General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Communications of the
LUNAR AND PLANETARY
LABORATORY

Communications Nos. 153–159

Volume 8 Part 5

THE UNIVERSITY OF ARIZONA

1970
Communications of the Lunar and Planetary Laboratory

These Communications contain collections of empirical data in the following areas: lunar coordinates and coordinate system; lunar and related terrestrial volcanic and tectonic structures; planetary photography; ground-based planetary and satellite spectra with solar and laboratory comparison spectra; high-altitude planetary and solar spectra; and selected reprints of LPL material published elsewhere. When a large format is required, the material is published in the LPL Contributions, 1-4 being Lunar Atlases, and subsequent volumes expected to deal with solar and planetary infrared spectroscopy.

The University of Arizona
Tucson, Arizona

GERARD P. KUIPER, Director
Lunar and Planetary Laboratory

Editor, G. P. Kuiper; Assistant Editor, Mildred S. Matthews

Published with the support of the National Aeronautics and Space Administration, and National Science Foundation

Library of Congress Number 62-63619
No. 153 DEFINITIVE ORBIT OF COMET 1940d-1940IV
(WHIPPLE-PARASKEVOPOULOS)

by G. VAN BIESBROECK
May 25, 1970

ABSTRACT.

Using all available measures a final orbit was deduced, which comes out elliptical with a period of 432 years.

On September 30, 1940, F. L. Whipple (1940) announced the discovery of Comet 1940d=1940IV on a Harvard patrol plate of the Aquila region taken on August 18. The comet appeared as a 10.5 magnitude, round coma moving southwestward. Its image was subsequently recognized on several earlier patrol plates beginning on July 29. The comet had also been recorded on a number of patrol plates taken at Sonneberg and at Bloemfontein. Further, it was found independently by J. Paraskevopoulos (1940) on October 8, hence the names of the two discoverers. By that time the comet had moved far into the Southern Hemisphere. J. Bobone at Cordoba and B. Dawson at La Plata (Argentina) obtained the first accurate positions on October 4. The magnitude was called 11.8 at that time. The latter observer was the only one who followed the comet as it slowly faded. His long series of measures extends to January 1, 1941. He did not record any estimates of brightness. By the time of his last measure the magnitude must have been around 15, and since the declination was then -48°, no northern observers contributed any measures thereafter.

Preliminary parabolic orbits were obtained by Whipple and by J. A. Maxwell from positions on patrol plates taken between July 29 and August 10:

<table>
<thead>
<tr>
<th></th>
<th>WHIPPLE</th>
<th>MAXWELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Oct 7.894</td>
<td>Oct 7.881 UT</td>
</tr>
<tr>
<td>ω</td>
<td>235°16'</td>
<td>235°15'6'</td>
</tr>
<tr>
<td>α</td>
<td>134 10</td>
<td>134 9.8</td>
</tr>
<tr>
<td>i</td>
<td>55 12</td>
<td>55 10.6</td>
</tr>
<tr>
<td>q</td>
<td>1.0875 AU</td>
<td>1.08756 AU</td>
</tr>
</tbody>
</table>

The last observation, on January 1, 1941, gave the residuals: $+2^m19^s$ and $+22^\circ6'$, from Maxwell's orbit. Since these residuals are too large for a differ-
entential correction, I computed a better parabolic orbit, but it still left residuals of nearly 4'. B. G. Marsden kindly supplied a more accurate elliptic orbit (private communication), which was used as a basis for a differential correction:

\[T \quad 1940 \quad Oct \quad 8.2478 \quad ET \]
\[\omega \quad 235.7295 \]
\[\Omega \quad 134.3663 \quad 1950.0 \]
\[i \quad 54.6984 \]
\[q \quad 1.082247 \quad AU \]
\[e \quad 0.981073 \]

Table I shows the residuals from these elements.

Table I

<table>
<thead>
<tr>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940 Aug 2.4</td>
<td>261°34'56.0"</td>
<td>116</td>
<td>33</td>
<td>34.1</td>
<td>1950.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i'</td>
<td>40</td>
<td>49</td>
<td>48.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

from which the coefficients of the equations of condition were deduced in the equatorial system.

Next the planetary perturbations were computed in 10-day intervals, taking October 8.0 as the date of osculation. The small values interpolated for the dates of the normal places are found in Table II.

The least squares solution was performed on the IBM-1130 computer of the Lunar and Planetary Laboratory with the result:

\[\Delta \omega' = -0.16 \pm 0.27 \]
\[\Delta \Omega' = +0.33 \pm 0.55 \]
\[\Delta i' = +0.35 \pm 0.15 \]
\[\Delta e = +0.00000058 \pm 0.000000302 \]
\[\Delta q = -0.00000175 \pm 0.00000058 \quad AU \]
\[\Delta T = -0.2179 \pm 0.366 \quad day \]

The elliptic nature of the orbit is confirmed, and the final representation is as good as one can expect. The corrected equatorial elements were next transformed into ecliptic ones and reduced to the equinox of 1950:

Equatorial

\[\omega' = 261°34'55.8" \]
\[\Omega' = 116 \quad 33 \quad 34.1 \]
\[i' = 40 \quad 49 \quad 49.05 \]

Ecliptic

\[\omega = 235°43'44.7" \]
\[\Omega = 134 \quad 18 \quad 38.3 \quad 1940.0 \]
\[i = 54 \quad 43 \quad 5.8 \]
\[e = 0.9810716 \]
\[q = 1.0823270 \quad AU \]
\[T = 1940 \quad Oct \quad 8.0299 \quad ET \]

The semi-major axis becomes 57.18007 AU corresponding to a period of 432.4 years.

Acknowledgment. Support of this work under Grant No. 17784 by the National Science Foundation is hereby gratefully acknowledged.

REFERENCES

No. 154 THE ORBIT OF COMET NEWMAN 1932f-1932VII

by G. VAN BIESBROECK

ABSTRACT

Using 82 observations covering an interval of 213 days, a definitive orbit is obtained, taking planetary perturbations into account. The orbit comes out very nearly parabolic.

This faint comet was discovered by K. A. Newman on a plate taken at the Lowell Observatory, Flagstaff, on June 20, 1932. It appeared as a 12.5 mag. centrally condensed, diffuse coma of about 40" in diameter, moving slowly in a northwesterly direction. Being conveniently located it was immediately taken under observation at many observatories. Newman found the comet also on two prediscovery Lowell plates, taken June 1 and 7, and this enabled F. L. Whipple and L. E. Cunningham (1932) immediately to compute an orbit showing that perihelion was due on September 24. Since the June 1 and June 7, 1932, positions were based on contact positives (HAC 249, 1932), I inquired at Lowell Observatory if I could measure the comet on the original negatives. Unfortunately, the originals could not be located, according to Henry L. Giclas. Most observers described the comet as a round coma, but H. M. Jeffers (1932) noticed, on a 20-minute exposure taken July 6 with the Crossley reflecor, that there was a faint fan-shaped tail extending towards the southeast. With the 24-inch reflecor at Yerkes Observatory I recorded a tail 2' long in position angle 160° on July 8, and on August 6 the length was estimated as 3' in the direction 150°. The brightness changed very little during the first two months of visibility, but the comet began to fade in October so that observations became scarce. I recorded Comet Newman for the last time on January 20, 1933, when the total brightness was reduced to 15 mag. After that the comet was lost in the evening twilight. The measures cover an interval of 213 days.

Preliminary orbits were deduced by Whipple and Cunningham, as well as by M. Davidson (1932). A more accurate parabola was computed by A. S. Schmitt (1933), who used observations from June 21 to July 22. He noticed a slight systematic run in the residuals, however, pointing to an eccentricity $e = 0.999838$. I have used his parabolic orbit as a basis for the differential correction:

$$\omega = 69^\circ 48' 20.4''$$
$$\Omega = 245 08 22.6 \quad 1932.0$$
$$i = 78 23 0.9$$
$$q = 1.647061 \text{ AU}$$
$$T = 1932 \text{ Sept 24.55930 UT}$$

Table I gives the residuals from the 82 measures between June 21, 1932, and Jan 20, 1933, that were kept after we discarded a few that showed abnormal deviations. The positions were re-reduced with improved values for the coordinates of the comparison stars.
The residuals were grouped in 11 normal places as shown in Table II. The equations of condition were computed in the form given by G. Stracke (1929). For that purpose the ecliptic elements were computed by taking the perihelion as time of osculation. Our elements are referred to a date six days later. That small difference should be entirely negligible. The values of original and future 1/a come out +0.00319 and +0.00048 so that the future orbit becomes even more elliptical than the osculating one, although the corresponding period is many thousands of years.

Acknowledgment. Support of this work by the National Science Foundation under Contract GP-17784 is hereby gratefully acknowledged.

REFERENCES

No. 155 THE ORBIT OF COMET 1941c–1941 IV (DE KOCK-PARASKEVOPOULOS)

by G. VAN BIESBROECK

ABSTRACT

The 156 observations of Comet 1941c, covering an interval of 268 days, have been grouped in 7 normal places. The differential correction led to an elliptic orbit with an eccentricity of 0.9999574. Both the original and the future values of the reciprocal semi-major axis remain positive.

On the morning of January 15, 1941, when the variable-star observer R. P. de Kock, at Paarl (S.A.), set his telescope on R Lupi, he discovered a comet which he estimated with the naked eye as of 5.8 magnitude. He reported his discovery to the Royal Observatory, Cape Town. The brightness increased rapidly during the following days. The comet was independently picked up by J. S. Paraskevopoulos at the Boyden Station, Bloemfontein, on January 23 when he called the brightness 3.5 magnitude and estimated the tail as 5° in length. That same morning the comet was independently found by R. Grandón at Santiago (Chile) and on January 24 by M. Dartayet, J. Bobone and Cecilio at Córdoba (Argentina) and by E. Roubaud and A. Pochintesta at Montevideo (Uruguay). By that time the comet had reached second magnitude. As a naked eye spectacle the comet was at its best on the evening of February 2. R. H. Stoy (1941) gave a detailed description of the tail activity, which he compared with that of Donati's comet 1858 VI. On January 30 the comet came within 0.26 astronomical units of the earth. Its motion was then as fast as 27″ per minute of time. Insufficient precision of timing may partly account for the scattering of some of the measures at the time.

After the full moon on February 12 the comet was less bright but was abundantly observed. On February 19 no less than ten observations were reported. On March 16 the magnitude was estimated at 8.0 by both E. Loreta and E. Buchar. Measures continued until March 29 when I last recorded the comet at low altitude in the evening sky. After conjunction of the comet with the sun I picked it up in the morning sky when it was reduced to a round, diffuse coma of 12″ in diameter and magnitude 15. Only a small number of measures were obtained after that; the last one is by H. M. Jeffers at the Lick Observatory on September 17. He described the comet as a sharp coma of 10″ diameter and magnitude 17, surrounded by a faint haze.

Many computers deduced orbits from short arcs after the discovery. They showed that perihelion passage occurred on January 27, 1941, and that the comet moved in a retrograde orbit inclined only 12° to the ecliptic. I thought the best available orbit was the one obtained by Chang and Li (1944) from five normal positions by variation of geocentric distances. However, these elements left unacceptable residuals and something must be wrong with them. As a start for the differential correction I used instead the parabolic elements by Bobone (1941) based on Cór-
coba positions on January 25, February 13, and March 2:

\[T = 1941 \text{ January 27.66038 UT} \]

\[\omega = 268^\circ 40' 26'' \]

\[\Omega = 42 \ 15 \ 7.3 \]

\[i = 168 \ 11 \ 47.3 \]

\[q = 0.790012 \text{ AU} \]

Table I gives the residuals from this orbit. Some of the positions were given only approximately and deserved low weight. Others based on multiple exposures were of the highest weight. This was taken into account in grouping the 156 measures in the seven normal places listed in Table II. A number of measures showing unacceptable large residuals were omitted.

<table>
<thead>
<tr>
<th>TABLE I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuals (-0.9) C</td>
</tr>
</tbody>
</table>

1941 Jan 14.39379	0.025	0.025	0.025
1941 Jan 14.39379	0.025	0.025	0.025
1941 Jan 14.39379	0.025	0.025	0.025
1941 Jan 14.39379	0.025	0.025	0.025
1941 Jan 14.39379	0.025	0.025	0.025
1941 Jan 14.39379	0.025	0.025	0.025
1941 Jan 14.39379	0.025	0.025	0.025

<table>
<thead>
<tr>
<th>TABLE II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Places</td>
</tr>
</tbody>
</table>

1941 Jan 13.25	\(\Omega \)	0.25	0.25	0.25
1941 Jan 13.25	\(\Omega \)	0.25	0.25	0.25
1941 Jan 13.25	\(\Omega \)	0.25	0.25	0.25
1941 Jan 13.25	\(\Omega \)	0.25	0.25	0.25
1941 Jan 13.25	\(\Omega \)	0.25	0.25	0.25
1941 Jan 13.25	\(\Omega \)	0.25	0.25	0.25
1941 Jan 13.25	\(\Omega \)	0.25	0.25	0.25

Planetary perturbations were computed in 20-day intervals for the planets Venus to Neptune and interpolated for the dates of the normal places. The date February 5 was used as osculation time. The results are given in Table IV. The equations of condition were computed in the form given by Stracke (1929) for which it was necessary to transform the eclipse elements into equatorial ones:

\[\omega' = 151^\circ 14' 13^\circ 9' \]

\[\Omega' = 19 \ 17 \ 11.4 \]

\[i' = 163 \ 23 \ 26.7 \]

The least squares solution was performed on the IBM 1130 computer of the Lunar and Planetary Laboratory. The final corrections and their probable errors came out as follows:

\[\Delta \omega' = +4.65 \pm 0.46 \]

\[\Delta \Omega' = +1.01 \pm 0.78 \]

\[\Delta i' = -1.01 \pm 0.24 \]

\[\Delta \epsilon = -0.0000426 \pm 0.0000098 \]

\[\Delta q = +0.0000008 \pm 0.0000003 \text{ AU} \]

\[\Delta T = -0.0014865 \pm 0.0000674 \text{ day} \]

Then the final elements (osculation date 1941 Feb. 5.0) are:

<table>
<thead>
<tr>
<th>Equator 1941</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega' = 151^\circ 14' 19.6')</td>
</tr>
</tbody>
</table>
| \(\Omega' = 19 \ 17 \ 11.4 \)
| \(i' = 163 \ 23 \ 25.7 \) |

<table>
<thead>
<tr>
<th>Ecliptic 1941</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega = 268^\circ 40' 25.6')</td>
</tr>
</tbody>
</table>
| \(\Omega = 42 \ 15 \ 10.3 \)
| \(i = 168 \ 11 \ 48.8 \) |

<table>
<thead>
<tr>
<th>Ecliptic 1950</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega = 268^\circ 40' 10.2')</td>
</tr>
</tbody>
</table>
| \(\Omega = 42 \ 22 \ 57.7 \)
| \(i = 168 \ 11 \ 51.6 \) |

C = 0.9999574

q = 0.790012 AU

T = 1941 Jan 27.658892 UT \(\approx \) Jan 27.659176 ET

To complete the information about this comet it is necessary to establish what the original and future
values of the eccentricity are when the comet is far removed from the center of the solar system. Dr. B. G. Marsden kindly offered to perform the necessary computations on the CDC 6400 computer of the Smithsonian Astrophysical Observatory in Cambridge. From the above elements $1/a = +0.0000539$ results for the value of the reciprocal semi-major axis at the time of osculation 1941 Feb. 5.0. The result of the computation is as follows:

<table>
<thead>
<tr>
<th></th>
<th>(1/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osculation 1941 Feb 5.0</td>
<td>+0.0000539</td>
</tr>
<tr>
<td>Perturbations 1941–1921</td>
<td>+0.0009583</td>
</tr>
<tr>
<td>Reduction to barycenter</td>
<td>-0.0000655</td>
</tr>
<tr>
<td>Original value (1921 Jan 31.0)</td>
<td>+0.0009467</td>
</tr>
<tr>
<td>(at (r = 40.5) AU)</td>
<td></td>
</tr>
<tr>
<td>Perturbations 1941–1961</td>
<td>-0.0001979</td>
</tr>
</tbody>
</table>

This shows that the comet is a permanent member of the solar system.

Acknowledgment. Support of this work through Grant GP 8059 of the National Science Foundation is hereby gratefully acknowledged.

REFERENCES

This paper supplements LPL Comm. No. 142 in four areas: (a) The Polar plains and plateaus are moderately accessible in summertime and, because of their very low surface temperatures in winter, would appear to present special opportunities for IR observations. Upon closer examination this is only partly confirmed: very strong inversions build up in winter by radiative cooling over near-level areas, and these are in no way indicative of the warmer and more humid air above. The South Pole, because of its greater elevation, has less humidity in both the surface and upper atmosphere but has no transportation during the 6 months' winter, when astronomical observations requiring dark skies must be made. (b) Polar or Sub-Polar stations on isolated peaks will project above the inversion layer and would appear more suitable. Mount Wrangell (14,000 ft), intermittently used in the 1950's in cosmic-ray research; the Arctic Station on Mt. Logan (17,600 ft); and high mountains in the Antarctic, are briefly reviewed. Manning any of these stations in winter appears to present almost insurmountable problems, and the water-vapor contents would not be drastically less than for middle-latitude stations. Furthermore, the planets could, at best, be observed only near the horizon. (c) For the mid-latitudes in the Northern Hemisphere, additional reports are made on two potential sites, White Mountain (37° N) and Mt. Shasta (41° N), California; and one new IR observatory site, Mt. Lemmon (32° 4'), Arizona. A first approximation of the relative merits of these and other Northern sites is shown in Fig. 32 (using H_2O and altitude as coordinates, with cloudiness sketched out broadly); but orographic effects, image quality, and sky noise require on-site studies; and even then logistics and local supporting or adverse interests may be decisive. Mt. Lemmon is in a dry and shielded area (low wind velocities) and can thus make major contributions to IR astronomy. White Mountain is more exposed, more remote, and has stronger orographic effects; but the H_2O content is small, and intensive exploration and use of the summit appears highly justified. Such a program is now scheduled by the University of California. Other comparative studies of sites are made under NASA sponsorship. (d) For the Southern Hemisphere, two promising regions are examined, the lower Western Andes (up to 16,000 ft) between 16° and 29° S in Chile and S. Peru, shielded from the moisture of the Amazon Basin and the Atlantic, and facing the Atacama Desert; and the Eastern Andes W of Mendoza and San Juan, Argentina, around 32° S, shielded from the Pacific. Some meteorological data for both regions are available from observatory sites and are collected here. The best sites, W of the Andes in Chile, roughly agree with the best sites in the N. Hemisphere having similar elevations. In summary, the mid-latitudes in the two hemispheres contain the most promising IR observatory sites, but no absolute statements are possible, as is seen from the discussions accompanying Fig. 32. For amounts of water vapor below about 0.2 mm, aircraft or balloons must be used. Observers at high altitude must be aware of the medical results on high-altitude sickness. We are therefore pleased to be able to publish in LPL Comm. No. 157 an invited paper by a world authority on this subject. The importance of prior acclimatization for a few days at a base camp at around 9,000 ft, stressed in Paper I, is confirmed and documented; as is the importance to visiting scientists of the presence of medical assistance on a site well above 14,000 ft. Prof. Rennie's "Conclusions" deserve very careful consideration prior to doing any astronomical work well above 14,000 ft, even if pressurized rooms are used for living and sleeping quarters. An economic solution of the pressurization problem is described by Mr. E. de Wiese in Appendix II.
1. The Polar Regions — Low-Altitude Sites

(a) The Arctic — Because of the very low surface temperatures recorded in the Arctic in winter, one may inquire whether accessible sites would have special merit for IR astronomy. For instance, College, Alaska, is located just below the Arctic Circle (148°W, 65°N, 1,000 ft elev.). The Geophysical Institute of Alaska is located there. The region is shielded from the Pacific by the very high McKinley range, and it is open to the very cold flows from the Pole. The question is whether the low winter surface temperatures are at all indicative of a correspondingly low total H₂O content, or are due to Arctic air beneath warmer and more humid air.

Table 1 lists for four elevations the 5 and 25 percentiles of the dew points above College, Alaska, for the month of January, as derived from AFCRL Atlas (Gringorten et al., 1966). Especially for the most significant 5 percentiles, an inversion of the water-vapor distribution is clearly marked, with the total amount of precipitable water in the vertical column found to be 0.9 mm. The corresponding amounts for other stations are: Mt. Lemmon (Ariz.) 1.0 mm, Mt. Agassiz (Ariz.) 0.6 mm, and Mt. Shasta (Calif.) 0.35 mm (Paper I, Table 1). Actually, the mountain sites may, at night, be even better, owing to subsidence (I, p. 126).

(b) The Antarctic — The Antarctic is a large icecap surrounded by oceans, whereas the Arctic is an ocean surrounded by land masses. The oceans being more nearly isothermal during the year than the land masses, the summer heat flow into the Antarctic is much less than the summer heat flow into the Arctic. This, with the elevation difference, causes the Antarctic temperatures to be some 25°C lower. The monthly mean temperatures at the South Pole range from -25°C to -62°C; those of the Arctic basin, from 0°C to -35°C (Rubin, 1962).

The South Pole itself is 9,186 ft (2,800 m) above sea level, with an annual mean temperature of -51°C. It is the site of a permanent Station, Amundsen-Scott, operated by the U.S.A. The mean monthly temperatures are shown in Fig. 1 (Rubin,

<table>
<thead>
<tr>
<th>ELEV.</th>
<th>5%</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>970 (Al.)</td>
<td>-45°C</td>
<td>-37°C</td>
</tr>
<tr>
<td>1,150</td>
<td>-35°C</td>
<td>-27°C</td>
</tr>
<tr>
<td>1,200</td>
<td>-41°C</td>
<td>-33°C</td>
</tr>
<tr>
<td>500</td>
<td>-51°C</td>
<td>-46°C</td>
</tr>
<tr>
<td>592 (Sh.)</td>
<td>-38°C</td>
<td>-32°C</td>
</tr>
</tbody>
</table>

This result is consistent with a report by 6 Russian scientists (Vasil'chenko et al., 1968) who tested the area of extremely low temperature near Yakutsk, Siberia, 63°N (the "North Pole of Cold"), using IR and microwave spectroscopic equipment. Though the temperatures at the time of the observations were -60°C, the vertical column contained as much as 0.5 mm precip. H₂O, as determined from the 1.38 and 1.87 μH₂O bands. Earlier, about 1940, Prof. Gerhard Herzberg had a similar experience in Saskatoon, Sask., Canada. He found (Herzberg, 1970): "The results on the solar spectrum were very disappointing. Spectra taken at times when the outside temperature was -40°C had almost the same intensity of the H₂O lines as spectra taken under more normal conditions. In other words, low temperature of the observing station is no guarantee of low water-vapour concentration through the atmosphere. My feeling is, therefore, that there is no great advantage to be gained from going to Arctic stations for infrared astronomy. The important thing of course is to be as high as possible."

Thus, there are no special advantages using low altitude sites in the Arctic. Isolated mountain peaks no less than 10,000 ft (3 km) high, well above the inversion layer, may be of interest.

Fig. 1 Mean monthly temperatures at Amundsen-Scott Station, South Pole (Rubin, 1962).
op. cit. p. 91). The Station was activated during the International Geophysical Year and has been described in detail, among others, by P. A. Siple (1957, 1958).

Dr. Siple's descriptions and illustrations leave no illusions about making astronomical observations from the South Pole. At the end of the first winter at the Station, September 17, 1957, he recorded an outside temperature of \(-102^\circ F = -74.5^\circ C\), saw a person leaving a 100-meter vapor trail (ice fog), photographed a person who had been "observing" for 4 hours (a picture that defies description; op. cit., p. 445).

The author has had the benefit of discussions with Dr. Dietmar Schumacher, who participated in a geological-paleontological expedition to the Antarctic and landed on several mountains between Victoria Land and the Pole; and Mr. Henn Oona, who spent 13 months at the South Pole itself. There are serious obstacles for using the South Polar Station for astronomical observation. A minor one is the Station moves about \(\frac{1}{2}\) meter a day; the Station itself is buried in the glacier and is covered with some 10 ft of snow. There is no bedrock in the vicinity on which to build a major fixed installation. Snow quakes, lasting several seconds, occur about once a day which may cause changes in leveling. The blowing snow is at times a serious obstacle to survival except undergroud, but winds rarely exceed 40 mph. Ten to fifteen persons stay at the Station during the winter, which cannot then be reached from the shoreline. One reason is that below \(-50^\circ C\), aircraft break components upon landing; and that landing away from the Base is likely to be fatal. The complete inaccessibility during about 7 months will limit useful observations. This does not include light ice fogs.

Humidity data are available up to the 450-mb level. In Table 2 we summarize the data for winter of 1965, listed by monthly averages (Climatological Data for Antarctic Stations, 1965), and the average for the entire winter. They were all obtained at 0h GMT. It is noted that the frigid boundary layer is thin; less than 1,000 ft (300 m) above the Station, the temperature is on the average \(17^0\) C higher than at the surface. Dr. Siple reports differences of \(72^\circ F = 40^\circ C\) over the lowest 1,400 ft (op. cit. p. 449), a condition that incidentally gives rise to unusual optical phenomena. The astronomical "seeing" (image quality) is, however, not as bad as might thus be expected, according to Mr. Oona who made visual observations of stars with a 6-inch telescope during the South Polar winter, away from the buildings.

If the vertical water-vapor distribution over the South Pole had the normal scale height of 1.6 km, the mean temperature of \(-59^\circ C\) and R.H. of 53\% (Table 2) would signify a total precip. H2O of only 0.011 mm. Actually, with the distribution given in Table 2, and with the 1.6 km scale height applying above 450 mb, the amount is 0.14 mm. This does not include light ice fogs.

Compared to observation from aircraft at ambient \(+20^\circ C\) through an atmosphere at \(-55^\circ C\) to \(-66^\circ C\) and total amounts of water vapor down to 0.006 mm (as the author experienced during 30 flights on NASA's CV-990) or Lear Jet observations with 0.002 mm (F. Low), IR observations from the South Polar Station at ambient \(-60^\circ C\) or \(-70^\circ C\), both through an atmosphere at \(-36^\circ C\) to \(-40^\circ C\) (Table 2) are at a double disadvantage. Yet, if the 7-month complete isolation is accepted, special programs of IR observations (such as an IR survey of \(-20^\circ C\) or thermal variations on Jupiter) would be possible, assuming that the image quality is accept-
able and that the programs will allow the observer to withdraw underground at frequent intervals, and that he can produce his own liquid helium, repair his electronics, etc.

2. The Polar Regions — High-Altitude Sites

Only above isolated peaks projecting well above the inversion layer, will near-normal water-vapor gradients occur and a reasonable balance exist between the difficulties of operation and scientific returns. IR Astronomy has parallel interests with Cosmic-Ray Physics in the establishment of high-altitude sites. The criteria are not identical, however, since IR Astronomy is interested not in the overlying air mass, but in the water vapor; and cosmic-ray observations can presumably be more readily automated and therefore be installed on very high mountains.

A very remarkable and courageous effort was made in 1947 by Prof. Marcel Schein and colleagues of the University of Chicago on Mt. McKinley (summit, 20,269 ft), occupying Delani Pass (19,000 ft), with the camp supplied by air drops. In 1952 Prof. Serge A. Korff of Columbia University made a survey of Alaskan peaks jointly with Dr. Terris Moore, President of the University of Alaska (who piloted the light plane), and landed on many peaks considered previously inaccessible (Korff, 1952). They found that Mt. McKinley presented “considerable atmospheric turbulence” and is accessible by air only about “one day per week”; it has “the most adverse flying conditions of any region that we considered.” Mt. Wrangell offers about two good flying days a week, with numerous levels, up to 14,000 ft, to permit landing. A ground party from Gulkana would require about one week to reach the summit. “Five trips by air, requiring less than a full day, will enable a ton of equipment and supplies to be delivered” (Korff, 1952).

Dr. Korff and Moore established a cosmic-ray station on Mt. Wrangell (62° N, 144° W, 14,006 ft = 4,270 m) in 1953 (Korff, 1953). The author two reports on meteorological observations made during summer months. Unfortunately, no half-way station exists at the 9,-12,000 ft level (Paper I, Sec. 3), the only settlements being Copper Center, 43 air miles away, at 1,100 ft, and the FAA Post at Gulkana, 30 miles farther North, referred to above. Dr. Mather points out that Mt. Wrangell is a mildly active volcano with natural heating available just under the snow, and used to heat a shelter still existing.

If an Alaskan site near the 9,-12,000 ft level could be found with more than 40-50% clear weather in winter, it could probably be occupied for extended periods without great risks, and make a special contribution to IR Astronomy. (The annual mean daytime sky cover is around 70% for most of Alaska.)

The Arctic Station on Mt. Logan, Canadian Yukon, (60° 36' N, 140° 30' W, 17,600 ft = 5,360 m) was established in 1967 by the Arctic Institute of North America. In the following Communication, Prof. J. Drummond Rennie, M.D., describes the experience gained on Mt. Logan since 1967 and integrates this experience with that obtained by him and others in the Altiplano of S. America, Nepal, and elsewhere. A topographic map of the region is shown in Fig. 2, with the Station position marked with a cross. Fig. 3, taken by Mr. R. Turner of LPL, shows the plateau of the Station at the right, as seen from the NE, with Mt. Logan at the left. The lower reaches of the St. Elias Range contain the most extensive glacier field in North America outside the Arctic proper. Since the dynamics of glacier flow is so analogous to that of enormous lava flows as observed on the Moon’s Mare Imbrium, one view is reproduced in Fig. 4.

Dr. Melvin G. Marcus, Chairman, Department of Geography, University of Michigan, one of the leading members of the Arctic Institute, sent the author two reports on meteorological observations on Mt. Logan carried out by his group in 1968 and 1969. The observing periods were July 2-August 2, 1968, and June 28-July 28, 1969. Table 3 quotes from his report (with J. R. La Belle) in Arctic and Alpine Research (Vol. 2, No. 2, pp. 103–114, 1970). With the mean 1969 temperature of −17±4°C and mean relative humidity of 73±% the mean precip. H2O is found to be 1.8 m if the scale height is 1.6
Fig. 2 Section of topographic map near Mt. Logan. Contour interval 500 ft.

Fig. 3 Mt. Logan, Canadian Yukon, looking SW from 12,500 ft. Station located near reflection from ice at right. (R. Turner)
km. (This value is uncertain; it could be both larger in the Arctic summer and smaller, due to evaporation of the glacier.) Since combining average humidities and temperatures cannot give reliable moisture contents, we use alternatively, the mean humidities at night when the sun does not strike the snow, measured to be often around 90%, with the mean nightly minimum temperature −23°C, and find 1.1 mm, probably a better value; and probably more appropriate than the median value of 0.5 mm found in Paper I (p. 135) on the assumption that free-air conditions pertain (Mt. Logan is not an isolated peak). Direct H₂O measures on the sun are needed. The percentage of cloudiness (60% in 1968, 49% in 1969) is not much below that of Alaska. The day-by-day breakdown is shown in Fig. 5 (op. cit. Fig. 5); together with the barometric pressure (well correlated).

It is concluded that the water vapor above the Mt. Logan Station in summer is similar to Mauna Kea year-round or Mt. Lemmon in winter (cf. Fig. 32, below); but the cloudiness is greater and there is no true darkness for astronomical observation (except for daylight sources).

The Antarctic Continent has numerous peaks that presumably project above the inversion layer. The highest point is the Vinson Massif (16,860 ft = 5,140 m) in Ellsworth Land; numerous peaks, 8,14,000 ft, exist between 70° and 85° S, 160°-170° E (Victoria Land). Several of these peaks, up to 12,000 ft, were visited by Dr. Schumacher during the Polar summer, using aircraft on skis. He reports that the atmosphere is clear approximately 2/3 of the summertime and that clouds usually stay below 10,12,000 ft. Presumably, in winter the clouds are lower. The mountain tops are usually bare rock or only thinly covered with snow, because precipitation is very light and the wind blows the snow away. The normal wind velocity was around 15 mph, though
winds up to 70 mph were experienced, and much higher winds are known to occur (the "Roaring Forties" extend to the Antarctic). Dr. Schumacher considers these mountains inaccessible during the Polar winter, not merely because of the flying hazards, but because aircraft are dismantled for the winter and shipped, e.g., to New Zealand. While servicing one of these peaks from New Zealand, during the daily brief twilight hours might at times be feasible, the dangers of maintaining a manned station on one of these peaks for even limited periods in winter would seem too great. Also, construction costs would be at least 2 orders of magnitude above normal.

3. Mid-Latitudes — Northern Hemisphere

In Paper I (Table 1) a dozen Northern sites were marked as meriting further studies. We are here presenting additional data on three selected sites, two in California, just above 14,000 ft; and one in Arizona, at 9,200 ft. The first two are in the 0.5 mm H₂O class, requiring transportation by turbo-helicopter, and potentially the best in the U.S.A. The Arizona site, with 1.4 mm H₂O (25%, 9 months) but, of course, better in winter, is readily accessible and is now designated as an IR Observatory, with its initial development underway. In this Section we assemble the supplementary information for these sites. The Mauna Kea Observatory (1.1 mm H₂O) completed earlier in 1970, is a good site year-round.

(a) White Mountain, California — In Paper I (p. 136) reference was made to the paper by O'Connor, Welch, and Tayeb of the Space Sciences Laboratory of the University of California (Berkeley), "Progress Report on the Evaluation of the Barcroft Area, Eastern California, as Infrared Telescope Site." Prof. Nello Pace, Director of the White Mountain Research Station of the University of California, called my attention to the additional facilities of the Station (Fig. 6). Personnel transportation is by
Fig. 7 Two photographs of White Mountain Research Station, University of California, taken mid-winter (courtesy Dr. Nello Pace, Director). Lower view shows Sierra Nevada in background, heavily snow covered.
supercharged helicopter from the Station facility at the Bishop Airport, the connecting road being unusually long for the aerial distance and used only for construction items and heavy supplies. (This mode of transportation is not without danger, two non-fatal crashes having occurred on the mountain.) Four photographs of the summit and its shelter are reproduced in Fig. 7-9. It is seen that the winter snow cover is light. The Barcroft Laboratory is occupied on a year-round basis, as is the Crooked Creek Laboratory. A reproduction of the scale 1:62,500 topographic map of Barcroft and the White Mountain summit is found in Fig. 10.

For the Barcroft Laboratory 15 years of meteorological data are available (Pace et al., 1968), summarized in Table 4; and more recent astronomical data are found in Table 5 and in the text. The coldest nights of each of the 15 years are scattered, remarkably, over 7 months: Oct., Nov., Apr., each 1; Jan., 2; Dec. 3; Feb. and Mar., each 3½. Coldest nights below \(-30^\circ C\) occurred on Mar. 6, 1956; Nov. 17, 1958; Jan 4, 1960; Mar. 10, 1964 (record); Dec. 13, 1967, indicating that a heavy snow load on the continent is not a precondition (though March is statistically probably the best month).

If the mean daily minimum temperature for January, \(-13.4^\circ C\) (Table 4) is combined with the mean relative humidity at 8 A.M., 65.0%, one finds the absolute humidity of about 1.04 g/m³. The daytime radio-sonde data by O'Connor et al. (1969) indicate the average scale height to be only 0.8 km, which, if valid also at night, puts the mean sunrise \(H_2O\) at 0.84 mm. The median of 30 surface (daytime) solar measures, February-March 1968, is also 0.84 mm (O'Connor et al., 1969, Table 16). For April and May 1968 the median from 32 solar measures, all but 8 between 7 and 12 A.M., was 1.2 mm. Twenty-two surface relative humidity measures, made on clear days at 8 A.M., Dec. 1967-Feb. 1968, yielded the medians: temperature \(-12.5^\circ C\),
relative humidity, 36% and 0.40 mm H₂O (if H = 0.8 km). The lowest T recorded was -30°C (R.H. = 40%), quite exceptional (cf. Table 4); here the mean H = 0.8 km probably did not apply so that the computed H₂O, 0.11 mm, will be a lower limit. The next lowest values were -24°C (R.H. = 61%) and 0.32 mm. The distribution of cloud cover

for both day and night, recorded by all-sky cameras (O'Connor et al., Table 2), is quoted in Table 5 (about 50% good nights).

TABLE 5
PERCENTAGE CLOUD COVER, BARCROFT LABORATORY FOR ENTIRE SKY, JULY 1967-MARCH 1968

<table>
<thead>
<tr>
<th>% Cloud Cover</th>
<th>Day</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>1-25</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>26-50</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>51-75</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>76-100</td>
<td>21</td>
<td>25</td>
</tr>
</tbody>
</table>

White Mountain (Barcroft) was included in an important study supported by ONR, extending over about 14 months, 1948-1949, of the coronographic quality of the sky in comparison with Sacramento Peak, New Mexico, and Climax, Colorado. The site was found considerably better than the other sites (some 4th daily average of excellent coronographic quality), but was not chosen for development apparently because of its remoteness. (The author is indebted to Dr. N. Pace for a copy of the report.) This program led to the establishment of the Barcroft Laboratory.

The University of California (Berkeley) started a visual stellar test program in 1962 with a 10-inch reflector, used near Barcroft (July and early Aug. 1962), the summit (mid-August 1962), and Crooked Creek (late August and Sept. 1962). The principal observer was Mr. E. Simpson. He found the image quality best at Crooked Creek, almost as good as at the Lick Observatory. His tests on the summit, for one week, were hampered by very strong west winds.

With NFF support the Barcroft site was used

Fig. 9 Close-up view of White Mountain Summit Laboratory, summer...

This program led to the establishment of the Barcroft Laboratory.

Table 4
NORTH SIMPSON, BARCROFT LABORATORY, 1953-1967
(extracted from Pace et al., 1968)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>+/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV MAX TEMP °F</td>
<td>65.3</td>
<td>65.3</td>
<td>64.9</td>
<td>64.6</td>
<td>64.1</td>
<td>63.6</td>
<td>63.1</td>
<td>62.5</td>
<td>61.7</td>
<td>60.8</td>
<td>60.0</td>
<td>59.0</td>
<td>60.0</td>
</tr>
<tr>
<td>AV MIN TEMP °F</td>
<td>68.4</td>
<td>68.2</td>
<td>68.0</td>
<td>67.8</td>
<td>67.5</td>
<td>67.0</td>
<td>66.7</td>
<td>66.3</td>
<td>65.9</td>
<td>65.5</td>
<td>65.1</td>
<td>64.8</td>
<td>65.0</td>
</tr>
<tr>
<td>AV MEAN TEMP °F</td>
<td>61.3</td>
<td>61.1</td>
<td>60.8</td>
<td>60.5</td>
<td>60.1</td>
<td>59.7</td>
<td>59.3</td>
<td>58.9</td>
<td>58.5</td>
<td>58.1</td>
<td>57.7</td>
<td>57.3</td>
<td>57.6</td>
</tr>
<tr>
<td>AV 8 AM R.H. %</td>
<td>64.7</td>
<td>64.5</td>
<td>64.3</td>
<td>64.1</td>
<td>63.9</td>
<td>63.7</td>
<td>63.5</td>
<td>63.3</td>
<td>63.1</td>
<td>62.9</td>
<td>62.7</td>
<td>62.5</td>
<td>62.8</td>
</tr>
<tr>
<td>AV SNOWFALL in.</td>
<td>2.3</td>
<td>2.1</td>
<td>2.0</td>
<td>1.8</td>
<td>1.6</td>
<td>1.4</td>
<td>1.2</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>AV SNOW DEPTH in.</td>
<td>0.0</td>
</tr>
<tr>
<td>AVG WIND</td>
<td>28.3</td>
<td>28.1</td>
<td>27.8</td>
<td>27.5</td>
<td>27.2</td>
<td>26.9</td>
<td>26.6</td>
<td>26.3</td>
<td>26.0</td>
<td>25.7</td>
<td>25.4</td>
<td>25.1</td>
<td>24.9</td>
</tr>
<tr>
<td>AVG WIND D Dir</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 5
PERCENTAGE CLOUD COVER, BARCROFT LABORATORY FOR ENTIRE SKY, JULY 1967-MARCH 1968

<table>
<thead>
<tr>
<th>% CLOUD COVER</th>
<th>Day</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>1-25</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>26-50</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>51-75</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>76-100</td>
<td>21</td>
<td>25</td>
</tr>
</tbody>
</table>
Fig. 10 Section of topographic map, White Mountain area. (The power line to the summit was lost the first winter due to icing conditions; it may be replaced with a ground cable. It has been touched out in our reproduction, and the jeep trail has been enhanced for clarity.)
also by Drs. B. Murray and J. Westphal of CIT in the 10 µ region, at a new observatory (cf. Fig. 10) housing a 20-inch (50.8 cm) telescope. The elevation was 12,800 ft = 3,900 m. They used it extensively during the summer and fall of 1962, with several important results (Murray and Wildey, 1963; Westphal et al., 1963; Murray and Wildey, 1964). Because of its remoteness (when reached by road) and the winter snows, the CIT astronomers abandoned the site in November 1962 and moved a 24-inch telescope to Crooked Creek Lab. (10,150 ft, cf. Fig. 6) by mid-1963. This site, E of the mountain range, was found less satisfactory at 10 µ (more sky noise) and was used only 1963–64.

The author has had the benefit of personal reports from Drs. Murray and Westphal, as well as of seeing a film they took in 1962 showing time-lapse photography of the atmospheric flow over White Mountain with a west wind, based on observed cloud formation on the west flank and cloud evaporation on the east flank. These orographic effects were found quite prominent whenever the wind was from the west, the normal direction. The strong 10 µ “sky noise” observed was also attributed to orographic effects (Westphal, Murray, Martz, 1963, p. 753). On the other hand, they considered working at the 12,800-ft level quite acceptable (though at the expected loss of efficiency; Dr. Westphal later continued his studies at Chacaltaya, Bolivia, at 17,600 ft = 5,350 m).

In July 1962 the CIT expedition obtained a set of meteorological and astronomical test data that remain of great interest. I am indebted to Dr. Westphal for permission to quote from the original records of which he kindly supplied photostatic copies. The meteorological data and a summary of the astronomical data are found in Table 6. The minimum temperatures agree with the average for Barcroft, 350 ft below, in Table 4, but the daytime temperatures are higher. This essentially accounts for the lower relative humidities, only ½ of those at Barcroft. The seeing records (17 sheets) cover observations of stars and planets during nightly runs of 4–7 hrs. each. The Jupiter satellites, on the nights observed, could nearly always be seen as clear discs, showing their diameters in the correct proportions.

The best IR location on White Mountain is probably the summit and the best period probably December-May, when the airflow is less dominantly oceanic and more often continental (or Arctic); and more often along, rather than across, the crest (Table 4). Because of the great importance to discover optimum ground-based IR sites, the IR tests at the summit, now scheduled by the University of California astronomers to start mid-January 1971, will be most important.

The author had the opportunity to inspect and photograph the White Mountain area from the NASA Lear Jet on November 16–17, 1970. The general topography is seen in Fig. 11. Figs. 12–16

Table 6

<table>
<thead>
<tr>
<th>Date</th>
<th>Clouds</th>
<th>Wind mph</th>
<th>Max 3-hr. Temperature °F</th>
<th>Hel. Stellar Seeing</th>
<th>Wet bulb</th>
<th>Dew Pt.</th>
<th>Net Humidity</th>
<th>Stellar Intensity</th>
<th>Seeing</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 29</td>
<td>0</td>
<td>SE 8</td>
<td>76</td>
<td>60</td>
<td>30</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td>July 2</td>
<td>0</td>
<td>SE 11</td>
<td>56</td>
<td>64</td>
<td>36</td>
<td>20</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td><5</td>
<td>SE 13</td>
<td>50</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>SE 10</td>
<td>40</td>
<td>60</td>
<td>30</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>SE 8</td>
<td>30</td>
<td>60</td>
<td>30</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>SE 12</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>SE 14</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>SE 16</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>SE 18</td>
<td>40</td>
<td>60</td>
<td>31</td>
<td>24</td>
<td>35</td>
<td>1°</td>
<td>1</td>
</tr>
</tbody>
</table>

Aver. **--** | **--** | 50.0 | 62.6 | 36.0 | 40.3 | 26.8 | 33.1 | **--** | **--**

A: Jupiter satellites clear discs; B: Saturn satellites <4°.
Fig. 11 White Mountain, seen from N, 41,000 ft, Nov. 17, 1970. Owens Valley (under haze) beyond; Mt. Whitney area of Sierra Nevada, 100 miles away, 1/5 from right; Mt. Piños, 230 miles away, NW of Los Angeles, behind defect. Haze below 5,000 ft over entire region.
Fig. 15. Summit area from S. Approach road visible (cf. Fig. 10). Extensive development possible on foreground plateau (summit 13,189 ft). Also suitable take-off point for small cable car to summit (1200 ft rise, dist. 1 mile).
Fig. 12. White Mountain summit area, Nov. 16, 1970, from W. Note light snow cover and approach from right; Nevada in background. Barcroft Lab. just off margin at right.
Fig. 13 As Fig. 12, from NW; surface approach from behind summit. Helicopter landing possible on "saddle" 1 inch left of summit. Crest to plateaus at lower 1-ft (13,900 ft, cf. Fig. 10), impassable. "Saddle" is about 180 ft below summit.
Fig. 16 Summit from W, like Fig. 12 but closer (light-colored wedge, 2 inches from right margin, also shown on Fig. 15 is sulphur, not snow).
show closer views of the summit area and the plateaus both to the south (in which the jeep road is built) and to the north. Hardly any snow had yet accumulated on White Mountain, whereas Mt. Shasta on the same date was heavily covered down to 9,000 ft. Additional photography is found in Appendix 1.

(The White Mountain region is unique in being the habitat of the Bristlecone Pine, the oldest-known living things on Earth, with trees having measured ages up to 4,600 years (Ferguson, 1968). These great ages were discovered by Prof. E. Schulman of the University of Arizona in the 1950’s; Fig. 6 indicates the location of the Schulman Memorial Grove.)

(b) Mt. Shasta — The possible interest of Mt. Shasta for IR astronomy was noted in LPL Comm. No. 142. Through the cooperation of the NASA-Ames staff, it was possible to use a technical flight of the CV-990 on June 19, 1970, for aerial photographic stereo coverage of Mt. Shasta and the measurement of atmospheric water vapor. A similar flight of the NASA Lear Jet on July 7, 1970, made possible securing near-level aspects of the mountain and some further H₂O measures.

The June 19 stereo coverage was obtained by the NASA staff on 70-mm color film in two traverses, at 22,000 ft and 16,000 ft, respectively (summit 14,162 ft). NASA provided the author with a 5-inch-wide paper copy in color of the entire record taken, a beautiful and very informative document. Stereo views could be obtained by selecting suitable pairs along the two traverses. The water-vapor measurements were made by Dr. Peter Kuhn of ESSA, Boulder, Colorado, using a special Barnes radiometer in the 6.3 µ region. He obtained the total precipitable water vapor in the vertical column above the aircraft. The author is much indebted to both NASA-Ames and Dr. Kuhn for making these important records available.

On the July 7 flight with the Lear Jet the author made H₂O measures in the solar beam with Dr. Low’s meter and took near-horizontal photography of the summit area to supplement the stereo coverage. A hand-held camera and Kodachrome II film were used. The author had also the opportunity to see a fine series of color slides obtained by Mr. John Arvesen of NASA-Ames during his ascent of Mt. Shasta late September 1970. These slides and Mr. Arvesen’s verbal advice made clear that access to Mt. Shasta is difficult compared to White Mountain. For this and other reasons, detailed in Sec. 3c, the illustrations initially selected for reproduction in Sec. 3b were mostly withdrawn in spite of their interest. Figs. 19a-d, below, were selected from Mr. Arvesen’s collection for reproduction.

The photographs retained may be studied with the aid of the 15° Shasta quadrangle of the Geological Survey (in color), reproduced as a half tone (with some loss of detail) on p. 161.

With the latitude of Mt. Shasta (41°4 N), the approach to the summit must be from the South. The broad Everett Memorial Highway provides access, at its terminus, Panther Meadow, 7,500 ft elevation. Fig. 17 shows an overall view of the mountain, from

![Fig. 17](image-url)
Fig. 18 South slopes, from Red Banks and Thumb Rock (both lower left) to summit (July 7).
Fig. 19 Four views of Mt. Shasta summit: *Upper left*, view of main (E) ridge and saddle seen from south; *upper right*, northern extension of main ridge, looking north; *lower views*, portions of main (E) ridge (courtesy Mr. J. Arvesen, NASA-Ames).
The snow level is down to 8,900 ft, typical for early July; early September, little snow remains on the South slopes.

The region from about 13,000 ft to the summit is shown in Fig. 18. The serrated, harp-shaped rock formation, Red Banks, rose in color when exposed, with fascinating formations resembling Bryce Canyon; Thumb Rock, a prominent sculptured extension is below it. The summit is also shown, consisting of a main (E) ridge, a saddle, and a lower (W) ridge.

Close-up views of the summit (East ridge) are reproduced in Fig. 19. If an IR observatory were
HORSE CAMP ROUTE
This route, the most popular, begins at Bunny Flat where parking is provided. From here it is 2-1/2 miles to the Sierra Club Lodge at Horse Camp. It is best to spend the night here for an early start in the morning. There is no charge for use of this lodge. Water is available. Bring your own cooking utensils, food, and sleeping bag. Please leave the lodge ship-shape for the next group. Plan to start the climb at 3:00 a.m. Follow the route shown on the photo. You will have plenty of time to reach the summit and return before nightfall. A strong climber can reach the summit in four hours, but don’t be surprised if it requires eight hours or more.

Fig. 21 National Forest diagram showing recommended trails to Mt. Shasta summit.

SKI BOWL – HELEN LAKE ROUTE
When the chair lift at the Mt. Shasta Ski Bowl is in operation (November to late May) it may be used to reach a 9,700-foot elevation, which allows you to make a base camp at Helen Lake. A sandy bench 500 feet above the lake is an excellent campsite. From here, the summit may be reached in 3 to 5 hours. Follow the route marked on the photo. Under no circumstances should you attempt to climb the fingers or chimney of the Red Banks without crampons.

*Not in summer as stated on p. 158.
Shasta (a mountain range vs. a peak). Other factors tend to favor White Mountain: (1) the precipitation is only 1/6 of that in the Mt. Shasta area (Paper I); (2) White Mountain is within a scientific preserve (Univ. of California), whereas Mt. Shasta is assumed to be purely recreational; (3) the White Mountain Research Station has developed excellent facilities for living up to the 12,500-ft level, and some additional shelters up to the summit level (the summit house itself, of natural rock, has 4 beds, hot and cold water, a stove, etc.); and also has developed a remarkably efficient transportation system by turbo-helicopter, serving all desired points from the base station at Bishop. This system could immediately support a modest astronomical program, though in the long run it should probably be replaced by ordinary aircraft; (4) a jeep road to White Mountain exists for heavier construction in summer and fall; by comparison, Mt. Shasta, with its steep slopes, is almost inaccessible; (5) White Mountain is 4° farther south.

The White Mountain range, 80-100 miles NS, causes a major mountain wave when the wind is from the west, as is often the case (Table 4). In fact, the high altitude record for soar planes (45,000 ft = 13.7 km) was obtained there. During the late fall and winter the storm track often passes from the San Francisco Bay area eastward. In mid-winter and early spring, northerly winds occur more frequently (Table 4) and then the cold continental air will enter the White Mountain region. There does not appear to be a single typical pattern during this period. An incisive study of the White Mountain climatology and its annual cycles would be important to future astronomical applications. It is conceivable that White Mountain would prove optimum in winter and spring, and Mt. Shasta in summer and possibly fall.

If the 1971 U. of Calif. H₂O tests prove White Mountain to be the prime site during winter and spring, this would fully justify its further astronomical development. Initially, transportation by high-altitude helicopter would probably be the only practical solution (including for coolants and electronic components). Larger construction items could be transported by road in summer and fall. The road from the summit to the 13,000-ft plateau can probably be kept open because of the light snowfall. This would allow the use of a safer landing area than the summit (cf. Fig. 36, below) and possibly allow the use of small aircraft. Ultimately, a small cable car could supplement this road.

The altitude problem is serious, particularly for scientists commuting with a university near sea level. At Barcroft (12,470 ft) most visitors still react well, but the additional 2,000 ft to the summit is very noticeable and requires remedial steps for continued and safe operations. Simple quarters pressurized to 9,000 ft (only 2 psi over-pressure) are indicated. This concept is worked out by Mr. F. de Wiess in Appendix II. The scientific operations need not be done in pressurized space as long as the observers spend most of their time in the pressurized living room (partially-automated and ultimately remote-control observations are assumed). Appendix I contains supplementary data on the White Mountain site.

(d) Mt. Lemmon, Arizona — As a result of consultations between the Department of Defense, the U.S. Forest Service, and the University of Arizona (Nov. 1969-Oct. 1970), the 20-acre Mt. Lemmon summit area has been designated as the "Mt. Lemmon Infrared Observatory." It is the property of the U.S. Forest Service, under an indefinite Permit to the University of Arizona (signed Oct. 26, 1970), managed by a small group of Universities and the Air Force Cambridge Research Laboratories which on February 2, 1970 formed, in anticipation of a transfer of the Base by late 1970, a Users Group (Paper I, p. 136). The assignment of Mt. Lemmon to IR Astronomy was endorsed by the Infrared Panel of the National Academy of Sciences during its meeting in Tucson on January 30, 1970, with two draft resolutions: "1) National IR facilities are urgently needed. 2) An excellent site has become available as a result of the decommissioning of the Mt. Lemmon Radar Station by the Air Force. This site and facilities should be made available, under the control of an appropriate management organization, for IR telescopes in existence and under construction." The Users Group is an open Consortium.

A map of the Mt. Lemmon Infrared Observatory, giving present assignments to existing buildings and some structures yet to be erected, is given in Fig. 22. It incorporates the wishes of the U.S. Forest Service for the eventual transfer of the four telescopes on Site II of the Catalina Observatory to Mt. Lemmon. The map is readily interpreted with the aid of the photographs reproduced in Paper I. Fig. 23 shows the Minnesota telescope and dome, installed within a few weeks from the issuance of the Permit. Fig. 24a gives a design drawing of the AFCRL Installation in Building No. 1, with the living quarters and piers largely installed at this writing, and with the 32-ft
Fig. 22 Map of Mt. Lemmon Infrared Observatory, with current building assignments.
dome expected to arrive early in 1971 (the telescope will be moved from the Catalina Observatory, Site II). Fig. 24b shows the plans for the LPL 70-inch telescope, with construction scheduled to begin in 1971. The design of the fixed focus interferometer telescope (Bldg. 3) follows that shown in Paper I, pp. 148–149.
Fig. 24a AFCRL lunar-laser installation, Bldg. No. 1 (under construction).
Living quarters on ground floor.

With the assistance of Mrs. Mildred Gholson of the Institute of Atmospheric Physics, we are able to show in Fig. 25 the frequency curve of dew points for the month of January, based on the years 1965–1970, and taken from the radio-sonde data obtained at the nearby Tucson International Airport, daily at 4 A.M. local time, valid for the summit level of Mt. Lemmon (these data are superior to the earlier radio-sonde data, which could not register low humidities; cf. Paper I, p. 147). The curve of Fig. 25b, computed from Fig. 25a, agrees well with the curve “Le” (Paper I, p. 135), based on the Gringorten Atlas data. The bimodal distribution in Fig. 25b shows, basically, the “good- and bad-weather” fractions, as does the Mauna Kea curve in Paper I. The 25% value for H₂O in January is about 1.1 mm, in accord with Paper I (Table 1, and p. 126, line 12), with values ~ 0.5 mm occurring occasionally.

Continuous temperature and relative humidity records for Mt. Lemmon were started by Mr. E. A. Whitaker in October 1970; he makes weekly calibrations of the scales. On most weekly records there are 2-3 days, or substantial fractions of these, during which the relative humidity falls to very low values. Seven weeks of continuous records of T and R.H. for Mt. Lemmon and the Catalina Observatory, held to be quite representative of late Fall conditions, are shown in Fig. 26.

Fig. 25 Frequency curves of dew points and precip. H₂O for Mt. Lemmon summit for January, based on radio-sonde data, Tucson International Airport, 1965–1970.
Fig. 26 Thermo-hydrograph records for Catalina Observatory (8,250 ft) above and Mt. Lemmon (9,180 ft), calibrated by Mr. E. A. Whitaker: a, Oct. 26-Nov. 14, 1970. (Housing of Mt. Lemmon instrument not satisfactory at first; peaks in T.)

Fig. 26 Continued: b, Nov. 15-Nov. 29, 1970.
Fig. 36 Continued: c, Nov. 30-Dec. 14, 1970.

Fig. 36 Continued: d, Dec. 28-Jan. 11, 1971. (Catalina records only; snow in Mt. Lemmon housing disturbed R.H.)
reproduced in Fig. 26a-c. This matter will be pursued, partly with the aid of radio-sonde observations of T and $R.H.$ being made daily at 4 A.M. and 4 P.M. from the nearby Weather Bureau Station at the Tucson International Airport (cf. Fig. 25). The small daily temperature ranges favor good image quality. Mr. Whitaker regards the temperatures to be accurate to about 1°C; the 0 and 100% humidity values to be very close (based on sling psychrometer calibrations), with the intermediate scale possibly not strictly linear. The 8-20% $R.H.$ values should be reliable. Occasionally, as on Dec. 10, the relative humidity was substantially higher on Mt. Lemmon than at the Catalina Observatory, apparently due to cloud formation at the higher level. The Catalina instruments are mounted on the balcony of the 61-inch dome (N, shadow side) about 20 ft above the ground; the Mt. Lemmon instruments are more exposed, about 30 ft above the ground, on tower No. 6 (Fig. 22). Often mild temperature inversions occur near the 7,000-ft level which are just discernible in our temperature records. (These inversions are beneficial since they confine the valley haze.) The median $R.H.$ is about 35%. In the proofs we added Fig. 26d, e, representing winter conditions.

The transportation problem to the summit of Mt. Lemmon, especially the final rise of 800 ft from the Ski Bowl (pp. 137, 138, Kingler Spr.*) is in winter not trivial but manageable, with an experienced driver available for the final rise, using 4-wheel-drive vehicles or a snowmobile.

(e) Other sites, not discussed here, include Mauna Kea and its major new facilities; and Mt. Agassiz, Arizona, on which some decisions are pending.

4. Mid-Latitudes — Southern Hemisphere

Of the three continents in the middle latitudes only South America appears to offer superior sites for IR astronomical observations. The highest mountain in Australia is Mt. Kosciusko (7,328 ft = 2,230 m., 36°7' S). Mt. Cook, 12,349 ft = 3,764 m, 43°6' S, in New Zealand, has a maritime climate. In S. Africa the highest mountains are just over 10,000 ft, between 28°8'-30°6' S, in Basutoland.

*Misspelled on Topographic Map; should be “Kinglet” (named by Mr. Randolph Jenks after the golden-crowned Kinglet, Regulus satrapa).
In S. America there is the unbroken series of peaks in the High Andes, with numerous lesser peaks on either side, many of which are accessible through mining operations. The author examined the Antofagasta area and on Southward, to Santiago, mostly from the air, in March 1959, during a journey that led to the establishment of the 60-inch telescope of the present Inter-American Observatory (continued under AURA sponsorship after the transfer from the Univ. of Chicago, August 1960). The author has further discussed the low-humidity requirements with Dr. Jurgen Stock of the University of Chile (who conducted the site-test under the auspices of the U. of Chicago and later AURA, since May 1959); with Dr. Franz Mayer, geologist, long-time resident of N. Chile; and other scientists.

For extremes in low precipitation and humidity, the region of the central Andes is unmatched in the Southern Hemisphere. The moisture of the Amazon Basin cannot penetrate because of the high Cordillera Oriental, N and E of Lake Titicaca. Antofagasta, central to the Western area, is readily accessible by air, with jeep roads leading to altitudes of 14,-16,000 ft. Also, there are two narrow-gauge diesel railroads out of Antofagasta, one NE to Bolivia and one SE to Argentina. The first runs one passenger train per week (7th to Calama, a town with an airport, at 7,831 ft = 2,390 m; and 10th more to Oyahue at 13,000 ft, which alternatively can be reached from Calama by automobile in 3½ hours). Just S of Oyahue, on the border, there exists an active volcanic crater (19,265 ft = 5,870 m) reachable by road and aerial cableway (for sulphur ore) to within 300 ft of the summit. The region N of Calama, to beyond 21° S, is shown in Fig. 27. Near the 21° parallel several sulphur mines exist, with a narrow-gauge railroad leading to 15,500 ft and an aerial cableway for ore to 18,000 ft.

One very promising area for IR observation would appear to be near San José del Abra, 2½-3 hours by automobile N of Chuquicamata, which in turn is just N of the Calama airport. Chuquicamata, at about 9,000 ft, would be a suitable headquarters for an IR observatory at 14,000 ft near San José del Abra (21° 58' S, 68° 45' W), a mining area that has some small buildings, as well as a narrow-gauge railroad. Seven miles SE of Calama Airport is located the Mt. Montezuma Observatory of the Smithsonian Astrophysical Observatory (SAO) (Fig. 27), to which reference is made below.

As is well known, the “green” and “desert” parts of Chile divide near 30° S (Elqui River). The European Southern Observatory is in the southern part of dry Chile, on La Silla (29° 15' S, 70° 44' W), elev. 8,000 ft or 2,444 m. Fig. 28a shows the percentage of photometric nights (6 hrs. or more, completely clear) through the seasons (Blauw, 1970); 28b, the relative humidities during the photometric nights; and 28c, maximum and minimum temperatures (both averaged for three years, Muller, 1969). If we combine the average relative humidity for the driest month, August, 22% (for the 46% photometric nights), with the average minimum temperature, -4°C, we shall get about a 25-percentile value of the humidity. Adopting a scale height of 1.6 km (in analogy with California), the 25% August precip. H2O on La Silla at night would be 1.3 mm. The 9 months’ 25-percentile value for the 8,000-ft level in the Northern Hemisphere clear belt is 1.6 mm (Fig. 32); for the driest month, January, about 1.3 mm. Hence, from this limited material, there appears to be no appreciable differences between the humidities in the dry belts of the two hemispheres (there may, however, be some difference in the fractional cloud covers).

A similar result is derived from the published records of the Smithsonian Solar Observatory at Mt. Montezuma (Fig. 27; 22° 34' S, 68° 52' W, 8,895 ft = 2,711 m). Fig. 29 is based on a compilation for the years 1929 and 1930 (Smithsonian Institution, Annals of the Astrophysical Observatory, Vol. 5, 1932). Fig. 29a shows the monthly averages of clear or nearly-clear days (solid line) and the total number of days on which at least some solar observations were possible. Fig. 29b shows the monthly average temperatures measured at 8 A.M.; and Fig. 29c the precip. H2O in mm for unit air mass (the original records show the values for 2.0 air masses, both in Table 4 and Fig. 8). The average August value is the lowest, at 1.6 mm; though, of course, occasionally much lower readings were obtained, not unlike those shown in Fig. 25 for Mt. Lemmon.

Other interesting areas (low humidity, accessibility) are (1) the (rather inaccessible) mountainous region of Northwest Argentina; (2) the more accessible region W of Mendoza and San Juan, Argentina, in which the Yale Columbia Station is located; and (3) the very accessible region just N and E of Arequipa, Peru (Fig. 30; the 14,000-ft level is reached both by railroad and automobile) with Arequipa having a good airport 8,461 ft = 2,580 m). The Smithsonian Station is located 2 km N of Characato, and has collected meteorological data which, for the period 1961-1965, were generously summarized by SAO. The seasonal maximum
Fig. 27 Map of Andes, NE of Antofagasta, Chile. (World Aeronautical Chart)
temperatures vary only 1°C. The mean maximum is found to be 22°C; the mean minimum, +5°C. The La Silla values obtained at nearly the same altitude are 22°C and +1°C.

The plots in Fig. 31, arranged by month, show the averages of the SAO observations. Fig. 31a shows the fractional cloud cover, with the 50-per-

Table 7

<table>
<thead>
<tr>
<th>Month</th>
<th>Photograph Night Percentage</th>
<th>Relative Humidity</th>
<th>Temperature (°C)</th>
<th>Wind Vel (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>0.96</td>
<td>0.72</td>
<td>21.6</td>
<td>93</td>
</tr>
<tr>
<td>Feb</td>
<td>0.75</td>
<td>0.74</td>
<td>21.4</td>
<td>93</td>
</tr>
<tr>
<td>Mar</td>
<td>0.71</td>
<td>0.72</td>
<td>21.5</td>
<td>93</td>
</tr>
<tr>
<td>Apr</td>
<td>0.68</td>
<td>0.70</td>
<td>21.3</td>
<td>93</td>
</tr>
<tr>
<td>May</td>
<td>0.57</td>
<td>0.49</td>
<td>22.2</td>
<td>94</td>
</tr>
<tr>
<td>Jun</td>
<td>0.51</td>
<td>0.46</td>
<td>22.1</td>
<td>94</td>
</tr>
<tr>
<td>Jul</td>
<td>0.48</td>
<td>0.41</td>
<td>22.0</td>
<td>95</td>
</tr>
<tr>
<td>Aug</td>
<td>0.44</td>
<td>0.38</td>
<td>22.0</td>
<td>94</td>
</tr>
<tr>
<td>Sep</td>
<td>0.43</td>
<td>0.36</td>
<td>21.7</td>
<td>97</td>
</tr>
<tr>
<td>Oct</td>
<td>0.48</td>
<td>0.32</td>
<td>21.9</td>
<td>94</td>
</tr>
<tr>
<td>Nov</td>
<td>0.49</td>
<td>0.29</td>
<td>21.0</td>
<td>93</td>
</tr>
<tr>
<td>Dec</td>
<td>0.51</td>
<td>0.27</td>
<td>21.4</td>
<td>94</td>
</tr>
</tbody>
</table>

Fig. 28a Percentage of photometric nights, European Southern Observatory, La Silla, Chile, 1965-68; b, Relative humidity in %, 1966-68 (Site S), photometric nights only; c, Maximum and minimum temperatures, 1966-68 (Site S).
Fig. 30 Map of Andes, NE of Arequipa, Peru. (World Aeronautical Chart)

Fig. 31 Relative humidity and cloud cover, by months, 1961-1965, for Arequipa, Peru, Smithsonian Astrophysical Observatory Station.
If one adopts the 39% R.H. for the three driest months and applies it to their mean temperature, 13.5°C, the estimated 50 percentile of the precip. H₂O would at 8,000 ft be 4.6 mm (if H = 2.1 km).

For 14,000 ft this would correspond to about 1.9 precip. H₂O, values not as favorable as found at the same altitudes on Mt. Montezuma and La Silla.

Meteorological data were obtained Nov. 28, 1960-June 20, 1962 at the Yale Columbia Station (69°25'W, 31°48'S, 8,030 ft). The data are contained in a Report by Dr. J. Schilt to the National Science Foundation and kindly made available by Dr. A. J. Weislink, Executive Director. The driest 3 months of this period were December 1960, January 1961, and June 1962, with average R.H. values of 20, 24, and 31%, and average 24° temperatures of 20°0, 19°0, and 5°3 C (the values given for June 1961 are 68% and 25°0 C, a period of several hurricanes). Taking straight averages of the three dry months, 25% R.H. and 14°8 C, one finds 6.7 mm precip. H₂O for their average conditions. The author is indebted also to Dr. J. Sahade, Director of the La Plata Observatory for supplying him with a listing of average R.H. and rainfall data for all Western Argentina.

It will still be of special interest to obtain integrated H₂O measures for La Silla, Mt. Montezuma, and high sites near Antofagasta (Fig. 27) for direct comparison with the IR stations in the Northern Hemisphere (Fig. 32).

5. Rule for Judging IR Quality of Night

At an observatory engaged in IR stellar planetary spectroscopy shortward of 5 microns the variations of the atmospheric water-vapor content from night to night, or even during a night, are of prime concern to the astronomer. He needs to estimate whether it is justified to devote a given night to such work or release the telescope to other programs. The author, often faced with this decision in the late 1940's and early 1950's at the McDonald Observatory, came upon a rule of thumb that still has its utility: add the relative humidity in % to the temperature in °F (both readily available in an observatory). If the sum is more than 80, the night is useless for IR work; if less than 60, good; if less than 40, very good, etc. The explanation for the rule is found in Table 8. If H is 2 km, the three parts of the Table correspond to 4, 2, and 1 mm precip. H₂O; if H is 0.8 km, the values are 1.6, 0.8, and 0.4 mm precip. H₂O. (This shows the need of caution when comparing sites with different H.) The rule works better than might be concluded from Table 8 because the average R.H. for the entire overlying atmosphere is rarely much less than 10% (or over 60%, when clear).

<table>
<thead>
<tr>
<th>g/m³</th>
<th>°F</th>
<th>R.H. %</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>20</td>
<td>67</td>
<td>87</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>44</td>
<td>74</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
<td>21</td>
<td>71</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>11</td>
<td>81</td>
</tr>
<tr>
<td>1.0</td>
<td>15</td>
<td>41</td>
<td>56</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>27</td>
<td>52</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>18</td>
<td>53</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>13</td>
<td>58</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>11</td>
<td>61</td>
</tr>
<tr>
<td>55</td>
<td>55</td>
<td>9</td>
<td>64</td>
</tr>
<tr>
<td>0.5</td>
<td>20</td>
<td>17</td>
<td>37</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>11</td>
<td>41</td>
</tr>
</tbody>
</table>

6. Conclusions

The criteria for optimizing ground-based IR-microwave programs are: (a) lowest attainable water-vapor content; (b) lowest useful altitude of observatory (up to 9,000 ft comfortable, 9,14,000 ft workable with lower base, 14,-20,000 ft requiring pressurized quarters and reliable personnel evacuation); (c) good image quality (small, sensitive detectors usable); (d) lowest fractional cloud cover; (e) proximity to equator (planets, maximum sky cover); (f) proximity to home institution, availability of support facilities; (g) good transportation (for staff, coolants, replacement components; rapid access to observatory when conditions suddenly become excellent; rapid evacuation when a major storm approaches; high-altitude sites experience extremes unknown at lower altitudes); (h) for the higher altitudes, adequate survival measures for staff (altitude sickness, power failures, breakdown of transportation; cf. Comm. 157). In addition, some discussion has focused on the "sky noise" recorded primarily in the 8-14 μ window, the only large IR window accessible from sea level, then: evidence that the "sky noise" varies with the region, the Arizona obser-
Observatories having less than other Northern Stations tested. For stars the only troublesome part of the sky noise is that small residue that the observer does not succeed in compensating for, cf. Paper I, p. 126; for extended objects the problem is more complex and detector arrays have to be used to allow correction.

Criteria (a) and (b) may be shown graphically. This is done in Fig. 32 for the 9-months, 25-percentile, humidity conditions taken from Paper I, Table 1 (p. 125). For sites in the dry and "clear" belt (32°-35°N), the relationship, apart from local orographic effects, is essentially one of altitude vs. water-vapor (with $H = 2.1$ km in the lower part, $H = 1.6$ km in the higher part, consistent with the results in Paper I). Surveys are still needed to ascertain image quality, orographic effects, and cloud-cover data. Equatorward, one must go higher to reach the same H$_2$O level; poleward (but excluding the poles themselves), lower, but at the price of increased cloudiness, say, from 30% to 70-80%. Also, one violates criterion (e) and possibly (f). The summer Arctic does not belong in a plot excluding the summer for the middle latitudes; it has some apparent aspects of the tropics. A 10,12,000 ft isolated mountain in Alaska could be considered, in addition to sites in the "clear" belt, in spite of the frequent terrible weather and severe evacuation problems; also, the air-mass effect on planets would be serious. The South Pole is so exceptional as to require separate discussion; it is not well suited to observations of planets, but could be used for some surveys, as indicated in Sec. 1. The Southern Hemisphere has its own dry zone, with several high-altitude sites in Bolivia, Chile, and Argentina accessible; and those in N. Chile especially promising. The H$_2$O data available show the clear and dry belts in the two hemispheres to be rather alike.
IR observations requiring moisture levels below 0.2 mm, must be made from aircraft or balloons, especially for the planets and other equatorial objects. The existence of such facilities will incidentally put a ceiling on the justifiable efforts on isolated high mountains, as discussed in Paper I.

Addendum — After this Paper had been completed, the volume Polar Research (National Academy of Sciences, 1970) became available. Chapter 8 deals with “Polar Astronomy.” In it the low surface temperature at the South Pole is used to compute the total atmospheric water content, a procedure that is not valid, as discussed in the above text. The author endorses most of the other comments made, especially Recommendation No. 1 (seeing tests).

Acknowledgments — This paper derives its information from many sources and has benefited from helpful comments from several colleagues in other disciplines. Prof. Serge A. Korff of New York University called my attention to his series of important papers on High Altitude Laboratories (1950, 1952, 1953, 1954), directed toward finding suitable stations for cosmic-ray research. These reports contain no data on atmospheric water vapor but list coordinates, altitudes, temperatures, snow conditions, and living facilities of the numerous stations included. Of special importance to this paper are his references to the Mount Wrangell Observatory, established by him and the University of Alaska in 1953.

I am indebted also to Prof. Nello Pace, Director of the White Mountain Research Station, University of California at Berkeley, for supplementary information on the facilities on White Mountain under his direction. White Mountain would appear to offer great opportunities to IR Astronomy. I am further indebted to the staff of the Smithsonian Astrophysical Observatory for condensing the 5-year meteorological records of their Arequipa station, 1961–1965, on which our Fig. 31 is based.

Special thanks are due to Mr. Robert Cameron of NASA-Ames for arranging with NASA for the two flights to the Mt. Shasta area referred to in the text, the principal results of which are published in this paper, and to Mr. John Arvesen for a discussion of the summit area and for the photographs reproduced in Fig. 19. My thanks are also due to Mr. Ralph Turner for his observations of the St. Elias Range, Canadian Yukon; to Prof. Melvin G. Marcus for the report on Mt. Logan quoted in the text; and especially to Prof. I. Drummond Rennie who ranged for Mr. Turner’s flight and who agreed to contribute the paper on the Mt. Logan Arctic Station that follows. Dr. D. P. Cruikshank called my attention to the Russian observations in Yakutsk, Siberia, area. Mrs. F. Larson assisted ably with the search for relevant publications of the Polar regions; Mrs. M. Matthews, with the compilation of Fig. 32 and Table 7. The planetary research program is supported by NASA, Grant NGL 03-002-002.

REFERENCES

Herzberg, G. 1970, private communication dated September 25.

Smithsonian Institution, 1932, Annals of the Astrophysical Observatory, 5, p. 69, Table 4.

APPENDIX I
ADDITIONAL DATA, WHITE MOUNTAIN, CALIFORNIA

On December 4, 1970, the author had the opportunity to meet with the director of the White Mountain Research Station, Dr. Nello Pace, and astronomers and physicists potentially interested in IR and microwave programs conducted from White Mountain. The next day he had the privilege of being Dr. Pace's guest on a trip to the Bishop, Barcroft, Summit and plateau facilities, and experience the unmatched delights of helicopter trips over peaks and saddles, and through impassible canyons. The incredible efficiency of helicopter transportation (better by at least two orders of magnitude over traditional methods), with the astronomer saving his energies for his own tasks, was most impressive.

The author's visit to White Mountain occurred just after ten days of continuous precipitation in Northern and Central California, with 10 ft of snow having accumulated, e.g., at the Donner Pass. Yet, the snow cover on the summit of White Mountain was inappreciable, as may be seen from the photographs shown below. It did, however, cause the entire area to be covered with a layer of excess moisture.

The author made water-vapor measures with two instruments: (a) the Low device measuring the total vapor absorption in the solar beam; (b) a sling psychrometer. The measures are collected in Table 9. In order to reduce the integrated values (which are equivalent absorptions) to abundances, the mean vapor pressure must be estimated. We adopt p (mean) = p (elevation + 1 km), entered in column 6. The approximate abundances are found from the entries of the 5th column by division by p, and are given in the 7th column. These values define a scale eight between Bishop and the Summit of 2.3-2.4 km; with the aid of the surface relative humidities, scale heights can be computed for each of the three

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>El (ft)</th>
<th>PSY</th>
<th>H₂O (Z)</th>
<th>p (ab)</th>
<th>Astat H₂O (Z)</th>
<th>D</th>
<th>T°C</th>
<th>W</th>
<th>E.H.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bishop Ap.</td>
<td>4110</td>
<td>1252</td>
<td>11:24</td>
<td>5.4</td>
<td>772</td>
<td>7.0</td>
<td>-9.2</td>
<td>4.7</td>
<td>0.52</td>
</tr>
<tr>
<td>Barcroft</td>
<td>12470</td>
<td>3881</td>
<td>12:18</td>
<td>1.5</td>
<td>550</td>
<td>2.7</td>
<td>-1.7</td>
<td>-5.6</td>
<td>0.41</td>
</tr>
<tr>
<td>Summit</td>
<td>14250</td>
<td>4344</td>
<td>13:59</td>
<td>1.05</td>
<td>517</td>
<td>2.0</td>
<td>-5.8</td>
<td>-7.8*</td>
<td>0.64*</td>
</tr>
<tr>
<td>SF Plateau</td>
<td>13189</td>
<td>4020</td>
<td>14:36</td>
<td>1.1</td>
<td>539</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Upper limit (operation tremulous)
Fig. 33 Barcroft Laboratory, Univ. of California White Mountain Research Station (cf. Fig. 10): a, Facing west, with Mt. Barcroft in background; b, Close-up view, facing NW. Observatory location behind and to right of hilltop at right (foundation left only).
Fig. 33 Continued: c. Helicopter landing area; d. Occulted sun, showing perfect sky conditions. (Note diffraction of type observed by Surveyor on Moon horizon after sunset.)
Fig. 34 Continued: b, View of summit from 13,200 ft, facing WNW, showing jeep road from lower left. Helicopter saddle covered with snow, at right. Contrails from Bay Area near horizon.
Fig. 34 Approach to White Mountain Summit: a, Jeep road to summit across plateau.

Fig. 35a Helicopter saddle, 14,070 ft, just north of summit and summit, with Sierra Nevada in background.
Fig. 35 Continued: b, Close-up of saddle, with contrails in background; c, Landing on saddle, Dr. Blume ascends summit.
Fig. 3b White Mountain Summit: a, View from helicopter, with jeep road partly covered with snow.
Continued: b, Helicopter pad at right; c, Helicopter landing, safe in still air. Left to right: Dr. D. Cudaback; pilot; Mr. S. Keachie, White Mountain observer and expert soar-plane pilot.
stations separately: Bishop 1.65 km, Barcroft 1.4 km, and Summit 1.0 km (+). This indicates that there was an orographic effect, the moisture content over the summit being about 1.8× larger than that of the free air over Bishop at the same level. This orographic effect could be due in part to daytime evaporation in the powerful sunlight.

Some of the photographs taken from the helicopter flight on December 5, 1970, are herewith reproduced. Figs. 33a and b show two views of the setting of the Barcroft Laboratory. The Quonset hut at the center of Fig. 33b, having about ten rooms, is the comfortable headquarters of the Laboratory. Meteorological instruments are in the weather shelter, in front. The helicopter pad is covered with a steel mat (Fig. 33c). The area is sheltered and allows safe landing operations except during storms. The exquisite coronographic quality of the sky at Barcroft are attested by Fig. 33d, which shows the sun covered up by a pole only a few minutes of arc greater in diameter (excellent coronographic conditions occur on the average about 4 per day).

The jeep road to the summit, crossing the plateau, SE of the summit, is shown in Fig. 34a. The approach is a very gradual one, safe in summer and fall; and, because on the summit area the snowfall is light, the road could be opened almost at any time of the year. Nevertheless, because of the altitude, scientific operations on the summit would be enormously facilitated by the installation of a small cable car, slightly over a mile long and dropping 1,200 ft to the plateau at 13,000 ft. This plateau, shown in Figs. 34a and 15, lends itself to safe aerial operations year-round. The summit area itself and the problems of landing on it by helicopter may be assessed from Figs. 35-36.

The author is deeply indebted to Dr. Nello Pace for his hospitality during his White Mountain visit.
A preliminary estimate indicates an overall cost for the construction and implementation of this design of roughly $31,000, with a breakdown as follows:

- Pressure tanks, 10 ft high by 16 ft dia., air lock doors and windows, foundation, insulation, construction: $17,700
- Service building and entrance: 3,000
- Blower 300 cu ft/min 2.5 psig, motor 2 1/2 HP, standby generator and gasoline engine, controls, battery: 2,000
- Heater, humidifier, ducting and valves, plumbing, sewer, electrical wiring, and installation: 3,500
- Furniture and appliances: 800
- Contingency: 4,000

Total $31,000

Fig. 36. Possible design of pressurized living quarters for observers on high mountain.

Fig. 38. Floor plan of concept shown in Fig. 37.
MEDICAL PROBLEMS AT HIGH-ALTITUDE SITES AND THE MOUNT LOGAN, YUKON, HIGH CAMP

by I. DRUMMOND RENNIE, M.D.
Rush-Presbyterian St. Luke’s Medical Center, Chicago
September 8, 1970

I. Organization and Accessibility of Mount Logan High Camp

For more than a decade the Arctic Institute of North America (A.I.N.A.) has run a research facility at the southeastern end of Lake Kluane (61°0' N, 138°25' W) at Mile 1054 on the Alaskan Highway in the Yukon Territory of Canada. The facility, which consists of huts, cook house, radio shack, and an air strip, has acted as the base camp for a large number of temporary camps set up in the surrounding mountains and glaciers and manned by glaciologists, climatologists, geologists, botanists, zoologists, and limnologists. The highest of the temporary camps used to be at Divide (8,500 ft; 60°45' N, 140°0' W) on the Kaskawulsh Glacier which at that point is some 1,300 ft deep. All the camps were served by light planes, equipped with skis, flying out of the Kluane Base.

In 1967, Dr. Charles Houston, Professor of Community Medicine at the University of Vermont, planned and organized the setting up of a further subsidiary camp on the high plateau of Mount Logan (60°36' N, 140°32' W; 70 miles by air from Kluane). Logan High Camp, which has been in operation every summer since 1967, is at 5,300 m (17,600 ft) altitude. Dr. Houston is a high-altitude physiologist, and it was for physiological studies that it was primarily intended, though in the years of its opera-
tion, studies in glaciology and meteorology have also been done. Though there were several other such research stations already in operation, none were as high as Logan High Camp. This extra height is important because of the extra stress it puts upon the body. There is good evidence, for example, that on abrupt exposure of unacclimatized people to high altitudes there is no mental deterioration (disorder of thinking, calculation, etc.) until after a height of 16,000 ft has been attained (McFarland, 1969). It is of interest that the sigmoid of the oxyhemoglobin dissociation curve keeps up the oxygen saturation of the blood, but at the altitude of Mount Logan the latter falls off rapidly. Physiologically, then, there is a considerably greater increase in stress on going from 14,000 ft up to 18,000 ft, than going from 10,000 to 14,000 ft.

The practical importance of this is the corresponding increase in the frequency and severity of symptoms to be expected when an unacclimatized person flies from Kluane up to the High Camp on Logan—a height differential of approximately 15,000 ft. There is also good evidence that Logan High Camp is situated at about the highest altitude to which satisfactory acclimatization is possible. Higher up, there is a steady deterioration in general health (Pugh, 1964; Dill, 1968).

Logan High Camp is remote and isolated, on a large mountain, exposed to severe weather. Clearly, its use is justified only if the risks are manageable. Four years' experience has shown that they are.

The accessibility of Logan High Camp must be considered, because of the occasional need for medical evacuations. Arctic Institute camps are served by two Heliocouriers, one of which is supercharged and is able to land and take off on the high plateau. The pilot, Mr. Philip Upton, has now made more than 100 landings at High Camp without mishap. The flight takes 50 minutes. The Heliocourier is unloaded and reloaded at High Camp very rapidly and never stays there more than a few minutes. It can carry up to 600 lb. weight, but the size of the cargo is obviously limited by the dimensions of the door and of the cabin. This is adequate to take a stretcher patient and an attendant.

For the past two years, the Canadian Forces taking part in the physiological experiments have been brought to Kluane in a large STOL transport Buffalo together with their equipment and a jeep. This aircraft has had no difficulty with the Kluane air strip. Air drops of heavy supplies have twice been made at High Camp with recovery undamaged of some eighteen out of twenty of the supply bundles and their parachutes.

Efficient radio communication is maintained by small, portable single-sideband transceivers with a few watts of power output.

There is an efficient modern hospital at Whitehorse. An arrangement has been made whereby in an emergency, supercharged Bell Helicopters at Whitehorse Airport, belonging to Trans North, may be hired (by telephone or radio), though this would cost some $300 for the round trip (at $250 per hour). So far they have not been required, but one of these helicopters has landed and taken off from the plateau without difficulty.

Logan High Camp can, practically speaking, be serviced by air. Kluane itself, 156 miles from Whitehorse, is easily accessible via the Alaskan Highway, and frequent jet passenger flights link Whitehorse with Vancouver and Edmonton.

The fact that Logan is in a friendly, cooperative country has been of great importance to us, no difficulties being experienced with customs and considerable assistance having been given to the project by, for example, the Canadian Forces.

2. Season

The High Camp has been open for physiological studies only in July, though it is intended to lengthen the period from three to six weeks in 1972.

TABLE 1

FLIGHTS TO LOGAN DURING THREE-WEEK PERIODS IN JULY, OVER 4 YEARS. THESE PERIODS WERE SELECTED AS COVERING THE PHYSIOLOGICAL EXPERIMENT ‘SEASON.’

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Flights to Logan High</th>
<th>Number of Days When Flying Was Impossible</th>
<th>Number of 2-Day Periods When Flying Was Impossible</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967</td>
<td>25</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>1968</td>
<td>19</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1969</td>
<td>25</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1970</td>
<td>23</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>91</td>
<td>22 (33%)</td>
<td></td>
</tr>
</tbody>
</table>

From Table 1 it can be seen that flying was possible on 3/5 of the days. 91 flights were made on these 41 flying days. It was rare for flying to be impossible for two consecutive days.

3. Facilities at Mount Logan High Camp

In 1970, three Versadome tents were in use, each large enough to house 8 or 9 people on cots. One is used for cooking and as a mess tent, and for the two radio transmitters. Another houses the support team...
MEDICAL PROBLEMS AT HIGH-ALTITUDE SITES

(9); the third, three scientists who use it also as a laboratory. In 1971, a fourth Versadome will be added. These tents are capacious, sturdy, and wind resistant (up to 100 miles an hour). They are warmed by propane space heaters and pleasant to live in, unlike the 1967 hut, which became dark and cramped and encouraged lethargy. Each tent has a wooden floor and is well lit, electricity being supplied by a propane-power generator housed 20 yards away next to the latrine (the generator keeps this, and the propane cylinders, conveniently warm).

An additional 8-man Canadian Army tent houses the 5 experimental subjects, and there are three 2-4 man Bishop tents ready pitched, some distance from the main camp, for use in any emergency such as fire.

The original hut, put up in 1967, is now deeply buried beneath the snow and is used for food storage. Thirty man-days of oxygen and about ten days of propane supply are always kept at High Camp, as well as considerable stocks of food.

The camp is situated about 300 yards from the NW col, at the upper end of a large snow field which slopes away to the East, where the Helicourier lands. It is sheltered by peaks on three sides (N, W, and S) and is well protected from the weather. The camp is pitched on snow and so is slowly shifting.

Logan High is set up and maintained by a team of young climbers (college students), the leader and some members of which have had several seasons on Mount Logan. In late May, the climbers are taken by Helicourier and dropped at about 10,000 ft, at 'Trench,' a snow field west of Logan. They spend about 10 days climbing up to Logan High Camp, acclimatizing steadily. Once there, they dig out the previous year's caches and, serviced by the Helicourier, set up the Camp.

The support group is self-sufficient and resourceful. They operate the meteorological station on Logan High, and radio down weather reports to Kluane every three hours. They frequently have their own scientific projects as well, usually glaciology. Their primary task, however, is to look after the camp and the experimental subjects and scientists, and to assist with the experiments, setting up equipment, taking readings, etc. Some chores, such as loading and unloading the aircraft, and clearing snow, are very arduous at that height. They have repeatedly proved both their ability and reliability; because they are well acclimatized, they are invaluable research aides, as well as medical assistants when someone needs constant attention. They are a major factor in the safety of the operations on Logan.

Because, under the present arrangement, all servicing of High Camp is done by one Helicourier, it is important for reasons of safety to keep the number of people — especially unacclimatized people — down to a minimum.

4. Physiological Considerations

The partial pressure of oxygen at Logan High Camp is approximately 80 mm Hg (normal, 150 mm). This is below the normal sea-level arterial partial pressure of oxygen (about 90 mm Hg); on Logan the latter is about 40–45 mm Hg.

The respiratory center of the brain responds to this hypoxia by increasing ventilation — the depth and rate of breathing — and this has the effect of blowing off CO. Normally, CO2 is constantly produced by the metabolizing cells of the body. By the excessive ventilation the CO2 level in the blood is rapidly lowered and this profoundly affects the flow of blood to the brain (which is diminished), the alkalinity of blood (which is increased), and the respiratory center itself (which becomes irregular).

Every organ and tissue in the body is affected by these initial changes in oxygen and CO2, because these, in ever-widening ripples, cause secondary changes. Fluids shift between the circulating blood and the body cells, and powerful electrolytic changes occur; blood is diverted from some organs to others. Gradually, the process of acclimatization begins. Basically, this can be seen as consisting of thousands of ways of increasing oxygen delivery to the tissues. Thus, ventilation of the lungs is increased, as is the oxygen-carrying capacity of the blood, and the density of the capillaries in the tissues; these processes all take varying amounts of time to complete. In general their severity is proportional to the altitude (or the atmospheric hypoxia); they are all prevented by giving extra oxygen and are reversed by descent to sea-level.

5. Acute Mountain Sickness

Acute Mountain Sickness (A.M.S.) ('soroche') is an acute, self-limiting syndrome, or collection of subjective symptoms; and objective signs of illness, occurring in individuals abruptly exposed to high altitudes. None of the features alone is specific or diagnostic in the way that a rash or a temperature fluctuation may be diagnostic, but taken together they are characteristic.

The incidence is very variable between individuals and even from one exposure to the next in the same individual but, in general, both the incidence
and the severity increase with the altitude, and susceptible subjects tend to develop A.M.S. on further exposure to high altitude. Few persons develop symptoms as low as 7,000 ft, whereas everyone develops them at 17,600 ft on Logan, and occasionally these are severe enough to require evacuation. Cold may, and exercise does, aggravate the illness.

Typically, the newcomer feels very well for a few hours, apart from a striking breathlessness on the least exertion, and occasionally a feeling of faintness. Some 8 to 24 hours after arrival he begins to feel tired and lazy, yet he sleeps poorly, with frequent nightmares. A headache is usual, and may be very severe. On walking, he tends to lose his balance and stagger; he feels nauseated and does not wish to eat or drink, so that dehydration adds to his weakness. He may be depressed and listless or occasionally confused. He may be conscious of his uneven breathing and his breathlessness may become severe at rest because of fluid accumulation in the tiny alveolar air spaces of the lung (pulmonary edema). Rarely, severe headache may precede gradual loss of consciousness, with or without convulsions associated with generalized swelling of the brain (cerebral edema).

The illness usually passes off rapidly and after 2-3 days the newcomer begins to take an interest in his surroundings, to eat and drink and to become active, and to sleep. If pulmonary or cerebral edema occurs, continuous oxygen must be administered, and diuretics (drugs to increase the elimination of fluid through the kidneys) may be required. Evacuation will probably be necessary, as is usual if any symptom (ataxia, vomiting) is very severe and persistent. It probably takes several weeks before full acclimatization occurs.

6. Medical Problems

Any medical problem that may afflict previously-healthy persons at sea level may, of course, also occur at altitude. It is scarcely relevant to discuss these wide possibilities, except to say that it is the responsibility of the physicians at Logan High to carry first-aid supplies, and supplies of analgesics, antibiotics, ointments, decongestants, dressings, etc., to deal with minor ailments. If necessary, the physician can order evacuation to Klune and to Whitehorse Hospital. In four years, this last has been necessary only once.

Some disorders occur particularly frequently at Logan High Camp:

a) Persistent dry cough, and nasal crusting and stuffiness. In 1970, several members of the support group had colds early-on, and were left with persistent dry coughs. This is a feature of life at very high altitudes, described by numerous climbers, and is probably associated with the low absolute humidity and the cold. No satisfactory treatment for this irritating complaint has been devised. Vasodilating nasal drops may be needed.

b) Painful external hemorrhoids tend to occur at high altitudes and may warrant laxatives and Anusol suppositories.

c) Insomnia is common, and barbiturates (e.g., Secoral or Doriden) are useful.

d) Snow blindness, due to the intense sun, reflected off the snow, the cold and the wind, is easily avoided with very dark goggles which should always be worn outside.

Venous thromboses have not been seen on Logan, but occur in climbers well acclimatized to very high altitudes (Houston, 1955; Clegg, 1956) who have achieved a huge increase in blood thickness.

Small retinal hemorrhages occur, almost always symptomless and transient (Frayser et al., 1970). They will not be found unless looked for and may be related to strenuous exertion. They occurred in 9 out of 25 persons in 1969 and in 3 out of 28 in 1970. At least 3 members of the support group had these hemorrhages. It should be pointed out that in only one case did they cause symptoms. Such hemorrhages occur in 20–40% of new-born babies.

7. Avoidance of Acute Mountain Sickness

So far, no satisfactory way has been found of predicting who will get A.M.S. Nevertheless, selection of persons to go onto Logan is important. To the non-mountaineer (who tends not to appreciate the cot-beds, the warm and roomy Versadomes, the excellent food and the protective and solicitous support group, because he contrasts conditions at High Camp with life at home, and not with bivouacs on other mountains), Logan High Camp may seem a somewhat remote, friendless and austere place. People who are worried about themselves and their health, and who are frightened of going up to Logan should not do so. Our experience has been that such people tend to suffer severe symptoms (vomiting, etc.), some of which are made worse by their mental attitude, while their worries may prove contagious.

At the present state of our knowledge it would be foolish to send up to Logan anyone with more than
MEDICAL PROBLEMS AT HIGH-ALTITUDE SITES

mild hypertension, or someone who has suffered from a myocardial infarct, but there is definitely no correlation whatsoever (negative or positive) between A.M.S. and physical fitness, nor is there any known sex difference in A.M.S. Anyone with abnormal hemoglobin (e.g., sickle-cell disease) would be at great risk on Logan.

In general, the unacclimatized person sent straight up to Logan will perform his mental and physical tasks slowly and with mistakes; it is therefore logical, both from the point of view of science and for their health, to attempt prior acclimatization. This can be done best by walking up from Trench (10,000 ft) accompanied by an experienced mountaineer and taking 7–10 days over it. The next best alternative is to fly to Divide Camp (8,500 ft), stay there 3 or 4 days, and then fly to Logan. This has worked well in the past, the hypoxic stimulus at 8,500 ft being adequate to start the whole process of acclimatization without producing symptoms (except in rare cases).

There is a problem with unacclimatized people who wish to go to High Camp for only an hour or two, in order, for example, to set up or adjust a scientific instrument. This can be done, but the person will have to take oxygen from a portable Sky Ox bottle in order to perform well, and he has to be prepared to stay longer in the event of changes in the weather forcing the cancellation of the return flight. He must therefore be passed medically fit.

There is evidence from studies by others (Forward et al., 1968) and from our own experience, that acetazolamide (Diamox) which inhibits the enzyme carbonic anhydrase, and which to some extent prevents the development of the alkaline blood that occurs at high altitude, is useful in preventing or diminishing A.M.S. It is therefore usual for all unacclimatized people to take this for 3 days before and for 2–3 days after ascent to high altitude, even if they are being staged through Divide Camp.

The next phase in the prevention of A.M.S. starts on arrival. There is evidence (Singh et al., 1969) that physical activity increases the severity of A.M.S. and so it is the practice at Logan High Camp to rest the newcomer as much as possible for 24–48 hours, any work during this time being discouraged. It is essential that he force himself (or be forced) to drink large quantities of fluid as dehydration is a rapid consequence of distaste for food and the increased (and considerable) insensible water loss at altitude from the lungs (Pugh, 1965).

The newcomer must be examined at least daily by an acclimatized physician well-familiar with high-altitude problems. This is an essential qualification, since judging the physical condition of people at altitude is not easy, especially when the physician himself (as happens at altitude) is unusually tired. The Mt. Logan physician has several radio discussions daily with another physician, also experienced in high-altitude work, at Kluane; in fact, there are usually two physicians at High Camp. It is imperative that the Kluane physician have the final say in any decision. Often he relies on how things are said, or what is not said, to determine the situation.

Oxygen: thirty man-day supplies of oxygen are kept at High Camp. Oxygen may be given as either 100%, from large or portable cylinders; or mixed with air to an amount of oxygen equal to that in sea-level air, using demand delivery.

Evacuation is done by the Heliocourier, after discussions between the physicians at Kluane and Logan.

Our experience so far has shown that use of prophylactic diamox, insistence on proper hydration and frequent medical examinations have reduced the incidence and severity of acute mountain sickness. We have become much more expert and confident in its prevention and management.

In 1967 all 6 of the support group were ill and 2 were evacuated. In 1969 and 1970 there were 8 and 9 support personnel respectively, and none were ill.

Of the unacclimatized people, the same is true, some evacuations are inevitable (there were 2 in both 1969 and 1970, because of severe acute mountain sickness, out of a total of about 30). Every person evacuated to Kluane has recovered rapidly.

8. The Icefield Ranges Research Project

The Icefield Ranges Research Project has, over the years, gathered a vast amount of data (physical and biological) in studies done in the huge area around Logan. It is clear that much of this work could be of use to any new research project, in whatever discipline.

9. Conclusions

From what has been said above, the following suggestions are offered to those wishing to carry out work at Logan High Camp:

a) Much work — heavy and scientific — can be done by the support group, who may be well qualified to do this work. Some may be given a short training course before they go to the Yukon.
b) Heavy work can only be done by acclimatized people, and even then it takes longer to do than at sea level.

c) Accurate scientific work is *far* better done after 2–3-days' stay.

d) Walking up from Trench, or staging through Divide, are strongly recommended.

e) Installations that need to be fixed on rock may be placed on one of the rocky out-crops above the camp. These are, however, much more exposed to the weather; and as all equipment will have to be hauled up from the Heliocourier landing site, this will almost certainly require the provision of a snowmobile to pull the toboggans, as the distance (½ mile), the deep snow, the altitude (17,600 ft), and the height difference (ca. 1,000 ft) would make this a fairly major undertaking.

f) Whenever possible, experiments should be devised that can be run with automatic equipment, or with only one observer — if possible one of the support team — at Logan High.

g) All personnel must be passed physically fit by the physician in charge, before they are allowed up to Logan High.

h) Scientists must be expected to provide money for their own experiments and contribute towards the cost of the entire project. In addition, a charge of $20 daily per person is levied (at Kluane or Logan), while each flight from Kluane to Logan costs $95. The support group are paid, so that any lengthening of the period at which High Camp is open means higher costs, and possible difficulties with college semesters, etc.

i) To prevent overcrowding, confusion, and over-use of the support group, it is obviously important to arrange, where possible, to have different projects going on at different times. It is undesirable, during the short period (mid-July) when there are 10 or more unacclimatized people at Logan High concerned with physiological experiments, that much attention should have to be devoted to other projects. For example, constant hourly meteorological readings are better arranged before and after this short period. No more than 18 people should be at High Camp at one time, and of these, 6 to 8 will be support group.

j) Special equipment needed by the experimenter must be within the dimensions and weight units of the Heliocourier, or must be landed at High Camp by some other means (for example, helicopter). No equipment part should be so bulky that it cannot be handled by the support team using, if necessary, winches, pulleys, a snowmobile, etc.

k) People taken up to Logan High (including scientists and support group) are expected to cooperate as subjects in simple physiological tests.

Acknowledgments: My thanks are due to Dr. Charles Houston for help in the preparation of this communication.

REFERENCES

No. 158 DAYTIME H₂O MEASURES ON MOUNTAIN SITES

by L. RANDIC AND G. P. KUIPER

July 1, 1970

ABSTRACT

This paper collects measurements of the precipitable water-vapor content of the overlying atmosphere for selected stations in the Southwest. The amounts are expressed in millimeters, reduced to a pressure of 1 atm. Differential temperature effects are neglected. The measures are based on the 0.935 μ absorption band.

In connection with the systematic study of mountain sites in the Southwestern United States, suitable for IR observations (cf. LPL Comm. No. 142), measures were made of the total H₂O content of the overlying atmosphere, using the sun as a source, whenever opportunities presented themselves. The meter used was constructed by Dr. F. Low and Mr. A. Davidson. It uses a photodiode, sensitive to the near-infrared, powered by a 9-volt battery. The measurements consist of obtaining readings of the solar intensity through two interference filters: one centered on the atmospheric H₂O band at 0.935 μ, the other on the nearby continuum at 0.890 μ. The ratio of the two readings determines the water-vapor absorption.

Dr. Low calibrated the ratio in 1965 and found the relationship as recorded in Table A. He obtained the zero water-vapor reading during high-altitude flights, and calibrated the other tabular values with the aid of Weather Bureau data obtained in Washington, D.C. (essentially sea level). The values in Table A

<table>
<thead>
<tr>
<th>Ratio H₂O</th>
<th>Ratio H₂O</th>
<th>mm</th>
<th>Ratio H₂O</th>
<th>mm</th>
<th>Ratio H₂O</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40</td>
<td>11.4</td>
<td>0.60</td>
<td>5.1</td>
<td>0.80</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>0.42</td>
<td>10.4</td>
<td>0.62</td>
<td>4.7</td>
<td>0.82</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>0.44</td>
<td>9.6</td>
<td>0.64</td>
<td>4.3</td>
<td>0.84</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>0.46</td>
<td>8.8</td>
<td>0.66</td>
<td>3.9</td>
<td>0.86</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>0.48</td>
<td>8.2</td>
<td>0.68</td>
<td>3.6</td>
<td>0.88</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>7.6</td>
<td>0.70</td>
<td>3.3</td>
<td>0.90</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>0.52</td>
<td>7.0</td>
<td>0.72</td>
<td>3.0</td>
<td>0.92</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>0.54</td>
<td>6.5</td>
<td>0.74</td>
<td>2.7</td>
<td>0.94</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>0.56</td>
<td>6.0</td>
<td>0.76</td>
<td>2.5</td>
<td>0.96</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>0.58</td>
<td>5.5</td>
<td>0.78</td>
<td>2.2</td>
<td>0.98</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.14</td>
<td>0.0</td>
</tr>
</tbody>
</table>
therefore refer to equivalent amounts of water vapor for \(p = 1 \text{ atm} \).

In Communication No. 159 a new calibration of Dr. Low's device is published. Such a calibration was desirable after the meter had been used for several years and also because some doubts had arisen regarding the calibration from observations made at another observatory. Since the new tests have essentially confirmed Dr. Low's original calibration, we are using here his original Table A for the conversion of the measured ratios to equivalent amounts of precipitable water at \(p = 1 \text{ atm} \). If measures are made, e.g., 500 mb, the actual amounts will be about twice the tabular values, since for moderately-strong absorption bands (such as the 0.935 \(\mu \text{ m} \) band used) the integrated absorption is proportional to \(\sqrt{W} \), in which \(W \) is the pressure and \(P \) the dew point. H2O.

Table I contains the measures made on the roof of the Space Sciences Building, University of Arizona. Since under normal clear weather conditions the scale height of water vapor in the lower troposphere averages about 2.2 km, the Tucson measures should give a fair indication of the values on nearby Mt. Lemmon. As indicated in the footnote to Table I, we have entered computed Mt. Lemmon values by division of the Tucson zenith values by 2.46. However, it must be noted that this ratio cannot be strictly constant during the day because of sun-induced convection both over the Valley and over Mt. Lemmon.

The data in Tables I and III are considered representative of springtime conditions in Southern Arizona. They refer to days when the sun could be observed (85% of the time, approx.). In wintertime, occasionally much lower values will occur.

Of the mountain sites, the measures made on Mt. Lemmon (Table II) are the most numerous. Most of these were made incidental to the solar IR spectral observations during the springs of 1969 and 1970. The solar spectrometer was located some 60 ft. below the summit and local snow deposits, sometimes melting, will often have increased the water-vapor readings. The presence of near-saturation of the boundary layer was considered in LPL Comm. No. 142. For the reasons there stated, it is estimated that nighttime water-vapor amounts will be less than the daytime readings by a factor of 1.3–1.5.

For comparison with LPL Comm. No. 142, Table I, the 25 percentiles for the different stations found from the above daytime observations are: Mt. Lemmon (from Tucson measures), February-April, 1.4 mm; May-June 15, 2.0 mm; from direct measures, February-April, 1.5 mm, May-June 15, 1.9 mm. Catalina Obs., 1.9 mm, Mt. Palomar, 3.3 mm. The springtime conditions here covered are probably representative; no good winter coverage is yet available.

The springtime data confirm in a general way the radiosonde data of LPL Comm. No. 142. Supplementary information on Mt. Shasta is given in LPL Comm. No. 156.

Acknowledgments — We are indebted to Dr. F. Low for having made his instrument available for extended periods and for providing the original calibration. Most of the 1969 Mt. Lemmon measures were made by Mr. L. Bijl concurrently with his IR solar spectral observations. Mr. C. Bower assisted in the reductions to unit air mass. The planetary program is supported by NASA Grant NGL 03-002-002.

ADDENDUM
January 8, 1971

This Addendum contains supplementary measures of the atmospheric water-vapor content covering fall and early winter conditions. The arrangement of the Tables is the same as in the main body of the paper: Table IIA, listing measures made from Mt. Lemmon; and Table IIIA, from the Catalina Observatory. Attention is called to the occurrence of quite low humidities at times: October 8, 26–31, November 15–16, 23–25, December 11–12, January 4–7, etc.

<table>
<thead>
<tr>
<th>TABLE IIA - Mt. Lemmon Solar Obs.</th>
<th>TABLE IIIA - Catalina Observatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>MTF</td>
</tr>
<tr>
<td>1970</td>
<td></td>
</tr>
<tr>
<td>Oct 2</td>
<td>11:43</td>
</tr>
<tr>
<td>12</td>
<td>11:40</td>
</tr>
<tr>
<td>Nov 2</td>
<td>14:40</td>
</tr>
<tr>
<td>12</td>
<td>12:50</td>
</tr>
<tr>
<td>Dec 2</td>
<td>14:30</td>
</tr>
<tr>
<td>12</td>
<td>16:00</td>
</tr>
<tr>
<td>1971</td>
<td></td>
</tr>
<tr>
<td>Jan 1</td>
<td>14:40</td>
</tr>
<tr>
<td>12</td>
<td>12:00</td>
</tr>
<tr>
<td>Feb 1</td>
<td>14:40</td>
</tr>
<tr>
<td>12</td>
<td>12:00</td>
</tr>
</tbody>
</table>
No. 159 CALIBRATION OF LOW H₂O METER

by D. P. CRUIKSHANK AND A. B. THOMSON

June 1, 1970

ABSTRACT

An independent calibration is presented of the Low hygrometer, used extensively at this Laboratory during the past five years. For water-vapor amounts smaller than 3 mm, Dr. Low's calibration is confirmed. For larger amounts, a small systematic difference appears to exist which needs further investigation. Adequate allowance for the atmospheric pressure must be made in the interpretation of the measures.

Infrared astronomical observations require a knowledge of the atmospheric water-vapor absorption in the spectral interval of interest. The hygrometer developed by F. J. Low and A. W. Davidson (1965) is a very practical instrument, requiring no outside power supply, which enables the observer to make integrated water-vapor measures in daytime whenever required; and makes possible also convenient intercomparisons between different observatory sites, or even from aircraft (Kulper, 1970). The purpose of this paper is to provide an independent calibration of the Low hygrometer used at this Laboratory during the past five years.

The detector in Dr. Low's device is a photodiode with a spectral response roughly equal to an S1 surface. Two narrow interference filters, coupled with a red filter cutting out all shorter wavelengths, isolate two narrow regions, centered on the 0.935 μm water-vapor band and on the nearby continuum at 0.89 μm, respectively. The ratio of the two readings defines the water-vapor absorption in the 0.935 μm water-vapor band.

Dr. Low calibrated the 935/890 ratio in terms of precipitable water vapor in the path. He obtained the zero water-vapor ratio from high altitude flights, with appropriate allowance for differential absorption in the aircraft window; and obtained the remainder of the relationship from data supplied by the U.S. Weather Bureau in Washington. The resulting calibration is found in LPL Comm. No. 158, Table A.

The new observations were made with the 1.4 μm water-vapor band as the intermediary, since with our laboratory setup it was more convenient to use than the 0.935 μm band. Solar spectra were obtained at the Catalina Observatory, Site I (elevation 8260 ft, p = 740 mb), using the A-spectrometer (Kulper et al., 1962). Simultaneously, water-vapor readings...
in the solar beam were obtained with Dr. Low's hygrometer. Thereupon, laboratory runs were made with the same spectrometer, using the multiple-path 40-meter absorption tube at \(p = 714 \) mb for the longer path lengths; and the laboratory room itself, \(p = 940 \) mb, for the shorter path lengths. The amounts of \(\text{H}_2\text{O} \) were determined by measuring the moisture content of the laboratory air with the sling psychrometer. It is realized that some uncertainty is attached to such measures; the present recalibration is not considered definitive.

All spectra, solar and laboratory, so obtained, were measured with a planimeter for the derivation of the total absorption \(W \) of the 1.4 \(\mu \) band. The \(W \) values are plotted against the square root of the amounts of water vapor in Fig. 1. The closed circles give the relationship for the absorption-tube spectra, \(p = 714 \) mb; the open circles for the short-path laboratory spectra, \(p = 940 \) mb. It is seen that for \(\text{H}_2\text{O} \) amounts below 1 mm, the square root relation roughly applies. For larger values, the 1.4 \(\mu \) band approaches saturation (Kuiper, 1970, Fig. 9) and the further increase occurs more slowly.

The \(\text{H}_2\text{O} \) readings with the Low hygrometer are indicated by crosses. They appear to accord well with the open circles for values less than 1 mm \(\text{H}_2\text{O} \), both calibrated essentially at \(p = 1 \) atm. For larger \(\text{H}_2\text{O} \) values, a divergence occurs with the \(p = \)

714 mb curve approximately, but not precisely, as expected from the pressure ratio. At \(W = 70, 80, 90, \) and 100, the (ratio) \(^4\) between the curves in Fig. 1 are .79, .73, .67, and .62, respectively, whereas the slope for the Low points falls below the square root relation beyond \(W = 90 \). We may say, therefore, that for Low readings \(< 2.2 \) mm the values are confirmed and are still reasonably confirmed upward to 3 mm; but may require some scaling up beyond. However, the 1.4 \(\mu \) band is not very suitable for these larger \(\text{H}_2\text{O} \) amounts and a further calibration with the 0.935 \(\mu \) band itself is planned for them.

Acknowledgment. The planetary program at this Laboratory is supported by NASA through Grant NGL 03-002-002.

REFERENCES

