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TECHNICAL MEMORANDUM X-64601

ANALYS IS OF A CONTROL SYSTEM
CONTAINING TWO NONLINEARITIES

SUMMARY

A control system containing two nonlinear elements may be analyzed
in the parameter plane to determine the existence, stability, and values of
amplitude and frequency of limit cycles. By using describing functions to
represent the nonlinearities, the system characteristic equation may be ob-
tained. Two adjustable parameters are selected, each containing one of the
describing functions and possibly several control system gains. A .correla-
tion between these parameters and the roots of the characteristic equation is
determined by mapping stability contours from the complex s-plane onto the
chosen parameter plane. A relationship between the inputs to the two nonlinear.T
ities is determined next, and a locus representing the variation of the describ-
ing functions also is plotted on the parameter plane. If this locus and the
stability contour associated with a pair of pure imaginary roots intersect, the
existence and characteristics of a limit cycle are indicated. Particular empha-
sis is placed on organizing the equations so that they may be readily solved with
a digital computer.

INTRODUCTION

A technique has been developed by Siljak [1 ] to analyze systems con-
taining two nonlinear elements if they have a common input or if their inputs
are related by a linear differential equation. Viswanadham and Deekshatulu
[2] and Gelb and Vander Velde [3] present techniques for analyzing a system
whose inputs to the nonlinear elements are related by a nonlinear differential
equation. A technique similar to that developed by Siljak is presented here to
enable one to analyze this latter system.

By using describing functions to represent the nonlinearities, the system
characteristic equation maybe obtained. ^Two adjustableparameters are" "se-
lected, each containing one of the describing functions and possibly severaL6on-
trol system gains. A correlation between these parameters and the roots of
the characteristic equation is determined by mapping stability contours from
the complex s-plan onto the chosen parameter plane.



A relationship between the inputs to the two nbnlinearities is determined
next, and a locus representing the variation of the describing functions also is
plotted on the parameter plane. If this locus and the stability contour associated
with a pair of pure imaginary roots intersect, the existence and characteristics
of a limit cycle are indicated. From this point of intersection, the frequency
and magnitude of the indicated limit cycle may be determined as a function of
the characteristics of the nonlinearities and of the adjustable control system
gains. The stability of the limit cycle is investigated by determining if all
characteristic equation roots, other than the pair of pure imaginary roots,
have negative real parts. This condition is indicated readily on the parameter
plane. The behavior of the limit cycle when a small perturbation is applied to
its amplitude also is apparent on the parameter plane.

To demonstrate the application of this technique, a typical attitude con-
trol system for a large space vehicle is analyzed. The results of the analysis
are confirmed by analog simulation.

ANALYSIS

The system under consideration is portrayed in Figure 1. It is assumed
that the inputs Xi and x2 to the nonlinearities are sinusoidal and that the applica-
bility conditions permitting the use of the describing functions NI (At, w) and
N2 (A2, o>) in lieu of the actual nonlinearities nj and n2 are satisfied, where

(1)

xt = A! sin cot

and

x2 = A2 sin (wt - ̂ i)

It also is assumed that only the first harmonic of the signal x^ passes through
the first nonlinearity nj. Finally, it is assumed that the system parameters
are time invariant.

The describing functions are used to linearize the system characteristic
equations; i.e.

i + N J G J (s) N 2 G 2 ( S ) =o,

which leads to

y f k= L /k8 -o . (2)
k=0
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Figure 1. Control system containing two nonlinearities.

where

Parameters PI and P2 are defined as

= l jN 2

(3)

(4)

where b , c , A , lj, and 12 are constants or system parameters of the linear
K K K *

portion of the system.

A correlation between parameters Pj and P2 and the roots of the charac-
teristic equation is determined by mapping certain stability contours from the
complex s-plane onto the Pj-P2 parameter plane. The stability contour chosen
for this portion of the analysis is the imaginary axis of the s-plane.

s = (5)

which will be referred to as the £ = 0 contour. To facilitate computation and
k

to provide flexibility for use in later analysis, s of equation (2) maybe re-
placed by

ks = (6)

where X and Y may be obtained by using the recurrence formulas [1 ]:
__ — |£- lj _ — — _



and

,^ . Y_ ;+w Y =0.
k+i n k n kr-i

(7)

Equation (2) may be separated into its real and imaginary parts and regrouped:

Re{A(s)}= f,X =Bi P! +Ci P2 +D! =0 (8. a)
k=0k k

and

n
i Y u = B 2 pi + C 2 P 2 + D 2

= 0 , (8.b)
k=0 k k

where

n n n
Bl = \\ , Cj

k= 0 k=0 k= 0

n n n
B2 = 2 b Y , C2 = £ c Y , and D2 = 2

fc=0 k K k=0 k K k=0 K k

Equations (8. a) and (8.b) maybe solved for PI and P2 which may be plotted on
the Pi-?2 parameter plane as functions of frequency ft. This curve is the
t, = 0 stability contour associated with complex conjugate roots. The boundary
separating stable real roots from unstable ones is determined by setting s = 0
in equation (2) and solving for P2 as a function of Pt. The resulting curve also
is plotted on the Pi-P2 parameter plane. The stable region (corresponding to
the left half of the s-plane) in the parameter plane is determined by observing
the sign of the Jacobian ( J) [i ] .

In determining regions of stability and instability on the parameter plane,
one must be alert for the possible existence of singular cases where the
Jacobian J = O2. This may happen for certain combinations of Nt and N2 — a
point not mentioned by Viswanadham and Deekshatulu [2] . (Analysis of the
Jacobian associated with the example presented in Viswanadham's and
Deekshatulu's paper [2] shows the existence of several singular points for cer-
tain combinations of values of Nj, N2, and w.) In such cases, the mapping of



certain points from the complex s-plane onto the parameter plane may result
in loci of points or in distinct points. Hence, additional stability boundaries
may occur on the parameter plane. One such singular/case corresponds to the
mapping of the origin of. the s-plane onto the parameter plane as the real root
stability boundary.

To obtain some insight into the choice of values for adjustable gains of
the linear portion of the system, two such gains (or combinations of gains) may
be chosen as parameters ( o^ and o^) . Considering linear operation of the
system, the characteristic equation (2) may be written in terms of otj and Oj
by setting Nt and N2 equal to unity; i.e. ,

Stability contours associated with chosen values of the damping ratio H, may be
plotted as functions of o> on the o^-ot^ parameter plane by mapping the line

s =- £co +ico "7(1- f2) (10)
n n

from the s-plane onto the cn^-oi^ parameter plane. Any roots lying on this line
will possess an associated damping ratio specified by £. If equation (9) is
substituted for equation (3) and Pj and P2 are replaced by ttj and ofc in equa-
tions (8.a) and (8.b), they may be solved by o^ and o^ for various values of
£. Then, values of o^ and o^ may be chosen for desired values of £ and w .

The relationship between xi and x2 may be determined, assuming that
Gj(s) is a low-pass function and that only the first harmonic passes through nj.
Since Nt (A4, o>) is known, A2 may be calculated as a function of AJ and w :

A2= |Gt _(iw)' |N, (Aj, u) At . (11)

For chosen values of At and co, N2 may be found using equation (11). Thus, N2

may be plotted versus Nj as a function of At and a;. Using equation (4) , one may
plot this nonlinear locus on the Pi~P2 parameter plane, as a function of A1? for
various values of w. If the locus intersects the £ = 0 curve, a limit cycle is
indicated if the frequencies of the locus (w) and the £ = 0 curve ( fi) match;
this is the frequency of oscillation of the limit cycle. The amplitude of the
limit cycle is determined from the value of A4 corresponding to the intersection.
For a limit~cycle~to~be~stable,~it~is necessary-but not sufficient -that all-roots— -.
(other than the pair of complex roots lying on the imaginary axis of the s-plane)



lie to the left of the imaginary axis. Hence, the intersection of the locus and
the £ = 0 curve must lie on a boundary of the stable region (the entire £ = 0
curve is not necessarily a stability boundary—a point omitted by
Siljak [1 ]) • If the locus crosses from the unstable region as Aj increases, a
stable limit cycle is indicated (and vice versa if it crosses from the stable
region into the unstable region). If no intersection occurs and the locus remains
in the stable region for all values of At, linear stable operation is indicated. If
the locus remains in the unstable region, unstable operation without a limit
cycle is indicated.

Example. Consider a typical pitch-plane attitude control system for a
space vehicle (Fig. 2). The rigid body dynamics are represented by the trans-
fer function

(12)
±ttJ ' LI

where

c - OL/9/3 )/?_ 1 /I .L L g

The distance between the center of mass and the point of application of the
thrust is denoted by 1 , the lateral component of thrust by L, and the moment

&

of inertia about the pitch axis by I.

The system characteristic equation may be written in the form of
equation (2):

3
3A(s) = r + s2 + ajcN N s + a0cN = fi = ° • <13)
S S D S k = 0 k

where N and N represent describing functions associated with the saturation
§ L)

characteristic and the dead-zone characteristic, respectively. Convenient
parameters are

P0 = a0N and P r s a i N N , (14)
S S U

where
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Figure 2. Space vehicle attitude control model.

In the manner indicated by equations (8.a) and (8.b), the £ = 0 contour may be
determined:

(16)

and

= TP

where

J = c 2

0 ,

o, vfi>o .

(17)

(18)

In a design problem it is desirable to separate the describing functions N ands
N_ rather than have them appear as a product in the parameter Pj. This is

achieved by defining Pt:

PI =sn ND/a0 . (19)

Examination of the Jacobian reveals that it will become identically equal to
zero only "ifa? equals zero4since_c^isj^n_-zero) • This corresponds to the sin
gular case associated with the real root stability boundary wtiiclf is^

=0. (20)



Now the stability boundaries may be plotted, using equations ( 16) , { 19) , and
(20) (Fig. 3) . The number of stable roots of the characteristic equation is
indicated within square brackets for each region.

To determine suitable values for the adjustable control gains, a0 and at,
linear operation is assumed and contours corresponding to various values of f
maybe plotted as functions of o> . A typical contour (for £ = 0.5) also is

shown in Figure 3; values of co and fi are shown in parentheses. Numerical
n

values must be assigned to the constants T, a0, aj, k , k , S, D, and c.
S j-J

Constants T, k , and D are fixed by the design of the actuator. Values repre-

sentative of contemporary hardware are r= 0.2s, k =1, and S = 1 deg. A
S

typical rate gyroscope has values of k = 1 and D = 0. 1 deg/s. Parameter c is

a function of flight time and, for a typical launch vehicle, varies slowly between
0.5 and 2.5. The value of 0. 7 is chosen from the example. Values of a0 and ai
are chosen from Figure 3, assuming linear operation and £ « 0. 7 and d> « 0. 6
rad/s; a0 =0.5 and aj = 1.

Assuming the following forms for xj and x2:

Xi = /3 = A sin fit
S

and (21)

xjj =• J = AD sin (fit + ft)

and utilizing the assumptions of the foregoing section, the relationship, between
and A is

A^ =cN (A , w) A /w . (22)
D S S S

Describing function relationships for N (k , A , S) and N (k , A , D) are
S S S D D L )

well known and readily available. From these relationships and equations (16),
(17) , (20) , and (22) , loci representing the variation of N and N may be

8 J-J

plotted on the Pn-Pi parameter plane as a function of A for various values of w.
s

These loci are shown as dashed lines in Figure 3. Sets of two figures within
parentheses indicate corresponding values of A /S and A /D. Since most loci

S -U

shown rise vertically at P0 =0.5, the values shown for A /S and

correspond to the locus associated with w =0.592. It is seen that a limit cycle



cannot be avoided if otherwise nonlinear
operation is to be precluded. It also
is observed that only one limit cycle is
possible, and it will be stable. The
characteristics of the limit cycle for
this example are read from the inter-
section of the f = 0 contour and the
nonlinear locus as: fi = 0.592;
P0 =0.5; PI =0.2; A =0.106,8 = 1;s
and AD =0.126, D =0.1. The predicted

Figure 3. PQ-PI parameter plane
(a0 =0.5, at = 1, T = 0.2, and
c = 0 . 7 ) .

numerical results were confirmed by
simulating the system on an analog
computer, thereby increasing confi-
dence in the technique and the assump-
tions. Figures 4(a) and 4(b) show
these results for several initial condi^
tions on 0. Also of interest (although
not analyzed) is the case where an
input signal is applied. Simulation
results, shown in Figure 5, indicate
that limit cycle operation will not
occur when the system is forced by a
ramp input, but as soon as the input
levels off to a step input, sustained
oscillations again occur.

In the actual design of a control system, the values chosen for T, a0,
S, and D would be varied (within constraints imposed by actualal> kS

hardware implementation) to achieve other limit cycle characteristics so that
the least undesirable characteristics could be obtained. Also, the problem
would be analyzed for the entire range of values that c assumes during predic-
ted flight.

CONCLUSIONS

The parameter plane technique of stability analysis'can be-applied to a-
model of a system containing two nonlinearities whose inputs are related by a
nonlinear differential equation. The constraints imposed on the system are
prescribed, and limit cycle operation and characteristics may be predicted.
In cases where limit cycle operation can be avoided, relative stability
characteristics can be established by choosing the distribution of the roots of
the characteristic equation through the variation of two adjustable parameters.
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