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ABSTRACT

Propegation of long waves in a two dimensional systems is
analysed. An acoustic approximation is used and boundary con-
ditions simulating typical industrial piping systems are formu-
lzted. The thesis consists of three main parts. In the first
part a general sclution of the boundary value problem is chtained.
In the second part series solutions of the equations of motion are
generated, and a physical interpretation of results is given. A
numerical application and a discussion of the problem are given in

the last part.
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INTRODUCTION

The characteristics of motion of a fluid, whether steady or
unsteady, depend on the natur% of the fluid, the imposed initial
conditions and on the nature of the system in which the motion takes
place. In the large class of unsteady motions of compressible
fluids, the periodic motion or wave propagation is particularly im-
portant from the point of view of both pure and applied sciences and
has been the subject of extensive analysis. However, except for
essentially simple systems the motion of pressure waves is very com-
plex. Generally., the waves may be reflected, diffracted and dis-
torted. They may be subject to attenuation and decay or ito inhomo-
geneous distribution. The more the symmetry of a system departs
from a simple rectangular, cylindrical or spherical geometry and the
more the initial conditions differ from that sppropriate to the
boundary., the more these effects will be pronounced.

Besides & purely scientific interest in the problem of propa-
gation of waves, there are many engineering reasons for a better
understanding of wave motion. Of theoretical and practical interest
is the determinaiionlof the basic modes of motion and their phase
and group velocities. Also knowledge of the resonant and the cut-off
frequencies as well as the determination of the reflection and trans-

'

mission coefficients are of substantial interest.
Propagation of waves in curved ducts and pipes belong to the
class of motion which is characterized by wave patterns totally

different from those known 1n straight ducts or in unlimited space.



The curvilinear boundaries are.responsible for the appearance of a
continuous standing radial wave which in turn affects the trans-
mitted tangential waves. The propagation in curvilinear waveguides
or bent ducts 1s difficult to analyze, and mathematical models de-—
veloped to date are complicated. Perhaps that is one of the reasons
why relatively few papers are available on this subject.

The purpose of this treatese is to solve the problem of propa-
gation of waves in curved duets. It is intended to obtain a solu-
tion for long acoustic waves in slightly and sharply tend ducts.
Thisfproblem has been only paréially analyzed by various authors.

The first recognition of the problem of propagation of pressure
waves in & curved cdnéuit, as distinet from the motion in a straight
l@ne, was formulated by Rayleigh(l). In a short, brilliant expose
he demonstrated that long waves.in. & curved pipe of infinitesimal
cross section behave exactly as in a straight vipe. The curvature
of the pipe is of no importance. His analysis is based on the lin-
earized equation of motion and comelusions are not valid if the
cross section of the pipe is finite. However, what is important is
that he establishes a limit to which equations desecribing wave motion
in pipes of arbitrary shape must tend.

Subsequent research of wave motion in curvilinear ducts is al-
most exclusively analytiéall. The majority of papers treat the prop-
agation of electromagnetic waves in curved ducts. Only a few discuss

the propagation of sound waves. Interestingly enough, along with

analytical formulation of the behavior of waves in bends there



appeared & series of papers dealing with mathematics needed to solve
the physical problem of waveguldes. This parallel effort indicates

that the solution of the problem of bent waveguides requires mathe-

matical formulations ard techniques not generally -available,

To review the literature on the wave propagation in curved
ducts it is desirable to discuss the work done by grouping studies
by adopted boundary conditions. In several instances studies orig-
inally intended to be general were actually reduced to some specific,
restricted cases by simplification of houndary conditions.in order
to solve the problem.

In 1905 Kalahne(e) and in 1946 Jouguet(3) and a decade later
Karpman(h) considered oscillations in rigld toroids. dJougued
approaches the problem by the method of perturbations while Kalahne
and Karpman use the method of separation of variables. Both Jouguet
and Karpman intended to study propagation but simplified the problem
by adopting closed systems. A similar standing wave problem, using
a configuration of an elbow connected to two segments of straight
tube, was treated in 1930 by Matchinski(G). A very exbensive and
complete treatment of the behavior of electromagnetic standing waves
in circular cross sections of simple or coaxial tubes is given in
the text “BElectromagnetic Waveguides and Cavities" by Goubau(S).

As interesting as their developments are they contribute little
to the determination of parameters of progressing waves. However,

a number of papers published between 1939 and 1969 did .contribute

to the problem., Bughholz§7), using separation of variables



obtains a solution for propagation of electromagnetic waves in
slightly bent waveguides of infinite length. He calculates an ex-
pression for a wave propagation constant and draws several general
cenclusions about behavior ‘of waves in bends. Buchholz's paper is
the first contribution to the problem of progressive waves. The

(8

problem of the infinitely long bend was also treated by Krasnushkin s

(9 (10

Grigor'yan s and by Victorov and Zubova . Krasnushkin ap-~

+ -
' [ EL

proaches the problem by the methéd of separation of variables but
in view of mathematical difficulties proposes a perturbation method
and treats the simplified case of the slightly bent tubes. Grigor'yan
solves the differential equation by expansion of the cross—product of
Bessel functions into a Taylor series. He trdies to obtain an algor-
ithm of sufficient generality to be applicable to all possible
impedances of the waveguide walls., Coefficients of his series con-
sists of a sequence of Wronskians as determined by Basset(ll). The
method is only partially successful. Grigor'yan obtains correct
general information on amplitude and distribution of the radial os-
cillations but his basic mode wave number does not verify the dif-
ferential equation except for the Raleigh case of very narrow pipe.
Victorov and Zubova treat short wave propagation in a solid
layer and outline a possible solution for an infinite coil of large

(12) and Sveshnikov et

radius of curvature. Finally, Voskresenskin
al.(l3) approach the problem of infinite bend using the separation
of variables. However, like several other authors, they do not

solve their equations but limit themselves to general discussion.



The contributions to the solution of wave propagation in curved
ducts which were reviewed considered only cne aspect of the problem,
the functions which depend on radii and on boundary conditions of
the bend walls., The dependence on the longitudinal coordinate, that
is, the angular propagation was greatly simplified by assuming an
endless coil. However, two papers consider the angular dependence

(1k)

in detail. Rice , using matrix equations estgblishes the basic

mode propagabtion constant for electromagnetic waves and calculates
the coefficient of ;eflection of waves incident upon a bend. Bas-
ically. he treats a junction between a straight and a curved cylin-
drical duct. His procedure - the theory of matrices -~ is an obvious
choice for a system capable of supporting several modes of wave

(15)

motion. Ariinger , using the method of perturbabtion, presents
a problem of compressible potential flow in a bend of a duct of cir-
cular cross section. Although this is not a case of propagation of
waves, Arlinger's general solution for potential motion in & bend
and at & Jjunction is closely related to our problem. The common
feature of the two papers is need for extensive supporting mathe-
matics. Both authors obtain solutions which contain definite in-
tegrals which cannot be integrated by ordinary means. To bhy-pass
this technieal difficulty Rice supplies tabulated values in an
appendix. Arlinger resorts to integration by Simpson's rule.

A number of papers on roots of equations containing eylindrical

funetiond, (cross-products of Bessel functions) were found in the

process of verifying the existing literature on the wave motion in



eylindrical coordinates. Unfortunately most of these papers, (by

McMahon(}6), Truell(IT), Dwight(ls) (19)

and Kline ) are limited to
research of characteristic values of the argument of the Bessel
functions. Therefore, their usefulness is limited to problems con-
cerned with finding resonant conditions in closed systems. However,

(20)

one monograph by Buckens , does apply directly to-relationships
fer evaluating the order of cross products of Bessel. functions of
real and of imaginary order, and was used in developing the ex-
pressions for decaying oscillabions.

Among the few treatises on propagation of sound in bends are

those bylMiles(21’22)

in which he establishes an analogy between
propagation of sound and an electrical transmission line are most
important. The method is then applied to a right angle joint of
rectangular tubes. Actually, Miles is considering e mitered 90°
bend with the outside corner chamfered. ~This greatly simplifies his

(5)

and of

-

analysis. Bends of this itype are discussed by Goubaun
course constitute a special case of "reflectionless" bends which may
be used for a seleciive range of frequencies.

The work of Miles was successfully checked by Lippert(23"25).
Lippert presents an experimental study of.sound wave propagation in
mitered bends of various angles. The experiments were conducted o
over a wide range.of frequencies and show that long waves in mitered
bends propagate with insignificant reX¥lections. In.an interesting

experiment with.a rounded 90° .bend (the outside wall of the miter

joint of the duct was made circular with a radius equal to the duct



width) Lippert shows that the transmissivity wag far superior to that
of an ordinesry miter joint over a very wide range of frequencies.
Finglly; it should be mentioned that Morse and Feshbach(26) propose
an approximate method for the solution of the problem of long wave
propagation in a two-dimensional 90° miter .bend. A series solution
of the wave equation is written for the two infinite branches of the
two-dimensional .duct. The square area of the elbow proper is anal-
yzed by the method of conformal transformetion.

An analytical and experimental program on wave propagation in
flexible pipes was carried out by NASA(ET). Propagation of small
sinusoidal perturbations was studied in a line including a 90° elbow
with flexible supports. The experiments were supported by an analy-
sis based on the acoustic impedance theory which described the dy-
namic behavior of the system. The conclusion of the experiments is
that the elbow created no noticeable effects.

Preopagation of waves in bends and more particularly in circular
bends still requires fundasmental analysis. The, thus far, obtained
algorithms for computation of the wave motion are very cumbersome
and the past research covers only cerbtain aspects of the wave motion
in curved bends.

The general object of this dissertation is to analyze the be-
havior of long waves in curved conduits. The purpose of the analysis
is to determine the distribution and variation of the vibrational
velocities, and the phase of motion, at any point in the systems

under consideration. The particular problem is to determine a



mathematical model of the wave motion that will yield, with reason-
able accuracy, meaningful answers and allow a physical interpreta-
tion of resulis

To satisfy these requirements the propagation of acoustic waves
was selected for.model. The wave transmission through bends of ar-
bitrary sharpness is solved, for the first time, as boundary wvalue
problem using the characteristic fuqctlons.

The foiiowing conditions are assumed to exist. There is a sus-
tained, continuous and steady propagation of long acoustic waves in
a two-dimensional curved channel. Long acoustic waves are under-
stood to0 be harmonic vibrations of infinitely small amplitude of a
compressible, invascad fluid. The wavelength is at least two orders
of magnitude larger than the width of the channel. The pressure
distribution within the channel satisfies the wave equation. The
radius of curvature of the bends is unrestricted.

In this study two acoustrc systems are considered which allow
determination of the basic modes of motion amd describe the transi-
tion and distortion of plane waves as they propagate down the curved
channel, A detailed study of the behavior of waves in Jjunctions be-
tween straight and curved ducts will be given.

The mathematical treatment of the problem utilizes the method
of separation of variables. Solutions and expressions for principal
modes of the wave are obltained by using the linearized equation of
motion solved for its characteristie values.

This original spproach required a novel use of Bessel functions



to determine the characteristic values of the steady and the decay-
ing fields of motion.

The unavoldable approximstions in the numerical solutions of
the cylindrical functicns are due to use of series expansion of Bes-

sel functions and from restrictions necessary to solve i1nfinite ma-

trices.
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1.0 GQENERAT SOLUTION

1.1 TPormulation of the Problen

1.10 Equation of motion. - Because the complexity of the problem

considered requires a simplified mathematical model, a linear equa~
tion of motion, the wave equation,

V24 = %2_%2%:; (1.1)
will be used. It is generally tractable and should yield results
approximating, to a degree, the wreal phenomena in curved pipes.
Equation (1.1) is well known and there is no necessity to derive it.
It is, however, important to indicate here the usually omitted dis-
cugssion of the degree of approximation resulting from use of a lin-
earized equation and the nature of applied assumptions. The best
way to present all spproximations and assumptions is to derive the
wave equation from a most general equation of motion.

H

The derivation given hereafter is classical. Elements of it may

be found in most.of the advanced texts(?B}(Eg). The most complete

derivation is given by Morse and Feshbach(26).
The sum of forces on a fluid element egquals the acceleration
of the element, DV/Dt, times its mass p dx dy da.

The very genereal eguations of motion, without restrictions. es

to the compressibility, viscous forces, end turbulence, is

= -VP +W) +V .1 (1.2)

2%

%g is the substantial derivative of wveloeity vector, a sum of the
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local contribution to acceleration %%' and the convective con-

tribution due to translation

V) - ¥ x curl v =

=R

— — 1 -
= L] v ] .
v V=3 V(v

noj-

=
:

<
o
Q
g
l—f
<

The -VW = F- is the external potential of conservative forees of
gravity and Vv - T is the viscous fqrce on element per unit volume
but because of the tensorial nature of ;; v * T is not a simple
divergence.

To simplify the problem we restrict our analysis to small amp-
litude displacements and velocities. We also assume that the com-
pressible fluid under consideration exhibits no free surface, is
homogeneous througﬁout the domai;. In this case all terms in equa-~
tion {1.2) involving V2 can be neglected and, assuming that the
compressional viscosity will be small, the influence of viscosity
will be negligible. Furthermore, in the equation of motion of a
homogeneocus fluid, in the absence of a free surface, the forces due

to the external potential (gravity) can be disregarded if pressure

P is the excess preasure p over that of the fluid at rest, P

0
With these assumptions, the equation of motion reduces to
3V
p el Vp (1-3)

ot

Now we may write V grad ¢ vwhere ¢(x.y,2.5) is a scalar function
or potential whose partial 8erivatives with respect to x,y,z are
the components of 'velocity V in those directions. Substituting,

differentiating equation (1.3) with respect to time and since
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%%-= - %‘diV‘§- as established in appendix 1, eguation (A1.1),

the equation of motion for small oscillations,of a compressible,

homogeneous and inviscid fiuid at rest is
192
V2¢ = bz-ﬁ% (1.1)
¢

where c¢? = 1/xp. This is the linearized wave equation in terms of
the velocity potential. It will be convenient to express equation
(1.1) in polar coordinates o it the geometry of circular curved
pipes.

The two-dimensional equation of motion of the analytical model

is then

% 1236 1 3% _1 3% (1.1)
ap2 T 2 g4 2 gi2

The particle velocities (the vibrational velocities) are given by

v(r,0,t) = %‘%%‘ (the tangential component)
3¢ .
u(r,8,t) = 7= (the radial component)

or

and the excess pressure by

d
p(r,8,t) = —p g

1.11 Boundary conditions and physical systems to be considered. - The

boundsry conditions which the solution must satisfy depend on the
physical configuration of the system to be analyzed. On the othr

hand we are not entirely frese to choose any boundary conditions


http:oscillations.of
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because the solution of the hyperbolic eguation to have a physical
meaning must be done over an open boundary at least in‘one space
dimension which may be along the time axis. In the case of the prop-
agation of waves in pipes the walls are = closed boundary, the origin
and the far end sections may Qe gpened‘or closed. The time axis is
usually open. On the walls and on the end sections the Dirichlet

and the Neumann conditions may be used. The Dirichlet condition re-
guires that the potential be specified on +the boundary. The Neumann
conditron reguires that the normal component of the velocity on the
boundary be specified.

Two physical systems shown on figure 1 will be considsred.

Both approximate typical industrial piping. The first consisits of
a rigid infinite bend spproximating a coil. At the inlet section
of the coil pulsations are generated by a hypothetical piston of
infinitesimal displacements. Conditions at the far end section of
The bend are of no consequence because assumption of an infinite
coll implieitly states that the far end section condition will not
contribute to the solution; only a simple wave in a positive 6 di-
rection will be considered.

The second system consists of a circular bend followed by a
straight, infinite duct. As in the case of the infinite ccoil, at
the inlet section of the bend pulsations are generated by a hypo-
thetical piston of infinitesimal displacement. The far end of the
system will be at infinity. The 'system of coordinates and nomen-

clature used are shown on figure 1.



{a) Infinite bend.

{b) 90° Bend fotlowed by an infinite
straight duct.

Figure 1 - The two physical systems considered.



15

It will be assumed that the walls of the curved and the straight
ducts will be perfectly rigid so that the Newman condition will
apply. Generally, walls may have an admittance (reciprocal of the
normal impedance) different from zero and a very general solution
may be obtained on such a basis. An extensive discussion of this
aspect of the boundary conditions and formulation of this problem
may be found in Grigor'yan's paper(g). Our assumption of perfectly
stiff walls and hence, the requirement that, at the walls, the nor-
mal component of the vibrational velocity vanishes is a very good

approximation of actual acoustic systenms.

1.2, Determination of the Characteristic Values and of the

Characteristic Functions

The linearized wave equation in c¢ylindrical coordinates is
known to be ééparable in coordinstes proper for the boundary. Egua-—
tion (1.4) may be broken up into a set of ordinary differential
equations, each including a separation constant. bonsequently, no
other method of solving our boundary value problem will be contem~
plated in spite of the fact that several approximate methods, such
as the method of perturbation, have been found useful and leading
to meaningful, although generally, restricted results.

To solve equation (1.4), we assume a solution of -the form

¢ = R(r)o(e)D(t)

By separation of varigbles we have

it . 2
= %® ang T = el(kct+a) - el(mt+a)

(‘JNll-'
I—Ii‘i—ﬂ
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This solution assumes that the dependence on time is simple harmonic

(with a possible phase lag o) and that equation (1.4) is, in fact,
}
a scalar Helmholtz equation.

n
Next, = —v2 The solution of the angle depending term may

+
1

be periodic or linear, depending on the wvgalue of the separation con-

stant.
© = a cos vo + bQ sin v&' v #0
@ = B + 4 v =0
1 2

Finally, B' + Z R’ + k% - %f—z-R =0

R = AvJv(kr) + Bva(kr)

which is the characteristic function of the problem.
Superposition of solutions is allowed, for-equation (1.}4) is

linear and & general solution may be written in the form

_ i(wb+a) oo
¢ = j e (a\} cos v8 + sin ve)EAUJv(kr) + B\,Y\,(kr):ld‘_’
C

+ ei(“’t"“)(ce + d)[:AOJO(kr) + BOYO'(kr)] (1.5)

where C dis a get of points in the complex plane, to be determined
in order to satisfy the boundary conditions.

The solution for v = 0 might have been included in the in-
tegral terms but in order to show more explicitly the linear depend-

ence on 6 of this solution, it has been written separately.
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Before proceeding with applicatiop of the boundsry conditions
we will consider the well known technigue of splitting the potential
field into the incident and the scattered waves

b=q b,

The incident plane waves ¢i =V, exp 1(wt ~ kr sin 6) propagate
from the vibrating pistons into the bend until they strike the curved
wall facing the piston. However, shortly after leaving the piston,
the waves cease to be plane because they will be strongly diffracted
on the curved inner wall of the bend. It is noted here thst the

work on diffraction of long waves by the edge of a semi-finite screen
by Tamb ?®) in 1006, and generalized by Pemny and Price in 1952030),
is not wvalid on curved walls.

The reflected, scattered waves which will result from the im-
pact on the outer curved wall, will form cusped fronts which have
been experimentally studied by Wood(Bl). These fronts will carry
the energy of original waves down the bend. As the front progresses
down the bend it will spread, and assume some new form. The initial
con@ition of the reflected wave is thalt of the diffracted wave
reaching the outer curved wall. Because the degree of diffraction
of the plane waves is unknown, the initial conditions of the re-
flected wave are undeterminable. In view of the difficully of ob-
taining proper expressions for the incident and the reflected waves,

this approach is not applicable. Consequently, the case of motion

in bent ducts (which lack ax1al symmetry leading to the diffraction



i8

of waves and multiple, endless reflections) requires a solution which
would not include the identification of the component waves.

To satisfy the partial differential eguation and the boundary
conditions for perfectly rigid circular walls, a characteristic
equation will be found whose roots will be the characteristic values
of the prcblem: a set of‘values of the separation parameter v
which will yield a nontrivial solution of the problem. Differenti-

ating eguation (1.5) with respect to r and equating to zero we

obtain for the two circular boundaries

AJ'kR. ) +BY'(kR ) =0
VoV 1 vy 1 v # 0 (1.62)
! 1 =
AvJu(kRE) + vau(kR2) 0
AJYUKR ) + BY'(kR, ) =0
0°0 & cor 1 v = 0 (1.6b)
1 t =
AOJO(kRE) + BOYO(kRg) 0
Jé(le)
Conditions equation (1.6b) give BO = -AO §ETE§IT
and Jé(le)Yé(kRz) - Jé(kR2)Y6(le) = 0 (1.7a)
Since Jé(kr) = Jl(kr) and Ya(kr) = — Yl(kr), eguation (1,7a) can
be written
] - = 1.7b
Jl(le)Yl(kRe) Jl(kRE)Yl(kBl) 0 ( )

For the case of (kr) greater than the first root of Yl(le) the
cross—product (eq. (1.7b)) will yield a series of solutions. 1In the

present case where O < (kr) < (kRz) << 1, with the steep slope of
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Yl(kr) and yelatively moderate increase of Jl(kr) over the range

kS

(le) to (kRz), there is no solution for eguation (1.7b) in the

range under consideration.

Consequently, the solution v = 0 cannot be considered. Equa-

tions (l.6a) give

1
B =-4A TRy
v v YG(lej
1 1 _ 1 H =
and ! (kR )Y(kR,) - J!(kR,)Y! (kR ) = 0 (1.8)
Considering R, = aR, ("a" is a proportionality constant) and

uging the relaticn

cos{mv) Jé(kr) - Q$(kr)

Y (kr) =
d sin(mv)

eguation (1.8) simplifies to

1

——— (3} (1B, )3? (akR ) - 3! (akR )3! (kR )] = 0 (1.9)

There are no known tables for the roots vm of the character-
1stic equation (1.9). To evaluate the vm's we expend the JG and
J!, in terms of increasing powers of the argument (ale) and
(le). If we limit the expansion in the first approximation to the
first term:

v

2V (v + 1)

v=1

J&(kr) z (kr) + .,

—v-1

Y (kr) .

J' (xR) =
-V 27V (1 - v)
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and substitute into equation (2.5) we obtain

v’ —v-1 v-1 ~v-1] _
sin ™ (v + 1) (1 - v) (le) (kaRl) - (kR (k& aR,
and finally
v v-1 —v-l) _ )
w(kR, (”‘ - a =0 (1.10)

Solution v = 0 has been already rejected. Therefore, the
only accepteble solution must satisfy the equation

v=1 -v-1
a = g

which may be put in the form

2
a Vo 1 or erlna =1

Hence, 2vlna = 2mri

mmli .(m

that is v =
m lna

=1,2,3...) (1.117)

Better approximations will be given by the second and following

terms of expansion of- JG and J!

I (z) = v(z)v"l (2 + v)zl+v . (L + v)za+“
vELTTY T 24V AT -
2'r{v +1) 2 (2 +v) 2 7'7(3 + v)r(3)
(1.12)
I () = 2 M ) Pl SRR PA

r(1 - vz 22Vr2 - v} 2 VM(3)T(3 - v)

Since 2z = kr 1s smell for k small, we neglect here the

third term of these expansions.
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Eguation (1.9) gives:

[ (kal)v"l (2 + v)(le)1+v][}v(kaRl)_v—1 (2 - u)(kaRl)l‘“ J

2r(v + 1) O Lr(2 + v) (1 - v)2™> TV oLy T{2 = v)

(kaRl)\"1 (2 + ?)(kaRl)1+f}[}v(le)hv_l
eV + 1) T2¥ (2 +v) e - vy

(2 - v)(le)i"“
b o« 27Vp(2 - v) )

0 (1.13)

where,

T(v + 1) = vI'{v)

- T 1
r1 -v) = sin wv T'(v)

il

T{2+v)=(1+v)T{l+v)=v{1+v)Fv)

r{2 - v} =(1 - (1 -v) =1 - v)a/sin(wv) * T{v)
(1 - v} = =vr(-v)
Ml +m+v)=(1l+v)(2+v). .. (;o+ v} (1 +v)

After algebraic manipulations and dropping the term containing

the (le)2 we have

16“.\,(1 f_iz\j):lgl’ _ U) {i‘ U(l - \))(2 + v)(a_v_l - a.1+\))+ (l + \J)(e - \))

v(;v_l - al—v) + hy2(L - v) (1 + u)(le)_z(&vnl - a—v—ll} =0 (1.14)
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In order to improve on the first approximation, (eq. (1.11)),
We now assume

in(1l + em)

_ommi .
“Ina 1% = (1.15)

Where e is a small guantity.

Bolving and remembering that

in z = 1n|z| + i(argz + 2nr) n=20, 1, .
we have

0

n

(1 - v)(2 + v)(e-—mwi—lna _ e:mfi+lna)

) (ém'ni -1lna ~mFi +lna)

(L +v)(2 -w

+

bo(L - v){1 + \J)(le)"Q (emﬁi+ln(l+e)lqa _e—-m'rri-ln(l+e)-lna)

<
1t

(L - v){2 + v)(-l)m(a_l + afl) + (1 +v)(2 - v)(_l)m(a"l - afi)

mi+ e 1
a a(l + g)

3

ho(1 - v) (kR )75 (-1)

(2 - v)(at - &™)+ 2v(1 - v (R B EE =0

(2 - v2) (xR )?
fp T T h(l-vzj)- (1~ %)
o,
(kR }2(a2 - 1)[2 & i;}
e = - 1 1 a‘ lna) in a (1.16)

b [l + m]
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and

2.2
Y = slm_ (kR )2(a2 = 1)[2 + (Il‘ln‘_Ta 2} w17y

m in a 2_9
bw |1 4
(1n a)2
m=1, 2, 3
in(1 + Eo)
For m= 20 VR e

0 dn a

Substituting into equation (1.14) and neglecting terms in vé we

have
+ )
- i EO) 1 ~a(l+¢e)
in a a(l+ g ) c
in(1 + eo) 1+ Eo a
o+ - -
2+ in a a 1+ e
8]
ln(1'+ eo)_ of1+ £, N
+ b in a (le) a T all v eo) =0 (1.18)

Solving, we have

( _ in(1 + ao)> 1-e, e o) (2 . (1 + so)\l te

in a a 1n a / a

+

in(1l + ao) 2e

-2 _
-a(l —¢g) + 4 T (le) —;—-0

In(i + ¢ ) 8c 1n(l + e )
—1}(&—3—')'-!-_2-—-—-——0—3 (a+-l—)+ o O (xR )"2=0
a in & o}

Finally

e, ln(l + EC?) 2( - !2")

ln

of
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In{l +e) ¢
2
£ 2(a% - 1)

in a h(Ele“z + g% + 1

and

v = 2(aZ - 1)}/1n a (1.19)

° u(le)'e +a2+1

Since the result depends on vé we retrace ouwr steps and solve
equation (1.18) without neglecting terms in vg. After algebraic

manipulations we obtain a new expression for vo

2(a? - 1}/1n a

o -2 9 a¢ - 1
h(le) +oaf 4 1+ S

(1.20)

There is an infinite set of pure imaginary.roots v given by equa~
tion (1.17) and oﬂe single real root given by equation {1.20). The
unigqueness of the oﬁtained real éoot remains to be verified. Ex-
panding equation (1.9) by means of series (1.12} and substituting for

vZ2{1n a)2

v . .
s the power series a’ =1+ v ln-a + 5 . . . Wwe obtain,

in the first approximation,

2 1ln a

This result was obtained with only first two terms of the series

for ay. When three terms of this series are used and when small
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of the fourth order are neglected, we obtain

az—l
In a

o} 1

- <
ll(le)2+a2+l+~a—‘-———-

- 2
e (a. 1) 1n a

Equation (1.20) is thus verified by series expansion and uniqueness
of the root Vg established. Adding all solutions obtained with

each of the calculated root, equation (1.5) becomes

o]

1wt R
¢ = Z\ e (a,vm cos v 6 + sin vm8>EkU I, {kr) + B, ¥, (kr)] (1.21)

m m m m
m=0

and using the previously determined value of Bv in terms of A\)

o m
T
Jvm(le)
B\J = - Au FlERy and simplifying notation by adopting
m m oyl
A
v
¢ = - bt
T
v vale)
we obtain

w0
.

_ iwt . t
p=e é cv (a\} cos v 6 + sin vme) [-—Yv (le)Jv (kr) -
m m m

m= m
) (le)Yv (kr):l
m m

which still further simplifies to

o5

_ dwt T m . .

b =e 2_’ Sin nv (av cos v 8 + sin Ume)[‘rv (kr)J_v (le)
m=0 m ot m m m

-J__vm( kr)J\')m( KR, ):l (L.22)
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The expression in the sguare bracket is the characteristic function
of wave moftion in curved ducts. TFor simplicity it will be denoted
Fv(r’Rl) or in an sbreviated form F . TIts derivative with respect
to the argument of Bessel functions, for thé inner curved wall, that
is, &t Rl’ is glways equal to zero. On the oubtside curved wall, at
R2, Fu is zero for all characteristic values Vi To determine

velues of constants C  we differentiate equation (1.22) with re-
m
spect o © and require that, at 6 = 0, the tangential vibrational

velocity of particles be equal to the velocity of the vibrating pis-

ton v eiwt
(8]
C v
194 1 Cu'm [ e N
=== = = — I (kr) J' (¥R ) - J (kr)J',(kRﬂ=v
r 36 8=0 —/ r sin zwvm) v v i ~v v, 1 o

(1.23)

where, to simplify the notation, Cm is written for Cv .
m
To be able to write an expression for Cm we have to use the

orthogonality conditions satisfied by the set Fo= [%v (kr)JiU (le)
m m

-J (kr) g5 (lei} » as given in appendix 2.
m m

The result is

2

vo Fv dxr

qm Rl m

sinlmv ) == R (1.24)
m 2 1
v =¥ ar
m T W
R e}
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The integral igh%-F% is easily reduecible to a sum of integrable
e

expressions of which one vanishes
is given in appendix 3.

The result is

.  The evaluation of this integral

R :
2 rF 2
12 \Jm 1
" ;—vadr T 2y F(v) R (1.25)
1 1
oF
Vm
where F(v) =3 and ' indicates differentiation with respect
v
m

to the argument of F(v)' The integral

4.

dr, for v =
o]

constant, can be integrated using the following expansion in Bessel

functions, as given in "Handbook of Mathematical Functions”.

R
Rl .

2
Tk E\H-l * J\)+3

The sums of Bessel functions of increasing order

2
= é'
JU('kr) dr = » le + Jv+3 + ., ]

i SN

(32)

v + 1,
m

ivm + 3, + « « in complex numbers, converge rapidly and the two

first terms should give a satisfactory solubtion.

Summing up, the final expression for the velocity potential is
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5]

c D
- m . m t
¢ E (s—(_fin ™ gsin vme + ECTR] = cos vme> [Jvm(kr) J_\J (k_Rl)

m=0 n i
-a_, (kr) 3} (le)] (1.26)
m m
where
5 aZ - 1
1n-a ”
v_o= - (1.20)
o -2 P ar — 1
h(le) +af + 1+ s
2, o 2als . m®n2
(le) (a - l)[Q + W
v =i L ! (1.17)
m in =& h 1112'11'2
\ mﬁGLi-TiﬁhgTT
m=1, 2, 3. . .

In equation (1.26) only D> proportional to a in equation (1.5},

remains undetermined.

1.3 Typical Physical Systenms

The constants Qm must be determined by the remaining boundary
conditions. These conditions depend on the configurabion of the sys-

tem under consideration.

’1.30 Infinite bend. - Suppose an infinitely long circula¥® duet for

which the closest physical example is a tightly wound coil of which
the pitch is negligible compared to the radius of curvature of the
duet. The far end boundary condition for an infinite duct is that

no reflection of waves must be considered.
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To determine Dm in equation (1.26) we rewrite (Cm sin vme
+ Dm cos vme), which is & convenient expression for study of standing
waves, into a form better suited for study of propagation of waves.

H] iv Q

Mn alternate form of the solution for 5—-= - v ig Cé e

~iv_8
+ D£ e ™. The two coefficients C  and Q& are not known, but

may be obitained in terms of Cm and Dm. Equating the two expres-

sions

iv 6 +iv B8
1 /. "
3 —1C_+Dm)em+-l-(-:.c +D)e m
51n(wvm5 2 i 2 ™ m
where Qm is the unknown to be determined.

The new, alternate, expression for the veloeity potential is

. . F
¢ = eiwt l-"C + D -1Vm9_* -i¢ + D eivm6 ! (1.27)
- z : 2 1\ ] om m sinfwvmi )

where F\J is the radius depending term of the velocity potential,
m
the characteristic function of the problem.
Let us consider the imaginary roots vm = ium, with um > 0,

(m=1,2, 3, . ..). We have now:

\ F

% iwt 1 ume -ume “m
¢ = e > (;Cm + Dm)e + (—1qm +‘Dm)e E{ﬁr;q;y

m=1
Az 8 -+ «, to avoid wvalues which increase without limit with increas-
ing values of 6 we must set

- iC =D
n m
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and

©

C -ume
m z : sin(mv ) € : / 31niwv y © Fv

mrl m=1 n

v

(1.28)
vhich represents attenuvated vibration of a compressible, invisecid
fluid. Solutions pertaining to the imaginary roots vanish shortly
after the inlet to the duet. The solution given by the real root

AY i3
(o]

. F
it 1 ) ~1v 6 . 1v06 vo
¢, = e (C + D + (-100 + Do)e —_Tsin(mo
To eliminate the waves going into the negative direction of 8, we
put 100 = DO and obtain

i¢ F

oV i{wt-v 8) Don i{wb-v 8)
$ = 2 - e ° = SIS ° (1.29)
o sinzﬁvo) sin(ﬂvo )

which is a wave equation representing free and undamped oscillations
of & compressible, invisecld fluid.
Adding the obtained solubtions the veloeity potential of infini

tesimal waves in an infinite two-dimensional curved duct is

DF

0"V, i(mt-voe) Lot BV -1 8 .
#x.0%) = Sl 7 © AVA R T (1.30)

i m=1

The amplitude of the moving wave is given by the constant and

by the characteristie Function FU (r,Rl) of the first term of the
o
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equation (L30). The exponential function exp i(wt - voe) deseribes
the harmonic motion. The second term of this equation represents
the decaying oscillations. The amplitude of these oscillations de-
pends on the radius. Basically, the motion in curved bends is char-
acterized by non-plane osciliastions. The detailed evaluation of
these waves and oscillations will give the deéree of this non-
uniformity.

The harmonic function exp i{wt - vOG) depends on the charac-
teristic value uo (eqg. (1.20)) which is the wave number of motion
when expressed in cylindrical coordinates. It has been named by

(8) o '

Krasnushkin angular wave number"; v, 1is a nondimensional, real
and fractional number.

The propagation of waves in a curved duct iz profoundly influ-
enced by the boundary conditions (i.e., by the curvature of the duct).
Consider exp i(wt - voe) where g 1s proportional to the forcing
frequency of the piston and the phase velocity 6 = w/vo. The ex-~

ponential function may be written exp i(wt - vos/r) where s = rb

is the arc length. The wave constant on every circular path is

v
f = O 2m _ 2mr s . LT
k el veny and so Arzx) = ;;—- and S -;;

where & is the apparent phase velocity on a circle. In a curved
duct the wave length and the apparent phase velocity are proporticnal
to radius. The theory shows that, in the duct, there is an infinite

set of simple waves of one frequency but of varying wave length.
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It may be shown that for the case of a slightly bent duct the
developed equations for wave propagation in bends are, in the limit,

exactly those for a straight duct as demonstrsted by Rayléigh. This

will verify the result of the present analysis. BEquation (1.20)

2
as - 1
2 In a
UO =
-2 » , 8% -1 2
lt(le) +l+a+1na-(a. -1)1n a
. . a? - 1 -
for a -+ 1, with lim S—== 2 gand with (kR,)} << 1
. In a 1
a+l
. ] 1.
gives v = Af———7—— " kR
° Wriy2s1 2
| 1
while the apparent phase velocity om a circle becomes § = %’5 +
o}
kg W . .
o — = o, the veloeity of sound in unbounded space.

le k
The angular wave number for short waves obtained by Buchholz

(14)

and Rice'’ does not meet this.condition. Using our nomenclature

(1)

they have

(18, )%(a - 1)°
o + P(a - 1)

- 2 £,3
\)O— (le) &1.+;_1.+2 ~

which for a =+ 1™ tends to vy = V(le)g + %‘
(9)

The expression for angular wave number obtained by Grigor'yan is

_ 3a = 1
v, = alkR, ) V 52 =3

It tends to v_= (¥R,) for a + 1, as required. However, for
0 1
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a > 1 its value does not agree with equation (1.20). In view of
the fact that Grigor'yan uses an approximate solution (expamsion in
Taylor series) while equation (1.20) is a characteristic value of
an exact solution, a verificatiop of the solution at the lower limit
and a progressive deficiency at the higher valuss of the varigble
are quite posesible.

1.31 Straight infinite duct. - In order to satisfy the equation of

motion in a bend followed by a straight duct we will match the solu-

tion given by equation (1.26) with

-]

i(wt+g_x+r y)
s = ZEHF_. nn (1.31)

=02

which represents an aggregate of plane waves in a straight tube, x
being measured along the axis of the tube, y is perpendicular to
it and y = 0 is at the center of the tube. The coefficients En
and ;n are to be dehbermined.

The Helmholtz equation in Cartesian coordinates reads

32y , 32 24 -
Ezz"l"a-y%"‘kq) 0 (1.32)

Differentiating equation (1.31 and substitubing into the

Helwholtz equation we obtain

Teb AL

ot
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Rewriting equation (1.31)

[+5]

+ixV kz-gz
E' e a
n

=~

d):

—-ix /sz-;r21>ei ( ?,'ny+wt)

+ B" o
n

or more generally

-ix q/kz-cfl icy iz y

'
+ e Pn e + Qh e (1.33)

Equation (1.33) represents waves going in the positive and the nega-
tive directions of x and y. Differentiating with respect to ¥
and applying, at limits ¥y = *L, the boundary condition of perfectly

rigid wall, we have

ir L -ig L
P e t —qe " =0
n 1}

-ir I +ig Iy
Pe 2 _ge 2 =0
1 n

and similar hémogeneous system for Pﬁ snd Qﬂ.

The consistency condition is

eQiL _ e—QiL = 0
which gives

sin 2an =0

2;nL = ng Cn = %%

n=0,1,2,3, ... (1,1.'34)
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Noting that

- W _ 2.
k“c hy
=BT, T 2T
T AL TR Tk
n=1,2, 3 (i.35)

A being assumed much greater than L.
a . T 1 —_
Substituting the values of Pn’ Pn and Q'n’ Qn . from the com

patibility equabions into equation (1.33) we have

_ = ix ’sz—z;g -ix "\/kz—gz
o - wh ' n 1 n
b = e cos qn(y + L) En e + En e

n=0
end, writing out explicitly the solution for n=0

1wt ikx ikx _§°° ’ —x rzlukz
= t 1 = 4 1
b = e El e + Eje + cos z;n(y L) E e

n=1

X ’\/;121-112

+E" e
n

If we now assume the straight tube to be infinite we must elim-

1

inate the exponentials with positive powers of =x. With EC') = E;; = 0

we obtain .
. . =z —x AfcZ K2
$p = Tt (g kX E E cos [:g (y + L)] e 0 (1.36)
0 n n
n=l
/

which is the fihal form of’the equstion of motion in the straight
}

duct. The first term on the right hand side of this equation
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represents & plane wave. The second term is an infinite set of
attenuated vibrations. Differentiating equation (1.36) with respect
to ¥y will give expression for transverse vibrations. When dif-
ferentiated, the first, permanent term yield no component. There-
fore, only the set of higher modes produces attenuated transverse
oscillations. This result discloses that the considered long waves
in a straight duct must be plane toc propagate.

Based on the above then, a general incident long wave will pro-
duce a traveling wave and attenuated transient componentz. This
condition will remain until the initial wave straightens out and the
transverse components diminish to zero. ¥Fhe initial wave then
travels as a plane wave of reduced amplitude.

132 62 radians bend followed by a straight infinite duct.-~ To ana-

lyze the motion in the system bend-straight duct, it is necessary to
determine the Dm (in the equation of motion in the bend) and the

En (in the equation of motion in the straight tube) using relations

=]
i
@

%%ﬁ%amg3%§ at 2 (1.37)

that is, the continuity conditions at the junction bend-straeight

tube. The velocity components, with

-

. R, - B o R+ R,
2 yE=r-=-"—"5

, are:
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194 dwt) C0 Vo =156
— — D —— - D 9
r 90 e smf'nvoi r Fvo L r sminv 5 ‘: cc:'s \"me m sin vm
m=1
- 2 1.2
- =X -k
3 _ _dwt ) ~ikx —5 ( ) Ve
T = @ —:r.l«:E0 e }_ -k E cos cn r - Rl e
n_ N
. 1C —1v g i
3 _ _lwt 0 , ) . + v 8
r - ° s:.n(wos Fuo s:.nfm) 5L-Cm sin vme Dm G0S Vi
m—-l .

3¢ eit.u‘l:.
¥

]—x@z_
e

2

1i

|
P/| g

B [s:.n cn(r - Rl)
1

]
fi

Bguations (3.10) at 8 = 0, and x = 0 are

o oo
c u ~-1v.0 v C cos v - D sin v g
0 9] 02 m m m, 2 m m2_] _ _Z %2 E cos r - R
smi'nvof r F\JO & +2 r F\Jm[ sin(num) B 1kEO Vcn n ?;n( 1)
n=l

(1.38)

el -]

iC, -iv 8, 2 - 2" [-
]
sin(woi Fvo sn.n(rrv ) [c sin Vs * Dm cos "mee - ann smle:n(r - Rlﬂ (1.39)
m=1 n=1

3

wMultiplying equation (1.38) by F, and using the orthogonality properties established earlier
o
we obtain

LE



D sin v 8
m m

= Cm cos vm62

2
o«
le C.v ~iv_.8 /REF\)F\) fR2
00 0°2 0 Vm % %
lkEO Rl F\)m dr + -S—:L-H(—TI—'—\ZT e Rl ——_r dr + En '\I:n -k Rl va COS(CH(I‘ - Rlﬂdr
n=1 -
+

. fRe
m 1 o2
sin(mv 5 r F\) dr
m Rl m

(1.40)

The integral in the denominetor is given in the appendix 3. To ecalculate En we multiply

equation (1.39) by s:m[;n(r - Rl):] and by orthogonality of the sine funetions

RE o RQ .
i(‘,‘0 —1\)092 vm 1

_ v s _ . . _

sl T ™, e F\JO gin E:n(r Rl)]dr - {Elm sin v 8, + D cos V0o T [sm Cn(r Rlb dr

. R m=1 R n
- 1L 1

n 32 )
Z, san [t;n(r - Rl) dr
Rl

(1.41)

8¢



The denominator i1s directly integrable

R T
2
Cp / gin? E;n(r - Rl)-_] ar _/0‘ sinz[;n(r - Rl)J a(r - Rl)

Ry

nw

- 4T
=3 (1.42)

nw

% a;n(r - Rl)' - i— sin 2|3;n(r - Blﬂ

o 0

Rearranging and substituting equation (1.41) into equation (1.40) we will get ‘the desired
expression for Qm.

Besides D » the only unknown in the above expressions is Eo' It will be obtained by in-

tegrations of equation (1.38). The last term is identically zero and there remains

R —1\)0 8 RQ F\)

- 2 Y .
_1kE dr m r dr * ¥ sin 'w [Cm cos(vaE) B Dm s:.n(vmee)]dr

Rl m"l
(1.43)

6€
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. F
v
The integral./Pw;Qidr is not direcitly obtainable. Let us consider

the Bessel equation
1 £ 1 2 Uz) I_
F+I‘F+k--l-'£ F=0

Multiplying by » and integrating {with =zF! = 0

R, R, .
v
k2 rF dr = v2 2 dr
, v . r
B Ry

R
An integral w/r’ rF ' dr can be evaluated by a general formula
m

o}

Z ® *
k v2k
H 13 (-1)"(=/2)
e[:a £ Jv(t)dt =z ;io G Ir TG sy s m ) Re{u +v) > -1

The integral

R2
' R ‘ ]
F“ sin §n(r - Rl) dr

will reduce, by integration by parts, to the integral

=1

R, ’
-z, Fv cos {}n(r - Rli] dr . (1.44)
Rl "

vhich is already present in the equation (1.,40).
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The evaluation of integral
R2

F, cos Cn(r - Rl) dr (1.45)
R n
1

is relegated to appendix k.

The form of the solutions and of the expressions for the con-
stants obtained so far are too complex to allow detail conclusions.
However, équation (1L.30) vhich defines the potential in an infinite

bend indicates that there wlll be both a steady field of transmitted

’ ‘

|
velocities and a decaying field. Furthermore there will be a field

of standing radial vaibrations throughout the bend. Similarly, equa-
tion (1.36) :E‘;)r the straight duct shows that there will be both the
transmitted and the decaying velocity fields in the duct and that
the radial oscillations exist only at the inlet. You will note that
these equations do not permit the evaluation of the amplitude and
digtribution of the osecillations. However, expanding the functions
and integrations will simplify the algebraic expressions and result
in numerical data. The alternating series, described by tﬁe Summa—
tion terms, converge very rapidly and will yield accurate data that

will allow a physical interpretation of resulis.
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2.0 INTEGRATED SOLUTION

Before any numerical application of the derived equation is
congidered it 1s worthwhile to analyze the functions present in

the final expression for the veloeity potentisel

= 1w
— e . - 1
) —.EE: EEET;;;S.(Cme sin v 8 + D_ cos “m?)[%v (kr)J_v (le)
m=Q

m m

! s
-3, (kr)Jv,(le):I (1.26)
m m
The discusgion will begin by an analysis of the Bessel functions,

followed by an analysis of
= 1 - 1
P, (2) = J  (ke)3' (sR)) - J_ (kr)d) (xR))
m m m m m
evaluation of coefficients Cm, Dm and coefficients En for the
two typical duct systems to be concluded by interpretation of the

final eqguations of motion.



43

2.1 The Characteristic Functions Fv and Coefficients C
m

2.10 The real root solution. — Let us consider the sclution of Fv
c

in equation (1.26) pertaining to the real root v,+ Using the series

expansions for J (kr), I_, (kr) and for I (kr) and Iy (kxr) as
o] (@] o] 8]

given by equations (1.12) we obtain:

sin(ﬂvoj
Ty (ToBy) = TR, v _r (1 = w2y
vO
(%1—) (—lwo + 3 - 2(kr )2 + (kR )? - uo(le)2)

)
+ (—E-I)o(kr)2(\)o - V2 ¥ (le)2/2 - uo(le)e/h)

+ r Yo by + bv? + 2(kR, ) - v2(xR. )2 (kR)B)
R (; Yo vp 2 le T Vo ERL S T VMR

+ (‘E‘;)—vo (kr>2(\)o + \,g - (le)2/2 ~ vo(le)Z/h) (2.1)

In an direct application of this equation, we would neglect
terms containing the second powers of (kr) and (le) vwhich are small
of the fourth order. However, neglecting terms in (kr)2 would re-—
strict the characteristic function to constants and terms with log-
arithms of r. Conseguently, to maintain generality we will keep

the terms in (kr)2 during analysis.
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Using power series for the exponential functions

N B BP e £

r Vo T 1 . 1

—— = + —
( ) l_vo ln R + oY * 31 + .

and neglecting terms in vg and terms contalning products (kr)2
(kR1)2 which are of the same order, we obtain
sin(ﬂuo)
Vo Rl hﬁ(le)(l vo)

{[—-8 H 8v§ - 2(1{31)2 - h(le)2 in =— + 2\%(1;1%1)2 1n %—
A2 2 3

Ly2 Yy _ .2 2ty x YV _ 2 o 2y, r_ ]
hvo(ln Rl) uo(le) (ln Rl) 3 vo(le) (1n = )

2
2 2 r_ .2 r_
+ (kr) [2 - 2v2 1In R, + \)o(ln, RJ_) ]} {2.2)

This general solution of the Beszel equation well verifies the
differential equation in a very wide range of radii ratios. For
g = RQ/Rl from 1 to 4 the error is negligible. For a = 10 the
error is approximately 1 percent.

This eguation, if greatly simplified by elimination of products

of smail bterms becomes

sin{mv )

2
= ___.9_.| 2 _ 2 _ o2 (1 -
Fvo(r,Rl) ® () | 8 + 8v2 - 2(kR, ) lwo(ln Rl)

+ 2(kr)? - l}(kBl)2 in g—] (2.3)
1
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Equation (2.3), when applied to the differential equation, still

yields a very satisfectory expression for Vg at r = R, namely

2
82 — 1
2. 282 -1
Ve e s O gy
u(le)
For pnumerical calculations Fu is, with high accuracy, equal to
0
2 sa.n(m:o)
F\J a5 - —ﬂ(ﬁr (2 .)-!-)
o 1

To obtain C_» we have, by equations (1.24) and (1.25), and using

the expanded expression for F\,

0
c =-:9-2(RR)(1 23
o Vo ARy T Vol ¥
Rrh (k_R)2+l+2( 1) (kR)3£—“—i+ 2(kR, )2 - L2 1 s+ 2v2 alin 2)°
l{ - ) vZi(a - - Y 3 ) -y jalne v, alln 2

{16 + 8(le)2Jln 8+ h(le)e (a2 - 1) + 8(1:1?1)2 (n 2)® + :r.‘(:chl)2 . vg

which, if the small of the second and of the higher orders and neg-

lected simplifies %o

-n{le)
-1
C =~ 2 2,
o vo euo Rllna. (2.5)
2.11 The imaginary roots solutions. -~ Let us consider the Bessel

funetions of pure imaginery order in the equation (1.26). Use will
be made of expressions for the Bessel functions with real argument
and of immginery order asnd tables of functions which have been pub-

lished by Buckens(eo)-
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The very basic relsbions are
R iy .
F (kr) + iG (k =27TI(1 + J. (kr 2.6
u( ) u( r) ( in) lu( ) (2.6)

where iy = v and

n

¢ (kr)

" Ap(kr) sin [p In (kr)] + Bu(kr) cos [u In (kr)]

F (kr)

" Au(kr) cos [u In (kr)] - Bu(kr) sin -[u In {(kr)]

The functions Au(kr) and Bu(kr) are Au(kr) =

o0

2 by 2
z i g = i & =
g=0(£)2g(lkr) B, ggo(c)gg(lkr) g=0,1,2,3. .. md

(5)0=l’ (;)0":0 az}d

B ot iy, o

L - T T - ,
2g ~ hglu® + g%)

2g hg(ps + g%)

£

Neglecting the fourth and higher powers of (kr) we have

F" 2 T 2 h
7, () = |1 - ﬂ'(‘a.%ri)?)‘, cosu 1a(kr)] - sty sin [u 1nfer)]

L ()® |stnle 0] ¢ el cos [y 1a(ke)]
Gu(kr) = Ll - lki - sinly In(kr + m‘ cos |pu ln(kr

(2.7)
Substituting into equation (2.6) we obtain expressions for
»
I (kr) and J_iu(kr) for (kr) << 1. In an sbbrevisted notation

they are

. iu .
+ iG (k 2 + .
Fu(kr) i u( r) {1 1u)J1u(kr)

o7 (1 - i)T L (k)

F (xr) - iG.(k .
L) k) .
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The left hand sides of the gbove equabions are complex conjugates.

Since

r(1 + ip) = °(L + i)
we conclude that 2lpJ_iu(kr) is complex conjugate of QHlNJiu(kr).
In equations {2.7), for (kr) << 1, terms in (kr)2 may be.neglected.

Expressions for Ji (kr) ana J ; (kr) simplify as follows

cos [1 1n (kr)] + i sin [y 1n (xr)] Qiuf(l + iu)Jiu(kr)

(2.8a)

cos [uin (kr)] ~ i sin [p 1n (kr)] = 2*¥r(1 - i) (kr)

(%.Sb)

Let ug substitute into equation (2.8a) the value p=m

W
In a
and consider the term sin [p 1n (kr)] for kr = le and kr = kR2

We obtain

in &
sin [%ﬂ R{]
1n =a

. [ in kth:I _ [ in lez]
sin |y —m——— = 51n ma + my -

and

In a ln a
The second expression is dephased by wmr with respect to the first
one., We conclude that for m =1, [y = #/(In a)l, Jiu(kRE) is the
negative of J, (kR ) because it is reflection of J, (¥R ) in the
ilu 1 ip 1
origin. For m = 2[y = 27/(1n a)l, Jiu(kRQ) will be numerically
equal to Jiu(le) but will be rotated by 2w. The phase angle of
the solutions for (kRib and (kR2) by even and odd numbers of 7 im-

plies that in the range of radii!from Rl to R2 there will be a
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numbef, increasing with m, of pure imaginary or simply real

Jiu(kr).

Taking the derivative of the expression (2.6} with respect to

the argument (kr) of the Bessel function we obtain

H]

otHe(r + iu)Jj'_U(kr) sinl{n In (kr)][ege(kr) + gy (kr) - '(——yﬁr]

+.

cos [u 1n (kr)}[ucg(kr) - 252(kr)]

.1 {_ cos [ In (kr)][agg(kr) + ug,(kr) - ———)-(ﬁrJ

+ sin [p 1n (kr)}E:Ee(kr) - 2&2(1:1-{‘}

All terms conbaining ;2(kr) and Ee(kr) are small when com—
pared with u/{kr) and in the first approximation may be neglected.

The resulting equations are

21+ iu)Jiu(kr) = - TEE—) sin [p1n (kr)] + 1 -(—E-;T cos [uf 1n (kr)]
(2.9a)

2™Hp(1 - 1w)3!; (kr) = - gy sin [wIn (kr)] - 1 gy cos [ Inkr)]
(2.9b)

By considerations ldentical to considerations applied to expressions
(2.8) we conclude that the derivatives with respect to argument of
the Bessel functions of pure imaginary order J_'_iu(kr) and J iu(kr)=
for (kr) << 1, are complex conjugates.

Using equations (2.8) and’(2.9) we form F_ for m# 0
1
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T =
v
m
oy szn[um;n(kr)]51n[nm;n(le)] + cos[um;n(kr)] cos[um;n(le)]
T TR P(1 + ip ) T(1 - 2w )
=™ Y
(2.10)
Since
. . TH
r{1 + - =
(1 + ip) (1 - ip) sTn (o)
and using trigonometric transformation we have
2 sinh(w
Fo=i iy cos |y 1n = (2.11)
v (&R, ) e} R :
m 1 1

Equation (2.11) shows that Fv is a pure imaginary number and is
m

a function of radius r. To check the degree of approximation used
* )

when neglecting -terms in (kr)2 we retrace our calculation and estab-

lish Fv (r,Rl) with better accuracy. It is

m
sinh(my )
F,o=ijy Az)m x
v 1+ m (kR

—-—y

{- QuEEL(l + pi) + (kl‘:{l)2 + (kr)2 cos(um in %Z-L-)

‘et

. Rl

2 2 2 r
+ b + 2p? - 2u2 i —
[ (le) Qum(kR) 2um(kr) sin (um in )}
Except for the first term in the expression of the cosine of the
logarithm, &all other terms are very smell and are rapidly decreasing

with increasing m. The simplified expression obtained by elimina--

tion of terms (kr)2, which are small of the fourth order, retains
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the character of the exact expression and may be considered as a
very good approximation of the exact equation.
To calculate the constant Cm pertaining to the imaginary

roots we evaluate the two integrals, f F\) dr and %F\z) dar,
m m

using equation (2.10) for F, . This expression contains the vari-
m
able » in funections sin[p 1n (kr)] and cos[y 1n (kr)]. Before

proceeding, we esgtablish the necesgary integrals starting with the

well known integral

n/:sin(ln rldr = %’-r sin(ln r) - %-r cos(ln »)
They are
/:'p sin(p 1n r)dr = 1 [(p.-f- l)r(P+l) sin(p 1n r)
[p+1)2+ w2

-u r(P+1) cos{y 1n r)]

‘/;p cos(y 1ln r)dr = [( 1)2 Zj— I:ur(P+l) sin(y 1n r)
p -+ 1 + u

I

L

+ (p + 1)r(p+l) cos(u 1n r)]

(2.12)
where p is unrestricted.
in?(p 1n r)} 1 1
sin“{p In » ]
= = - = L
f - dr 5 in v T sin(2p 1n r) (2.13)
+e0s?(u In v) dr = =1In r + = sin{(2y 1n r) (2.1%)
r 2 E]_;
i ]
fsm(” in v) ;05(“ Inr) g = - iy cos(2u 1o 7) (2.15)
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2 2
/r cos(u 10 z) sin{y 1n r)dr = - = cosﬁEu ln ) + z [ sin{2p n r) + cos{(2p 1n r)] {2,16)
X bo{a + 2]

2 -
/rzcosz(u In r)dr = & Slnﬁi” in r) + (%)2 - %/r sin{p In r) cos(y 1n r)dr (2.17)
*

The main lines of calculation of Cm are quite simple but lengthy. Omitting the algebraic intermedaate

steps, the result is

2(1ch)2“ , E(le)a_ , - l
-Sum(a cos mm - 1} — ————2—L2 +u o+ um][a cos mw - 1] + —;—-—-;Lum - 3umJLa. cos mm - JJ
v, By (kR ) 1+ 0y 3%+ )
C \) = -1 }4 2 . ( m m
n'm W, sinh{mu )

2 4 1)1n & + 2(kR, )% (a2 1)-———2l + 3. (1 r \1
™ na ) a? - T = -z )
m m m/ ) u

and retaining the large terms only

Yo MURIR o cos(um) - 1)
Cmvm -t S:th(umw) in s.(lﬂ+ p]i) (2.18)
and
o vo(le)Rl (a cos{mm) - 1)

m - m sinh(p m) @ +u2) (2.19)



2.2 The Infinite Bend

2,20 Equstions. — The integrated equation for the velocity potential ¢(r,0,t) for en infinite

bend may now be written directly by substitubion of the derived expressions for Co’ Cm and

F ,F into equation (1.30).

v v
o m
The velocity potential is
v B a1(iwt—v 0)
- o 1 ' o a1} 2 2 _ 2 2 r_ 2( EJ
) ig—e P [2 + (kr)=/2 + 2v2 2(1:31) - (le) 1n _Rl valln ¢
v R = 6
. Y]
oL TWE e W Bcosmi- ] -2u j&{1 + u2) + (kR )2 + (kr)2 cos(u In 2
by 22 n i 1 m R
- my_ (1 + p?%)~ 1
m= m m
2 2 2 2 2 . r
+ [h(le) + 2um(le) - 2um(kr)]s:|.n um(ln _R:L) (2.20)
and without terms small of the second order
v 1{wt~v 8)
_ . _0 g — 1 o
¢(r,0,8) =1 v Rl in a
o
v R . = e IR:
o 1l iwt § a cos{mn) - 1 m T "
-2 - e m(l +-],l§1) e cos ﬁlm In Rl] (2-21).

m=1

[43



The tangentisl vibrational velocity is

R iv 6 2
. dwt La-1 o 2 2 2 2., r 2 T
v(r,0,t) = -e VTR e © [} 2 + (kr)“/2 + 2vE - E(k'ﬂl) - (le) Jdn --—Rl v2(1n R~—l

v.R . = ~j 8
"1 iwt m & cos my - 1 2 2 2 iy
- e é e —EUmEL(l + um) + (le) + (k) cos(um In & )

he 242
m=1 m(l * um) 1
2 21 . r ! N
+ [(kR )< eu (kR ) - Eum(kr)}sm(um in E") (2.22)
N .

The radial vibrational velocity is

v R, i(wt-v 9)
w(r,0,t) = -1 =— Lo °c & lEczr - (le)g/r - 2\)2 in —/

2\)0 1n

-]

. -8
. olot Jof1 E e m facos(mr) - 1) fy o yer + u2) + (kR D%+ (xp)®
hr v 242 m n 1
— n(l + ]Jm)

<
d

uu;(kry"]sin(um In %) + [h(le)2 + 2u2(kr)? - 2020er)? - u(kr){fcos@m In %-)
1 1

(2.23)

139
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The real parts cf these equations fully describe the propagation
of acoustical wgves in an infinite bend. To better visualize the
dependence on rzdius of the final equations of motion, figure 2
shows cos w_ ln(r)/(Rl) which appears in equations 2.22) and
(2.23). This function is not very common. We note that the traced
curvés . are shifted off-center due to the influence of the log-
arithm in the argument of the cosinus.

2.21 Discussion. - In the expression for the wvelocity potential

the term which rapidly decreases, with increasing 6, 1s 7/2 out

of phase with respect to the other term which is a true wave of

amplitude

Vb a - 1 2 2 2 iy
— - 2 - .

o Rl T {2 + (kr)~/2 + 2\;0 2(1;31) (le) 1n Rl.

i)

Since kr << 1, this amplitude is, in a first approximation, in-
dependent of radius and the progressive wave is nearly plane. The
tangential vibrational velocity has both the peymanent wave term and
the attenuwated vibration terms in phase. The permanent wave term
is basically inversely proportional +to the radius while the atten-
uated, disappearing term has a more involved radius dependence.

The radial vibrational velocities alsc have a permanent and
an attenuated term. The permanent stationary vibrations are =/2
out of phase with the tangentisl components. The attenuated oscill-

ations are in phase with the tangential velocities.



Figure 2. - Cospy, In(r/Ry)] for m=1, 2, 3, and 4,
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A vectorial addition of the radial and tangential velocities
yields motion's vibrational veloeity and the direction of the wave
front.

The propagation of wawves in a curved duect is thus profoundly
influenced by the curvature of the conduit. TFhe amplitude of
vibrational wvelocities is a function of both inner radius Rl and
of the radii ratic a = R2/Rl. The tangential vibrational velo-
cities are almost exsactly inversely proportionsl to radius, that is,
velocities follow the distribution of a potential wvortex. The
radial vibrational veloclties are approximately two orders of magni-
tude smaller than the tangent®al wvelocities. Thelr radial distribu-
tion is governed by the three termsin the square bracket of the .
equation (2.23). The expressions derived for vibrational velocities
in a bend permit a thorough discussion of the motion. The results
obtained will be discussed with the aid of figures 3 to 8.

Thg tangential vibrational velocities of the propagating wave,
as described by equetion {.22), very closely approximate a hyperbolie
distribution across the chamnel's width. PFigure 3 discloses that the
vibrational velocities for a = Rg/ﬁl up to 2.5 range from values
close to l.vato approximately O'BVb' it is noted that value of
v =v_ always falls on radii smaller than ducts centerline radius

o

R = (Rl ¥ RQ)/é' For example, for a =2, v =7v_ is at

I'1.r=v /%l.
o)

the caleculation for different values of the a, we obtain the re-

it}

{a, - 1}/1n a = 1.4bk27 while Rm/%l = 1.5. Performing

lationship rv=v0/Rm as a function of the parameter a = Ra/ﬁl'
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This is shown in figure L. The radius on which % =V decreases
proportionately to the increase in the sharpness of the bend.

The phase wvelocity Bf waves is also affected by bhending of
ducts. For a bend, the phase velocity is 0 = m/vo,\as obtained
from (wt - voe), while for & straight duct it is X = w/k, as given
by {wt - kx). To compare the twe velocities we average the tan-

gential phase velocity, Or = & over the duct width and obtain

W Ié] w kRm
|&] = =R The ratio of the two velocities is = R = ——
‘\)O m * c \)O m \)O

This ratio is traced on figure 4, Clearly, the phase velocity in
bends is always higher than in straight ducts. Furthermore it in-
creases with increasing duct sharpness as measured by =z = R2/Rl.
Therafore, if equal passage time in a straight and in a bend duct
or phase equality are desired, the bend pipe must be made longer
than the straight pipe.

The attenuated tangential vibrations which characterize change
from motion of plane waves in straight duct to motion in a curved
duct are examined in the next two figures. Figure 5 gives results
of a sample calculation illustrsting the behavior of those oscillg-
tions for a duct of radii ratic =a = 2. The vibrations are basic-
glly of low amplitude. Hven close to the piston, at 06 = n/16, they
are one order of magnitude smaller than vibrations of the non-damped,
propagating wave. The radial distribution of these oscillations
changes significantly with wave angulsr position in the duct. At

8 = 7/4 +these oscillations are reduced to a very low level and are
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nearly wniform across the width of the duct. TFigure 6 shows the
same oseclllations calculaﬁed for three different duct widths but
with a single angular pos&tion of © = m/k. The curve for a = 2
was taken directly frim figure 5 for comparison purposes. The two
other curves indicate that the decaying oscillations are much more
pronounced and extend farther when induced in wider duets.

The radial vibrational wveloecities, which characterize motion
of waves in curved ducts, for long waves, are of low amplitude. The
permanent, standing oscillations are shown in figure T. They are
calculated for duet radii ratios of 2, 3 and k., Generally the amp-
litude of these oscillations is low, approximately two orders of
magnitude smaller than the tangential velocities. The radial dis-
tribution is characterized by the lack of symmetry. The maxina of
curves are shifted\toward bend's inner wall.

This phenomenon is even more pronounced in the case of the non-
propagating, damped, radial osecillations at the curved duet inlet.
The amplitude and radial distribution of these oscillations is shown
on figure 8§ for three values of parameter o and at 6 = /4., For
a =.2 +the permanent and the vanishing oscilliations are of approxi-
mately the same amplitude. For a =3 and U4 the decaying oscilla-
tionsg are aboul twice as large as the radial oscillation of the prop-
agating wave. Therefore, the process of decay is much slower when
duects are wide.

The initial conditions, that is, the distribution of velocities

on the vibrating piston, determined the type of the obftained solution.
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To verify the influence of the initial conditions let us compare the
simple initial distributions in which the vibrational velocities at
the piston will be independent, proportional and inversely propor-

tional te the radius. Caleculating the integralﬁiévon (r)dr of the

m
nominator of the constant Cm we obtain the Ffollowing results
Tnitial  Amplitude of the Amplitude of the "m"th Decaying Wave
Velocity Progressing Wave is Proportional to
Distri- is Proportional
bution to
a - 1 2 2
A =+ 0(kr) (a cos mm - 1) + O(kr)
2 . 2.2 R 2
v, %— STE;€E+-O(kr)2 o WIE (1n-a) (a2, cos mr - 1) +,0(kr)2
1 m2n2 + 4(1ln a)2
Rl
v, 1+ 0(kr)? zero + O(kr)?2

The first possibility, that is the particle vibrational velocity at
the piston are independent of the radius, has been already discussed.
The second possibility results in the amplitude of the wave and of
the decaying vibrations strongly increasing with channel radii ratio
&, The third possibility (potential vortex at the inlet) results in
a wave of almost constant amplitude, independent of the parameter a
end with vanishingly small damped oscillations at the inlet. The
sssumption that the tangential velocity at 6 = 0 be inversely pro-
portional to the radius results in a remarkable simplification of the
eguation of motion beecause virtually only the undamped simple pro-
gressing and weak radial waves are present. Furthermore, the pro-

gressing waves sre essentially independent of bend's radii ratio.
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The physical meaning of the derived equations may now be dis-
cussed. We will make a direct parallel between solution of the
Laplace equation V2¢ = ¢ for inviscid, incompressible fluid and
the Helmholz equation V2¢ + k2¢ = 0 for inviscid, compressible
fluid. One of the solutions of the Laplace equation, written in
eylindrical coordinates, gives the potential vortex. It is charac-
terized by absence of radial velocities and, at every 6, the tan-
gential velocity distribution is the same.

In the case of the Helmholz equation with vo = const. or
proportional to the radius, equations indicate that long waves only
gradualiy adjust themselwes to the curvilinear boundasries until a
permanent pattern of a free vortex type (in tangential vibrational
velocities) is obbained on which vanishingly small components of
linear and logarithmic nature are superimposed, and the previously
discussed set of small radiszl oscillations is formed.

We conclude by saying that solution of the Helmholz eguation
for a curved, two dimensional duet results almost exactly in a
potential vortex in.the tangential velocities with superimposed
pattern of small standing radial oscillations. The presence of
these radial vibrations distinguishes the Helmholz equation from the

Laplace equation type of motion.

2,3 92 Radians Bend Followed by a Straight Infinite Duct

2.30 Motion in the bend. - To calculate the coefficients Dm which

determine amplitude of vibrations near the outlet of a bend, we will

proceed with integration of expressions established in the general
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solution. Equations (1.40), (1.41) and (1,%3) indicate that motion
in & bend depends on the parameters of the straight duct that follows
the bend. Obviously, mobtion in each segment of the ducting depends
on motion in the entire system. The derived relationships are quite
involved and simultaneous solution of these equabions results in an
infinite matrix in m and n. The coefficients Dm depend on co-
efficientg. Cm’ E0 and En' However, by substitutions, it will be
possible to express Dm in terms of known Cm only.

To simplify the writing the fcllowing symbols will be wused.
For the integral of equation (1.45)

R
5 .
F, (r)eos [;n(r - Rl)]dr = Ap m X 0 (2.24)

e
1

The coefficient Eo’ as given by equation (1"45) is

Le A

—-iv 6
Covo a 02 Fuo(r)
Eo =1 {le)(a ~ 1)sin{mv ) r dr
p o
i . vmpm Qm va(r)
et + l —_—
+ (le)(a = 1) sin(wv ) coth umg2 ig Slnh(anQ) r dr
— n m
m=1

(2.25)

The first term, which will be designated by 2%, consists of two
parts. One large and independent of the parameters of the bend and
& series of very small terms which are functions of Rl and a.

The second berm consists of a sum of very small terms only because
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the main term of the integral F {(r)/r dr is
m

+

In an expanded form and with the help of simplifying sywbols, equa-

tion {2.25) reads:

’ i
Eo = Z+ XL{%oth(ulee) - tanh(ulﬂai]

+ X, E:oth(ueeg) - 'banh(ueez)] + .

:
3

By o xpBy F e (.26)
DI!]. {
where 8 = |z o tanh (umeg) (2.27)

We note-that for u 8 larger than apprximately 4, coth 4 =

2

tanh 4 ® 1., Typically for 92 = /2 and a < 5 this approxima-

tion is very satisfactory. In all practical gpplieations of long

wave motion in a 90° bend a simplified equation

—i\)oe2
e (2.28)

wloq

may be used with high accuracy. Equation (2.28) results from equation
(2.26) when small terms of the second and higher orders are neglected.
By equations (1.40) and (1.41) a single expression for D,

may be obtained. It will be convenient to establish the ratio



(Dm/i(}m) rather than Dm alone. The relation is

v & F F
e 02 Vo Yy
' v C--— dr
-
(D) ik E_ o o gin(mw 0) r ’ L
- P coth(u 8 ) - . - - - - X
e &2 Yo smnh(ug%) v_ sinhfu_ 0 ) F dr v sinh(u_® ) F dr
o) g 2 v - o] g 2 v
' g ' g
i e“l\)062
E qu a2 .2 o 1 : _ '
¢ k Fén paliy Sln('ﬂ'\)o) - ﬂFv(r_)"(r"),SlnE;n(r Rl):] dr
n=1 '
o Dm
" 52 - )
¥ Z "n ;n k Aan nw z s:mhr\) )- Slnh " e2 * (i Cm)COSh (ume2 Aan
n= m=1 B

(2.29)

where E0 18 given by equation (2.26) and where / Dg is the given particular Dm taken into con-
sideration. Equation (2,29) cannot be simplified any further. It contains an infinite matrix in
m and n because each Dg depends on all Dm and on the parameters of the straight duct. Ex-
panding the matrix for m =1, 2, . . . and for n=1, 2, ., . . and introducing the abbrevi-

ating symbols given by equations (2.26) and (2.27) we obtain

G9



—1\)0 62 F\) Fv

e. o 1 dr
o o sin(mv_) r
Dl) o
= )= . coth(u 8 ) -
(1 ¢ 12 sinh (u 0 )\J fF dr
12/ 0 v
1
- ik . Z o+ oy é + coth(u 6) - tanh(u 8 ))
v, sinh(u162 1\L VL2 172

Xl ({32 + coth(uaag)L - taxllh (ueeej) + o,

~iv062
L 2 2 2 . CO ¢ '
. S AT R e iy prevany N
ginh (1.1182 Vo Fu dr o}
1

~1UOQE

- r2

5 CO e
_ 2 2_ . . .
2 k AFZLE 21 - sinfm}os F\)O sin EE(r

4

rcl(r - Rl)]dr
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: iC
=L - 2 _p2 o 2 1
= V71 VEL T A By STl cosh 6‘192) Ap11

sinh(ulee)vo fFv
1

\v]

iC
2
* B2 Finlmy,) °°Sh(“2ee)"F21

iC

-2 1
* oy AL - K Ay 5ol sTn(mv, ) cosh{uy85) hpy

ic

g 2 cosh( 8,1 A
- P2 sinfmv,) o 2) F22

(3103%3= - coth (u,0,) - -

(2.30)

Grouping, rearranging and adopting additional symbols to designate the constants of-the

matrix, we have

L9



[51 + coth 1.1162 - tanh u162] = - .lL_L

[32 + coth (u0,) - tanh (}1292)] = -4,

where Am designates the second term

ik

Z n
v, sinh{ ume

2

and Q‘mn stand for

) _Z an

n=1
- Xll[ﬁl + coth (ulee) - Ganh (uleg)]
- X12[‘—92 + coth (ugeg) - tanh (peeg)]
Fgg Byt Ny By F Mg Bt
- 4y - Z Q2r1

n=1L

X1 [Bl + coth (ulee-) ~ tanh (“192)]
Xa[ﬁg,-i- coth (”292) - tanh (uzeeﬂ

1

FyoBy FMgofy F MgpBa T .
in each row of equation (2.30), 7, are used

terms in the third line of equstions (2.30).

(2.31).

for products

The Xon
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are X, miltiplied by the factor in m in front of each square bracket and the N 8re mult-

ipliers of all Bm in equation (2.30). Finally, by rearrangement, the matrix receives a syrmetrical

form.

- [21] 00
- + —
E:oth(ulez) tanh (”192)] tA T+ z Q_ Z )(l[coth (“162) tanh (pleaﬂ
n=1 n=1
- B:L(“J.l T Xy T 1) * B2(“21 - Xle) * "”3(“31 - XlS) e
{(2.32a)
03 oo
E:oth (“292) ~ tan (“292)] A+ Dy d Z Qg Z erzoth {”292) - tanh (‘*eeeﬂ
n=1 n=l
= Bl(”lz - XE:L) * ’32(”22 = Xgp T l) + 82(”32 - Xes) Fae
and similar expressions for the other rows of the matrix. The derived solution'is very general.
Tt applies to radii ratios of the bend in the range from 1 to 10; it has no limitations as to
the length of the bend which msy range from a small fraction of 7 to an infinite coil, This
wide range of applicsbility was obtalned by retaining in the solution, terms which are two
orders of magnitude smaller than the principal terms. Now, reasonable limitations to this range

of bend parameters will greatly simplify the final matrix. For bends with 82 greater than w /4

69
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or 7/2 end with a<2.2 or a<§ respectively, and neglecting
small of the second order, the expressions in the square brackets
drop -out. Furthérmdre, the ‘Zm become - Z _and Am, Qnm and X
tend to, be negligibly small. The left side of-each row of the
matrix- béeotie -a constant -throughout the matrix and the- right side

further simplifies the matiix, eguation (2.32a)y teduces to

~2

s 1 1 L. tapt _
(g + x)e] + ny8h - nglel - - .
(2.32b)

I
n
[

= 1 af 1 1 _ 1 @t _

Nypfy * (”22 * 1) By = Mgy = v v s

where "prime" on &1l variables indicate that they have been simpli-
fied by elimination of small of the second and higher orders. Br:l

are now defined by

( Dm ) e-1v062
- =2 -1 - B! ———m
J.,Cm m eum62

This simplified form of the matrix which determines constants of

motion in a bend is quite satisfactory for a wide range of applica-

tions.

D
m

icC
m

the adopted abbreviating symbols, equation (1.41) for En is

With the expression for already established and using

simply
-iv_6

, Jic e ° 2 ;
E = - =—(— S — ' (r)sinjc (r - R, ) |az
D T 51n(wv0) v [P 1

- COSh(p ] ) D

. v m- 2 m
-1 X Cn sin(m_) [tanh (“mee) 1 cm]‘:n‘"‘mnp (2.33)

m=1
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where EP is the giwven particular En taken into consideration.

Fow equations for the velocity potential and the vibrational
veloeities are fully determined: However, expressions for ¢, v
and w respectively, cannot be written in a simple form because of
use of series expansions of the Bessel functions and the involwved
expressions obtained for constants.

However, should we consider ‘large terms only [neglecting small
of the order of (kBl)Q] and bends larger than n/k so that

_.ueg

¥ cosh u8,. ® %-e

sinh uo; 5

2
we may form simple equations which with satisfactory accuracy des-
cribe the motion in curved ducts. In faet, these simplified equa-
tions make it possible to discuss several fegtures of these rela-~
tionzhips which would be otherwise cbscured by large number of
small terms which add to the exactness of the sclution but not to
the determination of the essential feabures of propagation except
for the presence of the permenent radial standing vibrations. These
vibrations, which characterize the motion of waves in bends, are
described by terms small of the second'order. Bince these radial
vibrations have been adequately discussed in connection with equa-
tion (2.23), there is no need to dwell on this subject again to any
length.

The final approximate expressions for propagation of long waves

in curved ducts will be based on equation (1.27) which may be written



as follows

[=-]

L
iCF . m v
o - I 1(mt—\)06) . St E 1 m L. D euﬁ:lﬁ . +_Dm e—ume
- siniwvoi e e 2 siniﬂvmi iCp, icm
m=1 .

Introducing the =xpressions for Fv s F v ) T

and for ( -P-—-) given respectively by equations (2.1k),
o} m ) i

(2,11) and (2.32a), we obtain

o

v R.L i{wk-v 8) . v R
. ola-1 o iwt o1 s cos(mmw) = 1 T
- L& - o+ , e
¢(r,0,t) = i v, 1na e e = E alt + “;ﬁ 7 cosl}m 1ln Rl] X
m=1

-6 -~y B ( Hpp® —ume-)
m o2\ + &
~2e + Bm e 5
eum 2

(2.34)

. -iv 8
where the term e © 2 results from evaluation of En et x =0 which is at © = &, and

not at © = 0 and could be avoided should the coordinate 8 of the bend be counted clockwise from
the junction bend-straight duet.

Differentisting with respect to 8 we obtain the tangential vibrational velocities

L



i{wt-v 8)° . R BTN
_ 1la-1 o iwt 1 \ & cos(mm) -1 r m
v(r,8,t) = VT T a e + e ov, o= el D cos{% In T={e
— 2'm 1
=],
. o u 0 ~u @
i{wt-v 6.) R m
) 02 1 a cos(mm) - l ﬂ e )
+-e 2vo " In all + u};) > cos[ in -—-1] (2.38)
m=1

The first two terms of equation (2.35) are those of equation (2.22) of the wave motion in an infinite
bend. The first term is a simple wave, the second the attenuated vibrations near the inlet gection
of the bend. The third term represents attenuated vibrations in the negative direction of 6, an

adjustment of wave motion to discontinuity at the junction bend-straight duct. This term is idenbi-
-iv 6

cally zero at 6 = 0 and increases to a maximifn'at 6 = D5 Because of the presence of e o2

these abttenuated vibrations are in phase at 62 but out of phase of moticn at 6 < 8,. Actually.

2
this phase difference represents Just time shift. We have v082 = mt2 where t2 is time required
for the wave to reach section 62. Equation of moticn in the straight duct have time counted from
t=0 at x=0 or 8 = 82 while actually the time count should have heen started at a later
time * t

€L



The radial vibration velocities are obtained .by. differentiation
with respect to radius
[==}

. R & —u 9
_ dwt 1 a co§(mm) ~ 3 . r m
u(r,8,t) = e 2v — E Tn (i + u;) 51n(;m In )e

1
m=

1(mt—v062) Rl a cos{mr) — 1 . r-

-e 2v — 7 sinju  1ln =—
or in a(l - p%) m R
. N ©m 1
m=1
Sm eum6 _ e“EmB
eHm 2

This expressioq‘for radial vibrational wvelocities do not have any
permanent wave germ which was given by equation (2.23) when small of
the second order were considered. The damped vibrations described
by equation (2.36) exist near the inlet and near the outlet sections
of the bend only although, theoretically, they extend over.the whole
propagation space. The amplitude of the inlet induced velocities

is different than amplitude of exit induced velocities (facktor 1 vs.
B/2). Also the velocities near the inlet section are of opposite
sign than velocities near the exit.

‘The motion in the straight duct may now be analysed. The co-

efficients En are given by equation (2.33). Substitubting the

o

established approximate values for E%-' and Cm and simplifying
we obbtain :
By =9 - g cos{mm) -~ 1
B =V, e Z Al v2) AooBn (2,37)

m=1
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where Amp are given by series and matrix in appendix bk, and Bm
are numerical coefficients. Substituting equations (2.28) and (2.37)
into equation (1.36), the velocity potential in the straight, infinite
duct is approximately

1(wt—v082) v

3 k_c:>_ e—lkx

#{y.x,t) = e

o

2v R, z, ~X 4 /1;121+k2
+"_'2_Z ;—cos[cn(:f“‘ln) e
=1 N

a cos{mr) - 1
X AB]I'.‘. (l Py @ Sm (2'38)

m=1

Differentiating with respect to x and simplifying, with

\/z;rzl + k% = ¢, » the amal vibrational velocities are

[=-]
i{wt=v 8.) . v R " -XT
v(y,x,8) = e °2velkx——°—%-zncos;(y+L)e 1
e 2L =i n

= a cos{mr) = 1
x L M n{l + u%) By (2.39)
1 =l m

=

The normal vibrational velocities are

]

: i{wt=v 6,.) v R ~Xg
uly.x,t) = -e °2 —g-i%- n sin[};n(y + L)Je "
n=1
= a cos{mm) — 1
£ Amn m(l + ui) B (2.40)

i
l_l
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The double series in equations (2.32) and (2.40) are rapidly con-

verging as long as X 1is not zero. The time shift coefficient
-iv 62
e © is synchronizing the propsgation of waves in the straight

duct with wave motion in the bend.
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3.0 ENERGY FLOW

Currently, no formmlation of energy density or energy flow has
been developed for long wave motion in bends. Karpman(a) attempted
to develcp expressions for the kinetic and the potential energies of
standing waves in s torus. However, because of mathematical diffi-
culties he limited himself to partial results in terms of acoustic
energy density which iz sound energy per unit volume.

In systems with progressing waves it will be appropriate to e-
valuate energy flow or power per unit area, called sound intensity,

which 18 given, in most general terms, by

T R2

pv dr dt

3 |4

0 Rl

The Vv designates the vector of the vibrational velocity normal to
the wave front. The first integration, over the period of oscilla-
tion, is designed fto replace instantaneous values with time averages.
The seecond integration is necessary in the case of wave parameters
dependent on radial coordinate to obtain an average over a cross
section. The integration of the averaged product pv over a cross
section is not necessary for plane waves in straight ducts but is
necessary for plane waves in curved conduits.

Comparing sound intensity in a bend with sound intensity in a
straight duct, will verify the derived equations of motion. To be
successful, this comparison must involve the propagating waves only.
To exclude the attenuated waves it will be assumed that in equations

(1.30) end (1.36) the series with terms corresponding to m =1, 2, 3,
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+++ and to n=1, 2, 3 * * - are exactly zero. This will be
very nearly true for sections of bends at angles close %o ﬂ/2_.or
larger and for sections in straight ducts at length/width r?tios of
2 or larger,

For the bend, the tangential vibrational velocity, as given by

equation (2.22), for large © and when time averaged 18

y Fb (x)
vl=-2 0 0
8 2 sin(wuo) r
Rla—l 2 2 2
=-v, o TT T al-2t (xr)~/2 + evo—e(le)

R R

(kR,)2 In ==~ v2 (In —rJZJ
1 1

This velocity, when averaged over a cross section by integration is

|V1bend = vo{} - 60(31’ aﬂ (3.1)

where 60 is a small gquantity-of the second order. Eguation (3.1)
indicates that the kinetic energy of the tangential vibrations in
the bend is less than the kinetie energy of.the wave-generated at the
face of the piston. Some kinetic energy was transferred from the
progressing wave intc the standing radial oseillations.
Using the equations on page 37 and the relation (2.25) we obtain
i

the tangential vibrational veloecity in the straight duct, at a sec-

tion of the duct remote from the Junction with the bend.
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v -- L

straight _ 2 o
v C Fy
- & o 0 . 9o dr
2 (le)(a - 1) sin(ﬂvo) r

c D
k mm il
o
YRR (e = 1) Z smalayy © | cothli 8,) + 55
1 m=1 m m

e

Fy
inh(y 6,) § —=ar
x sinh um o T
Integrating this relationship over a cross section and averaging,

yields the following relationship

ke F
v C v C v, . 7%
|',‘;| = Q Q0 + Z _ m m m dr Ke—%\)092
straight sinfﬁvoi 31n(wym) T
m=1

) |
= VOEL - 8. (2, B) - Sm(va,,a.,62):}
The kinetic energy transferred from the bend into the straight duct
ig further reduced by energy absorbed by standing radial vibrations
near the juction of the bend and straight duct.

Like §_, the "loss" §  for the long waves is also a small
gquantity, approximately three orders of magnitude smaller than the
amplitude of the original wave.

For the bend the equation which describes pressure when time

averaged, 1s as follows:
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c
3 e ___ 0
- °|at| 2 Sm(woj Fuo(r)

s
i

Rl(a - 1)
0 vo In ‘g,

-

-~

i

% -2+ (kr)2/2 + evg - 2(xR.)2

2
- 2 oo, L
(le) in R v2 {1n Rl)

In order to obtain an average wvalue across a cross section, 1t is
necessary to replace Uo by kr and integrate the above equation.
The equality of v, and kr was explained in detail in sechbionl.3..
As you recall it simply indicates that motion in a bend consists of
an infinite set of waves of different wavelength but of a single fre-
guency. Therefore making the substitution and integrating results in
the following expression.

Iy = pu _
|P|bend X o [1 8(a, Rl)]

i

In a straight duct, time averaged pressure ig deseribed by the ex-—

pression

3 s egy

straight - 0

It is noted that this expression parallels the expression for

|v| Making the proper substitution and performing the in-

straight’

tegration, results in the following expression.

|p|straight = _E.vo{% - 60(3’ Rl) - 6m(Ym’ s Rl’62£]
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Examining this expression we note that the potential energy of the
progressing wave in the bend, and dovnstream from it, is also sub-
Jject to a small decrease.

Finally, u=eing the derived expressions, we can describe the

flow of energy in the bend by the expression

- 2
“pend ~ 2k vo’[_“-l' AL Rlzl

egnd in the straight duct by the expression

_ pv 2 2
_ pu - - . 8
“straight 2k 'o [l 8, (as Ry) 8, (Vo8 By 2)]

The long waves under consideration are subject to a loss of en-
ergy when going through a bend because some energy 1s retained in
radial vibraticns. However, at low frequencies, waves pass through
bends very easily. This is because the reduction in the rate of
flow of energy 1ls very small,

4 verification using the energy method of the approximate ex-
pressions, equations (2,21) and (2.358 ), may be made dirvectly. We ob-
serve that the approximste expressions pertain to plane waves which
are defined by

p = (wh - n ' r)
where n is a wnit vector perpendicular to the wave front. For a

plane wave the sound intensity wvector i is

— - — 2.
= = 2 = P-
= pv = pevén = 1

1= pe

wvhere the quantities p and v are already averaged over a period.
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For the three expressions of the energy flow we have

2
2 M (e - 1)21

v = pw
P P vo vy (ln a)2 r

2
= pe v2 g2 b= 1%

1
o1 (In e)2 r2

vwhich, as before, only requires substitution k = v/r to verify the

< identity.
Finally, comparing the spproximate expression for the straight
duct and for the bend we have:

o2

for the straight duct i >

(]
©
0

whexre Ivol is averaged v, over a period.

For the bend, averaging v, over cross section ylelds

]

1 1 a - 1 ar
1 . &k _
r o]

V.12
and i, = pe l—iﬂ*- and i

g 2 bend = “straight

which verifies the energy flow eguations. This verification is

based on approximate expressicns in which smell terms of the second

and higher orders were neglected. However, the small terms describe
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the radial oscillations that characterize the moti;n of waves in
curved ducts., OSince no consideration was given %o energy which was
transferred from the progressing wave to the standing radial osecil-
lations, the energy flow in the straight duct equals the energy flow
in the bend. This also equals the energy flow generated by the pis-
ton. There are no experimental data avallable to quantitatively
verify these results. The reason is the physical difficulty of try-
ing to examine the (very low) range of frequencies which is the sub-
Ject of the present analysis. Usually the acoustics experimentation
is carried out in the audible frequency range of 200 to 3000 Hz.
Consequently only a qualitative verification is possible. This ver-
ification must be based on the extrapolation of the available exper-
imental information to very low frequency range.

In 1955 Lippert(ES)

published data on charecteristic Ttransmission
factor T = B exp iR of square and rounded 90° elbows. The ampli-
tude B of the factor T 1s defined as ratio of sound pressure am-
plitudes of the transmitited wave at the output plane to the sound
pressure amplitudes of the incident wave at the input plane. B is
the phase angle of the transmitted wave with respect to the phase of
the incident wave. As shown on figure 9, transmissivity of a 90°
mitered bend is high at low frequencies (< 600 Hz) but close to 2200
Hz approachgs zero. An experiment with a rounded ‘90° elbow indi-
cates that rounding improved the transmissivity over the entire range

of frequencies and eliminated the cut-off condition. The dotted line

indicates extrapolation of Lippert's data. We conclude that at very



Mitered

20 1 | | | |
0 4 8 2 1% 20 24x10°

Frequency, Hz

Figure 9. - Transmission of acoustic waves through
90° mitereg and rounded elbows. Experimental data
by Lippert( 3
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low frequencies (1 to 10 Hz) the transmissiviiy of the two elbows is
very high but not one-hundred percent. There will be some reflec-
tions and some transfer of energy from the progressing wave to the
standing radial osecillations. At the limit, zero frequency, there is
no wave motion and the potential flow of matter should suffer no
losses ef energy. That in effect is the case of a potential vortex.
The lower curves on figure 9 show the phase change of the transmit-
ted wave. The square mitered elbovw and the rounded elbow produce
samilar phase changes, with virtually merging slopes at lower fre-
quencies. Again, using extrapolation, we conclude that at low fre-
quencies there will be some phase shift,

On the basis of these data it may be concluded that resuits of
this analytical study sare q_uaiitatively verified. The long waves
penetrate and pass through bends easily. However there is some en-

ergy being stored in the bends which comes from the-main wave. This

stored energy 18 a very small, but not negligible.
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4.0 NUMERICAL APPLICATION

The purpose of the numericgl application is to obtain & solution
for a conventional industrisl setup whieh will give typical wave
propagation pattern. At the same time it is intended to analyze the
Bessel Functions of very small order and Bessel functions of pure
imaginery order and real argument.

4,1 Selection of Parameters

In ordef to simplify the numerical calculations and to conform
to the requirment that parameters must approximate a typical in-
dustrial instellation we select the logerithm of the radii ratio,

In a, such that W defined by,

vy =1y = im

- i A m=1, 2, 3 be an integer

T
in a

a = Ra/%l = 1.874s. This radii ratio is reasonsble and approximates

Selecting 1n a = 0.62831 we obtain =5, v, =im5 and
an industrisl ducting.

To obbein the argument of the Bessel functions (kR,) which will
be a small, finite number, and a wave constant k and radius Rl

typical for industrial application we select
~1
E=20,1lm", Rl = 0.2 nm
It follows that the wave length X din free space, as defined by
A= 2n/k, is 62.28 m. With speed of sound in warm air of 350 m/sec,
the frequency £ is F = ke/2m = 5.57 eycles/sec and the corre-
sponding rotational speed of a compressor generating those waves is

350 rpm which, again., is representsfbive of industriszl application.

The argument of the Bessel functions will be, at the limits,
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(kBl) = 0.02 end (kR,) = 0.03748
Thig argument is << 1 and the wave length is much larger than the

dimension of the bend which satisfies the requirements of the theo-

retical treatment.

4.2 Bessel Functions and Characteristic Functions of the Problem

4,21 Solution pertaining.to the real root. - Using the selected

and calculated values of :.a and (le) we have, by equation (1,20),
the real root equal to
v, = 0.02828 (4.1)
1The evaluation of the Bessel functions of order.x0.02828 for
arguments (0.02), (0.03) and.(0.037489) and of the derivative of
Bessel functions of order :0.02828 for arguments kR, = (0.02) and
kB2 = (0.03748) is based on the expansion of Jv (kR) in terms of
s}

incresasing powers of the argument.

ey 2 (er/2)2 . (er/2)t
Ty (&) = (1_;) [(iv)! - zivr+ o1t z(if; o TN

Q

and on the expansion of Jiv (kr) given by equation (1.12}.

Because (kr) << 1 we ;ay neglect the second and the following
terms of the expansions., However, in order to evaluate the degree
of approximstion thus obtained we will keep the second term of the
expansion. Since the expansions contain alternating terms, the erxvor
resulting from limiting expansion to a given term will be smaller

than the first term which has been dropped.
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Without entering into details of algebra the following numbers

are obtained.

I, (0.02) = 0.87789[1.015793 -. 0.0000987] = 0.891667
o

I, (0.03) = 0.888014[1.015793 ~ 0.0002222] = 0.9018412
o]

J, (0.03748) = 0.89361[1.015793 - 0.0003469] = 0.907k12T7
Q

U_v (0.02) = 1.13909[0.983158 - 0.0001012] = 1.119790

o]
I, (0.03) = 1.126108[0.983158 - 0.0002276] = 1.106885

e

J_, (0.03748) = 1.119056[0.983158 --0.0003553] = 1.099811
o

These numbers are shown on figgre 10.

Keeping onlgr the first two terms of the expansions (1.12) we

obtain
JG (0.02) = 1.25215
O
Jé (0.03748) = 0.66813k
[s]
gr, (0.02) = -1.59k91

e}

3! (0.03748) = -0.851066
Q

To check the results we substitute the values of the derivatives
into equation (1.9)

' 1 . T =
gy, (kR a0 (kRy) - 37 (kR,)I! ) (kR;) = O
O G o4 o

The result is

-1.06566 + 1.06561 = -0,00005
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) . ok : 0.00005 _
Equation (1.9) is verified with an error of T.0658 ¥ 100 = 0.001
percent. For the three radii the value of F_ (r) is
o]
Ry = 0.2 F, = ~2.82420
o
r=0.3 FV = ~2.8243L
o
R, = 0.3748 F, = -2,82437
o
with maximom variation of F over R, to R, cf 0.00017 100 =
v, v 1 2 3. 824285

0.006 percent. This result indicates that the wave is very nearly
plane. Using the equaetion (2.4) which-was established without the
second and following terms of expansion of J+v(kr) we obtain

F = -2.8240
v !
(o]

The discrepancy between this wvalue of Fv and the values cal-
o
culated using the first and the second terms of this expansion is
negligible, as assumed in the evaluation of the roots of the wave

equation.

4.22 Solutions pertaining to_the imaginary roots.of.the problems. -

To calculate the Fb pertaining to the imaginary roots, for
m=1,2,3 . . ., we sta:f by evaluating the degree of approxi- )
mation of our mathematical theory. The pure imaginary roots are
given by equation (1.1%) and only the first term of this equation

was.congidered in analysis because the second term was assumed small.

Calculations confirm the theoretical development:

[

m= 1 v i5 - 10.000083

1

m= 2 v, = il0 - 10.0000L40

The zmecond term is very small and decreases with increasing m.
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To calculate the Bessel functions for vm, n=21,2,3.., .,
we calculate functions Gu(kr), Fu(kr) and T{(1tip) for different
p and (kr),
We do, not intend to go into details of the algebra. However,
it mey be worthwhile to show the technigue of work and to give s
sample calculation. We select

J (le) =4J, (0.02)

vl 5

and propose to solve the equation (2.8a) with

ecos[5 1n 0.02] = cosf-19.5601] = 0.757997
sin[5 1n 0.02] = sin[-19.5601] = -0.652258
Substituting
0.757997 - 10.652258 = 212 r(1 + 15)7,5(0.02) (4.2)

The- left-hand side of the equation is a complex number whose modulus
is  0.757992 + 0.6522582 = 1 and the argument is

0.652258
8rete 5757997

logarithm we have 15.57258 = 13.5655 - 6,13032 + 13.815898 +

21 - = 5,57258. Substituting into (4.2) and taking

1n Ui (0.02)

>

where

-6.13032 + 13.81898

1n I(1l + i5) as given by tables of functions,

reference (32).

Finally

6.13032 - i1.708618 = 1n J,5(0.02)

or

459,6(cos 1.708818 - i sin 1,708818) = &15;0.02) and

Jis(o.oe) = ~63.236 - il55.229
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Calculabting the Bessel functions for arguments (0.03) and (kRg)
= 0.037289 we obtain

Jié(0.03) = L37.71h% + 1140.,13

JiS(o.osThag) = 63.236 + i455.229
The Bessel functions (as approximated by limited expansions)'for
the same three arguments but of negative order are complex conjug-
ates of the above results, Calculating the derivatives of Bessel
functions with respect to the argument., for arguments (le)

0.02 and (kRE) = 0.037489, we obtain

Jis(o.oe = 1.13807x105 - iO.l5805x105

b it

Ji5(0.037h89) = -6.0712x10 + 10.84317kx10
and the same functions but of negative order are the complex con-
Jugates of the sbove results. Again these conclusions are re-
stricted to approximated expressions for the Bessel functions.

The calculated functions are shown on figure 10. ©On this fig-
ure we also indicated two particular.values of Ji5(kr) namely,
the pure imaginary J15(0.020h3) = -il59.6 and the real
Ji5(0.02815) = 459.6. .To check the caleculated derivatives, we
substitute the numerical values of the functions into equation (1.9).
The resulits is

Ji5(°-02)Jli5(0-037h89) - a4 (O.OSThSQ)JiS(O.OE) = - 10,0231 = 0

>
The accumulated error equals 0.12 percent and may be tolerated.

4,3 . The Two Physical Systems

The degree of accuracy of the derived basic functions has been

established in the preceding section. The numerical spplication of
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the integrated equations for the infinite coil and for the 90 degree
bend followed by a straight ianfinite duct may now be done withoutb
going into details of the compodnent functions.

4.31 Infinite coil. - The tangential and radial vibrational velo-

cities are given by equations (2.22) and (2.23). The.numerical appli-
cation is straightforward, Tae alternating series in the two equa-

tions are converging repidly as long as © is not zero.

N v

At 0 = n/6h, w/8 and w/4 the seventh, the-fifth, and th
second term of the series, respectively, are already negligible.
At 8 = 37/8 the first terms of the series was smaller than 0.1
percent of the value of the simple wave term in equation (2.22).

At 8 = 0 the convergence is slow. Typically for 6 =0 andat

a - 1 +‘£3§E: a cos{mm} - 1 _ 1

in = In a(l + p2)
m
m=1
and for € =0 and r = R2
oo
la-1_ 2% a-cos(wmm) _,
a2 ln a a 1n a(l + ué)

m=l |

With 30 terms taken into consideration the error was still of the
order of 1 percent.i The celculated values of v(r,8,t) are plotted
on figure 1l1.

To better show the rapid velocity changes .near the inlet section

of the bend and the important final veloecity dependence .(1/r) on the
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radius, the caleculated values are superposed. On the abscissa is
the velocity magnitude an terms of Ve

About 25 percent of the veloeity redistribution take place be-
tween 6 = 0 and 7/6L. By 6 = 1/8 the distribution character-
istic to potential wvortex is nearly completed and changes become
slow and it takes, from then on, an angle u/4k +to reach the steady-
state distribution.

The decaying radial vibrational wvelocities were calculated for
one cross section, at 0 = w/16, and are compared with the permanent

radial vibrations. The wvalues are

Radius Decaying ¢ Permanent
w(r,r/16,%) ul(r,1/165%)"
Rl 0 : 0
R + (Ry-- R }/h -0.0860 v ~0.002475 v _
R, * (R2 - Rl)/2 -0.088h]v0 ~0.002636 v,
R, +.3(R2 - Rl)/4 -o.ohao‘vb , -0.0016§5 A
R, X 0 0

The permasnent radial oscillations are one.order of magnitude smaller
then the decaying oscillations at =w/16., 3By wvectorial addition, the
magnitude and direction of vibrational velocities may be obtained.
For section 6 = w/16, figure 11 shows that the wave profile is not
straight. It approximates in the vicinity of this section, a cosius
curve. Beyond seetion 6 = 3n/8 the radial velocities are so small

that the wave profile is very nearly radial,
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4.32 90 degree bend foilcwed by a straight duct. - The wave pattern

an a bend followed by a straight duet is much more involved.then the
wave propagstion in an infinite coil. So is also the numerical
application.

The problem of evaluation of integrals Amn' was elready dis-
cussed and is reported in appendix 4. The evaluation of coeffic-
ients Dm or rether of the ratio (Dm/icﬁ), given by matrix (2.32a),
was simplified, by elimination of small terms and reduced to matrix
equation (2.32b) in B,- This matrix, in principle infinite was, in
the present numerical calculations, arbitrarily-limited to six rows

and colums. It is as follows:

_ 0.73 0.3288 0.4015 0.7057 0.978
2 =1.9935 &) * T5F By + TIgT By * Tagh Byt T Bs * 1o Bé

-2 = - 0.208 B] - 2.001 B} - 9-%%5- BL + 9-%%%@ By, - 9—'%%?: B * Qj_—ggﬁ?ﬁé
-2 = - 0.7h5 8 _0_-;*:%'27152 - 2.000 Bé-gj—hl%%lsﬁ +%12&B§ —0—'-13%6-%
-2 = - 0.1128 p + 92 gy - 022 gy 11995 gy - 20T g, roi—é'ra—sé
2= - 0y 0B g OB gy - 00 ey 10306 5y - SR ey
~2 =~ 0.7615 B + 0.65h B.

~5 BS - 0.2699 Bé + 0.135 BL'; - 0.8hk Bé - 1.5768 Bé

By inspection, we see that the first four Bé's will be close to
wity. To have precise values, the matrix was solved by Cramer's

rule on & digital computer. ‘Furthermore, in order to ascertain that
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the arbitrary limitabtions of an infinite matrix to a square matrix
6x6 will not result in unrealistic values of Bm's, five computer
rung were requested to obtain solutions of matrices 2x2, 3x3 and

6xb6. The result is

2 > 1 1 T 1 T 1

Approximation Bl 32 53 Bh 35 86

1st 1,00326 .

2nd 0.99998 0.8937h

3rd 0.99896 0.89374 0,62598

hth 0.99894 0.89379 0.62579 0.79069

5th . 0,99894 0.89378 0.62650 0.77137 1.00k425

6%h . 0.99893 0.89381 0.626L0 0.77365 1.0002h 0.2L667

The variation of coefficients B& over the. range of terms taken
into consideration is negligible. Consequently, we assume that ar-
bitrary limitation.of the matrix to 6x6 is permissible. The values
obtained by-the sixth .approximation will be used in calculations.

The caleulation of -the tangential and radial vibrational wvelo-
cities [egs. (2.35) and (2.36)] 1s direct. Figure 12 gives the re-
sults of the numerical application. At 8 = 151/32 .the distribu-
tion of tengential velocities is no more inversely proportional to
radiug., The wave is.deformed, by significant, positiwve radial
velocities. The series in the equations of motion are still limited,
however, to one significant term only. At 6 = 3ln/64, there are
two significant terms in the series. We coneclude that important
changes in the values of vibrational velocities are confined to the
last w/32 of the /2 bend.

By the bend outlet the wave profile is no more radial. The

effective vibrational wveloeity equal ’sz +u?2 4isin v positive
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direction, except at boundaries where it is tengential. This is al-
so shown on figure 12. The direction of the effective vibrational
velocities gives the wave front orientation.

The calculation of the vibrational velocities in-the straight
duct that follows the 90 degree bend 18 stralghtforward. Results of
application of equations (2.39) and (2,40) are also reported on fig-
ure 12,

In the straight duct the waves are straightening out velatively
fast. By x/2L =1 there is already an almost straight wave simi-
lar to that which was generated at the bend inlet. ZEssentially, the
process of straightening out of the wave is confined to the straight

duct. Figure 13 shows that the tangential velocity v = v_  remains

n o

Rl(a -

1)/ 1n a, which in this application, is at r/Rl = 1.392, and only

in the bend in its equilibrium position at approximately

in the straight duct gradually bends closer to the center line of
the duct. By x/2L = 1.5 +the tangential vibrational velocity (vo -
60 - Sm) is at the center line and, everywhere.

The verification of the saimultaneous solution of the equations
of motion for the bend and for the straight duct is showm on figure
ik, The caleculated tangential vibrational velocities for r = R

1
and = = 32 for positions starting at the vibrasting piston, through
the bend and in the straight duct are taken from figures 11 and 12.
The rapid changes in velocities by the bend exit are well illustra-

ted. In spite of this, the values .calculated for the bend match

very well the values calculated for the straight duct. At x/2L =1
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the vibrational velocities at the walls of the straight duct are,
within a fraction of a percent, equal to Vo
For comparison purposes, the two tangential lines shown indi-

cate the values of the vibrational velocities for an infinite bend.
This graph should be compared with the well known and often pub-
lished curves for potential fluid flow in elbows. Those curves give
the fluid velocities of the streamlines at elbow walls, as estimated
by semi-graphical solutions. The calculated curves on figure 1L

are similar., .The derived deviations from a logarithmic distribution

of velocities in a bend are in the case of long wave metiom, -too

small to be noticeable.
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'5.0 CONCLUDING REMARKS AND RECOMMENDATICNS

Propagation of long waves in a two-dimensionsgl system has been
analyzed. The _acoustic approximation has been used and the Helmholz
equation wag integrated for two sets of boundary conditions. The
two physical systems taken into consideration ave: an infinite bend
approximating a coil and a 90°-bend followed by .a straight, infinite
ductﬁapproximating a.-typical indistrial piping system.

Implicitly the analysis gives also a solution for a system con-
sisting of an infinite duct connected to a 90° elbow followed by a
second infinite duet. The results of the analysis indicate that
bending of a straight duct profoundly modifies the propagation of
waves in that duct. The bend engenders the following phenomens:

a) a set of attenuated axial and radial waves.which modify

the plane wave generated at the duct's inlet (figs. 5 and
6).
b) a continucus radial, standing wave whose radial vibrations
are.sustailned by the curvature of the bend. In a straight
duct these vibrations would be quickly attenvated (fig. T).
¢) & vortex-type distribution of the tangentisl vibrational

velocities (fig. 3).
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d) an increase in the phase velocity which is proportional to
the sharpness of the bend (fig. 4).

e) a decrease of the amplitude of the transmitted wave. The
radial reflections at the bend make the transmitted wave
weaker than 1t was before.

The analytical results have been gualitatively wverified by data ob-
tained by Lippert(gs). In spite of the differedces between the sys-
tem considered in the analysis and the system which has been used in
experiments there is an agreement on the trend of the change of
parameters of the waves crossing those bends.

The presented analysis is not directly applicable to real flows
because it is based on a linearized equation valid for acoustical
waves in statlionary wmedium only. It gives, however, an idealized
picture of wave's behavior in bends, in general. This work extab-
lishes a method to estimate capability of bends to transmit waves.
It may be useful in the design of rigid accoustical duct systems.

It also opens possibility to caleculate transmittability of non-rigid
bends which induce large but as yet not caleculable phase changes in
the progressing waves.

The chtained results should also be useful in advancing the
theory of waveguides in electromagnetic spplication. In spite of
the fact that the electromagnetic theory is concerned with high fie-
quencies only, the developed reactions, particularly for the decay-

ing field of wvelocities, should be of value. In the field of low

frequency oscillations, analysis of the cbserved "Pogo"
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instabilitres of rocket systems should benefit from the develcoped
equations., While older rocket designs were provided with straight
feed piping systems, the newer designs will have bends and elbows
which must be analyzed.

A more complete research may now be suggested to get a better
understanding of the phenomena associabed with the propagation of
pulsating flows in curved pipes. ,From the stability of flow view-
point the most interesting case to investigate would be a free pip-
ing system, (i.e., a bend in a piping system with one or two degrees
of freedom). Across the elbow an important phase change should be
cbtained. From the heat transfer point of view it might be inter-
esting to solve a tri-dimensional Helmwholz eguation and wave propa-

galion combined with fluid fiow.
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APPENDIX 1
The Equetion of Contipuity
We define dilation & =(u - uoyvo vhere v is an elementary
volume and the subscript zero refers to the initial state., If Ei

are displacements in three-dimensional space

9T, d,. B,
+ +

8= ax 3y - 0z

The coefficient of compressibility of the fluid under congideration

igs defined by’

= _ 8 3p-_ _ P
P=P 2 and oo aiv v (a1.1)

b

. where V is the velocity wvector. ¥low of material out of the ele-
mentary volume reduces the pressure of the compressible fluid. The
rate of change of excess pressure is proportional to the divergence
of V. For incompressible fluid div §.= 0.

For an isentropic process pu2 = const and .udp + vpdy = 0
and considering the definition of 1y

®_ 1

K=~ %dp ™ py

If we put v §-= ¢? where c¢ is.the velocity of sound, as

established by Laplace in 1816, we have

L. .2 (a1.2)
X
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APPENDIX 2
The Orthogonality Condition

= 1 - 1
Function F I, (kr) 3L, (1«:31) J_v\(kr) Iy (le) for
m m m m m

every vm must sabtisfy the Bessel Equation. Written for two differ-

ent v, vl and Vg Sthe two relations are:

2

v
Fy +%F\3 + (kz - —]—g-) F, =0
1 1

"
]

2
v
1 2
F' + =F! +(k2——z')F
V2 r U2 Iy V2

Mpltiplied by _ro. eand rFU .respectively,. integrating,
2 1
and remembering that

' = Wt =
va,(kR_L) va(kRE) 0, we get

R Ra o

- rF\')F\') dr + k2 rF F, dr - v
12 Yo V1

! B B

and a similar equation for the second expression.. Subtrsacting, we

cbtain

or

R
. 2 1
V, +'Y ) Vo ™ Vl) ' =F F dr =20
2, i \e T v,V
\ X 2 71
1
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and asssuming that vi F v% we deterniine.the orthogonality condition

%F F dr =0 (A2.1)

From the gbove analysis we also conclude that no complex roots
can exist. For if were such a complex root, its conjugate v

would also be ‘s root and then Fﬁ = Fu~ and the product FvFG would
be pecessarily & positive number, different from zero.. Consequentcly.
vm must have either a pure imaginary value or real values for other-

wise
=92 - v2 = (v+v)(y -v) = 4RevImv

would not vanish.
It should be pointed out that a similar relation dbut for RBessel
functions of pure imeginary argument (ikr) has been discussed by

Bocher(33).



111

APPENDIX 3

The Integral JFF%/r dr
i = 1 _ 1 s P
Function F_ Jv(kr)J-v(le) J_v(kr)Ju(le) satisfies the
Bessel eqﬁation
oLl a (k2 2% F -0 (A3.1)
v TV 2[5y '

let us differentiate (A3.1) with respect to v and put

BFU
ooy ® v
1 R \’2 2V =
(v) * 7 Floy * ¥ Ty - x Py -7 By = 0 (43.2)

Multiplying (A3.1) by rF(v) and (A3.2) by ro, we have

l/.roFE'v) dr + FEU)F\’ dr + karF(v)F\) dr - uf/} F(U)Fv- ar

-2uf5F2 dr = 0
r v
rF, \F' dr +/ F'F, dr + k2 [ rF P, .dr - v? ;-F F dr = 0
(v)“v v (v) v {v) r v (v)

Subtracting and integrating by parts the integrals containing
the second derivatives of F, we have

&, By N
1 - = =
)Fv R 2v - ® dr ]

rF P! - rF
v (v} R (v :

"1

Applying the boundary condition Fé(le) = FG(kR2) =0 we have ,
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R, .
1 1 2
= F2 gr = == rF F!
r v 2v v (v) Ry
where
aJ ' {kr)
32F v
1 = - 1
F(v) 9rdv T Ov J—v(le)
3! (kR.) aJ' (kr) 3J ' (kR. )
' - 1= _ - ~ 1 _oT1 v LI
+ Jv(kr) ™ e Jv(le) J_U(kr) =
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APPENDIX L
RB
= - I
The Integral A = cos [z_’,n(r Rl)]cos Elm In Rl]dr
R

The symbol A;nn stands for the inbegral

1

R2 !
' r
cos[:n(r - Rl)jlcos E.lm in = far

31 . -

which is pax-‘ﬁ of integral

Rl
A =/ F, (r) cosl:cn(r - Rl)]dr, mX 0.
R, -

The integral Aan and, ipso facto, the integral Amn appear in
equations (1.40) and (1.41). The integral A, hes no simple solu-
tion; however, the integral Aan w1ll be easily obtained when the
basic integration of- Amn will be performed.

The probleg is thus reduced to evaluasition of Amn' The pro-
cess of integration of the definite integral Amn begins with trig-
onometric transformation to split the integrand into four definite
integrals of products of sine and cose of (cnr) and u In r. Next,
expanding cos ;nr and sin ;nr in series we obtain four alter-
nating series containing integrable terms of the types
;ﬁ RE cos w in-=r

o+

- Pl cog p in r dr
m
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Using the definite integrals developed earlier, equation ( ),
and epplying the integration limits, after simplification, we

finelly obtain

= 1
A =B cos (;an) W [a cos(mr) - 1]

t2  3r?

B 2 -
a1 mj- {a cOS(mTr) l]
L L
Cn 531’

*Hm[asew(m)~l]~. Ce Y+

r 2R
* Ry sin(;an) —(—53'—_‘_]‘?‘;)- [a2 cos{mm) ~ 1]

;g hRja_ .
- = [at cos{mm) - 1]
31.(E2 + uéj
5 5
z 6R
o 1 6 - -
*IT T8 o {a® cos(mm) ~ 1] .
n
where m=1, 2, 3 . ., . n=1,2, 3 N
R
- ki - ] = .2
T Cn“nae-ﬁl *TR

For the numerical application 7/ln a = 5,

R2 - R o= C.17489m, Rl = 0.2m

The derived series solution for Amn is difficult to handle.
The two converging series exhibilt behavior similar to that of the

gseries of sine and cosine of argument >>1. The second and several
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following terms of the series grow very fast and aftain very high
* values before the factorials in the denominators force the decrease
of the terms.

An attenmpt was_gade to compute Amn on a digital computer,
IBM TO94 Mod IT. Good results were obtained for values of m = 1,
2,3. ..6 andforn=21 and. 2. For n = 3 the results were
ervatic and for n > 3 even the double precision was not suffic-
ient to carry ocub calculation and completely errcneous results were
printed out.

A second spproach consisted in use of an existing roubine,
recorded on tape,.of integration by Simpson's Rule. A complete
set of values was,obtained for n and m up to 6 and in order to
study the behavior of the function several values for higher n and
m, All calculated Amn are reported on figure 15. The complete

set of results is presented in the form of a matrix:

Values of A
bicle]

n=1 n=2 no= 3 n.= .4 n-=75 n=6éh
0,08583 0.010k1 0.001W0 0.000509 0.000148  0.00008L49

=4
L3
[

m=2 -=0.02263 0.08187 0.02076 0.00k048 0.001L4L 0.000k66

0.0032h -0.03208 0.07523 0.02976 0.00762 0.00276

B
]
W

B
(]
=

-0.00232 0.00667 -0.04069 0.06633 0.03715 0.01189
m=5 0,00054 -0.00319 0.01109 -0.0LTTh 0.05559 0.04262

w= 6 -0.000797 0.00093% -0.00463 0.01620 -0.05285 0.04350

Along the principal diasgonal Amn steadily decrease. Along

the' super and sub-diggonals the values of Amn increase, with Amn
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for m =n varying.along.two sine curves. By m =.n = 6 the
mabtrix is approximately tridiagonal. Figure 15 shows'a.se¥ries of

functions Anf(mj which are rapidly abttenuated for n < 3 but ex-

L

hibit large oscillations for higher values of n. The values cal-
culated by Simpson's Rule agree well with values ebtained by the
series solution for n=1 and 2.

For n=1 and m=1.. . 6 we have

m 1 2 3 4 5 6

Series 0.08583 -0.02263 0.00324 -0.00232 0.00054 -~0,000797
solution

Simpson's 0.08577 -0.02266 0.00327 -0.0023L 0.00055 -0.000804
Rule
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Sub-diagonal

I

Figure 15 - Mairix of Tntegrals A,

6 7 8

I
5
m
R
. le? cosftnr - Ryflcosfiry IntriRyfdr



