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HYDROMAGNETIC WAVES AND DISCONTINUITIES

IN THE SOLAR WIND

I. Imtroduction

Studies of the interplanetary medium have produced resulis of astrophysical and
geophysical significance. During the past ten years it has also become possible
to treat the interplanetary medium as a laboratory sample of a cosmic plasma.
One of the major results of these experimental investigations is the demonstra-
tion that hydromagnetic theory is applicable to this tenuous plasma. Of course,
fluid processes represent only a subset of the great wealth of phenomena occurr-
ing-and one must remember that the applicability of hydromagnetic theory is
limited. Moreover, these limitations are presently the subject of great interest,
and the fransport parameters remain to be determined by the development of an
appropriate kinetic theory. But the applicability of hydromagnetic theory to the
golar wind is very extensive nevertheless. While the current trend in the liter-
ature emphasizes the limitations of the fluid theory, this review emphasizes its

positive results.

Various modifications of the hydromagnetic theory for a single species fluid
having an isotropic pressure have been made for specific solar wind problems.
We shall develop a general form of hydromagnetic theory appropriate for the

solar wind, and we shall show how the various special theoretical results can



be unified and systematically derived from this general formulation. We shall
also show how solar wind plasma anl:l magnetic fieldtobsérvations support and
can-berorganized by this theory. The emphasis is thus on the basic theoretical
and experimental results.and relations between them. For this reason,. complex,
non-reproducible phenomena and descriptive results very specific to-the s.ola'r
wind are not discussed. Likewise, theoretical work which has no present con-

nection with observations is not reviewed.

II. Summary of Solar Wind Properties.

Since there exist good recent reviews of the observation material,. (Axford,
1968; Hundhausen, 1968, 1970; Ogilvie, 1970; Scarf, 1970; Vasyliunas, 1971) we
shall not go into great detail in the description of specific experiments and their
results. The aim of this section is to provide the reader with a-condensed sum-~,
mary of those properties presently established together with .the necessary .
references to the papers which give the detailed information not: presented:

here.

An exhaustive review of experimental methods, drawing attention to the im-~
portant conversion of engineering quantities (count rates, currents, etc.) to
physical quantities (temperature, densities, ete.) characteristic of the particle
distribution functions has been published by Vasyliunas (1971). As.he poinfs out,
& basie task of particle experiments is the determination of the properties of the
plidma by the enumerakien of the distribution fmeton By counting particiss



present in various parts of velocity and configuration épace. The resulis,
though always an approximation, represent the essential features of f¢ ,v , t),
defined such that fdr dvis the probability of finding a particle indr dvat

time .

In the fluid description of the plasma, it is considered as a conducting fluid,
whose motion and properties (for example transport properties) are modified
by the 1'3res ence of electric and magnetic fields. The state of this fluid at a
given time is specified by the parameters, density, bulk speed etc. The evalu-
ation of these guantities in terms of the distribution function is covered in many

textbooks (for example Boyd and Sanderson, 1969), where if is shown that

n(r,t):J.f(r,v, £y dv (2.1)
_IJ
v (r, t) = |v fdyv (2.2)
n -
r P
(s t)=3nk (2.3)

where Pis the pressure tensor, defined in terms of the second velocity moment

of £,

We now discuss the observed properties of the plasma particles in terms of

these quantities. TFor this purpose it is important to introduce the idea of scales



of length (or time). The idea of "macroscale," "mesoscale™ and "microdcale,"
introduced by Burlaga and Ness (1968) and discussed further by Burlaga (1969)
has been successfully used to classify and interpret data, a length being con-
vertible to the corresponding time by dividing by a representative bulk speed.
The mesoscale deals with lengths of £1AU and the microscale with lengths of
$0.01 AU respectively (see Figure 1). It is clear that mesoscale changes in the
fluid parameters are indicative of changes in the flow field on a large scale.
Microscale changes reflect the passage past a given observatory of waves,
discontinuities or rapid changes. Examples of such effects will be discussed

later at length.

Observations of fluid quantities cn the macroscale show that while there is
considerable variability, the bulk gpeed is seldom below 300 km sec~1 and the
low speeds are hetween 300 and 350 km sec ™', At these times the temperatuie
is abeout 8 X 104 °K, so the flow is supersonic, with Mach number of

order ten. For these conditions, referred to as the "guiet solar wind' and
usually used to compare with theoretical predictions at 1AU, the density is~ 8
cm~3, At other heliocentric distances, between say 0.25 AU and 5-10 AU, the
flow speed is predicted to remain closely constant, the density decreases as
1/r?, and the temperature decreases as r increases at a rate whose details de-
pend upon the heat conductivity of the plasma. It is expected to be somewhat
slower than the adiabatic rate. Relatively little observational material

has heen presented about conditions at heliocentriec distances other than 1 ATU.



The proton temperature is anisotropic about the direction of the interplanetary
magnetic field, T, / T, being 2:1, which is less than would be expected from the

Coulomb collision length in the medium alone.

The electron density is such as to preserve charge neutrality, and electrons
convected atr the same bulk speed as the protons. The measured electron
temperature is essentially constant at a value of 1 to 1.5 x 105°K, with an ani-
sotropy about the field direction of £1.2. This means that the e;lectron di_sltribu-

tion function is quasi~stationary in time, and that the flow of the electron gas is

subsonic, since the electron thermal speed is several thousand km/sec.

At the present time the density, temperature and its anisotropy, the bulk speed

.
L

and heat flux have all been established for both protons and electrons at 1AU.
These values for the quiet solar wind as defined above are given in Table I. The

values of some derived quantities are also given.

The value of 8= nk(T, + T )/(B*/87), in the solar wind at JAU is typically close
to unity. Other species of Iiarticles exist in the solar wind, Extensive observations

show a highly variable admixture of helium. If one disregards the short periods when

the proportion of helium to hydrogen exceeds 10%, which seem to he associated
with solar activity, we see that one can generally neglect the presence of this

second species. The ratio of the helium thermal energy density to that of the



Table I

Observed and Calculated Properties in the Quiet Solar Wind

Observed

Flow speed

Proton and Electron density

Proton Temperature

Proton Thermal Anisotropy Ratio
Eleciron Temperature

Electron Thermal Anisotropy Ratio
Magnetic Field

Proportion of Helium (n,/n,)

Heat Conduction Flux (fotal)

Calculated

Proton flux

Kinetic Energy Flux

Kinetic Energy density

Proton Thermal Energy Density
Electron Thermal Energy Density
Magnetic Field Energy Density

B

1

B

e

Variability at 1 AU

Flow Speed

Density

Proton Temperature

Proton Thermal Anisotropy Ratio
Flectron Temperature
Proportion of He (n,/n,)
Helium/Hydrogen Bulk Speeds

320 km sec™!
8 em™3

4 x 10%°K

1,9

1-1.5 x 105 °K
1.1

Sy

0.05

0.01 erg cm ™2 sec™!

2 x 108 em™2 gec™!
0.22 erg cm™2 sec™1
7 %107 ergcem™3
6 x 107! erg cm™3
1.5 x 10710 erg cm™3
10710 erg em™3

~0.3

~1,0

275-800 km/sec 7!
~1.0 to™ 50 cm™?

<3 x10%t0 5 x 10° °K
1 to 3.0

1to2 x 105 °K

0.01 to 0,20

<5%




hydrogen is 0.2; that of the two kinetic energy fluxes is:0:2,:but since the bulk
speeds seem always to be equal witl:,ain the a'ccu.r%l.cy of ol?s'erjiativon (a few per—
cent)-the principal effect of the helium is fo increase the fluid.particle density
and pressure. The possible effects of the admixiure of a second species on the
stability of the plasma seem not to be important in the fluid approximation,
{Fredericks and Scarf, 1965). .The othe_ar species recently detected in the.éolar

wind at quiet times are present in such small amounts that their effect is prob-

ably negligible. >

(Bame et. al., 1970). We are dealing with a multi-component, anisotropic, colili-

gionless plasma, with supersonic protons and subsonic electrons, which has 8= 1.

II1. Bagic Eqguations

A. Discussion. As shown above, the geheral equations for flvuid motions in
the solar wind must include the magnetic field, the particle anisotropies, and the
Fiiffc;rent species. There are 5 transport equaﬁo;zs (conservation of mass (1),
n;zomentum (8), and energy (1)) ﬁ;r-' g@ species and those are coupled with one
another and with the equations for the current and magnetic field. Because of
the complexity of this system, it has not been studied in its general form. Two
" approximations are commonly used: -(1) a sifigle fluid approximation, obtained
by averaging over particle specieg, which is valid for an anisotropic, hydromag-
netic finid; and a 2-fluid model for an isotropic fluid with B = 0., The 2-fluid.
model was developed for investigations of macroscale so!ar wind proPerties.

3 -

The resulis of this papé‘ft" are related to the siﬁgle fluid approximation.
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B. Single-Fluid Approximation

1. Conservation of mass. Averaging the mass conservation equations

for each species gives

op
—— . - 3.1
-at*l*G (pv) =0, (3.1)

o= Z m. n. (3.2}
v ‘——"%Z“m1 n, v, (3.3)

here m, is the particle mass, n, is the density of particles of spécies i given by

where

(2.1), and v, is the average speed of species i given by (2.2).

2. Conservation of momentum. For the solar wind, the momentum

equation is
___8 - (P .P ’ - (3.4)
at(pv)+ (—__+zem+pvv)_,0 .

where P

= em

is Maxwell's stress tensor,

_s B2 BB (3.5)

P o a3
=em 8w 4w
and P is the mechanical stress tensor summed over particle species, which can

be written in the form

B. B,
2 = Z [(pk” - Pkl_) ;2 ! + Pkl Si J:l 1 (3'6)

k




where Py 18 the pressure of the kth species perpendicular to B,

Pyy = 0y m J W) ¥ fdv
and Py, 1s the pressure parallel to B,

Py = 0y my _[Wkn wey £ dv;

where

(3.7)

(3.8)

(3.9)

One might add a viscosity term to P, but it seems to be negligible for macro-

scale processes in the solar wind., Putfing (3.5) and (3.6) into (3.4) gives

B(PV)_Lv_ vy o B2
[p .;(Zp,d+§—;>

ot
where
Z (P = Piy)
g=1- 1
(B2/4 m)
Noting that
3(p ¥y . _dyvw
3T + Ve (pvv)y=p at

and using the condition V-8B = 0, one gets from (3.10)

(3.10)

(3.11)



pdv _ B2 B-V)B
IF - (ZpqugW)—(;: & (8.12)

k
if £~ constant. This equation with ¢ = 1 was first derived by Parker (1957)
from particle orbit theory. Clearly, £ is a measure of the anisotropy, being 1 for
an isotropic plasma and <1 for an anisoiropic plagsma with P> P Note that
the anisotropy euters only in the (B-V )8 term. Since (g -V )8 is proportional
to the curvature of the field lines, it is ¢lear that the anisotropy directly affects

the motions if and only if the field lines bend.

Equations (3.10) and (3.12) are fluid equations, and they imply a collective inter-
action of the fluid particles. For motions normal to E this is cause’d by the
magnetic field; collisions are not necessary. This was shown by Burgers (1960),
Chandrasekhar (1960), and Whang (1970) ,who obta:ined(S.lo.) for v, for a collision-
less plasma. For motions along 8 there must be collective plasma interactions

if the motions are to be fluid-like. These motions are not yet fully understood.

It is possible that on some scales one should use a kinetic equation for motions

along, E, rather than (3.10).

3. Frozen-TField Condition. Assuming infinite electrical conductivity

and neglecting the effects at ion and electron inertia, one has E = -v X B/c,

where c is the speed of light.. In this case v and B are related by the equation

8t

Q)

: i:.,vx (v = B) . (3.13)

|

ot

10



This is essentially the same as a form of the Beltrami equation for vorticity in
a non-viscous, incompressible medium (Serrin, 1959, page 151), and it imnplies_~
that the lines of force (or vortex lines in the case of the Beltrami equation) are '

"frozen" to the fluid. It was first discussed by Alfven (1943).

4. Closure. For many purposes, it is not necessary to consider higher
moments of the distribution function. However, the conservation of mass and
momentum equations ((3.1) and (3.12)) and the frozen-field equation, (3.13), give
only 7 equations whereas there are 9 unknowns (v,B , o, P zmdplI y. Thus, 2
additional equations are needed to obtain a closed set of equations describing the

plasma motions.

For macroscale studies, it is customary to assume isotropy ( £ = 1), which
reduces the number of variables to 8. Then only one additional eqguation is
needed, and it is customary to usé the adiabatic approximation p=A(S) v which
g‘lVeé a relation between the pressure and density which is valid for constant
entropy, S. In the kinetic theory of gases it is shown that v = (N + 2)/N where
N is the number of degrees of freedom. The application of this equation to the
solar wind has no theoretical or experimental justification, but it is obviously

mathematically convenient.

Another means of closing the equations, which is sometime applied o the solar
wind when discussing problems involving anidotropy, is the method of Chew,

Goldberger and Low (1956). Their closure equations are

11



4 (_I.)é_>= 0 (3.14)

d (Pu Bz): 0 (3.15).
dt Pg

These equations assume no heat flux, but can be extended for a constant heat

flux. The CGL closure equations were derived on the assumption that 8 =nk T/

(B?/87) << 1. This assumption is not applicable to the solar wind.

We shall close the system with the following equations

Py = A p;’i (3.16)
Y
Py = Akli pkll (3.17)

The appropriate values for ) and y, are unknown. An obvious choice for
microscale processes where the field is relatively orderly is % =2 (because
there are 2 degrees of freedom normal to B) and ¥, =3 (because there is
obviously just one degree of freedom along B ). We cannot exclude the possi-
bility that compressions along B are isothermal since the conductivity along B is
high, especially for electrons (p « p); inthis case 7; =1 rather than 3. One
should also congider the possibility that v depends on the scale, since on a large
scale the field is more disordered (perhaps turbulent) than on a small scale.

These are problems for future work.

12



5. Energy Equation. The forms of energy to be considered to drive the

microscale processes in the solar wind are the kinetic or streaming energy, the

parallel and perpendicular thermal energy and the magnetic energy. Let

€ :%ﬂ ip- - - (3.18)
The energy flux is
F:(-p—;g+€>v+gtv+5+q (3.19)
where § ig the Poynting flux
_(vxBYx B

(3.20)

and q is the heat flux

n M
4 EZ ‘2 lj dv “'12 w, f. (3.21)

The heat flux, q , has been neglected in most of the dynamical studies of micro-
sScale processes, but this assumption has not been justified experimentally and
there are recent stu@ies which indicate that electron heat fluxes may be very
significant under some circumstances (Burlaga et al., 1970, Hundhausen and

Montgomery, 1970).

13



The conservation of energy is expressed by the equation

CELv-F=0 (3.22)

6. Remarks on Velocities, It is important to distinguish the various

velocities which are used above. The basic equations involve the center of mass
velocity, v , which is a momentum average over the particle species, viz., as

pv = Znmu,, Here p is the average density, p =% n; m;, and v, is the average
flow velocity of the ith species,

3%

nl
v, = v, f dvi (3.23)

where v, is a point in the velocity space of the ith species. The momentum
tensor, given by (3.6), and the heat conduction vector, given by (3.21), involve

the thermal velocify measured relative to the center of mass velocity, i.e.,

w, TV, v This presents a problem gince in practice one would usually

determine P and g for each species separated, by integrating over the thermal
speed w; = v -u , measured relative to v . Since particles of all species

are frozen to the lines of force, they should all move normal to B with the same

velocity, i.e., v

AT but there seems to be no reason why different species

could not move parallel to B with different speeds. However, observations
(Ogilive et al., (1968); Robbins et al., 1970) indicates that in the solar wind the «’s

and protons have essentially the same mean speed (within 10 kn/sec), and the

14



nean speed of the electrons does not significantly effect v-because of the small
slectron to proton mass ratio, so for most purposes we can set v = u, for solar

vind particles, in which case w/'= w_.

x

/. WAVES

A. Infroduction. Although the theory for hydromagnetic waves in an iso~
ropic fluid is given in many texts, the theory for an anisotropic, multifluid,
rollisionless plasma is not well known, and differs from the isotropic theory in
some important respects. Since the anisotropic theory is the relevant one for the
solar wind, we develop it in some detail. We ghall congider a number of special
;ases which show the basic physical properties of the waves. The general

situation is discussed briefly at the end of this section.

Jne can distinguish 3 classes of waves:

1. v #0, v =0 (4.1)
2. v, =0, v £0 (4.2)
3. vy A0 -w A0 - C o (4.3)

Here, and in what follows in this section, v is the perturbation velocity due to

he wave. ’

B. Waves withvy #0, vy =0. In thi_s case, the oscillations are only along

:he magnetic field. Equation (3.13) shows that 3B /9t = 0 for such Waves;, i.e.,

15



they involve no variations B . Since B = constant and P, is also constant, the

linearized form of (3.10) gives

v
!
P37 ==Y (Z Pku)= 2 % Vil A

ot

(4.4)

where cﬁ = 3py /'aplc is the speed of sound of the kth species. Ifp, = Ap v,

thenc? =y T, /m,. Let

2 = A1 2
Cj =P 2 (Cy Ay -
k

For a plasma consisting of electrozis and protons,

, Y T+ T,
O e,
i -

If ¢, is a constant, then (4.4) and the continuity equation give

9% v

2 g2 -
12 —ciVyp vy =0
(o}

(4.5)

(4.6)

(4.7)

This is an equation for sound waves propagating along B8 with speed cﬁ . The

wave is illustrated in Figure 2a.

The existence of acoustic waves in a collisionless plasma is somewhat para—

doxical. However, such waves (ion acoustic waves) are predicted by collision-

less ti'xeory and are expected to propagate with little attenuation when T > > T, .

The restoring force is provided by an-electrostatic effect.

16



Such waves have not been identified in the solar wind, and their coupling with
other modes (assuming ion acoustic waves do propagate) is poorly understood.
Such waves do not appear in Whang's model for flow past the moon since he
assumes that particle motions along B are governed by orbit theory rather than

by the flow equations.

C. Waves with vy =0, v, # 0. The equation of motion (3.12) can be written

dv . 4.8
pdt-G M (4.8}

where

BQ
G=-V = 4.9
(Z Py + 2 ﬁ) (@.9)
and
M=-_% (B9 B. (4.10)
4 g1

Clearly, G is due to gradients in the total perpendicular pressure. M is caused
by the tension in the magnetic field lines, which is non-zero if and only if the
field lines are curved. Note that the anisotropy appears only in M. We can
distinguish 3 cases, shown in Tz'a,ble II. (Bear in mind that we are assuming ’\.r“ = 0.
41so note that we are using the terms magnetoacoustic and fast wave in a limited

sense.) Now, consider each of these cases in turn,

17



Table 11

M
Alfven wave 0 #0
Magneto ac;)ustié wave #0 0
Magneto "fast wave" £0 £0

18




1, Alfren wave (G= 0, M # 0; vj = 0). Inthis case there are no pres-
gsure gradients so n, T, and B are constant, but the magnqtiq field lines oscillate

like waves on a string, Let us choose a coordinate system such that z is along

£r
FO

k and take the perturbations alongy: 38 = b (z)y, 8y =Vv(2)y (see Figure 3).

Congsider the case when B is parallel to k. The force equation (3.12) gives for a

homogeneous plasma

dv

L BYyab
—_— = = 2. 4,11
’Oat (§47T)'az ( )

This iroplies that §B is parallel to $v. The frozen-field condition, gives

o)
o
a
<

— B e 4.12
ot 9z ( )
Combining these two equations gives the wave equation
3 b 2 b 2 '
= ( 5 é:’) g O°b (4.13)
312 \47m P/ 52 A g2

Thus, the waves move with the speed vV, along B. Assuming perturbations of the

form b, exp li(kz - @t)}, we obtain the dispersion equation

@? - Vi2k2 =0 (4.14)

Note that the speed of the waves is affected by the anisotropy; the larger the

anisotropy, the slower the wave, all ofher things being equal, Clearly, the waves

19



- will propagate only if V, is positive. For an isotropic plasma, £ =1 and V, =

‘V'A, which is the familiar result from magnetohydrodynamic theory.

From the frozen-field equation (3.13)

ob _ , ob
3t Va3
which with (4.12) gives
b = - B, v,
Va

This can be written,

(4.15)

(4.18)

Unti and Neugebauer (196 ) searched for sinusoidal Alfven waves in the solar

wind using magnetic field and plasma data from Mariner II. One result is given

in Figure 4. This shows B (smoothed by a 19 point running average) in a co-

ordinate system for which the minimum field fluctuation was in the xy plane and

the average field along z, the bulk speed of the plasma is also shown. One sees

a nearly sinusoidal, plane polarized wave with 9B strongly correlated with V

and & B normal to B. Using the measured B and n to compute 8 v they found good

agreement with the measured bulk speed perturbations (Figure 5), suggesting

that (4.17) is satisfied. The initial density measurements, computed on the

assumption of a strictly radial bulk velocity, did not satisfy the condition n

constant, necessary for an Alfven error, (in fact the density was strongly cor-

related with V (Figure 5) but this was probably an instrumental effect.

20



and the dispersion equation is

w? - kg Vi2 cos2 9 =0. {4.20)

This is the only mode that can propagate in an incompressible hydromagnetic
fluid.
Using an iteration technique, Unti and Neugebauer showed that the observations

were consistent with the condition n = constant (see Figure 5).

Unti and Neugebauer (1968) searched for sinusoidal Alfven waves in the solax
wind using magnetic field and plasma data from Mariner TI. One result is given
in Figure 4, This shows B (smoothed by a 19 point running average) in a co~
ordinaté system for which the minimum field fluctuation was in the xy plane and
the average field along z, the bulk speed of the plasma is also shown. One sees
a nearly sinusoidal, plane polarized wave with §p strongly correlated with V
and 8B normal to B. Using the measured B and n to compute 81 they found good
agreement with the measured bulk speed perturbations (Figure 5), suggesting
that (4.17) is satisfied. The initial density measurements, computed on the
assumption of a strictly radial bulk velocity, did not satisfy the condition n =
congtant, necessary for an Alfven wave, (in fact the density was strongly cor-

related with V (Figure b) but this was probably an instrumental effect.

21



Belcher et al. (1969) reported that correlation coefficients >.8 in absolute

value between the radial component of the interplanetary magnetic f‘iel;:I' and solar
wind speed were found at least 30% of the time in the 5 months of data from
Mariner 5. They argued that these are due to large amplitude, aperiodic Alfven
waves beéduse: (1) the correlation is consistent with (4.17), (2) the density was
not correlated with the field changes, (3) the value of B/V, computed from plots
of b vf'eréus V agrees with that given by (4.17) with £ =1 (see Figure 6a), and (4) the
fluctuations 8B tended to be normal to B (see Figure 6b), They also found that
essentially all of the waves were propagating away from the sun, irrespective

of the direction of the interplanetary magnetic field, This is evidence for the
e;;istence of Alfven waves in the solar wind and suggests the relatively common

occurrence of such waves on a scale of several hours or more,

Coleman (1966) had previously noted a high value for the coherence he obtained
from the cross spectrum for V and B , and he noted that the phase difference at
a particular frequency obtained from the cross spectra for V and B was~180°
when B was away from the sun and ~0° when B was toward the sun. These
evidently correspond to the results seen by Belcher et al. (1969), expressed

in a different form. Coleman concluded that fast waves or Alfven waves {or
both) were present, but he could not distinguish between the two, A more
detailed account of this work also does not give positive evidence for Alfven

waves (Coleman, 1967).

22



2. Magneto Acoustic Wave (G # 0, M= 0; V, = 0). While the Alfven

waves propagate along B because of the tension in the field lines, the restoring
force for these magneto acoustic waves arises from the compression of p and
B , and the wave propagates normal to B (éee Figure 2b). Taking M= (B -V )
B =0 (i.e., assuming the field liﬁes do not bend) and B = (B, + 52) z , the linear-

ized form of (3.12) becomes

haV B ‘abz
— =Y 2 W 4.21
?3 4 ( F,)*l)+417 d x (224)

for a wave propagating along . The elements of the wave are shown in Figure

7. The frozen-in condition (3.13) gives

_ Tt __pgox (4.22)

Operating on (4.22) by 9 /3t and using the continuity equation gives

2 b, ? b,
— = (cf+ VD) =0 (4.23)
dt2 ox?
where
. ap
Cf = ol Z cfl 2; and c?l' = xl: {4.24)
9p,
Thus, the wave propagates along % with the speed
. 2
V2, =cf. Vi (4.25)

The dispersion equation is

23



c2 - k2 (c2+ V) =0 (4.26)

Burlaga (1968) has presented evidence for a magneto acoustic wave in the
Pioneer 6 magnetometer data of Ness. This is shown in Figure 8 together with
Pioneer 6 plasma data from the MIT i)robe. One sees sinusoidal oscillations in
|B |, but none in B /B, as expected for a magneto ;a.coustic wave. The plasma
density and temperature should oscillate in phase with B. The density is given
in Figure 8 to the nearest integer, reflecting the accuracy; this-is not adequate
to show the small ogecillations that aré expected. The temperature measurements
suggest a maximum at the time of maximum compression, but they are not ac~
curate en-ough to establish this with certainty. Note that to resolve these waves
with a plasma probe it would be desirable to measure at least 2 spectra per
minute, and since An/n X AB/B = .1, the density should be measured with a

relative uncertainty appreciably less than 10%.

3. "Fast Waves' (G# 0, T# 0; v, =0). Inthis case both tensile and

compressive stresses are active, but there are no displacements along B. Let
% be along §v and take k and 5B in the % — z plane, (see Figure 9). The pro--

cedure of the preceding 2 sections gives the following equatlén

b 32b_ 32b
- (cf + V2 -v'2 20 . (4.27)
D t2 D x2
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and a similar equation for v, . The dispersion equation is

w? ~ (cf + V3 k2 -v42 k2 =0. (4.28)

Clearly, the mode is related to the Alfven wave and the magneto acoustic wave

discussed above.

If the compression is adiabatic with an adiabatic exponent = 2, then p a =

A, p? and cf =2 p1% P and (4.28) can be written

w? -~ a?k2 ~b2kZ =0 (4.29)
where
2= (B2, )/: . BBy 4,30
a (4WT B)/P=VE+ = (4.30)
and
2 2p ’
sz(ZB__..“'Zpl)A:Vi.]._'L (4'31)
T 2

Equation (4.29) is precisely the equation derived by Whang, (1971) for a guiding

center plasma.

Let the angle between k and B be . Then ki =k 2 gin2@and kf =k?cos @,

and the dispersion equation (4.28) has the form

@? ~ k2 [(c +VE) - (c? +V3 (1 - £)) cos26] =0 (£:32)
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This reduces to the dispersion equations derived above for Alfven wavés and
magneto sonic waves when & = 0 and » /2 (equations (4.20) and: (4.26)),

respectively.

Evidence for this type of wave was given by Whang and Ness.(1970). They point
out that the moon will generate such waves when the solar wind moves past it,
as a result of the different magnetic permeability of the moon and the solar
wind. The waves will form an eHiptical Mach cone with the long axis perpen-
dicular to the average field direction and thie short axis along B, as a result of
the asymmetry of the hodograph corresponding to (4.32). Crossingsiof the

cone were identified in the magnetic field-data from. Explorer'35, as described
by Whang and Nesgs (1970), and they obtained the Mach core cross-~section shown
in Tigure 10. It ig an ellipse whose ratio of major and miner axes ig in agree-
ment with the fast wave theory given above. Michel (1967) had earlier predicted
an elliptical Mach cone on the basis of a qualitative extension: and application of

ordinary, isotropic gas dynamics.

4, Coupling Between the Fast Wave and the Alfven wave. We have

shown that a "fast" wave can propagate with I?, §B and §v in the x-z plane.

This becomes an Alfven wave when k is along B and a magneto acoustic wave
when i is normal to 8. In addition, an Alfven wave can propagate along 12, with
§v and SB along ¥, normal to the x~y plane. Thus in general both types of WE;.VGS

can propogate simultaneously. Their hodographs are shown in Figure 11.
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In the linear approximation, the fast wave and the Alfven wave are uncoupled
and propagate independently.: The fast mode caus es oscillations in the intensity
of B. Both the fast mode and the Alfven mode cause fluctuations in the direction

of B ; in general, these polarization of these oscillators will be slliptical.

Burlaga found a wave in the Pioneer 6 data which has the characteristics just
described (Figure 12). Again, however, the observations were not complete

enough or accurate enough to verify the theory just presented.

The fast wave and Alfven wave in Figure 11 are uncoupled on the linear approxi-
mation. However, if the amplitudes of the oscillations are large, one must
consider the effect of higher order terms. If the term of second order in bj

is not discarded in the compressive term of the force equation (3.12), one gets

P2 b, 32b_ 3 2 (b2)
— — (G + V) -V, 2 = V3% Y
ot 3 x?2 oz2 3 x2

(4.33)

which reduces to (4.27) when the term in bg is small. Thus the fast wave, which
was confined to the x~z plane, can couple with the Alfven wave that has perturba-
tions along ¥, through the non-linear term on the RHS of (4.33). Kawashima
(1969) first noted this (but there are some min-or errors in his equation cor-
responding to {4.33)). He suggested that magneto acoustic waves are produced

by non-linear Alfven waves in this way in the solar wind.
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The power observed in the compressive waves is always lower than that in
Altven waves for frequencies in the range 1075 to 1072 Hz {e.g. Coleman, 1966)
which is consistent with Kawashima's theory. Clearly, the coupling should be
larger the larger the amplitude of the Alfven waves. Thus, the theory implies
that the proportion of compressive waves to be large when the amplitude of the
fluctuations is large. Kawashima used Nesé’ IMP 2 observations to show that‘

this is the case (Figure 13).

5. Firehose Instability, The dispersion equation for Alfven waves

(4.14) shows that waves grow with time (w is imaginary) when ¢ < 0., i.e.,

when

Z (pill - pi_l_)

B2 /(8 7)

(4.34)

<2

Parker (1957) was the first to suggest that this instability might occur in the
solar wind. He derived an equation which is the same as 4.34 withi=1, i.e.,

he considered protons only.

Kennell and Scarf (1968} pointed out that electrons should also be considered,
and they obtained (4.34) with i = 2, Keunnel and Scarf derived their result from

the Boltzman equation. They wrote (4.34) in the form

2-B,A,-B A <0 (4.35)
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where

ge=_ i (4.36)
B2/(8 m)
and
T _ T
At (4:37)
e

The growth rate for the firehose instability is characterized by - where

( Y )2= £l (4.38)

vV, k

Eviatar and Shultz (1970) found that the growth rate is so large in the solar wind

that one would not expect to find

®B/8mM™ ) (5 ~py) > 2.1,

in the solar wind, i.e., the firehose instability, would limit the thermal anisotropy.
This raises the question, Does the anisotropy ever get large enough in the solar
wind for the firehose instability to grow, or does some other mechanism destroy

the anisotropy first?

There is no unambiguous evidence for the existence of the firehose instability in
the solar wind at1AU. Scarfet. al. (1967) using average vaiues for the solar
wind parameters, concluded that (4.34) for protons is not satisfied, so the fire-
hose instability is not expecfed to develop. Kemnel and Scarf (1968} argued that

protons alone cannot cause ingtability. But they argue that since the field is
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disordered the electrons must be sufficiently hot and anisotropic that (4.34) is

satisfied (assuming that the firehose instability is the cause of the fluctuations).

The most recent report of measurements by the Los Alamos group (Hundhausen
et. al., 1970) gives T} /TF =1.9, T;vmge = 7.2 x 104 °K, and D erage =
7.7 em™3, The electron temperature seems to be essentially constant, T, ~
(1.5 + .,5) x 10° °K, as discussed in Section II, and the best measurements of
the electron anisotropy give .15 (T“~ - '1}_7/ T”' <.2. The average field is
typically ¥ 67¥. These numbers give 2 -8, X A, - 8 X A_=.8, 80 again one
concludes that the fkirehose is not normally operative unless ‘the electron ani-
sotropy is larger than the current measurements indicate. Omne factor has still

been left out — the a particles; but their anisotropy would have to be very large

to have a significant effect, since their density is relatively low.

Eviatar and Shultz (1970) used Vela data to compute £, - 5, fora single 5-
hour period. The results (Figure 14) show that (4.34) was not satisfied for that

period.

Burlaga et. al. (1969) considered the pogsibility that the instability might develop
in some regions but not in others. They identified very quiet and very disturbed
one hour intervals in the Explorer 84 magnetic field data (Figure 15) and com-
puted B* for each of the intervals using the piasma and magnetic field data from
that spacecrait. These intervals tended to be isolated, indicating that the dis-

turbances were highly localized. They found that 8* tended to be high for the
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disturbed intervals, but low for the quiet intervals, which is, of course, what’
(4.34) would imply. Assuming that ‘.1 £ (TI'I' - '];_' )74 T”" < .2, théy found that A"
+ KA~ £ 1.5, where K = T-/T*, so the instability condition (4.34), which can be
written 87 (A* + KA™) < 2 is satisfied only if 8 >1.3. Figure 15 shows that in fact
the largest percentage of very disturbed intervals did occur when £ >1.3. Thus,
there is evidence that necessary tonditions for the firehouse instability do occur
occasionally. However, there were yery disturbed conditions when ;3+ was less
than 1; in fact the most probable ,8+ for the disturbed intervals was .7. The
most probable value of 87 for the Explorer 34 data ( ,B;"IP = .3) is appreciably
less than that found by Neugebauer and Snyder (1967). The differences could
be due to a systematic error in the Explorer 34 density measurements; hut the
abgolute accuracy of dengity determination was estimated to be +20% (Ogilvie

et al. (1967), and this is consistent with other observations (Burlaga and

Ogilvie, 1970; Gilbert, Private Communications,)

Summarizing, the firehose instability probably does occasionally occur in iso~
lated intervals where 87 is large and possibly for most 'very disturbed intervals™,
but it does not seem to he the primary cause of the fluctuations that are

typically observed. Clearly, moremeasurements are needed.

Belcher and Davis (1971) reported a poor correlation between 8° and o
the square root of the 3-hour average of the 168.75 sec minute total variance

in field components. They considered this to be in conflict with the results of
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Burlaga et al. (1969). There is no conflict, however. 0gy 1s mot a good measure

of the type of high frequency fluctuations in the magnitude and direction of B

studied by Burlaga et al..

D. vy #0, v; # 0 (General MHD Dispersion Equation). We have been dis-

cussing various special cases of low frequency, long wavelength waves. In gen-
eral, all of the modes might exist and might be coupled. From isotropic mhd
wave theory (e.g., Jeffrey and Taniuti (1964)) it is well known that 3 modes would
then propagate: (1) the fast magneto acoustic mode, which reduces to the "fast"
magneto acoustic wave discussed above for propagation normal to B, (2) The
Alfven mode, and (3) the slow magneto acoustic mode, which reduces to the ion
acoustic mode for propagation along B. The dispersion equation for an anisotropis
medium is very complicated (It is given in Liist, 1959), but gives the same guali-
tative features as that for an isotropic medium. The surfaces of normal speeds
(hodographs) are shown in Figure 16. The fast magneto acoustic mode is the

one most analagous to the sound wave in gas dynamics, in the sense that it
propagates in all directions. Here, however, the propagation is anisotropic.

The Alfven mode cannot propagate normal to B but it does propagate in all other
directions, the speed being greatest and equal to the Alfven speed for propagation
along B . The slow magneto acoustic wave has characteristics of both the Alfven
wave and the sound wave; it does not propagate normal to B, but it does propa-

gate in all other directions, the speed being greatest for propagation along B.
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Figure 16 shows that 3 ho dographs must be distinguished, corresponding to
vV, < c,» va'< Cy and V A= Cy Although a distribution of Vp: / c, has not been
published, it is clear from the measure parameters that V; /c’is typically very
close -to 1. This is an important point which has not been discussed enough in
the literature, In principal, one can excite all 3 modes simultaneously by an

N
instantaneous point disturbance in the solar wind, assuming that the ion acoustic
wave propagates and is coupled to other modes. It is of interest to ask what is
the form of the 8 corresponding wave fronts. For the three cages correspond-
ing to the hodographs in Figure 16 the fronts at any instant are as shown in

Figure 17. At a later time the fast wave front is larger. The slow wave front

also enlarges with time, and it propagates along 5.

As discussed earlier, the moon can act as a source of waves which propagate
away from the mook while being convected by the solar wind. If the above theory
applies, these waves will form one Mach cone corresponding to the fast mode,
which is analogous to the aerodynamic Mach cone and equivalent to that pre-
dicted by Whang's model, and two Mach cones corresponding to the slow modes,
when V | # ¢, (WhenV, = c , there is just one Mach cone.) These can be
constructed from the Friedrichs diagram as illustrated in Figure 18. Under
fypical solar wind conditions near 1 AU it would be very difficult to observe the

slow Mach cones, and in fact they would not always exist.

There is only indirect evidence for the existénce of the slow mode on the solar
wind. This is the observation of slow shocks, discus séd in Section V,
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V. Discontinuities

The theory of discontinuities in a steady state, isotropic hydromagnetic fluid is
described in many texts (e.g. Jeffrey and Taniuti, 1964) and reviews (Colburn
and Sonett, 1966) but the theory for an anisotropic fluid has been developed only
recently in respounse to solar wind measurements. Lynn (1967) has presented the
theory for a single species plasma in the CGL approximation. A similar theory
for shocks was given by Abraham-Shrauner (1967). A less restrictive theory for
shocks was given by Chao (1970) and a similar theory including other types of
discontinuities was published by Hudson (1970). Neubauer (1970} has presented a
theory of shocks in an anisotropic plasma which parallels that of Chao and Hudson.

Our treatment will most resemble those of Chao and Hudson.

Let the discontinuity be a plane surface which moves with speed U .along iis
normal n relative to a fixed frame (the sun, say). Let the subscripts 1 and 2
denote the regions away from the sun and toward the sun, respectively. Let the
subscript t denote components along some direction parallel to the digcontinuity

surface.
Assuine a steady state and work in a frame moving with the discontinuity surface.

Then, applying Gauss® theorem to (3.1) shows that the mass flux normal to the

surface, G, is continuous across the surface,

LB (v - 0) =y (v, - O (51)
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Since V-B =0,

The frozen-field condition (3.13) implies that

Bn (vit - v2t) = Blt (vin _U) - BZt (v2n - U)

(5.2)

(5.3)

The momentum flux equation (3.12) gives 2 relations, one for the change in the

normal momentum flux

2 1

p (v, -2

(D 2)- 2]

another for the change in the transverse momentum flux

1 2

Using (5.3), this can be written

B B B?
!12 1t 2t _ n
ot ()= Gutimme

which with (5.1) gives

Blt A1 {(Vln - U)Q - VA%] = Bit Pa [(Vzn - U)z - V;\%]’

35

(5.4)

(5.5)

(5.6)

(5.7)



where

B2
Vl'2 - i
Ain 47 Py fl
and (5.8)
R2
vz - -

Ay 47 p, 2

are the Alfven speeds along the shock normal.

Finally, the energy equation (3.22) gives the following relation for the change in

the kinetic energy flux normal to the surface.

2 1

B2 B2
t n
:’:‘E‘FE Py +Z—?-T +B— k-(p‘k""'pk[")} (Vn—U)

2

2
P (-1

1 2
(5.9)-

“B_ B v, &/(4m) I:

where ¢ is given by (3.18).

Equations (5.1), (5.1), (5.3), (5.4), (5.5) and (5.9) are the basic jump equaticns.

There are 8 equations for the 9 variables Bsxsps P and p 0

Using (5.1) and (5.2), equations (5.3), (5.4), (5.5) and (5.9) can be written as

follows

=B, (v,) (5.10)
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which with (5.1) gives

6 2| =3 |; (5.11)
Py 1
) p 2 B2 1
2 1_ - = - — 12
0 (p) "Bf?(cw) +<Zpﬂ+8) (6-12)
. 1 1 2
2 (Bt §) 2
G(v,) | =B, |l—— (5.13)
4 g7
1 1
and
1
SEEN AR | D STl ) L ) PR
v
1 2

Two general classes of discontinuities can be distinguished:

{1) Stationary discontinuities (G = 0)

(2) Shocks (G # 0)

B. Stationary Discontinuities. Since by definition G = 0 for a stationary

discontinuity, v,, =v,, = U, which implies that the surface does not move rela-

2
tive to the plasma. There are two types of such discontinuities, corresponding

to B, =0 and B, # 0., These are called tangential discontinuities and contact

discontinuities, respectively.

1. Tangential Discontinuifies (G=0, B, = 0). There are several

necessary conditions for a tangential discentinuity:
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(a) Since G = 0, it is non-propagating, i.e., the speed of the dis;'

continuity surface relative to the solar wind in the direction of its normal is

eto.
(b) B, =0 implies that B, and B, are parallel to the discontinuity
surface (see Figure 19); hence the normal is

i =B, xB,/|B, x B, (5.15)

-

(¢) Since there is no change onv_, y, and y, are parallel to the

surface; hence
ﬁ:lev2/|v1xv2|- (5.16}

(d) The equation for the normatl momenturn flux (5.12j gives

2

(Zpkl . §B“2,}) =0, (5.17)

1
which says that the pressure perpendicular to the surface is the same on both
sides of the surface. Since Py =0, KT, s this may be written

2
= 0. (5.18)

g2
n, KT, «
(Z k ‘11 8 T")

1

The equé.tions for the transverse momentum flux and the energy flux, (5.13) and

(5.14) are identically satisfied.
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To pogitively identify a tangential discontinuity, one must show that all of the
above conditions are Satisfied, which requires simultaneous magnetic ﬁeldl data
(B (t)) and plasma data (n, T| , and v for protons, o's and electrons) and the ar-
rival times at 4 spacecraft (to get the speed and orientation). Such a definitive
measurement is still well beyond the scope of the observations, but there are
several somewhat less complete results that are congistent with these conditions
and leave liftle doubt about the existence of tangential discontinuities in the solar

wind.

Figure 20, from Burl'aga (1968), shows a region with at least 3 discontinuities
which were observed by the spacecraft Pioneer 6. The discontinuity surfaces
are moving past the spacecraft, nearly radially away from the sun with a speed
~400 km/$ec. They are seen as abrupt decreases in the magnetic field intensity
(from Ness' magnetometer experiment) and simultaneous increases in the proton
density (from the MIT plasma detector). The change in B occurs in < 30 sec,
implying a thickness £12,000 km = 10 w4 AU, assumingV =~ 460 km/sec, which is
indeed discontinuous on a scale of 1 AU. If the region in Figure 20 was iso~
thermal and ifn_ = an there, then the total pressure is constant throughout the

region if and only if n ~ B?, since

Sﬂ[zpki+82/(877{l =c¢n + 82 where c:K(TpJ_+aTg‘L+(1 +2a)T)

<

39



Figure 20 shows that in fact n is proportional to 2 for the observations be-
tween 0630 and 0730, Thus the data are consistent with a constant pressure

across each of the discontinuities, in agreement with (5.17).

Condition (5.15) can be tested only for discontinuities across which there is a
significant change in the direction of B. Burlaga (1969a) has introduced the
terms "directional discontinuity" for discontinuities across which thg field
direction* changes by > 30° in £ 30 sec. Figure 21 (from Ness et. al., 1966) shows
2 directional discontinuities, one seen at Pioneer 6, the other seen at Explorer

33.

Computing the orientation of the discontinuily surface from (5.15) and using the
measured solar wind speed 400 km/sec, Burlaga and Ness (1969) computed that
the discontinuity should have arrived at IMP 3 57.5 min after it was seen at
Pioneer 6. The observed transit time was 53 min. Thus, the observations are
congistent with the assumptions that B was parallel to the surface and that the
surface was convected with the solar wind speed, as required for a fangential

discontinuity.

Burlaga and Ness (1969) used simultaneous magnetic field measurements from
3 spacecraft (Explorers 33, 34, and 35) to identify 6 directional discontinuities
whose orientations determined from measured time delays and solar wind
speeds, are consistent with those computed from (5.15). These results are

shown in Figure 22. Consider panel A inthis figure. A discontinuity was
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observed first by the spacecraft at the point marked 1. Using the magnetic field
data from that spacecraft, the surface normal was computed assuming (5.15)
and the infersection of that surface with the ecliptic plane was computed and is
shown by the line passing through point 1. A few minutes later, the same dis~
continuity was seen at another spacecraft at the point marked 2. The surface
intersection was similarly computed using datd from the second ;pacecraft at
position 2. Minutes later it arrived at the spacecraft at point 3. Each

of the panels refers to a different discontinuity surface and has a

similar interpretation. I the surfaces are tangential discontinuities and if

they are plane, the lines through points 1, 2, and 3 on each panel should be
parallel. This is the case in A, D, E, and F, but in B and C the surfaces seem
to he appreciably curved on a scale of 50 Rp. Note that the order of arrival of -
the surfaces at the different S/C depends on the surface orientation computed
from (5.15). In every case, the arrival order is consistent with the assumption
that the surfaces are tangential discontinuities with orientations given by {5.15).
In this connection, D, E, and F are particularly noteworthy. Burlaga and Ness
(1969) have shown that the actual surface orientations determined from the delay
times and the measured solar wind speeds, are in very good agreement with the
theoretical orientations shown in .Figure 22. They also showed that (5.15) is

satisfied for these discontinuities. -

Equation 5.10 shows thaty e and y,, are arbitrary for a tangential discontinuity,

since G =0 and B_ = 0. (This does not consider the effect of instabilities which
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might arise). In particular, since v, =v 1

o iv“; # 1V, | implies that one may

have. w L £ » i~ Such changes in the bulk speed do occur at directional dis-
continuities (Burlaga, 1968). Burlaga (1969) and Siscoe et al. (1969) have found
discontinuities across which the bulk speed changed by 60 km/sec or more in

less than ~3 min.

Siscoe et al. {1969) pointed out that in addition fto conditions (5.15) to (5.18), a

tangential discontinuity must satisfy the condition

Ny,
tan ¢ = N vT = tan (,bp (5.19)
k

where the quantities ¥, Av and Av,  are as defined in Figure 23a. This simply
says that a unit volume element initially adjacent {o a tangential discontinuity
surface always moves parallel to this surface as the surface moves away from the
sun. If a discontinuity is tangential, ¢ can be computed from (5.15) using
measurements of B, and it can be computed independently from (5.19) using
measurements of v. Siscoe et al. (1969} did this for 12 discontinuities in the
Pioneer 6 data and found the results shown in Figure 23b. There is considerable
scatter because of the relatively large errors in measuring the flow direction;

in fact the errvor bars (not shown) are so large that only 1 point deviates signifi-
cantly from the line ¢ = lj}p . Sigcoe et al. concluded that the discontinuities were

tangential.
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We have been discussing discontinuities as if they have zero thickness, i.e. true
discontinuities in the mathematical sense. Physically, of course, the surface
has some structure. This has lead to some confugsion. TFigure 24 shows the
"thickness' distribution of "discontinuities' in the magnetic field, studied by
Siscoe et al, (1968). The "thickness' is here measured by the time for the sur-
face to pass the spacecraft, which is on the order of the actual thickness diVide(;i
by the solar wind speed. The shape of the distribution is very important, for it -
shows that these discontinuities are indeed a distinct class of thin structures.and
not simply the tail end of the distribution of fluctuations seen in space. Since the
directional discontinuities studied by Burlaga (1969a) has the same statistical
properties as those studied by Siscoe et al. (1968), they probably have the same
kind of thickness distribution. The discontinuities studied recently by Smith et al.,
(1970) and Turner and Siscoe (1971) have T > 300 sec, which puts them far to

the right of Figure 24 and may indicate that they are a different class of objects.

It is not clear whefher the structure of tangential discontinuity surfaces in the
golar wind can be analyzed within the framework of magnetohydrodynamics. In
any case, it has not yet been done. One expects the fluid theory to be applicable
on scales appreciably greater than the proton gyro radius, cc;rre»,Sponding to T=>
1 sec, which seems to be the case for most of the surfaces in Figure :24. Two
types of structures have been identified in the magnetic fieI.d:“' (1) a laminar cur-
rent sheet, in which 8 rotates more or less unifo"rmlif in the plané of the dis-

continuity surface as shown in Figure 25 (Siscoe et al. (1968), Burlaga and Ness
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(1969)) and (2) a "turbulent" structure, as shown in Figure 26 from Burlaga

(1969b). The study of such structures is still in an early stage.

Northrop and Birmingham (1970) studied the stability of discontinuity surfaces
of finite thickness. Using an MHD energy principal due to Grad and Rebhan

(1969), they gave an elegant proof that such surfaces are stable if v = = v, .

In addition to the structure of the current sheets associated with tangential dis-
continuities, illustrated in Figure 26, there is another type of structure which
Burlaga and Ness (1968) called D-sheets. Two particularly noteworthy examples
are shown in Figure 27, from Burlaga (1968). These are characterized by a dip
in the intensity of B over an interval of a few minutes associated with a discon-
tinuity in the direction of B. Several other examples are shown in Figure 28
from Burlaga and Ness (1968). The physical significance is not understood. If
the dip were caused by the annihilation of the antiparallel components of B, and
B,, then one expects the minimum field fo be related to the angle «between B,
and8,, by the relation B /B = cos w/2, if B, = Bz. Figure 29 (bottom)

from Burlaga (1968) shows that this is the case for the D-sheets discontinuities
in Figure 28 (top). It is not certain that the discontinuities with B ; =B, are
tangential. Figure 27 shows one D sheet associated with a large change in B
and n, which is almost certainty a tangential discontinuity; here too, B_,, is

congistent with the annihilation hypothesis.
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2. Contact discontinuity. In this case G = 0 but Bn £0. It
is convected, but (5.10) shows that in this case one must have v 1t =Vaes i.e.,
there can be no relative motions along the discontinuity surface. This is be-
cause B is frozen to the plasma; a shear when B, # 0 is impossible without
breaking linesofforce. In an isotropic plasma, conservation of transverse
momentum (5.13) requires that Byt =By So there is no change in B across a
contact discontinuity in an isotropic plasma— no change in the magnitude, no
change in direction (see Figure 292). In an anisotropic plasma, however, one can
have B;,# By, if&, #¢&, (see (5.13)). Thus, in an anisotropic plasma one can
have a change in the magnitude and direction of B across a contact discontinuity,

but here as in the isotropic plasma v, =v,,

The pressure balance (normal momentum flux) condition (5.12) is

2

=0 (5.20)

52 Bl
Zpkl. + ﬁ‘ ':3_2 Z(Pk" - pld,)
1
This has asimple geometrical interpretation. Let & be the angle between B and
n. Then the pressure normal to the surface is
P,=Py *P =P c0529+pL82 sin? & (5.21)
n 1, ¥ FL, Il L 8 ’

where

B
cos 6 =1L
B.
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Setting p_ . =p_, gives (5.20). Contact discoptinuities have not been observed
in the solar wind. It is widely believed that they will not be observed hecause

they would rapidly broaden info a smooth trangition.

C. Shocks

1. Imtroduction. A disconti'nuity is called a shock if G # 0. In aero-

dynamics there is basically just one kind of shock, and it correspond to the one
type of waye in an ordinary gas, the sound wave. Gas enters an aerodynamic
shock at a speed greater than the sound speed and leaves at a speed.less than
the sound speed. The energy is lost from the streaming goes into heating the
gas. Inmagneto-gas-dynamicsthere are 3 bagic wave modes, as discussed in
Section IV and there is a corresponding variety of shocks. More complicated

energy transfers are possible because of the presence of the magnetic sink.

We shall consider first the simple cases of shocks moving parallel to B or
perpendicular to B. Then we consider shocks more generally, shocks moving
in arbitrary directions with respect to B. Some gpecial types of shocks will be
discussed at the end of this gection, together with a classification scheme. A
detaziled analytical theory of hydromagnetic shocks can be found in.Jeffrey and

Taniuti (1964).

In principle, a shockin the solar wind can move either away from the sun or
toward it. Shocks moving away from the sun are called forward shocks, while

shocks moving toward the sun are called reverse shocks.
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Physically, there is no difference between a forward shock and a reverse shock,
but there is probably a difference in the origin of the forward and reverse shocks
that are observed in the solar wind. The origin of the observed reverse shocks,

described below, is still a mystery.

2. Parallel Shocks. A p;a.rallel shock is one whose normal is parallel
to B. (See Figure 30). Two waves can propagate along B, the acoustic wave
and the Alfven wave. So immediately the question arises, "with respect to which
of these modes is the shock supersonic ?" The answer is somewhat complicated.

We shall just present the results of Jeffrey and Taniuti (1964, p. 246).

If the sound speed is greater than the Alfven speed ahead of the shock, then the
sound speedis dominant and one has an ordinary aerodynamic shock with gas
entering faster than the sound speed ¢ and leaving at a speed less than cy. The
flow is super—-Alfvenic on both sides of the shock and the sound speed exceeds the

Alfven speed on both sides.

If the Alfven speed is larger than the sound speed ahead of the shock, there ar;a

3 possibilities. The obvious one, with gas entering super—Alfvenically and

leaving sub~Alfvenically probably does not occur in nature (Jeffrey and Taniuti
1964). Another possibility, with gas entering super:som'cally (and super-
Alfvenically) and leaving subsonically (but still super—Alfvenically), is allowed

and might be observed. Finally, gas might enter suilpersonically (but subalfvenically

and leave at a speed which ig either sub Alfvenic or subsonic.
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For parallel shocks, (5.10) implies that v = v, . There is no requirement
thatv, ,v, , andn be coplamar, The magnetic field drops out of the Rankine
Hugoniot eduations, which become identical o those for aerodynamic shocks,
except that they include both P and P, in the expression for internal energy,e .
These equations provide no insight concerning the possible change in anisotropy

(distribution of internal energy) across a paraliel shock.

There are no observations of parallel shocks in the solar wind. Such observa-

tions would be of special interest.

3. Perpendicular Shock. A shock is called a perpendicular shock if

the shock normal is perpendicular to B . Inthis case B_ = 0 and the magnetic
field is parallel to the shock surface on both sides of the shock, as shown in

Figure 31.

The only wave that propagates perpendicular to B is the magneto acoustic wave,
whose speed is V2 = V2 + ¢, The flow enters a perpendicular shock at 2 speed
greater than V,, aund leaves at a speed less than Vi Thus, this shock propagates

supermagnetoacoustically.

For a perpendicular shock, the mass flux and frozen field equations (5.11) give

B, B

-—1 = -—2’ (5'22)
P P,

which states that (2) the magnetic field direction does not change across the shock,
and (b), its intensity changes in the same ratio as the density, B, /B2 = p, /0y
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Equation 5.13 shows that there is no change in the transverse momentum flux
across a shock when B =0, 80 vy = vy . This implies that v, -v; =

~

(Y, = ¥, )fi,sothat 4 is paralleltoy, - v, for a perpendicular shock.
The normal momentum flux equation (5.4), gives
2

(e

1

1

p (v, -Uy? : (5.24)

2

i.e. the change in the normal momentum flux is balanced by a change in the
pressure. This is the same as for an ordinary gas dynamic shock; except that

here the magnetic field pressure adds to the particle pressure.

Egquation (5.9) shows that the change in the kinetic energy flux normal to the

surface is

2 1

9
gV
v -1
o (Y, =)

oo (Tra+ )]

which is likewise the familiar gas dynamic result with the addition of the mag-

(5.25)

b

netic pressure to the thermal pressure.

Note that the parallel pressure does not appear in the Rankine-Hugoniot equations.

4, Reverse Perpendicular Shock, As we have said, a reverse shock is

one which propagates toward the sun relative fo a frame moving with the plasma.
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S—‘ince the solar wind speed is usually higﬁer than the shock speeds, the shock
can actually move away from the sun while propagating toward the sun. In this
case, a spacecraft sees the "back,'" high entropy, side first and then the "front."”
This means that the .density, temperature, and magnetic field ilntensity should be
seen to decrease simultaneously as the shock is carried-past the spacecraft,

As always, the speed behind the shock is lower than that ahead of the shock, so
in the case of a reverse shock (vi1~Y) b, - V) since the subscript 1 refers
to the side away from the sun. Thus, v_, >v_, and an observer at a fixed

spacecraft would see the bulk speed increase.

While'a reverse shock looks different in the data in the sense just.discussed, it
satisfies the same equations as the forward shock (taking proper account of the

sign of U, of course).

A perpendicular shock was found in the solar wind by Ogilive and Burlaga (1969)
using Explorer 34 magnetic field and plasma data. It passed the spacecraft at
1732 UT on Aug. 29, 1967, As shown in Table III, the bulk speed, density,
temperature and magnetic field intensity all increased. simultaneously, but there
was no change on the direction of the magnéﬁc field. The shock surface moved
past 3 spacecraft, each carrying one of Ness' magnetometers. The transit times
were measured, and using these the orientation of thé shock.surface was com-
puted with the result shown in Figure 32. The shock normal determined in this

way is fi (.93, -.33, 1.5) in solar ecliptic coordinates i.e., & = 9°, ¢ =200°,
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Table III

1732 UT, Aug. 29, 1967 Shock

| ==

V (km/sec) n(em?) T(°K) B(%) 8. @
Before 418 2.6 6.5 x 10* 5.5 51° | 295°
After 452 3.7 12 x 10° 7.2 | 51° | 296
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This is essentially normal to the magnetic field, B, and B,, as required for a

perpendicular shock,

From the multi spacecraft measurements, the speed of the surface was found to
be U = (436 + 110) kim/sec. This compares favorably with-the &galqé obtained

from the mass flux conservation condition (5.1), viz U = 496 km/sec.

Equation (5.22), which-is a consequence of the frozen field condition, is
satisfied -since (a) the field direction did not change, and (b),the measured ratio

B,/n ¢ = 2.0 equals the ratio B, /n2 = 1.9 within the experimental.errors.

1
The change in fhe: momentum: flux, p (v - U)z,i , » Was 1.4 x 1010 dynes/cm3,

which is equal to the change in pressure

2
= 1.5 x 1071% dynes/cm?

B2
o2

1

(The pressure here was computed assuming that T, =T , =16 X 10° °K and

that the contribution of the a's. is negligible.) Thus (5.24) is satisfied.

Finally, the change in the kinetic energy flux given by the LHS of (5.25) was

consistent with the observed change in the RHS of (5.25) within the errors.

Burlaga (1970) identified a reverse perpendicular shock in the Explorer 34

plasma and magnetic field data of Ogilvie and Ness. The observations are
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Table IV

Sept. 28, 1967

V (km/sec) n (cm=3) T (°K) B(») e o
Before 540 10 4.5 x 10° 19 40° | 130°
After 585 5.5 2.6 x 10° 8 43° 125°
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shown in Figure 33 Where\ithe1decrease:ifr;n: T, and B,. and.the.increase in V
required for a reverse pez;pendicul_ai’~é_hgc§k a.re, clearly seen.. Table:IV shows

| the magnitude of these changes together with the -magjl_leti'cj ‘Iﬁéi.dfdireci‘;ions. The -
magnetic field direction did not change, within the :;tneasm:'ement’=u.nc.ei‘taintliésj '

(= = 5%, as required for a perpendicular shock (Equation (5.22)).

The  shock.surface movéd past 3 spacecraft, each carrying.onesof ‘Ness® mag-
netometers, just as the forward per.pendieula.? shock.discussed:in the previous
section. The shock normal was found to be A = (-.70, - . 69,,.18), i.e., Bn =10°,
¢ = 225°, This is-essentially normal to the magnetic field.(cos™® (4 - B) = 87,

‘ag requiredfor a-perpendicular shogk.

Using the multispacecraft-magnetometer measurements- of ﬁess and the conser-
vation of mass flux equation (5.1}, tﬁe ‘shock surface was *found-to -be
moving at a speed U = 270 km/sec. iin the! sunward divection. Since this
speed is less thaI} the component of the solar wind speed along-the mormal, the
shock was-carried away from the sun-despite its motion.towardthe!sun relative
to the moving plasma. The speed on the sun~ward side of the shock (i.e., ahead
of the shock) was Vou U‘= 141 km/.sec. This is greater than the magneto-

acoustic speed V|

g =90 km/sec. On the oppesite side it was (VN1 ~ ) =76 km

/sec which is less than the magpeto-acoustic speed ‘{“2 =110 km/sec. Thus the
normal speed relative the surface shock did decrease, as required for a shock

and the flow was supermagneto-acoustic ahead of the shock and submagneto-acoustic
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behind it. The component of v tangent-to the surface was found to be 414 km/sec
on side 1 and 416 km/sec -on side 2, consistent with the requirement that Vi, =
v,.+ The condition B,/n, =B, /n , from the frozen-field condition, is’

satisfied within the errors for this shock, for Table IV gives

B//n, =1.2%.2, and B,/n,=1.5%.1

The change in the momentum flux was pv? I? =8.6 x 10 Yergs/cm?2, This was'

balanced by a change in the pressure
P = ZP +£:8.0x 10719 ergs/cm?
L 8n =
(computed as for the forward perpendicular shock in the preceding section), as

reqguired by (5.24).)

Similarly the change in the normal kinetic energy flux, 7.1 X 103 (cm/sec)® was
found te agree with the change in the RHS of (5.25), 5.5 X 1013(cm/ sec)?, within

the experimental errors.
Thus, all of the conditions for a reversge perpendicular shock were satisfied.

5. Fast Shoeck. Two kinds of shocks can propagate at an angle with respect to the
magnetic field. These correspond to the 2 kinds of magneto acoustic wave, the

fast wave and the slow wave. Gas enters the fast shock at a speed greater than
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the speed of the fast wave in the direction of the shock normal and leaves at a
speed less than thig. Thus, the flow is superfast zhead of the fast shock and
subfaé:t behind it, but the flow is super-Alfvenic on both sides of the shock

:
(Jeffrey and Taniuti, 1964). The fast shock is the most frequently observed type

of shock in the solar wind, perhaps because of the similarity of the fast magneto-

acoustic wave with the acoustic wave in aerodynamics.

Since the fast shock normal is not parallel to B, B, and B, are both non-zero

(See Figure 34) Equation shows that B is parallel to B, at a fast shock; hence

t

B.,B8, andd are coplanar. Equation 5.10 shows that Vi T vy 1S paraliel fo

1772

B, - B, , and isthusparallelto B, and B,, and coplanar withfi . Then

vy = Vg andﬁ-are also coplanar. Summarizing,i,B, ,B, ,andv, -v,  are
coialanar. This was demonstrated for an anisotropic plasma by Chao (1970) and

independently by Hudson (1970) and Neubauer (1970).

The shock normal can be calculated from 8, and'B, as follows. Since B, B,
and i are coplanar, 'Bi X B, is in the plane of the shock, It was shown that
B, - B, is also in the shock plane. Thus i is normal to both B X B, and

B, - By»

A=(B,-B)x ®B xB)/| @ ~By) x @ x Bl (5.26)

Note that the formula does not give a normal for parallel or perpendicular

shocks. It can be used to determine fi for fast shocks only if the angle o between
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T3'1 and-é-g, is larger than the uncertainties in B; andB, . Sinct? w is generally less
than 15° for shocks in the solar wind and since the uncertainties— in B, and B,

are commonly~ 5° or more, the errors in r’i determined this way may be verslf
large, sometimes so large that n is meaningless. Clearly, more accurate normals
can be obtained by reducing the mceﬁainties in B; and8, . Lepping and
Argentiero (1971) accomplished this by developing a 'least-squares' technique
which gives the best estimate values of B, and 8, by requiring that the obser-
vations of v, , v,, B, ,B,, o, andp, satisfy (5.1}, (5.10), (5.13) with £ =1 and

(B ] ‘1" = 0. As an example, consider the shock seen by Ness' (Pioneer 7) mag-
netometer on Aug. 29, 1866, Using mean values of B in (5.26) gives an error

cone for A of 25°, The Lepping-Argentiero method gives anberror cone of only

6°. (The error cone is here defined such that there is a 95% confidence that

the normal is within it.} Chao (1970) introduced another method for obtaining

best estimates of B, an iterative trial and error procedure, which is simpler than
the Lepping-Argentierc method, but does not always give as much accuracy., The
accurate determination of shock normals is essential for studies of shock geometry an

and the interactions of shoeck with -discontinuities.

Other methods for determining A can be used for shocks that are identified at
2 or more spacecraft, if one can assume that the shock surface is plane over
distances equal to the spacecraft separations. Sonett et al. (1964) used such a
method to determine A for the shock on Oct. 7, 1962. Chao (1970) gives the

formula @i = [B, x (v, ~v, ) x U/|[8, x (v, -v, )]'x U | whereU =R /T -
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(Pyvy =~ Pavy M (Py-p ), Rand T being the vector displacement and time delay
be'tween the spacecraft. Ogilvie and Burlaga (1969, erratum, 1970) introduced a
method for calcul‘ating n using simultaneocus measurements from 3 spacecrait,
the four parameters n,U were determined from the 3 arrival times and the

condition that B, - B1 must lie in the shock plane.

Greenstadt et al. (1970) used onset times from 3 spacecraft and certain limits on
the shock speed to obtain limits on i for the 7 July 1966 shock. These limits
were narrowed using the time of the associated sudden commencement. Their
basic result, that the shock normal pointed 65° to 70° below the ecliptic, is
surprising, It gshould be noted that the 3 spacecrafl which they used were all
close to the ecliptic plane, so the most important component of i , n, _, was the
least accurately determined. If one uses the intercept of shock surface with the
ecliptic (’f‘ = (.276, .961, 0)) which was determined by Greenstadt et al. (which

is quite accurately determined by their method since the spacecrait were widely
separated in the ecliptic plane) and if one uses the value B - B, =(2.0, 6.4, 4.4)

x

which they give, then the method of Ogilive and Burlaga (1969) gives n =

i

(8, -8, ) |T x (8, -8,) [ = (.96 ~ .275, - .04), which implies an inclination
e =- 40°. This smaller value of ¢ (i.e., shock normal closer to the ecliptic

plane) is more consisf;ent 'W".:lth other values that have been published (Chao, 1970,
Ogilvie and Burlaga; 1969), and agrees closely with the value & = - 37° obtained

from (5.26) by Greenstadt et al.
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Another method of determining shock normals was given by Burlaga (1970) who

used onset times from 3 spacecraft, the measured solar wind speed, and (5.1) to
calculate i1 and U by means of an iteration scheme. In his equations (13} and (14),

tan @ should be replaced by tan & sec ¢.
Given the shock orientation and a complete set of measurements, one can easily

determine whether the momentum flux and energy flux equations are satisfied.
However, in practice one cannot measure all of the quantities in t};;asé.ca:cjﬁa:
tions. The magnetic field is known more precigely than the plasma parameters,
so it is convenient to replace these equations by expressions for the junr}ps ng'/ 0y,
Tua/Tyys Ty o/ T, as functions of the magnetic field parameters and the upstream
Alfven Mach number. Using frozen-field conditions (5.3}, the transverse
momentum flux equation (5.5) can be written

ﬁ -(2-&) M2 €& J_,% (5.27)

p2 ,¢'1 B2 t 2t

This is equivalentto (5.6). Chao (1970) has used a form of this equation fo study
the variation of n,/n, versus £, for various values of the other parameters.
When £, = &£, =1 (5.27) reduces to an equgtion derived by Wilkerson (1969).
For a gas consisting of protons and electrons the normal momentum flux

equation (b.4) can be written
Tf, + T, n n B2 r§ 5
=201 (1-L}s 82 2,c 22 (5.28)
T+ +T+ _n B 0 —n + 11 _..‘w‘+' 1_
L1 7 T2 2 - B? £
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where
N Py (Vln-_ Uy?
o k (Tfl + "!‘Ii)

I =

EH

and 511 - - .
87rn1 k (T_]_1 +TJ.1)
B &

T+ -
4ay e (Tf, + T

~

This also reduces to an equation derived by Wilkerson (1969) when & = &, = 1.

Now let ug turn briefly to the observations of fast shocks. Numerous fast for-
ward shocks have been identified in the solar wind, the first by Sonett et al,
(1964). A list of fast shocks and the corresponding references may be found in

Hundhausen (1970), We shall give just one example, the shock of Aug. 29, 1966.

Plasma data from the MIT probe on Pioneer 7 and simultaneous magnetic field
from Ness' magnetometer are summarized in Figure 35 from Chao (1970) to-
gether with Chao's 'best fit" to the Rankine-Hugoniot equations withd, =¢,.
Tabie IV gives the somewhat better ''best fit" values of Lepping and Argenterio
(1970). Clearly, the R-H equations are approximately satisfied. Lepping and
Argentiero, using the method described above, found that the shock norma‘.l was
¢ =197°, ¢ =19°, within an error cone of 6°. Using this value for A and the
time 48.5 min that it took for the shock to move from Explorer 33 to Pioneer 7,
which were separated by the vector R = (1.29, .59, .16) X 10°km/see, (See
Figure 36). The shock speed was found to be 471 km/sec. This compares well
with the value 467 km/sec obtained by Lepping and Argentiero from the Rankine

Hugoniot equations. 50



The observation 6f a reverse fast shock was recently reported by Chao and
Binsack (1971}, The earth's bow shock is a stationary reverse fast shock which
propagates toward the sun at a speed just equal to the solar wind speed. It has
been extensively studied,‘ and the results are summarized in recent reviews by

Spreiter and Alksne (1969) and by Wolfe and Intriligator (1970).

n, = n, shocks. The above discussion assumes that n, # n, for the fast shocks.

Formally, one can set n, = n, and still have v # 0. In this case, Vin = Von e
Nowif_VA'1 #V,,, then (5.7) shows that B, and B, are colinear, as for a fast
shock. Solving (5.7) for vV, ~ U gives

12 £
VA1 B1t - VAz th

Blt - th

(v (5.29)

2 _
ln"U) -

Introducing the definition of V , and &, gives

) ~ 172
{Bn (B, -B,,)BIB2 + 47B,; (Pyy -py,) B ~47B B (py, “piu)}(,rj_gg)

o =2
a7 p (Bn - BQt) 131 Bg

(Vln - U) =

Clearly, B, # 8, for these discontinuities.

Shocks of this sort were prédicted by Ivanov (1970) who- called them "rotational
discontinuities' because in the limit of zero anisotropy the shock speed goes to
V, . This name is somewhat misleading, however, since an essential property

is the colinearity of B,, and B,, , which makes it more like a fast shock than

61



a rotational discontinuity, (Ordinary rotational discontinuities derived their name
Irom the characteristic that B, rotates across the plane of the discontinuity so

that B,, and Bl't_are generally not parallel.) It is true that

for both Ivanov's discontinuities and Alfven shocks, but this follows directly
from (5.5) and the assumption that o, = 0, . Since B 1t and B ¢ 2T€ colinear, the
coplanarity theorem applies to n, =n, discontinuities (but not to Alfven

1 2

shocks), and the normal is given by (5.26).

Ivanov (1970) suggested that 10 out of 11 of the large velocity discontinuities

However, additional data presented

in Burlaga (1969b) are shocks with n ,=1n,.
: S

by :éurlaga (1971) show that this cannot be correct, gince in the cases where
the orientation of the surfaces can be determined directly, it is not that which
is predicted by Ivanov. Further evidence in Burlaga and Chao (1971) gshows that
discontinuous changes J':n B are accompanied by density changes at least 95% of

the time, which indicates thatn, =n, shocks are seldom, if ever, present.

6. Slow Shocks. The slow shock propagates at an angle with respect

to B (see Figure 37) and corresponds fo the slow magneto-acoustic wave mode.
Gas enters at a superslow speed and leaves at a subslow speed. The flow is
sub-alfvenic on both sides of the shock. An important and distinctive character-

istic of a slow shock is that the magnetic field intensity is lower behind the shock
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than ahead of if; magnetic energy is lost, presumably by conversion to thermal
energy or possibly to wave energy. The fractional change in B, - [Bt]/ B1 , is

a measure of the shock strength.

The Rankine-Hugoniot equations for slow shocks are essentially the same as for

fast shocks.

Slow shocks were first identified in the solar wind by Chao and Olbert (1970) us—
ing Mariner 5 plasma and magnetic field data. The observations of the 2 slow
shocks discussed by Chao and Olbert are shown in Figure 38. It is clear that
these slow shocks are not as thin as fast shocks and the fluctuations near these
slow shocks are larger than is usually observed at fast shocks. Nevertheless,
the signature of each of these 2 discontinuities is clearly that of 2 slow shock
(an increase in n, v and T and a decrease in B). The dashed lines in Figure 38
are "best-fits" to the Rankine-Hugoniot equations, obtained by the trial and
error procedure of Chao (1970). These are not unique fits, but they do show
that there is 2 solution of the Rankine -Hugoniot equations for an isotropic
plasma which is consistent with the observations. The condition that the flow
must he subalivenic on both sides of a slow shock was satisfied for the 2
shocks in Chao and Olbert (1970). The condition that flow be superslow ahead
and subslow behind the shocks was not verified directly because the electron
temperature was not known; however, using the value of Y low determined by

their fit to the Rankine-Hugoniot equations, Chao and Olbert found M, ., =15

W
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before and .7 after the shock on July20,1967,andM_, = 1.8 before and .6

after the shock on August 30, 1967,

Another slow shock was identified in Pioneer 6 data by Burlaga and Chao (1971).
This is shown in Figure 39 together with fits to the R-H equations obtained by
Chao's method. The speed normal (on RTN coordinates) and Mach numbers for
this shock are shown in Table V together with the same parameters for the

shocks In Chac and Olbert (1970).

A reverse slow shock was also identified in the Pioneer 6 data by Burlaga and
Chao (1970). The data are shown in Figure 40 together with a fit to the Rankine
Hugoniot equations using the method of Chao. The speed, orientation and Mach
numbers for this sho.ck, which occurred at 0901 UT on Jan. 19, 1966, are shown
in Table V. There was only a small drop in the flow speed across the shock,
from 29 km/sec to 23 km/sec, but there was a significant drop in the magnetic
field intensity, from 5.2y to 4.2y, The loss of magnetic energy is comparable to

the loss in flow energy.

The existence of slow shocks in the solar wind ig strong indirect evidence for
the existence of the slow magneto-acoustic wave and the ion-acoustic wave in the

solar wind.

6. Aliven Shock. Strictly speaking there is no Alfven shock correspond-

ing to the Alfven wave in the same sense that fast and slow shock correspond to
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Table 5

Slow Shocks

Forward Reverse
Date July 20, 1967 Jan, 20, 1966

Aug. 30, 1967 Jan. 19, 1966
8 (.38, -.80, .47) | (.01, -.09, -.99) | (.75, .30, .60) | (.85, .01, .54)
V. (km/sec) 130 2 323 " a51
M, | 0.9 0.9 0.9 0.9
M, , 0.7 0.6 0.8 0.5
M, 1.5 1.8 1.3 1.2
M, 0.7 0.6 0.8 0.8

fast and slow magneto acoustic wave. This point is clear from our earlier dis-
cussion of parallel shocks. It can probably be traced to the fact that Alfven
waves are not compressive. There is, how:aver, another shock (G # 0) which is
unique to magnetohydrodynamics; it is called an Alfven shock. This is illus-
trated in Figure 41. The flow is alfvenic on both sides of this shock (M4, =

M Az = 1), so the discontinuity propagates at the Alfven speed, essentially like a
kink in the magnetic field. For an Alfven shock B_ # 0, and (5.7) shows that

B,, andB,, need not be parallel (see Figure 41). In fact, the Alfven shock is

it
often called a rotational discontinuity because B,, is rotated in the shock sur-
face with respect to B,, . Clearly, B, ,8, and f are not coplanar, in distinction

to the fast and slow shocks, In this case, B, x B, =8 x (8, - B, )+8B X

B, isnotin the shock surface, so the Alfven shock normal is not given by (5 26),
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Equation (5.13) shows that the velocity change and magnetic field change are re-

lated by
B. & B, &
¥ -¥, =T ~1 51 2 %2 (5.31)
VAT p AT p,
Since B2

2 = 2 v-U 2 = 2 V'Z = = '
G* = p* ( )= PtV oy ¢
the normal momentum flux equation (5.12) gives

2

[Zpu + 88%] = 0 (5.32)

I

which is the same as the condition derived for a tangential disoontinuity.‘ The

energy flux equation (5.14) becomes
2
ot |:e + (P +P)/2 +8Y8 ﬂr] =0 (5.33)
1

If the anisotropy does not change across an Alfven shock, &, = &,, then the con-
servation of mass flux (5.1) implies that ¢, =p,. Then (5.32) and (5.38) give

€; = €, which implies that p, = p,. Putting this into (5.32) gives B, =8,.

Thus, if & =¢,, then B, =8, and p = p,. However, if gl#gg,al # B, this

important fact was first noted by Hudson (1970).

Evidence for Alfven shocks was found by Belcher and Davis (1971) in the
Mariner 5 plasma data of Bridge, Lazarus, and Snyder and the magnetic

field data of Coleman, Jones and Smith. This is shown in Figure 42,
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vhere it is seen that (5.31) with & = £, =1 ig satisfied for at least 2 discon-
inuities. There was no appreciable change in n, as required for an Alfven
thock with 51 = 52. No temperature measurements were given, but presumahbly
ZT1= 2 T,. It was found that B1 =8B, but this result is not independent of an

ssumption which was made to obtain the spacecraft field.

\lfven shocks may be pictured as propagating "kinks' in the interplanetary
nagnetic field. Parker (1963) was the first to suggest that they are present
mnd indicated that they might be important as cosmic ray scattering centers.
Juenbyet al. (1970) have given this idea some experimental support. No

neasurement of the speed of an Alfren shock has been made.

Classification of Shocks. Here we simply note how the types of shocks

liscussed above can be viewed as different solutions of (5.7), which can be

vritten

Bie oy Vii(L-MD) =8, p, V;2 (1 - M2 (5.34)

Parallel shock: B, =B, =0
Perpendicular shock: VA% =V,2=0
Alfven ghock: M, =1; M., =

Fast ShOC].{:M;AI > 1 Mfo.z > 1

(nl = n, shock, pl = pz)

I . ]
Slow shock: Mm <1; MAz <1
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Other solutions are formally possible: M, = 1, MAz # 1 (switech~off shock).
M,, £ 1, MA'2 =1 {switch-on shock); Mil > 1, MA'2 <LiM,, <1, M/, >I1
|

But these are not "evolutionary", and they are not expected to be observed in

the solar wind.

VI. Summary and Discussions of Problems for Future Study

We have considered the applicability of hydromagnetic theory to the study of the
microstructure of the solar wind. In particular, we bave presented the theory of
hydromagnetic waves and discontinuities which is appropriate for the solar-

wind, and we have reviewed the experimental evidence for the various waves,

discontinuities and some of the instabilities which are predicted by this theory.

Nearly all of the discontinuities given by the theory have been shown to exist in
the solar wind. ‘These include tangential discontinuities, forward and reverse
fast and slow shocks, perpendicular shocks, and Alfven shocks. Parallel shocks
have .not been found; their existence would be of special interest, since it would
be clear evidence for the existence of a longitudinal wave mode and would show
in the simplest form the way that the anisotropy changes across a shock. Con-
tact discontinuities have also not been found; their discovery would tell us some-
thing about the diffusion of particles along B. The origin of all types of discon-
tinuities (except some of the fast shocks, which are caused by solar-flares) is
one of the oufstanding problems. The mutual interaction of discontinuities and
the intersections of discontinﬁities is justbegimning to he studied. The siructure
of discontinuities is an important subject which can only be studied by multiple
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spacecraft obgservations with high time resolution instruments; it is not clear

to what extent this problem can be treated by the MHD approximation.

The study of waves is in a somewhat less satisfactory state. Alfven waves have

been identified with some certainty, but their propagation speed and the dispersion

relation have not been measured. It is not clear whether ox not an acoustic wave
c¢an propagate alongr% . The existence of slow shocks in the solar wind and the
theory of ion acoustic waves in a collisionless plasma indicate that acoustic
waves do exist in the solar wind, but they have not been measured directly and
there are theories which suggest that particle motions parallelto B are not
strongly coupled, in which case acoustic waves could not propagate. Sinuscidal,
compressional oscillations have been observed, which may be magneto-acoustic
waves, but more precise density and velocity measurements will be needed to
positively identify such waves. Evidence for the fast magneto-acoustic mode,
propagating anisotropically as predieted by MHD and particle orbit theory, has
been found in the lunar Mach cone, However, it has not been established that
the corresponding slow mode can propagate. Future studies of flow past some
of the outer planets will be especially significant in this regard if the solar wind
becomes transonic or subsonic there and retains its characteristics as a hydro-
magnetic fluid. The firehose instability has often been discussed in reference
to the solar wind, but its existence has not been firmly established. It is clear,
however, that the instability is not as universal as some authors have suggested.

More work needs to be done in this area.
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The experimental results which we have reviewed show without doubt that
hydremagnetic theory is applicable to the solar wind. Many of the consequences
of this theory remain to be worked out. Nonlinear theories of waves, ingtabilities,

and .interaction of discontinuities and waves are particularly needed. One would

also hope for future developments and solar wind applications of the MHD theory
of turbulence, boundary layers, and flows past obstacles. Experimentally, the
need ig for higher time resolution, greater precision and simultanecus measure-

ments of E and the digtribution functions of protons, a's and electrons from at

least 2 space probes.
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frequencies, and lengths. Some characteristic features seen on the
different scales are shown. E is the energy of a proton whose gyro
radius is the scale length in a 5 7 field.
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Figure 2. The 3 basic waves in a compressible, hydromagnetic fluid.
Top: longitudinal, acoustic wave. Middle: magnete acoustic wave.
Bottom: Alfven wave.
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Figure 18. Construction of Mach-cones, There
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discontinuitres as shown by the 2 cases in this Figure.
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Figure 28. Annihilation ot D sheets. The annihilation
hypothesis implies that Bmin/B = cos (/2) where wis
the change in the field direction. This seems to be the
case for the D sheets in the top of this figure.
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Figure 30. Parallel shock.
E is paraliel to n.
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Figure. 31. Perpendicular ishiock.
B is perpendicular-torm.
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Figure 32. Observation of a perpendicular shock. The shock orientation and speed
shown here were computed from the arrival times atthe 3 spacecraft which are shown.
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Figure 33. Observaiion of a reverse perpendicular shock. Note the
signature and the change in the pressure across the shock.

103



Figure 34. Fast Shock, A special

case-as shown for simplicity.
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Figure 35. Observations of 2 fast shocks: The-solid horizontal segments are
are averages, the dashed segments are Chao’s “best-fit" values.
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Figure 38. Observations of 2 siow shocks. Observed (solid lines) and
calculated valves (dashed lines) are in good agreement.
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FORWARD SLOW SHOCK
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Figure 39. Observations of a forward slow shock.
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Figure 40. QObservations of a reverse slow shock.



ALFVEN SHOCK
ROTATIONAL DISCONTINUITY
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Figure 42, Observations of Alfven shocks.
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