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ABSTRACT
 

The general design of a system of subroutines for solving the initial value
 

problem in ordinary differential equations is given. An attempt has been
 

made to design these subroutines in such a way that they will be easy to
 

use on easy problems and still be flexible enough to treat any type of
 

initial value problem with a high degree of efficiency. Emphasis is on the
 

use of these subroutines, rather than on the mathematical algorithms which
 

at this time are not completely specified. Implementation of our design
 

in FORTRAN IV suffers from deficiencies in the design of the multiple
 

entry feature provided in some of the current FORTRAN IV compilers.
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I. INTRODUCTION
 

This paper gives the form in which we plan to provide subroutines
 
for the numerical solution of ordinary differential equations. Our
 

goal is to provide a reliable algorithm, which incorporates features
 

of use in a wide variety of applications, which is highly efficient
 

on a wide class of problems, and which is easy to use on easy problems.
 

This document has two primary purposes. 

1. 	 We are soliciting comments from users and numerical analysts on 

the following: features not included which someone may find 
useful, features provided in a way more awkward than necessary, 

and 	the general approach.
 

2. 	We want to call attention to the sad state of the multiple entry
 

feature provided in the FORTRAN compilers of third generation
 

computers. None that we know of can be trusted to work as it
 
should with the kind of usage outlined below. (The problem and
 

some possible solutions will be sent on request.) Past experience
 

with our UNIVAC 1108 indicates that with a little care (i.e. code
 

which takes into account quirks in the compiler) we can get the
 

desired results. On the IBM 360 things are a little worse, since
 

in this case the end user will have to use tricks in his coding
 

to get the desired results, and the higher the degree of optimi

zation, the trickier he may have to be. The CDC 6000 series
 
provides a multiple entry in name only, and thus the usage given
 

below is not even permitted. Clearly it is poor algorithm design
 

to be so computer dependent, and yet the other choices are so
 

unsatisfactory that we take the approach below in the hope that
 

the future will find the most widely used scientific programming
 
language is one which has a well defined multiple entry feature.
 

(Anyone for PL/l?)
 

In addition we hope that there may be some ideas here of use to
 

others who are engaged in the design of mathematical software.
 

The design given here extends and modifies the features available
 

in the integrator described in [1]. The main extensions are the
 

special provisions for stiff equations and for variational equations.
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The overall design has resulted from experience with the integrator
 

in [1] and all of the features included here are of use in some
 

application. The features are given in all of their gory detail,
 

since we believe the detail necessary to the evaluation of how a
 

feature will work in practice. The reader should, of course, skip
 

over the details of features in which he has no interest. Results
 

obtained with the integrator in [1] are given in [2].
 

Central to our approach is the use of reverse communication, which
 

means that whenever additional information is to be communicated, a
 

subroutine returns control to the program which called it. This is
 

opposed to the common practice in integration subroutines of passing
 

the name of the subprogram which computes the derivatives through the
 

calling sequence of the integration subroutine, and then having the
 

integration subroutine call the subprogram of this name whenever a
 

derivative evaluation is required. Those who have experience only
 

with the latter procedure may not be impressed with the facts that
 

reverse communication may mean a little less fussing with COMMON,
 

that it clarifies the structure of a large program, and that on
 

simple problems only one program need be written. We adopted the
 

reverse communication concept because Charles Lawson had made it
 

the policy for subroutines in the JPL subroutine library. After
 

trying both approaches we prefer to use reverse communication, and we
 

believe that most people who give a fair trial to both approaches
 

will feel the same way.
 

The following section lists the subroutines, gives their
 

function, their entry points, the arguments passed through each
 

entry point, and the reason for each entry point. This skeleton
 

outline is meant only to serve as a guide to Sections III and IV
 

which describe how to use these subroutines. Also see Figure 1
 

which outlines how the various subroutines communicate.
 

The remainder of this introduction gives the class of problems
 

which the subroutines can be used to solve and gives a very brief
 

sketch of the formulas which are used to effect the solution. The
 

details here need not be completely understood in order to comprehend
 

most of what follows.
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The primary problem is the initial-value problem
 

(di) = i ,. (+.1) 

z. = fi(t y ) Y(t) = 

.

whrez i )
 

where zi is the d.-th derivative of z. with respect to t, and
 

d
= (zlz, ...,z ,z2 ,...,z m ) . More generally we treat 

problems where everything in eq. (1.1) remains the same, except that
 

z. is replaced by zero for one or more values of i. For such
 

values of i, one has an algebraic equation (di=l) or an implicit
 

differential equation (di > 1).
 

To simplify the description of the formulas, we consider only a
 

single equation
 

z(d) = f t-)-(to _+ (d1 )T 
fZty) Y 0) , y =(z,z',....,z~d l (1.2)
 

Of course, the formulas we give for eq. (1.2) apply to eq. (1.1)
 

simply by applying these formulas to each equation in eq. (1.1).
 

-Let
 

z = z(th= z(to+nh)
 

(i) diz
 
n 
 =dti t=t
 

n 
( i )
 

n p~)= the predicted value of zn 
i
zW k=O
Vkz(i) zn (1.3) 

n k-i )k-1(.3 

V Z -v zn_) k > 0 
n n-1 

p n lk-lz(i)-vk-l(i) k > 0 

Pp n_ 

JPL Technical M~emorandurm 33-479 3 



The formulas which are used require backward differences 7 
z(i)
 
n
 

only for i=,, 0 A d, where the choice of A determines the
 

characteristics of the formula. The larger the value of A the more
 

accurate the formulas, but because of stability considerations values
 

of L < d, are sometimes best. If I < d, the corrector equations
 

given below require '(in general) the solution of a nonlinear system
 

of equationsform n+' ,...,zdl The Yk,j, and Pkj in the
 

formulas are constants which can be determined by requiring that the
 

formulas be exact for as high degree polynomial as possible.
 

The predictors are:
 

j-ih q-1 Vkz( 9) .
 
n+l = i! n kkj n" (1.4)
p( E r z('-J+i)+hJ qV j=12,... ,.

1-0 k=Okj
 

-
3
(v-) = h S k,j zn 0,
q-1l() Vk j-0,l,...,d-j-i (1.5)
 
n+l k=j n
 

The correctors are:
 

z(-) (i-j) + h Y, VqA(4) j=l,2,... ,t (1.6)
 

(1.7)
n+l Pn+i + h q,j n+l "=l,2,...,d-A-1 


f t ,z ,. z(d-1) hA-d q-i z(4)
(n+l' n+l "-'1n+l )=-. $k,d-_ n 
k=d-A
 

(1.8) 

+hY-d8q4q,d- vqz(A)
en+M
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If e=d formulas (1.5), (1.7), and (1.8) are not used. If e d-1,
 

formula (1.7) is not used. If A < d, Vq z(1
) in formula (1.6) is
 

)
Z).p n+lreplaced Vzn Finally if z in eq. (1.2) is replaced with
replaed byby n+i.
 

zero, then the right hand side of formula (1.8) is replaced with
 

zero. Note that in this last case one must have A < d.
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II. THE SUBROUTINES
 

A. 	The Core Integrator -- DVA
 

The core integrator has the following jobs.
 

1. Keeping track of the various ways the user can request
 

output points, and returning control to the user at these
 

points with information of interest to the user set to the
 

proper values.
 

2. 	Keeping the past history of the solution, which is stored
 

in difference tables, up to date.
 

3. Predicting the new value of the dependent variables on each
 

new step. (Formulas (1.4) and (1.5).)
 

4. 	Correcting the values of those dependent variables which
 

are not being treated as stiff equations. (Formula (1.6),
 

if )=d. If #d, all corrections are carried out in DSTF.)
 

5. 	Estimating the error with the current stepsize.
 

6. 	Estimating what the error would be if the stepsize were
 

doubled.
 

7. 	Determining if the user has requested more accuracy than
 

the precision of the computed derivatives warrants.
 

8. 	Selecting the order of integration formula to be used on
 

each equation in the system of differential equations.
 

(The order is selected independently for each equation in
 

the system.)
 

9. At the option of the user, to provide output which enables
 

one to see why the integrator is selecting the stepsize and
 

the integration orders the way it is.
 

10. 	 Selecting the stepsize. (That isdeciding when to halve
 

and when to double the mesh.)
 

11. 	 Changing the stepsize, and the difference tables to correspond
 

to the new stepsize.
 

12. 	 On user option, to select the value of 2 in formulas (1.4)
 

to (1.8) when the current value of A=d. The user must provide
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the initial value of t. (This option will only be made
 

available if we can find a simple reliable way of providing
 

it.)
 

The SUBROUTINE statement has the form
 

SUBROUTINE DV0A(NEQT,Y,F,KD,EP,IFLAG,H,HMINA,DELT,TFINAL,
 

MXSTEP,KSTEP,KEMAX,EMAX,KQ,YN,DT)
 

One calls DV$A to set up initial communication and to initialize
 

certain variables internal to DV0A. Other entries and their
 

function are given below.
 

ENTRY DVPAR
 

DV0AR is called to restart an integration, while maintaining a
 

distance of DELT between the output points that one gets with
 

IFLAG=3.
 

ENTRY DV0At(LEXLSS,L00,LHP)
 

DVVAO is called to set up certain special returns, and optional
 

output.
 

ENTRY DV0AS(KS,ASTIF,MCHANGSTIFAC,SGAM)
 

DV0AS is called by the subroutine DSTF, to set up communication
 

between DVOA and DSTF. The user who doesn't want to set up
 

code for stiff equations can call DV0AS in order to find out
 

if DVOA finds some of his equations to be stiff.
 

ENTRY DV0AV(NVE,EPSV)
 

DV0AV is called to set up DVPA to handle variational equations.
 

ENTRY DV0AH(MEMAXA, LHC) 

DVAH is called to specify a maximum stepsize, or to specify when 

the stepsize is to be halved or doubled. 

ENTRY DVOAG(IG)
 

DV0AG is called by DAGS to take care of the various disruptions
 

that occur when locating GSTOPs.
 

ENTRY DV0Al
 

DVBAl is called by the user whenever he wants to get back to the
 
integrator and simply continue with the integration.
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B. 	The Interpolator -- DAINT
 

The interpolator computes the values of the dependent variables
 

and their derivatives (up to the order of the differential
 

equation) at arbitrary values of the independent variable.
 

The 	SUBROUTINE statement has the form
 

SUBROUTINE DAINT(T,Y,F,KD,KQ,YN,DT,NEVINY,TL,H)
 

One calls DAINT to set up initial communication. This set up
 

call is made by DVOA if one is doing an integration.
 

ENTRY DAINTI
 

DAINT1 is called whenever one wants interpolated values to be
 

computed.
 

C. 	The GSTOP Locator -- DAGS
 

The GSTOP locator finds the zeros of arbitrary functions
 

j(t,4), where t and y are as defined in eq. (1.1).
 

The 	SUBROUTINE statement has the form
 

SUBROUTINE DAGS(T,Y,IFLAG,NG,NSTOP,ILTGS,G,GT) 

One 	calls DAGS to set up initial communication.
 

ENTRY DAGSl
 

DAGSl is called to check for zero crossings, and also in the
 

process of locating the zeros.
 

D. 	The CHECK Subroutine -- DCHK
 

The CHECK subroutine gives a simple way for the user to get
 

labeled output of everything in the calling sequence of DV$A.
 

"Such output is frequently useful in debugging a program.
 

The 	SUBROUTINE statement has the form
 

SUBROUTINE DCHK(NE%,T,Y,F,KfDEP, IFLAG,H,HMINA,DELT,TFINAL,
 

MXSTEP, KSTEP,KENMAX,EMAX,KQ,YN,fDT,I)
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One 	calls DCHK to set up initial communication.
 

ENTRY DCHKI
 

DCHK1 is called whenever one wants to print out the values of
 

the variables in the calling sequence of DV0A.
 

E. 	The Stiff Integrator -- DSTF
 

The stiff integrator has the following jobs.
 

1. 	Form the matrix used in the iteration for solving eqs. (1.6)

(1.8). This matrix is described in subsection IV E below.
 

2. 	Deciding when to compute the Jacobian matrix.
 

3. 	Carrying out the iterations used to solve eqs. (1.6)-(1.8).
 

4. 	At the option of the user, to provide output of internal
 

variables associated with the solution of eqs. (1.6)-(1.8).
 

5. On user option, to select the value of I used in eqs. (1.4)

(1.8), when I < d. 

6. 	Changing the difference table from one value of A to the
 

corresponding table for a different value of e.
 

7. Obtaining an estimate of what accuracy can be achieved in
 

solving eqs. (1.6)-(1.8). (This will only be done if it Is
 

necessary for job 7 in the core integrator.)
 

8. 	Determining if the user has computed the Jacobian incorrectly.
 

The 	SUBROUTINE statement has the form
 

SUBROUTINE 	 DSTF(NEQ,T,Y,F,KD,EP, IFLAG,H,HMINA,DELT,TFINAL , 

MXSTEP, KSTEP,KEMAX,EMAX,KQ,YN,DT, KS,ASTIF,JST0R, 

FPSIFPSWSIWSIW)
 

One calls DSTF to set up initial communication with DSTF and DVOA,
 

and to initialize certain internal variables in these subroutines.
 

Other entries and their function are given below.
 

ENTRY DSTFR
 

DSTFR is used to restart an integration using DSTF in exactly the
 

same way as DVVAR is used with DV0A.
 

JPL Technical Memorandum 33-479 
 9 



ENTRY DSTFP(LHFT,L01)
 

DSTFO is called to set up a special return just before the matrix
 

used in the iteration is factored, and to set up optional output.
 

ENTRY DSTFC
 

DSTFC is called when the user wants to change the values of I
 

used in eqs. (1.4)-(1.8).
 

ENTRY DSTFJ
 

DSTFJ is called if one wants to use a new Jacobian matrix in the
 

iteration to solve eqs. (1.6)-(1.8) without the Jacobian calculation
 

being requested by DSTF.
 

ENTRY DSTFV(NVE,EPSV,IREF)
 

DSTFV is called to set up DSTF to handle variational equations.
 

F. 	The Partial Derivative Generator -- DPART
 

The partial derivative generator is used to generate the Jacobian
 

matrix required by the stiff integrator. It is used when the
 

user doesn't want to (or can't) write the code for the analytic
 

partial derivatives. More work is required before specifications
 

for this subroutine can be given.
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III. USAGE
 

A. The Basic Framework
 

In this subsection we describe how to use the subroutines to
 

integrate the basic initial-value problem (1.1). We begin by
 

listing all of the parameters in the call to the integrator
 

together with how they are used. This is followed by a sample
 

FORTRAN-like program which can be used as a guide when writing
 

a program which calls the integrator. In the sample program we
 

use symbols for statement numbers. Some of these symbols are
 

referred to later in connection with other options.
 

NEQ 	 number of differential equations in the system. (Same
 

as m in eq. (1.1).)
 

T 	 independent variable. (Same as t in eq. (1.1).)
 

Y 	 vector of dependent variables. (Same as y in eq. (1.1).)
 

For a system of first order euations Y(I) is the I-th
 

dependent variable. In the case of higher order
 

equations, Y(I) is the same as the I-th component of y
 
as indicated just below eq. (1.1). Thus for the system 

F(l) = U", F(2) = V"; Y(l) = U, Y(2) = U', Y(3) = V, 

Y(4) = v'. 
F 	 vector of derivative values. (F(I) is the same as fI
 

in eq. (1.1).) The user must provide code to compute
 

F given T and Y.
 

KD 	 order of the differential equations in the system.
 

Thus for a system of first order equations, KD=1; for
 

a system of second order equations, KD=2; etc. If
 

differential equations of mixed order are to be inte

grated, KD 	must be a vector and KD(l) < 0 to inform
 

the integrator that this is the case. The order of
 

the I-th equation is then given by 1KD(I). (Thus 

IKD(I)=d I in eq. (1.1); for I > 1, KD(I) may be 

either positive or negative.) Differential equations
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with order greater than 4 can only be integrated 

by breaking them into lower order equations, or by 

changing certain DATA statements in the subroutines. 

EP bound on the estimated local error. The local error 

in integrating each differential equation is kept less 

than EP/lO unless noise appears to be limiting the 

precision. If noise appears to be limiting the 

precision then the local error estimate is permitted to 

exceed EP/lO; for further details on this, see the usage 

of EMAX and IFLAG=6. For different error bounds on 

different equations, let EP(I) < 0 for I < K, and let 

EP(K) 0. The local error control for the I-th 

equation is then based on IEP(I)I for I < K and on 

EP(K) for I Z K. For differential equations of order 

d > 1, the error estimate is for the error in the (d-l)-st 

derivative. In this case the value of EP necessary to 

maintain a given accuracy in all lower order derivatives 

depends on the scaling. For a relative error bound, see 

subsection III B below. EP = 0 is not permitted except 

when &4AXA = 0. For further details on this see 

subsection III G below. 

IFLAG parameter used for communication between the integrator 

and the user. The integrator sets IFLAG as follows: 

=1 The value of Y for the current step has been predicted. 

The user should compute F and call DVOA1. 

=2 The value of Y for the current step has been corrected. 

The user should compute F and call DV$A1. 

=3 An output point has been reached (see the usage of DELT), 

to continue the integration call DV0A1. 

=4 T=TFINAL. To continue the integration with a different 

TFINAL change TFINAL and call DVOA1. If DV0A1 is called 

without changing TFINAL, IFLAG is set equal to 8. 

=5 KSTEP ! KS0UT. (See the description of MXSTEP.) 
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=6 	EMAX > .1 and it appears that reducing H will not
 

help reduce the global error because of round-off error
 

or noise in computing F. A larger value of EP (or of
 

JEP(KEMAX)J if EP is a vector) should probably be used. 

If EP is not increased, too small a stepsize is 

liable to be used. We have found that replacing EP with 

32*EMAX*EP works reasonably well. (Note that in most
 

cases, EMAX will be only slightly larger than .1.) 

Increasing EP in this way should not degrade the accuracy; 

however, if the nature of the problem changes it may 

pay to use a smaller value of EP later in the integration. 

=7 JHJ < HMIA. This may be the result of halving H, of 

coming to the end of the starting phase with tHl < HMINA, 

or of the user increasing the value of HMINA. If 

one wishes to continue with the current value of H, 

set HMINA < H and call DV0A1. If H has just been halved 

(in which case EMAX > .1), one may continue with the 

old stepsize by simply calling DV0Al. (Such action is 

risky without a careful analysis of the situation.) If 

the stepsize has not just been halved, calling DV0A1 

will result in the integration continuing with the 

current value of H, and a return to the user with IFLAG=7 

will occur at the end of every step until IHI HMINA. 

=8 Fatal error. The value of KMAX gives the source of
 

the error as indicated below. If DV0Al is called an
 

error message which includes the value of KEMAX will be
 

printed, and the program stopped.
 

KEMAX =1 NEQ < 0. 

=2 	H=O
 

=3 	RD (or some KD(1)I) is equal to o or greater than 4. 

=4 	DELT - 0 (After IFLAG=3, Old T0UT=(Old TOUT)+DELT.) 

=5 	TFINAL was not changed after IFLAG=4.
 

=6 	EP (or some EP(I))=O.
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=7 	At the initial point the direction of integration is in
 

the direction opposite from TFINAL, and the estimated
 

error in extrapolating back to TFINAL from the initial
 

point is too large.
 

-8 During the integration, either TFINAL or DELT has been
 
specified in such a way that the next output point,
 

TMARK, satisfies (TL-TMARK)/H > 8 where TL is the last
 

value of T that the integration has reached. (Thus
 

the output point specified is one that the integration
 

process passed over 8 steps ago, assuming that H hasn't
 

changed.) If one wants to continue under such conditions,
 

set IFLAG=O, call DV0A1, and Y and F will be computed
 

at this output point and a return will be made with
 

IFLAG=3 or 4 as usual. Otherwise a call to DV0A1 results
 

in the program being stopped as indicated above.
 

=9 	DV0A1 was called immediately after a call to DV0AV or 

DV0AS. After a call to DVOAV or DV0AS, either DVOA 

or DV0AR must be called. 

=10 	NVE is specified improperly (possible only when the
 
entry for variational equations is used).
 

=lU 	DVAH 
was called with LHCO and IFLAG/9.
 

=12 After a return from DV0A, DAGS1 was called with IFLAG
 

equal to something other than 1, 2, 4, or 9.
 

=13 	DAGS1 was called after DAGS was called with NG 2 0.
 

The 	following errors are possible only with stiff equations.
 

KFMAX=14 M0D(IKS(I)I,lO).> 4 or KS(1) = -k*l0 where k is a
 

positive integer.
 

=15 	JST0R specified improperly.
 

=16 	 IFPS is too small.
 

=17 	1-WS is too small.
 

=18 	DSTF1 was called immediately after DVOA set IFLAG equal
 

to something other than 1, 2, or 10.
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=19 	DSTF1 was called immediately after a call to DSTFV.
 

After a call to DSTFV either DSTF or DSTFR must be
 

called.
 

=20 	IREF (in DSTFV entry) is specified improperly.
 

=21 	The value of KS for a variational equation does not
 

agree with the value of KS for the equation with which
 

the variational equation is associated
 

H 	 the stepsize. The initial value of H determines the
 

direction of integration. The following points should
 

be considered in selecting the initial value of H.
 

1. 	Later values of H=2 k.(initial H) where k is an
 

integer.
 

2. 	Efficiency does not depend critically on the initial
 

value of H, see for example Table 12 in [2].
 

3. 	If it does not lead to problems in computing the
 

derivatives (e.g. because of overflow or because of
 

trying to compute the square root of a negative
 

number), it is better to choose H much too large
 

than 	too small.
 

4. 	If one wants to obtain output values without the
 

integrator doing an interpolation, then one must choose
 

H and DELT such that DELT=H.2k , k a non-negative integer.
 

(In addition DELT must be an integer times a power of
 

2 since otherwise there is liable to be a problem
 
7


with round-off error. Thus DELT=2_3 , 3x2-5 , 13x2- ,
 

51xlO-9 are all satisfactory, but DELT=.l will
 

always lead to a need to perform interpolations.)
 

HMINA 	 minimum stepsize permitted after the integration is
 

started. The user cannot restrict the minimum value of
 

JHJ while the integration is getting started. After 

the integration is started, and whenever H is halved, 

IHI is compared with HMINA. If IHJ < HMINA control is 

returned to the user with IFLAG=7. 

DELT 	 output increment. Initially the integrator sets the
 

internal variable TOUT equal to the initial value of T.
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TFINAL 


MXSTEP 


KSTEP 


KEMAX 


EMAX 


Whenever T=T$UT a return is made to the user with IFLAG=3.
 

If DV0A1 is called after IFLAG=3, TOUT is replaced with
 

T+DELT. If TOUT does not fall on an integration step,
 

interpolated values for Y and F are computed on the
 

first step that (T-TUT)*H > 0 and T is set equal to TOUT.
 

If one selects an initial value of DELT such that
 

H*DELT < 0, the sign of DELT is changed by the inte

grator and the initial value of TOUT is set equal to
 

T+DELT. (Thus if H*DELT < 0 initially, one does not
 

get output at the initial point.)
 

final value of T. When T reaches TFINAL, control is
 

returned to the user with IFLAG=4. Output values at
 

TFINAL are obtained in the same way as described for
 

TOUT in the description of DELT above.
 

maximumnumber of steps. Initially the integrator sets
 

KSTEP=O and the internal variable KS0UT = JMXSTEPI.
 

KSTEP is increased by 1 at the end of each step.
 

Whenever KSTEP tKS0UT, a return to the user is made
 

with IFLAG=5. If DV0Al is called after IFLAG is set
 

equal to 5, KS0UT is replaced by KSTEP+MXSTEPI. If
 

MXSTEP < O, KSOUT is also replaced by KSTEP+IMXSTEPI
 

after IFLAG is set equal to 3 or 4. Thus if MXSTEP < 0,
 

IMXSTEPI is the maximum number of steps that can occur
 

before iFLAG = 3, 4 or 5.
 

number of integration steps taken. KSTEP is initialized
 

and incremented by the integrator.
 

index of the equation responsible for EMAX (see below).
 

KEMAX also indicates the type of error when IFLAG=8
 
(see above).
 

largest value in any equation of (estimated error)/e
 

where e = IEPI for the equation under consideration.
 

Ordinarily the stepsize is halved if EMAX > .1. However,
 

with a recent history of round-off error or noise in
 

the derivative evaluations limiting the precision, values
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of EMAX as large as 1 are permitted. If round-off 

or noise appears to be limiting the precision on the 

current step, the stepsize is not halved under any 

circumstances. 

KQ vector used to store integration orders. KQ(I) gives 

the value of q for the I-th equation. See equations 

(1.4) and (1.6) for the definition of q(g=d). 

YN vector used to store Y at the end of each integration 

step. 

DT a two dimensional array used to store the difference 

tables. DT(IJ)=VIFn(J) where VOFn(J)=Fn(J)= value 

of the J-th component of F on the n-th step, and 
Vk+ln (j)== Fn(J)-VFn (J), k=l,2,... ,KQ(J). 

The sample program is given below.
 

In the type and dimension information given below, (?) indicates
 

that the variable may be either a scalar or vector (see description
 

above), m NEQ, and n ; total order of the system.
 

,INTEGER NEQ, KD(?), IFLAG,MXSTEP,KSTEP,KEMAX,KQ(m) 

REAL 	 EP(?),HMINA,EMAX
 

DOUBLE PRECISION F(m),DT(20,m)
 

DOUBLE PRECISION T,Y(n),H,DELT,TFINAL,YN(n)
 

A0 	 Assign the values for NEQ,KD,MXSTEPEP,HMINA,DELT, and 

TFINAL. Assign initial values for T, Y, and H. (These
 

will be updated by the integrator.) Values need not be
 

assigned for IFLAG,KSTEP,KEMAX,KQ,EMAX,F,DT, and YN.
 

A 	 If certain special options are used they should be set
 

up at this point.
 

CALL DVA(8NEQT,Y,F,KD,EP,IFLAG,H,HMINA,DELTTFINAL, 

MXSTEP,KSTEP,K~tEAX,EMAX,KQ,YN,DT) 

Go To A3 
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A2 

A3 

CALL DVOAl 

Go To (11,12,...,I 8) IFLAG 

I1 CONTINUE (Special code is required here if certain 

options are used.) 

12 Compute F(I), I=1,2,...,NEQ 

Go To A2 

(F=F(T,Y)) 

13 Print results (T=TOUT=Last TOUT+DELT. See description 

of DELT.) Change DELT if desired (or STOP if IDELTI 

was set large) 

Go To A2 

14 Print results (T=TFINAL) 

STOP or Change TFINAL and 

Go To A2 

15 Print results (KSTEP 2 KS0UT See the description of 

MKSTEP.) 

Go To A2 or STOP (Depending on how you wish to use 

MXSTEP.) 

16 Increase EP as suggested under IFLAG=6 above. 

Print new EP, T, etc. 

Go To A2 

17 Print "H IS Too SMALL" 

18 

STOP 

Go To A2 (There IFLAG and KEMAX will be printed and the 

program stopped.) 

Note that the actions taken in the above program from
 

statement 13 to the end are but suggestions of what one might
 

do for the specified values of IFLAG. Many other things can
 

be done.
 

The above basic framework may be added to as indicated in
 

the options which follow.
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B. Use of a Relative Error Test
 

Users frequently desire to bound the local error by IC.E(T,Y)I
 

where e is a constant and E is some specified function of T and Y.
 

This option is obtained in the program given in subsection A above
 

with the following changes. At A0 assign a value to s instead of
 

to EP; at I set EP=G.E(T,Y) before continuing to I2; and at 16

1 2
 

increase the value of e instead of the value of EP. Either e or E
 

can be a vector in which case EP is a vector, and the values stored
 

in EP must be negative as mentioned in the description of EP
 

previously. Users frequently set E equal to the vector (IY(l)I,
 

IY(2)l,...,IY(NEQ)l) (when KD=l) in order that the local error
 

requested be relative to the solution. Unfortunately, this is
 

frequently a poor choice.
 

C. Restarting an Integration
 

Because of discontinuities, or a change in the differential
 

equations being integrated, it is sometimes best to restart the
 

integration. This of course can be done by making the appropriate
 

adjustments, calling DV0A and then going to A3. This procedure,
 

however, is liable to change the spacing one gets on the output
 

when IFLAG=3 because of the way TOUT is initialized, as explained
 

in the description of DELT. To preserve the spacing simply
 

substitute
 

CALL DV0AR
 

for the CALL DV0A(NEQ,...), and then go to A3.
 

D. Special Returns and Optional Output
 

At any place in the program one may insert
 

CALL DV0A0(LEX,LSS,L00,LH0) 

The variables LEX, LSS, L00, LH0 are all type INTEGER; and each 

refers to a special option as indicated below. Any option one
 

is not interested in will be left unchanged if the corresponding
 

variable is equal to 0. The integrator does not change the value
 

of any of these variables, and any time the user changes one of
 

them DV0AO (or DV0A or DV0AR) must be called for the change to
 

take effect.
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LEX determines whether output at TFINAL is to be obtained 

using extrapolation or interpolation. Extrapolation is 

useful if F has a singularity at TFINAL. 

>0 Obtain values with extrapolation. (If TFINAL falls on 

an integration step, the extrapolation occurs before the 

step is taken.) 

=0 No change. (The nominal internal flag is set for 

interpolation.) 

<0 Obtain values with interpolation. 

LSS is used to specify whether one wants the integrator to 

return control at the end of each step. Control is 

returned with IFLAG=9. Thus if this option is used one 

must add an 19 in statement A3, and then add a statement 

numbered 19 where one does whatever he wants to do at the 

end of each step, followed by a Go To A2 . 

>0 Return control to the user with IFLAG=9 at the end of 

every step. 

=0 No change. (The nominal internal flag is set for no 

return.) 

<0 No output. 

Loo is used to specify that the integrator is to print certain 

intermediate results on every step. This information is 

useful for debugging and in analyzing the error control 

that is used. The output to be provided is not yet 

completely specified. 

>0 Give the output. 

=0 No change. (The nominal internal flag is set for no output.) 

<0 No output. 

LH$ is used to specify whether one wants control returned 

when the stepsize is changed. Control is returned with 

IFLAG=ll just before the stepsize is halved and with 

IFLAG=12 just before the stepsize is doubled. Thus if 

this option is used one must provide for larger values of 

TFLAG in statement A3 . No special returns are 

made if the stepsize is reduced in the process of 
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taking the first step. Control is returned with the 

current value of Y contained in YN and the current
 

value of F(1) in DT(1,I). When the stepsize is halved
 

Y and F contain the values that resulted in the decision
 

to halve the step. To continue, call DV0A1.
 

>2 Control is returned just before the stepsize is changed.
 

=2 Control is returned just before the stepsize is doubled.
 

=l Control is returned just before the stepsize is halved.
 

=0 No change. (The nominal internal flag is set for no
 

return when H is changed.)
 

<0 Control is not returned when the stepsize is changed.
 

E. Variational Equations (and Others With Similar Characteristics)
 

Consider the system of differential equations (compare with
 

eq. (1.1))
 

(di ) 
zi = fi(tS) i=l,2,...,m 

-4 
(3E.1)
= 'A'YA(t0) 

(di)
 
i = i YA 

where all variables common to eq. (1.1) are defi ed the same as
4 4.4 ?dm+l.-1) 

: ( ,) where I =(z ,z+ ...z m+l Zm+2.there,d i and y a a m+l rnI-"" mntl 
Z( )T. Thus y is formed by augmenting the vector y with Y 

M+11 A a' 

the variables introduced in the bottom equation of (3E.1). If 

there are subexpressions in f,, i > m, which depend only on t 
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4
 

and y then the option described here permits one to compute
 

these subexpressions only once per step instead of the twice
 

per step that would ordinarily be required. In addition accuracy

4 

is slightly better since only corrected values of y are used in
 

computing the subexpressions. A common situation where this
 

option can save significant time is in the integration of
 

variational equations, in which case the bottom equation in (3.1)
 

has the form
 

4 4 4 4
 

Ca = A(t,'ya + b(t,y) (3E.2)
 

(dm+l ) (dm+) T
 

=
where Ca (Zm+l 'ZM+11 ) and A(t,y) is a block diagonal
 

matrix of the form
 

/ at) 0 '616 
A~t,4)Vt, Of
 

= 
 ).
, a(t,y) = . , (3E.3) 

0 o(t,y) af bf
 

m 
where yi is the i-th component of y and n = E d.. Also d. = d. 

i=l' 
=if j=i mod m. One might have for example yi+kn Yi/blk i,k = 

1,2,..,n, where T) is the initial condition for Yk" In this 
k -4 

case the first mn components of b are 0. If fi(t,y) can be

41
 

written as fi,. ) where the O's are parameters which
 

are fixed on a given integration and one wants to compute
 

6yi/ask in addition to the ayi/xnk computed as indicated above,
 

simply set Yn2+i+k
 = 
n i/M k and bmn+i+(k-l)m = Ffi/Bk
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where b is the '-th component ov b. The matrix A then has
 

m(n+j) rows and n(n+j) columns, with the block diagonal structure
 

as indicated in (3E.3). In the case of variational equations
 

this option cuts in half the number of evaluations of a(t,y) and
 
4 
b(t,y), a considerable savings in some cases.
 

This option requires the definition of two new parameters.
 

NVE is the number of additional equations. (NVE = p and
 

NEQ = m in (3.1) above. The total number of equations
 

is given by NEq+NVE.)
 

EPSV is an error tolerance for the variational equations. 

If EPSV > 0, EPSV is used for EP in all equations with 

index > NEQ. If EPSV = 0 no error estimates are computed 

for those equations with index > NEQ, and the step

size will be selected on the basis of the estimated 

errors in the first NEQ equations. If EPSV < 0, then 

IEP(I)I, (I > NEQ) will be used in the error control 

on the I-th equation where, as before, if EP(I) 0 for
 

some I, this value will be used for all larger I. (Note
 

that if EPSV > 0 and one is using a relative error
 

test as described in subsection B, then EPSV must be
 

changed in addition to EP when IFLAG=l.)
 

As implied in the above, Y is redefined now as the augmented
 

vector yA in eq. (3B.1) and F is extended to contain f.,
 

i=l,2,...,NEQ++NVE.
 

To use this option the following changes should be made in
 

the sample program given in subsection A above.
 

In the dimension information one must have m 2 NEQ+NVE, and
 

n total order of the system including the equations which have
 

been added. If one has mixed orders, the dimension of KD must
 

be : , otherwise KD can be a scalar. One should add NVE to the
 

variables specified to be of type INTEGER, and add EPSV to those
 

specified to be of type REAL.
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At A0 initial values for NVE and EPSV must be assigned.
 

At A1 (before the call to DVOA)
 

CALL DV0AV( V EPSV) 

Code from A3 to the Go To A2 just below 12 should be replaced 

with: 

A3 	 Go To (Ii12,.. .,Ii0), IFLAG
 

I1 	 C0NTINUE (Special code is required here if certain
 

options are used.)
 

V1 	 Compute F(I), I=l,2,...,NEQ
 

Go To A2
 

I 	 Compute subexpressions for extra equations. (a~t,j)

104 4

and b(t,y) in the case of variational equations.) 

I2 	 Compute F(I), I=NEQ+l, NEQ+2, ..., NEQ+NVE
 

(Note that if the F(I) computed at 12 depend only on
 

y (thus not on ya) in eq. 3E.1, then these F(I) need
 

notbe computed when IFLAG=2, since the values will be
 

the same as those obtained when IFLAG=0.)
 

IF(IFLAG-2) any, V1 , A2 (IFLAG < 2 should be impossible.)
 

If one is not using the end of step return (LSS) in subsection D,
 
simply set I9=A2
.
 

We have introduced the feature described in this section in
 

its simplest form for convenience in its description. It is
 

actually available for the more general case
 

(d. )

i
z = f t,t i=l,2 ,...,m, 

(di)
 
zi i YA) i=m+l,...m+Pl


4 

(di) 4YxPo)= 
, 

4 

x (3E.4) 
z = fi(t'YB) i--m+pl+l,. ,mrf+1l+112 '
 

(di)
 
z2 
 iTtcYi 
 JP l--m+Ml+m2+a...num+m+-2+43
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-4 .44 	 4+ 4. 4+ 
where yA= (yya) as before, . where gives the
 

4,4
the variables introduced in the third set of equations, y0
 

(4BYc), etc. To get this extended capability, NVE and EPSV
 

are used as follows.
 

VE is a vector, with
 

NVE(1) = 	 -, where v is the number of additional sets of equations, 

and NVE(l) < 0 is necessary to indicate that NVE is a 

vector. Thus if one ha5 the system given in eq. (3E.4)
(di ) o
 

down to and including z i = fi(t,yc), then v=3 and
 

NVE(l) = -3, and the total number of equations is
 

m+11+P2+uY.
 

NVE(2) 	 is used to tell the user what set of equations requires 

a derivative evaluation when liFLAG=10. If we let 0= 

m=INEQ, then when IFLAG=l0 and NVE(2)=j, F(I) is to be 
= .+. +i..., + +J...
 

+ computed for I = p0 1. j-1 0+P1+ + i 

NVE(2+k) 	is the number of equations in the k-th additional set
 

(=pk), k=l,2,... V. -The total number of equations is
 

thus given by NEQ+NVE(3)+.-.+NVE(2+9) where 9 = -NVE(l).
 

EPSV is a 	vector, with
 

EPSV(l) 	 used to flag the usage of EPSV as follows
 

> 0 e. = EPSV(2)a
 

= 0 ej = 0 (In this case EPSV can be a scalar.)
 

< 0 tj = EPSV(j+l)
 

where
 

cj > 0 	 means use ej for the error tolerance in every equation
 

of the j-th additional set.
 

Pd).
 

e. = 0 	 means do not check the error in the j-th additional set. 
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e. < 0 	 means refer to EP(I) (passed through the call to DV0A)
a
 
for the error tolerance, I=Po+.-.+Pjl+l,... O+..°+Pj.
 

(of course, if EP(I) 2 0 for some I in this range, that
 

value will be used for all larger values of I in the
 

j-th set of additional equations.)
 

Except for the obvious changes, usage is identical with that
 

given 6arlier for the case when NVE is a scalar down to the
 

statement labeled 110 (see the middle of page 24). From there on
 

one should use the following.
 

110 	 Compute subexpressions for the j-th additional set,
 

where j=NVE(2).
 

Compute derivatives for the j-th additional set.
 

Go To A2.
 

1 	 Compute F(I), for all I > NEQ. (As before, one should
 

not bother to compute those F(I) whose values have not
 

changed since they were computed when IFLAG=10.)
 

GO TO V1.
 

F. 	Direct Interpolation From Results, Present and Past
 

During an integration one can obtain values of Y and F at
 

any time for any value of T by simply setting T to the desired
 

value and then executing
 

CALL DAINTI
 

However, 	if one uses this option when IFLAG is not equal to 3,
 

4, 5,6, or 9, then the values of T, Y and F must be saved and
 

restored if one intends to continue the integration. Note also
 

that one can expect reasonable accuracy in the interpolation
 

only if
 

6qmin 	 (T-TL)/H J 1 Tci a (3F.1) 
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where TL is the value of T at which the difference tables DT were 

computed, H is the stepsize, and qmin= mintKQ(I)]. 

To save the solution for retrieval at a later time the
 

following changes should be made in the sample program of sub

section A.
 

Just below A0 set an integer variable KSTORE = -1, at A1 insert
 

CALL DV0A0(LBEX,LSS,L00,LH0)
 

where LSS > 0, LE=l (or is 3) and subject to these constraints
 

one has set the parameters passed in this call to appropriate
 

values depending on what one wants. (See subsection III D.)
 

At A3 add (at least) I9, Ilo and Ill to the computed Go To.
, 


(If there are no variational equations, set 10=A2.) At 19 the
 

following code should be inserted.
 

19 	 Do any other thing you may want to do when IFLAG=9.
 

KQMIN=100
 

Do S1 I=l,NEQ (Or NEQ+NVE if variational equations are
 

present.)
 

S1 	 KQMIN=MfNO(KQMIN, KQ(I)) 

IF (KSTEP.LT.(KSTORE+KQMIN)) Go To A2 

I 	 Store T,H,YN,KQ,DT (on tape, disc, or drum) 

KSTARE=KSTEP 

Make special test for IFLAG=ll and transfer if you want 

to distinguish between IFLAG=ll and IFLAG=9. 

Go To A2 

To retrieve the solution at a later time, one first assigns
 

values to TLH,YN,KQ, and DT, from the values stored earlier,
 

where TL is one of the stored values of T, and the remaining
 

variables were stored at the same time as TL. The value of TL
 

retrieved should satisfy (3F.1), where T is the value of the
 

independent variable where values of Y add F are desired. In
 

addition to variables already defined, one must assign values to:
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NET 	 which is the total number of equations (=NEQ if there are
 

no variational equations), and
 

NY which is the total number of components in Y (=the total
 

order of the system)
 

Before the first interpolation, one makes the set-up call
 

CALL DAINT(T,Y,F,KD,KQ,YN,DT,NEV,NY,TL,H)
 

(All of these variables have been defined above.) Then to obtain
 

Y and F given T
 

CALL DAINT1
 

remembering that TL,H,YN,KQ, and DT are equal to previously stored
 

values, and are selected as a function of T.
 

One may not use DAINT in this way at the same time as an
 

integration using DV0A is being performed. One may of course,
 

get such a capability by using another interpolation program
 

identical to DAINT, except with the names DAINT and DAINT1 changed
 

to something else. (One may also have to change the names of
 

other variables to avoid conflict with those used in the integration.)
 

Of course, if one is only interested in interpolating for
 

the variables associated with some of the equations, one need
 

store only the corresponding values of YN,KQ, and DT. The
 

obvious changes in KD,NEV, and NY should then be made when
 

retrieving the information.
 

G. 	Getting More Direct Control Over the Integration
 

The options described here give the user several levels of
 

more direct control. One can merely specify that the stepsize is
 

not to exceed a certain maximum value, or one can force the
 

integrator to halve or double the stepsize at specified times,
 

or one can specify the integration orders to be
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used in addition to specifying the stepsize. These options are
 

provided for those masochistic users who like to have enough
 

rope to hang themselves.
 

The following two parameters are used.
 

HMAXA determines an internal variable, HMAX, so that doubling 

H is not permitted if doing so would result in an H 

which satisfies IHI > HMAXA. (Normally HMAX is so large 

that it never limits the stepsize.) HM4AXA is type REAL. 

LHC determines the action to be taken as follows. LHC is 

type INTEGER. 

=0 

=-l 

Assigns the internal variable HMAX as specified by 

HMAXA. 

Same as LHC=0, except in addition the stepsize is halved. 

=-2 Same as LHC=O, except in addition the stepsize is doubled. 

=1 	 The stepsize is halved, and HMAX is set so that H will 

not be doubled unless the user so requests. (HMAXA is 

ignored.) 

2 	 The stepsize is doubled and HMAX is set so that H will
 

not be doubled again unless the user so requests.
 

(HMAXA is ignored.)
 

One gets the desiredtaction by means of the statement
 

CALL DV0AH(HMAXA, LHC) 

This call can be made at any time if LHC=O. Otherwise it can
 

only be made after FLAG has been set equal to 9. Thus one must
 

make use of the LSS option of subsection III D. If LHC0, one
 

should call DV0AH only after everything else that one might want
 

to do when IFLAG=9 has been done, and the call to DV$AH should 

be followed by a Go To A in the sample program of subsection A. 

If LHC=O, one should simply continue as usual after the call to 

DV0AH, If DV0AH is called with LEC/, and IFLAG was not previously 

set to 	9, then after the return from the call to DV$AH, IFLAG will
 

equal 	8, a fatal error condition. In using the above options, one 

can insure that the stepsize will not be halved by setting EP
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(or EP(l)) to a ridiculously large positive value, or by setting
 

HMINA to an appropriate value whenever the stepsize is changed.
 

One can eliminate any error estimation, stepsize control, or
 

integration order selection on the part of the integrator by
 

calling DVAH with HMAXA=O, and LHC 0. After this call, which
 

sets the internal variable HMAX=O, if one sets EP (or EP(l))=O
 

one has complete control over the integration, and no changes will
 

be made in KQ or H unless the user makes them. (The reason HMAX
 

must be set to zero, is to protect those users who set EP=O by
 

accident.) If this option is used, one should not change KQ(I)
 

by more than fl on any step. One should not use this option when
 

the integration is being started.
 

Anytime the user takes over the control of H, we suggest that
 

he get the output provided with L0o of subsection III D on a
 

sample problem, as a partial check on the validity of what he is
 

doing.
 

H. Locating Zeros of Arbitrary Functions (GSTOPs)
 

A GSTOP is an indication to the user that a specified function,
 

G(J), of the variables T and Y has a zero. The option described
 

here-is used to locate GSTOPs. Applications include the location
 

of special output points, and the detection of singularities in
 

F which must be found before an attempt to compute F is made.
 

Five new parameters are required for this option.
 

NG 	 is the number of functions G(J) to be checked for
 

zeros. If DAGS1 is called with NG 0, this is considered
 

a fatal error, and IFLAG is set equal to 8.
 

KST0P 	 indicates the index of the function G with the zero
 

when a GSTOP is found. Thus G(NST0P) 0.
 

LTGS 	 is a vector which indicates how the GSTOP is to be
 

located.
 

LTGS(J)=O means do not test for a zero in G(J). When equal to
 

zero, LTGS(J) can be changed at any time, and LTGS(J)
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can be set equal to zero at any time.
 

>0 means locate the zero using interpolation.
 

<0 means locate the zero using extrapolation. (Note that
 

interpolation requires only half as many evaluations
 

of G(J) as extrapolation, and gives much better control
 

on the error. Thus LTGS(J) < 0 should only be used if
 

extrapolation is a necessity.)
 

G 	 is -a vector of the functions whose zeros are to be
 

located. The user supplies the code to compute G given
 

T and Y.
 

GT 	 is a vector used for temporary storage of past values
 

of G.
 

To use this option, the following changes should be made in
 

the sample program of subsection III A.
 

One should add the following to the type and dimension infor

mation, where k NG, and everything can be scalar if NG=l.
 

INTEGER NGNST0P,LTGS(k)
 

DOUBLE PRECISION G(k),GT(k)
 

At A-the 	values of NG and LTGS should be assigned.

0
 

At A1 if one wants to test for GSTOPs from the beginning, or at
 

any other place if one wants to start testing for GSTOPs at a
 

later time, insert
 

CALL DAGS(T,Y,IFLAG,NG,NST0P,LTGS,G,GT)
 

This call serves to set up communication. It should only be made
 

again if the value of NG is changed.
 

The statement at A3 is replaced with (The Gi are defined
 

below.)
 

A3 	 Go T (X1 ,X2 ,1 3 , 14 ,I 5 ,16 ,I 7 ,1 8 ,X3 ), IFLAG 

where X 2=X2=G if LTGS(J) < O for any J, 

and X1 =I1, X2=12 if LTGS(J) Z 0 for all J; and 

JPL Technical Memorandum 33-479 31 



X3=G1 if LTGS(J) > 0 for any J, and otherwise X need
 
only be included in the list of statement numbers at
 

A if DV0A0 (see subsection III D) is called with LSS >
3 
0, in which case X3=I9. (Note that one must not call 

DV0A0 with LSS < 0 if LTGS(J) > 0 for some J. Also, 

if one has called DV0A0 with LEX > 0, then one should 

replace the 14 in statement A3 above, with G2.) 

Between statements labeled A3 and I insert the following. 

(It is understood that if LTGS(J) ! 0 for all J, then the statement 

at G1 can be anything and similarly if LTGS a 0 for all J, the 

statement at G4 can be anything.) 

G1 	 Compute G(J) for all J which have LTGS(J) > 0
 

G2 	 CALL DAGS1
 

G3 	 G' T2 (II,1, 4 ,Gs,1 FLAG3,4,G0G 8 ,1 9 ,G6 ), 

G4 	 Compute G(J) for all J which have LTGS(J) < O
 
o2Go To G2


19 Do anything special you want to do at the end of each step. 

Go To A2 

G5 	 The GSTOP has been found, G(NSTOP) O. Output results
 

and/or whatever else you want to do. If one wants to
 

change the definition of G at this time, one can do so
 

by storing the values obtained with the new definition
 

into the appropriate locations of GT. This is the only
 

time the contents of GT should be altered.
 

Go To A2 or STOP or go someplace to restart the integration,
 

etc.
 

GI	 G(NSTOP) changes sign, but DAGS could not get good
6 


convergence when iterating for the zero. This probably
 

is due to a bug.
 

Print message indicating problem and
 

STOP or Go To 5 
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I. Extra Output for Checking Out a Program
 

When checking out a program it is frequently useful to see
 

the values of all the variables involved in the integration. To
 

set up the subroutine which provides labeled output of the inte

gration variables, simply
 

CALL DCHK(NEQ,T,Y,F,KD,EP, IFLAG,H,HMINA,DELT,TFINAL,MXSTEP, 

KSTEP,KEMAX,EMAX,KQ,YN,DT, 0) 

where all variables are the same as those in the call to DV0A,
 

except for the additional variable I0 which is an INTEGER
 

variable with usage as follows.
 

I0 	 =1 Print everything in the.calling sequence 

=0 Do not print anything 

=-l Print everything in the calling sequence except DT 

If II1 > 1, then I0 is treated as a vector with dimension at 

least as large as NEQ, and is used as follows. 

Io(l)Q -printall information associated with the first equation 

I0(l)=-2 same as I0(1)22, except DT(K,1), k=l,2,... is not 

printed 

10(I) -3 do not print variables associated with the first equation. 

for I > 1 when 1I1(1)I > 1, 

IO(I)>O print all information associated with the I-th equation 

I(1)=0 do not print variables associated with the I-th equation 

l (I)<0 same as 10(1) > 0, except DT(KI), K=1,2,..., is not 

printed
 

If one has variational equations and wants output for these
 

also, then NTE should be substituted for NEQ in the call, where
 

NTE is the total number of equations, and if I0 is a vector it
 

should have dimension at least as large as NTE.
 

The output is obtained at any time by the simple statement
 

CAL DCHK1 

In most cases when this featu'e is used, one will also want
 

to get the output available through the entry DVOAO described in
 

subsection III D.
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J. Differential Equations With Side Conditions
 

In some applications, one is interested in solving eq. (1.1)
 

with a side condition of the form
 

O (3J.1)
 

where the true solution of eq. (1.1) satisfies (3J.l), and the
 

vector cphas dimension < the dimension of y. The side condition
 

(3J.1) is imposed to insure that the numerical solution of eq. (i.i)
 

does not drift too far away from satisfying (3J.l). Such

problems can be solved using the capability described in subsection
 

III E above. Set NVE(l) = -1, and NVE(3) = 0, where the 0 indicates
 

that there are no extra equations to be introduced and that the
 

user would like a special return with IFIAG=l0 at the time a
 

return would ordinarily be made if extra equations were being
 

introduced.
 

4 
When IFLAG=I0, the user is free to modify y as he wishes in
 

order to satisfy (3J.l). In many cases a good solution to (3J.l)
 
4 4 4 4 .4 

will be obtained by setting y = yc+6y, where y is the value of y 

returned by the integrator when IFLAG=I0, y is the vector of 

minimum length which satisfies
 

= -(t,Yc) (3J.2) 

and ( T/6y) is the Jacobian matrix of cpwith respect to y.
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IV. USAGE IN THE CASE OF STIFF EQUATIONS
 

In this section the stiff integrator is described following a
 

format similar to that in Section III. To simplify the exposition we
 

introduce
 

u = 	 components of z in eq. (1.1) for which Jtd in eqs. (1.4)-(1.8) 

v = components of z in eq. (1.1) for which Z=d, but which may have 

A < d at some time in computation. 

4 (4.1)
w = 	components of z in eq. (1.1) for which I < d
 

x = 	 components of z in eq. (1.1) for which it is possible to have 

I < d at some time in the computation. 

4 4 	 -44 -*' 
The 	corresponding components of y and f are denoted by yuYy YwIYx'
' 


fu',fv,fw, and fx In all cases the variables which make up the
 

individual components of these vectors are in the same order as they
 

are in z, y, and f, respectively. In the usage below, the computations
 
4+ 4
 

of f and 	f are placed together, since this simplifies the logic for
 
V W -4 

the user. Better re
-4 

sults would be obt
4 

ained by only computing f at 

these places, and computing f at those places f is computed. It is
 4 V 4 U
 
also permitted to compute f where f and f are computed and to
 

+ U V W
 

skip the computation of f at the places where the evaluation of f
U 	 u 
is indicated; although, of course, one will not get as good results
 

doing this.
 

A. 	The Basic Framework
 

The stiff integrator requires all of the parameters listed in
 

Subsection III A together with those listed below. Usage of the
 

parameters given in III A is the same as indicated there, except
 

for certain additions noted below.
 

IFLAG 	 After DV$Al is called, usage is the same as in III A
 

except when IFLAG=l or 2 in which case one proceeds as
 

follows.
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4 4
 

=1 	Y has been predicted. Compute fv and fw (see eq. (4.1)),
 

and then call DSTF1.
 
4 

=2 	Y has been corrected. Compute f and f and call DSTF1.

V w 

After DSTF1 is called, IFLAG indicates what is to be done, as
 

follows
 
4 

=l The first correction of yw has been made. Compute fu
 
and call DVOA1.
 

=2 Th o w ha en md . C m uf
ecnd crrct o 
 4
=2 The second correction of y has been made. Computef
and call nv0Al.
 

and call DV0Al.
 

=3 An extra correction of Yw is required. Compute f and
 
4 	 v 

f and call DSTF1.
 
w 

=4 	Compute partial derivatives, FPS = 6fw/Yw, and call
 

DSTF1.
 

-5 	A change in the value of e, see eqs. (1.4)-(1.8), is
 

planned. The user may, if he wishes, override any of
 

these changes, or he can introduce additional changes
 

in A. (In many cases, when a change in I is indicated,
 

the user may want to insure that the value of t is
 

-hanged for all equations of a certain class.) The
 

.jrocedure for the user to indicate what he wants here
 

has not yet been completely specified. Finally call
 

DSTF1.
 

=6 	IFLAG=6 will only occur if JST0R=O (see subsection IV E
 

below), or this type of return is requested through the
 

entry DSTF0, (see subsection IV C below). The matrix
 

used in the iterative solution of eqs. (1.6)-(1.8) is
 

to be changed when IFLAG-6. (This matrix is always
 

changed after IFLAG=4, but no return with IFLAG=6 is made
 

in this case, since whatever the user wants to do when
 

IFLAG=6, he can do after computing the Jacobian matrix
 

when IFLAG=4.) If JST0R=O, the user may want to do some
 

sort of set-up whenever this matrix is changed. Reasons
 

for wanting this return when JST0R#O are considered in
 

subsection IV C below.
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=7 Possible only when JSTR=O. The matrix formed when 

IFLAG=4 or 6 is to be used to get a correction to 4W 

given the residuals in eq. (1.8). (More on this in 

subsection IV E below.) Then call DSTF1. 

=8 Fatal error. The value of KEMAX gives the source of 

the error as indicated in subsection III A. If either 

DV0A1 or DSTF1 is called, an error message which in

cludes the value of KEMAX is printed, and the program 

stopped. 

=9 It appears that the Jacobian matrix is being computed 

incorrectly. To continue: CALL DSTF1. (We recommend 

a careful look at the Jacobian matrix before proceeding.) 

KQ is used as in Subsection III A when J=d in eqs. (1.4)

(1.8). When A < d, KQ is less than zero, the value of 

q for the I-th equation is given by M0D(-KQ(I),lO0), and 

the value of d-) for the I-th equation is given by 

i-(KQ(I)/100). 

KS vector used to indicate whether the I-th equation is 

implicit, and to indicate the value of A in eqs. (1.4)
(1.8). 

KS(I)<O 	 means the I-th equation is implicit, otherwise the lPth
 

equation is explicit.
 

IKS(I)l0<O means the initial value of KS(I) is never to be changed. 

MOD(IKS(I)I,10) gives the value of d-t for the l-th equation. 

(Note that one must have d- 4, and if KS(i) < 0, 

then I < d. If the initial value of KS(I) does 

not satisfy these conditions, IFLAG is set =8.) 

Thus,for example, 

KS(i) =0 the I-th equation is never stiff (i.e. A=d). 

=l on the I-th equation jad-l and is not to be changed. 

=10 when starting, the I-th equation is not stiff (1zd), but 

this can change as the integration proceeds. This is 

frequently the best value of KS(I) when starting an 

integration. 
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=-l the I-th equation is implicit, g=d-1 and is not to be
 

changed.
 

The initial value of KS(I) should satisfy IKS(I) I < 20. When 

IKS(I)l 10, the value of 1KS(I) is incremented by multiples 

of 	10 in the process of selecting a new value for Y.
 

ASTIF 	 is a logical variable which indicates if any equation
 

is stiff (t < d)
 

= .TRUE. A < d in some equation 

= .FALSE. I = d in all equations 

The 	user need not set (and shouldn't change) the value
 

of 	ASTIF.
 

JST0R 	 is an integer used to indicate how the Jacobian matrix
 

is to be stored in FPS.
 

=0 	FPS can be anything, since it isn't used by DSTF.
 

Special returns to the user are made whenever information
 

about the Jacobian would ordinarily be required. See
 

subsection IV E below.
 

=l 	FPS(I,J) contains f(I)/?ky(J), where f(I) = f, and 

v(J)=yj 

=2 	FPS(IJ) contains )fx(I)/)yx(J), where fx(I) is the I-th
 

component of fx and yx(J) is the J-th component of yx;
 

see eq. (4.1). JST0R=2 is frequently best when some of
 

the KS(I)=O, and the Jacobian is computed analytically.
 

!3 	FPS(I,J) contains fw(I)/yw(J); see eq. (4.1).
 

JST0R 3 is especially useful when one does not know
 

which equations are going to be stiff and the Jacobian
 

matrix is computed numerically.
 

<0 	indicates that the Jacobian matrix is a band matrix,
 

JST$R is a vector of dimension 3; where JST$R(l)
 

indicates the way partials are stored in FPS, JST0R(2)
 

gives the number of elements to the left of the main
 

diagonal (defined below) and JSTOR(3) gives the number
 

of 	elements to the right of the main diagonal.
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The main diagonal of the Jacobian matrix consists of
 

partials of the form:
 

A A 	 A 
f(I)/ky(I), I such that y(I)Ez(I), if IJST0R(1)I=l,
 

A A 
fx(I/ ), I such that yx(I)-(I), if IJST0R(1)!=2, 

A A 	 A 
?wf(I)/ y(I), I such that y(I)--w(I), if IJSTOR(1)123.
 

A 

In the case of first order equations I-I. In the des

=
cription below we use the abbreviated notation, JL 

JSTOR(2), JR = JSTOR(3), JB = JL + JR + 1 (= the band 

width), and n, n', n are the number of components in 

y' Yx' Yw" One must have JST0R(2) and JSTR(3) 2 0, 

and JSTOR(2) + JSTR(3) < n, nx, or nw depending on the 

value of JST0R(1).
 

JSTOR(1)=-1 	FPS(I,J) contains 7f(I)/ y(K), where
 

A 
J if T -JL J=1,2,.. JB
 

A 	 A 
K = J+I-JL-l if J <In:-JR J=1,2,..., JB 

A 
J+n-JB if I>n-JR J=l,2,... pJBI 

A
where I is defined as above. Equivalently, one can
 

say that f(I)/,y(K) is contained in FPS(I,J), where
 

A

K if IIJL K=l,2, ... 'JB' 

A 	 A A A 
J K-I+JL+I if JL<I5n-JR K=I-JL,... I+J RA 

K+JB-n if I>n-J R K=n-JB+I ... ,n. 

JST0R(1)=-2 	Same as JST$R(l)=-l, except f, y, and n are replaced 
with fx, YX, and nx . 

JST$R(1) -3 	Same as JST$R(1)=-l, except f, y, and n are replaced
 

with fw YW, 	and nw .
 

Note that the above formulas do permit more than JR
 
AR
 

elements to the right of the main diagonal when IJ L
 

and more than JL elements to the left of it when
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FPS 


IFPS 

WS 


NWS 


IW 


is a two dimensional array used to store partial deriva

tives. See usage of JSTOR above, for the way that
 

derivatives are stored in FPS.
 

gives the maximum number of rows in FPS, i.e. FPS is
 

dimensioned FPS(IFPS,?). IFPS must be at least as large
 

as the number of components in f, fx,, or fw depending
 

on the value of JST0R. The number of columns in FPS must be
 

the number of components in y, yx,, or yw when JST0R = 

1, 2, or 3, and > JB = JST0R(2)+JST0R(3)+l when JST0R(l) < 

0. When JST0R = 0, FPS and hence IFPS can be anything. 

is a vector of dimension IWS (see below) used for
 

working storage. See subsection IV E for information on
 

what is stored in WS.
 

is the dimension declared for WS. One must have INS
 

n +k., where k.--m if JST0R=O, k.=m *(m +3) if JSTOR > 0, 
w jw >,w w
 

and kj=2*mw*(J2+J3+2) if JSTR() < 0; nw = the largest
 

dimension assumed by yw; m = the largest dimension
 
w4 


assumed by fw; J2 = JST0R(2), J3 = JST0R(3) if KD=l, and 

with higher order differential equations J2 and J3 give
 

the number of equations associated with variables to
 

the left and right of the main diagonal. The precise
 

definitions of J2 and J3 are somewhat complicated by the
 

fact that, as in the last sentence in the usage of
 

JST0R, more than J3 variables are permitted to the right 

of the main diagonal when I is close to 1 and more than
 

J2 are permitted to the left of the main diagonal when
 

I is close to mw . Thus, J3 = the maximum value of K (for 

any I) for which Zf (I)/w(I+K+maxfOJ 2 -I+l3) is contained
 

in FPS and J2 = the maximum of K for which
 

Bfw()/ w(d-1)(I-K-max(O,J-nw+I)) is contained in FPS, 
where d is the order of the differential equation associated 

with w(I-K-max [O,J 3 -nw+I]). 

A vector or working storage with dimension > 2*mw, where
 

mw = the largest dimension assumed by fw IW is not
 

used and thus can be anything if JST0R=O. 
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The sample program for use of the stiff integrator is given
 

below.
 

In the type and dimension information given below, (?) indicate 

that the dimension depends on how the parameter is used (see just 

above for parameters which are used only for stiff equations and 

subsection III A for the other parameters), m NEQ, and n ! total 

order of the system. 

INTEGER NEQ, KD(?),fIFLAGXSTEP,KSTEP,KEMAX,KQ(m),KS(m), 

I ~ JST0RC?),FPS,IWS,IW(?) 

LOGICAL ASTrF 

REAL EP(? ),HMINA,EMAX 
DOUBLE PRECISIgN F(m),DT(20,m),FPS(IFPS,?),WS(IWS) 

DOUBLE PRECISION T,Y(n),H,DELT,TFINAL,YN(n) 

A0 	 Assign the values for NEQ,KD,MXSTEP,KS,JST0R,IFPS,IlS, 

EP,HMINA,DELT, and TFINAL 

Assign initial values for T,Y, and H (These will be 

updated by the integrator. Also, depending on the 

initial values in KS, KS may be changed.) 

Values need not be assigned for IFLAG,KSTEP,KEMAX,KQ, 

IW,ASTIF,EMAX,F,DTFPS,WS,YN 

A 	 If certain special options are used, they should be
 

set up at this point.
 

CALL DSTF(NEQ,T,Y,F,KD,EP,IFLAG,H,HMINA,DELT,TFINAL, 

MXSTEPKSTEP,KEMAXEMAXKQ,YN,DT,KS,ASTIF,JSTR,FPS, 

IFPS,WS, IWS, IW) 

Go To A3 

A2 CALL DV0AI 

*A Go To (1,,,2,>...,I 8),IFT.AG3 


1I1 	 CONTINUE (Special code is required here if certain
 

options are used.)
 

4+ 4 
12 	 Compute the fv and f parts of F (see eq. (4.1))
 

IF (.N0T.ASTIF) Go To S2 (This statement is optional.)
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http:8),IFT.AG


S CALL DSTF1 
0 Go To (S1,$25,25$4,$5,$6,$7),88,9) IFLAG
 

S1 	 CONTINUE 
4 

S2 Compute the fu part of F (see eq. (4.1)) 
Go To A2 

S4 	 Compute partial derivatives, FPS (Only fwlYw is required,
 
but one is permitted to compute more; for example,
 

Go To s0 

S5 	 The integrator is planning to change A, see eqs. (1.4)

(1.8). At this point the user can do nothing, or
 

specify other changes in A, or override the changes
 

planned by the integrator. For instructions, see usage
 

for IFLAG=5 above.
 

Go S0
 

If JSTOR=O, see subsection IV E below for what to do.
S6 

If DV0A$ WAS CALLED WITH LMF > 0 (see subsection !VC
 

below), do whatever you wish. If neither of these
 

options is used, then a return with IFLAG=6 should not 

occur. 

S7 	 If JST9R=O, see subsection IV E below for what to do.
 

If JST0R/O, then a return with IFLAG=7 should not occur. 

S9 	 Print an error message indicating that Jacobian is not
 

being computed correctly, and
 

STOP or 0 o ST
 

13 

Same as in subsection III A.
 

18
 

END
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B. Miscellaneous Features Used As in Section III
 

The relative error test can be used exactly as described in
 

III B.
 

To restart an integration, everything in III C applies, except
 

that DSTF is substituted for DV0A, and DSTFR is substituted for
 

DV0AR.
 

The special returns and optional output are available
 

exactly as described in III D.
 

Tae direct interpolation works as described in III F. Note
 

that anytime it is permitted to CALL DSTF1 and anytime a return
 

is made from DSTF1, if DAINT1 is called, then T, Y, and F must be
 

saved and then restored if one intends to continue the integration.
 

One change is required when storing information for later
 

retrieval due to the fact that KQ(I) may be < 0. In statement
 

labeled S1 on page 27 substitute the following for KQ(I): if
 

I2t d-l on all equations, substitute ABS(KQ(I)); if I may be
 

< d-l, then substitute ABS(MOD(KQ(I)),lO0)).
 

One gets more direct control over the integration exactly
 

as described in III G.
 

The GSTOP feature is inserted into the sample program which
 

uses DSTF, exactly as is described in III H.
 

The extra output described in III I is available exactly as
 

described there.
 

Differential equations with side conditions are treated much
 

as described in III J, except that one uses the variational
 

equation entry described in IV D below, and y is modified when
 

IFLAG=IO after the call to DSTF1. If this is done, one should
 

compute f at the same time as f instead of with f, if it is 

possible to do so.
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C. Optional Output and Special Returns for Stiff Equations
 

At any place in the program one may insert
 

CALL DSTFO(LMF,L0I)
 

The variables LMF and 1,01 are both type INTEGER, and both refer
 

to special options as described below. If the user changes one
 

of these parameters, DSTFO must be called for the change to take
 

effect.
 

UFf determines if a special return is made with IFLAG=6 

whenever the matrix used in the iteration to solve eqs. 

(1.6)-(1.8) isgoing to be factored. (This return is 

not made if the factorization follows immediately after 

a Jacobian evaluation.) This return enables one to 

keep track of the number of matrix factorizations, gives 

one a chance to compute the Jacobian before every 

factorization (a good idea if the Jacobian is extremely 

simple to compute) and makes it possible to use the 

same storage for FPS and WS, see the last paragraph in 

subsection IV E below. 

>0 Return with IFLAG=6 when the matrix is to be factored 

without an immediately preceding Jacobian evaluation. 

=0 No change. (The nominal internal flag is set for no 

return.) 

<0 No return with IFLAG=6 when the matrix is to be factored. 

LOI is used to specify that results connected with the 

iteration to solve eq. (1.6)-(1.8) are to be printed. 

This information is sometimes useful when debugging a 

program. The output to be provided is not yet com

pletely specified. 

>0 Give the output. (The size of LOI may determine the 

amount of output.) 

=0 No change (The nominal internal flag is set for no 

output.) 

<0 No output. 
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D. Variational Equations (and Other With Similar Characteristics)
 

As in subsection III E, it is convenient to consider the case
 

of one additional set of differential equations first. When there
 

are stiff equations it is desirable to have the user label whether
 

this additional set of equations is a system of variational equations
 

as in eq. (3E.2) or is some more general case as permitted by eq.
 

(3E.1). In the former case, the same Jacobian matrix is used for
 

the variational equations as for the original set of equations,
 

while in the latter case the Jacobian matrix af /8y must be stored,
 
=+ a a
 

where Ya is defined as in eq. (3E.1) and f£ 
 (f m+QT
 
The parameters NVE and EPSV are defined as in subsection III E.
 

In addition, the following parameter is required.
 

IREF is used to indicate whether another Jacobian is required.
 

=1 The extra equations are variational equations and thus
 

a new Jacobian is not required. In this case one must
 

have NVE = i*NEQ where i is a positive integer. Also,
 

one should start with KS(I+j*NEQ) = KS(r), I=I,2,...,NEQ,
 

j=l,2,...,NVE/NEQ. This is to insure that the same
 

value of 2, see eqs. (1.4)-(1.8), will be used on all
 

equations which utilize the same row of the Jacobian
 

matrix. The integrator will not change the value of
 

used on a given equation without changing the value of
 

I for all associated variational equations, and vice
 

versa. The user who initiates changes in A, should do
 

the same.
 

=0 None of the additional equations are permitted to be
 

stiff (i.e. have A < d).
 

<0 The extra equations are not variational equations, and
 

-IREF gives the index in FPS where the first element of
 

the Jacobian matrix for the additional equations is
 

stored. Thus, for example, if one is using m rows and
 

n columns of FPS for the Jacobian matrix of the first set
 

of equations and wants to store the Jacobian matrix for
 

the extra set of equations in the next available locations,
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then IREF = -(mn+l). In addition to the extra storage
 

required in FPS when IREF < 0, one must also provide
 

extra storage in JST0R and IFPS, both of which are now 

vectors, and in WS and IW. Let J1 be the last location 

of JST0R used for the first set of equations. Thus if 

JSTOR(l) 0, jl=l, and if JST$R(l) < 0, jl=3. Then the 

value of JST0R(jl+l) indicates the way that information 

is stored for the extra set of equations in exactly the
 

same way that JSTR(l) indicates the way information is
 

stored for the first set of equations. Of course, if
 

JST0R(jl+l) < 0, then JST0R(j1+2) and JSTOR(JI+3) are
 

used just as JST0R(2) and JST0R(3) are used when
 

JST0R(l) < 0. IFPS(2) gives the maximum number of rows
 

in the Jacobian matrix for the extra equations in exactly
 

the same way that IFPS(l) gives the maximum number of
 

rows for the Jacobian matrix of the first set of equations.
 

Thus the partial derivatives in the first row of the
 

Jacobian for the extra set of equations are stored in
 

FPS(-IREF), FPS(-IREF+IFPS(2)), FPS(-nBE+2*IFPS(2)),
 

To indicate the extra storage required in WS and 

-W,let 
A m = the largest number of equations in the 

added set which may be stiff at a given time, and n= w
 
-the largest number if dependent variables (from a) which
 

may correspond with a stiff equation. The extra storage
 
A A


required is just what one might expect: for WS, n +k.
 
A =A A A *A i

where k =m if JSTOR(j1 +1) =w 0, k. = in*tm.W+ ifA 


JST0R(j1+I)>O, and kj=2w*iV*(J2+J3+2) if JST0R(jl+l)<O,
 

where J2 and J3 are defined as in the usage of IWS in
 

subsection IV A except with JSTR(j1 +2) and JST0R(jl+3)
 

substituted for JST0R(2) and JST0R(3); and for lW,
 

24. 
w
 

Of course, the vectors Y and F are defined as in III E. To
 

use this option the following changes should be made in the sample
 

program given in subsection IV A. (changes are similar to those
 

given in subsection III E.)
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In the dimension information one must have m NEQ+NVE, and
 

n k the total order of the system including the equations which 

have been added. With mixed orders KD must have dimension _ m, 

otherwise KD can be a scalar. One should add NVE and IREF to the 

variables specified to be of type INTEGER, and EPSV to those
 

specified to be of type REAL.
 

At A0 initial values for NVE, EPSV, and IREF must be assigned
 

At A1 (before the call to DSTF)
 

CALL DSTFV(NVE,EPSV,IREF)
 

Code from 	A3 to the Go To A2 just below S2 should be replaced
 

with 

A3 	 Go To (11,12,...,Il0), IFLAG 

I1I 	 CONTINUE (Special code is required here if certain
 

options are used.)

4 

110 	 Compute the fv and ?w parts of F(I), for 1 I NEQ
 

S 	 CALL DSTF1 

GoTo (SS2,10,S4SsS6,S7,18,S9,SloSll), TFLAG 

S1 	 CONTINUE
 

Compute the f part of F(I), for 1 ! I NEQ
 
u 

Go ToAA
 

S10 	 Compute subexpressions which depend only on y, see eq.
 
(3E.l) (a(t,y) and b(t,y) in the case of variational
 

equations)
 

12 Compute 4fv and 
-4
f parts of F(I), I > NEQ 

Go To0S
 

Sll 	 CONTINUE
 

S2 	 Compute 
-4 
f part of F(I), I > NEQ 

If (IFLAG-2) any, S1, A2 
Note that if F(I) depends only on y (thus not on yafor I> NEQ, 

then none of the equations should be treated as stiff (so have
 

KS(I)=O for I > NEQ and IREF=0), and the calculation of the f part

U 

of F(I) at S2can be skipped when IFLAG=2.
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If one is not using the end of step return (LSS) in subsection
 

D, simply set I9=-A2 ' 

The more general case in eq. (3E.4) requires that IREF be a
 

vector, and that NVE and EPSV be defined as they are just below
 

eq. (3E.4). The K-th additional set of equations is treated as
 

indicated by IREF(K).
 

IREF(K)=j>O 	indicates that the K-th extra set of equations, is
 

a set of variational equations associated with the
 

j-th set of equations. (The (j+l)-st set of equations
 

- j-th extra set of equations.) In this case one 

must have NVE(K+2)=ip, 1, where i is a positive 

integer and p.jI=NVE(j+l) if j>l and =NEQ if j=l. 

As before, the initial values of KS(I) should be the
 

same for all equations which use the same row of a
 

given Jacobian matrix.
 

IREF(K)=O 	 indicates that there are no stiff equations in the
 

K-th extra set of equations.
 

IREF(K)<O 	 indicates that the K-th extra set of equations is
 

not variational equations, and specifies the
 

starting point in FPS where the Jacobian matrix is
 

to be found as described under IREF<O above. As
 

before, the way the Jacobian is stored in FPS is
 

indicated in JST0R starting with JST0R(jK+l), where
 

jK is the last value of JST0R used by the K-th set
 

of equations. (IREF(K),O does not use any storage
 

in JST0R.) Also, IFPS(K+l) gives the maximum row
 

dimension of the Jacobian stored in FPS. The extra
 

storage required in WS and IW is computed using the
 

obvious generalization of the formulas given earlier
 
under IREF<O.
 

IREF must satisfy the following: If ISEF(K)<O then IREF(i) O
 

for all icK; 	if IREF(K)=j>O, then >EF(i) for all iK and
 

either j=l, 	or IREF(j-l)<0.
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In order to handle several additional sets of equations, one
 

should modify the changes given earlier in this subsection by
 

dimensioning IREF, and then changing the code from II on, as follows.
 

I1 CONTINUE (Special code is required here if certain 

options are used.) 

K=l 

Go To 12 

10 IF (K.EQ.l) G0 To 12 

E1 IF (IREF(K-1).EQ.O) Go To S0 

12 Compute fv and fw parts for the K-th set of F(I)'s 

S0 CALL DSTFl 

GoTo (SI, 82 ,E1 ,S4, 5,S6,7 I8,S9,S10,SII), IFLAG 

SI1 CONTINUE 

Go To S1 1 

S K=gVE(2)+l 

Compute subexpressions for the K-th set of equations 

(NVE(2),-th additional set) which depend only on com

ponents of Y from previous sets. 

Sll 	 Compute fu part for the K-th set of F(I)'s. 

Go TO A2 

Compute fu part of all F(I)'s (Those components of F
S2 

which depend only on components of Y from an earlier
 

set of equations need not be computed at this time.) 

Go To A2 

E. Jacobian Has Special Structure (e.g. Sparse)
 

By setting JST$R=0, the user can take control over the
 

solution of eqs. (1.6)-(1.8). In this subsection, the following
 

notation is used, where Yw, zw, and fw are defined at the-beginning
 
of Section IV.
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TI T = Yw5 

C = (Cl'C 2"'Cm)T = -+w 

(1C ... " m)T fw2'" 


A., i=l,2,...,m is the value of A (see eqs. (1.4)-(i.8))
 

used with i
 

(4.1 

4 (e'2"' (A''q (4.±)T =(A) ) 


d. is the order of the differential equation corresponding
 
to Yi
 

qi is the integration order used on the equation corres

ponding to ep,'
 

Pij = ici/MjiI i=l,2,...,m, j=1,2,...,n. 

The option described here presumably is of interest only if there
 
is something special about the matrix (p.j) which the user wants
 

to take advantage of in obtaining the solution of eqs. (1.6)-(1.8).
 

An example of such a situation is the case when most of the pij
 

are zero. We restrict our attention here to the case when the
 

user linearizes $, and solves the resulting linear problem as an
 
approximation to the solution of eqs. (1.6)-(1.8). There are
 

other ways the user might approach the problem of getting an
 

approximate solution to eqs. (1.6)-(1.8).
 

Consider first the case when d.El, and thus n=m, and IiO.
4 -

The user solves for a correction, 6E, to F using the formula
 

A6 = r = (rl ,r2,... ,rm (4E.2)
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where A=(ai ), aij=Pij if i/j and aii=Pii-WS(i), WS(i)=(l/h)sqi,l
 
if the i-th equation is explicit and =0 if the i-th equation is
 

implicit, ri=WS(n+i)= the residual that results from subtracting
 

the left side of eq. (1.8) from the right side, and the contents
 

of WS are computed by DSTF. When IFLAG=6 and after computing the
 

Jacobian when IFLAG=4, the user should compute the matrix A, and
 

do any preliminary set up that will be used for later iterations.
 

When IFLAG=7, the user should solve eq. (4E.2), and store the
 

vector 65 in the storage previously occupied by r. In all of
 

these cases, one continues by calling DSTFl.
 

When some of the di are greater than one, n=d +d2+-.+dm > m,
 

and an nxn linear system results from the linearizing eqs. (1.6)
(1.8). However, the special structure of eqs. (1.6) and (1.7) makes
 

it possible to eliminate n-m variables in eq. (1.8). One is then
 

left with the mxm system (4E.2) to solve, and DSTF solves for the
 

remaining varaibles. Usage is the same as described above, ex

cept that the matrix A is more complicated to obtain, and the
 

contents of WS require a more general definition. Let ko=0, ki=d1
 

+d2+...+di, i>O. WS(j) contains a coefficient used in obtaining
 

the value of TI.. More specifically, WS(k.1+1) to WS(k.) contain
 
t v o 1
.(d-1)


coefficients used for i . The first Ai cells 

starting with WS(ki l+1) (if -0, then no cells) contain 

A.
 
h Yqii "" "yhqi'l' 

the next cell contains
 

A.-d.
 
I I I qidi_ i (if the i-th equation is explicit),
 

or 0 (if implicit),
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the remaining cells (none if Li=di-1) contain
 

h-lOqi,,..,h-(d:L-1 i-1)
h8qi~*a*'''q~i
 

As before WS(n+i) contains the i-th residual, ri, to eq. (1.8).
 

From the structure of eqs. (1.6)-(1.8) and the fact that the
 

initial estimates are such that the residuals for eqs. (1.6) and
 

(1.7) are zero, it follows that A can be defined as follows.
 

(p(ij)=pij) 

+a.=[WS(kj 1 +l)*p(i,k.j_ll)+..WS(kjl 'j )*p(i,kj-l+.j 

p(i,kj +1) if i/i 

+S(iikjl+A +2 j_+- WS(kj+..1 jl) if i=j 
+I 

where either of the sums in brackets may not contain any terms
 

(and hence be equal to zero) depending on the values of Yj and
 

d. (Note that kj=kj-+dj; and p(i,kj-l+l),...,p(i,kj) are used
 

in forming aij.)
 

When JST0R#O, DSTF selects the value of ei automatically,
 

but when JST0R=O the value of ei is only changed if the user
 

initiates the dhange.
 

The first n and the next m locations in WS are always used
w w 

as described above. When JST0R#O, the next 2*m locations are
 
w 

used as working storage by the linear algebra subroutines. And
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finally, the next m2 locations (if JSTIbAO) or the next m *(2*N -1)

w w B 

locations (if JST0R(1)<O, and where aB denotes the band width in 

the matrix A) are used to store the matrix A and the factored form
 

of A. When there are variational equations this same pattern is
 

followed for the additional equations, always starting with the
 

first unused location in WS.
 

If there are no variational equations, one always recomputes
 

FPS whenever A is factored (use LtMF>O in the options described in
 

subsection IV C and compute FPS when IFLAG=6), and FPS is not
 

used for anything but forming the matrix A in eq. (4E.2), then one
 

can use part of the storage required for WS to hold FPS. Use an 

EQUIVALENCE statement to use the same location for FPS(l,l) and 

WS(k), where k!j+l and j = maximum value ever attained by nw+3*mw . 

F. Control of the Type of Past Information Stored
 

Since we do not as yet have a good automatic algorithm for
 

changing A when L=d (see eqs. (1.4)-(1.8)), and even if we did
 

there would still be cases when the user might do a better job, a
 

feature is included which enables the user to change A at anytime
 

in the computation. To use this feature one executes the following
 

statement-at anytime
 

CALL DSTFC
 

and then continues as one would if this statement were absent. At
 

the first opportunity DSTF will return control to the user with
 

IFLAG=5. The user can then change the vector KS as described in
 

subsection IV A under the usage of IFLAG=5.
 

G. User Control of Jacobian Evaluations
 

If the optional return with IFLAG=6 does not let the user
 

evaluate the Jacobian matrix as often as he wants to, he can
 

evaluate the Jacobian more frequently using the feature described
 

here. At anytime execute
 

CALL DSTFJ 
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and then continue as usual. At the first opportunity DSTF will
 

return control to the user with IFLAG=4 at which time the user
 

should compute the Jacobian matrix and call DSTF1. Note that it
 

is permitted to change FPS without the new Jacobian being used in
 

the iteration to solve eqs. (1.6)-(1.8). (We assume that the same
 

storage is not being used for FPS and WS.) For example, one may
 

want to do this when integrating variational equations. Of course,
 

if this is the case one would not call DSTFJ.
 

H. Numerical Evaluation of the Jacobian Matrix
 

We plan to provide a subroutine DPART which the user can call
 

anytime he needs to compute partial derivatives for the Jacobian
 

matrix. More work is required before specifications for this sub

routine can be given.
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V. CONCLUDING REMARKS
 

We plan to use parts of this document in the subroutine write-up
 

to be prepared later. However, when this work is completed it is
 

likely that the usage will be slightly different, and the write-up
 

of the subroutines will include additional material to aid people who
 

use them. In addition, a shorter write-up will be available for those
 

with simple problems. We also plan to give some thought to providing
 

a program which will only require the user to provide the code for
 

the derivative calculations, and which will enable the user to specify
 

things such as form of output, error tolerance, initial conditions, etc.
 

through special input parameters. Of course, such a program would not
 

have near the flexibility of the software described here.
 

It would have been nice to include the ability to automatically
 

select the type of error test to be used. That is, should the local
 

error be kept less than some specified e or less than e times some
 

function, and if so, what function? The answer, of course, depends
 

on the global effect of local errors, and these effects seem impossible
 

to estimate automatically without an inordinate amount of computation.
 

In [i], we give suggestions on how to select the type of error test.
 

Unfortunately,-users avoid reading subroutine write-ups if they can,
 

and they frequently can. The result is that users frequently use a
 

type of test that results in an inefficient computation. Is there a
 

good solution to this problem?
 

For completeness, we mention one more feature which will be added
 

if there is sufficient interest. This feature will permit the user
 

to group his differential equations, with all equations in a group
 

integrated with the same stepsize, but with the possibility that
 

different stepsizes will be used for equations in different groups.
 

All stepsizes would be some power of two times the smallest stepsize.
 

This feature would introduce an extra version of DVOA (and DSTF) if
 

it requires a significant amount of extra code in DV0A, or if it has
 

any more than negligible effect on the integration overhead when the
 

feature is not used. All of the features including already have
 

satisfied these two constraints.
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Jacobian Generator (DPART)
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Dashed lines are for optional calls.
 

Wmeans A calls B, and B returns control to A.
 

FIGURE 1:
 

Communication Between the Subroutines and the User
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