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ABSTRACT
 

Propagation of long waves in a two dimensional systems is
 

analysed. An acoustic approximation is used and boundary con

ditions simulating typical industrial piping systems are formu

lated. The thesis consists of three main parts. In the first
 

part a general solution of the boundary value problem is obtained.
 

In the second part series solutions of the equations of motion are
 

generated,and a physical interpretation of results is given. A
 

numerical application and a discussion of the problem are given in
 

the last part.
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INTRODUCTION
 

The characteristics of motion of a fluid, whether steady or
 

unsteady, depend on the nature of the fluid, the imposed initial
 

conditions and on the nature of the system in which the motion takes
 

place. In the large class of unsteady motions of compressible 

fluids, the periodic motion or wave propagation is particularly im

portant from the point of view of both pure and applied sciences and 

has been the subject of extensive analysis. However, except for 

essentially simple systems the motion of pressure waves is very com

plex. Generally, the waves may be reflected, diffracted and dis

torted. They may be subject to attenuation and decay or to inhomo

geneous distribution. The more the symmetry of a system departs
 

from a simple rectangular, cylindrical or spherical geometry and the
 

more the initial conditions differ from that appropriate to the
 

boundary, the more these effects will be pronounced.
 

Besides a purely scientific interest in the problem of propa

gation of waves, there are many engineering reasons for a better
 

understanding of wave motion. Of theoretical and practical interest
 

is the determination of the basic modes of motion and their phase
 

and group velocities. Also knowledge of the resonant and the cut-off
 

frequencies as well as the determination of the reflection and trans

mission coefficients are of substantial interest.
 

Propagation of waves in curved ducts and pipes belong to the
 

class of motion which is characterized by wave patterns totally
 

different from those known in straight ducts or in unlimited space.
 

1 
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The curvilinear-boundaries are,responsible for the appearance of a
 

continuous standing radial wave which in turn affects the trans

mitted tangential waves. The propagation in curvilinear waveguides
 

or bent ducts is difficult to analyze, and mathematical models de

veloped to date are complicated. Perhaps that is one of the reasons
 

why relatively few papers are available on this subject.
 

The purpose of this treatese is to solve the problem of propa

gation of waves in curved ducts. It is intended to obtain a solu

tion for long acoustic waves in slightly and sharply bend ducts.
 

This problem has been only partially analyzed by various authors.
 

The first recognition of the problem of propagation of pressure
 

waves in a curved c6nduit, as distinct from the motion in a straight
 
(1) 

line, was formulated by Rayleigh . In a short, brilliant expose 

he demonstrated that long waves -in.a curved pipe of infinitesimal 

cross section behave exactly as in a straight pipe. The curvature 

of the pipe is of no importance. His analysis is based on the lin

earized equation of motion and conclusions are not valid if the 

cross section of the pipe is finite. However, what is important is 

that he establishes a limit to which equations describing wave motion 

in pipes of arbitrary shape must tend. 

Subsequent research of wave motion in curvilinear ducts is al

most exclusively anai4-titall. The majority of papers treat the prop

agation of electromagnetic waves in curved ducts. Only a few discuss 

the propagation of sound waves. Interestingly enough, along with 

analytical formulation of the behavior of waves in bends there 
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appeared a series of papers dealing with mathematics needed to solve
 

the physical problem of waveguides. This parallel effort indicates
 

that the solution of the problem of bent waveguides requires mathe

matical formulations and techniques not generally ,available.
 

To review the literature on the wave propagation in curved
 

ducts it is desirable to discuss the work done by grouping studies
 

by adopted boundary conditions. In several instances studies orig

inally intended to be general were actually reduced to some specific,
 

restricted cases by simplification of boundary conditions .in order
 

to solve the problem.
 

In 1905 Kalahne(2 ) and in 1946 Jouguet (3 ) and a decade later
 

Karpman (4 ) considered oscillations in rigid toroids. Jouguet
 

approaches the problem by the method of perturbations while Kalahne
 

and Karpman use the method of separation of variables. Both Jouguet
 

and Karpman intended to study propagation but simplified the problem
 

by adopting closed systems. A similar standing wave problem, using
 

a configuration of an elbow connected to two segments of straight
 

tube, was treated in 1930 by Matchinski(6 ) . A very extensive and
 

complete treatment of the behavior of electromagnetic standing waves
 

in circular cross sections of simple or coaxial tubes is given in
 

the text "Electromagnetic Waveguides and Cavities" by Goubau (5) .
 

As interesting as their developments are they contribute little
 

to the determination of parameters of progressing waves. However,
 

a number of papers published between 1939 and 1969 did ,contribute
 

to the problem., Buchholz,(7) , using separatiop of variables
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obtains a solution for propagation of electromagnetic waves in
 

slightly bent waveguides of infinite length. He calculates an ex

pression for a wave propagation constant and draws several general
 

conclusions about behavior'of waves in bends. Buchholz's paper is
 

the first contribution to the problem of progressive waves. The
 

problem of the infinitely long bend was also treated by Krasnushkin (8 ) ,
 

Grigor 'yan , and by Victorov and Zubova (1 0 ). Krasnushkin ap

proaches the problem by the method of separation of variables but
 

in view of mathematical difficulties proposes a perturbation method
 

and treats the simplified case of the slightly bent tubes. Grigor'yan
 

solves the differential equation by expansion of the cross-product of
 

Bessel functions into a Taylor series. He tries to obtain an algor

ithm of sufficient generality to be applicable to all possible
 

impedances of the waveguide walls. Coefficients of his series con

sists of a sequence of Wronskians as determined by Basset(ll). The
 

method is only partially successful. Grigor'yan obtains correct
 

general information on amplitude and distribution of the radial os

cillations but his basic'mode wave number does not verify the dif

ferential equation except for the Raleigh case of very narrow pipe.
 

Victorov and Zubova treat short wave propagation in a solid
 

layer and outline a possible solution for an infinite coil of largje
 

radius of curvature. Finally, Voskresenskin (1 2 ) and Sveshnikov et
 

al0 (1 3 ) approach the problem of infinite bend using the separation
 

of variables. However, like several other authors, they do not
 

solve their equations but limit themselves to general discussion.
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The contributions to the solution of wave propagation in curved
 

ducts which were reviewed considered only one aspect of-the problem,
 

the functions which depend on radii and on boundary conditions of
 

the bend walls. The dependence on the longitudinal coordinate, that
 

is, the angular propagation was greatly simplified by assuming an 

endless coil. However, two papers consider the angular dependence 

in detail. Rice 1 , using matrix equations establishes the basic
 

mode propagation constant for electromagnetic waves and calculates 

the coefficient of reflection of waves incident upon a bend. Bas

ically, he treats a junction between a straight and a curved cylin

drical duct. His procedure - the theory of matrices - is an obvious
 

choice for a system capable of supporting several modes of wave
 

motion. Arlinger(1 5 ), using the method of perturbation, presents
 

a problem of compressible potential flow in a bend of a duct of cir

cular cross section. Although this is not a case of propagation of
 

waves, Arlinger's general solution for potential motion in a bend
 

and at a junction is closely related to our problem. The common 

feature of the two papers is need for extensive supporting mathe

matics. Both authors obtain solutions which contain definite in

tegrals which cannot be integrated by ordinary means. To by-pass
 

this technical difficulty Rice supplies tabulated values in an
 

appendix. Arlinger resorts to integration by Simpson's rule.
 

A number of papers on roots of equations containing cylindrical
 

functionb. (cross-products of Bessel functions) were found in the
 

process of verifying the existing literature on the wave motion in
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cylindrical coordinates. Unfortunately most of these papers, (by
 

(16) (17) (19)
6 (18)
McMahon , Truell , Dvight and Kline ) are limited to 

research of characteristic values of the argument of the Bessel 

functions. Therefore, their usefulness is limited to problems con

cerned with finding resonant conditions in closed systems. However,
 

one monograph by Buckens (2 0 ), does apply directly to-relationships
 

for evaluating the order of cross products of Bessel functions of
 

real and of imaginary order, and was used in developing the ex

pressions for decaying oscillations.
 

Among the few treatises on propagation of sound in bends are
 
.(21,)
 

those by Miles ,22) in which he establishes an analogy between 

propagation of sound and an electrical transmission line are most
 

important. The method is then applied to a right angle joint of
 

rectangular tubes. Actually, Miles is considering a mitered 900
 

bend with the outside corner chamfered. -This greatly simplifies his
 

analysis. Bends of this type are discussed by Goubau (5 ) and of
 

course constitute a special case of "reflectionless" bends which may
 

be used for a selective range of frequencies.
 

The work of Miles was successfully checked by Lippert(23-25). 

Lippert presents an experimental study of-sound wave propagation in 

mitered bends of various angles. The experiments were conducted o 

over a wide range-of frequencies and show that long waves in mitered 

bends propagate with insignificant reTlections. In-an interesting 

experiment with.a rounded 900 ,bend (the outside wall of the miter 

joint of the duct was made circular with a radius equal to the duct 



width) Lippert shows that the transmissivity was far superior to that
 

of an ordinary miter joint over a very wide range of frequencies.
 

Finally it should be mentioned that Morse and Feshbach ( 2 6 ) propose
 

an approximate method for the solution of the problem of long wave
 

propagation in a two-dimensional 900 miter bend. A series solution
 

of the wave equation is written for the two infinite branches of the
 

two-dimensionalduct. The square area of the elbow proper is anal

yzed by the method of conformal transformation. 

An analytical and experimental program on wave propagation in 

flexible pipes was carried out by NASA ( 2 7 ) . Propagation of small 

sinusoidal perturbations was studied in a line including a 90' elbow
 

with flexible supports. The experiments were supported by an analy

sis based on the acoustic impedance theory which described the dy

namic behavior of the system. The conclusion of the experiments is
 

that the elbow created no noticeable effects.
 

Propagation of waves in bends and more particularly in circular
 

bends still requires fundamental analysis. The, thus far, obtained 

algorithms for computation of the wave motion are very cumbersome
 

and the past research covers only certain aspects of the wave motion
 

in curved bends.
 

The general object of this dissertation is to analyze the be

havior of long waves in curved conduits. The purpose of the analysis 

is to determine the distribution and variation of the vibrational 

velocities, and the phase of motion, at any point in the systems
 

under consideration. The particular problem is to determine a 
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mathematical model of the wave motion that will yield, with reason

able accuracy, meaningful answers and allow a physical interpreta

tion of results 

To satisfy these requirements the propagation of acoustic waves 

was selected for model. The wave transmission through bends of ar

bitrary sharpness is solved, for the first time, as boundary value 

problem using the characteristic functions. 

The following conditions are assumed to exist. There is a sus

tained, continuous and steady propagation of long acoustic waves in 

a two-dimensional curved channel. Long acoustic waves are under

stood to be harmonic vibrations of infinitely small amplitude of a 

compressible, inviscid fluid. The wavelength is at least two orders 

of magnitude larger than the width of the channel. The pressure 

distribution within the channel satisfies the wave equation. The 

radius of curvature of the bends is unrestricted. 

In this study two acoustic systems are considered which allow 

determination of the basic modes of motion and describe the transi

tion and distortion of plane waves as they propagate down the curved 

channel. A detailed study of the behavior of waves in junctions be

tween straight and curved ducts will be given. 

The mathematical treatment of the problem utilizes the method 

of separation of variables.. Solutions and expressions for principal 

modes of the wave are obtained by using the linearized equation of 

motion solved for its characteristic values. 

This original approach required a novel use of Bessel functions 
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to determine the characteristic values of the steady and the decay

ing fields of motion.
 

The unavoidable approximations in the numerical solutions of
 

the cylindrical functions are due to use of series expansion of Bes

sel functions and from restrictions necessary to solve infinite ma

trices.
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1.0 GENERAL SOLUTION
 

1.1 Formulation of the Problem
 

1.10 	 Equation of motion. - Because the complexity of the problem
 

considered requires a simplified mathematical model, a linear equa

tion of motion, the wave equation,
 

2=1 924,(11
 

will be used. It is generally tractable and should yield results
 

approximating, to a degree, the real phenomena in curved pipes.
 

Equation (1.1) is well known and there is no necessity to derive it.
 

It is, however, important to indicate here the usually omitted dis

cussion of the degree of approximation resulting from use of a lin

earized equation and the nature of applied assumptions. The best
 

way to present all approximations and assumptions is to derive the
 

wave equation from a most general equation of motion.
 

The derivation given hereafter is classical. Elements of it may
 

(28)(29)
8 9 .be found in most ofithe advanced texts( The most complete 

derivation is giventby Morse and Feshbach(26).
 

The sum of forces on a fluid element equals the acceleration 

of the element, D/Dt, times its mass P dx dy dz.
 

The very general equations of motion, without restrictions as 

to the compressibility, viscous forces, and turbulence, is
 

P 	nV -=- v(P + w) + V T 	 (1.2)
Dt
 

TT is the substantial derivative of velocity vector, a sum of the
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local contribution to acceleration - and the convective conat 
tritution due to translation
 

dV1 2 
at= V V (V • ) -VV x curl V VV - V x curl V

2 2 

The -VW = F- is the external potential of conservative forces of 

gravity and V TT is the viscous force on element per unit volume 

but because of the tensorial nature of T, V ' T is not a simple 

divergence. 

To simplify the problem we restrict our analysis to small amp

litude displacements and velocities. We also assume that the com

pressible fluid under consideration exhibits no free surface, is
 

homogeneous throughout the domain. In this case all terms in equa-


V2
tion (1.2) involving can be neglected and5 assuming that the
 

compressional viscosity will be small, the influence of viscosity
 

will be negligible. Furthermore, in the equation of motion of a
 

homogeneous fluid, in the absence of a free surface, the forces due
 

to the external potential (gravity) can be disregarded if pressure
 

P is the excess pressure p over that of the fluid at rest, P0.
 

With these assumptions, the equation of motion reduces to
 

P t Vp (1.3) 

Now we may write 7 grad 4 where 4(x,y,z,t) is a scalar function
 

or potential whose partial derivatives with respect to x,y,z are
 

the components of velocity V in those directions. Substituting,
 

differentiating equation (1.3) with respect to time and since
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at- - dV as established in appendLx 1, equatLon (Al.i),
 

the equation of motion for small oscillations.of a compressible,
 

homogeneous and inviscid fluid at Test is
 

= 1 324,(11
 

where c2 = I/xp. This is the linearized wave equation in terms of 

the velocity potential. It will be convenient to express equation 

(1.1) in polar coordinates to fit the geometry of circular curved
 

pipes.
 

The two-dimensional equation of motion of the analytical model
 

is then
 

- 2@22¢ + + 

ar2 r Dr r2 362 c2 at2
 

The particle velocities (the vibrational velocities) are given by
 

v(r,1,t) = (the tangential component)r 3
 

u(r,e,t) = it (the radial component)
ar
 

and the excess pressure by
 

p(ret) = -p 4
 at

1.11 	Boundary conditions and physical systems to be considered. - The
 

boundary conditions which the solution must satisfy depend on the
 

physical configuration of the system to be analyzed. On the othr
 

hand we are not entirely free to choose any boundary conditions
 

http:oscillations.of
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because the solution of the hyperbolic equation to have a physical
 

meaning must be done over an open boundary at least in 'one space
 

dimension which may be along the time axis. In the case of the prop

agation of waves in pipes the'walls are a closed boundary, the origin
 

and the far end sections may be opened or closed. The time axis is
 

usually open. On the walls and on the end sections the Dirichlet
 

and the Neumann conditions may be used. The Dirichlet condition re

quires that the potential be specified on the boundary. The Neumann
 

condition requires that the normal component of the velocity on the 

boundary be specified.
 

Two physical systems shown on figure 1 will be considered.
 

Both approximate typical industrial piping. The first consists of
 

a rigid infinite bend approximating a coil. At the inlet section
 

of the coil pulsations are generated by a hypothetical piston of
 

infinitesimal displacements. Conditions at the far end section of
 

uhe bend are of no consequence because assumption of an infinite
 

coil implicitly states that the far end section condition will not
 

contribute to the solution; only a simple wave in a positive o di

rection will be considered.
 

The second system consists of a circular bend followed by a
 

straight, infinite duct. As in the case of the infinite coil, at
 

the inlet section of the bend pulsations are generated by a hypo

thetical piston of infinitesimal displacement. The far end of the
 

system will be at infinity. The 'system of coordinates and nomen

clature used are shown on figure 1.
 



800
 

r 0 

Rm/ 

(a)Infinite bend. 
a 0 

r
 

R,R28 

x 

-2L'"
 

(b)900 Bend followed by an infinite 

straight duct. 

Figure I - The two physical systems considered. 
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It will be assumed that the walls of the curved and the straight
 

ducts will be perfectly rigid so that the Newman condition will
 

apply. Generally, walls may have an admittance (reciprocal of the
 

normal impedance) different from zero and a very general solution
 

may be obtained on such a basis. An-extensive discussion of this
 

aspect of the boundary conditions and formulation of this problem
 

( ). 
may be found in Grigor'yan's paper g Our assumption of perfectly
 

stiff walls and hence, the requirement that, at the walls, the nor

mal component of the vibrational velocity vanishes is a very good
 

approximation of actual acoustic systems.
 

1,2. Determination of the Characteristic Values and of the
 

Characteristic Functions
 

The linearized wave equation in cylindrical coordinates is
 

known to be separable in coordinates proper for the boundary. Equa

tion (1.4) may be broken up into a set of ordinary differential
 

equations, each including a separation constant. Consequently, no
 

other method of solving our boundary value problem will be contem

plated in spite of the fact that several approximate methods, such
 

as the method of perturbation, have been found useful and leading
 

to meaningful, although generally, restricted results.
 

To solve equation (1.4), we assume a solution of-the form
 

= n(r)e(e)T(t) 

By separation 	of variables we have
 

1 T" = _k2 	 and T = ei(kct+a) = ei(et+a)
 
an Te
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This solution assumes that the dependence on time is simple harmonic
 

(with a possible phase lag a) and that equation (1.4) is, in fact,
 

a scalar Helmholtz euation.
 

Next, -v2 The solution of the angle depending term may
 

be periodic or linear, depending on the value of the separation con

stant.
 

=a cos v6+ b sin vO V# 0
 
V V 

=c +d 0 

Finally, B" + 1 + k2- V- R 0 

2 r 

and 

R = A JV(kr) + BVY (kr) 

which is the characteristic function of the problem.
 

Superposition of solutions is allowed; for-equation (1.4) is
 

linear and a general solution may be written in the form
 

= e'(wt )(a cos vO 4 sin ve)CAJ (kr) + B Y (kr)ldv 

C 

+ e i(t+a)(ce + d)[A0 0 (kr) + B0Y0(kr)] (1.5) 

where C is a set of points in the complex plane, to be determined
 

in order to satisfy the boundary conditions.
 

The solution for v = 0 might have been included in the in

tegral terms but in order to show more explicitly the linear depend

ence on 0 of this solution, it has been written separately. 
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Before proceeding with application of the boundary conditions 

we will consider the well known technique of splitting the potential
 

field into the incident and the scattered waves
 

¢ = +1 s 

The incident plane waves = vv exp i(mt - kr sin e) propagate 

from the vibrating pistons into the bend until they strike the curved 

wall facing the piston. However, shortly after leaving the piston, 

the waves cease to be plane because they will be strongly diffracted 

on the curved inner wall of the bend. It is noted here that the
 

work on diffraction of long waves by the edge of a semi-finite screen
 

by Lamb(2 8 ) in 1906, and generalized by Penny and Price in 1952 ( 30 ) ,
 

is not valid on curved walls.
 

The reflected, scattered waves which will result from the im

pact on the outer curved wall, will form cusped fronts which have
 

been experimentally studied by Wood (3 1 ). These fronts will carry
 

the energy of original waves down the bend. As the front progresses
 

down the bend it will spread, and assume some new form. The initial
 

condition of the reflected wave is that of the diffracted wave
 

reaching the outer curved wall. Because the degree of diffraction
 

of the plane waves is unknown, the initial conditions of the re

flected wave are undeterminable. In view of the difficulty of ob

taining proper expressions for the incident and the reflected waves,
 

this approach is not applicable. Consequently, the case of motion
 

in bent ducts (which lack axial symmetry leading to the diffraction
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of waves and multiple, endless reflections) requires a solution which
 

would not include the identification of the component waves.
 

To satisfy the partial differential equation and the boundary 

conditions for perfectly rigid circular walls, a characteristic 

equation will be found whose roots will be the characteristic values 

of the problem: a set of values of the separation parameter v 

which will yield a nontrivial solution of the problem. Differenti

ating equation (1.5) with respect to r and equating to zero we 

obtain for the two circular boundaries 

A J'(kR1 ) + B Y'(kR1 ) 0V 1 0 
 (1.6a ) 

AJ'(kRR ) + BY(kR) =0 

AJ + BY'(kRI) = 0
 
A0 (kcn) 00 1)0 
 (1.6b)
 

AOJ'(kR2 ) + BoYI(kR2 ) = 0
 

= 
Conditions equation (1.6b) 

give B0 -A 0
 
0Y6kR1 )
 

and JI(kR )Y'(kR2) - J6(kR2)Y6(kR!) 0 (1.7a)

0 10 2 0 2 1
 

Since J6(kr) = J (kr) and Y"(kr) = -Y (kr), equation (L.7a) can 

be written 

J (kR )Y(kR2 - (kR2 )Yjk) = 0 (l.7b) 

For the case of (kr) greater than the first root of Y (kR ) the
 

cross-product (eq. (1.7b)) will yield a series of solutions. In the
 

present case where 0 < (kr) < (kR2 ) << 1, with the steep slope of 
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Y (kr) and relatively moderate increase of J (kr) pver the range
 

(kR1) to (kRE2 ), there is no solution for equation (1.7b) in the
 

range under consideration.
 

Consequently, the solution v = 0 cannot be considered. Equa

tions (1.6a) give
 

J'(kR,)
 
Bv - v 1 

and J,(kR,)Y(kR2 ) - J((k2)YI(kRE) = 0 (1.8) 

Considering R = al1 ("a" is a proportionality constant) and 

using the relation 

cos(w) J'(kr) - J'(kr)

V
Y' (kr) = -

V sin( v)
 

equation (1.8) simplifies to 

1 [J'(kRl)J' (kRE) - J'(akR)J' NEI)] = 0 (1.9) 

siniv - V 1 -V 

There are no known tables for the roots v of the characterm 

istic equation (1.9). To evaluate the v's we expend the ' and
MV 

Jt in terms of increasing powers of the argument (akR) and 
-V1
 

(kRl). If we limit the expansion in the first approximation to the
 

first term:
 

J'(kr) v (kr))V-l +
 
2Vr(V +1)
v 

J' (kR V1 (krF)V +•
 
V 2- (l- V)
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and 	substitute into equation (2.5) we obtain 

sin rc +)( - )V 1 (kaRl)V-l - (kRl)v-i (kaRj-l]= 0 

and 	finally
 

V )Rz(av-1 - a-Vl-) o(f.10) 

Solution v = 0 has been already rejected. Therefore, the 

only acceptable solution must satisfy the equation 

v-1 -v-i 
a a
 

which may be put in the form
 

2v 2vlna=
 
or =ia 	 . 1 e 

Hence, 	2vlna = 2mni 

that is v !ham =1,2,3 

Better approximations will be given by the second and following 

terms of expansion of- J' and J' 
V 

(z)- (2+ v)zl+ (4+ z,+

V 2r( + 1) 2 2+v (2 + v) + (3 + )F(3)
 

(i.12) 

I zv-V-11- (2 - - - V-v - v)zI (4 O3
-
-V r(j - 2,)v 22-Vr( - v) 24-r(3)r(3 - ) 

Since z = kr is small for k small, we neglect here the 

third term of these expansions.
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Equation (1.9) gives:
 

(kl)-l (2 + v)(kR1 ) ]L+v ka-l F (2 - v)(kaR)ifV]
 

2 r(v +1) 2"* 4r(2 + v)] (1- )2 2 .r(2-)
 

________
r (kaR(2 	 + v)(kaR1 ) 1+V 

4r Jrci- )-2v 


(2 - ")(k 1 )	i'V]
 

v) j

2-"r(2
4 

where, 

r(v + 1) = vr(v) 

r(l - v) =i 9f(f 
sih irv l~v) 

r(2 + v) = (1 + v)r(1 + v) = v(l + V)r(v) 

r(2 - v) = (l - v)r(! - v) = (1 - v)/sin(xi) " r(v) 

r(j - v) = -vr(-v) 

r(I + m + vi) = (1 + v)(2 + xi) . (m + x)i(I + v) 

After algebraic manipulations and dropping the term containing 

the (kR1)2 we have 

sinw1+ (1 v)(2 + v)ka - 1 +) Mv - - a ( + v)(2 - v)
16 -+v(al) + v) + - a\1)) a (1.) 

-	 v VaV1-a1 V, + 4V2(1 - v)(1 + v)(kl !)-2 a 1 _-v
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In order to improve on the first approximation, (eq. (1.11)), 

we now assume 

mni+ in (l + em) (1.15) 

where sm is a small quantity. 

Solving and remembering that
 

In z = inlzj + i(argz + 2nw) n = 0, ± 1. . . 

we have 

0 = (1 - v)(2 + )(e - m i- l na - mni+Ina) 

i - l n a e- m ±+ (1 + v)(2 - v)(6m - i +Ina) 

l n ( l + ) l l+ 4v(1 - v)(i + v)(kR 1)-
2 (emfri+ s a _e-mri-ln(l+s )-lna) 

o = (1 - V)(2 + ) (- + a +l) + (1+ v)(2 - v)-m(a- l - a+') 

2 m +_ _ _1+ -i )(k z,)-(-l)maC i + s 1
 

since 1 - s
+ C
 

(2 - V2)(a - - al) + 2v(- - 2 a2)(k_)0 

(2 - v2)(kP)2 (l 7 a2) 

m - 4v(1 - vZ), 

(kRj2(a2 - 3 2 L ina)t (1.16)n in a 

4mir 1+jj a) 
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and
 

i4 2 +- !W (kRl)2 (a ±) m72]
 
m -+ 2 (1i a2
V 

1+(mr1in .17J( 

m =1, 2, 3 

in(l + 6 
=0 VFor m = 

o in a 

V2 
we
Substituting into equation (1.14) and neglecting terms in 0 

have
 

in a /_a(!-+ s) 0o[av ln(1+ e))j a :- + 

+[2+ +l+ in aE(l 1 a I +-"T 

+ n (1+E 
(kal)f2 (1: ad=(.8
+ 4 0f(~+£) + co 


Solving, we have
 

ln(l + 0 ° a(! + E + + o0 
in a in a 

ln(1+ So) (kR!)-2 2s 0
 

-a(i-s)+ in a 1 a
 

ln(l + E BE +i (I E: 

-4(a- a+ 2 in a 6a+) a in a (kEF 2 

Finally
 

6 if(1+ C) 2___a _____ 

=In a 

a (kRl)-2 + 

- 1 

a + 
a 
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In(1 + a) =' 

E20 2(a - i) 

in a 4(kN) 2Z + a4 + 1 

and
 

V 2(a 2 - 1)/ln a (1.19) 
0 4(kRl)-2 + a2 + 1o 


Since the result depends on v2 we retrace our steps and solve
0 

2
equation (1.18) without neglecting terms in v . After algebraic

0 

manipulations we obtain a new expression for V 

2
0 2 . + a j0 2(a2 1)/in a (1.20) 

S 4 kR1 ) +a +1 Ain a 

There is an infinite set of pure imaginary~roots vm given by equa

tion (1.17) and one single real root given by equation (1.20). The 

uniqueness of the obtained real root remains to be verified. Ex

panding equation (1.9) by means of series (1.12) and substituting for 

_________a_2 

a V the power series aV 1 + v in -a+ v2(n2 . we obtain, 

in the first approximation, 

a2 -iV- ) 2a- 1 
o 47(kRy 1 2n a 

This result was obtained with only first two terms of the series 

V
for a . When three terms of this series are used and when small 
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of the fourth order are neglected, we obtain
 

2
42 a - 1
 

in 

a
 

jh(kRl)-2 2
+ a + i+ a' (a 2 - 1) In a 

Equation (1.20) is thus verified by series expansion and uniqueness
 

of the root v established. Adding all solutions obtained with
 
o 

each of the calculated root, equation (1.5) becomes
 
0, 

i t ( mV M cos Vm + sin Vm ' A J (kr) + B YV (kr)] (1.21) 

m0 mm m m i.J 

and using the previously determined value of B in terms of A
 
m m 

J'V (kR1) 
V 1 

B A , and simplifying notation by adopting
Vv y'(kR
 

A 
V 

C m 

we obtain
 

0, 

= e l _ C(a. cos vmO + sin .) -Y (kRl)J (kr) 

J' (ky)Y (kr)]
 

which still further simplifies to
 

C
 

4= eil(t si (a cos VS + sin Ve)[J (kr)J (kRi)L sin rV V m m m

m=0 1 

-J_ m(ir)J' i; ) (1.22) 
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The expression in the square bracket is the characteristic function 

of wave motion in curved ducts. For simplicity it will be denoted 

F (r,R ) or in an abreviated form F . Its derivative with respect 

to the argument of Bessel functions, for the inner curved wall, that 

is, at B1 , is always equal to zero. On the outside curved wall, at 

R2, FV is zero for all characteristic values To determineVm . 


values of constants C we differentiate equation (1.22) with re-
V 

spect to 0 and requirem that, at 0 = 0, the tangential vibrational 

velocity of particles be equal to the velocity of the vibrating pis
iost
 evton 

0 

= 1 s mm J' (kR!) - J (kr)'Jv ,(k)=v 
T 0TO Oi m _me=0 

(1.23) 

where, to simplify the notation, C is written for C
 
m 

To be able to write an expression for C we have to use the
 

orthogonality conditions satisfied by the set F m J(kr)J' (kR,)
 

-tV(kr) J' (kR )j , as given in appendix 2. 

The result is
 

Cm ° vF 2 F9Vm dr 

S - (1.24)9°J 1 dr 
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The integral F2 is easily reducible to a sum of integrable
 

expressions of which one vanishes. The evaluation of this integral
 

is given in appendix 3.
 

The result is
 

rF 2eJR 2 Cv)R 
F2 - F'v (3.,25) 

@F
 
V 

where F() and ' indicates differentiation with respect 

mR2 

to the argument of F(V) The integral Vmdr, for v 

constant, can be integrated using the following expansion in Bessel
 

functions, as given in "Handbook of Mathematical Functions". 
( 2)
 

2j
 

- + J+3 + " ] 

The sums of Bessel functions of increasing order ±v + J, 

mm±V + 3. . . . i n complex numbers, converge rapidly and the two
 

first terms should give a satisfactory solution.
 

Surming up, the final expression for the velocity potential is
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-- sin v + V LOE(kr) JV(k 

-JV(kr) J")(kR1i (1.26)
 

where
 

2 -1
I a
a==4o(kl )-2 ln-a+ a2+ 1 + ini a (1.20) 

l
(kR 2(_a2 2 


:=i .1-* -" (1.+ia)4m, (l+ 

m = i, 2, 3. • • 

In equation (1.26) only Dn, proportional to a in equation (1.5), 

remains undetermined.
 

1.3 Typical Physical Systems 

The constants D must be determined by the remaining boundarym 

conditions. These conditions depend on the configuration of the sys

tem under consideration.
 

/ 1.30 Infinite bend. - Suppose an infinitely long circulat duct for 

which the closest physical example is a tightly wound coil of which 

the pitch is negligible compared to the radius of curvature of the 

duct. The far end boundary condition for an infinite duct is that 

no reflection of waves must be considered.
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To determine D in equation (1.26) we rewrite (C sin v e

In 	 m m 

+ Dm cos vme), which is a convenient expression for study of standing 

waves, into a form better suited for study of propagation of waves. 
ivmQ


2 
= - v is C' e m 
An alternate form of the solution for 

6 m-iv 6 

+ 	De m The two coefficients C' and D' are not known, but 

m m m 

may be obtained in terms of C and D . Equating the two expres

sions 

sinh(vLm2 m 	 M m ) 

where D is the unknown to be determined. 
m 

The new, alternate, expression for the velocity potential is
Co 
=7 i' ll i)-iv e _ Di) Fm 

eet 1{iC + Im)e rm+ (-iC + D)evm F---y (1.27) 

where Fv is the radius depending term of the velocity potential,

m 

the characteristic function of the problem.
 

Let us consider the imaginary roots vm = ipM , with pm > 0, 

(m = 1, 2, 3, . . .). We have now: 

, = iwt 1 [(m + e + %
 
e mji]tjellm + - O]7 i
+ (-ic +DM)e- Irv-

As 6 + , to avoid values which increase without limit with increas

ing values of e we must set
 

-iC =fD
 
m m 
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and 

1

m ei t s-iCin e 0 F e it Dlm m F 

mm 
 m
 

(1.28)
 

which represents attenuated vibration of a compressible, inviscid
 

fluid. Solutions pertaining to the imaginary roots vanish shortly
 

after the inlet to the duct. The solution given by the real root
 

v is

0
 

= t[(iC. + e + (-iC0o +De 

To eliminate the waves going into the negative direction of 0,we
 

put iC = D and obtain
0 0 

0V i(4t-oe) 
 DoFo i(t- 0) 
0 s 0 e = 0 e (1.29Y 

which is a wave equation representing free and undamped oscillations
 

of a compressible, inviscid fluid.
 

Adding the obtained solutions the velonity potential of infini
 

tesiml waves in an infinite two-dimensional curved duct is
 

D F i(Wt-v0) D -P
 

(r,6,t) = + 1 ee(30 s 7e 


The amplitude of the moving wave is given by the constant and
 

by the characteristic function FV(rR I ) of the first term of the
 
0
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equation (l.30). The exponential function exp i(nt - V0e) describes 

the harmonic motion. The second term of this equation represents 

the decaying oscillations. The amplitude of these oscillations de

pends on the radius. Basically, the motion in curved bends is char

acterized by non-plane oscillations. The detailed evaluation of
 

these waves and oscillations will give the degree of this non

uniformity. 

The harmonic function exp i(wt - v e) depends on the characo 

teristic value v0 (eq. (1.20)) which is the wave number of motion 

when expressed in cylindrical coordinates. It has been named by
 

Krasnushkin (8 ) "angular wave number"; v is a nondimensional, real 

and fractional number.
 

The propagation of waves in a curved duct is profoundly influ

enced by the boundary conditions (i.e., by the curvature of the duct). 

Consider exp i(nt - v0) where w is proportional to the forcing 

frequency of the piston and the phase velocity 6 = ./o" The ex

ponential function may be written exp i(wt - v0s/r) where s = re 

is the arc length. The wave constant on every circular path is 

k = o 27r 2rr w 
-= - ( and so X(r) = r and a = _ 

o 
O 

where a is the apparent phase velocity on a circle. In a curved 

duct the wave length and the apparent phase velocity are proportional 

to radius. The theory shows that, in the duct, there is an infinite 

set of simple waves of one frequency but of varying wave length. 
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It may be shown that for the case of a slightly bent duct the
 

developed equations for wave propagation in bends are, in the limit,
 

exactly those for a straight duct as demonstrated by Eayl~igh. This
 

will verify the result of the present analysis. Equation (1.26)
 

2a2 
-
2 in a
 
Vco I + a2 + a 2 - I 1)na) i
(kR1 + in a-(aa 

for a-*l, with Ama 2 and with (kR) <<
 
an a
 

gives v0 kkRi
 
0 kR y +1
 

while the apparent phase velocity on a circle becomes s 12

or 0o 
->- = c, the velocity of sound in unbounded space. 

The angular wave number for short waves obtained by Buchholz
(7 ) 

and Rice(1 4 ) does not meet this~condition. Using our nomenclature 

they have 

2r
 

a +--AjKkl)2+ (a - 1) + F(a - i)4 2 z + 

" =which for a + I - tends to vo R)2 + 

The expression for angular wave number obtained by Grigor'yan (9 ) is 

N) a(kR o ,1 ) Ioa 

It tends to v°0 = (kRl) for ,a 1, as required. However, for 



33
 

a > 1 its value does not agree with equation (1.20). In -viewof 

the fact that Grigor'yan uses an approximate solution (expansion in 

Taylor series) while equation (1.20) is a characteristic value of 

an exact solution, a verification of the solution at the lower limit 

and a progressive deficiency at the higher values of the variable 

are quite possible. 

1.31 Straight infinite duct. - In order to satisfy the equation of 

motion in a bend followed by a straight duct we will match the solu

tion given by equation (1.26) with 

3= En ei(wt+cnx+ nY) (1.31) 

which represents an aggregate of plane waves in a straight tube, x
 

being measured along the axis of the tube, y is perpendicular to 

it and y = 0 is at the center of the tube. The coefficients n 

and n are to be determined. 

The Helmholtz equation in Cartesian coordinates reads 

+2+ k2 =0 (1.32) 

Differentiating equation (1.3 and substituting into the
 

Helmholtz equation we obtain
 

k 22_ 2 + = 0 

or 

2 = k 2 

n n
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Rewriting equation (1.31)
 

n + E" eu n 

n 

or more generally
 

n= . e't (ix 2 Ln ei + e-iY] 

+ e-ix ji 5 - 2 ecny + t ecny]} (1.33)F? 
Equation (1.33)represents waves going in the positive and the nega

tive directions of x and- y. Differentiating with respect to y 

and applying, at limits y = -L, the boundary condition of perfectly 

rigid wall, we have 

Pei nL n -i n L 0

Pne -Qne =0 

n n 
-i~nL+icnL
 

Pn ne =0
 

and similar homogeneous system for P' and Qn"
 

n "n' 

The consistency condition is
 

2iL -2iL
 
e - e 0
 

which gives
 

sin 2CnL = 0
 
nn
 

2 nL = nv 
 n 2
n Cn 
-2L
 

n = 0, 1, 2, 3, • . . (1/34)
I
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Noting that
 

nk_ 21T 

n "I-f>- 2- 7r- k 
2L -2L X 

n= 1, 2, 3 (i.35) 

X being assumed much greater than L. 

Substituting the values of Pn, P' and , QA.from the com

patibility equations into equation (1.33) we have 

- t + L) (V en E en= e Cos ( 
n0n
n=0
 

and, writing out explicitly the solution for n=0
 

i k x + Cos n(y + L e n 
= e qt + E0 e 


n=l
 

en
 

If we now assume the straight tube to be infinite we must elim

inate the exponentials with positive powers of x. With E; = E" = 0 
n 

we obtain 

ekx En n L)j e (1.0eitKEo + cos + j 3 6) 

n=l 

which is the fihal form of'the equation of motion in the straight 

duct. The first term on the right hand side of this equation 
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represents a plane wave. The second term is an infinite set of 

attenuated vibrations. Differentiating equation (1.36) with respect 

to y will give expression for transverse vibrations. When dif

ferentiated, the first, permanent term yield no component. There

fore, only the set of higher modes produces attenuated transverse 

oscillations. This result discloses that the considered long waves 

in a straight duct must be plane to propagate. 

Based on the above then, a general incident long wave will pro

duce a traveling wave and attenuated transient components. This 

condition will remain until the initial wave straightens out and the 

transverse components diminish to zero. The initial wave then 

travels as a plane wave of reduced amplitude. 

L32 e2 radians bend followed by a straight infinite duct.- To anas

lyze.the motion in the system bend-straight duct, it is necessary to 

determine the D (in the equation of motion in the bend) and them 

En (in the equation of motion in the straight tube) using relations
 

LA = i and "-- = at (1.37) 
r De ax 3r ay {x 

that is, the continuity conditions at the junction bend-straight 

tube. The velocity components, with 

L=2 and y r- R12 ,are : 

.0 



x 

rF 
i -0 + Vmr sinFmv Ico 9m - ss vmr-96 ei in --0r Vo0 +mL m m 

-Fv e rsinY?-m/co
L 
e 

e_i~t ik -ikx 'V. 2ECos n(r R! e 

i-k}
7[-ikE 0 e' - n - kO Eocn r 

ax n~l nnn 

0 0 V 

_= it ICoF' e + sin v e + D cos vF sin 7irv)Lm Vm m mjDr 3-n7rv V00 C 

2j. 

y e 

[m0l 

(nEn 
n-l 

[sin n(r - I ej 

_ mk2 m 
-4 

Equations (3.10) at 6 = 62 and x = 0 are 

C 

o" 

F0 

0m= 

-1v 06 2 + VmTF 

LV V1 

FCcos 9 m,2-Dm 

sin(itv)M m 

sin v == ikE 0 _z 7E 
nn= 1 n 

cosF(r 

n 
- Rli 

(1.38) 

i ic0o FV 
-iv 
02 

2 F rF1 
m

V+In(m m sin v.0. 
+ D cos v 0e 

n n r -I (1.39) 

m1 n=l

uMultiplying equation (1.38) by F and using the orthogonality properties established earlier
 
m 

we obtain
 



D sin v e = C cos Ve 2 

+ 

0 

ik 0 4 
±ni 

FC0 

m dr FV 0 

-ier 

6 R, 

2 F00 

r 

m dr 

+ 
l 

E\n 

- k 2 

IR 

F 

Vm n J 

dr 

TinmT 
m 

f 
RI1 r 

F2 dr 
vm 

(1.40) 

The integral in the denominator is given in the appendix 3. To calculate E 

equation (1.39) by sinIn(r - R)] and by orthogonality of the sine functions 

ic0 -.ov 06f 
- C ae J F rsi\d sF 

0'si0s (r - RId +' sin v 0 + D cos v0L 2in 
[-1 m 2 M1 

we multiply 

_C 
si cn(r-RI dr 

Y 2 sin2[n(r - R1)]dr 

(1.41) 



The denominator is directly integrable
 

2sin2 nr - dr= 'Ij sin2[n(r - RI)] d(r - Rl )
 

R1
 

n_n_ 
 (1.42)
 

Rearangng ad ewl e h eie
sbstiutig eqatin (141)intoeqution(1.0) 


Besides Dm the only unknown in the above expressions is Eo . It will be obtained by in

tegrations of equation (1.38). The last term is identically zero and there remains 

R2 C°V-_1° 2 R2 F °v + m Fm 

-ikE dre - d + cos(V2) - D sin(v drsin m
 
-B k 1 r 


(1.43)
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The integrajF .m d. isnot directly obtainable. Let us-consider
 

the Bessel equation
 

F" + F' + (k2 42) o 

Multiplying by r and integrating (with rF = 

R 2 2 R2 F 

k2 rF dr vVr 

R Vmr 

An integral rfRVrFdr can be evaluated by a general formula
 

0

6"1J= 
(.l)k (Z/2) 
2k iRe(P +) 
> -i


V'k K! (v+ k + l)(p + v+ 2k +1)
0 = 

The integral
 

R12
 

V sin L(r - R1 dr
 

R1
 

will reduce, by integration by parts, to the integral
 

-F co s (  (i.44)
 

R1 2
 

which is already present in the equation (1,40).
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The evaluation of integral
 

FF2 cos n(r - R1 ) dr (1.45) 
~m 

is relegated to appendix 4.
 

The form of the solutions and of the expressions for the con

stants obtained so far are too complex to allow detail conclusions. 

However, equation (1.30) which defines the potential in an infinite
 

bend indicates that there will be both a steady field of transmitted 

velocities and a decaying field. Furthermore there will Je a field
 

of standing radial vibrations throughout the bend. Similarly, equa

tion (1.36) for the straight duct shows that there will be both the
 

transmitted and the decaying velocity fields in the duct and that 

the radial oscillations exist only at the inlet. You will note that 

these equations do not permit the evaluation of the amplitude and 

distribution of the oscillations. However, expanding the functions
 

and integrations will simplify the algebraic expressions and result
 

in numerical data. The alternating series, described by the summa

tion terms, converge very rapidly and will yield accurate data that 

will allow a physical interpretation of results.
 



42
 

2.0 INTEGRATED SOLUTION
 

Before any numerical application of the derived equation is
 

considered it is worthwhile to analyze the functions present in
 

the final expression for the velocity potential
 

C vm cosvn 
' i$t sin ve + m 0D0 LJ(kr)Jivm(kRl) 

-S(kr)J',(kE B 
m m 

The discussion will begin by an analysis of the Bessel functions, 

followed by an analysis of 

F (r) = J (kr)J' (kR1 - _ kr)J, (kRl)
 
m D ID m m
 

evaluation of coefficients C, D and coefficients E for the
 

two typical duct systems to be concluded by interpretation of the
 

final equations of motion.
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2.1 The-Characteristic Functions F and Coefficients C
 
m 

2.10 The real root solution. - Let us consider the solution of F

V 

in equation (1.26) pertaining to the real root v0 . Using the series 

expansions for J (kr), J (kr) and for J' (kr) and J' (kr) as 
000 0 

given by equations (1.12,) we obtain:
 

F (rR~sin(zv0)

V '1I 4(kRjv 'z(i -v0)
 

r 
 ) +(+ 40o- 2(k l)2 
+ v2kR9 2 
_ v(kR2)
 

+ (ft) 0 (kr)2( " 2+ (kRl)2/2 - Vo(kR2/4)
 

J 2 )
(Fj vo(-hv + 40 + 2(kR9 -_V2(kn9 - v (kR ) 

+ ( Vo (kr)2(v + V2 - (kRl92/2 - vo(kRJ2) (2.1)
 

In an direct application of this equation, we would neglect 

terms containing the second powers of (kr) and (kRl) which are small 

of the fourth order. However, neglecting terms in (kr)2 would re

strict the characteristic function to constants and terms with log

arithms of r. Consequently, to maintain generality we will keep 

the terms in (kr)2 during analysis.
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Using power series for the exponential functions
 

)n> r)
r.
+ 


VE] ~0i 2! - 31
 

4
and neglecting terms in v and terms containing products (kr)
2
 

0 

(kR) 2 which .are of the same order, we obtain
 

sin(rv0
 

V 0 (Y 4r(kE1)(l vZ
77 


- -oin r_+R29(k 2 in Rr

2
28 - 2(kRl)2 - 4(kRl )2 n - 2v2(kR,) 

-4v2(n r) - vz(kR)22(1.n - v2(kRl) Ln R-jI 

+ (kr)2[2 - 2v2 In -+ v2(mI )2]) (2.2) 

This general solution of the Bessel equation well verifies the
 

differential equation in a very wide range of radii ratios. For
 

a = R2/R1 from 1 to 4 the error is negligible. For a = 10 the
 

error is approximately 1 percent.
 

This equation, if greatly simplified by elimination of products
 

of small terms becomes
 

) - 2 (n 28 + 8( 2'-v2(l1 1) sin( 0 

+ 2(kr) 2 _(k )2 in ] (2.3) 
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Equation (2.3), when applied to the differential equation, still
 

yields a very satisfactory expression for v at r = R2 namely 

22 a - 1 
_ 4(k2 i2 a-2 = (kcE) 2.ln-aak2 


For numerical calculations F is, with high accuracy, equal to

0 

2 sin(uv)
 
F .- . - (2.4) 

To obtain Co, we have, by equations (1.24) and (1.25), and using 

the expanded expression for FV 
0
 

v
 
C o - 2(kR )C1- v2) x 

0 

3 3
[4 (1)( 2 + 4~V2](a - 1) - (kR9) a - 1 + [2(kRj2 -4v2]3 a ln a + 2v2,a~ln a)2) 

(a2L6+ ( l2]ln)2- 1) + 8(0R)2 (In a)2 + f(kR )2 " V2 

which, if the small of the second and of the higher orders and neg

lected simplifies to 

0 jvCh - (2.5)0 v_2v_ Tl a 
0 

2.11 The imaginary roots solutions. - Let us consider the Bessel
 

functions of pure imaginary order in the equation (1.26). Use will
 

be made of expressions for the Bessel functions with real argument
 

and of imaginary order and tables of functions which have been pub

(20 )
 
lished by Buckens
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The very basic relations are 

F (kr) + iG (kr) = 2'i'p(l + ip)Jiu(kr) (2.6) 

where i = v and 

G (kr) = A (kr) sin [v in (kr)] + B (kr) cos [P in (kr)]
 

F V(kr) = A (kr) cos [p in (kr)] - B (kr) sin -[p In (kr)] 

The functions AP(kr) and B (kr) are A (kr) = 

g ( ~ir 2g B = 0 ir 2g
 
E (i(r) p = E W 2gir) g = 0, 1, 2, 3. . . md 

g0O 2g 90 2 

(c)o = 1, ()o = 0 and 

g4 - P2 = gE2 -2 + 2g2 
=2g 24g(2 z + g ) c2g 
 "4g(vz + gz)
 

Neglecting the fourth and higher powers of (kr) we have
 

- (kr)2
F (kr)2 F(kr) = - -- 7)j cos[P in(kr)] - ( ) sin [v in(kr)]
I 44( (kr)2=[ z 

G(kr) = (kr)2]sin[v Th(kr)] + 2 cos [p ln(ir)]
LI-

(27) 

Substituting into equation (2.6) we obtain expressions for
 

J. (kr) and Ji (kr) for (kr) << 1. In an abbreviated notation 

they are
 

F (kr) + iG (kr) = 2ipr(l + ip)Ji (kr)
 

FP(kr) - iGP(kr) = 2-iPr(1 - ip)Ji (kr)
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The left hand sides of the above equations are complex conjugates.
 

Since
 

r(l + i) =r( + ip)
 

we conclude that 2'1PJ. (kr) is complex conjugate of 2-1PJi (kr).

2e 

In equations (2.7), for (kr) << 1, terms in (kr)2 may beneglected. 

Expressions for J. (kr) and J . (kr) simplify as follows 

cos [p in (kr)] + i sin [P in (kr)] = 21iP (l + iP)Ji (kr)
 

(2.8a)
 

2iP ip)J.i (kr) 

(2.8b) 

Let us substitute into equation (2.8a) the value v = m 

and consider the term sin [p in (kr)] for kr = kRI and kr = kR2 

We obtain 

cos [P in (kr)] - i sin [v in (kr)] = -(l 


in k a 

and
 

sin kR2] sin +~
 
7Tn = sin [mir + mur lTn1 ]
[nin h 


si w In a w a -

The second expression is dephased by mt with respect to the first
 

one. We conclude that for m = 1, [p = iT/(ln a)], Jip(kE2) is the
 

negative of J. (i because it is reflection of in the
kR) J. (kR1) 


origin. For m = 2[p = 2n/(ln a)], Ji (kR2 ) will be numerically
 

equal to Jip(kt) but will be rotated by 2 . The phase angle of 

the solutions for (kR.) and (kR2 ) by even and odd numbers of it im

plies that in the range of radii from E1 to R2 there will be a 
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numbet, increasing with m. of pure imaginary or simply reala 

Ji (kr). 

Taking the derivative of the expression (2.6) with respect to 

the argument (kr) of the Bessel function we obtain 

11I(l + ip,)J! (in') = sin[(p in (r 2(k)+pZ(r p]r2 


+ cos [P in (kr)]Ep 2 (kr) - 2 2 (kr)]
 

+ i (_cos [p in (kr)][2 2 (kr) + 2(kr) - V-rj 

+ sin [p in (kr)][1P2 (kr) - 2 2 (kr]) 

All terms containing c2 (kr) and 92 (kr) are small when com

pared with V/(kr) and in the first approximation may be neglected. 

The resulting equations are
 

2~ l~ + ip)J- (kr) sin [i in (kr)] + i cos [If in (kr)] 

(2.9a) 

2-Pr(i - i)J-'i (kr) = - sin [P in (kr)] - i cos [P in(krt] 

(2.9b) 

By considerations identical to considerations applied to expressions
 

(2.8) we conclude that the derivatives with respect to argument of 

the Bessel functions of pure imaginary order J' ic(kr) and J! (kr),
ip IV
 

for (kr) << 1, are complex conjugates.
 

Using equations (2.8) and (2.9) we form F for m # 0 
m
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F = 
m 

Eln(kr)]sin[pmln(kR )] + cos[,iln(kr)] 

- 2i 


Im sinP os[pmln(kRl)]
 
__3
(kR,) r(1 + ip ) r(1 - ipm )
 

(2.10)
 

Since
 

F + ip)r(l - ijp) =. sinh (n) 

and using trigonometric transformation we have
 

2 sinh(7up1) r 
FV i (kRl) Cos L in R (2.11) 

Equation (2.11) shows that F is a pure imaginary number and is
 
m 

a function of radius r. To check the degree of approximation used
 

2
when neglectingterms in (kr) we retrace our calculation and estab

lish F (r,R1 ) with better accuracy. It is
 
V
 

sinh(Utm ) 
F i 4(=1+ ) m(kT)l x 

2[4l+ p2 ) + (kB11  + (fr)2] Cos( ln
 
m mP l
 

+ (kRi)2 + 2pi(kR)2 - 2p2 (kr)2 sin in r 

Except for the first term in the expression of the cosine of the
 

logarithm, all other terms are very small and are rapidly decreasing
 

with increasing m. The simplified expression obtained by elimina-"
 

2
tion of terms (kr) , which are small of the fourth order, retains 
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the character of the exact expression and may be considered as a
 

very good approximation of the exact equation.
 

To calculate the constant C pertaining to the imaginary
 

roots we evaluate the two integrals, fF dr and / F2 dr,
 
fVm fjr 
v 

using equation (2.10) for F This expression contains the vari

able r in functions sin[ 
m
in (kr)] and cos[P in (kr)]. Before 

proceeding, we establish the necessary integrals starting with the
 

well known integral
 

in(n r)ar r sin(ln r) - 1 r cos(in r) 

They are
 

sin( in r)dr = [(p 2] [p.+ l)r( p + ) sin( in r) 

Vr T+l)s n(P ) in r 

frP cos(p in r)dr = 2 r(p+) sin( in r) 

(p+l ) cos(p in r
+ (p +'l)r (2.12)
 

where p is unrestricted.
 

sin2( in r) d 1 i sin(2p in r) (2.13) 
r r = ilnr-4v 

osdr = n r + 1 sin(2p in r) (2.14) 

Jsin( in r)r = - w cos(2p in r) (2.15) 



r cos(P in r) sin(P in r)dr 
2CS(n ~r=r 2 

------17+ 

fr2os2(ip in r)dr = a' sin(2J in 

r2 cos(2 
cos (2in r) 

r') + 

in r) + r2 [P sin(2p In r) + cos(2p In r)1
4 P Mpl + lr 

[insin(2v r)+ cos(2 in r)] 

- __ sin(i in a')eos(p in r)dr 

(2.16) 

(2-17) 

(2.17) 

The main lines of calculation of 

steps, the result is 

Cm are quite simple but lengthy. Omitting the algebraic intermediate 

Csv 
m = 

1 0 
4ii 

m1 
sinh(irij) X 

8p m(a cos mw  i) 1+ 

+ in a + 2(kRl)2 

2[2 + p + m.][a cos 

(a2 - 1)FT+1r+ 1 

m 

1 

- 1] 

1 + 

+ 2(kR1 )2[P 

L-]

33j a3 csm -

and retaining the large terms only 

m m m J) 

Cv= ivo ff(kR) R (a cos(mr) -z 
Cvm = i sinh(p 7) in a(l + p_) (2.18) 

and 

Svo(kR,)R(acos(mu) - 1) 
m sinhpmR) (1 + mz ) 



2,2 The Infinite Rend 

2.20 Equations. - The integrated equation for the velocity potential q(r,e,t) for an infinite 

bend may now be written directly by substitution of the derived expressions for C0 , Cm and 

F , F into equation (1.30). 
o 	 i
 

The velocity potential is
 

0 V 

vR=- o---oi a 	 l2-2+ 	 in v i 
v eI v 0()a r)/2+2V2 -2(k) 2 _ 1 _. 1	 ae 0B 	 1 

iwt, -In( a cos mw~ 1 p4( + p2 (kRl 2 + (Ir)2] Cos 11 inM 
e 7e mplp) 2Jl+j rm 

.-	 m 

+ [j(kB)2 + 2i2 (R 1 )2 _ 2t2(kr)2] sin m(ln 2-) 	 (2.20) 
Coo 

and 	without terms small of the second order
 

(tV
 
= ± V0 R

*(r,6,t) 

2 y0R1 ~a cos(mn) - I1 - ' [mmy 

- e1t MUi +-2l) e Cos i n r- (2.21)' 
m1TI i
 



The tangential vibrational velocity is
 

jit R1 a - 1 eivo06F 2 r2/2+v -(k.J2 _(l 2V2 2 
v(r,e,t) -e v r " a 2 + (r)/2 + 2 - ( - ( - v (in 

iot =1 e1 m acos m - 2pfjF(l + 2 ) + (kR1)2 + (kr)2]cos V n 

in B,
m(l ) (1 1 

+ L4kR 1 2 + 242(kB1 )2;- 2p2(kr)j)sin(ia~ in r(2.22) 

LO 
The radial vibrational velocity is 


2r
u(r,e,t) = -i 0 e 02r- -(R 

os -1 (k - 2v)I+ . Vore e~ -/r ( 


itvVo Rm [ (a cos(m) - if 4(1 + 12) + (kR1)2 + (kr)2 1 


Wr -r M~i + P2) 2 

- 412(kr)2]sin( pin r + [h(kR1 2 + 2u2 (kR1 ) 2m2(kr) 2 - 4(kr)]cos(Im in 

(2.23)
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The real parts of these equations fully describe the propagation 

of acoustical waves in an infinite bend. To better visualize the 

dependence on radius of the final equations of motion, figure 2 

shows cos ji ln(r)/(R1) which appears in equations .22) and 

(2.23). This function is not very common. We note that the traced 

curves . are shifted off-center due to the influence of the log

arithm in the argument of the cosinus. 

2.21 Discussion. - In the expression for the velocity potential 

the term which rapidly decreases, with increasing 6, is 7/2 out
 

of phase with respect to the other term which is a true wave of
 

amplitude
 

v0 o a - iF_2 2 r2 222
 
R a 2 + (kr) /2 + 2 - 2(k - (ki n)

2 1 o 1 R
lln 

0 1 1 

Since kr << 1, this amplitude is, in a first approximation, in

dependent of radius and the progressive wave is nearly plane. The
 

tangential vibrational velocity has both the permanent wave term and 

the attenuated vibration terms in phase. The permanent wave term 

is basically inversely proportional to the radius while the atten

uated, disappearing term has a more involved radius dependence.
 

The radial vibrational velocities also have a permanent and
 

an attenuated term. The permanent stationary vibrations are 7/2
 

out of phase with the tangential components. The attenuated oscill

ations are in phase with the tangential velocities.
 



1.0 m 4 m 3 m=-1 
.6 - R2RR 

mean = 2
 

Figure a. - Cos[Pr In(rIR1)I for m--1,2, 3,and 4.
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A vectorial addition of the radial and tangential velocities
 

yields motion's vibrational velocity and the direction of the wave
 

front.
 

The propagation of waves in a curved duct is thus profoundly
 

influenced by the curvature of the conduit. The amplitude of
 

vibrational velocities is a function of both inner radius R1 and
 

of the radii ratio a = R2/R1 . The tangential vibrational velo

cities are almost exactly inversely proportional to radius, that is,
 

velocities follow the distribution of a potential vortex. The
 

radial vibrational velocities are approximately two orders of magni

tude smaller than the tangential velocities. Their radial distribu

tion is governed by the three termsin the square bracket of the 

equation (2.23). The expressions derived for vibrational velocities 

in a bend permit a thorough discussion of the motion. The results
 

obtained will be discussed with the aid of figures 3 to 8.
 

The tangential vibrational velocities of the propagating wave,
 

as described by equation (.22), very closely approximate a hyperbolic 

distribution across the channel's width. Figure 3 discloses that the 

vibrational velocities for a = RJR 1 up to 2.5 range from values 

close to 1.5voto approximately 0.5v . It is noted that value ofo

v = v always falls on radii smaller than ducts centerline radius 
01 

-- (R1 + R2)/2. For example, for a = 2, v = v is at 

rv~vo0/El. (a - 1)/ln a = 1.4427 while nm/B1 = 1.5. Performing 

the calculation for different values of the a, we obtain the re

lationship r v-v/Rm as a function of the parameter a = RA . 



a-2.5 I 110 

----- of bends' VsLoci A
 
A8 

96 - 8 
2 

- ,0
84
CC1E 5 
R 

1 2 aR2R/R 4 1043g0380
15 .0[ 
6e84 102 

154 
4 -0 010
 

R1~ 1 2 3 4 5 
R{JRj


.______a3 

RI1-0 2 Figure 4'- Propagation of long waves in 
2 I I I I Icurved ducts Curve A Relation be

12 10tw eenthe sharpness of the bend and
18 16 14 the radial location of the average tan

vivo gential velocity vQ Curve B: Comparison 

Figure 3 - Tangential vibrational velocities ofthe propa- of the phase velocity in bends with phase 
gating long waves incurved ducts velocity in straight ducts. 

"7r/4 .riS fII6 

-08 - 06 - 04 -.02 0 .02 04 tRI 

Figure 5 - Attenuated tangential vibrational velocities for three angular psitions in abend 
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This is shown in figure 4. The radius on which v = v decreases 

proportionately to the increase in the sharpness of the bend. 

The phase velocity of waves is also affected by bending of 

ducts. For a bend, the phase velocity is 6 = L/v0 , as obtained 

from (Wt - Vo), while for a straight duct it is i = w/k, as given 

by (wt - kx). To compare the two velocities we average the tan

gential phase velocity, Or = 6 over the duct width and obtain 
~kRm 

S= 
Vo 

R 
m 

The ratio of the two velocities is sm =vCo = mo o 
0 X 0 0 

This ratio is traced on figure 4. Clearly, the phase velocity in
 

bends is aiways higher than in straight ducts. Furthermore it in

creases with increasing duct sharpness as measured by a = R2/R1.
 

Therefore, if equal passage time in a straight and in a bend duct
 

or phase equality are desired, the bend pipe must be made longer
 

than the straight pipe. 

The attenuated tangential vibrations which characterize change
 

from motion of plane waves in straight duct to motion in a curved 

duct are examined in the next two figures. Figure 5 gives results 

of a sample calculation illustrating the behavior of those oscilla

tions for a duct of radii ratio a 2.2 The vibrations are basic

ally of low amplitude. Even close to the piston, at a = u/16, they 

are one order of magnitude smaller than vibrations of the non-damped,
 

propagating wave. The radial distribution of these oscillations
 

changes significantly with wave angular position in the duct. At 

e = u/4 these oscillations are reduced to a very low level and are
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nearly uniform across the width of the duct. Figure 6 shows the
 

same oscillations calculaied for three different duct widths but 

with a single angular position of e = 7/4. The curve for a = 2 

was taken directly frim figure 5 for comparison purposes. The two 

other curves indicate that the decaying oscillations are much more 

pronounced and extend farther when induced in wider ducts. 

The radial vibrational velocities, which characterize motion 

of waves in curved ducts, for long waves, are of low amplitude. The 

permanent, standing oscillations are shown in figure 7. They are 

calculated for duct radii ratios of 2, 3 and 4. Generally the amp

litude of these oscillations is low, approximately two orders of 

magnitude smaller than the tangential velocities. The radial dis

tribution is characterized by the lack of symmetry. The maxima of
 

curves are shifted toward bend's inner wall.
 

This phenomenon is even more pronounced in the case of the non

propagating, damped, radial oscillations at the curved duct inlet. 

The amplitude and radial distribution of these oscillations is shown 

on figure 8 for three values of parameter a and at e = n/4. For 

a = .2 the permanent and the vanishing oscillations are of approxi

mately the same amplitude. For a = 3 and 4 the decaying oscilla

tions are about twice as large as the radial oscillation of the prop

agating wave. Therefore, the process of decay is much slower when 

ducts are wide. 

The initial conditions, that is, the distribution of velocities
 

on the vibrating piston, determined the type of the obtained solution.
 



a=4 

aR2
 

RI
 

33 

r2R 

-

22 

".1 -.08 -.06 -.04 -.02 0 .02 
vIv O 

Figure 6. - Attenuated tangential vibrational velocities for three bends at 0= 7r14 
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Figure 7. - Standing radial vibrational velocities Figure 8. - Attenuated radial vibra
in bends for three R, and three values of a tional velocities at bond's inlet. 
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To verify the influence of the initial conditions let us compare the
 

simple initial distributions in which the vibrational velocities at
 

the piston will be independent, proportional and inversely propor

tional to the radius. Calculating the integralfv0 F r)dr of the
 

nominator of the constant Cm we obtain the following results
 

'
Initial Amplitude of the Amplitude of the "m,th Decaying Wave
 
Velocity Progressing Wave is Proportional to
 
Distri- is Proportional
 
bution to
 

a - 1 + O(kr)2 (a cos mv - 1) + O(kr)2 

2
r a - 1 + 0(kr)2 2 m2, 2 + (ln-a)2 (a2\cos mw -1) +,O(kr)2 2
o R1 2 In a m w2 + 4(ln a)2
 

R1
 

v o 1 + 0(kr) 2 zero + 0(kr)2
 
o r
 

The first possibility, that is the particle vibrational velocity at
 

the piston are independent of the radius, has been already discussed.
 

The second possibility results in the amplitude of the wave and of
 

the decaying vibrations strongly increasing with channel radii ratio
 

a. The third possibility (potential vortex at the inlet) results in
 

a wave of almost constant amplitude, independent of the parameter a
 

and with vanishingly small damped oscillations at the inlet. The
 

assumption that the tangential velocity at 0 = 0 be inversely pro

portional to the radius results in a remarkable simplification of the
 

equation of motion because virtually only the undamped simple pro

gressing and weak radial waves are present. Furthermore, the pro

gressing waves are essentially independent of bend's radii ratio.
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The physical meaning of the derived equations may now be dis

cussed. We will make a direct parallel between solution of the 

Laplace equation V20 = 0 for inviscid, incompressible fluid and 

the Helmholz equation V20 + k24 = 0 for inviscid, compressible 

fluid. One of the solutions of the Laplace equation, written in 

cylindrical coordinates, gives the potential vortex. It is charac

terized by absence of radial velocities and, at every 0, the tan

gential velocity distribution is the same.
 

In the case of the Helmholz equation with v = const. or
 o 

proportional to the radius, equations indicate that long waves only
 

gradually adjust themselves to the curvilinear boundaries until a 

permanent pattern of a free vortex type (in tangential vibrational 

velocities) is obtained on which vanishingly small components of
 

linear and logarithmic nature are superimposed, and the previously 

discussed set of small radial oscillations is formed. 

We conclude by saying that solution of the Helmholz equation
 

for a curved, two dimensional duct results almost exactly in a
 

potential vortex in.the tangential velocities with superimposed
 

pattern of small standing radial oscillations. The presence of
 

these radial vibrations distinguishes the Helmholz equation from the
 

Laplace equation type of motion. 

2.3 62 Radians Bend Followed by a Straight Infinite Duct 

2.30 Motion in the bend. - To calculate the coefficients D which m 

determine amplitude of vibrations near the outlet of a bend,, we will 

proceed with integration of expressions established in the general
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solution. Equations (1.40), (1.4i) and (i,73) indicate that motion 

in a bend depends on the parameters of the straight duct that follows 

the bend. Obviously, motion in each segment of the ducting depends 

on motion in the entire system. The derived relationships are quite
 

involved and simultaneous solution of these equations results in an
 

infinite matrix in m and n. The coefficients Dm depend on co

efficients Cm, E and En . However, by substitutions, it will be 

possible to express Dm in terms of known Cm only. 

To simplify the writing the following symbols will be used. 

For the integral of equation (1.45) 

R2F (r)cOsIn(r -R I dr = AFmn m 0 (2.24) 

The coefficient Eo, as given by equation (1.4 ) is
 

C V e-iV o 2 F (r)
 
Ov e - v
 

E= 0 0 0__ di
E i (kRl)(a - l)sln(wvo) r
 

+ m coth V + sinh(pGm ) - dr
(kRl)(a - i) sin(1) Lot m 2 mj 2 

(2.25)
 

The first term, which will be designated by Z, consists of two
 

parts. One large and independent of the parameters of the bend and
 

a series of very small terms which are functions of R1 and a. 

The second term consists of a sum of very small terms only because 
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the main term of the integral JrFv(r)/r d' is 

cos in r
 

dr0
 
r 

In an expanded form and with the help of simplifying symbols, equa

tion (2.25) reads: 

E = Z + xl oth a taniPo) 

+ x2 coth( 2e) - tanh i2o2)] + 

+ l + X22+ . (2:.26) 

where 8 = [-~ + tanh (PMa2)] (2.27) 

We note-that for "22 larger than apprximately 4, coth 4 

-tanh 4 1. Typically for 62 = v/2 and a < 5 this approxima

tion is very satisfactory. In all practical applications of long 

wave motion in a 90' bend a simplified equation 

vo0 -i o a2 

=i i- e (2.28)E° 

may be used with high accuracy. Equation (2.28) results from equation
 

(2.26) when small terms of the second and higher orders are neglected. 

By equations (1.40) and (1.41) a single expression for D

I 

may be obtained. It will be convenient to establish the ratio
 



(D/iC)M rather than 

D 

-c oth(Pg) 

Dm 

.v. 

alone. The 

i°C°E 

sinh(ige2)
°v 

relation is 

-i o 

VkvC-- e 
0 o 

f(l 
° sinh (pge2 

F 

F 

F. 

F 

0M ar 
mi(v 

dr -" v snhrxg82) 'F 
vor gih(12/ 

d 
dr 

2 
AFTn 

IC e0 
n SinT o7j 

___ 0 

2 / 
F r) sin 

jcj 

'-( 

8+ Z1A Tvm Snh m2) shm Fmn 

(2.29)'

/ 

where E° is given by equation (2.26) and where 'Dg is the given particular Dm taken into con

sideration. Equation (2.29) cannot be simplified any further. It contains an infinite matrix in 

m and n because each D depends on all D and on the parameters of the straight duct. Ex
g in 

panding the matrix for m = 1, 2, . . . and for n 1, 2, . . . and introducing the abbrevi

ating symbols given by equations (2.26) and (2.27) we obtain 



-ivO 2 F F 

v Cote io I dr 

0 0 sln(Trv;

sinh(il 2 )vf-F Idr 

v sinh(1 o L + 0 2,'11 tanh I / F 

Xl(2+ ooth (P2aO - tanl (vNe2)) +j 

-iv e ~ 

sinh(PIa2)v 

1 

F 1 

d, 

dr L- - A-

Fli 7r 

0 

--

san11pv) 

2 

j V0 

So 

Vsn 

L1 
r R±J ux 

11 
-ivoe0 

Ce o" 1'r 
2 -k 2 A 2 112F122 

c0ei
sinv0) 0 

F') sin ([ 2 r -IJ 1 arj 



1-k 2 ' ,n([$ s cosh (j 1e2) A~i 
17 lsinhm(IIe2 )v,fF, d< 


iC2
 
+ siV2 cosh(112 2)AF21 

k 2 F12 27• 1 - cosh vI 2 )J1 2 

ic2 
2 cosh ( 2 02 )AF2 2 (2.30) 

.oth-
o =
1C) 


Grouping, rearranging and adopting additional symbols to designate the constants of.-the"
 

matrix, we have
 



[1 + cothvpi1io 2 - tanhvpi2 2] A, , -- l 

n=1 

x-- + cotia(i1 e82) - tani (v162)] 

X1- + coth (IJ 2) - tanh (11206 2 '2)
 

+ + n + f 3 1  + o ° (2.31) 

2 ] = - A2 - Z2 
2 + coth(12 %) - tanh(20 

02n
 

n=l
 

- X, + coth (ill8e) - tanh (1±6 2)] 

- x2[82.+ coth (P2e2) - tanh( 2 

+ n1 281 +'n2 2g 2 + 32 3 + 

where A designates the second term in each row of equation (2.30), Z are used for products 

ik 

z ik and Q. stand for terms in the third line of equations (2.30). The X 



nmu
are x multiplied by the factor in m in front of each square bracket and the are mult

ipliers of all in equation (2.30). Finally, by rearrangement, the matrix receives a symmetricalSm 

form.
 

tainh (Pi1e2 )] + A1 + Zl+ Q + Z X1 [coth (i1e2) - tanh (lie42]
2) [loth (11 1 06

nl n=1
 

1 "1- X1 + '2 1- X1)+ ' -3'1 X) +0 

(2.32a)
 

[oth (1122) - tan N 2 )] + A2 + z2+ 	 Z 2n + X2x[coth (M2e) - tanh( 2 2) j 
n=l n=l 

= 81(112 - X2 1 ) + 82(22 X2 2 - ) +232 - X2 3 ) + ° • 

and similar expressions for the other rows of the matrix. The derived solution is very general.
 

It applies to radii ratios of the bend in the range from 1 to 10; it has no limitations as to 

the length of the bend which may range from a small fraction of ff to an infinite coil. This 

wide range of applicability was obtained by retaining in the solution, terms which are two 

orders of magnitude smaller than the principal terms. Now, reasonable limitations to this range 

of bend parameters will greatly simplify the final matrix. For bends with 62 greater than ff/ 
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or /2 and with a <2.2 or a<5 respectively, and neglecting 

small of the second order, the expressions in the square brackets 

dropout. Furthtrm6re, thd 'Z become, Z and Am, Omn and- Xmn 

tend tobe negligibly small., The left aide of-each row of the 

matrx-btibcome -a constant -throughout'the matrix hnd the-'iight side 

further-simplifies the matiix, 'guatioi(2.32a)(-' educed to 

-2= + 1i- + n 

(2.32b)
 

-2 n 1 1L22+ - 32; 

where "prime" on all variables indicate that they have been simpli

fied by elimination of small of the second and higher orders. 0' 

m 

are now defined by
 

X M = - "m°2
 
e
 

This simplified form of the matrix which determines constants of
 

motion in a bend is quite satisfactory for a wide range of applica

tions.
 
D 

With the expression for m already established and using 
m 

the adopted abbreviating symbols, equation (1.41) for En is 

simply
 

i ° 82
S Ji C e o 

_- _ -- o - /, (r)sin (r-R1di
 
p P)o W 0V inj r H1 jd
 

A 
. sin(7r .-C---] n (2.33)-icshG-i m 02) Btanh m2 ) + ICm) 
I n2 lPp 
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where Ep is the given particular 'En taken into consideration. 

Now equations for the velocity potential and the vibrational
 

velocities are fully determined. However, expressions for , v
 

and u respectively, cannot be written in a simple form because of
 

use of series expansions of the Bessel functions and the involved
 

expressions obtained for constants.
 

However, should we consider large terms only [neglecting small 

of the order of (k) 2 ] and bends larger than 7r/4 so that 

sinh 1A2 ' cosh 1162 2 e 

we may form simple equations which with satisfactory accuracy des

cribe the motion in curved ducts. In fact, these simplified equa

tions make it possible to discuss several features of these rela

tionships which would be otherwise obscured by large number of
 

small terms which add to the exactness of the solution but not to
 

the determination of the essential features of propagation except
 

for the presence of the permanent radial standing vibrations. These
 

vibrations, which characterize the motion of waves in bends, are
 

described by terms small of the second order. Since these radial 

vibrations have been adequately discussed in connection with equa

tion (2.23), there is no need to dwell on this subject again to any 

length.
 

The final approximate expressions for propagation of long waves
 

in curved ducts will be based on equation (1.27) which may be written 



as follows
 

o iC F 

0 ei~t 1i e 
iC0 i(ot-VOe) V + D~T77 -r-J 


_- e +e i +
+se

0 m=1
 

Introducing the expressions for F F and for i m given respectively by equations (2.4),
 

(2.11) and (2.32a), we obtain 

ml+z) cos[P in 
@(re't =i v - a 1it-°)0 0 + ei~t V°RlE a cOs (m w ) - l lxm-

v R a iit- 6) v
mM 1 M
 

0 (em,+e-Pm
-_o°
_P-6 

whr+ tee o 2 e + j (2.34) 

0 e nd
at x = 0 which is at 

results from evaluation of E 


term e 


not at e = 0 and could be avoided should the coordinate 8 of the bend be counted clockwise from 

the junction bend-straight duct. 

Differentiating with respect to e we obtain the tangential vibrational velocities 



R iWt-V 0e), it R1 c 
v(rot) a- i e e 2v - a cosm) - cos In r e 

or in a(l + Cos m 
o r in a 


+e 2vo m l in a(l + PT Cos 11 in r e e - e- (2.35)i(it-voe 2) R a cos(mn) - i m 0 

The first two terms of equation (2.35) are those of equation (2.22) of the wave motion in an infinite
 

bend. The first term is a simple wave, the second the attenuated vibrations near the inlet section
 

of the bend. The third term represents attenuated vibrations in the negative direction of e, an
 

adjustment of wave motion to discontinuity at the junction bend-straight duct. This term is identi
-ivo 2
 

cally zero at 8 = 0 and increases to a maximitrat 8 = e2. Because of the presence of e 

these attenuated vibrations are in phase at 62 but out of phase of motion at e< e2" Actually, 

this phase difference represents just time shift. We have vo 2 = Wt2 where t2 is time required 

for the wave to reach section 62* Equation of motion in the straight duct have time counted from 

t = 0 at x = 0 or e = 82 while actually the time count should have been started at a later 

time t = t2 . 
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The radial vibration velocities are obtained -by. differentiation 

with respect to radius
 

co 

u(r'e't) = eh 2vt0 - + -in'a(l sin e 

-e 
0~tVoe2)Rj 

2v 
acos(mr) 

a(l 
1 

) sin in 

m1l 

Om -
+ 2 eP em (2.36) 

ep2 

This expression for radial vibrational velocities do not have any
 

permanent wave term which was given by equation (2.23) when small of 

the second order were considered. The damped vibrations described
 

by equation (2.36) exist near the inlet and near the outlet sections
 

of the bend only although, thieoretically, they extend over.the whole
 

propagation space. The amplitude of the inlet induced velocities
 

is different than amplitude of exit induced velocities (factor 1 vs.
 

0/2). Also the velocities near the inlet section are of opposite
 

sign than velocities near the exit.
 

'The motion in the straight duct may now be analysed. The co

efficients E are given by equation (2.33),. Substituting the
 
ni D 

established approximate values for C and C and simplifying
m 

we obtain
 

R1 V a cos(mr) - (2.37) 
p o Td e (!+ z mp ( 

Ml
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where A are given by series and matrix in appendix 4, and 8m 

are numerical coefficients. Substituting equations (2.28) and (2.37) 

into equation (1.36), the velocity potential in the straight, infinite 

duct is approximately 

i(wt-v o e 2) vvo -ikx
(y,x,t) = e ± -

X 2k
2vBR

+--L/ Cos n(y + L e n 

olr n n
 
n=l
 

mn x A a(o() - 1 m (2.38) 

m1l 

Differentiating with respect to x and simplifying, with
 

-
n k2 an the axial vibrational velocities are
 

v(y,x,t) = e v° e - Th1 n cos n(y + L 

a cos(mr) 1 (2.39) 

xjA m(l + VmZ) 8m 

xoa -

MFIn
 

The normal vibrational velocities are
 

x n
•i(wt-v°o ) v°RB r - 

-e oR io2-n sin n(y + L7 e
u(y,x,t) = 

n=l 

A cos(m ) - 1 x 
 (2.40)
m(l + pz) Sm 
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The dauble series in equations (2.39) and (2.40) are rapidly con

verging as long as x is not zero. The time shift coefficient

-ivo 8 

e is synchronizing the propagation of waves in the straight 

duct with wave motion in the bend.
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3.0 ENERGY FLOW 

Currently, no formulation of energy density or energy flow has 

been developed for long wave motion in bends. Karpman (8 ) attempted 

to develop expressions for the kinetic and the potential energies of 

standing waves in a torus. However, because of mathematical diffi

culties he limited himself to partial results in terms of acoustic
 

energy density which is sound energy per unit volume.
 

In systems with progressing waves it will be appropriate to e

valuate energy flow or power per unit area, called sound intensity, 

which is given, in most general terms, by 

I I=R2 - RI T1 Q/T / R2 p dr dt
 
2 1 T 


1 

The v designates the vector of the vibrational velocity normal to 

the wave front. The first integration, over the period of oscilla

tion, is designed to replace instantaneous values with time averages.
 

The second integration is necessary in the case of wave parameters
 

dependent on radial coordinate to obtain an average over a cross 

section. The integration of the averaged product pv over a cross
 

section is not necessary for plane waves in straight ducts but is
 

necessary for plane waves in curved conduits.
 

Comparing sound intensity in a bend with sound intensity in a 

straight duct, will verify the derived equations of motion. To be
 

successful, this comparison must involve the propagating waves only.
 

To exclude the attenuated waves it will be assumed that in equations
 

(1.30) and (1.36) the series with terms corresponding to m = 1, 2, 3, 
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and to n 11, 2, 3 axe exactly zero. This will be 

very nearly true for sections of bends at angles close to 7/2 or 

larger and for sections in straight ducts at length/width ratios of 

2 or larger. 

For the bend, the tangential vibrational velocity, as given by
 

equation (2.22), for large e and when time averaged is 

(r)
F 
j 
 2 sin(rv 0 r 

V a 1 2 + (kr)2/2 + 2v2 - 2(kR )2
0 _rhinha L 0 

- (kR) 2 ln - _ v2 (In r 

This velocity, when averaged over a cross section by integration is
 

= vjlbendro l- 60(R1 , a] (3.1)
 

where 0 is a small quantity-of the second order. Equation (3.1)
o 

indicates that the kinetic energy of the tangential vibrations in 

the bend is less than the kinetic energy of-the wave-generated at the 

face of the piston. Some kinetic energy was transferred from the 

progressing wave into the standing radial oscillations. 

Using the equations on page 37/ and the relation (2.25) w' obtain 

the tangential vibrational velocity in the straight duct, at a sec

tion of the duct remote from the junction with the bend. 
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ik
 
IVlstraight - 2 O
 

k 'C 0f 	 V0odr 
2 (kR1 )(a - 1) sin( f ro
 

-I- __ 	 [oth(V 62 ) ++ 	 a- 1) x [ 
m-fl 

x sinh{ ) - dr
 

Integrating this relatibnship over a cross section and averaging,
 

yields the following relationship
 

++ zdrzvc /o 	 J d 
1
0 fiM7	 a 

o[- 6o(a, 1!) 	- m(v Ra, 2)] 

The kinetic energy transferred from the bend into the straight duct 

is further reduced by energy absorbed by standing radial vibrations 

near the junction of the bend and straight duct. 

Like Sol the "loss" SM for the long waves is also a small
 

quantity, approximately three orders of magnitude smaller than the 

amplitude of the original wave.
 

For the bend the equation which describes pressure when time
 

averaged, is as follows:
 



8Q
 

- F (r)
 

l (a= W Ro - l 

4 0 	 4 in2 - + (kr) 2 /2 + 2V2 - 2(kR1)2 
0 _ 

) 2 
- (kR in R v2 (in -r)21 

In order to obtain an average value across a cross section, it is
 

necessary to replace v by kr and integrate the above equation.
o 

The equality of v and kr was explained in detail in sectionl.3. 

As you recall it simply indicates that motion in a bend consists of
 

an infinite set of waves of different wavelength but of a single fre

quency. Therefore making the substitution and integrating results in
 

the following expression.
 

1)]
'P'bend V - (a 

In a straight duct, time averaged pressure is described by the ex

pression
 

-=lP straight i E 
2 o
 

It is noted that this expression parallels the expression for 

Sv straight Making the proper substitution and performing the in

tegration, results in the following expression. 

'P'straight V[ o(a, - a, ]- 0V R) 	 H1 '6 2 
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Examining this expression we note that the potential energy of the 

progressing wave in the bend, and downstream from it, is also sub

ject to a small decrease. 

Finally, using the derived expressions, we can describe the 

flow of energy in the bend by the expression 

2wiP 2 F ] n-ia, 


bend v 42k- 0 , 1
 

and in the straight duct by the expression
 

i i -tt 2 1 _ (a, R ) - (Vm.a, R 1 , 6 2 

straight 2k o L 0d 1 in m 1a2 

The long waves under consideration are subject to a loss of en

ergy when going through a bend because some energy is -retained in 

radial vibrations. However, at low frequencies, waves pass through 

bends very easily. This is because the reduction in the rate of 

flow of energy is very small. 

A verification using the energy method of the approximate ex

pressions, equations (2.21) and (2.38)', may be made directly. We ob

serve that the approximate expressions pertain to plane waves which
 

are defined by
 

p = (Wt -n" r) 

where n is a unit vector perpendicular to the wave front. For a
 

plane wave the sound intensity vector i is 

I = v = Pcv 2 n =p2n 

where the quantities p and v are already averaged over a period. 
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For the three expressions of the energy flow we have
 

-R(a - 1)2 1pv Pt v 2 

PC = PC 2 ,2. (a - 1)2 1 
o 1 (in -C)2 T 

p p2,2 Rl (a -12
 
PC C 0o2( a)2


0 

Equating
 

1 k 41
 
2 =V 2 V r
 

0 0 

which, as before, only requires substitution k = v/r to verify the 

identity. 

Finally, comparing the approximate expression for the straight
 

duct and for the bend we have:
 

for the straight duct i = pC 2 

where IV0 is averaged v over a period.
 

For the bend, averaging v0 over cross section yields
 

Sa-! 2dr 

T2 v dr = o r oVlna
2 'R 1 

and i 0 p 20 and i 
- = 2 bend =straight 

which verifies the energy flow equations. This verification is 

based on approximate expressions in which small terms of the second 

and higher orders were neglected. However, the small terms describe 
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the radial oscillations that characterize the motion of waves in
 

curved ducts. Since no consideration was given to energy which was
 

transferred from the progressing wave to the standing radial oscil

lations, the energy flow in the straight duct equals the energy flow 

in the bend. This also equals the energy flow generated by the pis

ton. There are no experimental data available to quantitatively 

verify these results. The reason is the physical difficulty of try

ing to examine the (very low) range of frequencies which is the sub

ject of the present analysis. Usually the acoustics experimentation 

is carried out in the audible frequency range of 200 to 3000 Hz. 

Consequently only a qualitative verification is possible. This ver

ification must be based on the extrapolation of the available exper

imental information to very low frequency range. 

Lippert ( 2 5 ) In 1955 published data on characteristic transmission 

factor T = B exp ia of square and rounded 900 elbows. The ampli

tude B of the factor T is defined as ratio of sound pressure am

plitudes of the transmitted wave at the output plane to the sound 

pressure amplitudes of the incident wave'at the input plane. S is 

the phase angle of the, transmitted wave with respect to the phase of 

the incident wave. As shown on figure 9, transmissivity of a 900 

mitered bend is high at low frequencies (< 600 Hz) but close to 2200 

Hz approaches zero. An experiment with a rounded 900 elbow indi

cates that rounding improved the transmissivity over the entire range
 

of frequencies and eliminated the cut-off condition. The dotted line
 

indicates extrapolation of Lippert's data. We conclude that at very 



.8- Rounded 

.6-
B 

.4 
.2 Mitered 

0-

RRIde 

O -1.2 - Mitered 
-1.6 

-2.0 
0 4 

I 
8 

I 1 
12 16 

I 
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Figure 9. - Transmission of acoustic waves through 
900 mitered and rounded elbows. Experimental data 
by Lippert ( 5 ). 
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low frequencies (1 to 10 Hz) the transmissivity of the two elbows is 

very high but not one-hundred percent. There will be some reflec

tions and some transfer of energy from the progressing wave to the 

standing radial oscillations. At the limit, zero frequency, there is 

no wave motion and the potential flow of matter should suffer no 

losses of energy. That in effect is the case of a potential vortex. 

The lower curves on figure 9 show the phase change of the transmit

ted wave. The square mitered elbow and the rounded elbow produce 

similar phase changes, with virtually merging slopes at lower fre

quencies. Again, using extrapolation, we conclude that at low fre

quencies there will be some phase shift.
 

On the basis of these date it may be concluded that results of 

this analytical study are qualitatively verified. The long waves
 

penetrate and pass through bends easily. However there is some en

ergy being stored in the bends which comes from the-main wave. This
 

stored energy is a very small, but not negligible.
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4.0 NUMERICAL APPLICATION
 

The purpose of the numerical application is to obtain a solution 

for a conventional industrial setup which will give typical wave 

propagation pattern. At the same time it is intended to analyze the 

Bessel Functions of very small order and Bessel functions of pure 

imaginary order and real argument. 

4.1 Selection of Parameters 

In order to simplify the numerical calculations and to conform 

to the requirment that parameters must approximate a typical in

dustrial installation we select the logarithm of the radii ratio, 

in a, such that jm, defined by, 

= " = m n"a m = 1, 2, 3 be an integer 

Selecting in a = 0.62831 we obtain -a= 5, vM = im5 and 

am 
/R1 = 1.8744. This radii ratio is reasonable and approximates 

an industrial ductimg. 

To obtain the argument of the Bessel functions (kRl ) which will 

be a small, finite number, and a wave constant k and radius R1 

typical for industrial application we select
 

k = 0.1 m , R1 = 0.2 m
 

It follows that the wave length X in free space, as defined by 

X = 2i/k, is 62.28 m. With speed of sound in warm air of 350 m/sec, 

the frequency f is f = kc/2r = 5.57 cycles/sec and the corre

sponding rotational speed of a compressor generating those waves is
 

350 rpm which, again, is representative of industrial application. 

The argument of the Bessel functions will be, at the limits,
 



(kI) = 0.02 and (kn2 ) = 0.03748 

This argument is << 1 and the wave length is much larger than the 

dimension of the bend which satiafies the requirements of the theo

retical treatment.
 

4:2 Bessel Functions and Characteristic Functions of the Problem 

4.21 Solution pertaining-to the real root. - Using the selected 

and calculated values of :,a and (kR ) we have, by equation (1,20), 

the real root equal to 

= 0.02828 (4.1)
0 

,The evaluation of the Bessel functions of order-±0.02828 for 

arguments (0.02), (0.03) and,(0.037489) and of the derivative of 

Bessel functions of order ±0.02828 for arguments kR1 = (0.02) and 

kR2 = (0.03748) is based on the expansion of J. (kR) in terms of 
0increasing powers of the argument.
 

vI (kr/2 )2 +(kr/2) 4
 

j+ (kr ) = - ± + 11 + ( 2). +. I].
 

and on the expansion of J (kr) given by equation (1.12).

±V
 

0
Because (kr) << 1 we may neglect the second and the following 

terms of the expansions. However, in order to evaluate the degree
 

of approximation thus obtained we will keep the second term of ,the
 

expansion. Since the expansions contain alternating terms, the error
 

resulting from limiting expansion to a given term will be smaller 

than the fi'rst term which has been dropped, 
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Without entering into details of algebra the following numbers
 

are obtained.
 

J (0.02) = 0.87789[l.015793 --0.00009873 = 0.891667
 
0 

J (0.03) = o.888o4[i.015793 - 0.0002222] = 0.9018412 
0 

JV (0.03748) = 0.89361[1.015793 - 0.0003469] = 0.9074127

0 

C(0.02) = 1.13909[0.983158 - 0.0001012] = 1.119790
 
0 

Js (0.03) = 1.1261o8[o.983158 - 0.0002276) = 1.1o6886 
0 

JI (0.03748) = l.119056[0.983158 --0.0003553] 1,099811 

These numbers are shown on figure 10.
 

Keeping only the first two terms of the expansions (1.12) we
 

obtain
 

J5 (0.02) = 1.25215
 
V
 

0
' (0.03748) = 0.668134
 
V 

0 

i' (0.02), = -1.59491
 
0 

i' (0.03748) = -0.851066
-V 
0 

To check the results we substitute the values of the derivatives
 

into equation (1.9) 

- J' (kR2 )J' (kR1 ) = 0S(kR)J- (kR2) 


The result is 

-i.06566 + 1.06561 = -0.00005 



-- 
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(a)Bessel functions of order ±0.02828 inthe 
interval of the argument (kr) from 0 02 to 0.03748. 

J15(kR1 ) Ji5(kR2) Ji5(0 03748) 
a 
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3 

2 J15(0 03) 

1 

I- J5(0 02815) 

i15(kR,) J15(0 02) J-15(kR2)
 
16(0. 02043)
 

Imiin(b)Bessel functions of order il L2) -±i5 in the 

complex plane. \
 

Figure 10. - Bessel functions of fractional and imaginary order.
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Equation (1.9) is verified with an error of x 100 = 0.001 
1. 0656- 0 '0 

percent. For the three radii the value of F (r) is
 
0 

R1 = 0.2 F = -2.82420
 
0 

r = 0.3 F = -2.82434
 
0
 

R2 = 0.3748 F = -2.82437
 
0 

with maximum variation of F over R to R2 f 0.00017 
V 1 2 2.824285 

0 
0.006 percent. This result indicates that the wave is very nearly 

plane. Using the equation (2.4) which-was established without the 

second and following terms of expansion of J+V(kr) we obtain 

F = -2.8240 
0 

The discrepancy between this value of F and the values cal

culated using the first and the second terms of
0 

this expansion is 

negligible, as assumed in the evaluation of the roots of the wave
 

equation. 

4.22 Solutions pertaining to the imaginary roots.of-the problems. -


To calculate the F pertaining to the imaginary roots, for 
m 

m = 1, 2, 3 • ., we start by evaluating the degree of approxi

mation of our mathematical theory. The pure imaginary roots are
 

given by equation (1.17s) and only the first term of this equation
 

wasconsidered in analysis because the second term was assumed small.
 

Calculations confirm the theoretical development:
 

= 
m = 1 V1 i5 - io.000083
 

m = 2 V2 = ilo - io.000040
 

The second term is very small and decreases with increasing m.
 

-0 
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To calculate the Bessel functions for v m = 1, 2, 3 . , 

we calculate functions G (kr), F (kr) and F(l±ip) for different 

1 and (kr). 

We do,not intend to go into details of the algebra. However, 

it may be worthwhile to show the technique of work and to give a 

sample calculation. We select
 

J 1(kR1) = Ji5(0.02)
 

and propose to solve the equation (2.8a) with
 

cos[5 in 0.02] = cos[-19.5601] = 0.757997
 

sin[5 in 0.02] = sin[-19.5601] = -0.652258
 

Substituting
 

0.757997 - io.652258 = 2i 5 r(I + i5)Ji5(0.02) (4.2)
 

The-left-hand side of the equation is a complex number whose modulus
 

is 0.757992 + 0.6522582 = 1 and the argument is
 

27r - arctg 0.652258 = 5,57258. Substituting into (4.2) and taking

0.757997
 

logarithm we have i5.57258 = i3.4655 - 6.13032 + i3.815898 +
 

in i5(0.02)
 

where
 

-6.13032 + i3.81898 = in r(1 + i5) as given by tables of functions,
 

reference (32).
 

Finally
 

6.l032 - il.708818 in Ji5 (0.02)
 

or
 

459,6(cos 1.708818 - i sin 1.708818) = J i5:(0.02) and
 

Ji5(0.02) = -63.236 -i455.229
 

http:Ji5(0.02
http:i5:(0.02
http:Ji5(0.02


92
 

Calculating the Bessel functions for arguments (0.03) and (kR2 ) 

= 0.037489 we obtain 

Ji5(0.03) = 437.714 + i140.13 

J. (0.037489) = 63.236 + i455.229
 
15 

The Bessel functions (as approximated by limited expansions)fd
 

the same three arguments but of negative order are complex conjug

ates of the above results. Calculating the derivatives of Bessel
 

functions with respect to the argument, for arguments (kRl ) 

0.02 	and (kR2 ) = 0.037489, we obtain
 

5 
 5
 
Ja (0.02 = 1.13807xlO - iO.15805x10

15 
J!5 (0037489) = -6.0712xlO4 + iO.843174xi0

4
 

15
 

and the same functions but of negative order are the complex con

jugates of the above results. Again these conclusions are re

stricted to approximated expressions for the Bessel functions. 

The calculated functions are shown on figure 10. On this fig

ure we also indicated two particular-values of Ji5(kr) namely, 

the pure imaginary Ji5 (0.02043) = -i459.6 and the real 

Ji5(0.02815) = 459.6. -To check the calculated derivatives, we 

substitute the numerical values of the functions into equation (L..9,). 

The results is 

J! (0.02)J' (0.037489) - J! (0.037489)J! (0.02) - ±0.0231 = 015 -i5 	 15 i5
 

The accumulated error equals 0.12 percent and may be tolerated.
 

4.3. The Two Physical Systems 

The degree of accuracy of the derived basic functions has been
 

established in the preceding section. The numerical application of
 

http:Ji5(0.03
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the integrated equations for the infinite coil and for the 90 degree
 

bend followed by a straight infinite duct -may now be done without
 

going into details of the compofient functions.
 

4.31 Infinite coil. - The tangential and radial vibrational velo

cities are given by equations (2.22) and (2.23). The-numerical appli

cation is straightforward. The alternating series in the two equa

tions are converging rapidly as long as e is not zero. 

At e = n/64, 7T/8 and i/4 the seventh, the-fifth, and the 

second term of the series, respectively, are already negligible. 

At 0 = 3v/8 the first terms of the series was smaller than 0.1 

percent of the value of the simple wave term in equation (2.22). 

At 6 = 0 the convergence is slow. Typically for 6 = 0 andat 

r = R1 v(Ri,O,t) = vO 

and
 

a + 2 a cos(nn) 1+ln a Z ln a(l+ -- 1 

and for e 0 and r R2 . 

00 

i a.-1 2 a cos(m) 1
 
na a n a(l + z)
 

With 30 terms taken into consideration the error was still of the 

order of 1 percent. The calculated values of v(r,Q,t) are plotted
 

on figure 11.
 

To better show the rapid velocity changes-near the inlet section
 

of the bend and the important final velocity dependence .(1/r) on the 
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(a)Tangential vibrational velocity distribution near inlet of an infinite coil. 
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(b)Magnitude and direction of vibrational velocities at section 8=ir/t16. 

Figure 11. - Infinite coil. Distribution of vibrational velocities. 
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radius, the calculated values are superposed. On the abscissa is
 

the velocity magnitude in terms of v0 .
 

About 25 percent of the velocity redistribution take place be

tween 6 = 0 and i/64. By e = i/8 the distribution character

istic to potential vortex is nearly completed and changes become
 

slow and it takes, from then on, an angle 7/4 to reach the steady

state distribution.
 

The decaying radial vibrational velocities were calculated for
 

one cross section, at 0 = n/16, and are compared with the permanent
 

radial vibrations. The values are
 

Radius Decaying Permanent
 
u(r,v/16,t) u(3tr/16t)'
 

R1 0
 

R1 + (R R )/4 -0.0860v o -0.002475 vo
 

R1 + (R2 - R1 )/2 -o.o884 v° -0.002636 v°
 

R +3(R - R1)/4 -o.o8 v -0.001635 v

1 - 2 1j/k 0 

R2 0 0 

The permanent radial oscillations are one.order of magnitude smaller 

than the decaying oscillations at w/16, By vectorial addition, the 

magnitude and direction of vibrational velocities may be obtained. 

For section 8 = v/16, figure 11 shows that the wave profile is not 

straight. It approximates in the vicinity of this section, a cosius 

curve. Beyond section 8 = 37/8 the radial velocities are so small 

that the wave profile is very nearly radial. 
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4.32 90 degree bend followed by a straight duct. - The wave pattern
 

in a bend followed by a straight duct is much more involved than the
 

wave propagation in an infinite coil. So is also the numerical
 

application. 

The problem of evaluation of integrals A . was already dismn 

cussed and is reported in appendix 4. The evaluation of coeffic

ients Dm or rather of the ratio (Dm/iC), given by matrix (2.,32a),
 

was simplified, by elimination of small terms and reduced to matrix 

equation (2.32b) in Om . This matrix, in principle infinite was, in 

the present numerical calculations, arbitrarily-limited to six rows
 

and columns. It is as follows: 

2 1.9935 0, + 0.73 0.3288 0.4015 0.7057 0.978 8' 
1 + T5 82 + -3 10+ 74 5 -TO= 6 

-2 - 0.208 $0 - 2.001 0.615 0.1286 0.1358' 0.274-,
-2 = - 0745 - .oo z 127 _0r

22 10.4277 2.000 ' 0.4887 0.141 0.786 8' 
- - W-40.778 - l2 6
 

-2 - 0.4128 + 0.405 , 0.221 0.3837 0, + 0.178 8' 
--1 10 10 5 10 

i 


1 6
 

-2 - 0.455 0' -0.120 -0.181 0.108 $ 1.9386 0
10 10 1010 10 04 5 '10 

-2 -- 0.7615 8'+ 0.654 , 0.135 .844 o'-,- 1.5768.1 10 2 3 +5 

By inspection, we see that the first four Of's will be close to
 m 

unity. To have precise values, the matrix was solved by Cramer's
 

rule on a digital computer. 'Furthermore, in order to ascertain that
 



97
 

the arbitrary limitations of an infinite matrix to a square matrix 

6x6 will not result in unrealistic values of 8 's, five computer 

runs were requested to obtain solutions of matrices 2x2, 3x3 and 

6 6x . The result is
 

Approximation q a 8'
 

ist 1.00326 
2nd 0.99998 0.89374 
3rd 0.99896 0.89374 0,62598 
4th 0.99894 0.89379 0.62579 0.79069 
5th 0.99894 0.89378 0.62650 0.77137 1.00425 
6th -0.99893 0.89381 0.62640 0.77365 1.00024 0.24667 

The variation of coefficients a' over the-range of terms taken 
m 

into consideration is negligible. Consequently, we assume that ar

bitrary limitation-of the matrix to 6x6 is permissible. The values 

obtained by-the sixth approximation will be used in calculations. 

The calculation of-the tangential and radial vibrational velo

cities [eqs. (2.35) and (2.36)] is direct. Figure 12 gives the re

sults of the-numerical application. At e = 15 /32 .the distribu

tion of tangential velocities is no more inversely proportional to 

radius. The wave is.deformed, by significant, positive radial 

velocities. The series in the equations of motion are still limited, 

however, to one significant term only. At. = 31i/64, there are 

two significant terms in the series. We conclude that important 

changes in the values of vibrational velocities are confined to the 

last 7/32 of the 7/2 bend.
 

By the bend outlet the wave profile is no more radial. The
 

effective vibrational velocity equal V 2 + is in r positive
 



1.4 13 1.2 1.1 1 9 .8 
Vo 

(a)Bend outlet. Distribution of tangential vibrational velocities. 

/ 

(b)Vibrational velocities at section - 157r/32. 

5 
If 375 

x.= 25. 0 "r 


.0625T 

12 1,.1 1 .9 .8 
V0 

(c)Straight duct inlet Distribution of axial vibrational velocities. (di Vibrational velocities at X= . 25 

Figure 12. - 90 Bend followed bye straight duct Distribution of vibrational velocities. 
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direction, except at boundaries where it is tangential. This is al

so shown on figure 12. The direction of the effective vibrational
 

velocities gives the wave front orientation.
 

The calculation of the vibrational velocities in-the straight
 

duct that follows the 90 degree bend is straightforward. Results of
 

application of equations (2.39,) and (2,40) are also reported on fig

ure 12. 

In the straight duct the waves are straightening out relatively 

fast. By x/2L = 1 there is already an almost straight wave simi

lar to that which was generated at the bend inlet. Essentially, the 

process of straightening out of the wave is confined to the straight 

duct. Figure 13 shows that the tangential velocity v = v remains0 

in the bend in its equilibrium position at approximately S'R (a 

1)/ In a, which in this application, is at r/R1 = 1.392, and only 

in the straight duct gradually bends closer to the center line of 

the duct. By x/2L = 1.5 the tangential vibrational velocity (v
O



60 - 6m ) is at the center line and, everywhere. 

The verification of the simultaneous solution of the equations
 

of motion for the bend and for the straight duct is shown on figure
 

14. The calculated tangential vibrational velocities for r = R1 

and r = R2 for positions starting at the vibrating piston, through 

the bend and in the straight duct are taken from figures 11 and 12. 

The rapid changes in velocities by the bend exit are well illustra

ted. In spite of this, the values calculated for the bend match 

very well the values calculated for the straight duct. At x/2L = 1 



Duct _1.44 --
I.,42 

1.40
 
1.38 I I 

0 ir/8 7r/4 37d8 ir/2
Radians I I I I I I I 

0 .25 .50 .75 1.00 1.25 1.50 
Nondimensional distance, xI2L 

Figure 13. - Propagation in bend-straight duct system. Changes 
in location of the tangential vibrational velocity vo. 

1.40- Infinite bend 

1.30
 
v at inner wall
 

L.20

0 Calculated points 

1.10 (see also figs. 11 and 12) 

VIOU
1.00 

*.90

v at outer wall 

.80
 

I I I I , , I 

0 7r/4 7r/2 

Radians 

0 .25 .50 .75 1.00 
x/2L 

Figure 14. - Propagation in bend-straight duct system. Tangential vibrational 
velocities at bend's curved walls, at r = R1 and r = R2. 
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the vibrational velocities at the walls of the straight duct are, 

within a fraction of a percent, equal to v0 . 

For comparison purposes, the two tangential lines shown indi

cate the values of the vibrational velocities for an infinite bend. 

This graph should be compared with the well known and often pub

lished curves for potential fluid flow in elbows. Those curves give 

the fluid velocities of the streamlines at elbow walls, as estimated 

by semi-graphical solutions. The calculated curves on figure 14 

are similar. -The derived deviations from a logarithmic distribution
 

of velocities in a bend are in the case of long wave mat-ion,-too
 

small to be noticeable.
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5.0 CONCLIWING REMARKS AND RECOMMENDATIONS
 

Propagation of long waves in a two-dimensional system has been
 

analyzed. The-acoustic approximation has been used and the Helmholz 

equation was integrated for two sets of boundary conditions. The 

two physical systems taken into consideration are: an infinite bend 

approximating a coil and a 900-bend followed by .a straight, infinite 

duct 	approximating a-typical indistrial piping system.
 

Implicitly the analysis gives also a solution for a system con

sisting of an infinite duct connected to a 900 elbow followed by a 

second infinite duct. The results of the analysis indicate that 

bending of a straight duct profoundly modifies the propagation of 

waves in that duct. The bend engenders the following phenomena: 

a) 	a set of attenuated axial and radial waves-which modify 

the plane wave generated at the duct's inlet (figs. 5 and 

6).
 

b) 	a continuous radial, standing wave whose radial vibrations 

are.sustained by the curvature of the bend. In a straight 

duct these vibrations would be quickly attenuated (fig. 7). 

c) 	a vortex-type distribution of the tangential vibrational
 

velocities (fig. 3).
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d) an increase in the phase velocity which is proportional to 

the sharpness of the bend (fig. 4). 

e) a decrease of the amplitude of the transmitted wave. The 

radial reflections at the bend make the transmitted wave 

weaker than it was before.
 

The analytical results have been qualitatively verified by data ob

tained by Lippert (2 5 ) . In spite of the differeAces between the sys

tem considered in the analysis and the system which has been used in
 

experiments there is an agreement on the trend of the change of
 

parameters of the waves crossing those bends.
 

The presented analysis is not directly applicable to real flows
 

because it is based on a linearized equation valid for acoustical 

waves in stationary medium only. It gives, however, an idealized
 

picture of wave's behavior in bends, in general. This work extab

lishes a method to estimate capability of bends to transmit waves.
 

It may be useful in the design of rigid accoustical duct systems.
 

It also opens possibility to calculate transmittability of non-rigid 

bends which induce large but as yet not calculable phase changes in 

the progressing waves.
 

The obtained results should also be useful in advancing the 

theory of waveguides in electromagnetic application. In spite of 

the fact that the electromagnetic theory is concerned with high fre

quencies only, the developed reactions, particularly for the decay

ing field of velocities, should be of value. In the field of low
 

frequency oscillations, analysis of the observed "Pogo" 
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instabilities of rocket systems should benefit from the developed 

equations, While older rocket designs were provided with straight 

feed piping systems, the newer designs will have bends and elbows 

which must be analyzed. 

A more complete research may now be suggested to get a better
 

understanding of the phenomena associated with the propagation of
 

pulsating flows in curved pipes. From the stability of flow view

point the most interesting case to investigate would be a free pip

ing system, (i.e., a bend in a piping system with one or two degrees
 

of freedom). Across the elbow an important phase change should be
 

obtained. From the heat transfer point of view it might be inter

esting to solve a tri-dimensional Helmholz equation and wave propa

gation combined with fluid flow. 
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APPENDIX 1 

The Equation of Continuity 

We define dilation & =(x - U0 where -o is an elementary 

volume and the subscript zero refers to the initial state'. If .1 

are displacements in three-dimensional space
 

" - + "2'+ "3
 
3x y- az
 

The coefficient of compressibility of the fluid under consideration
 

is defined by'
 

0X - (p - po ) 

hence
 

P = - and --- _ divV (,.1)
0 3t X 

where V is the velocity vector. Flow of material out of the ele

mentary volume reduces the pressure of the compressible fluid. The
 

rate of change of excess pressure is proportional to the divergence
 

of V. For incompressible fluid div V = 0.
 

2
For an isentropic process pu = const and -udp + ypdu = 0 

and considering the definition of X 

do 1 
X= - dp py 

p 2
If we put y = c where c is~the velocity of sound, as
P 

established by Laplace in 1816, we have 

1 = c (Al.2) 

x 
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APPENDIX 2 

The Orthogonality Condition 

Function F. = J (kr) J' (kE) -J (k) J (kR) for 
V V -V 1 V(r JV 

m m m m m
 

every v must satisfy the Bessel Equation. Written for two differm 

ent v, v1 and v2 -the two relations are: 

F"1 + F'V 
 =0 

1
 
F" +-! F' 
 + k2 _ F 0 

V r V2 TO V2 2 \2
 

Multiplied by rF,0 *and rF -respectively,-integrating,
 

and remembering that
 

Fv, (kB1) = F, (kR2 ) = 0, we get
 
m m
 

rF' F' dr + k2 rF F dr -v F F dr = 0
 
V1 V2 2 V 2 1 V2 1 

and a similar equation for the second expression.- Subtracting, we
 

obtain
 

R2
 

2 2 F dr= 0
2 41,r V2 V1 

or
 

orVRV2.1rF 

F dr=O
 

( v2221 
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2and assuming that v A V2 we deternine.the orthogonality condition 
1 2 

R 2 1 - F F dr = 0 (A2.1) 
r v V2 

From the above analysis we also conclude that no complex roots 

can exist. For if were such a complex root, its conjugate v 

would also be'a root and then F_ = and the product F F_ wouldV V V 

be necessarily a positive number, different from zero.. Consequently. 

V must have either a pure imaginary value or real vaues for otherm 

wise
 

V2 - V2 = -i _ V, = (_-+ v)(T - v) = 4RevImv 

would not vanish.
 

It should be pointed out that a similar relation but for Bessel
 

functions of pure imaginary argument (ikr) has been discussed by
 

Bocher ( 3 3 )
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APPENDIX 3
 

The Integral fF2/r dr
 

Function F = J (kr)J' (kRl) - J (kr)J'(kRl) satisfies the
 
V V -V 1 -v v 1, 

Bessel equation 

F" -- F' + (k2 _ v 2A 

- -r-- F =0(A3.1 
V r \r r v 

Let us differentiate (AS.1) with rpspect to v and put 

DF
 
F(v) 2F
av-


V2
F" + ' +k 2F 2v =0 (A3.2)

(V) r (v) ) -T F( )
 

Multiplying (A3.1) by rF(\) and (A3.2) by rF , we have
 

(rFv)Fv Fd -v r (v vFd 
FINdr r (V)v -F Fdr)V 

- - r F2v dr = 0 

F F"dr+ F'F dr + krrFF dr - v2YF F dr = 0 
C-v)' V (v) jV(V) yr v CV) 

Subtracting and integrating by parts the integrals containing
 

the second derivatives of F, we have
 
B' rF RF 2
2 


rFF) - rF F -2 F dr = 0
V) (V)v,
,R1 r
 

Applying the boundary condtion F,(kR,) = F4(B 2) =,O we have,
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2LF 2 d, 
r ' 2vo 

rF Ft 

v (V) R1 

where 

F'~ 2F 

CV) Dr = 

J'(kr) 

av J'CkV 

+ J'(kr)v 

aJ' (kE ) 
-vv
2v 

3J' (kr) 
vSv J(E)-J1 c-vr 

aJ'(kx 

v 
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APPENDIX 4 

The Integral Ai = cos (r - RI cos in dr 

The symbol A' stands for the integral
mn 

cs n(r2 Co RBaCos[ MIn eri 

which is part of integral 

AFm1 =ZB2 RIF m (r) cos ncr )d,]r. m- 0.1 -


The integral AFrn and, ipso facto, the integral Amn appear in 

equations (1.40) and (1.41). The integral An has no simple solu

tion; however, the integral AFmn will be easily obtained when the 

basic integration of- A will be performed.
inn
 

The problem is thus reduced to evaluation of Amn. The pro

cess of integration of the definite integral Amn begins with trig

onometric transformation to split the integrand into four definite 

integrals of products of sine and cose of (4nr) and m in r. Next, 

expanding cos nr and sin Cnr in series we obtain four alter

nating series containing integrable terms of the types 

P 2 Cos pm ln-r
 

p
n R M 
P1 /a cos Pm In rdr 
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Using the definite integrals developed earlier, equation ( ), 

and applying the integration limits, after simplification, we 

finally obtain 

Fl 	 [Ra cos(mr) -11 

2 2 

- ~-~ (3 4.~ [a2 cos(mw) - i 

4n 45R_
+ + u2n) (a 

-sin!7 	 [a 2 cos(r) - l 

1n
 

31{--y [a[ cs(mr) - i] 

+ 	 1 4acos(mwr) - !
 

5n
 

where m l, 2, 3 . n =1, 2, 3 . . . 

IT IT 2 
"mm 'a n R- lR a 

For the numerical application iT/ln a = 5, 

E2 - R1 = 0.17489m, R1 = 0.2m 

The derived series solution for A is difficult to handle.
 
mn 

The two converging series exhibit behavior similar to that of the
 

series of sine and cosine of argument >>I. The second and several
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following terms of the series grow very fast and attain very high
 

values before the factorials in the denominators force the decrease
 

of the terms.
 

An attempt wasmade to compute A on a digital computer,

mn 

IBM 7094 Mod II. Good results were obtained for values of m = 1,
 

2, 3 . . . 6 and for n = 1 and. 2. For n = 3 the results were 

erratic and for n > 3 even the double precision was not suffic

ient to carry out calculation and completely erroneous results were
 

printed out. 

A second approach consisted in use of an existing routine, 

recorded on tape,.of .integration by Simpson's-Rule. A complete 

set of values was,,obtained ,for n and m up to 6 and in order to 

study the behavior of the function several values for higher n and 

m. All calculated Amn are reported on figure 15. The complete
 

set of results is presented in the form of a matrix: 

Values of A
 
nan
 

n =1 n = 2 n = 3 n-= 4 n-= 5 n = 6 

m = 1 0,08583 0.01041 0.0010 0.000509 0.000148 0.0000849 

m = 2 -0.02263 0.08187 0.02076 o.004048 0.00144 0.000466 

m = 3 0.00324 -0.03208 0.07523 0.02976 0.00762 0.00276 

m = 4 -0.00232 0.00667 -0.04069 0.06633 0.03715 0.01189 

m = 5 0.00054 -0.00319 0.01109 -0.04774 0.05559 0.04262 

m = 6 -0.000797 0.000934 -0.00463 0.01620 -0.05285 0.04350 

Along the principal diagonal A steadily decrease. Along

ma
 

the' super and sub-diagonals the values of' An increase, with An 

http:tape,.of
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for m = n vary-ing-along.two sine curves. By m =,n = 6 the 

matrix is approximately tridiagonal. Figure L5 showsa-se~les of 

functions A f(m) which are rapidly attenuated for n < 3 but exn 

hibit large oscillations for higher values of n. The values cal

culated by Simpson's Rule agree well with values obtained by the
 

series solution for n = 1 and 2. 

For n = 1 and m = 1 . . .6 we have 

m 1 2 3 4 5 6 

Series 0.08583 -0.02263 0.00324 -0.00232 o.0oo54 -0.000797
 
solution
 

Simpson's 0.08577 -0.02266 0.00327 -0.00234 0.00055 -o.ooo8o4
 
Rule
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