracy of ~the ¥YBS catalog, the y results remain as machine com-—

puted throughout the discussion.



THE COLOR-EXTINCTION COEFFICIENTS.

KPNC Averages Debermined Using
uvby Set No. L.

Averages Developed from the
Average Magnitude Coefficients.

Averages Formed from the
Bxbinction Star Color Data.

. Averages Formed from the Total
Standard Staxr Color Data,

TABLE 3.1

k(y)

0.161

0.160

0.156

0.180

0.178

0.180

k(m, )
0.052
0.066
0.067

0.067

k(o-y)

0.060

0.054

0.052

0.058

k(G)

0.020

0.021

0.018

0.032
0.031

0.036



HD
571
6961
9826
10476
13331
19373
21120
26574
27022
27309
305652
31358
39587

43329

SPECTRAL

TYPE

F21I

ATV

Fav

Kiv

ALV

GOV

G8I11

F2111

GH11X

A SI

Fov

K311

GOV

G818

TABLE 3.2

DBSERVATIONS OF THE STANDARD

Y
54038
44357
40110
5239
54188

4,065

, 3eb18

4,482
5281
Se 392
3193
2e 681
4405

BAOQE

c1
16074
04957
00437
D378
16040
Da418
Ded72
De 765
Do443
0e521
0s396
00229
04333

De213

M1

£e¢138

v De234

$.158

D300

N2163

0a168

D.328

00249

De 279

0210

0el85

ﬂ-Bl?_

He178

DeT02

De269
04085
fla348
De512
0054
)+ 385
U538
Del?7?
eSS0
ﬁOoDQZ
0287
04941

D«378

D +855

STARS
NOo
0BSe
iz
10

82

17
19

17

0,001
=-0+105
0,079

0216

Qe1f28

0-188
e 169

3+ 039
04407
Qsltla

Ca326

N

De 396
04352
) o 360

D385

0353

D537

Ne487

(e 386

+
DaB1l4
0.357

0868

0BSa

14

16

16

17

16

99



HD

57669

58715

589456

62345

62721

8670306

73262

TR3E2

T9439

82885

83425

DBR4EA

91316

102872

SPECTRAL
TYPE

KQIII
B?V
Fov
GBITI
KBIIL
AZYV
ADV
FSEAS
AV
GBIV-V
KI3IIL
KJIlIpP
#3118

Fav

Y

5e 220

2e¢916

46192

34581

4a 053

40 835

40170

4875

48323

S=418

44676

2.019

38879

32601

c1
De 326
0.782
0616
06425
Te428
1,068
1e 062
De 686
e BB
De423
Do 432
Deani
~0o060

Dedds

TABLE 3.2

{CONTINUED)

M1
0590
0113
0al5R
e 363
20769
0174
Col7l
00261
G210
09245
G2650
Ded4sd
e D15

Geled

B-Y OBS.
0771 !
-2 e033 11
Do216 @
0e575 64
DeB889 10
GeG13 5
De0N3 18
Ne211 5
Lelll 5

De498 2

£s803 3
Dae693 4
~Nel1l4 4
5363 16

Q213

Qed24

~(14025

0213

o360

Ce 2561

D086

NeB11

D393

0583

QebB2

Ded432

Ne412

H+631

N,5565

Qe 373
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103%9s

103287

1635738

1067328

111812

113139

120315

1225¢&3

1277€2

130109

142860

143147

143761

152181

SPECTRAL

TYPE

Gavl

AQV

A3V

KIITI

GOILl

Fav

B3v
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ATIII

AQV

FeIvV=V

K3III

G2V

G211l
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2465
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4;942
4o340
1.893
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3e 0069
34756
3,859
49145
524183

20309

c1
0,198
1076
1072
06532
Oe8 42
De565
0279
De542
De 979
to 044
Det12
00428
04373

Va5l

TABLE 3.2

{CONTINUED)

M1 B=Y
0,215 Detb77
0+163 0,009
[e194  Do059
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De173 0438
$s177 04239
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De204 00106
Vo153 D.004
De146 - De318
0e577 0a745
Ge156 04301
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0BS s
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17

17

il

11

13
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N
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182649
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185758
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187213

192514

162713
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217014

SPECTRAL
TYPE

FOIV
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G5V
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GEI1
F3v
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G5V
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Se 1865

2,230
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4788
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De450
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Ne 457

Ne396

TABLE 3.2

{CONTINUED)
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&
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11
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13

2

4

=0.030

—0o04
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Dedl

0.029

04193

0.077
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00228
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N
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0395
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TABLE 3.3
STANDARD STAR PROBABLE ERRORS.

Quantity Kelssall Stromgren-Perry

y 0.0070

ey 0.0089 0.0085

my 0.0082 0.007L
b-y 0.004k 0.0057

¢ 0.0055

i) 0.0051
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CHAPTER IV

ORDINARY STAR RESULTS

4=1, Reduction and Results

Once the standard system is established, data reduction is straight-
forward. For each night the intensity readings are transformed into the
basic photometric quantities by the procedure described in section 3-2.
To these quantities air mass and night corrections are added. The appro-
priate extinction coefficients and night corrections are ob;ained from
the analysis of the standard star data on that night.

Table 4.1 lists the final results for the ordinary (i.e., mnon-
variable) stars in this program. The spectral types are from the compi-
lation by Jaschek et al. (1964). A number of stars require.individual
discussion, and this specific commentary is contained in the:notes ap~

pended to the table.

4-7, Mode of Analysis

The major body of the ordinary star results is devoted to supergiant
stars. Thes? stars suffer much interstellar reddening. The effects of
the interste}lar reddening on supergiants is seen as the scatter in the
plot of cy versus (b-y) shown in Fig. 4.1, For the G and K stars there
is a discernible envelope, which probakly delineates the reddening-free,
thermal locus. This simple pattern is immediately confused by the con-
figuration of the interwoven A and F stars. As we shall see later, c¢g
is a parabolic function of (b-y), or spectral type. The question that

must be settled is how best to eliminate the effects of reddening.
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As mentioned in section 1-4 a standard technique used in eliminat-
ing the reddening from a multi-color program is to plet a particular
color-color diagram. Then from an analysis of the least reddened stars
(near-by or high latitude stars), and those for which the reddening is
reasonably well-known (cluster or association members), a thermal locus
can be determined. Once the thermal iocus is known, color excesses can
be procured for any one of the chosen colors. The deduction of all other
color excesses is possible, if the color excess ratios are known with
respect to one of the chosen colors. This last step requires external
knowledge of the nature of the interstellar reddening as a function of
wavelength, or spectral type ipformation so reddening lines can be de-
duced from the photometric data itself. This procedure is quite adequate,
but it does introduce a number of systematic effects which we W%Sh to
circumvent. Firstly, the thermal locus is a liné delineating an unred-
dened boundary presumed to be true for all stars. This assumption that
the thermal- locus is dispersionless is not necessarily correct. Secondly,
the shape of the thermal locus cannot be well defined unless the distri-
bution of unreddened, or slightly reddened, stars is sufficiently dense
along its total path in the color-color diagram. Finally, the position-
ing of the locus is often subjective. These three effects can introduce
hidden systematic errors in the deduced color excesses for the other
colors.

Another method of suppressing reddening effects is exemplified by
the construction of Q in the UBV system. To illustrate this procedure
we consider a system composed of the three observed quantities cj, c9,

and c3. Any ¢ is a composite of cgo the intrinsic value of ¢, E{c), the
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c's color excess, and e{c), the observational errox. We drop e(c)
from the discussion for convenience. If the color excess ratios,
E(cl)/ECC3) and E(cz)/E(C3), are known, we can comnstruct two reddening

free quantities. We denote these by bracketed symbols. The unreddened

quantity associated with cq is ——

Ec13 ey - E(cl)/E(c3)*c3

= -
or [cl] ¢, — a¥e,

As each color is equal to its intrinsic value plus the reddening excess

we have ——

[Cl] = clo - u*cBO + (E(cl) - a*E(c3)),

which reduces to —

[e;] = e, - a*c, .
1 lO 30

Similarly for the other color we have —-—

.where B is the ratio E(cz)/E(c3). The brackeﬁed quantities contain the
effects of the interstellar reddening only through the coefficients o and B.
In the construction of the bracketed colors no reliance is made on know-
ing the location of a thermal locus. This process sacrifices one color

to remove the interstellar reddening effects. The desirable character—
istics of 35 the sacrificed color, are that it be reasonably neutral as

an indicator of stellar physical variables, and that the needed reddening
excess ratios be less than unity. The color (b-y) of this investigation
satisfies these demands, being mainly determined by stellar effective

temperature.
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The virtues of forming the bracketed gquantities afe that the disper-
sionless thermal locus is not introduced, mean lines can be determined
statistically, and all stars regardless of their amounts of reddening can
be included in the analysis of fundamental relationships. While it is
difficult to argue for the overall superiority of this procedure on strong

grounds, its dntultive neatness is very appealing.

4—-3. Color Excess Ratios

The determination of the color excess ratios is carried out in three
different ways - firstly, through use of the wavelength dependence of
interstellar reddening and the filter characteristics; secondly, by an
analysis of the cepheild colors at maximum light as functions of (b-y);
and, fimally, by the fitting of the bracketed quantities for the Ib
supergiants with the color excess ratios left as free parameters. These
three methods give rather dispersive answers, indicating the difficulty
of obtaining good color excess ratios. Our hope is rhat an average of
the results is meaningful, as the three methods are distinct, and each
contains errors of different kinds.We discuss each of these methods in
more detall below.

The effective wavelength of a filter, he, is defined by the standard

relation —-

0

Ae AXFOO)AT (A *S (A )*d4A FHT&S%*dA ,

where F()A) is the filter tramsmission, T(XA) is the telescope plus photo-
metric equipment response function, and S(A) is the stellar distribution
function. In our case F(A) is well known from the spectrometer scans.

Using reasonable functions for T and 8§ it is found by numerical experimen-
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tation that effective wavelength is most insensitive (&3 E) to these
functions, except for the u filter. The difficulty with the u filter is
that it lies in the region where the photomultiplier response is rapidly
varying, and thus the determination of the effective wavelength is rather
difficult as the responses of the individuzl tubes used are unknown. As
a compromise we define le(u) with T and 8 set equal to ome at all wave-
lengths. The values of the effective wavelengths are listed in Table 4.2,
The color excess raties are determined by coupling a knowledge of the
effective wavelengths with the results of Naﬁdy (1964, 1965, 1966, 1967),
and of Boggess and Borgman (1964) on the variation of the interstellar
reddening with wavelength. The results of this are presented in Table 4.3.

The laxrge scatter in the ratios for ¢, and gy is disappointing. The

1
scatter in the ratios for G and N are much smaller, a reflection of the
appreciably shorter waveléngth baselines for these colors.

At maximum light the cepheids represent a class of stars of nearly
identical spectral characteristics, independent of period. Thus, the
scatter of cepheid colors at maximum light in any color-(b~y) diagram
can be mainly atrtributed to the effects of interstellar reddening. We
take advantage of this situation by determining the best linear relations
between the various colors and (b-y). Clearly, the slopes of these
straight lines are the desired color excess ratios. The findings of
such a study for the program cepheids are given in Table 4.4.

A final method is to employ all the supergiant data. The proceduxe
is the following. The spectral types are taken as reliable, independent
information. This is a judicious choice as the assignment of spectral

type has the desired advantage of being relatively umaffected by inter-

stellar reddening. Digitizing the spectral types so A0 = 0.0, A1l = 1.0,
1
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«vsey K5 = 35.0 transforms them to a numerical coordinate, X. The redden-—

ing free colors we use in the analysis are —-

]

[c cp = o #(b-v),

1 L 1

[m =m, - u'm *<b_Y):

]
1 1 1

[G]

- % —_
G O (b-vy),

and

[N] = N - ag*(b-y),

where o, = E(cl)/E(buy), etcetera. Each of the bracketed quantities are
1

fitted by an eighth order power series in X, with the alphas left as free
parameters. The dispersions about the fitting lines are investigated as
functions of the alphas. The normalized sum of the deviations squared
about the fitting lines are shown as functions of alpha in Fig 4.2. The
graph demonstrates that for each of the bracketed colors there is a
"best" alpha. These best alphas are indicated by arrows on .the graphs
an& are listed in Table 4.5. The broadness of the curves of normalized
5 Wigh alpha for [cl] and [ml], and the sharpness in the curves fog the
cases of [G] and [N] are directly understandable in terms of the broadness
and narrowness of the associated wavelength baselines. We accept these
alphas as representative of the most appropriate statistical values for
the color excess ratios. |

The final adopted values for the color excess ratios are the weighted

averages of the above three sets of results. The subjective weightings

applied are - 2 for the cepheid results, 1 for the interstellar—}\e
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findings, and 1 for the free parameter fitting answers. These adopted

values and those used by Strimgren (1966), and Williams (1966), in their

investigations are shown in Table 4.6.

4~4, Bracketed CQolors Versus Spectral Type

Using the adopted color excess ratios the Ib supergiant results are
fitted by an eighth order power series in the digitized spectral type
coordinate, X, by the method of least squares. There are two reasons for
using an eighth order power series fit. First, the order introduces a
degree of high frequency smoothing. Second, in the free parameter varia-
tion metheod of éection 4~-3 it was found that a high order fit was needed
to ensure a smooth relation of S with alpha, and make the best alphas
independent of the order of the fitting series. A least squares fitting
procedure is invalid in the strict sense, as X is both disjoint in nature
and not error free. We use the method as a convenience. While there have
been some attempts to formulate a meaningful method of fitting in a
double error coordinate system, we employ the heuristic method of reversal
for final smoothing. That is, we-fit the spectral type as a Ffunction of
the color within the workable limits FO to KO where the data ls suffi-
cient, and combine these results with the reversed fit, the colors as
functions of the spectral type. The final curve for any color is the
wéighted average (W = 2 for the color as a function of spectral type,
and W = 1 for the spectral type as a function of color) of the two results,
with a little assist from the scanty data for stars earlier than FO. The
adopted relations are shown as solid lines in Fig. 4.3; the crosses are
the £it of the color as a power series in X; the filled ellipses are the

fit of the spectral type by a power series in the color. The rms
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dispersions at any spectral type are 0?081, 0.064, 0.021 and 0.030 for

[cl], [ml], [G] and [¥W], resﬁectively.

45, Intrinsic Values for (b-y) and G

The recovery of the intrinsic values for (b-y) and G as functions
of spectral type can be made using the (B-V) color excess data from the
UBV results. Buscombe (1964) 1lists in a catalog of supergiant and
cepheid results the E(B-V)'s for seventy-two of the supergiant stars ob-
served in this program. This data is sufficient to position a thermal
locus in a G, (b~y) diagram.

In Fig. 4.4 G is plotted against (b-y). The figure indicates that
a suitable thermal locus is a straight line. But its position cannot be‘
precisely specified. To locate the zero point of a straight thermal locus
we assume that E(b-y) = 0.70%E(B-V). Such a relationship is consistent
with our present understanding of the variation of the interstellar ex-
tinction with wavelength. For the seventy-two stars with known E(B-V)
we can calculate (b—y)o and Go’ as E(G) = 0.105%E(B-V). TFitting the data
for these seventy-two stars to a linear relation gives the dashed line in
Fig. 4.4. This line has a slope of 0.532, which is close to the value of
0.510 found by Williams in his study of long period (P> 10d) cepheids.

For the dependence of (b—y)O and G0 cn spectral type we process the
reddening-free colors in a manner commonly used in nuclear physics. Re-
garding the spectral type as a channel entry we perform a smoothing of
the insufficient and ''moisy" data by forming the averages over a number
of channels, and position this average value at the weighted mean channel
location. While the use of moving’averages eliminates fine detail, its

advantage is to enhance systematic trends which might otherwise be lost
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in the bouncy data. As a check, the run of the moving averages are com-
pared for comsistency with the single chamnel averages where tﬁere are
sufficient points in a single channel. In Fig. 4.5 the mean eye-fitted
(b--y)0 and GO lines are ghown. The triangles in the figure are single
channel averages, while the squares dre the moving averages. It is clear
that there is no glaring inconsistency between the two'averaging‘processes.
In fact, in this case the  moving averages are probably not essential to
the discussion, but as this procedure is used laterxr, its introduction
here is warranted. The mean line results are not entirely in accord with
the straight line thermal Iocus found in the G, (b-y)} plot, as transferral
of the separatrely determined (b-y)O and G0 points onto this plot produces
a slight bulge 'to the left of the straight line near KO. Howeveé, this
discord is qot significant. The point here is that adequate color ex-
cesses are retrievable, These excesses calculated using the thermal

locus of Fig. 4.4 are listed in the last column of Table 4.1.

4—6. Physical Meaning of [G] and [N]

The physical interpretation of the photometric parameters associated
with the Str8mgren system is well supported by the investigations of
Strdmgren and his collaborators. Such an admirable situation does not
exist for the case of the colors [G] and [N].

In a recent study of atmospheric simulation models by Bell And Rodgers
(1969) it is peointed out that the Griffin and Redman {(1960) photémetric
index n is a satisfactory cyanogen strength criterion. Thus, té-reduce
the proverbial multiplicity of correlative graphs, so common to photomet-
ric studies, we substantiate our claim that [N] is a CN strengfh indica—

tor by a plot of n versus [N] in Fig. 4.6. On the whole the agreement
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is satisfying, though the scatter is quite large. The mean n and [M]
curves with spectral type are similar in shape, though n peaks at an
earlier type (G8) than does [N] (KO).

Photometric studies of the G-band strength for supergiants are
lacking, except for Kraft's Gamma photometry. Kraft notes that a peru-
sal of the MK standard spectra indicates the G-band strength reaches a
maximum in the middle G stars for luminosity class 1. His Gamma photo-
metry reproduces this characteristic quite well. The color [G] is a
measure of the CH contribution to the G-band as shown by Bell and
Rodgers. However, its variation with spectral type is not well corre-
lated with the visual aspects of the spectra used as the classification
criteria in the MK scheme. In particular, [G] has not attained a maxi-
mum even by spectral type K3. We note, however, that the G-band
strength is often determined from plates of.low dispersion, and the con-—
trast on these plates is muted by the spectrograph's instrumental pro-
file and the background of weak lines. 1In lieu of any objective G-band
eriterion we will retain the suggestive G notation for the color, but
stress that it probably is not an indicator of what many observers would

call the G-band strength.
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NGO
CESe

/

4

3

E(8-Y)

Ne018

D.036

Oeléd2

De015

0003

Q088

QeAT

06



HD

HD

kD

LD

HD

HD

HO

T HD

HD

HD

HD

KD

HD

HD

HD/BD
172365
173538
}74104
179784
180028
t 80583
182296
183864
187203
187299
226223
190113
331777

190446

"SPECTRAL

TYPE
Fotp
F2I8ILL
GaIB
G51IB
Fela
F&EEBITE
GIEIB
G218
GGIB
GHIABB
F&ls
G518
FBIA

FelB

H5¢362
5716
Ba370
6685
66934
64055
To023
Te329
6Ge4had
Tal36
90159
72839
Te 923

Be219

C1

De724

1,489

Je549

Ced09

Do 929

ila B1 4

£.4538

Qo579

o714

Da158

0. 848

Dodl4

Doe970

a 794

TABLE 4.1

( CONT INUED)

M1 B-Y
Pa232 Q499
0110 04404
De204  De458
00363 0921
Da147 e 549
0e205 00361
0.367 00868
0e206¢ 00839
Del227 RobLI
Qo410 1080
0187 0406
$a438 00954
0¢304 0,942
De 202 De345

N{e

OBSe G
2 0oll2
1 -0.021
i 00120
1 0273
1 De0T8B
1 0,027
2 0.228
2 Gol8l
2 D162
2 D280
1 -(e010
1 0308
2 0«}86
2 0050

N

Oc463

Qobibd

Ved35

De697

Qo460

Deb49

07085

D524

Nas4a9l

0751

0sa 84

0728

DeS26

f.3092

NOo
0BSe

2

£4{B8-Y)
0914?
0339
Do046
289
0«282
0s156
0334
Vo418
0173
Dol494
0e313
o244
e548

DoGT3

16



TABLE 4.1

(CONTINUED)

SPEC TRAL J NQOe : NOo .
HD/RD TYPE Y c1 M1 B-Y (BS. G N 0BS. E(B-Y)
HD 199323 GOIAAB 656849 04880 ‘04344 0.5t4 2 0ell5  De518 2 Del38
HD 190403 GS1BTI 54731 0.416 06239 00470 2 0175 0.418 2 0.000
HD 191010 G318 8e171 e 424  0a318 6.623 2 .0.203 0558 2 04059
kO 191423  QoV, Be60 —=0o985 ~040U22 0.188 1 ~0+038  0e392 1
BD 37 3827 F3I8 Be134° 1e427 0ali74 04649 1 0059 0.456 1 | 0.473
FD 192909  K3IBII 30959 —04242 Q+544 D989 2 0e335 0618 2 0,222
HD 192876 G3IB 44248  0a450 0,361 0672 1 D+194 0a.581 1 0e151
HD 193370 FSIB 50160 14019 0204  De413 3 04054 0.443 3 Del57
FD 193469 KSIB 64375 D067 04656 14250 1 0ed09 De715 1 0e393
HD 195295  F511 44D 14 14068 0+189 0e250 2 DeD10  Detl14 2 0.045
HD 195324 Al1IB 54864 - 14193 . ~0e032 G384 2
HD 195593 F51AB 6e214 14106 04103  0.684 3 0047 045063 '3 o.ssi
FD 19609073 K218 44588 -9e550 Qet428 1073 2 0298  0e640 2 0ea37

ED 1856725 K31IB 5:659 De232 De769 0240 2 Q0378 e 796 2 0041
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HD

HD

HD

FD

FD

HD

D

+D

=D

HD

HO

FD

D

D

HD /B0

200102

203855

200905

202314

204022

204867

2053409

236312

206778

26857

2074689

207260

277489

207647

SPECTRAL
TYPE

Glip

5183

K518

GoiH

KiIi

K11lX

K218

GBLB

Kult

AZTA

FHIB

G41n

64629

Be312

3+683

6:163

Ted430

22914

6229

7127

2377

44336

5272

G40 2865

Ta229

7017

cl1

e 479

13C4

138

fae367

e 609

DeS72

D207

Qe 387

Ue 170

N+ 348

Je 250

Je965

1.062

D381

TABLE 4el

(CONT INUED)

M1
0.301
Gol62
0e794
De418
0e307
0+303
De752
De520
0,823
00479
0e587
~-0.035

Dol77

Qe 3B8

8-¥

8e654

0498

16026

De699

Ce9073

NeS511

1.180

NWT772

0238

NDe710

2875

Ned286

De45350

Qe749

-

0BS G
2 0e192
2 00025
3 00421
2 Doe242
2 00245
1 00146
2 Dodll
1 0e271
2 Do 397
2 0.254
2 0e317
a .
4 0e072
2 De195

N
0e527
Qo482
0s726
0.6aa
0.570
0e498
0.883
Ne797
0807
de708

De772

0:458

ReH49

NOo
0BSe

2

E{B-Y)

Nel29

Qe 349

Qo049

00,062

Q0.437

0.052

Na290

D087

0,000

0.047

D.113

Os 160

Ne2556

€6



-HD
HD
HD
D
RD
HD
HD
HD
HD
HD
HD
HD

ac

HD

HD/BD
207673
208606
209481
209750
210221
210745

214680

216206

216946

217476

2183586

219135

60 2532

221861

SPECTRAL

TYPE
A218
G818
asv
G218
A3IB
K1IB
ovv
G418
K518
GO IA
KG IBPR
GOIB
F7TIB

KO1AB

Y
£+ 480
6125
De542
24938
64116
3370
44927
Ce246G

40981

44098

4761

TeH20

Be 305

S838%

c1
1.054
De 277
-0s11t0
De 474
le 332
De 190
~D0.15D
Je 398
0e1956
De 487

. 144

00 622~

e B49

e 288

TABLE 401

(CONT INUED)

M1
-0a015
565
-0.+028
Re«dD4
J.018
D778
0s030
Ded0i b
3838
C.431
0e549
Do242

D154

D540

NOe
B~-¥ 0OBS.
04355 2
14042 2
0a138 1
D571 2
Ne327 2
D592 4
=Det}54 1
G696 3
le156 2
Qe960 12
0834 3
- DeBT7 .7 3
Da751 3
1el76 3

.

D+314.

-0s038

0el94g

0.384
~04068
Qe234
0e461
0e207
0e294
0el74
Cel00

G333

N

{.831

0357

0538

0893

Ce360

QeB36

D675

D502

0503

Le826

NOs
OBSe

E{B-Y)

De350

D05

0098

D081

0.126

De510

D114

De210

Qo508

Ded89

Y6



HD /8D
HD 2?2574
HD 223047
HD 224014

HD 2241685

WE REFER TO THE SOURCES JASCHEK ET AL {19641},
AND THE YALE CATALOG OF BRIGHT STARS
THE COLORS CORRECTED FOR INTERSTELL AR

(KUKARKIN ET AL 1958).
SYMBOLS Jy

BD 59 38¢
HO 17509
HD 23230
HD 25030

5

PECTRAL
TYRPE

GG11I

G5IRB

FalAp

Gca8IiB

4,805

40 6%

40584

6,008

GCVS, AND YES,
REDDENING ARE DENDTED BY A ZERO.

THE COLORS {B-Y)U,
BUT THERE 15

TYPE,
STAR .

C1
DeF23
Da285
Ja861

D320

HAS A B COMPANION.: D

LISTED AS POSSIBLE
IT IS QTHER THAN A

GO
ONLY ONE OBSERVATION FOR THIS FAINT (Y

TABLE 441

(CONTINUVED)

M1

Cs297

Fead25

D «350

Ced95

CUMMENTS

RESPECTIVELY,

B~y
Qo493
00696
0e580

e731

VARIABLE IN GCVS»
FBII STARe

ND,
0BS»

THE VALUE OF Ci0 IS HIGH FOR A K1IB STAR,
THE PHOTOMETRY SHOWS APPRECIABLE SCATTER.

Rol155

0a208

ODuldd

Ne257

BUT THE STAR

N

0.433

De656

04504

Ce718

MO a
OBSoe

N

(1964 BY THE

E(B-Y)

D 000

Qeala7

o288

1,068

GENERAL CATALOG OF VARIABLE STARS
AMND NO ARE ALL A TRIFLE LLOW FOR ITS SPECTRAL
9.0}

28" BUT MO EFFECT IS DBYIOUS IN THE RESULTS,

NO EVIOENCE IN THE RESULTS THAT

IS5 FAINT AND



HD

HD

HD

HD
HD

HD

HD

HD

HD
HD

HD

266310

37819

38247

44993

59067

163506

168913

182296

187299

190113

10323

TABLE 4.1

{CONT INUED)
SPECTROSCORIC BINARY AND DOUBLE {(DELTA-M = 7.5y D = 15m), BUT
PHOTOMETRICALLY IT APPEARS AS AN ORDINARY GOIB STAR.
PHOTOMETRY 1S OF GOOD QUALITY, C10 LOW AND M10 HIGH FOR A FSIL STAR.
PHOTOMETRY 3HOWS LARGER SCATTER THAN EXPECTED FOR A STAR WITH A
Y = 5asGe ALL INDICES WOULD BE BETTER UNDERSTOOD IF THE SPECTRAL
TYPE WERE CHANGED FROM G8 TO KOs
THIS IS THE CEFPHEID T MON, P = 27 DAYSa.
ENDICES ASKEW FROM EFFECTS OF B COMPANION (DELTA-M = 24 0 = 14},
LISTED IN GCVWS AS V441 HER, A SEMIREGULAR VARTABLE WITH A POSSIBLE
PERIOD OF 70 DAYSe NO EVIDENCE IN THE PHOTOMETRY WHICH 1S5 OF GDOD
QUALITY AND IN ACCORD WITH THE GIVEN CLASSIFICATION, F2IAs
GIVEN AS EITHER A6V OR FSIB IN J (A M IN YBS)e PHATOMETRICALLY C1D
AND M10 ARE COMPATIBLE WITH EITHER ASSIGNMENTs WHILE THE VALUES FOR
(8-Y)0, GOs AND NG ARE IN BETTER ACCORD WITH A6V. -

THE INDICES WO AND M1D ARE HIGH FOR ITS SPELTRAL TYPE. POSSIBLY
OVER ABUNDANT IN METALSy C+ AND Ne

THE C10 15 LOW FOR ITS SPECTRAL TYPE, ALL OTHER INDICES ARE NORMAL,
LISTED AS 6518 OR G&V IN Js» PHOTOMETRY SUPPORTS THE GSIB LISTINGs

THE VALUE OF €10 IS APPROXIMATELY (.3 TOO LARGE fOR ITS SPECTRAL
TYPEs ALL DOTHER COLORS ARE WITHIN REASONABLE LIMITS FROM 'NORMALY,



HD

HD

HD

HD

HD

HD

HE

HD

HO

HD

HD

19044 3

1529049

196093
200905

202314

2U58506
218745
216946

217476

222574

224014

TASLE 4.1
(CONTINUED)

LISTED AS GSIB=-IIsy G5iI, OR KLV IN Js THE RESULTS HERE ARE MORE
CONSISTENT WITH THE LUMINOSITY CLASS V ASSIGNMENT, BUT NOT WITH A
SPECTRAL TYPE A3 LATE AS Kle

ALGOL TYPE VARIABLE, LISTED AS K3IB=I1 ¢ B IN J» THE EFFECTS'DF THE
COMPANICQON ARE PRONOUNCED. PARTICULARLY ON C10 AND NC WHICH ARE LOW.e

LISTED AS K2I8 + B IN Js QUITE OBYIOUS FROM THE PHOTOMETRY.
A SPECTROSCOPIC E2IMNARY., NGO EFFECTS O8VIQOUS IN THE RESWTSe

ALL COLORS WOULD BE MORE CONSISTENT IF THE SPECTRAL TYPE WERE
CHANGED FROM G2 TO GS.

A SPECTROSCOPIC RINARY . MO EFFECTS 0BVICOUS IN YHE RESULTS.
A SPECTROSCOPIC BOiINARY, MO EFFECTS 08VIOUS IN THE RESULTS.
SUSPECTED VARTABLE IN GCVS, PHOTOMETRICALLY IT APPEARS NOSMAL.

DEFINITELY VARIABLE, DATA IS INSUFFICIENT TO DETERMINE A PERIOD BUT
IT IS OF THE (ORDER OF HUNDREDS OF DAYS,

LESTED AS VARTIABLE IN J, AND A POSSIBLE VARIABLE IN GCVSs LOOKS
MORMAL PHUTOMETRICALLY.

THE VARIABLE STAR 7 RHO CAS, PHOTOMETRICALLY IT APPEARS AS A NORMAL
FE8IA STAR.
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ETFFEC

Filter

u

b W T

(w4]

TABIE L4.2
TIVE WAVELENGTHS

A A
0.3455.  2.80hp"
0.4106 2,454
0.4700  2.128
0.5482 1.824
0.4377 2.285
0.4279  2.337
0.4166  2.400

TABIE h.3

COLOR EXCESS RATIOS FROM EXTERNAIL SOURCES.

Source/Region
Wandy
Cygnus

Perseus

Cassiopeié

Cepheus
Boggess & Borgman

Averages

E(cl)/E(b—y} E(ml)/E(b-y)

+0.142
~0.065
+0.050
+0.016
+0.242

+0.077£0.105

-0.129
~0. 27k
-0.01k
-0.192

-0.098

E(G)/E(b-~y)

+0.142
+0.087
+0.11%
+0.135

+0.151

98

E(W) /B(b-y)

+0.156
+0.134
+0.200
+0.129

+0.170

-0.141+£0.088 +0.126%0.023 +0.158£0.026



TABLE k.h4

COLOR EXCESS RATIOS DETERMIWED

FROM CEPHEIDS AT MAXIMUM ETGHT

E(cl)/E(b—y) = +0.188

E(ml)/E(b-y) = -0.1h5

B(¢)/E(v-y) = +0.150

E(N)/B(b-y) = +0.124
TARLE 4.5

COLOR EXCESS RATIOS DETERMINED

FROM FREE PARAMETER FITTING

E(cl)/E(b-y) = +0.08)4

E(ml)/E(b—:y) = ~0.076

E(¢)/E(b~y) = +0.173

E(X)/E(b-y) = +0.178
TARLE L.6

PINAT, ADOPTED COLOR EXCESS RATTOS '

Source E(cl)/E(b-.'y“) E(ml)/E(b-Y) B(G)/E(b-y)
Kelsall 40,135 ~0.125 +0.150
Stromgren +0.20 -0.18

Williams -0.009 -0.261 +0.106

99

E(N)/E(b-y)

4+0.145

+0.109
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CHAPTER V

LUMINOSITY CLASSIFICATION

5-1. Objective and Procedure

One goal of the present investigation iz to determine the capa-
bility of this photometric system in distinguishing the supergiants
from the other luminosity classes. The system's usefulness as a galac~
tic survey tool is greatly enhanced, if this is possible.

We find for each luminosity class the mean color relations with
spectral type. A comparison of the separations between the mean color
curves, geither as functions of spectral type or anyone color, and the
errors of measurement show that at least the classés I and IT cannot
be distinguished. Construction of "supercolors" from quadratic expres-
gions in the mean colorxs produces a discrimination level superior to

that from the use of any pair of colors.

5-2. Source of the Data

The data copntained in this study on stars of luminosity classes V
through II is insufficient to yield satisfactory color-spectral type
relationships. To extend the data on these luminosity classes we in-
corporate by transformation the data contained in the studies by Strbmgren,
and Williams. Previously we noted that transformations-of high quality
are impossible. lNowever, here we restrict the use of the transformed
quantities to the simple determination of mean colors, and do not use
them in a search for intermnal correlations. The transformations are

adequate for this more limited task.

107



108

The best procedure is to transform the bracketed quantities
directly. The transformation relations for [cy] and [ml] for Strbmgren-
Perry catalog stars are shown in Fig. 5.1. The expressions for the
transformation curves are --

1 - 0.012#[c ]2
1's ?

[ 0.016 + 0.981*[c

1k g

and

0.027 + 0.825%[m, ]

[m 1's

J 2
l]K _ + 0.205#[m1]s .

The transformation“probable errors are 0.022 and 0?013, respectively.
We note the smallmess of the zerc point and the coefficient of the non-
linear term in the [cl]—transformation. As the range in [cl} is large
these aspects of the transformation indicate that our values for [cl]
will be close to those on StrBbmgren's standard system. This is clearly
not true for the vglue of [ml]. The relations between [cl], [ml], [G],
and [N] of Williams and those of this study are illustrated in Fig. 5.2.

The transformation equations are —-

e, = 0.090 + 0.637%[c, 1 + 0.268%[c, 12,

fm,Jy = 0.654 + 1.069%[m 1 + 0.343%[m 12,

[6], = 0.151 + 0.929%[c], - 0.572*[c]  ,
and

[N], = 0.128 + 1,027%[N], + 0.130%[N1 .

The probable errors of transformation are 0?055, 0?024, 0?007, and 0?009,
respectively. The error in the [cl] transformation is so large that
Williams' results are dropped from the discussion; except for the lumi-

nosity class II stars where the data is so scant that every point must
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be preserved. The transformation difficulties reflect the complexity
of the stellar spectra. The difficulties also emphasize the necessity
of carefully matching filters when using an intermediate band-pass
system.

A Jisting of the information used from the Str8mgren-Perry catalog
and Williams' article is given in an appendix.

It is obvious that color-spectral type relationships for luminosity
classes V through II will be less certain than the trends found for
supergiants, whose data comes from this investigation alone. However,
the uncertainties introduced through the transformations of the external
data are within tolerable limits, and the resulting curves are doubtless

adequate.

5-3. Color—Spectral Type Relationships

For the supergiant colors the data is sufficient over the spectral
type range A5 through K5 so a power series fit in the digitized spectral
type coordinate, X, can be madé. For the ther luminosity class colors
it is necessary to make use of moving averages, as in section 4~5. The
exceptions to this restriction are the following:

(1 [cl] for class V stars in the spectral type range A8 to K5 is

adequately represented by an eighth order power series in X;

(2) [ml] for class V stars is suitably given by an eighth order

power series in X}
(3) [cl] and [ml] for class III stars are matched by an eighth
order power series in X.
As the handling of some of the data is subjective, we give the details

below.
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The smoothing curves (solid lines) for {cl], [G], and [N] for
luminosity class V gtars are shown in Fig. 5.3. The power series fit
to the full data is denoted by the dots. In the [N] case we see how a
high power series fit minimizing the rms deviations introduces bumps,
which are probably spurious and need to be smocthed by some sensible
intuitive process.

For class IV stars the values of {cl] and [ml] cannot be assigned
on the basis of the photometric data at the later spectral types. Here
an additional expediency is used. The KO IV - K5 IV results are simply
the values found by averaging the class V and class III values (crosses).
For [G] and [N] the data is totally inadequate. As the average values
formed from the class V and class III results fit the situation as well
as any other set of values, these average values are accepted for the
class IV stars. The curves are presented in Fig. 5.4.

The smoothed [G] and [N] curves for class IIIL stars are plotted in
Fig. 5.5. The turnover in [N] at K3.5 is weakly indicated by the data.
This turmover is in accord with the results of Griffin and Redman (1960).

For the class 1II stars the data is so meager that use of moving
averages is of no help, so eye~fitted curves through the raw data are
made. TIn each of the color plots in Fig. 5.6 the class Ib results are
shown as a dashed curve. The data points for the class Il stars do not
distribute themselves about the class Ib line, indicating that photo-
metrically these two classes are distinguishable, if only marginally.

The final over—all results are presented in Table 5.1, and Figs. 5.7
and 5.8. The dispersions about the mean curves are listed in Table 5.2.
The [cl] and [ml] dispersions for the luminosity class II stars are of

doubtful value as the eye-fitted curves stressed the author's results,
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while the dispersions are calculated from all the data.

5-4. Supergiant Digcriminants

To determine photometric discriminants, all possible color-colox
graphs were made using the mean colors for the spectral type range A5
through K5. These graphs also included the two constructed ecolors

[u-v] and [u-b]. These two colors are formed using the relations --

av] = [e)] # [my],

and

! [u-b] [cl] + 2.0*[m1].

The four best segregating curves are shown in Fig. 5.9. In all curves
the TI-I1 segregation is virtually impossible to make, and the I-II-III
confusion is in many regions quite pronounced. The [cl] versus [G]
curve is the most superior single curve, and when combined with the [u-V]
versus [G] curve good discrimination can be made in the ranges -0.05 <
iG] £ 0.10, and 0.175 £ [G] = 0.300. TFor the later spectral types the
IG] versus [N] and/or the [ml] versus [N] curves are useful adjuncts.
However, segregation on the basis of the colors alone is below expecta-—
tions. As all the data was used in making up these curves, it is impos-—
sible to determine by any meaningful internal means how well luminosity
class segregation can be performed on the basis of the color-color dis-
criminants alone.

Luminosity class segregation can be performed by mapping the mean
color curves into the disjointed, luminosity-class, lines in an Mﬁ,logTe
HR diagram. Such a mapping is possible through an equation quadratic in

the mean colors.
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We first break the mean color~spectral type information up into
three segments - AS—FZ, F7-G7, and G7-X5. The need for partitioning
resultg from the number of confluences in the mean color lines, For
example, in the AS5-F7 range the [cl] lines are cleanly separate for the
various luminosity classes, the [G] lines are close through out the
range, and the [mll and [N] curves are entangled in the neighborheood of
FO. The desire that the mapping results be clean demands that there be
a limited number of.muddying complications contained in the mean color
data. For each of these segments we fit Mﬁsimultaneously for all lumi-
nosity classes by a single expression in the mean colors [cl], [ml], [G],

and [N}. That s —-

Mv(spectral type, luminosity class) = a, * }E%i*colori

A (5-1)

In Eq, (5-1), colori stands for a mean color at a particular spectral
type, and for a“particular luminosity class. The color 1 is [cl],
etcetera, An equation equivalent to that for M# is found for log Te.

As these mappings are not calibrations in a strict sense, for convenience
and clarity we refer to the results as "supercolors”. The results from
these rather peculiar constructions are shown in Fig. 5.10. The solid
curves represent the M# data of Blaguw (1963), and the log Te calibra-
tion of Johnson (1966). The solid curves cover the spectral range A5

through K5 for each luminosity class. The points are the fits achieved

using the mean colors for A5 to K5 in a single equation in each of the
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three spectral type segments. The agreement is most encouraging. The
fitting dispersions are approximately 077 and 0.008 in Mﬁ and log Te’
respectively. The I-TI-IIT confusion evidenced in the mean color graphs
is eliminated in the supercolor diagram. This is a partial vindication
of a procedure which might at first appear to be an overly extensive use
of the mean colors. However, it is clear that the coefficients in the
supercolor equations are basically amplifying terms which enhance small
differences in the colors, in order that the results match the imposed
calibration conditions. As the calibrations are the disjoint, luminosity-~
class magnitude and effective temperature curves, the mappings are ex-
pected to be unstable to minor perturbations relative to the mean colof
lines. This feature is probably further magnified by the lack of physi-
cal content in the form of the supercolor equations. A redeemingiaspect
may be the inclusion of the cross-coler terms, the utilization of a fea-
ture which is hard to grasp through color—-color plots. Though the ex-—
pected sensitivity of supercolor equations to input is a restrictive
limitation, the procedure may still be worthwhile when applied to dindis-
criminantly gathered survey photometry data. We return to this super-
color method inm Chapter VII, where we give the results of the method

when it is applied to individual stars.
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CHAPTER VI

BASIC CEPHEID RESULTS

6-1. Photometry and Data

The cepheid éata is collected and reduced in a manner identical to
that for the supergiants. Whilst higher accuracy may be obtained using
comparison stars, the gain would not warrant the additional observing
time. The results are given in Table 6.1. The phases listed are those
calculated using bhe photomebric periods and epochs determined from a
combination of V and y data as described below. There 1s on the

average 13.1 observations per star.

6-2. The Periods

It is recognized that the cepheid pericds are not rigidly time
invariant. The compilation of periods in the General Catalog of
Variable Staxrs (GCVS; 1958) is derived basically from photographic
results up to 1958. Since 1952 there have been extensive observations
made on the UBV system. These results through 1964, transformed to
the standard UBV system, are listed in the very fine catalog prepared
by Mitchell, Iriarte, Steinmetz, and Johnson (MISJT; 1964). A combi-
nation of the V data from MISJ and the y data.from this investigation
gives new pefiods of high accuracy.

The method of period determination is to it the visual megnitude
by & Fourier series --

N

= oo
v, =agt j{ [an sin(2m

t. -t t.-t

5 ) + 8, *cos(em =21, (6-1)

n=1
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where n is the harmonic index, W is the maximum number of harmonics in
the fit, to is the time of the first observation, ti is the i-th obser-
vation time, and P is the period. In the analysis the period is left
ag a free parameter. For each period the fitting coelfficients are
calculated by ‘the method of least squares. The best period is defined
as that one which minimizes the sum of the deviations sguared, S.

We illustrate the procedure by example. In Fig. 6.1 8 is plotted
against period for the cepheid X Lacerbtae, using MISJ data only. The
interval size in the pericd scan, AO&F , is chosen so the relative phase
change between the first and last observation 1s less than 0.05 as the
period is changed from P to P + AP . The upper panel of Fig. 6.1
indicates a minimum in S at approximately 5.44 days. The deep satellite
minima result mainly from the blocking of the data into groups, each
group being associated with a particular observational program. The
computer program, designed by the author 4o do this analysis, finds the
point of deepest winimum. The program then asutomatically repeats the
period scanning in the neighborhood of the deepest minimum with an
ever increasing period resolution. This process ig continued until
the period producing the deepest minimum in S is determined to within
five parts in a bundred wmillion. The fine detail is shown in the
lower panel of Fig. 6.1, where an unambiguous minimum is found for a
period of 5.44389 days.

The following technigue is used to combine the V from MIST with
the ¥ of this investigation. The v data is analyzed using the period
found from the analysis of the MISJ data alone. From the separate V
and y analyses the mean values of the fits, (V) and {y), are known. To

bring y into accoxrd with V, to each y is added the correction term
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(V) - (37). This process is substantially the best that can be done.
For while y and V are well correlated for unreddened stars, the broad-
ness of V precludes using this simple correlation for stars as strongly
reddened as are the cepheids. Once y is so adjusted the period
analysis is repeated using the combined V and y daba. The results of
this combinational process are shown for four gtars in Fig. 6.2 . The
gstars well represent the full range of situwations. As can be seen the
v and V data are compatible.

There is no rigorous manner that can specify the accuracy of the
determined free-parameter period. However, intuitively we expect the
precision o be commensurate with the difficulty of phase positioning
arising from the size of the observational error. For example, if the
range in V is O?6,l§nd the observational error is 0?012, the phase
location is uncertain to 0.0l. This estimate is simply the result of
setting AP =(AP/dqV)*V-error. Thus, the expected relative period pre-

cision, AP/P, for a set of data covering N cycles will be given by --

AP A¢/@*V-error _ Ad. (6-2)

P T mo. of oycles N

This intuitive argument for accuracy was checked by performing a
number of numerical experiments. The fitting curve for 1 Agl was taken
as true. Random points from this curve were selected, positioned
randomly over a time baseline of N cycles, assigned errors of known
dispersion, and then analyzed for period. The results for period ac-
curacy bore out the simple argument given above, if the points
sufficiently covered the range in phase from O to 1.

The results of the period determinations for the thirty program



152

cepheids are shown in' Table 6.2. The daba fits in all cases contained
three harmonics, i.e:, seven fitting coefficients. The accuracy listed
in column four of tThe-table probably represents a best situation. The
MIST dats contains net only observational errors, but also errors of
system transformations. Even making allowances for these difficulties,
cepheids W Gem, S5Z Tau, SW Tau, and AU Peg have had period decreases,
while AT Vir's period has increased over the GCVS pericds. The marked

variation of AU Peg's period has been noted recently by Kwee (1967).

6-3. Color-Phase Resultsg

The color-~phase plots for eight representative cepheids are shown
in Figs. 6.3 through 6.10. The phases are those determined from the
epochs and periods listed in Table 6.2. The fitting curves for y are
not necessarily at a maximum at phase 0.0 as the fits are the resulis
of Fourier snalyses éf the y data alone, and the y data is often in-
gufficient in determining the time of maximum light. The data appears
to be most adeguate in delineating the variation of the photometric

quapntities with phase.

6~L. Comparison with the Supergiants

Photometric comparisons between the cepheids and the supergiants
are shown in the graphs of Fig. 6.11, where the photometric data for
the cepheids at maximum and minimum light are taken from the fitting
curves so as to place all cepheids on an equal footing. On the whole
the cepheids duplicabe the supergiant results. An excepbtion is the
results for {cl]. This discord is most pronounced at maximum Light.
It is known that the hydrogen lines are sirongest then. As [cl]

contains the v magnitude twice, and as the v filter conbtains H-delta,
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part of the trouble with [cll may result from the enhancement of
H-delta in the cepheids av maximum light over their supergisnt equiva-
Jents.

Fig. 6.11 also shows that there is no c¢lear photometric discrimi-
nation between the classical (C8), galactic (C), and Pop. II (cwW)
cepheids. For while four of the five CW cepheids stand ouk at maximam
light in the [cl] versus [m1] plot, the result for AU Peg ([él] = 0.662,
[m,1 = 0.281) shows that some of the CW cerheids would be lost

photometrically.

6-5. A Population II Discriminant

In the literature cepheid color-coloxr curves are often distingquished
by their opemness or closedness. This characteristic of the loops is
illustrated in Fig. 6.12, where the color-color Lissajous figures in
the UBV, six-color, and our composite sysbem are shown. A gquantitative
measure of a loop's openness would be its area. The index could be
either the total or the "signed" area, where the signed area is the
area calculabed baking into account the direction of circulation around
the area's border as the phase goes from O to 1.

In Fig. 6.13 the %total areas for particular color-color loops in
the various systems versus the log of the cepheid periods are shown.

We designate the total area of the U versus (B-V) loop by (U,B-V),
etecetera. The dabta shown are the best results for The various photo-
metric systems. For UBV we find no positive population discriminant.
The GU,B~V) plot does indicate that the CW cepheids possess systemati-
cally larger areas than most of the Pop. T cepheids. Good population
discrimination is apparently possible in the six-color and our

composite systeu. The most useful segregation results in our system are
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shown in Fig. 6.14. We nobte that this segregation method is inde-
pendent of the amdiumts%of interstellar reddening.

One impetus In inVestigating the color-color areas was a hope that
they could be interpréted as thermodynamics-work cycles. The results
can not be given a simple gquantitative interpretation along such lines.
Dr. R. A. Bell (private communication) points out that (b-y) is a
temperature indicator, while G depends on pressure and bemperabure
through molecular equilibria. Thus, the (b-y,3) is in a complex manner
the area of a (P,T) work cycle. The (cl,G) is similar, as ey is
gravity (pressure)dependent. A complete analysis of the results would

be most complex.

6-6. (b-y) Colex Excesses

The (b~y)-color excesses are calculable once the intrinsic ¢, (b-y)

relation is known. We assume the simple linear relationship --
— A¥(H- -
G, = &*(b y)o + B, (6-3)

and obtain A and B through a two step procedure. The first step is to
assume that B is zero in Eq. {6-3), and to take A as a free parameter.
For each of the twenby-one Pop. I cepheids the @&, (b-y) color-color loop
is calculated, at forty phase points, using the Fourier fits to the
colors. FEach phase point of a particular loop is translated along the
G, (b-y) reddening line until it intersects the assumed GO,(b-y)Oline.
The (b-y) translation is the E(b-y} for that point. The true E(b-y)
for a star is baken to be Ghe average of the E(b-y)'s at all phase
points. This average E(b~y) is applied to each phase point. After all
the stars' polnts are so translated, the rms deviation of the tobality

of points relative to the assumed Gb,(b-y)o relation is defbermined.
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The best value for the constant A is that for which the rms deviation
is least. ‘

The value for B is fixed by imposing the condition that the average
value of E(b-y)/E(B-V) be 0.70. This is identical to the adjustment
mzde to Tfix the zero point for the supergiants. The values fof E(B-V)
for the twenty-one cepheids are taken from the compliabion by'

Fernie (1967a).  The final Gb,(b—ylgrelation ig-=

G ¢ = 0.545*(b-y)_ - 0.110, (6-4)
This relationship is very close to the supergiant thermal locus given in

Fig- li--Ll- -

G-i'g' = 0.532%(b-y) | - 0.106
The E(b-y)'s calculated with either equation differ at most by seven
thousandths for any of the twenty-one cepheids.

The slope of the Gb,(b-y)o relation is in essence the best statis~
tical representation of the orientation of the semi—majof axis of %the
G, (b~y) color-color loocps. As a check on the suitableness of the simple
linear relation of Go with (b-y)o, the orientations of the semi-major
axes for individual stars were determined. All determinations gave
slopes close to the 0.543 value.

The E(b-y)'s calculated using Bq. (6-L) are listed in Table 6.3.
No values for the Pop. II cevhelids are given. These stars appear to
obey the relation --

G, = 0.403%(b-y)  + B,
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wt here a Pprecise specification for B is imposgssible.

3= Lg:glo and the Bffective Temperature

Two of the bést studied cepheids are 5 Cep and 1 Aql. They-
zonstitute the baéis for Oke's (1961) calibration of (B-¥) to ® ...
b comparison of {(b-y) and (B-V) as function of phase for these two
stars is shown in Fig. 6.15. The (b-y) results have been adjusted so
that (b—y) eguals {(B-V). The %wo panels demonstrate the near similar
phase variations of (b-y) and (B-V). In Fig. 6.16 (B-‘V)0 is plotted -

against (b—y)o. The & Cep and T Aql data give the relation ~-
(3-v)_ = 0.021 + 1.606%(b-y) _, (6-5)

with a fitting probable error of O?Oél. Fig. 6.16 also includes the
points for X Cyg, the longest period cepheld in the program. While the
points for X Cyg.lie systematically above the (B—V)O/(b—y)o line, the
linearity of the relation is“obviously ﬁreserved even for large (B~V)O-
The ¥ Cyg points would lie on the line if the E(B-V) were increased
~ from 0.36, Fernie's value, to 0.42. This value for E(B-V) is within
reason as the E(b~§) is 0.283, which predicts sn E(B-V) of 0.hO.

Oke's calibration reléting (B—V); to © modified to include

] eff’
more recent reddening results (Rodgers and Bell 1967), is ~-

e,_Eff' = 0.651 + 0.337%(B-V) _. (6-6)
Substituting Eq. (6-5) into Eq. (6-6)gives --
9 = 0.672 + 0.541%(b~y) . (6-7)

eff

‘The larger coefficient for (b-y)o over that for (B-V)O in the expression
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for eeff is compensated for by the higher observational precision

possible in the determination of (b-y), and its associated reddening

EXCEES.
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TABIE 6.2

CEPHEID PERICDS

Photometric Results

Epoch Accuracy*10®  G(CVS Period Pewiod Change
Star) (+2430000JD) Py [ =0.01P/cycles] P, (Pp-Pc)ﬂo6
————— C8 Cepheids ~~=--

SU Cas  QWU5.1hh 1?9&9338 + 15 1?9&9319 +19
DT Cyg 9hl5.962  2.499303 £ 9 2.49934 -4
8s sct 8568.450 3.671272 + 25 3.671253 +19
RT Aur  9LL5.787 3.728134 + 21 3. 728261 ~127
SU Cyg 869k.965 3.845485 + 26 3.8L566L -179
FF Aql  8692.667  %.470908 + 3k X, 570959 ~51
RY CMz  9Lh8.6L3 4.678383 + 51 L .67804 +340
V7 Cyg  869k.701 4 .864512 +121 4 .864603 -91
§ Cep 9450.948 5.366235 + 43 5.366341 -106
X Tac 9Wh9.31h 540753 +109 5. hhlihp +330
FM Agl  8695.04k 6.114191 = 63 6.11423 ~40
AW Per 9180.053, 6.463493 +176 6.46338 +110
Vi96 Aql  8569.872 6.807162 +115 6.8069 +300
U Agl  8567.947 7.024011. + 8 7.02393 +80
T Agl  9048.601- 7.176712 = 82 T 176641 +71
RS Ori  94h6.056 7.566781 +117 7.56681 -30
RX Cam 9182.555 . T7.91242h 98 7-911848 +576
W Gem  OLL47T.305 7.913602 +13L 7.91467 -1070
ﬁL Cas  9452.037 8.000406 £192 8.0003 +100
S Sge  9049.4hO0 8.382126 +112 8.38216 -30
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TABLE 6.2

( CONTINUED)

Photometric Results

Epoch Accuracy*10® GCVS Period Period Change
Star (+2450000JD) PP [=0.01P/cycles] P (PP-PC)*lo6
C Gem 9451,794 10.15138h4 +156 10.15172 -330
X Cyg  9455.78k  16.386080 +h01 16.3866 ~500
----- ¢ Cepheids =-----
S7 Tau  94h2.965 3,148729 * 15 3.,148087 -258
T Val  94h47.620 4, 135521 + 29 k. 135578 =57
U vul 8698.790 T+990491 +188 7.990676 —;85
----- CW Cepheids ~===-
SW Tauw 94k2.17h  1.583%598 E 1.583648 -50
TU Cas  S445.919 2.139438 + 17 2.13930 +140
AU Peg  8689.701 2.387012 + 10 2.39787 ~10860
ST Tau  9446.370 h.034239 + 35 L.034229 +10
AL Vir 18%.38L 10.303022 +170 10.299971 +3051
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TABLE 6.3

CEFEELD COLOR EXCESSES DETERMINED USING THE RELATION

G, = o.5a5*(b-y)o - 0.110

Kelsall Williams  Fernmie
Star Type Period E(b-y) E(b-y) 0.7%E(B-V)
N Ag1  6C 7.177  0.156 0.100 0.15
U Agl &G 7.02%  0.359 0.29

FF Aql &C b hTL 0.218 0.208 0.22
FM Agl  S&C 6.11% 0,581 0.46
Vig6 Agl  8C 6.807 6.300 0.4l
RT Aur &C 3.728 0.069 0.055 0.09
RX Cam &C 7.912  0.h7k 0.409 0.40
RY CMa  &C L.678  0.2k9 0.20
SU Cas &G 1,949  0.273 ‘ 0.21
§ Cep 8C 5.366 0.102 0.075 0.10
X Cyg &C 16.385 0.283 0.241 0.25
SU Cyg oG 3.846  0.112 0.112 0.13
V7 Cyg  OC 4.865 0.234 0.28
Dﬁ Cyg &C 2.h99 0.084
{ Gem &C  10.151  0.035 0.029 0.10
ﬁ'Gem 8C 7.914 0.269 0.28
X Lac 9C 5.445 0.327 0.27
RS Ori 8C  T7.567  0.385 0.26:
AW Per &C 646 0.526 . 0.21
S Sge &C 8.382 0.112 0.113 0.14

48 Set - 8C 3.67L 0.263 0.26
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TABLE 6.3
( CONTLWUED)
Kelsall Williams Fernie
Period E{b-y) E(b-y) 0.7*EB(B-V)

3.149 0.285 0.243
L. 436 0.059 0.058

7.990 0.586
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CHAPTER VII

COMBINED CEPHEID-SUPERGIANT RESULTS

7-1. The 'Supercolor' Method

In section 5-4 we found it possible to construct two equations
that wmap the mean, bracket-color lines over to the mean Iuminosity-class
lines in a standard Mv’ logTe H-§ diagram. We termed the resulits from
these equations the Mﬁ—supercolor and the 10gTe—supercolor. The struc-
ture of the supercolor equations contain no physical insight. In
section 5-4 they are simple, fully-quadratic (color-color cross terms
are included) expressions in all four, reddening-free colors. The co~
efficients for the color terms are found by least squares, using for
data the mean colors at each spectral type for all luminosity classes.
The information on M# and logTe comes from other investigations. The
lack of good M& data for particular supergiants forces our use of the
mean colors. Restrictive as this is, the procedure at least complements
the stabistical nature of the &lass Ib Mv data. When the supercolor
equations are applied to individual stars with colors near to the means
for its spectral type and luminosity class, the supercolors resemble
the physical quantities, Mv or 10gTe. Application to stars with colors,
all or some, lying off the means for their spectral Types and luminosity
classes gives results beyond physical credence, particularly for Mv°
This unstable characheristic of the supercolors would be more controlled
if individual star data, covering the full range in spectral Types and
Juminosity classes, could be used in debermining the supercolor coef-
ficients. For then dispersions in the colors: and their relation to

169
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the calibrating quantities is aubtomatically included. However, we
emphasize that the use of the supercolors is purely for discriminatory
reasong, so that the colors can be used over their full range without
neéessary vecourse to external information, such as spectral type or
luminosity class.: We feel this abllity to discriminate is essential for
a viable sky survey photometric system, which should be a totally self-
contained entity. ywe also feel that the system of this investigation
warrants consideration on this level.

A search was made for an Mv—supercolor, using the cepheids as a
form of control. The idea was to find an Mv~supercolor wWhich preserved
Juminosity class discriminatioﬁ and also reasonably tracked the variabtior
qf Mv with phase for a‘group of representative certheids. No such de-
sirable situatioﬁ was found. As the spectral type is not determined
photometrically, the final decision is to create for a set of ranges in
[d] an associsted set of M_-supercolor equations which minimize the
dispersion in M% for supergiants alone.

The full range of [G], -0.055 to 0.500,_15 broken up into segments
of fixed length. The (n+l) segment overlaps the nth segment by half.
The length of the segments is varied over a wide range. For each .
segment length and position an Mv-supercolor equation is found, and the
rms dispersion for the class Ib sbars is found. From this analysis a
set of contiguous [@) segments is selected that covers the full range
in [@] such that the rms dispersion in M& for the class Ib stars is in
every segment less than 0°2. To span the total range in LG] under %his

}
regtriction requires gix segments. The comparison of the Mv-supercolor

{501id line) results to the M_ calibration (dashed curve) for the class

Ib stargs is shown in the left panel of Fig. T.l. The application to all
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luminosity classes is shown in the right panel of Fig. 7.1,

The logTe-supercolor is of mach fedﬁced form as compared to the
M _-supercolor. A single, fourth-order expression in [G] for the full
range in [G] is sufficient.

The Mv—supercolor for a cepheid at any phase point can be striking.
Angwers ranging from -9 to -+4 are found for a single cepheid. The
1ogTe-supercolor mzkes no such wild excursions. The results'are accept-
able if the two supercolors are averaged over a full cycle. In Fig. 7.2
the averaged supercolors for the twenty-one Pop. I cepheids are shown
in comparison with the cepheid instability strip given by Fernie (1967c¢).
In detail the comparison is poor, but the basic positioning is correct
- the cepheids appear to be what they really are. Most of the scatier
results from the crudity of the Mv—supercolor. The logTe—supercolor
introduces a minor systemabtic effect arising from the differences be-
tween Fernie's and our temperature scale {Jolmson 1966).

A full H-R diagram is created by applying the supercolor formilas
directly to the data of the individual stars. This is shown in Fig. 7.3,
where the solid lines are the superccolor results when the mean bracket
colors are used as input. Fig. 7.3 demonstrates the viability of the
supercolor method as a supergiant discriminant, if applied to non-
selective survey photometry. Even in this crude form better than
two-thirds of the supergiants are éeparated.fTOm the other Iuminosity
class stars. And the separation 1s effectively without bias to selected
spectral type regions, a situation not realizable through use of the
colors alone. The class V stars are also well separated. The I-IT-TIT
confusion is not resolved, but this may be amenable to a more sophisti-

cated application of the supercolor idea.
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T-2. Comparison of the Cepheid and Supergiant Mean Colors

TFor the cepheids we need 0 determine the mean bracket colors
relative to some suitable photometric gquantity as independent parameter.
Following Williams' (1966) suggestion we choose as independent para-
meter the color [G]. The mean color lines for [cl], [ml], and (W] are
constructed by a least sduares analysis using a polynowial up to sixth
order in [GJ. In this analysis each cepheid is represented by twenby-
five egually spaced phase poinbs, and the colors abt these points are
caleulated from the Fourier fits to the colors. The results are shown
in Fig. 7.4. In these plots the Ib mean lines are shown for comparison.
Except for [Ql] the cepheid mean lines are strikingly similar to those
of the supergiants.

Using the mean lines various correlations from the norm can be
found in the deviations. The deviations from the mean lines are given
in Tables 7.1 and T.2 for the supergiants and cepheilids, respectively.

A most interesting correlation is that between 6[m1} = [mll%- [ml]mean

and 6[N] = [N],- [N]mean ( a positive & implies a greater. than normal
metallic or CHN absorption). The correlations for the supergiants and
cepheids are shown in the two panels of Fig. 7.5. The s0lid lines in
the graphs represent the orientation of the semi-major axis of the cor-
relation ellipses. This correlation was also noted by Williams for

long period ceph;ids. He also notes the fact that it lacks theoretical *
basis. A second:interesting finding is the lack of correlations

between 6fcl], 5[m1] and 5[01J, 8{N] for both supergiants and cepheids.
The correlation plots are shown in Fig. 7.6. The fortunate insensitivity
of [cl] to the strength of line blanketing enbhances the possibility of

calibration purely in terms of gravity, at any fixed temperature. This
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point is also stressed by McNamara and Colbon (1969) in their study of
line blanketing effects on the uvby system for main~se§uence stars and

RR Lyrae variables.

T-3. Mebal Content and Galactic Structure

One primaxy aim is to see 1f the metal index could delineate

veriations of metal conbent with galactic location. Plots of the 5[ml:| s

wersus galachbic position are showm Tor supergiants and cephelds in the
two panels of Fig. T.7. As can be seen there is no obvious relation-
ship between various groupings of the magnitudes of ﬁ[mlj and galactic
position. Inh fact, for the cepheids there is no one star which greatly
deviates from the mean. The radial distribution of the stars in this
program is different from the distribution of the long period cephelds
studied by Williams; and our conclusion is also different in that we
find no great metallic differences, as indicabted by deviations in [ml],

as a function of galactic position.

T-k., Comments on Williams' Work

The discrepancy in our results can arise purely from differences
in radizl Qistribution, and scme inherent charscteristics of long period
cepheids. In particular, there is the known correlation of long period
cepheids (P =z lld) with galactic arm location, which is distinet from
the apbti-correlation for shorter period cepheids (Fernie 1968a, Tammemnn
1970). However, on looking at Williasms's listing of his data a number
of peculiarities become cobvious. For example, for KX Cyg the
variations in Cqs N and G at nearby phase points, ¢ = 0.17h and 0.220,
are Tanbastically large. We decided then to do a re-analysis of his

data Ffor cepheids with periods greater than eleven days.
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As a first step the E{b-y)'s are calculated using his Gb,(b—y)o re-
lationship, A number of errors are present here, as is clear upon
comparing columns two and three of Table 7.3, Continuing, m; is cor-
rected at each data point for the effects of interstellar reddening
using both his inberstellay reddening line and, as the fildters in our ¥wo
programs are nearly egquivalent, the line used in this study, As can be
noted in Table 4.6 Willisms® my reddening line differs from ours in
slope by a factor of two. From these resulis new m; versus [(b-y) re-
lationships are developed using the .stars 52 Aql, TT Aql, RX Aur, RW Cam,
RW Cas, TY Cas, X Cyg, CD Cyg, W Sgr, A Sct, UZ Sct, and SV Vul. The
results are given in Fig, 7.8, and as can be seen no glaring discrepancy
exists, Once the mean my,{b-y) relation is known the average &m;'s for
each cepheid are found, and these are shown in c¢columns four through six
of Table 7,3, ‘The same procedure is repeated for N, and these results
are listed in columns seven through nine, The major points to be noted
on the ten stars which show large 6mq’s in Williams?! original analysis
are as follows:

YZ Aur - E(b-y) is poorly determined, and of the two data points

only one is far from the norm;

CP Cep - étill locks strange and there is good correlation bebieen

§m; and &N, but there are only two data points;

S5Z Cyg - comment same as for CP Cep;

V396 Cyg - only one of the two data points is far from the norm;

V609 Cyg ~ comment same as for CP Cep;

VY Sgr - poor E(b—y) , and the data show very large amplitude

éhanges in the colors for nearby vhase points, which is rathe;

-hard to understand;

AV Sgr - &my, 8N correlation is not so definite, and both become
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"normal" when our reddening line is used;
RU Sct - still strange but the effect is reduced to high normal
for Gml and O if our reddening line is used;
TY Sct - comment same as for RU Sct;
DG Vul - 6ml large but not correlated with ON.
So of the ten stars three can be dropped - YZ Aur, V396 Cyg, and
VY Sgr ~ three have a high likelihood of being normal - AV Sgr, RU Sct,
and TY Sect -~ and three rest on a paucity of data - CP Cep, 5% Cyg, and
V609 Cyg. It thus appears that the discrevancy between our studies is

probably not that pronounced.

T-5. Conclusions

The primary aims of this investigabion are satisfied. Through an
analysis and interpretation of the data we have developed eight
distinct conclusions.

(1) The intrinmsic G,(b-y)} relations for both the supergiants and
cepheids are found in Chapters IV and VI, respectively. These relations
are adequabely represented by simple linear equations. The simplicity
of the relationships, and the accuracy of the photometry allow for
precise determinations for The color excesses. These excesses are
listed in Tables 4.1 and 6.3 for the supergiants and cepheids,
respectively.

(2) In Chapter IV we developed our definition of the reddening
free colors. From the present data the reddening free color relations
for the supergiants with respect to spectral type are found. In Chapter
V the comparison of bthe supergiant colors relative to those for all

other Iuminosity classes is made. These color relations for all
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luminosity classes as functions of spectral type are shown in Figs. 5.7
and 5.8. In Chapter VII we obtain the mean color relations for the
cepheidsl The cepheld mean coloxs are similar to those for the super-
giants, as is shown in Fig. 7.h.

(3) The problem of distinguishing supergiants from other luminosity
classes through a study of color-coloxr plots is abtacked in Chapier V.
Tt is evident from the data that the positive separation of I from IT
is impossible. The segregation of I-I1 in the spectral type range FO
to GO from the other luminosity classes is good using the plots [cl],
f¢} and [u~v], [¢]. The confusion of luminosity classes is complete in
the range GO to G6. From G6 to K5 the discrimination of I~IL is pos-
sible through the plots [NJ, 1:1.“11 and [W], [g].

(k) Tn Chapters V and VII the concept of supercolors is inbroduced.
An appliecation of the supercolor equations representing Mv and logTe to
the raw data produces a level of discrimination for the supergiants
which is superior to the discrimination resulting from a study of
colors. The procedure has the virtue of eliminating the L-II-IIT
confusion to the peoint that aporoximately two-thirds of the supergiant
sbars are clearly separated, regardless of their spectral type through
the whole range FO to K5. The aversge values of Mv and logTe derived
from the supercoiors for the cepheids are compatible with our current
knowledge. Thesé results are presented in Fig. 7.3.

(5) The population typing of cepheids does not appear possible on
the basis. of color information. However, in section 6-5 we find that
the population type of cepheids can be deduced from an analysis of the
areas of particular color-color loops. This is true both for the color

system of this investigation, and the wide band six-color system. The
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results of this study are given in Figs. 6.12 and 6.13. An advantage
of the procedure is that it is unaffected by the amounts of inter-
stel}ar reddening.

(6) There is a strong correlation bebtween metallic line absorption
and CN absorption for both superglants and‘cepheids. The correlation
lines are virtually identical for the two types of stars, as is seen in
Fig. 7.6.

(7) The Balmer discontinuity index, [?l]’ for supergiants and
cepheids is insensitive to the extent of line blanketing by metallic
line or CN ebsorption (Fig. 7.6). We speculate that this feature will
enabie us to calibrate [Cl] in terms of gravity with some precision.

(8) Finally, in Chapter VII we find no strong galactic position
dependent features‘in the deviations from the mean [ml] values for
supergiants or cepheids. This is showm in Fig. 7.7. We interpret the
result to indicatbe that within the sampling volume there are no large
scale regions, where stars are formed, which have disbinctive mebal
anomalies. While the findings are in contradiction to the work of
" Williams, we show that most of the discrepancy is removed upon re-
interpretation of Williams' data.

One unfortunate shortcoming of the investigation is cur inability
to calibrate the vhotometric gquantities to physical parameters. This

defect should disappear with further work similar to the investigations

made by Bell (1970), Bell and Rodgers (1969), and Parsons (1970).



DEVIATIONS OF THE FO TO KO SUPERGIANTS ABOUT THE MEAN COLOR

HD/BD
h362
LTk
7927
8906
8992
9250

10hok
14662
1690L

17971

18391

20902
25056
26630
31964
31910
36673
36891
37819
58247
38808

TABLE 7.1

1.INES DEFINED WiTH [G] AS INDEDPENDENT COORDINATE

Spectral
Type
GOIb
GOTa
FOIa
F5In
F6Ib
GOTb
F51a

Frila

F51a
GOIa

F51b

GOIb
FOLap
GOIb
FOIb
G531k
F5Ib-
G81ab

G5Tb~IT

<

122%L
1247
126.7
127.6
127.9
127.5
129.1
125.9
143.3
157.8
139.5
146.6
148.8
154.0
162.8
149.6
£19.2
169.5
179.6
188.7
184.5

0.8

-1.8

1.2

1.k

2k.5

hoh
0.5
5.k
1.7

0.9 kpe

‘h.2

2.3
1.3

1.7

3-8
0.96

0.76

0.16
1.6
0.36

0.h

0.26

2.6

I
oToko
0.092
0.190
0.126
-0.286
-0.021
0.116
0.010
0.003
0.131
-0, 061
-0.028
0.065
-0.025
~0.031
0.033
0.086
~0.011
-0.635
-0.021

0.058

a[nﬁJ
-0%052
0.066
-0.08L
-0.00k
0.05hk
~0.006
-0.063
0.001
0.023
-0.05)
0.104
0.01k
-0.0L8
-0.027
-0.075
~-0.026
0.0h6
~0.016
0.099
0.106

-0.094

178

6(w]
-0T065
-0.026
~0.048
-0.02%

0.054
~0.020
-0.027

0.006
~0.007
-0.005
-0.005

0.002
~0,050
~0.003
~0.034
~0.020
~0.024

0.005

0.056

0.048
~0.058



HD/BD
%9416
39949
43282
b7731
48616
58526
6759k
TH395
77912

161796

163506

171635

172365

174104

179784

180028

180583

182296

183864

187203

187299

190113

Spectral
Type
G5Ib~11
G2Tb
G5Ib-I1
G5Io
F51b
G3Ib
G2Ib
G2Ib
GBIL-II
F5Ib
Fala
F7Ib
FOIb
GOIb
@Ik
FOIDL
P6Ib-11
G3Ib
G2Tb
GOIb
G51ab~Ib

@b

IT

18h.2
182.7

192.0

186.5
209.L
220.8
223.1
233.1
184
7.2
51.4
86.2
36.3
58.6
48.8
41,0
60.6
4.3
59.6
4g.1
61.5

T2.1

TABIE 7.1
(CONTINUED)
LT F
-0.5

1.3 1.7

1.2 1.9
10.h4
-0.1

5.6
16.5
21.1 0.63
o.2
30.9 1.8
2%3.2 5.2/
25.0  0.60

5.0 1.3
13.% 3.8

2.1
~2.4 1.k

7.5 0.9
-3.1 L.k

3.2 2.9
-7.5 1.2
-0.3 2

2.7 1.k

é[cl]

-0.115

-0.053.

0.009
0.039
~0,226
-0.003
0.061
-0.129
0.063
0.615
0.376
0.093
-0.037
0,083
0.069
-0.032
-0.328
-0.020
-0.089
6.105
-0.227

0.133

6[ml]
0.042
-0.005
0.029
-0.005
0.054
0.022
0.003
0.003
~0.032
-0.020
-0.077
0.028
-0.01h
-0.090
-0.071
-0.036
0.039
0.027
-0.049
-0.065
0.045
-0.07h

179

L]
0.030
0.021
0.027
~0.032
0.035
-0.01k
-0.069
0.013
-0.023
-0.018
-0.006
0.010
-0.009
-0,041
~0.036
~0.007
0.021
0.119
-0.010
~0.012
0.065
-0.058



HD/BD
331777
190446
190323
191010
37° 3827
192713
152876
183370
194093
200102
200805
20231k
204022
204867
206859
207089
207489
207647
208606
209750
216206

218356

Spectral

Type T
F8Ia 69.1
F6Ib 6.2

@0Ta-Iab 5h.7

G31b 64.2
F3Ib 5.6
G2Tb 63.5
G3Ib 32.3
F5Ib 5.k
F8Ib .2
GLIDb 86.2
F5Ib 86.8
G2Ib 76.7
GOIb 92.9
GOIb 49.6
G5Ib 72.0
KOIb 76.6
F5Tb 88.3
GLIb 95.4
@81b 103.5
G2Tb 61.0
GiIb 104.1
KOTbp 95.1

TABIE 7.1
(CONTINUED)
pit =

0.5 5.2

k.o 3.5
8.6 1.1
-3.5 2.8

2.3 1.7
6.4 0.7
-24 .2 . 0.5
-0.5 1.0

1.9 0.22
~0.7 1.1
-1.2 2.5

-12.9
0.1 1.0
-37.1 0.3
-26.5 0.4
-22.8 0.6
~-11.5 1.5
-3.2  l.b
5.5
-41.k 0.3
~7.7 1.0
~31.7 0.5

6[cl]

0.257

0.171
0.027
0.110
~0.128
~0.023
0.0hg
0.1%5
0.013
~0.129
0.062
0.120
0.020
0.070
0.022
0.176
-0.143
-0,020
0.081
0.068

-0.10k

8lm,
0.084
-0.010
0.082
-0.083
~0.035

0.033

0.008.

0.011
0.067
-0.057
0.062
~0.048
-0.022
-0.020
-0.01%
0.007
-0,035
0.067
0.085
-0.00L
~0.039

0.011

180

&[N}
-0.017
-0.0k46

0.0k0
-0.027
-0.005

0.063

0.031
~0.003

0.026
-0.022

0.015
-0.061
~0.036

0.001
-0.021
-0.017

0.002

0.103

0.040
-0.038
-0.047
-0.096



HD/BD
2191755
60°2532
221861
223047'
224165

¥
Distances [Buscombe (1964)] are only assigned to stars of good

Spectral
Type
GOIb

F7Ib

_KOTsb

G5Tb

GSIbh

LII

109.6

112.8

116.9

111,k

113.2

photometric quality.

TABIE 7.1
(CONTINUED)
HIF r¢
-3.8 1.7

0.4 1.4

9.7 1.2

-15,0 0.7
-14.5_

sle, ]
0.062
-0,204
~-0.032
~0.146
0.038

slm, ]
-0,067
0.011
0.081L
0.050

0.006

181

8N
~0,022
0.012

0.017

0.079

"'O O 015



182
TABLE T.2

AVERAGE DEVIATIONS OF THE POF. I CEPHEIDS ABOUT THE MEAN COLOR

LINES DEFINED WITE [G] AS INDEPEWDENT CQORDINATE

Star FL T r (sle By Colm D) Celnld

M agl  40.9 -13.1  0.2Tkpc 0.018 0.003 C.00k

T AgL 30.9  -11.6 0.65 0.020 -0.055 -0.007
FF Agl k49,2 6.4  0.39 0.062 0.0l  0.009
MM Agl k.3 0.9 1.00 -0.095  «0.020  0.017
V496 Agl 28.2 -7.1  0.¢2 0.0 ~0.035  -0.0L6
BT Aur  183.1 8.9 0.k5 AN LTS 0.008  -0,00%

- BX Cam  145.9 b.7  0.96 0.026 -0.002 -0.011
RY OMa 206.0 © 0.3 1.52 -0.070  0.037 -0.002
SU Cas  133.5 8.5 0.33 -0.005 -0.003  0.003
§ Cep  105.2 0.5 0.27 0.050  0.003  0.C02

X Cvg 76.9 1.3 1.08 0.070 G.043 0.069
SU Cyg 6.8 2.5 0.88 ~0.14%  ~0.01k 0.000
VZ Cyg  -92.5 -85 1.0 ~0.030  0.0%2  0.000
DT Cyg  76.5 =10.8  0.43 ©.001 .01k  0.012
CGem 195.7 11.9  0.35 0.0365 0.03%6 0.018
WGem 1974 | 54 0.9k 0.03%2  0.018  0.016
X Iae 106.6 © -2.5  1.50 0.039 =0.012  -0.010
.RSOri 196.6 0.5 1.79: -0.063 ©0.018  0.014
AW Per 166.6 -5. 1.20 -0.228 -0.033 o.ooé
5 Sge  55.2 -6.1  0.66 0.103  -0.012  -0.005
88 et 25.2  -1.8  1.10 0.039 -0.049 -0.019

87 Tan 179.6 -19.0 D.5: ~0.02%  0.003  0.00k



{II

2.2

56.1

TABLE 7.2
(CONTINUED)
It )
b T 6le 1> Colm 1> (8[wD
~10.0 0.6: 0.052 0.003 -~0.009

~0.3 0.6: -0.086 0.015 -0.01k

183



Star
87 Agl
T Agl
RX Aur
YZ Aur
ER Aur
RW Cam
RW Cas
RY Cas
57, Cas
CY Cas
CP Cep

X Cyg

87 Cyg

Williams Recalculated

E(b-y)
0.476
0.394
0.26k
0.505
0.504
0.668
0.252
0.486
0.682
0.756
0.473
0.241

0.395

TABLE 7.3

REANALYSIS OF WILLIAMS' LONG PERIOD CEPHEID DATA

E(b-y)
0.475
0.395
0.263
0.608
0.602
0.644
0.252
0.486
0.681
0.756
0.475
0.240

0.395

o(E(b-y))
+£0.041
+0,0L7
+0.030
*0,207
+0.199
F0.056
+0,080
£0.050
£0.105
0,204
+0,041
+0.040

+0.030

—6m¥
-0.036
-0.005
0,028
0.122
0.013
0.028
-0.056
0,001
-0.013
-0.046
~0.093
0.006

"'D . 128

-0.034
-0.011
0.020

0,162

-0.029

0.013
-0.068
~0.002
~0.,019
~0.053
-0.095

0.000

"'O . 107

K |
1
-0.041

-0.011
0.028
0. Lk
~0.0k45
0,000
-0.059
-0.005
-0.037
-0.083
-0.09k
0,005

~0.113

-6N

Ol
001
.018
.030
175
069
L057
.022
.000
.020
136
.001

169

-0.048
~0.005
0.01k
0.052
0.4hé
0.087
-0.058
~0.017
-0.005
0.000
-0.108
-0.002

~0.109

-0

050
.007
016
058
510
081
.052
01k
.007
009
099
.002

A1l

78t



Star
TX Cyg
VX Cyg
CD Cyg
X Cyg

V396 Cyg
V609 Cyg
AA Gem

T Mon
SY Mon

Y Cph
EM Per
VY Sgr

WZ Bgr

Williams

E(b-y)
0.995
0.395
0.386
1,274
0.849
0.955
0.299
0.214
0.201
0. 49k
0.897
1.076
0.355

Recalculated
E(b-y)
0.937
0.59%4
0.386
1.273
0.848
0.954
0.399
0.216
0.201
0.493
0,992
1.07k
0.353

a(B(b-y))
+0.097
%0,028
%=0.033
*0.317
+0.08L

+0.013

" £0.069

+0.033
+0,289
+0,203

£0.045

TABLE 7.3

(CONTINUED)
-6@? 5m§
0.0kk 0.020
-0.020 -0.028
0.028 0.028
-0.065 0.108
~6.o76 ~0.072
-0.110 -0.118
0.042 0.0%6
~0.00L 0.0L45
~0.020 -0.026
0.01%  -0.016
0.0L6 0.237
0.091  0.22k
-0.022 0.061L

KI
1
0.018

-0.033
0.028
-0.003
~0.075
~0.128
0.034
0.046
~0,013
~0,017
0.128
0.129

0.060

&N
~0.003
-0.07%8
-0.038

0.093
~0.114
~0.069

0.030
~0.00L
~0.019

0.006
-0.051
~0.080

~0.006

0.019
"'0 . 0)4‘5
-0.020

0.066

~0.090

~0.059
0.010
0.026
~0,0k1
-0,018
0.350
0.100

0.071

0.0
-0.0k47
~0.017

0.092
~0.068
~0.063

0.005

0.021
-0.038
-0.016

O bl

0.19k

0.070

ol



TABLE 7.3

{ CONTINUED]
Williamg Recalculated
Star  E(b-y) B(b-y)  o(Bb-y))  -dm By 6m§1 -5y
AV Sgr 0.922 0,920 *#0,0l7  0.087 0,079  Q.0k: 0,021
Z Setb G.453 0. 452 0,157 -0.030 -0.0hk9 -0.055 0.002
RJ Set 0.816  0.788 +0,052 0,106 0,08k  0.061  0.065
TY Set  0.852 0.851 £0.087  0.085 0.078  0.065 0.046
UZ Sck 0. 781 0.753 +0.157 0.030 0.018 0.002 0.03%
SV Vul 04T Q.40 £0.064  =0.002  0.005 -~0.002 -0.052
DG vul  0.951 0. 954 +0,086 -0.,127 -0.,115 ~0.130 -0.026

-émﬁ snd ~8N" are from Williams (1965).
X

B anc'l S are recalculated values using Williams data and his B( my V/E{o-y).
1
buy  and SEE are caloulated from Williams data using E(m /E{bwy = -0.125,

s
0.01k
0.00k
0.028
0.05L4
0.049

-0.036

-0.007

S

0.006
G.G00
GL.020
0.059
0.061
-0.038

0,007

98T
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Fige. T+l My~supcrcolor for superglants (left) and all luminosity classes (right) versus [al.
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Fig. T.2 The average My,1logT ~supercolor diagram for cephelds. The
location of the 1nstab111ty strip is by Fernie (1967c).
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Fig. 7.3 The supercolor HR disgram created from data on individ-
1al stars of all luminosity classes.
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Fig. T.4 A comparison between the mean color results for the

cepheids and the supergiants.
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Fig. 7.5 Correlation plots of deviations in [m;] and [W]

from the mean for superglants and cepheids.
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APPENDIX A
STAR IDENTIFICATIONS

We list in Table A.1l data which identifies each star in the
obsefvational program. The table gives the name, catalog numbers,

spectral class, and eguatorial and galactic coordinates for Epoch 1965.
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NAME

22
33°'89
50 ¢

1 o
38 ol

56 T3
3 ¢
54 ¥
27 €
66
38
62 p
77 A
a1
27

a b
14 7
18
11

AND

CAS.

AND

PER
TAU
ERI

TAU
ORI
AUR
ORI
GEM
AUR
CMI
GEM
GEM
GEZM
LYN
HY A
UMA
UvA
LMI

HO

571
6961
9826

10476

' 18331

19373
21120
26574
27022
27309
30652
31398
39587
48329
57669
58715
58946
62345
62721
67006
73262
78362
79439
82885
83425

TABLE Aal

CATALOG OF IDENTIFICATION DATA FOR THE PROGRAM STARS.

CATALOG NUMBERS

45
54
49
19
-4
49

-7
64
21

32
20
25
40

32
24
18
51

64
54
36

B

17
236
332
279
502
857
511
764
433
623
762
855

1162
1406
1852
1774
1562
1759
1733
1391

2001

723
1285
1979
2207

GC

169
1424
1948
2080
3541
3740
4970
5055
5199
5216
5875
6029
7419
8736
9850
9947
9987
10403
10456
11018
11823
125646
12761
13242
13316

———— SPECTRAL
HR CLLASS

STANDARD STARS —-—

27 Fzi1 -
343 ATV
458 Fav
493 K1V
875 A1V
937 .GOV

1030 G8III
1298 FaIll
1327 GSIT]
1341 A St
1543 F6V
1577 K311
2047 GOV
2473 GAIB
2805 KOIIT
2845 87V
2852 FOV
2985 G8ITI
3003 KSII1
3173 ARV
3410 ADV

. 3624 F5+A5

3662  ASV
3815  GBIV-V
3834  K3II1

VOO U RONANNANGO L L PP LUWRN D

H

Res As

M

34
4
54

22
10
17
17
48
54
52
41
21
25
26
42
44

35
13

33
36

(1965) DEC,
S D M
23 45 51
54 54 &7
36 a1 13
35 20 S
49 -3 51
23 49 28
56 8 54
9 ~6 55
10 65 3
32 21 41
1 6 54
43 33 6
11 20 16
43 25 16
43 40 46
12 8 2t
52 31 st
20 24 29.
6 18 35
50 51 36
49 5 49
3 63 39
41 54 10
34 35 58
38 4 48

5]

54
32
i8
57
22
24
25
39
24
26

46
18

15
45
20

58
34
37
27

11
30

LII
DEGo

11545
125.8
132.0
138.9
17843
15344.,6
17401
1973
1427
174.1
191..5
17046
188+5
189.6
1777
2095
187.2
195,9
201e9
1672
22043
15142
1631
18845
23042

811
DEGe

=16, 2
—7'6
~20e7
~41s0
=50.9
-Teb
-38-2
=375
1Geb
-19.58
—23.1
~Ged
~Ze B
9.6
232
117
21.3
22«0
201
326
2642
39. 4
A2eT
A78
3849

96T



NAME

64
a5
16
31
78
85

27

W =P
GO WU W=
Re o®D N =< =3

Lanl ¥}
-~ O
=<

30 ol
22
37 v

LEO
LEO
VIR

UMI
LEO
VIR
CoMm
UM A
UM A

BOOC

SER
CRB
CB
DRA
AQL.
AQu
SGE

AQL
CYG
CYG
VUL
CYG

HD

89484=5
91316
102870
103095
103287
103578
107328
111812
113139
120315
122563
127762
130109
142860
143107
143761
159181
182640
182835
165758
186427
186791
187013
192514
192713
194093

20
10

2
38
sS4
16

4
28
S7
50
10
38

2
16
27
33
852

2

9
17
50
10
33
46
23
39

BD

2467
2166
2489
2285
147S
2319
2604
2156
1408
2027
2617
25€5

286
2849
2558
2663
2065
3879
4206
4042
2848
4043
3587
2881
3944
4159

. CATALOG NUMBERS

GC

14177

14487 "

16215
16253
16268
16311
16828
17455
17664
18643
18965
19607
19884
21408
21440
21527
23741
26816
26838
27215
27285
27354
27369
23091
28144
28338

(

"HR

4057

4133

4540

4550 -

4554
4564
4695
4883
4931
5191
5270
5435
5511
5933
5947
5968
6536
7377
7387
7479
7504
7528
7534
7730
7741

‘TT96

TABSLE Acl
CONTINUED)

SPECTRAL
CLASS

KOL1IP,
B1IB
. F8y,
GBVI
AOQV
A3V
K1IIZ
GOIII -
Fav
83V
GOV1
A7IIL
ACV
FEIvVv—-V
K3IIT
G2V
G211
FOlv
F218
GOII
G5V
K31%
F5V
A3ITY
G21i8
Fals

ra

ReAo (1965) DECo
s "

H

10.
'30

10
11
11
11
11
12
12
12
13
14
14
14
15
15
15
17
19
19
19

19

19
19
20

20.

20

M

17

48
S0
51
53
18
50
59
46

0
30
44
54
56
59
29
23
24
38
40
44
45
12
13
20

59
55
46

‘55

51
52
34
0
o
-
5
490
23
45
6
38
37

38

41
26
53
30

1

8
s7
56

D

20
9
1

37

§3

15
3

27

56

49
e

38
2

1S

26

33

g2

3

4
17
50
10
33
46
23
40

M

-1

9
58
58
53
50
30
45
33
29
St
27

2
46
59

24’

19

2
15
55

25

31

38

42
23
8

S

27
32
24
36
22
29
27
31
54
30
17
38
54
54
o
48
38
12
55
a8
54
0
30
&
51
26

2705 -

LT

DEGe -

21626
234¢9

16865
1490,9
25107
284,3
1154

120e4 -

I00a.7
34929
6703
3553
2728

437

345
T79eb
396
4ﬁ7o3
S445
834
4807
688
QZQT

63s5°

78a2

81y

DEGe -

5466
5208

6008

7307

. Bied:

T207

6540

8946

- 607

6503
6509
5642

5207

45,7
4808
B8e9
333
-6l

-Teob

-2el
132
~7al
Gefs
6509
~6o b
129

16T



" TABLE "Asl
{CONTINUED?)

e e CATALOG NUMBERS —— SPECTRAL RoAs (1968) DECa . LIt BIY .

NAME °  HD BD GC- HR CLASS H M S O M S - DEGo DEGe
54 [ CYG 202109 29 4348 29661 8115 G8II 21 11 24 30 4 42. 7648, —-1204
24 7, PEG 210027 24 4533 30932 843D FSV 22 S 16 25 9 42 822 —2442
23 ¢ CEP’ 211336 56 2741 31135 8494  FOLV 22 13 39 56 51 24. 102.9 . Oe&
35« PEG 212943 3 4710 31377 8551 KOITI-IV 22 26 6 4 31 10 7040 =—4249
51°  PEG 217014 19 5036 32003 8729 G5V 22 55 48 20 35 30. 90,1 ~34e7

' -- DORDINARY STARS —-
4362 53 101 926 207  §OIB 0 44 36 59 22 41 12244 ~303
: . 6474 63 141 1332 GOIA 1 4 45 63 35 12 . 124.7 1.0.
34 @ CAS 7927 57 268 1594 382 FOIA 1 17 s2 S8 2 54 126067 —fef
8906 59 258 1784 F3iB 1 26 53 59 51 1 12746 —245
8992 58 249 F618 1 27 32 58 35 0 1279 =347
onz22 53 261 1893 K3111 1 28 0 50 36 6 1278 —2a7
9250 62 264 1851 6018 1 30 1S 63 24 33 12745 lol
9366 54 315 1873 K318 1 31 13 54 45 57 12940 ~To4
10494 . 61 316 FSIA 1 41 45 61 40 42  129.1 =04
11092 64 243 2218 K5IAB~18 1 48 44 64 40 S5 12903 207
11800 59 363 K518 1 55 13 60 2 B  131e1 —1.6
59 366 N AQ IB 1 55 S6 59 52 8 1312 —~1e8
12014 S8 345 T KOIR 1 57 23 S8 59 2 13146 =266
. 59 389 , FolB 1 55 56 59 62 B8 13102 =1e8
14662 S4 535 2863 690 F7I8 2 21 21 55 12 7 135,9 —5e42
14 PER 16901 43 S66 3278 860  GOIB 2 41 44 44 8 43  143s3 =1lbel
A 17378 56 718 3370 825  ASIA . 2 46 S0 56 56 8 13805 ~2e2
15 | PER 17506 55 714 3390 834  K3IB 2 48 8 55 45 6 13942 -302



TABLE Aal

(CONTINUED)}

-—— CATALOG NUMBERS - SPECTRAL  ReAe (1965) DEC, LIX BII
NAME HD -~ BD . 6C HR CLASS H M s = D M S DEG., DEGs
17958 63 369 3497 861 K3I1A 2 53 30 - 64 11 30 13660 47
17971 59 569 - F5IA 2 53 14 60 .14 58 13768 1e¢2
18391 57 672 3578 * GOIA 2 87 9 57 31 29 139¢5 =160
. 20123 50 729 . 3883 969 G511 3 13 a1 50 48 34 144,9 - 4
33 ¢ PER . 20902 49 917 4041 1017 FSIB 3 21 a4 49 44 5 14606 ~509
41 p PER 23230 42 81% 4474 1135 FsII ‘3 42 4a 42 28 O 15348 ~9e6
25030 51 827 : K118 3 58 25 52 4 11 149.8 -005
25056 53 722 . 4797 G018 3 s8 55 53 46 8 14848 008
25305 €1 843 AZIB 4 1 7 51 47 58 1503 -005
. 25291 58 6590 4858 1242 FOIT 4 1 31 59 3 37 14505 Se 0
S1 4y PER 26630 48 1063 5099 1303 GOIB 4 12 19 48 19 20 15400 -1a8
. 31118 43 1124 5979 KSIB 4 52 45 43 21 43 16264 -0o
7 ¢ AUR 31964 43 1166 6123 1605 FOLAP 4 59 23 43 46 20 16248 102
10 B CAM, 31910 60 856 6136 1603 GOIB 5 0 12 60 23 32 14906 11e%
‘ 33299 30 ° 804 6319 K118 5 8 20 - 30 45 19 1742 ~5e3
11 @ LEP 36673 —-17 1166 6875 1865 FoIB 5 31 8 -17 S0 48 21902 =~2445
: 36891 40 1346 6952 1884 G31IB 5 34 26 40 9 42 169,5 4att
37819 28 856 Fs18 5 40 20 28 59 4 1796 -0e5
38247 18 ' 950 7187 G8TAB 5 43 5 18 41 26 1887 -5e
38808 24 $73: G3iB-11 5 47 15 24 13 36 18445 —1e7
39416 25 1020 ' ‘ G3IB=11 5 51 25 25 4 6 1862 -0a5
39866 28 952 7472 20866 A21IB 5 54 20 28 56 18 1812 2a1
39970 24 1033 7483 2074 ACIA 5 54 47 24 14 46 1853 042
39949 27 923 G2IB 5 54 49 27 18 Sa 1827  le3
40297 27 938 7545 ADIB 5 56 54 27 33 38 1827 1«8
43282 19 1281 GSIB~I1 6 14 8 19 4 51 1920 1.2

66T



TABLE Asl

{CONT INUVED)

—— CATALOG NUMBERS - SPECTRAL ReAs (1965) DEC, ¥ LIX B1!
NAME ' HD - BD ' GC HR CLASS H M S8 0 M S DEGe DEG»
) 44033 14 1247 8131 2269 K318 6 18 4 14 40 3 196.4 0.1
MDN | 44990 7 1273 8291 2310 F7IAB 6 23 20 7 6 23 20346 —2a6
45829 8 13867 KQI1IAB 6 28 8 7 56 30 2035 -1.1
13 MON 45300 7 1337 8506 2385 AGCIB 6 30 57 T 21 39 20443 -0s8
25 GZM 47731 23 1297 B719 2453 GSIB 6 39 9 28 13 51 1865 1024
485616 3 1379 F51B 6 42 37 311 8 209.4 = ~0,1
58439 -18 1825 9899 2831 AZ2IB T 23 19 -18 56 32 23260 -0+ 6
58526 -5 2112 9923 2833 G31B 7 24 8 -5 42 1% 22048 Seb
59967 -11 15351 9979 2859 G81B 7 26 13 -11 29 5 226.5 3el
29 [ MON 67594 -2 2450 11451 3188 G218 a4 &6 50C -2 52 5} 2231 16.5
' 719%2 83 1289 11665 3351 KOIV 8 29 57 53 14 7 1653 3644
74395 -5 2708 12006 3459 G218 B 41 57 -7 6 24 233.1 21,41
7?7912 39 2200 125585 3612 G8IB-11 9 4 16 38 35 36 18404 422
i7 € LEO 84441 24 2129 13443 3873 GOI1 9 43 49 23 56 27 20608 48e 2
3¢ 1 LEO 87737 17 2171 13899 3975 ADIB 10 5 26 16 66 3 219.6 5068
65 LEOD 96436 2 2387 15282 4319 G7 . 11 5 7 2 8 45 2537 54,5
111631 0 2989 17435 MDaBV 12 48 S5 0 34 27 3026 633
128756 18 2906 19726 5462 K2 14 36 37 18 26 58 1848 6349
45 8OO 1344083 25 2873 20342 5634 F5V 158 5 46 25 0 16 3645 595
) 148743 -7 43905 22187 bLla4 ATIB 16 28 33 -7 26 16 Se¢8 27+ 2
13 § 0O2H 149757 -10 4350 22332 6175 09¢5V 16 35 10 ~-10 30 O Te2 2042
161796 50 2457 24113 F318 17 44 2 sG 3 28 TTe2 30e9
89 HER 1 £€3506 26 3120 24382 6685 F2IA 17 53 58 26 3 16 51¢4 23e2
163800 22 4474 24456 08 17 56 45 -22 31 0 BeD 1,2
168913 29 3241 250586 6876 FeIB 18 19 36 29 50 28 57«4 19,2
45 DA 171638 56 2113 ‘25362 6978 F718 : 18 31 57 857 1 3 B6e?2 2560

Q02 -



TABLE ‘As1

(CONTINUED)
- CATALDG NUMBERS ~-~  SPECTRAL RoAs (1965) DEC. LET  BII

NAME HD BD GC HR CLASS =~ H M S D M S DEGo  DEGe
172365 5 3891 25520 70608 | F9IB 18 37 50 S 13 a8 3603 5e0

173638 =-1D 4797 25718 7055 F2I8-II 18 44 44  -10 9 54 2347 ~-3ok

174104 28 3085 - . GOIB . 18 46 21 28 41 3 58e6 1304

179784 14 3829 26483 G518 - 19 11 40 14 58 29 4808 241

183028 5 4087 26514 F61a 19 12 59 5 59 5 41.0 -2e4

180583 27 3314 26562 7308 F6IB-II 19 14 33 27 51 43 6066 704

182296 8 4072 G318 19 22 0 8 35 28 4403 -3l

183864 24 3768 G218 19 29 10 25 1 54 5946 302

187203 10 4053 27413 7542  GOIB | .19 46 48 10 36 12 . 49¢1 -7a5

187299 24 3889 GSIAB~IB 19 46 56 24 54 52 61e5 ~De3

226223 38 3790 FEIB 19 50 22 38 39 42 7307 |, 6a0

190113 35 3920 G518 20 0 40 35 31 36 T2el . 2e7

331777 31 3907 FBIA 20 1 49 31 49 8 6941 045

190446 39 4020 F6IB 20 2 7 a0 9 42 7602 409

190323 14 4158 27819 GOTA-IAB 20 2 10 14 52 49 5457 ~B8o6

190403 29 3873 27825 GSIB~I1 20 2 19 29 53 23 675 ~06
19101¢ 25 4103 : G318 20 5 22 25 34 6 68¢2 =345 .

191423 42 3599 ooV 20 & 50 42 3¢ 0.  7Ba6 5o 4

37 3827 F3IB 20 11 28 38 16 40 7546 2,3

32 02 CYG 192909 47 3059 28160 7751  K3IB-II 20 14 24 47 36 21 8307 700
5 ol CAP 192876 =12 5683 28189 7747  G3I8 20 15 39 ~12 37 15 - 323 =242
35 CYG 193370 34 367 28242 7770  FSIB 20 17 16 34 52 9 7344  ~0e5
193469 38 4003 28255 KSIB 20 17 a1 38 53 36 ' T76.8 107

41 CYG 195295 29 4057 28513 7834  FSII 20 27 55 30 14 S0 7009 =50
42 CYG 195324 35 4141 28515 7835 AlIS 20 28 0 36 20 14 7549 =145

44 CYG 195593 35 4105 28551 7847 FSIAB 20 29 37 36 48 &9 4-TX) ~1s4

o2



NAME
47
8 8

62 §

22 B

12
140 v

14
34 o

21 ¢
e

CYa
DEL

CYG

AQR

PEG
PEG
PEG

cEP

CEP
AQR

CEP
LAC

HO

196093

196725
200102
2303805
200905
202314
204022
204867
205349
206312
206778
206859
207089
207260
247439
207647
207673
208606
209481
2D9750
2190221
21974%
214680
~216206
216946
217476

CATALOG NUMBERS

34
12
44
4.4
43
29
43
-6
45
48

9
16
22
60
38
49
40
60
57
-1
82
57
38
49
438
56

BD

4479
4411

3661
3688
3800
4354
3516
5770
3584
3457
4891
4582
4472
2284
4611
3631

4648
2318
2441

4246
3114
24795
4826
3954
3887
2923

GC

288630
28743
29323

29459
29695

30137
30189
30335
30431
30444
30479
320483
30534
30557
30566
307932
30837
30896
30958
31044
31626
31868
31989
32063

TABLE A.1

(CONTINUED)
- SPECTRAL
HR CLASS

7866 Keig
7892 K318
GliB
F5iB
BO79 KS1B
8126 G21IB
Il §=i
8232 GQIB
8248 K11B
K11l
8308 K21IB
8313, G518
B3z21 KOIR
8334 A2TA
F5I8
G4IB
8345 A2IB
8374 G8IB
8406 oov
8414 G2IB
8443 A3IR
84695 K1IB
8622 o9V
8692 G418
8726 K518
3752 GGIA

]

H

20
20
20
21
21
21
2%

.2l

231
21
21
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22

Rae Ae
M

32
37
58
2
3
12
22
26
31
38
42
a2
44
44
46
47
48
54
1
3
6

9.

37
48
54
58

{19565) DECs
S D M
32 35 . 7
4 13 11
37 44 51
53 45 O
39 43 47
49 29 45
58 5¢ 17
40 -5 43
57 45 41
37. 48 58
28 9 42
48 17 11
25 22 46
26 60 87
49 38 &7
47 49 30
15 40 59
18 61 22
2 57 49
56 o 29
7 53 8
36 880 1
37 38 51
37 50 29
53 49 32
34 56 45

5

48
28
33
12
15
20
45
50
37
8
49
2
55
3
17
49
&
a1
¢
44
9
24
G
9
46
-7

LIT
DEGe -

TSt
58,0
86¢2
B6 48
86,0
TH6e7
92,9
48,6
908
93,9
6566
TZe0
TEeb
102,3
BB8e43
A5+ 4
S0 0
103:5
10240
61,0
99,8
103,1
3646
i04s1
104.56
108, 2

BI1
DEGe

=29

~1646.

~0a7
-1s2
—-2e1
=329
) P |
-371
—4e3
-2e6
=315
=262 5
~-22:8
5.9
=113
—3e2
—~GeB
5.5
242
414
~220
17
-1T7T+0
-Te7
-G
~2e 7

g0e



NAME -

56

20
LA

TU
DL
suU
RX
SW
52
AW
ST
RS
RT

RY
AL
SS

PEG

AND
CAS

CAS
CAS
CAS
CAM

-TAU

TAU
PER
TAU -
ORI
AUR
GEM
GEM
CMA
VIR
SCY

HD

213356
219135

221861
222574
223047
224014
224165

2297

174€3
25361

29260
30282
38262
44415
45412
456595
52973
56450
123384
173058

2%
S5
60
70
-18
45
56
46

53
59
68
58
3
18
36
13
14
30
15
20
-11
-12
-7

8D

4716
2919
2532
1327
6358
4321
3111
4214

72
65
200
6594
601
€61
937
971
1259
1238
1246
1687
1867
3993
4683

. CATALOG NUMBERS

GC

32201
32322

32793
32911
32988
33169
33183

3403

5621

8371
8560
2313

{

HR
8796
8962
B9s82
9003

9045
9053

829

2332

26590

TABLE Ael
CONTINUVED)

SPECTRAL
CLASS

KOIBP

GOIB
F71B
KOIAB
GOTT
G518
FBIAP
G818

VARI ABLE STARS -~-

cwW
C~DELTA
C—-DELTA
C—DELTA
("]

ol
C~DELTA .
Ccw
C-DELTA
C-DELTA
C-DEL.TA
C-DEL.TA
C—-DELTA
Ccw '
C-DELTA

H

23
23
23
23
23
23
23
23

RENNOOOUPPEPNCO

-

RoAs
M

5
11
22
a3
39
&
52
53

24
27
%8

22
35
45
43
20
26
32

14

41

{1965} DECa

S

21
17

4.2

24
54
14
37
47

22
58
44
59
39

22

10
15
54

57
15
46

25
56
61 24 O°
71 26
-18 0O
46
57
47 ©

&8
58

26

20
-11

D M S8

16
20 26
35
59
13 13
18 16
‘9 40

48
14
24
48
33
18
54
42
48

44
33

18 28
39
13 33
14 41

30 31 &

42
23
18
49
12

1s 21
38
25

46

25

LYY
DEGs

95,1
109.6
112.8
116.9

5925
111:.4
115.,3
113,2

118,99
12063
133.5
145,9
1902
1795
166+ 6
193,01
196¢56
183.2
1974
19508
225.3
331.2
2626

BII
DEGs

~31a7
-3 8
Oat
9.7
-71lc4d
-1590
~Ho5
-18405

~11e4
206
BeS
b7
-29.9
-~ 18,8
-Sed
-8s1
a3
Be9
34
11.9
0.7
45+4
-1el

¢oe



NAME -

FFE AQL

V496 AQL
FM AQL -

U AQL.
U VUL
sU cye
M AaL
S SGE
X CY6G
T VuL
DT CYG
AU PEG
VZ CY6
8 CEP,
X "LAC

-

HD

" 176185

178287
178695
183344
185059
186688
187929
188727
197572
198726
201078

213306
2161405

17
-7
10
-7
20
28
0
16
35
27
30
17
42
57
‘55

BD

3799
3861

386G4H -

43568
4200
3460
4337

4067

4234
da9¢
4318
48572
4233
2548
2817

.CATALDG NUMBERS

GC

26052

269905
27119 -
27336
27517
27601

+ 28886

29089

29502

31421

TABLE A.1l

{(CONTINUED)})

.

HR

7165

7402
7458
7518
7870
7609
7932
7988
8084

8571

T

SPECTRAL

CLASS

C=DELTA

C=DELTA
C—~DELTA
C-~DELTA-
c
C-DELTA
C-DEL.TA
C-DELTA
C~DELTA
C
C-DELTA
cy
C~DELTA
C-DELTA
C-DELTA

.Rvo,

H

.18

ig
19
19
19
19
19
19
290
20
21
21
21
22
22

M

56
6
T

27

35

43

50

54

41

49
5

22

50

27

47

S

39
24
34
24

3
21
39
24
59
56

o
20
14
49

34.

D

A7

-7

10

-7
20
29

¢
156
35
28
31
18
42
o8
56

{1965) DEC,

M

18
29
30

7
ip
10
5S4
32
27

5

2

7
57
13
14

S

42
42
0
12
6

36

36
24
24
48
18
24
54
48
i8

LIr
DEGs

4942
29.1
G494
3la1

T 561

65448
4049
5542
769
7201
T0e6
691
9165
10642
106+ 6

BII
DEGe

Ge &
~6e7
De9
~11e5
~0e3
25
~13el
-Bel
—443
-10e2

~10e8

—-2243
~Beb
Q5
-2a5

#02



APPENDIX B
DATA FROM WILLIAMS AND STROMGREN

In Table B.1 we give .data for the stars teken from Williams' (1966)
study that were used in determining %he mean color lines for luminosity
classes V, IV, IIT and II. For each star we give its Henry Draper
number, and its spectral type. The reddening-free color data is that
derived from the original work, the same quantities transformed to our
system according to the equations given in Chapter V, and the resulis
from this investigation. The Table B.2 is of identical form, but here

the data comes from the Stromgren-Perry catalog (1962).
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571,

7927

18331
18391

20902

21120 -

27022

30652

36673

38247

46300

COMPARISON OF WILL TAMSY

TABLE Betl

ORIGINAL AND TRANSFORMED

REDDENING-FREE COLORS TO THOSE OF KELSALL 'S,

© SPECTRAL

TYPE

Fa21tz:

FOQIA

AlY

GRIA

FSIB

Gsrxi_

GSITI

Fov

FQIB

GBIASB

AQIB

STATE OF -
THE DATA

ORIGINAL
TR ANSFORMED
KELSALL

ORIGINAL

TR ANSFORMED
KELSALL

DRIGINAL
TRANSFORMED
KELSALL

ORIGINAL
TRANSFORMED
KELSALL

DRIGINAL
TR ANSFORMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TRANSFORMED
KELSALL

ORIGINAL
TRANSFORMED
KELSALL

DRIGINAL
TRANSFORMED
KELSALL

ORIGINAL
TRANSFORMED
KELSALL

ORIGINAL
TRANSFORMED
KELSALL

{C1)
12522
1022
1.038

1+152

14186 .
1403 -

1«161
1e192
1033

Ce2G2
fie 230
00355

1e 002
0998
1049

De368
De361
Ce 399

Qe 362
D« 356
Q4 375

Ced7H
Le«854
Qe 357

1385
1,488
1. 462

~0o 057
. Bef55
D« GTT

0o 920
D084
Ge 976

{M1)

—D.é¢6
D173
Cel72

-0 4553
Na168
C+109

-0 516
0+194
0170

-0el72
Ds481
1523

-0 +459
Ne236
Be228

—De 289

0e374

Ce395

-0e323
De345
Ce343

~Qo 499
G207
Le221

~0eS01
Oe205
De206

CelE0
Qe 834
Ce 820

—Da646
D107
OG220

{3

-0.185

-0e081
—-0a039

=00 185,
=-0e04a1
-0+ 037

-Qa 262

-0s 132

04050
" D. 103
0084

-De 162
-0 015
~D2 26

-2 050
O« 103
0107

~Q207TE
DeOT77
Ra093

-0 155
-0 D07
—04 0084

~Ne 153
-0 03N
~Qe 050

0e 065
Ue 210
$e 193

~De213
~0.,073
-+ 064

206

(N)

OBe217

Ce 357
Ca357

0el197
0+336
00321

GQ?QB
0a»348

0 e 299
00247
e 435

Qs 242
Ce384
D379

GCe303
Ds 451
Co 259

D284
0 e 435
0s414

Qw201
06320
0 e 344

Qa22%9
0370
Qe 32%

0e543
Ce 724
62715

Ceoe212
{4 352
{32 3560



207

TABLE Bel

(CONTINUED)

SPECTRAL STATE OF

HD TYPE THE DATA (ci) (M1) - (G) (8)
48329, G8IB - ORIGINAL 0sD29 Del39 0eG66 o559
TRANSFORMED Gol809 00810 0216 02743
KELSALL 0s098 0oB810 00198 CaeT744
58946 FOV ORIGINAL 0e 682 —0e513 =-0e204 04223
TRANSFORMED (o650 (00196 =0063 0.364
KELSALL Do 5B7 Q0178 ~0e062 04362
67504  G2IB ORTIGINAL De343 —0o226 ~0o041 G 320
TRANSFORMED Qe 340 O» 430 0.112 (o470
KELSALL Go337 0565 Ga119 Qe4565
73262 AQV ORIGINAL 16197 =0e540 —0a247 (a205
TR ANSFORMED 16237 04177 =D0a1184  Co344
KELSALL 1062  Del171
111812 GOI1II ‘ORIGINAL 0e362 =0o4ll =0o1G3 0e18¢
TRANSFORMED (0356 06273 00049 04317
KELSALL 0o 383 Go228 0055 (.318
113139 Fa2v ORIGINAL 0e667 =0o503 —0s183 0215
TRANSEORMED D635 (4204 =-00038  $4355
KELSALL Oe 533 D208 =0D0,047 D358
122563 GOVI ORIGINAL Da373 —0e493 —0e131 Go2l1
TRANSFORMED (365 De211 0e019 o351
KELSALL Ded458 DNol83 06026 (e351
142860 F6IV-V  ORIGINAL G483 —~0a8506 —-04183 06190
TRANSFORMED Ce460 00201 0006 (328
KELSALL 00370 ColB6 0:004 De327
1561 81 G211 ORIGINAL De338 =0,283 =0.056 0+ 265
TRANSFORMED 0e336 06379 0097 00410
KEL SALL Co371 0e394  Geldl Cesls
182835 F21I8 ORIGINAL 16252 —00551 ~0e194 Co219
TR ANSFORMED 1309 D.178 =00051 ¢ 0 359
KELSALL 1410 o144 -~ {065 0« 365
185768 GOI1 ORIGINAL Ded24 —0o363 =—0.085 (4262

TRANSFORMED 0atlQ Os 312 Ce 168" 0a4G6
KELSALL Ces34 De315 Ca 071 2411



186427

186791

192713

193370

200905

204867

206778

206859

207673

211336

217014

SPECTRAL
TYPE

GSV.

K311

Gzisg

FSIB

KSIB

GOIB

K2IB

GS5IB

A2IB

FOIvV

G4v

TABLE Ba1
{CONTINUED}
STATE OF
THE DATA {C1)
ORIGINAL 0o 408
TRANSFORMED Qe 395
KELSALL Ca346
ORIGINAL G001
TRANSFORMED 0,091
KELSALL Gea 84
ODRIGINAL (9236
TRANSFORMED 0. 255
KELSALL e232
DRIGINAL Ca 873
TRANSFORMED Q4851
KELSALL 0o G644
DRIGINAL -0 e 063
TRANSEORMED  0e051
KELSALL =0 o031
ORIGINAL Ca 477
TRANSEORMED  Oe 455
KELSALL Co 503
ORIGINAL -0s 008
TRANSFORMED (o085
KELSALL Qe 043
‘DRIGINAL Ge 101
TRANSEORMED  0e222
KELSALL . D252
ODRIGINAL s 036
TRANSFORMED 0922
KELSALL 1007
ORIGINAL G853
TRANSFORMED 0829
KELSALL 0e729
ORIGINAL De 437
TRANSFORMED Ca 420
KELSALL Ge3a1

(M1)

~0eb445
Ce247
De239

RNel243
Te 935
Ja896

~-0s195
3a245C
Ded483

-0 426
02261
De256

Qe279
G979
$a023

—-1,285
3378
0367

D204
o887
ea34d

-Ge1l1
(2550
U568

~De 540
el1395
D029

- a481
Ge220
5228

~Ds444
Do248
0e285

(5)

~0.,0786
G077
Ge 078

De 119
N. 263
d+261

-3a 058
Ds 395
Qe 398

—-0s 148
e 1
-GeG08

0143
De 272
(e 267

-0 369
D284
De G744

Ne 106
Ce 243
Dae 2586

~Ge014
Gs138
o148

-04187
—a (343

-0e 223
—-0,085
-0 076G

-0 (89
02063
22083

208

()

Ga 159
Q295
Ge297

Ceb&79
Cab50C
Qe 655

Ca 345
Ce 498
GabB27

32248
Da391
0 e383

Cats23
£ e 586
1« 575

Ga270
De4lS
Cae424

0486
CaTH
Ceb71

Cs433
DeaS97
34605

Cs198
Re337

Qae227
0s368
0357

Cel7
(o303
0e 33D



217476

SPEC TRAL
TYPE

GCGTIA

TABLE Bal
{CONTINUED}
STATE OF
THE DATA (C1)
ORIGINAL 0a 3286
TRANSFORMED o326
KELSALL De 358

(M1)

~0aldl
Cabll
De551

(G}

69383
0063

209

{(N)

£ 2287
}ea34
Co 451



COMPARISON OF STROMGREN'S ORIGINAL AND TRANSFORMED

TABLE Bs 2

REDDENING-FREE COLORS TO THOSE OF KELSALL 'S

HD

571

6961

9826

10476

17378

ig331

19373

211206

23230

25291

26574

SPECTRAL -
TYPE

F211I
ATV
Fay
K1y
ASTA
AIY
oLV
GBIIY
F511
FOII

F2111

STATE OF
THE DATA

ORIGINAL
TRANSFORMED
KELSALL.

ORIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TRANSFORMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TRANSFORMED
KELSALL

ORIGINAL
TR ANSF ORMED
KELSALL

OCRIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TR ANSF ORMED
KELSALL

ORTGINAL
TR ANSF ORMED
KELSALL

S

{C1)

1350
12034
1038

0985
8,971
De946

Ne361
He369
Da390

Ce226
0238
Te309

1321
1.292
1.274

1054
1038
13333

D325
Ce334
De3bb6

U348
Ce3d56
ve399

Ca%386
De924
TCel33I2

1449
1.405
le4l14

De 766
Da761
De742

(M1)

{e156
Oc16Y
Del7T2

Oe224
D222
Ls245

De 221
De 220
$a 202

Ga428
Da418
o 364

-30034
—0e 006
Q010

Gal172
Lel75
Ve l7C

Do 248
De2dd
D217

Qo402
De392
De 396

2.218
02217
Cs231

Da 155
s 160
D174

Ce 222
Ds 221
G271

210



HD

27022

27309

30682

31398‘

39587

39866

48329

5871S

58946

62345

62721

SPECTRAL
TYPE

G511

A SI

Fevy

K3I1

GOV

A218

G8iB

BTV

FoV

GBIII

KSITI

TABLE Bo2
{CONTINUED}

STATE OF
THE DATA

ORIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TRANSF ORMED
KEL SALL

ORIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TRANSFORMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TR ANSF ORMED
KELSALL

ORIGINAL

TRANSF ORMED

KELSALL

ORIGINAL
TRANSFORMED
KELSALL

OCRIGINAL
TRANSF ORMED
KELSALL

(Cl)

334

0+343
De375

34553
G+555
0535

G373
2+381
Ga357

Qw181
0alté
G182

D256
2267
0s283

1,436
12401
le463

TelbH3
02176
0098

GeaBG 6
D809
Ga787

2582
0.583
D587

G321
0330
0348

2318
0327
D308

(M1)

£2384
Gas345
Qe 343

0196
0a197
Ga 198

0199
Ge 200
Ge 221

(e 892
lea 926
Qe 935

D 240
Be 237
Le226

Dafdéb
2066
le161

D769
$e783
OJ« 810

Ge 108
fellQ
Qe 100

Ge 183
2185
Qel?8

Gea52
De 42
Qe 435

Dea 861
0o 890
fe 881

211



HD

67006
78362
79439
82885
84441

osoaBs
91316

102870
1030 95

103287

\

.103578

SPECTRAL
TYPE

A2V

FS+AS

ASY

G8IvV-V

Go11

KQIIIP

B1iIB

Fav

GavI

ARV

A3V

TABLE Be2
{CONTINUED)

STATE OF
THE DATA

ORIGINAL
TRANSF ORMED
KELSALL

OCRIGINAL
TRANMNSF ORMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSALL

CRIGINAL
TRANSFORMED
KELSALL

ORIGINAL
TRANSFORMED
KELSALL

‘ORIGINAL
TRANSE ORMED
KELSALL

ORIGINAL
TRANSFORMED
KELSALL

ORIGINAL
TRANSFORMED
KELSALL

ORIGINAL

TRANSF ORMED

KEL SALL

ORIGINAL
TRANSFORMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSALL

{C1)

15096
1078
128666

D594
Ga692
fe658

Ge877
Oa868
D845

De312
e321
GCe386

G.388
(3«395
De&lb6

Ge281
02291

Fe308

02037
=020
~0 o058

D366
e374
0397

DelZ24
0s138
Dal3s

lell ¢
1.091
1075

14099
1081
14064

{M1)

0153
{2158
Nal76

(e 265
Da 268
e 288

0210
De 210
De 225

Da 369
Ge 360
00304

D2 338
Ge 330
e 332

Ca543
0.536
Ga533

G, 028
G051
DaC14

Da232
De 230
Ve 206

{272
De 267
D275

0171
Dal74
DalES

Cal7?6

{179

Da202

212



HD

107328

111812

113139

120315

122563

127762

1321G9

134083

142860

i43107

143761

SPECTRAL
TYPE

KiII:

GOIII

Fa2v

B3v

GOV

ATIII

AGY

FSV

FEIV-V

K3111

G2V

TABLE Be.2
(CONTINUED)

STATE QF
THE DATA

ORIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TRANSF OGRMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TR ANSF ORMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSALL

DRIGINAL
TR ANSF DRMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSAL L

ORIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TRANSFORMED
KELSALL

CRIGINAL
TRANSF ORMED
KELSALL

(C1)

De4lB
Tebd24
a438

Le349
Ne357
0e383

a4 4a
De547
eB533

Qe359
Ce318
CaZ289

Qo472
Dea?7
Cod58

0a992
D978
Le965

1.0880
1,062
1844

Cedll
Oas418
Qo415

e 360
Ca368
3370

0313
De322
Ge328

0e269
0279
e321

(M1}

GCaST7T2
Q2566
De 593

Qo 247
Qo284
Ds228

G0 200
0s 200
Ge 208

05886
Ca 100
GsCB1

Do 169
9t173
Gs 1 89

0. 205
0205
Q0218

Qe 134
G142
Oe 154

0,201
Co201
U« 182

00193

Ds 194
02186

Qe 666
Qe 5668
Qo670

Qo232

Pe 230
04208

2l3



HD

1591 81

18264¢

135758

186427

186791

187013

192514

194093

2072670

210027

2180221

S

SPECTRAL
TYPE

G211

Fol1v

GGII

GSY

K311

FsY

A31I11

FEIB

AZTA

FoV

A31IB

TABLE Be?2
{CONTINUED)

STATE OF
THE DATA-

CRIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSALL

ORYGINAL
TRANSFORMED
KELSALL

CRIGENAL
TRANSF ORMED
KELSALL

ORIGEINAL
TRANSF DRMED
 KELSALL

CRIGINAL
TRANSFORMED
KELSALL

DRIGINAL
TRANSF ORMED
KELSALL

ORIGINAL
TRANSFORMED
KELSAL L

ORIGINAL
TRANSFORMED
KELSALL

ORIGINAL
TRANSFORMED
KEL SALL

ORIGINAL
TRANSFORMED
KELSALL

{(C1)

Dae341
Na35¢
DHe371

0 +685
DeH83
5 o685

0.308
00405
Ged34

De298
Ge308
0346

Hel73
(e+186
D084

Qo392
D399
3438

1,301
1273
1Le275

DaB24
D817
DaB862

Qo958
D946
D908

DD
Ce+a13
Cad 2

1294
1266
1288

{M1)

0359
0e389
e 394

Ge 101
Ge 192
0,212

0. 323
0o 315
£+ 315

Q. 278
Ce272
Qs 239

Ga 880
Qe 912
{e 896

Qe 194
Da 195
D187

02158
0el63
De166

Ce 345
De 3386
{ie 365

-0e G0S
G023
02018

Oe 196
Oal197
GCe211

s Py 2.4
0e (64
D059

21k



SPECTRAL

TABLE Be2
(CONTINUED)
STATE OF

THE DATA

ORIGINAL

TRANSF ORMED

KELSALL

ORIGINAL
TRANSFORMED
KELSALL

ORIGINAL
TRANSF ORMED
KELSALL

{C1)}

N758
Ce763
DeT729

o322
Ce332
Le372

32308
D317
De341

(ML)

0216
Ce 215
De 228

Ce 507
De 498
e 495

Ha 284
0.278
€. 285



APPENDTX C
COEFFICIENTS OF THE SUFERCOLORS

We give here the coefficients for the supercolor expensions as
they were used in Chapter VII. The IogTe—supercolor is a simple quartic

in [G] --

LogT_-supercolor = 3.812 - 1.024G]) + 0.5975[G]2 + 19.82[G]3 - 66.67[G]4.

i
The form of the Mv-supercolor is given in Eg. (5—1). The coefficients

of the various terms in the expansion are listed in Table C.1.
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THE - TERM

149
(c1)
AM1)
(G)
(N)
(C1)#*x2
(C1H (M)
(C1)(6)
(C1y(N)
(M1)%%2
(M1)(G)
(M1} (N)
(G)¥k2
(GI(N)

(NY*Rk2

THE MV—-SUPERCOLOR COEFFICIENTS FOR THE VARIOUS (.G)

v

-0006
TO
0«03
484544
-414279
~49.856
-5¢3417
—117.12
640328
38,875
-106. 40
24, 484
~342,08
879486
5556 30
~755¢ 49

~606eG3

~B9e 422

0003
TO
005
‘73q167
196414
~5474 80
222046
~455.,08
414535
838479
~12954 4
-122307
-15971
11291,
158645
~144G0.
~1023i,

140504

TABLE Ce1l

RANGES IN (G)

0.05
To
Del0
99,720
~191497
261439
—-770s13
~391.94
~614474
~618672
547072
104645
~327.76
~616403
' 542,70
342544

B55.83

~342.04

0et0
To
Gol?
394131
—660904
~165944
470952
-117482
041357
21060
-388063
23,059
~361e74
104501
212041
~138542

21298

=31e594

REGIONS.

0s17
TO
Q27
~584 784
171497
~125.,86
66852
72125
~88e885
35748
-1229.6
~216e55
720439
105574
=100647
—-883e73

=24 5561

224614

-

0,27
TO
Qo330
16.364
237028

173.28

. ~497c84

~123.52
*23897%
121,82
=616+34
-167.98
-440310
—159,857
—-100446
824,24
362445

94076

LTS
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