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HYDROMAGNETIC WAVES AND DISCONTINUITIES
 

IN THE SOLAR WIND
 

I. Introduction 

Studies of the interplanetary medium have produced results of astrophysical and 

geophysical significance. During the past ten years it has also become possible 

to treat the interplanetary medium as a laboratory sample of a cosmic plasma. 

One of the major results of these experimental investigations is the demonstra­

tion that hydromagnetic theory is applicable to this tenuous plasma. Of course, 

fluid processes represent only a subset of the great wealth of phenomena occurr­

ing-and one must remember that the applicability of hydromagnetic theory is 

limited. Moreover, these limitations are presently the subject of great interest, 

and the transport parameters remain to be determined by the development of an 

appropriate kinetic theory. But the applicability of hydromagnetic theory to the 

solar wind is very extensive nevertheless. While the current trend in the liter­

ature emphasizes the limitations of the fluid theory, this review emphasizes its 

positive results. 

Various modifications of the hydromagnetic theory for a single species fluid 

having an isotropic pressure have been made for specific solar wind problems. 

We shall develop a general form of hydromagnetic theory appropriate for the 

solar wind, and we shall show how the various special theoretical results can 
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be unified and systematically derived from this general formulation. We shall 

also show how solar wind plasma and magnetic field observations support and 

can-be, organized by this theory. The emphasis is thus on the basic theoretical 

and experimental resultsand relations between them. For this-reason,, complex, 

non-reproducible phenomena and descriptive results very specific to-the solar 

wind are not discussed. Likewise, theoretical work which has no present con­

nection with observations is not reviewed. 

I. Summary of Solar Wind Properties.
 

Since there exist gQod recent reviews of the, observation material- (,Axford;
 

1968; Hundhausen, 1968, 1970; Ogilvie, 1970; Scarf, 1970; Vasyliunas, 1971) we
 

shall not go into great detail in the description of specific experiments and their
 

results, The aim of this section is to provide the reader with a.condensed, sum-.
 

mary of those properties presently established together with-the necessary
 

refdrences- to the papers which give the detailed information notpresented
 

here.
 

An exhaustive review of experimental methods, drawing attention to the 4im­

portant conversion of engineering quantities (count rates, currents, etc.) to 

physical quantities (temperature, densities, etc.) characteristic ofthe particle 

distribution functions has been published by Vasyliunas (1971). As.he points out, 

it 4§k at ipaffies apgfififiat§ M~ t-ii &tEFflfB*Y8F A!&pF8&pfiti a! Mes 



present in various parts of velocity and configuration space. The results, 

though always an approximation, represent the essential features of f(r , v , t), 

defined such that fh r dv is the probability of finding a particle in d r dv at 

time t. 

In the fluid description of the plasma, it is considered as a conducting fluid, 

whose motion and properties (for example transport properties) are modified 

by the presence of electric and magnetic fields. The state of this fluid at a 

given time is specified by the parameters, density, bulk speed etc. The evalu­

ation of these quantities in terms of the distribution function is covered in many 

textbooks (for example Boyd and Sanderson, 1969), where it is shown that 

n (r, t) f (r, v, t) (2.1)v dv 

u (r, t) =Iv f dv (2.2) 

P 
T(r," t) = 3nlc (2.3) 

where P is the pressure tensor, defined in terms of the second velocity moment 

of f. 

We now discuss the observed properties of the plasma particles in terms of 

these quantities. For this purpose it is important to introduce the idea of scales 
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of length (or time). The idea of "macroscale," "mesoscale" and "microdcale," 

introduced by Burlaga and Ness (1968) and discussed further by Burlaga (1969) 

has been successfully used to classify and interpret data, a length being con­

vertible to the corresponding time by dividing by a representqtive bulk speed. 

The mesoscale deals with lengths of . 1AU and the microscale with lengths of 

$<0.01AU respectively (see Figure 1). It is clear that mesoscale changes in the 

fluid parameters are indicative of chanages in the flow field on a large scale. 

Microscale changes reflect the passage past a given observatory of waves, 

discontinuities or rapid changes. Examples of such effects wilU be discussed 

later at length. 

Observations of fluid quantities on the macxoscale show that while there is 

considerable variability, the bulk speed is seldom below 300 km sec-I and the 

low speeds are between 300 and 350 km sec - 1. At these times the temperature 

is about 3 X 104 'K, so the flow is supersonic, with Mach, nunber of 

order ten. For these conditions, referred to as the "quiet solar wind" and 

usually used to compare with theoretical predictions at 1AU, the density is = 8 

cm-3 . At other heliocentric distances, between say 0.25 AU and 5-10 AU, the 

flow speed is predicted to remain closely constant, the density decreases as 

I/r2,and the temperature decreases as r increases at a rate whose details de­

pend upon the heat conductivity of the plasma. It is expected to be somewhat 

slower than the adiabatic rate. Relatively little observational material 

has been presented about conditions at heliocentric distances other than 1 AU. 
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The proton temperature is anisotropic about the direction of the interplanetary 

magnetic field, T, /T being 2:1, which is less than would be expected -fromthe 

Coulomb collision length in the medium alone. 

The electron density is such as to preserve charge neutrality, and electrons 

convected at the same bulk speed as the protons. The measured electron 

temperature is essentially constant at a value of 1 to 1.5 x 1050K, with an aMi­

sotropy about the field direction of < 1.2. This means that the electron distribu­

tion function is quasi-stationary in time, and that the flow of the electron gas is 

subsonic, since the electron thermal speed is several thousand km/sec. 

At the present time the density, temperature and its anisotropy, the bulk speed 

and heat flux have all been established for both protons and electrons at IAU. 

These values for the quiet solar wind as defined above are given in Table J. The 

values of some derived quantities are also given. 

The value of ---nk(T + T )/(B 2 /87), in the solar wind at IAU is typically close 

to unity. Other species of particles exist in the solar wind. Extensive observations 

show a highly variable admixture of helium. If one disregards the short periods when 

the proportion of helium to hydrogen exceeds 10%, which seem to be associated 

with solar activity, we see that one can generally neglect the presence of this 

second species. The ratio of the helium thermal energy density to that of the 
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Table I
 

Observed and Calculated Properties in the Quiet Solar Wind
 

Observed
 

Flow speed 	 320 km sec­

8 cm -

Proton and Electron density 	 3 

Proton Temperature 4 X 10 4 OK 

Proton Thermal Anisotropy Ratio 1.9 

Electron Temperature 1-1.5 x 105 OK 

Electron Thermal Anisotropy Ratio 1.1 

Magnetic Field 5-/ 

Proportion of Helium (n,/np) 0.05 
- 2 - I

Heat Conduction Flux (total) 	 0.01 erg cm sec 

Calculated 

- 2 -Proton flux 2 x 108 cm sec 

Kinetic Energy Flux 0.22 erg cm - 2 see-' 

Kinetic Energy density 7 x 10-10 erg cm - 3 

Proton Thermal Energy Density 6 x 10-11 erg cm - 3 

Electron Thermal Energy Density 1.5 x 10-10 erg cna-3 

Magnetic Field Energy Density 10 -10 erg cm- 3 

B -0.3 

B0 -1.0 

Variability at I AU 

Flow Speed 	 275-800 km/sec 

- 1.0 to - 50 cm - 3
Density 

Proton Temperature < 3 X 10 4 to 5 X i0 S "K 

Proton Thermal Anisotropy Ratio I to 3.0 

Electron Temperature 1 to 2 Ox 10 °K 

Proportion of He (na/np) 0.01 to 0.20 

Helium/Hydrogen Bulk Speeds < 5 0 
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hydrogen is 0.2; that of the two kinetic energy fluxes is:0;2,;but since the bulk 

speeds seem always to be equal within the accuracy of observation (a few per­

cent) the principal effect of the helium is to increase the fluidparticle density 

and pressure. The possible effects of the admixture of a second species on the 

stability of the plasma seem not to be important in the fluid approximation, 

(Fredericks and Scarf, 1965). -The other species recently detected in the solar 

wind at quiet times are present in such small amounts that their effect is prob­

ably negligible. 

(Bame et. al., 1970). We are dealing with a multi-component, anisotropic, coll­

sionless plasma, with supersonic protons and subsonic electrons, which has 86 1. 

III. Basic Equations 

A. Discussion. As shown above, the geheral equations for fluid motions in 

the solar wind must include the magnetic field, the particle anisotiopies; mlid the 

different species. There are 5 transport equations (conservation of mass (1), 

momentum (3), and energy (1)) for each species and those are coupled with one 

another and with the equations for the current and magnetic field. Because of 

the complexity of this system, it has not been studied in its general form. Two 

approximations are commonly used: -(1) a sinigle fluid approximation, obtained 

by averaging over particle species, which is valid for an anisotropic, hydromag­

netic fluid; and a 2-fluid model for an isotropic fluid with ,B = 0., The 2-luid 

model was developed for investigations of macroscale solar wind properties. 

The results of this papbr are related to the single fluid approximation. 
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B. Single- Fluid Approximation 

1. Conservation of mass. Averaging the mass conservation equations 

for each species gives 

'a-P + V (p v) = 0, (3.1)'at
 

where 

p - r. n. (3.2) 

and 

m. n, , (3.3) 

here m1 is the particle mass, n. is the density of particles of species i given by 

(2.1), and ui is the average speed of species i given by (2.2). 

2. Conservation of momentum. For the solar wind, the momentum 

equation is 

- (PV) +V- ( +Pe. +P VV) =0 (3.4) 

where Per is Maxwell's stress tensor, 

B2 Bi Bi (3.5) 
en 8ij s7 4n 

and is the mechanical stress tensor summed over particle species, which can 

be written in the form 

= [(Pkf I] +kiSij (3.6) 
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where Pki is the pressure of the kth species perpendicular to B, 

Pk = 'k mk f Wkl wU f dv (3.7) 

and Pkll is the pressure parallel to B, 

(3.8)PkII ='k 'Ik Wk IWkIl f dv; 

where 

Uk (3.9)Wk - Vk 

One might add a viscosity term to P, but it seems to be negligible for macro­

scale processes in the solar wind. Putting (3.5) and (3.6) into (3.4) gives 

B (pv) + 2 ) B B 0 (3.10) 
-at '97 41r 

where 

)(PkII -Pk 

6-i- k (3.11)
(B2/4 w) 

Noting that 

(p V) v v) = P dv 

and using the condition V B = 0, one gets from (3.10) 
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pdv -(BphB(+B- v 4 (3.12) 

if & constant. This equation with = I was first derived by Parker (1957) 

from particle orbit theory. Clearly, is a measure of the anisotropy, being 1 for 

an isotropic plasma and <1 for an anisotropic plasma with p11 > P." Note that 

the anisotropy enters only in the (B • V )B term. Since (B .V )B is proportional 

to the curvature of the field lines, it is clear that the anisotropy directly affects 

the motions if and only if the field lines bend. 

Equations (3.10) and (3.12) are fluid equations, and they imply a collective inter­

action of the fluid particles. For niotions normal to Bthis is caused by the 

magnetic field; collisions are not necessary. This was shown by Burgers (1960), 

Chandrasekhar (1960), andWhang (1970),who obtained (3.10) for vI for a collision­

less plasma. For motions along Bthere must be collective plasma interactions 

if the motions are to be fluid-like. These motions are not yet fully understood. 

It is possible that on some scales one should use a kinetic equation for motions 

along, B, rather than (3.10). 

3. Frozen- Field Condition. Assuming infinite electrical conductivity 

and neglecting the effects at ion and electron inertia, one has E - v x B/c, 

where c is the speed of light.. In this case v and B are related by the equation 

-,.B)~~ ('Y=- (3.13) 
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This is essentially the same as a form of the Beltrami equation for vorticity in 

a non-viscous, incompressible medium (Serrin, 195 9, page 151), and it implies­

that the lines of force (or vortex lines in the case of the Beltrami equation) are 

"frozen" to the fluid. It was first discussed by Alfven (1943). 

4. Closure. For many purposes, it is not necessary to consider higher 

moments of the distribution function. However, the conservation of mass and 

momentum equations ((3.1) and (3.12)) and the frozen-field equation, (3.13), give 

only 7 equations whereas there are 9 unknowns (v , B , p, andp11 ). Thus, 2p1 

additional equations are needed to obtain a closed set of equations describing the 

plasma motions. 

For macroscale studies, it is customary to assume isotropy ( = 1), which 

reduces the number of variables to 8. Then only one additional equation is 

needed, and it is customary to use the adiabatic approximation p=A(S) Y which 

gives a relation between the pressure and density which is valid for constant 

entropy, S. In the kinetic theory of gases it is shown that y = (N + 2)/N where 

N is the number of degrees of freedom. The application of this equation to the 

solar wind has no theoretical or experimental justification, but it is obviously 

mathematically convenient. 

Another means of closing the equations, which is sometime applied to the solar 

wind when discussing problems involving anidotropy, is the method of Chew, 

Goldberger and Low (1956). Their closure equations are 
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d ( PI
 
-
 (3.14) 

and 

(3.15)t ( P>B 0 

These equations assume no heat flux, but can be.extended for a constant heat 

flux. The CGL closure equations were derived on the assumption that ,8 n k T/ 

(B2 /8r) << 1. This assumption is not applicable to the solar wind. 

We shall close the system with the following equations 

p= Ak, (3.16) 

(3.17)PkIl = Ak 7 11 

The appropriate values for -y and y,, are unknown. An obvious choice for 

microscale processes where the field is relatively orderly is /j = 2 (because 

there are 2 degrees of freedom normal to B) and yl, = 3 (because there is 

obviously just one degree of freedom along B ). We cannot exclude the possi­

bility that compressions along B are isothermal since the conductivity along B is 

high, especially for electrons .(p c p); in this case -y, = 1 rather than 3. One 

should also consider the possibility that y depends on the scale, since on a large 

scale the field is more disordered (perhaps turbdl6nt) than on a small scale. 

These are problems for future work. 
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5. Energy Equation. The forms of energy to be considered to driVe the 

microscale processes in the solar wind are the kinetic or streaming energy, the 

parallel and perpendicular thermal energy and the magnetic energy. Let 

= + (3.18)±p1 . 

The energy flux is 

F (P + v + v + S + q (3.19) 

where S is the Poynting flux 

S (V X B B c)x (3.20) 

and q is the heat flux 

q n_2 dv v? w- f. (3.21) 

The heat flux, q , has been neglected in most of the dynamical studies of micro­

scale processes, but this assumption has not been justified experimentally and 

there are recent studies which indicate that electron heat fluxes may be very 

significant under some circumstances (Burlaga et al., 1970, Hundhausen and 

Montgomery, 1970). 

13
 



The conservation of energy is expressed by the equation 

+ V-KF =0 (o.22 

6. Remarks on Velocities. It is important to distinguish the various 

velocities which are used above. The basic equations involve the center of mass 

velocity, v , which is a momentum average over the particle species, viz., as 

pv = ZnnMui . Here p is the average density, p =X n i m , and u1 is the average 

flow velocity of the ith species, 

_ 	 I f dv (3.23) 

n 
' 

where vi is a point in the velocity space of the ith species. The momentum 

tensor, given by (3.6), and the heat conduction vector, given by (3.21), involve 

the thermal velocity measured relative to the center of mass velocity, i.e., 

wi = vi - v. This presents a problem since in practice one would usually 

determine F and q for each species separated, by integrating over the thermal 

speed w' = vm - u1 ,easured relative to v Since particles of all species 

are frozen to the lines of force, they should all move normal to B with the same 

velocity, i.e., v vI, but there seems to be no reason why different species 

could not move parallel to B with different speeds. However, observations 

(Ogilive et al., (1968); Robbins et al., 1970) indicates that in the solar wind the .'s 

and protons have essentially the same mean speed (within 10 ki/sec), and the 
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nean speed of the electrons does not significantly effect v -because of the small 

ldectron to proton mass ratio, so for most purposes we can set v = u i for solar 

vind particles, in which case w w. 

/. WAVES 

A. Introduction. Although the theory for hydromagnetic waves in an iso­

.ropic fluid is given in many texts, the theory for an anisotropic, multifluid, 

ollisionless plasma is not well known, and differs from the isotropic theory in 

3ome important respects. Since the anisotropic theory is the relevant one for the 

,olar wind, we develop it in some detail. We shall consider a number of special 

roses which show the basic physical properties of the waves. The general 

;ituation is discussed briefly at the end of this section. 

)ne can distinguish 3 classes of waves: 

1. v1110, v 1 =O (4.1) 

2. v,1 =0, vtZO (4.2) 

3.. v,, g ., vL. o - (4.3) 

Here, and in what follows in this section, v is the perturbation velocity due to 

:he wave. -

B. Waves with v i 0, v1 = 0. In this case, the oscillations are only along 

:he magnetic field. Equation (3.13) shows that B/at = 0 for such waves, i.e., 
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they involve no variations B . Since B = constant and p1 is also constant, the 

linearized form of (3.10) gives 

P -- 1i(z Pk2l Pk (4.4) 

where c2 "=- IPkl/ is the speed of sound of the kth species. If pk = APkY, 

thenc2 =k Tk/mk. Let 

11 k~*(4.5)(~h 
k 

For a plasma consisting of electrons and protons, 

+ +,- T 
C2 11 11 (4.6) 

M+
 

If ell is a constant, then (4.4) and the continuity equation give 

V 22 V c V = 0 (4.) 

23t 

This is an equation for sound waves propagating along B with speed c2 . The 

wave is illustrated in Figure 2a. 

The existence of acoustic waves in a collisionless plasma is somewhat para­

doxical. However, such Waves (ion acoustic waves) are predicted by collision­

less theory and are expected to propagate with little attenuation when T > > T i . 

The restoring force is provided by anelectrostatic effect. 

16 



Such waves have not been identified in the solar wind, and their coupling with 

other modes (assuming ion acoustic waves do propagate) is poorly understood. 

Such waves do not appear in Whang's model for flow past the moon since he 

assumes that particle motions along B are governed by orbit theory rather than 

by the flow equations. 

C. Waves with v1 = 0, v1 # 0. The equation of motion (3.12) can be written 

dv (4.8)
dt 

where 

and 

MB- -) B. (4.10) 

Clearly, G is due to gradients in the total perpendicular pressure. M is caused 

by the tension in the magnetic field lines, which is non-zero if and only if the 

field lines are curved. Note that the anisotropy appears only in MV.We can 

distinguish 3 cases, shown in Table H1. (Bear in mind that we are assuming v1 = 0. 

Mlso note that we are using the terms magnetoacoustic and fast wave in a limited 

sense.) Now, consider each of these cases in turn. 
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Table II 

Alfven wave 

C 

0 

LM 

#0 

Magneto acoustic wave 

Magneto "fast wave" 

A 0 

A 0 

0 

A 0 
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1. Alfren wave (G = 0, M # 0; vl -- 0). In this case .there are no pres­

sure gradients so n, T, and B are constant, but the magnetic field lines oscillate 

like waves on a string. Let us choose a coordinate system such that 5 is along 

and take the perturbations along y: 3 B m b (z) y, S.- V(z) y (see Figure 3). 

Consider the case when B is parallel to k. The force equation (3.12) gives for a 

homogeneous plasma 

-a1 p1 __ (4.11) 

This implies that 6B is parallel to Sv. The frozen-field condition, gives 

'bab 'a V (4.12) 
-t D-z
 

Combining these two equations gives the wave equation 

22b-(B ) , (4.13) 

-6 2 \74 w '3 A 

Thus, the waves move with the speed VA along B. Assuming perturbations of the 

form b0 exp [i(kz - t)], we obtain the dispersion equation 

2 - vA2 k2 = 0 (4.14) 

Note that the speed of the waves is affected by the anisotropy; the larger the 

anisotropy, the slower the wave, all other things being equal. Clearly, the waves 
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will propagate only if VA is positive. For an isotropic plasma, f=- 1 and V' = 

'VA, which is the familiar result from magnetohydrodynamic theory. 

From the frozen-field equation (3.13) 

a bt - a'6b (4.15) 

which with (4.12) gives 

B 
b = -v (4.16) 

VA 

This can be written. 

Unti and Neugebauer (196) searched for sinusoidal Alfven waves in the solar 

wind using magnetic field and plasma data from Mariner II. One result is given 

in Figure 4. This shows B (smoothed by a 19 point running average) in a co­

ordinate system for which the minimum field fluctuation was in the xy plane and 

the average field along z, the bulk speed of the plasma is also shown. One sees 

a nearly sinusoidal, plane polarized wave with 3 B strongly correlated with V 

and 5 B normal to B. Using the measured B and n to compute Sv they found good 

agreement with the measured bulk speed perturbations (Figure 5), suggesting 

that (4.17) is satisfied. The initial density measurements, computed on the 

assumption of a strictly radial bulk velocity, did not satisfy the condition n = 

constant, necessary for an Alfven error, (in fact the density was strongly cor­

related with V (Figure 5) but this was probably an instrumental effect. 

20 



and the dispersion equation is 

k 2 V'2 S2- co 0 = 0. (4.20)
z A -

This is the only mode that can propagate in an incompressible hydromagnetic 

fluid. 

Using an iteration technique, Unti and Neugebauer showed that the observations 

were consistent with the condition n = constant (see Figure 5). 

Unti and Neugebauer (1968) searched for sinusoidal Alfven waves in the solar 

wind using magnetic field and plasma data from Mariner II. One result is given 

in Figure 4. This shows B (smoothed by a 19 point running average) in a co­

ordinate system for which the minimum field fluctuation was in the xy plane and 

the average field along z, the bulk speed of the plasma is also shown. One sees 

a nearly sinusoidal, plane polarized wave with SB strongly correlated with V 

and S B normal to B. Using the measured B and n to compute Sv they found good 

agreement with the measured bulk speed perturbations (Figure 5), suggesting 

that (4.17) is satisfied. The initial density measurements, computed on the 

assumption of a strictly radial bulk velocity, did not satisfy the condition n 

constant, necessary for an Alfven wave, (in fact the density was strongly cor­

related with V (Figure 5) but this was probably an instrumental effect. 
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Belcher et al. (1969) reported that correlation coefficients >.8 in absolute 

value between the radial component of the interplanetary magnetic field and solar 

wind speed were found at least 30% of the time in the 5 months of data from 

Mariner 5. They argued that these are due to large amplitude, aperiodic Alfven 

wares because: (1) the correlation is consistent with (4.17), (2) the density was 

not correlated with the field changes, (3) the value of B/VA computed from plots 

of b versus V agrees with that given by (4.17) with e 1 (see Figure 6a), and (4)the 

fluctuations 5B tended to be normal to B (see Figure 6b). They also foimd that 

essentially all of the waves were propagating away from the sun, irrespective 

of the direction of the interplanetary magnetic field. This is evidence for the 

existence of Alfven waves in the solar wind and suggests the relatively common 

occurrence of such waves on a scale of several hours or more. 

Coleman (1966) had previously noted a high value for the coherence he obtained 

from the cross spectrum for V and B , and he noted that the phase difference at 

a particular frequency obtained from the cross spectra for V and B was - 180' 

when B was away from the sun and -0° when B was toward the sun. These 

evidently correspond to the results seen by Belcher et al. (1969), expressed 

in a different form. Coleman concluded that fast waves or Alfven waves (or 

both) were present, but he could not distinguish between the two. A more 

detailed account of this work also does not give positive evidence for Alfven 

waves (Coleman, 1967). 
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2. Magneto Acoustic Wave (G # 0, M = 0; VII = 0). While the Alfven 

waves propagate along B because of the tension in the field lines, the restoring 

force for these magneto acoustic waves arises from the compression of p and 

B , and the wave propagates normal to B (see Figure 2b). Taking M= (B- V 

B = 0 (i.e., assuming the field lines do not bend) and B = (B0 + b,) ,the linear­

ized form of (3,12) becomes 

P 'a t-v -'7' B(4.21)4j) 

for a wave propagating along R. The elements of the wave are shown in Figure 

7. The frozen-in condition (3.13) gives 

'ab _ (4.22) 
Bt 

Operating on (4.22) by / t and using the continuity equation gives 

-a2 b -62 bz- - + o0(4.23) 
2 

X2t A 

where 

C pi and P (4.24) 

Thus, the wave propagates along ^ with the speed 

MAV2 (4.25) 

The dispersion equation is 
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C2 -k 2 (C2 + 0 (4.26) 

Burlaga (1968) has presented evidence for a magneto acoustic wave in the 

Pioneer 6 magnetometer data of Ness. This is shown in Figure 8 together with 

Pioneer 6 plasma data from the MIT probe. One sees sinusoidal oscillations in 

]B I, but none in B/B, as expected for a magneto acoustic wave. The plasma 

density and temperature should oscillate in phase with B. The density is given 

in Figure 8 to the nearest integer, reflecting the accuracy; this'is not adequate 

to show the small oscillations that are expected. The temperature measurements 

suggest a maximum at the time of maximum compression, but they are not ac­

curate enough to establish this with certainty. Note that to resolve these waves 

with a plasma probe it would be desirable to measure at least 2 spectra per 

minute, and since An/n AB/B = .1, the density should be measured with a 

relative uncertainty appreciably less than 10%. 

3. "Fast Waves" (G / 0, T / 0; v1 = 0). In this case both tensile and 

compressive stresses are active, but there are no displacements along B. Let 

i be along &v and take k and 8B in the i - 2 plane, (see Figure 9). The pro-­

cedure of the preceding 2 sections gives the following equation 

2 b-0 -a b -a2 b 
- ( + V x V2 - X (4:27) 

2 A't 
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and a similar equation for vX. The dispersion equation is 

(c2 A s A 'z (.) 

Clearly, the mode is related to the Alfven wave and the magneto acoustic wave 

discussed above. 

If the compression is adiabatic with an adiabatic exponent y = 2, then p = 

A p2 and c = 2 p-1 X p and (4.28) can be written 

2 2 k 2 b 2-0_ a - 1= 0 (4.29) 

where 

a2 (B2 2 p.)l = V2 + (4.30) 

and 

b2 ) P2=V 2 (4.31) 

Equation (4.29) is precisely the equation derived by Whang (1971) for a guiding 

center plasma. 

k2Let the angle between k and B be 8. Then = k 2sin28and k2 = k 2cos 9, 

and the dispersion equationw (4.28) has the form 

W,2 - k2 [(f +V2) - (Cf --Vi (1 - cos 2 ] = 0 (4.32) 
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This reduces to the dispersion equations derived above for Alfven wav6s and 

magneto sonic waves when 0 0 and 77 /2 (equations (4.20) and, (4.26)), 

respectively. 

Evidence for this type of wave was given by Whang and Ness ('1970). They point 

out that the moon will generate such waves when the solar wind moves past it, 

as a result of the different magnetic permeability of the,moon and the solar 

wind. The waves will form an elliptical Mach cone with the long, axis perpen­

dicular to the average"field direction and the short axis albng 6;, as a result of 

the asymmetry of the hodbgraph corresponding to (4.32). Crossingsl of the 

cone were identified in the magnetic field-data from Explorer 35, as described 

by Whang and Ness (1970), and they obtained the Mach cone crosa-section shown 

in Figure 10. It is an ellipse whose ratio of major and miner axes is in agree­

ment with the fast wave theory given above. Michel (1967) had earlier predicted 

an elliptical Mach cone on the basis of a qualitative extension. and application of 

ordinary, isotropic gas dynamics. 

4. Coupling Between the Fast Wave and the Alfven wave. We have 

shown that a "fast" wave can propagate with k, 5 B and S v in the x-z plane. 

This becomes an Alfven wave when I is along B and a magneto acoustic wave 

when k is normal to B. In addition, an Alfven wave can propagate along k, with 

Sv and 8B along 9, normal to the x-y plane. Thus in general both types of waves 

can propogate simultaneously. Their hodographs are shown in Figure 11. 
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In the linear approximation, the fast wave and the Alfven wave are uncoupled 

and propagate independently.: The fast mode causes oscillations in the intensity 

of B., Both the fast mode and the Alfven mode cause fluctuations in the direction 

of B ; in general, these polarization of these oscillators will be elliptical. 

Burlaga found a wave in the Pioneer 6 data which has the characteristics just 

described (Figure 12). Again, however, the observations were not complete 

enough or accurate enough to verify the theory just presented. 

The fast wave and Alfven wave in Figure 11 are uncoupled on the linear approxi­

mation. However, if the amplitudes of the oscillations are large, one must 

consider the effect of higher order terms. If the term of second order in b2 
Y 

is not discarded in the compressive term of the force equation (3.12), one gets 

- 2 b. '2 b 2b a2 (b 2 ) 
2 


V) Xyi X V 
 Y(433q +t 2A x 

which reduces to (4.27) when the term in b 2 is small. Thus the fast wave, which 

was confined to the x-z plane, can couple with the Alfven wave that has perturba­

tions along 9), through the non-linear term on the RHS of (4.33). Kawashima 

(1969) first noted this (but there are some minor errors in his equation cor­

responding to (4.33)). He suggested that magneto acoustic waves are produced 

by non-linear Alfven waves in this way in the solar wind. 
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The power observed in the compressive waves is always lower than that in 

Alfvenwaves for frequencies in the range 10 to 10 2 Hz .(e.g. Coleman, 1966) 

which is consistent with Kawashima's theory. Clearly, the coupling should be 

larger the larger the amplitude of the Alfven waves. Thus, the theory implies 

that the proportion of compressive waves to be large when the amplitude of the 

fluctuations is large. Kawashima used Ness' IMP 2 observations to show that 

this is the case (Figure 13). 

5. Firehose instability. The dispersion equation for Alfven waves 

(4.14) shows that waves grow with time (w is imaginary) when j < 0., i.e., 

when 

)
2111 (Pp -i
 

B < 2 (4.34) 
827(8 in) 

Parker (1957) was the first to suggest that this instability might occur in the 

solar wind. He derived an equation which is the same as 4.84 with i = 1, i.e., 

he considered protons only. 

Kennell and Scarf (1968) pointed out that electrons should also be considered, 

and they obtained (4.34) with i = 2. Kennel and Scarf derived their result from 

the Boltzman equation. They wrote (4.34) in the form 

2-8+A+-G_ A- <0 (4.35)
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where 

1____- (4.36) 
B2 /(8 if 

and 

A+ ± (4;.37) 

11~ 

The growth rate for the firehose instability is characterized by y where 

= v I] (4.38) 

Eviatar and Shultz (1970) found that the growth rate is so large in the solar wind 

that one would not expect to find 

(B2/8 7T)- - (Pill -Pt ) > 2.1.7 

in the solar wind, i.e., the firehose instability, would limit the thermal anisotropy. 

This raises the question, Does the anisotropy ever get large enough in the solar 

wind for the firehose instability to grow, or does some other mechanism destroy 

the anisotropy first? 

There is no unambiguous evidence for the existence of the firehose instability in 

the solar wind at 1AU. Scarf et. al. (1967) using average values for the solar 

wind parameters, concluded that (4.34) for protons is not satisfied, so the fire­

hose instability is not expected to develop. Kennel and Scarf (1968) argued that 

protons alone cannot cause instability. But they argue that since the field is 
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disordered the electrons must be sufficiently hot and anisotropic that (4.34) is 

satisfied (assuming that the firehose instability is the cause of the fluctuations). 

The most recent report of measurements by the Los Alamos group (Hundhausen 
et. al., 1970) gives T'.. /T 4 = 1.9, T + = 7.2 X 104 OK, and ne 

7.7 cm-5 . The electron temperature seems to be essentiallyconstant, T 

(1.5 E .5) x 105 °K, as discussed in Section II, and the best measurements of 

the electron anisotropy give .1 < (Ti- - T9-)/TI7 < .2. The average field is 

typically - 6Y. These numbers give 2 -,8. x - )6_ x A_ = .8, so again one 

concludes that the firehose is not normally operative unless the electron ani­

sotropy is larger than the current measurements indicate. One factor has still 

been left out - the a particles; but their anisotropy would have to be very large 

to have a significant effect, since their density is relatively low. 

Eviatar and Shultz (1970) used Vela data to compute ,, - /_L for a single 5­

hour period. The results (Figure 14) show that (4.34) was not satisfied for that 

period. 

Burlaga et. al. (1969) considered the possibility that the instability might develop 

in some regions but not in others. They identified very quiet and very disturbed 

one hour intervals in the Explorer 34 magnetic field data (Figure 15) and com­

puted ,8+for each of the intervals using the plasma and magnetic field data from 

that spacecraft. These intervals tended to be isolated, indicating that the dis­

turbances were highly localized. They found that/,B tended to be high for the 
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disturbed intervals, but low for the quiet intervals, which is, of course, what 

(4.34) would imply. Assuming that .1 < (T - Tj )/TIl- 11 .2, they found that A' 

++ KA- < 1.5, where K - T-/T , so the instability condition (4.34), which can be 

written3+ (A+ + KA- ) < 2 is satisfied only if /3 > 1.3. Figure 15 shows that in fact 

the largest percentage of very disturbed intervals did occur when /3 > 1.3. Thus, 

there is evidence that necessary tonditions for the firehouse instability do occur 

occasionally. However, there were -very disturbed conditions when 8+ was less 

than 1; in fact the most probable 83+ for the disturbed intervals was .7. The 

most probable value of 83T for the Explorer 34 data (,83, = .3) is appreciably 

less than that found by Neugebauer and Snyder (1967). The differences could 

be due to a systematic error in the Explorer 34 density measurements; but the 

absolute accuracy of density determination was estimated to be =20% (Ogilvie 

et al. (1967), and this is consistent with other observations (Burlaga and 

Ogilvie, 1970; Gilbert, Private Communications.) 

Summarizing, the firehose instability probably does occasionally occur in iso­

lated intervals where fl+ is large and possibly for most "very disturbed intervals",
 

but it does not seem to be the primary cause of the fluctuations that are
 

typically observed. Clearly, more measurements are needed.
 

Belcher and Davis (1971) reported a poor correlation between 83+and a st 

the square root of the 3-hour average of the 168.75 sec minute total variance 

in field components. They considered this to be in conflict with the results of 
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Burlaga et al. (1969). There is no conflict, however. 0., is not a good measure 

of the type of high frequency fluctuations in the magnitude and direction of B 

studied by Burlaga et al.. 

D. vljI 0, v1 # 0 (General MHD Dispersion Equation). We have been dis­

cussing various special cases of low frequency, long wavelength waves. In gen­

eral, all of the modes might exist and might be coupled. From isotropic mhd 

wave theory (e.g., Jeffrey and Taniuti (1964)) it is well known that 3 modes would 

then propagate: (1) the fast magneto acoustic mode, which reduces to the "fast" 

magneto acoustic wave discussed above for propagation normal to B, (2) The 

Alfven mode, and (3) the slow magneto acoustic mode, which reduces to the ion 

acoustic mode for propagation along B. The dispersion equation for an anisotropii 

medium is very complicated (It is given in Lfist, 1959), but gives the same quali­

tative features as that for an isotropic medium. The surfaces of normal speeds 

(hodographs) are shown in Figure 16. The fast magneto acoustic mode is the 

one most analagous to the sound wave in gas dynamics, in the sense that it 

propagates in all directions. Here, however, the propagation is anisotropic. 

The Alfven mode cannot propagate normal to B but it does propagate in all other 

directions, the speed being greatest and equal to the Alfven speed for propagation 

along B . The slow magneto acoustic wave has characteristics of both the Alfven 

wave and the sound wave; it does not propagate normal to B, but it does propa­

gate in all other directions, the speed being greatest for propagation along B. 
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Figure 16 shows that 3 ho dographs must be distinguished, correspolding to 

VA , Va' < c and VI = c. Although a distribution of V' / c has not been 

<T 11 1 A 11' A 11 

published, it is clear from the measure parameters that VA/e'is typically very 

close to 1. This is an important point which has not been discussed enough in 

the literature. In principal, one can excite all 3 modes simultaneously by an 

instantaneous point disturbance in the solar wind, assuming that the ion acoustic 

wave propagates and is coupled to other modes. It is of interest to ask what is 

the form of the 3 corresponding wave fronts. For the three cases correspond­

ing to the hodographs in Figure 16 the fronts at any instant are as shown in 

Figure 17. At a later time the fast wave front is larger. The slow wave front 

also enlarges with time, and it propagates along B. 

As discussed earlier, the moon can act as a source of waves which propagate 

away from the moon while being convected by the solar wind. If the above theory 

applies, these waves will form one Mach cone corresponding to the fast mode, 

which is analogous to the aerodynamic Mach cone and equivalent to that pre­

dicted by Whang's model, and two Mach cones corresponding to the slow modes, 

when V' / cll. (Ven V' = cl, there is just one Mach cone.) These can be 

Ahn'c A I 

constructed from the Friedrichs diagram as illustrated in Figure 18. Under 

typical solar wind conditions near 1 AU it would be very difficult to observe the 

slow Mach cones, and in fact they would not always exist. 

There is only indirect evidence for the existence of the slow mode on the solkr 

wind. This is the observation of slow shocks, discussed in Section V. 
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V. Discontinuities 

The theory of discontinuities in a steady state, isotropic hydromagnetic fluid is 

described in many texts (e.g. Jeffrey and Taniuti, 1964) and reviews (Colburn 

and Sonett, 1966) but the theory for an anisotropic fluid has been developed only 

recently in response to solar wind measurements. Lynn (1967) has presented the 

theory for a single species plasma in the CGL approximation. A. similar theory 

for shocks was given by Abraham-Shrauner (1967). A less restrictive theory for 

shocks was given by Chao (1970) and a similar theory including other types of 

discontinuities was publishedby Hudson (1970). Neubauer (1970) has presented a 

theory of shocks in an anisotropic plasma which parallels that of Chao and Hudson. 

Our treatment will most resemble those of Chao and Hudson. 

Let the discontinuity be a plane surface which moves with speed U along its 

normal n relative to a fixed frame (the sun, say). Let the subscripts I and 2 

denote the regions away from the sun and toward the sun, respectively. Let the 

subscript t denote components along some direction parallel to the discontinuity 

surface. 

Assume a steady state and work in a frame moving with the discontinuity surface. 

Then, applying Gauss' theorem to (3.1) shows that the mass flux normal to the 

surface, G, is continuous across the surface, 

G --p (v,1 - U) = P2 (v2n - U). (5.1) 
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Since V B = 0, 

BnBn =B2n. (5.2) 

The frozen-field condition (3.13) implies that 

Bn (v 1 - v 2) = Bit (Vin -U) - B2 t (V 2 n - U) (5.3) 

The momentum flux equation (3.12) gives 2 relations, one for the change in the 

normal momentum flux 

22c 1 
p~U)2 =k B (5.4)L_~~~) 

another for the change in the transverse momentum flux 

p (V, -U 12 - _ . (5.5) 

Using (5.3), this can be written 

r,2 Bit -B 2tl 13 (5.6)( - - - (B t -BB2t 62) 

(7P, 2 / -u it IB~~-B~t 

which with (5.1) gives 

B1 p1 [ (Vr - U) 2 - VA]2] = p2 [(v 2 - U) 2 - V2], (5.7) 
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where 

B 2
 
V1 - V 

and (5.8) 

B2 

V12 
- n 

A 2 n 4 7T P2 

are the Alfven speeds along the shock normal. 

Finally, the energy equation (3.22) gives the following relation for the change in 

the kinetic energy flux normal to the surface. 

PV 2 F.2 B2 B -P2L \f-/ 

2OV Pk T B [ (PkII - v ii' 

1 2 
(5.9)­

-B n Btv t I'2/(4ir)
2 

where e is given by (3.18). 

Equations (5.1), (5.1), (5.3), (5.4), (5.5) and (5.9) are the basic jump equations.
 

There are 8 equations for the 9 variables B,, p, p and p11.
 

Using (5.1) and (5.2), equations (5.3), (5.4), (5.5) and (5.9) can be written as
 

follows 

GQ(L-8) 12 t~) 2 (5.10) 
13 
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which with (5.1) gives 

2 2
 
GB B (v) (5.11) 

G2 =B2 +(EP + (5.12) 

2 2 

G(Vt) =B n (S-i (5.13) 

11 

and 

1 \/ / 
G [L2+ +Pa/p + 2.1 Q12E(k1 2 t(.4 

1 32 , 

Two general classes of discontinuities can be distinguished: 

(1) Stationary discontinuities (G = 0) 

(2) Shocks (G 0) 

B. Stationary Discontinuities. Since by definition G = 0 for a stationary 

discontinuity, v.,1 = Vn2 = U, which implies that the surface does not move rela­

tive to the plasma. There are two types of such discontinuities, corresponding 

to Bn = 0 and B, A 0. These are called tangential discontinuities and contact 

discontinuities, respectively. 

1. Tangential Discontinuities (G = 0, B, = 0). There are several 

necessary conditions for a tangential discontinuity: 

37
 



(a) Since G = 0, it is non-propagating, i.e., the speed of the dis­

continuity surface relative to the solar wind in the direction of its normal is 

zeto. 

(b) Bn = 0 implies that.B. and B2 are parallel to the discontinuity 

surface (see Figure 19); hence the normal is 

=B1 x B2 /I B x B2 1 (5.15) 

(c) Since there is no change on v , v and Z2 are parallel to the 

surface; hence 

nvl × v2 /1v1 x v21- (5.16) 

(d) The equation for the normal momentum flux (5.12) gives 

p2 =0, (5.17) 

which says that the pressure perpendicular to the surface is the same on both 

sides of the surface. Since pki = nkK Tk this may be written 

2 
32 . (5.18) 

The equations forthe transverse momentum flux and the energy flux, (5.13) and 

(5.14) are identically satisfied. 

38
 



To positively identify a tangential discontinuity, one must show that all of the 

above conditions are satisfied, which requires simultaneous magnetic field data 

(B (t)) and plasma data (n, TL, and v for protons, a's and electrons) and the ar­

rival times at 4 spacecraft (to get the speed and orientation). Such a definitive 

measurement is still well beyond the scope of the observations, but there are 

several somewhat less complete results that are consistent with these conditions 

and leave little doubt about the existence of tangential discontinuities in the solar 

wind. 

Figure 20, from Burlaga (1968), shows a region with at least 3 discontinuities 

which were observed by the spacecraft Pioneer 6. The discontinuity surfaces 

are moving past the spacecraft, nearly radially away from the sun with a speed 

- 400 km/sec. They are seen as abrupt decreases in the magnetic field intensity 

(from Ness' magnetcmeter experiment) and simultaneous increases in the proton 

density (from the MIT plasma detector). The change in B occurs in : 30 sec, 

-implying a thickness <12,000 km 10 4 AU, assuningV 460 km/sec, which is 

indeed discontinuous on a scale of I AU. If the region in Figure 20 was iso­

thermal and if n. = an there, then the total pressure is constant throughout the 

region if and only if n B 2, since 

8 7 Iz P + B2/(8m = cn +B2, where C=K (T1 +aT L+(1 +2 a) T) 
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Figure 20 shows that in fact n is proportional to B2 for the observations be­

tween 0630 and 0730. Thus the data are consistent with a constant pressure 

across each of the discontinuities, in agreement with (5.17). 

Condition (5.15) can be tested only for discontinuities across which there is a 

significant change in the direction of S. Burlaga (1969a) has introduced the 

terms "directional discontinuity" for discontinuities across which the field 

direction changes by> 30 ° in < 30 sec. Figure 21 (from Ness et. al., 1966) shows 

2 directional discontinuities, one seen at Pioneer 6, the other seen at Explorer 

33. 

Computing the orientation of the discontinuity surface from (5.15) and using the 

measured solar wind speed 400 km/sec, Burlaga and Ness (1969) computed that 

the discontinuity should have arrived at IMP 3 57.5 min after it was seen at 

Pioneer 6. The observed transit time was 53 rain. Thus, the observations are 

consistent with the assumptions that 
a. 
B was parallel to the surface and that the 

surface was convected with the solar wind speed, as required for a tangential 

discontinuity. 

Burlaga and Ness (1969) used simultaneous magnetic field measurements from 

3 spacecraft (Explorers 33, 34, and 35) to identify 6 directional discontinuities 

whose orientations determined from measured time delays and solar wind 

speeds, are consistent with those computed from (5.15). These results are 

shown in Figure 22. Consider panel A in this figure. A discontinuity was 

40
 



observed first by the spacecraft at the point marked 1. Using the magnetic field 

data from that spacecraft, the surface normal was computed assuming (5.15) 

and the intersection of that surface with the ecliptic plane was computed and is 

shown by the line passing through point 1. A few minutes later, the same dis­

continuity was seen at another spacecraft at the point marked 2. The surface 

intersection was similarly computed using datS from the second spacecraft at 

position 2. Minutes later it arrived at the spacecraft at point 3. Each 

of the panels refers to a different discontinuity surface and has a 

similar interpretation. If the surfaces are tangential discontinuities and if 

they are plane, the lines through points 1, 2, and 3 on each panel should be 

parallel. This is the case in A, D, E, and F, but in B and C the surfaces seem 

to be appreciably curved on a scale of 50 RE . Note that the order of arrival of 

the surfaces at the different S/C depends on the surface orientation computed 

from (5.15). In every case, the arrival order is consistent with the assumption 

that the surfaces are tangential discontinuities with orientations given by (5.15). 

In this connection, D, E, and F are particularly noteworthy. Burlaga and Ness 

(1969) have shown that the actual surface orientations determined from the delay 

times and the measured solar wind speeds, are in very good agreement with the 

theoretical orientations shown in Figure 22. They also showed that (5.15) is 

satisfied for these discontinuities. 

Equation 5.10 shows thatlt, and v2t are arbitrary for a tangential discontinuity, 

since G = 0 and B n0. (This does not consider the effect of instabilities which 
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might arise). In particular, since v1 n 2 j implies that one may 

have. 'v I I / 1V2 iv. Stich changes in the bulk speed do occur at directional dis­

continuities (Burlaga, 1968). Burlaga (1969) and Siscoe et al. (1969) have found 

discontinuities across which the bulk speed changed by 60 km/sec or more in 

less than -3 -rin. 

Siscoe et al. (1969) pointed out that in addition to conditions (5.15) to (5.18), a 

tangential discontinuity must satisfy the condition 

A_ .&vT 
tan A -tan p (5.19) 

where the quantities 4', AvT and Avk are as defined in Figure 23a. This simply 

says that a unit volume element initially adjacent to a tangential discontinuity 

surface always moves parallel to this surface as the surface moves away from the 

sun. If a discontinuity is tangential, qf can be computed from (5.15) using 

measurements of B, and it can be computed independently from (5.19) using 

measurements of v. Siscoe et al. (1969) did this for 12 discontinuities in the 

Pioneer 6 data and found the results shown in Figure 23b. There is considerable 

scatter because of the relatively large errors in measuring the flow direction; 

in fact the error bars (not shown) are so large that only 1 point deviates signifi­

cantly from the line q' = 0P. Siscoe et al. concluded that the discontinuities were 

tangential. 
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We have been discussing discontinuities as if they have zero thickness, i.e. true 

discontinuities in the mathematical sense. Physically, of course, the surface 

has some structure. This has lead to some confusion. Figure 24 shows the 

"thickness" distribution of "discontinuities" in the magnetic field, studied by 

Siscoe et al. (1968). The 'thickness" is here measured by the time for the sur­

face to pass the spacecraft, which is on the order of the actual thickness divided 

by the solar wind speed. The shape of the distribution is very important, for it 

shows that these discontinuities are indeed a distinct class of thin structures ,and 

not simply the tail end of the distribution of fluctuations seen in space. Since the 

directional discontinuities studied by Burlaga (1969a) has the same statistical 

properties as those studied by Siscoe et al. (1968), they probably have the same 

kind of thickness distribution. The discontinuities studied recently by Smith et al., 

(1970) and Turner and Siscoe (1971) have T 300 see, which puts them far to 

the right of Figure 24 and may indicate that they are a different class of objects. 

It is not clear whether the structure of tangential discontinuity surfaces in the 

solar wind can be analyzed within the framework of magnetohydrodynamics. in 

any case, it has not yet been done. One expects the fluid theory to be applicable 

on scales appreciably greater than the proton gyro radius, corresponding to T>> 

1 sec, which seems to be the case for most of the surfaces in Figure 24. Two 

types of structures have been identified in the magnetic field: (1) a laminar cur­

rent sheet, in which B rotates more or less uniformly in the plane of the dis­

continuity surface as shown in Figure 25 (Siscoe et al. (1968), Burlaga and Ness 
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(1969)) and (2) a "turbulent" structure, as shown in Figure 26 from Burlaga 

(1969b). The studyof such structures is still in an early stage. 

Northrop and Birmingham (1970) studied the stability of discontinuity surfaces 

of finite thickness. Using an MIHD energy principal due to Grad and Rebhan 

(1969), they gave an elegant proof that such surfaces are stable if v 2t 

In addition to the structure of the current sheets associated with tangential dis­

continuities, illustrated in Figure 26, there is another type of structure which 

Burlaga and Ness (1968) called D-sheets. Two particularly noteworthy examples 

are shown in Figure 27, from Burlaga (1968). These are characterized by a dip 

in the intensity of B over an interval of a few minutes associated with a discon­

tinuity in the direction of B. Several other examples are shown in Figure 28 

from Burlaga and Ness (1968). The physical significance is not understood. If 

the dip were caused by the annihilation of the antiparallel components of Bi and 

B,, then one expects the minimum field to be related to the angle Wbetween B, 

and B2, by the relation B. /B = cos w/2, if Bi = B 2 . Figure 29 (bottom) 

from Burlaga (1968) shows that this is the case for the D-sheets discontinuities 

in Figure 28 (top). It is not certain that the discontinuities with B = B2 are 

tangential. Figure 27 shows one D sheet associated with a large change in B 

and n, which is almost certainly a tangential discontinuity; here too, B m. is 

consistent with the annihilation hypothesis. 
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2. Contact discontinuity. In this case G = 0 but B / 0. It 
n 

is convected, but (5.10) shows that in this case onemust have vit =v 2 t, i.e., 

there can be no relative motions along the discontinuity surface. This is be­

cause Bis frozen to the plasma; a shear when B / 0 is impossible without 

brealdng lines of f6rce. In an isotropic plasma, conservation of transverse 

momentum (5.13) requires that Bit = B2t. So there is no change in Bacross a 

contact discontinuity in an isotropic plasma- no change in the magnitude, no 

change in direction (see Figure 29). In an anisotropic plasma, however, one can 

have Bh # .I,2t if ef2 (see (5.13)). Thus, in an anisotropic plasma one can 

have a change in the magnitude and direction of B across a contact discontinuity, 

but here as in the isotropic plasma v1t = VQt 

The pressure balance (normal momentum flux) condition (5.12) is 

PF + E(PkI - Pki =0 (5.20) 

1 

This has a simple geometrical interpretation. Let e be the angle between B and 

n. Then the pressure normal to the surface is 

= + + 2 
11 . P sin 

where 

P P, + PI Pii COS2 L8 (5.21) 

B 
Cos -

B 
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Setting Pni = Pn 2 gives (5.20). Contact discontinuities have not been observed 

in the solar wind. It is widely believed that they will not be observed bdcause 

they would rapidly broaden into a smooth transition. 

C. Shocks 

1. Introduction. A discontinuity is called a shock if G # 0. In aero­

dynamics there is basically just one kind of shock, and it correspond to the one 

type of wave in an ordinary gas, the sound wave. Gas enters an aerodynamic 

shock at a speed greater than the sound speed and leaves at a speedless than 

the sound speed. The energy is lost from the streaming goes into heating the 

gas. In magneto-gas-dynamics there are 3 basic wave modes, as discussed in 

Section IV and there is a corresponding variety of shocks. More complicated 

energy transfers are possible because of the presence of the magnetic sink. 

We shall consider first the simple cases of shocks moving parallel to B or 

perpendicular to B. Then we consider shocks more generally, shocks moving 

in arbitrary directions with respect to B. Some special types of shocks will be 

discussed at the end of this section, together with a classification scheme. A 

detailed analytical theory of.hydromagnetic shocks can be found in.Jeffrey and 

Taniuti (1964). 

In principle, a shock in the solar wind can move either away from the sun or 

toward it. Shocks moving away from the sun are called forward shocks, while 

shocks moving toward the sun are called reverse shocks. 
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Physically, there is no difference between a forward shock and a reverse shock, 

but there is probably a difference in the origin of the forward and reverse shocks 

that are observed in the solar wind. The origin of the observed reverse shocks, 

described below, is still a mystery. 

2. Parallel Shocks. A parallel shock is one whose normal is parallel 

to B. (See Figure 30). Two waves can propagate along B, the acoustic wave 

and the Alfven wave. So immediately the question arises, "with respect to which 

of these modes is the shock supersonic ?" The answer is somewhat complicated. 

We shall just present the results of Jeffrey and Taniuti (1964, p. 246). 

If the sound speed is greater than the Alfven speed ahead of the shock, then the 

sound speed is dominant and one has an ordinary aerodynamic shock with gas 

entering faster than the sound speed c11 and leaving at a speed less than c 1" The 

flow is super-Alfvenic on both sides of the shock and the sound speed exceeds the 

Alfven speed on both sides. 

If the Alfven speed is larger than the sound speed ahead of the shock, there are 

3 possibilities. The obvious one, with gas entering super- Alfvenically and 

leaving sub-Alfvenically probably does not occur in nature (Jeffrey and Taniuti 

1964). Another possibility, with gas entering supersonically (and super-

Alfvenically) and leaving subsonically (but still super-Alfvenically), is allowed 

and might be observed. Finally, gas might enter supersonically (but subalfvenically 

and leave at a speed which is either sub Alfvenic or subsonic. 
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For parallel shocks, (5.10) implies that =t= V2t . There is no requirement 

that v1 , 2 , and fi be coplamar. The magnetic field drops out of the Rankine 

Hugoniot equations, which become identical to those for aerodynamic shocks, 

except that they include both P1 and p11 in the expression for internal energy, e 

These equations provide no insight concerning the possible change in anisotropy 

(distribution of internal energy) across a parallel shock. 

There are no observations of parallel shocks in the solar wind. Such observa­

tions would be of special interest. 

3. Perpendicular Shock. A shock is called a perpendicular shock if 

the shock normal is perpendicular to B . In this case B 
n 

= 0 and the magnetic 

field is parallel to the shock surface on both sides of the shock, as shown in 

Figure 31. 

The only wave that propagates perpendicular to B is the magneto acoustic wave, 

whose speed is V 2 = V + c,2. The flow enters a perpendicular shock at a speed 

greater than VM and leaves 'at a speed less than V.. Thus, this shock propagates 

supermagnetoacoustically. 

For a perpendicular shock, the mass flux and frozen field equations (5.11) give 

2 (5.22) 

P, P2 

which states that (a) the magnetic field direction does not change across the shock, 

and (b), its intensity changes in the same ratio as the density, B/B = P1 /P 2 .2 
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Equation 5.13 shows that there is no change in the transverse momentum flux 

across a shock when B =0, so VIt = v2t This implies that ,2 - VI = 

(v2 - vo )f , so that fi is parallel to - v2 for a perpendicular shock. 

The normal momentum flux equation (5.4), gives 

2 B 

(V- U)2 : Pk + (5.24) 

1 2 

i.e. the change in the normal momentum flux is balanced by a change in the 

pressure. This is the same as for an ordinary gas dynamic shock, except that 

here the magnetic field pressure adds to the particle pressure. 

Equation (5.9) shows that the change in the kinetic energy flux normal to the 

surface is 

+ §__
p 2 (v ) = 

- - ) 8 irP1 (5.25) 

which is likewise the familiar gas dynamic result with the addition of the mag­

netic pressure to the thermal pressure. 

Note that the parallel pressure does not appear in the Rankine-Hugoniot equations. 

4. Reverse Perpendicular Shock. As we have said, a reverse shock is 

ne which propagates toward the sun relative to a frame moving with the plasma. 
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Since the solar wind speed is usually higher than the shock speeds, the shock 

can actually move away from the sun while propagating toward the sun. In this 

case, a spacecraft sees the "back," high entropy, side first and then the "front." 

This means that the density, temperature, and magnetic field intensity should be 

seen to decrease simultaneously as the shock is carried past the spacecraft. 

As always, the speed behind the shock is lower than that ahead of the shock, so 

in the case of a reverse shock (v,,- U) (2 - ),since the subscript I refers 

to the side away from the sun. Thus, vn2 > vnI and an observer at a fixed 

spacecraft would see the bulk speed increase. 

Wbile'a reverse shock looks different in the data in the sense just.discussed, it 

satisfies the same equations as the forward shock (taking proper account of the 

sign of U, of course). 

A perpendicular shock was found in the solar wind by Ogilive and Burlaga (1969) 

using Explorer 34 magnetic field and plasma data. It passed the spacecraft at 

1732 UT on Aug. 29, 1967. As shown in Table III, the bulk speed, density, 

temperature and magnetic field intensity all increased. simultaneously, but there 

was no change on the direction of the magnetic field. The shock surface moved 

past 3 spacecraft, each carrying one of Ness' magnetometers. The transit times 

were measured, and using these the orientation of the shock surface was com­

puted with the result shown in Figure 32. The shock normal determined in this 

way is f3(-.93, -. 33, 1.5) in solar ecliptic coordinates i.e., e = 9', 0n = 2000. 
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Table III 

1732 UT, Aug. 29, 1967 Shock 

V (km/sec) n(cm- 3 ) T(0 K) B(y) 9. 

Before 418 2.6 6.5 x 10' 5.5 510 2950 

After 452 3.7 12 x 104 7.2 510 2960 
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This is essentially normal to the magnetic field, B1 and B2 , as required for a 

perpendicular shock. 

From the multi spacecraft measurements, the speed 6f..he surface was found to 

be U = (436 ± 110) km/sec. This compares favorably withthe ,abe obtained 

from the mass fluxconservation condition (5.1), viz U = 496 tm/sec. 

Equation (5.22), which is a consequence of the frozen field condition, is 

satisfied -since.(a) the field direction did not change, and (b),the nieasured ratio 

B /n, = 2.0 equals -the ratio B2 /n 2 = 1.9 withinjthe experimentaLerrors. 

The change in the-moentuxrflux, p,(V - U) '2' was 1.4 x 10-10 dynes/cm3, 

which is equal to the .change in pressure 

2 
8I 1.5 10-10 dynes/cm2 

(The ,pressure here was computed assuming thatT = T 2 = 1.5 x 1o5 OK and 

that the contribution of the a's. is negligible.) Thus (5.24) is satisfied. 

Finally, the change in the kinetic energy -fluxgiven by the LHS of (5.25) was 

consistent with the observed change in the RHS of (5.25) within the errors. 

Burlaga (1970) identified a reverse perpendicular shock in the Explorer 34 

plasma and magnetic field data of Ogilvie and Ness. The observations are 
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Table EV
 

Sept. 28, 1967
 

V (km/sec) n (cm- 3 ) T 0(1) 
 JB(y) J 0P 

Before 540 10 4.5 x 105 12 400 1300
 

After 585 5.5 2.6 x 105 430 1250
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shown in Figure 33 wherethe-decrease-in.n, T,and B,. and~theincrease in V 

required for a -reverse perpendiculai-sho4k are clearly seen.. TablelV shows 

the -magnitude of these changes-together-with the -magnetic.'fi&idrdirections. The: 

magnetic field direction did not change, within the measurement~unceitaintibs 

5-5), as required for a perpendicular shock (Equation (5.22)). 

The shock.surface moved past 3 spacecraft,. each carrfingone odf-Ness" mag­

netometers, just as the forward perpendicular shock.discussedtin the previous 

section. The shock normal was found~to be 6 = (-.70, - . 69,.18,), i.e., 6 = 10', 
n 

-n = 2250. This is-essentially normal to the magnetic fidld-.(cos (,a- )= 870), 

'as required'for a-perpendicular sho.ck. 

Using the multispacecraft.magnetometer:measurements of Ness and the-conser­

vation of mass flux equation (5.1), the 'shock surface was found,-to -be 

moving at a speed 'U = 2,70 km/sec. 4n the, sunward direction. Since.this 

speed is less than the component of the solar wind speed along-the 'normal, the 

shock was -carried away 'from the sun. despite its motion.towa-rd -the sun relative 

to the moving plasma. The speed on the sun-ward side of the shock (i.e., ahead 

of the shock) was v2 . - U = 141 km/sec. This is greater than themagneto­
acoustic speed V1 = 95 km/sec. On the opposite side it was (vN - U) = 76 km 

/sec which is less than the magneto-acoustic speed V = 110 km/sec. Thus the 
M2
 

normal speed relative the surface shock did decrease, as required for a shock 

and the flow was supermagneto-acoustic ahead of the shock and submagneto-acoustic 
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behind it. The component of v tangent'to the surface was found to be 414 'km/sec 

on side I and 416 km/sec 'on side 2, consistent with the relquirement that v. = 

Y2t. The condition B 1 !/r = B 2/n 2, from the frozen-field condition, is 

satisfied within the errors for this shock, for Table IV gives 

BI/n -1.2 ± .2, and B2/n2 =1.5± .1 

2The change in the-momentum flux was pv 2 - 8.6 x 10-10 ergs/cm 2. This was' 

balanced by a change in the pressure 

P 12 2- = 8.0 2P,+ 978 . x 1 -10 ergs/cm

(computed as for the forward perpendicular shock'in the preceding section), as 

required by (5.24).) 1 

Similarly the change in the normal kinetic energy flux, 7.1 x 1013 (cm/sec) 2 was 

found to agree with the change in the RHS of (5.25), 5.5 x 10 13 (cm/sec) 2, within 

the experimental errors. 

Thus, all of the conditions for a reverse perpendicular shock were satisfied. 

5. Fast Shock. Two kinds of shocks can propagate at an angle with respect to the 

magnetic field. These correspond to the 2 kinds of magneto acoustic wave, the 

fast wave and the slow wave. Gas enters the fast shock at a speed greater than 
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the speed of the fast wave in the direction of the shock normal and leaves at a 

speed less than this. Thus,, the flow is superfast ahead of the fast shock and 

subfast behind it, but the flow is super-Alfvenic on both sides of the shock 

(Jeffrey and Taniuti, 1964). The fast shock is the most frequently observed type 

of shock in the solar wind, perhaps because of the similarity of the fast magneto­

acoustic wave with the acoustic wave in aerodynamics. 

Since the fast shock normal is not parallel to B, Bn and Bt are both non-zero 

(See Figure 34) Equation shows that BIt is parallel to B2t at a fast shock; hence 

BI , B2 and 8lare coplanar. Equation 5.10 shows thatvit - V2t is parallel to 

t - Bs2 t I and is thus parallelto B.t and 82t and coplanar with ii . Then 

v1 - v 2 and 3 are also coplanar. Summarizing, A, B1 'B2 . andV, -v2 are 

coplanar. This was demonstrated for an anisotropic plasma by Chao (1970) and 

independently by Hudson (1970) and Neubauer (1970). 

The shock normal can be calculated from B1 and -B2 as follows. Since BI B2 

and fi are coplanar, I I x B2 is in the plane of the shock. It was shown that 

BI - B2 is also in the shock plane. Thus fl is normal to both BI x B2 and 

= - x 2 )/I - x ( 2)I (5.26) 

Note that the formula does not give a normal for parallel or perpendicular 

shocks. It can be used to determine fi for fast shocks only if the angle co between 
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, andB2' is in B1 

than 150 for shocks in the solar wind and since the uncertainties in B1 and 82 

1 larger than the uncertainties and B2 . Since w is generally less 

5° 
are commonly- ormore, the errors in 6 determined this way may be very 

large, sometimes so large that 6 is meaningless. Clearly, more accurate normals 

can be obtained by reducing the uncertainties in B, and B2 . Lepping and 

Argentiero (1971) accomplished this by developing a "least-squares" technique 

which gives the best estimate values of D1 and B2 by requiring that the obser­

vations of vI V2 , B1 , B2 ,)P1 andP 2 satisfy (5.1), (5.10), (5.13) with 6 = 1 and 

[m 12 = 0. As an example, consider the shock seen by Nesst (Pioneer 7) mag­

netometer on Aug. 29, 1966. Using mean values of B in (5.26) gives an error 

cone for 6 of 250. The Lepping-Argentiero method gives an error cone of only 

60. (The error cone is here defined such that there is a 95% confidence that 

the normal is within it.) Chao (1970). introduced another method for obtaining 

best estimates of B, an iterative trial and error procedure, which is simpler than 

the Lepping-Argentiero method, but does not always give as much accuracy. The 

accurate determination of shock normals is essential for studies of shock geometry an 

and the interactions of shock with discontinuities. 

Other methods for determining i can be used for shocks that are identified at 

2 or more spacecraft, if one can assume that the shock surface is plane over 

distances equal to the spacecraft separations. Sonett et al. (1964) used such a 

method to determine i for the shock on Oct. 7, 1962. Chao (-1970) gives the 

formula = [B 1 x(v 2 -v I )] x U/[81 X (v2 -v )]-xUI whereU =R /T­
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(P 2 '2 - P2 ' 2 )/( P2 - pl ), Rand T being the vector displacement and time delay 

between the spacecraft. Ogilvie and Burlaga (1969, erratum, 1970) introduced a 

method for calculating 5 using simultaneous measurements from 3 spacecraft, 

the four parameters A,U were determined from the 3 arrival times and the 

condition that B2 - BI must lie in the shock plane. 

Greenstadt et al. (1970) used onset times from 3 spacecraft and certain limits on 

the shock speed to obtain limits on 5 for the 7 July 1966 shock. These limits 

were narrowed using the time of the associated sudden commencement. Their 

basic result, that the shock normal pointed 65' to 70 ° below the ecliptic, is 

surprising. It should be noted that the 3 spacecraft which they used were all 

close to the ecliptic plane, so the most important component of 6 , n2 ., was the 

least accurately determined. If one uses the intercept of shock surface with the 

ecliptic (T = (.276, .961, 0)) which was determined by Greenstadt et al. (which 

is quite accurately determined by their method since the spacecraft were widely 

separated in the ecliptic plane) and if one uses the value B2 - B = (-2.0, 6.4, 4.4) 

which they give, then the method of Ogilive and Burlaga (1969) gives 1 = xx 

(Bi - 2 )/It X (BI -B 2 ) I = (.96 - .275, - .04), which implies an inclination 

= - 400. This smaller value of 6n (i.e., shock normal closer to the ecliptic 

plane) is more consistent with other values that have been published (Chao, 1970, 

Ogilvie and Burlaga, 1969), and agrees closely with the value 6 - - 370 obtained 

from (5.26) by Greenstadt et al. 
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Another method of determining shock normals was given by Burlaga (1970) who 

used onset times from 3 spacecraft, the measured solar wind speed, and (5.1) to 

calculate 6 and U by means of an iteration scheme. In his equations (13) and (14), 

tan e should be replaced by tan 9 sec q5. 
Given the shock orientation and a complete set of measurements, one can easily 

determine whether the momentum flux and energy flux equations are satisfied. 

However, in practice one cannot measure all of the quantities in these equa­

tions. The magnetic field is known more precisely than the plasma parameters, 

so it is convenient to replace these equations by expressions for the jumps n2/n' 

T112/TI I , T1 2 /T , as functions of the magnetic field parameters and.the upstream 

Alfven Mach number. Using frozen-field conditions (5.3), the transverse ­

momentum flux equation (5.5) can be written 

'0 62 13~t'\ Bi 
--- M--NE (5.27) 

'02 GI B32Wt)AI 2t 

This is equivalentto (5.6). Chao (1970) has used a form of this equation to study 

the variation of n1 /n 2 versus 62 for various values of the other parameters. 

When = = 1 (5.27) reduces to an equation derived by Wilkerson (1969). 

For a gas consisting of protons and electrons the normal momentum flux 

equation (5.4) can be written 

12 T121 n n, 2 2 (528)+ TP- jl 0 l­
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where 
01 (Vln-- U)2 

k (T' 1-7 

and = 
8r n. k (T 1 + T) 

47 BI 411 T1 

This also reduces to an equation derived by Wilkerson (1969) when = = 

Now let us tarn briefly to the observations of fast shocks. Numerous fast for­

ward shocks have been identified in the solar wind, the first by Sonett et al. 

(1964). A list of fast shocks and the corresponding references may be found in 

Hundhausen (1970). We shall give just one example, the shock of Aug. 29, 1966. 

Plasma data from the IT probe on Pioneer 7 and simultaneous magnetic field 

from Ness' magnetometer are summarized in Figure 35 from Chao (1970) to­

gether with Chao's "best fit" to the Rankine-Hugoniot equations with 1 = 2-

Table IV gives the somewhat better "best fit" values of Lepping and Argenterio 

(1970). Clearly, the R-H equations are approximately satisfied. Lepping and 

Argentiero, using the method described above, found that the shock normal was 

°0 = 197', 9 = 19', within an error cone of 6 . Using this value for F9and the 

time 48.5 min that it took for the shock to move from Explorer 33 to Pioneer 7, 

which were separated by the vector R = (1.29, .59, .16) x 106 km/sec, (See 

Figure 36). The shock speed was found to be 471 km/sec. This compares well 

with the value 467 km/sec obtained by Lepping and Argentiero from the Rankine 

Hugoniot equations. 
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The observation of a reverse fast shock was recently reported by Chao and 

Binsack (1971). The earth's bow shock is a stationary reverse fast shock which 

propagates toward the sun at a speed just equal to the solar wind speed. It has 

been extensively studied, and the results are summarized in recent reviews by 

Spreiter and Alksne (1969) and by Wolfe and Intriligator (1970). 

I1I = n2 shocks. The above discussidn assumes that n1 # n 2 for the fast shocks. 

Formally, one can set n 1 = n 2 and still have v 0. In this case, v1 = V2n 

Now if VA ivA 2, then (5.7) shows that Bit and B2t are colinear, as for a fast 

shock. Solving (5.7) for V, - U gives 

V'2 -V 2 B 
VA12 BIt - V1A2 Bt 

U) 2(v A2 2t (5.29)
InBIt - B2t
 

Introducing the definition of V; and ,gives 

(vl -U) = LsBI,-2) 13BB + 4B (P 1 -p 1 2 ) 3 -4-B 1 BI (PL -P1 2) 5.30) 
1.324 ( BI - 32t ) B22 

82Clearly, 3 
1 B for these discontinuities. 

Shocks of this sort were predicted by Ivanov (1970) who, called'them "rotational 

discontinuities" because in the limit of zero anisotropy the shock speed goes to 

VA. This name is somewhat misleading, however, since an essential property 

is the colinearity of BIt and , which makes it fnore like82t a fast shock than 

61
 



a rotational discontinuity. (Ordinary rotational discontinuities derived their name 

from the characteristic that Bt rotates across the plane of the discontinuity so 

that B2t and Bt1 are generally not parallel.) It is true that 

vt = Bt vnn 

1 1 

for both Ivanov-'s discontinuities and Alfven shocks, but this follows directly 

from (5.5) and the assumption that P1 = P2 . Since BIt and B2t are colinear, the 

coplanarity theorem applies to n1 = n2 discontinuities (but not to Alfven 

shocks), and the normal is given by (5.26). 

Ivanov (1970) suggested that 10 out of 11 of the large velocity discontinuities 

inBurlaga(1969b) are shocks with n i = n 2 . However, additional data presented 

by Burlaga (1971) show that this cannot be correct, since in the cases where 

the orientation of the surfaces can be determined directly, it is not that which 

is predicted by Ivanov. Further evidence in Burlaga and Chao (1971) shows that 

discontinuous changes in B are accompanied by density changes at least 95% of 

the time, which indicates that n1 = n2 shocks are seldom, if ever, present. 

6. Slow Shocks. The slow shock propagates at an angle with respect 

to B (see Figure 37) and corresponds to the slow magneto-acoustic wave mode. 

Gas enters at a superslow speed and leaves at a subslow speed. The flow is 

sub-alfvenic on both sides of the shock. An important and distinctive character­

istic of a slow shock is that the magnetic field intensity is lower behind the shock 
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than ahead of it; magnetic energy is lost, presumably by conversion to thermal 

energy or possibly to wave energy. The fractional change in Bt,- [B t]/B 1 , is 

a measure of the shock strength. 

The Rankine-Hugoniot equations for slow shocks are essentially the same as for 

fast shocks. 

Slow shocks were first identified in the solar wind by Chao and Olbert (1970) us­

ing Mariner 5 plasma and magnetic field data. The observations of the 2 slow 

shocks discussed by Chao and Olbert are shown in Figure 38. It is clear that 

these slow shocks are not as thin as fast shocks and the fluctuations near these 

slow shocks are larger than is usually observed at fast shocks. Nevertheless, 

the signature of each of these 2 discontinuities is clearly that of a slow shock 

(an increase in n,v and T and a decrease in B). The dashed lines in Figure 38 

are "best-fits"' to the Rankine-Hugoniot equations, obtained by the trial and 

error procedure of Chao (1970). These are not unique fits, but they do show 

that there is a solution of the Rankine -Hugoniot equations for an isotropic 

plasma which is consistent with the observations. The condition that the flow 

must be subalfvenic on both sides of a slow shock was satisfied for the 2 

shocks in Chao and Olbert (1970). The condition that flow be superslow ahead 

and subslow behind the shocks was not verified directly because the electron 

temperature was not known; however, using the value of v 1 I. determined by 

their fit to the Rankine-Hugoniot equations, Chao and Olbert found M 1o,= 1.5 
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before and .7 after the shock on July20,1967, and 1,1 = 1.8 before and .6 

after the shock on August 30, 1967. 

Another slow shock was identified in Pioneer 6 data by Burlaga and Chao (1971). 

This is shown in Figure 39 together with fits to the R-H equations obtained by 

Chaots method. The speed normal (on RTN coordinates) and Mach numbers for 

this shock are shown in Table V together with the same parameters for the 

shocks in Chao and Olbert (1970). 

A reverse slow shock was also identified in the Pioneer 6 data by Burlaga and 

Chao (1970). The data are shown in Figure 40 together with a fit to the Rankine 

Hugoniot equations using the method of Chao. The speed, orientation and Mach 

numbers for this shock, which occurred at 0901 UT on Jan. 19, 1966, are shown 

in Table V. There was only a small drop in the flow speed across the shock, 

from 29 km/sec to 23 km/sec, but there was a significant drop in the magnetic 

field intensity, from 5.2y to 4.2 -y. The loss of magnetic energy is comparable to 

the loss in flow energy. 

The existence of slow shocks in the solar wind is strong indirect evidence for 

the existence of the slow magneto-acoustic wave and the ion-acoustic wave in the 

solar wind. 

6. Alfven Shock. Strictly speaking there is no Alfven shock correspond­

ing to the Alfven wave in the same sense that fast and slow shock correspond to 
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Table 5 

Slow Shocks 

Forward Reverse 
Jan. 20, 1966 

Date July 20, 1967 
Aug. 30, 1967 Jan. 19, 1966 

a (.38, -. 80, .47) (.01, -. 09, -. 99) (.75, .30, .60) (.85, .01, .54) 

V (km/sec) 130 2 323 251 

MA 0.9 0.9 0.9 0.9
 

0.7 0.6 0.8 0.8
MA,2 


Mslow, i 1.5 1.8 1.3 1.2
 

MsIow, 2 0.7 0.6 0.8 0.8 

fast and slow magneto acoustic wave. This point is clear from our earlier dis­

cussion of parallel shocks. It can probably be traced to the fact that Alfven 
/ 

waves are not compressive. There is, however, another shock (G # 0) which is 

unique to magnetohydrodynamics; it is called an Alfven shock. This is illus­

trated in Figure 41. The flow is alfvenic on both sides of this shock (M', = 

MI '= 1), so the discontinuity propagates at the Alfven speed, essentially like a 
A2 

kinkin the magnetic field. For an Alfven shock B. A 0, and (5.7) shows that 

Bit and B2t need not be parallel (see Figure 41). In fact, the Alfven shock is 

often called a rotational discontinuity because B2 , is rotated in the shock sur­

face with respect to Bit . Clearly, BI , B2 and 6 are not coplanar, in distinction 

to the fast and slow shocks. Inthis case, B1 x B2 = Bn (B2t - Bit) + Bit x 

82t is not in the shock surface, so the Alfven shock normal is not give-n by R 96). 
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Equation (5.13) shows that the velocity change and magnetic field change are re­

lated by 

V-vl ( 1 __2 
77T /\11: W 

Since 2 = P2 ( V -U)2 = pIv 2 = - p { 
4 T 

the normal momentum flux equation (5.12) gives 

Pk= (5.32) 

which is the same as the condition derived for a tangential discontinuity. The 

energy flux equation (5.14) becomes 

P-' + E.(PI, + pI)/2 + 32/8 7/ = 0 (5.33) 

If the anisotropy does not change across an Alfven shock, SC= 62, then the con­1 

servation of mass flux (5,1) implies that P1 = P2 . Then (5.32) and (5.33) give 

( = e2 which implies that P2 = pI. Putting this into (5.32) gives Bi =B2 

Thus, if iC1 = 1 , then B, = .32 and p, = P2 . However, if gi 2,B' 1 #B 2 ; this 

important fact was first noted by Hudson (19 70). 

Evidence for Alfven shocks was found by Belcher and Davis (1971) in the 

Mariner 5 plasma data of Bridge, Lazarus, and Snyder and the magnetic 

field data of Coleman, Jones and Smith. This is shown in Figure 42, 
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vhere it is seen that (5.31) with e, = e2 = 1 is satisfied for at least 2 discon­

inuities. There was no appreciable change in n, as required for an Alfven 

;hock with 6, = 62. No temperature measurements were given, but presumably 

iT1= E2. It was found that B, = 32, but this result is not independent of an 

Lssumption which was made to obtain the spacecraft field. 

klfven shocks may be pictured as propagating "kinks" in the interplanetary 

nagnetic field. Parker (1963) was the first to suggest that they are present 

Lnd indicated that they might be important as cosmic ray scattering centers. 

uenbyet al. (1970) have given this idea some experimental support. No 

neasurement of the speed of an Alfven shock has been made. 

Classification of Shocks. Here we simply note how the types of shocks 

liscussed above can be viewed as different solutions of (5.7), which can be 

vritten 

Bit 	Pi VA2 (1 - M 2 ) -Bt p2 V' 2 (1 - (5.34) 
11 Al 2t2A2 A2 

Parallel shock: B = 2t= 0 

Perpendicular shock: V'2 VA2 0 

Alfven shock: MAI= 1; MA2 = 1 

Fast Shock:MA1 > 1 M 2 > 1 

(n, = n 2 shock. Ft =p 2 )
 

Slow shock: MA' <1; MA2 <1
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Other solutions are formally possible: lviAI = 1, MA12 I (switch-off shock). 

MAI 1, MA2 = 1 (switch-on shock); Mt > 1, M 2 <1; MA <1,MA >1. 

But these are not "evolutionary", and they are not expected to be observed in 

the solar wind. 

VI. Summary and Discussions of Problems for Future Study 

We have considered the applicability of hydromagnetic theory to the study of the 

microstructure of the solar wind. In particular, we have presented the theory of 

hydromagnetic waves and discontinuities which is appropriate for the solar­

wind, and we have reviewed the experimental evidence for the various waves, 

discontinuities and some of the instabilities which are predicted by this theory. 

Nearly all of the discontinuities given by the theory have been shown to exist in 

the solar wind. These include tangential discontinuities, forward and reverse 

fast and slow shocks, perpendicular shocks, and Alfven shocks. Parallel shocks 

have not been found; their existence would be of special interest, since it would 

be clear evidence for the existence of a longitudinal wave mode and would show 

in the simplest form the way that the anisotropy changes across a shock. Con­

tact discontinuities have also not been found; their discovery would tell us some­

thing about the diffusion of particles along B. The origin of all types of discon­

tinuities (except some of the fast shocks, which are caused by solar-flares) is 

one of the outstanding problems. The mutual interaction of discontinuities and 

the intersections of discontinuities is justbeginning to be studied. The structure 

of discontinuities is an important subject which can only be studied :by multiple 
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spacecraft observations with high time resolution instruments; it is not clear 

to what extent this problem can be treated by the MHD approximation. 

The study of waves is in a somewhat less satisfactory state. Alfven waves have 

been identified with some certainty, but their propagation speed and the dispersion 

relation have not been measured. It is not clear whether or not an acoustic wave 

can propagate along a. The existence of slow shocks in the solar wind and the 

theory of ion acoustic waves in a collisionless plasma indicate that acoustic 

waves do exist in the solar wind, but they have not been measured directly and 

there are theories which suggest that particle motions parallelto B are not 

strongly coupled, in which case acoustic waves could not propagate. Sinusoidal, 

compressional oscillations have been observed, which may be magneto-acoustic 

waves, but more precise density and velocity measurements will be needed to 

positively identify such waves. Evidence for the fast magneto-acoustic mode, 

propagating anisotropically as predicted by MHD and particle orbit theory, has 

been found in the lunar Mach cone. However, it has not been established that 

the corresponding slow mode can propagate. Future studies of flow past some 

of the outer planets will be especially significant in this regard if the solar wind 

becomes transonic or subsonic there and retains its characteristics as a hydro­

magnetic fluid. The firehose instability has often been discussed in reference 

to the solar wind, but its existence has not been firmly established. It is clear, 

however, that the instability is not as universal as some authors have suggested. 

More work needs to be done in this area. 
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The experimental results which we have reviewed show without doubt that 

hydromagnetic theory is applicable to the solar wind. Many of the consequences 

of this theory remain to be worked out. Nonlinear theories of waves, instabilities, 

and interaction of discontinuities and waves are particularly needed. One would 

also hope for future developments and solar wind applications of the MHD theory 

of turbulence, boundary layers, and flows past obstacles. Experimentally, the 

need is for higher time resolution, greater precision and simultaneous measure­

ments of B and the distribution functions of protons, at s and electrons from at 

least 2 space probes. 
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Figure 1. This defines the scales in terms of characteristic times, 

frequencies, and lengths. Some characteristic features seen on the 
different scales are shown. E is the energy of a proton whose gyro 
radius is the scale length in a 5y field. 
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Figure 2. The 3 basic waves in a compressible, hydromagnetic fluid. 
Top: longitudinal, acoustic wave. Middle: magneto acoustic wave. 
Bottom: Alfven wave. 
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Figure 4. Observations of an Alfven wave. This shows a nearly 
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component of the bulk speed (VR) and the radial component of 
B (Bx). 
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shown here were computed from the arrivaltimes atthe 3 spacecraft which are shown.
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Figure 35. Observations of 2 fast shocksi The-solid horizontal segments are 
are averages, the dashed segments are Chao's "best-fit" values. 
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Figure 39. Observations of a forward slow shock. 
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Figure 40. Observations of a reverse slow shock. 



ALFVEN ,SHOCK

ROTATIONAL DISCONTINUITY
 

BV 

Figure 41. Alfven shock, 

111
 



R5g C.~.~l 

IO
'
 

166 . 6h 52m23s 166 d 7h130439 166 d 9h 53M375
 

a bc
 
Figure 42. Oboservations of Alfven shocks. 


