TO: USI/Scientific & Technical Information Division
Attention: Miss Winnie M. Morgan

FROM: GP/Office of Assistant General Counsel for Patent Matters

SUBJECT: Announcement of NASA-Owned U. S. Patents in STAR

In accordance with the procedures agreed upon by Code GP and Code USI, the attached NASA-owned U. S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U. S. Patent No.: 3,489,789

Government or Corporate Employee: Government

Supplementary Corporate Source (if applicable): 4/6

NASA Patent Case No.: 2SC-10891-1

NOTE - If this patent covers an invention made by a corporate employee of a NASA Contractor, the following is applicable:

Yes □ No □

Pursuant to Section 305(a) of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent; however, the name of the actual inventor (author) appears at the heading of Column No. 1 of the Specification, following the words "... with respect to an invention of"

Dorothy J. Jackson
Enclosure
Copy of Patent cited above
Nov. 25, 1969 W. G. BINCKLEY ET AL 3,480,789

VOLTAGE REGULATOR WITH PLURAL PARALLEL POWER SOURCE SECTIONS

Filed July 28, 1966 4 Sheets-Sheet 1

FIG. 1(a) (PRIOR ART)

FIG. 1(b)

INVENTOR.
WILLIAM G. BINCKLEY
WARREN H. WRIGHT

ATTORNEYS
VOLTAGE REGULATOR WITH FLURAL PARALLEL POWER SOURCE SECTIONS

FIG. 2(a)

FIG. 2(b)

FIG. 2(c)

FIG. 2(d)
Fig. 4

Fig. 5
This invention relates to improved voltage regulating systems useful, for example, for controlling the output voltage of large electric power sources, such as solar cell arrays.

Many voltage regulating applications exist where it is very important that power dissipation and consequent heat generation be minimized. For example, in spacecraft installations, it is often necessary to limit the output voltage of high power (e.g., greater than 100 watts) solar cell arrays without developing any large localized heat dissipation areas. Although various regulators known to exist are capable of adequately limiting voltage variations, each is characterized by certain disadvantageous features which makes it unsatisfactory for spacecraft applications.

For example, dissipative type regulators often present thermal problems which preclude locating the dissipating elements within the spacecraft. As a consequence, it has been required to distribute the dissipating elements, e.g., power transistors, on the external solar array surfaces to permit direct radiative cooling. However, this approach requires the provision of heaters or special thermal energy storage devices in order to provide a sufficiently elevated temperature during periods of solar eclipse to maintain transistors above minimum operating temperature limits.

Some regulators use semiconductor switches to disconnect or short circuit sections of the solar array when low power demands exist. This reduces the amount of power remaining to be controlled by the regulator. This approach requires increased control complexity however, with a corresponding decreased reliability. Attempts have also been made to use regulators employing pulse width modulated switching transistors to control power dissipation in resistors. However, these regulators are characterized by increased radio frequency interference, increased control complexity, and filtering requirements which result in degraded response.

In view of the foregoing, it is an object of the present invention to provide an improved system for regulating or limiting the output voltage of various power sources.

It is a more particular object of the present invention to provide a dissipative voltage limiter system in which heat dissipation is minimized.

In accordance with the present invention, a load is connected to a supply line or bus across which is connected a plurality of parallel substantially identical power source sections. As is typical, the output voltage provided by each section increases as the output current drawn from that section decreases. In order to prevent the output voltage to the load from increasing as the load current demand is reduced, individually acting dissipative paths are provided, each being connected to one of the power source sections. In a first embodiment of the invention, the dissipative paths comprise shunt paths connected across the power source sections. The shunt paths are all controlled in response to the output of a comparator which compares the bus voltage against a reference. Thus, as the load current falls off and the bus voltage consequently begins to rise, the comparator will provide a control signal to the shunt paths to initially actuate one shunt path to thereby draw additional current from the associated power source section to lower the output voltage thereof. The additional current is of course steered through the actuated shunt path and does not affect the load. In another embodiment of the invention, the dissipative paths are connected in series with the power source sections. The dissipative paths are preferably comprised of power transistors which of course dissipate very small amounts of power in their off and fully saturated states respectively. Maximum power is dissipated when the transistors are operated somewhere in their linear operating range. Means responsive to the comparator control signals are associated with each of the dissipative paths to control the paths in sequence as the control signal increases or decreases. In this manner, all of the dissipative path power transistors except one will either be in an off or saturated state. In other words, only one of the power transistors at a time can be operating in its linear range. As a consequence, power dissipation and localized heating will be minimized.

The novel features that are considered characteristic of this invention are set forth with particularity in the appended claims. The invention will best be understood from the following description when read in connection with the accompanying drawings, in which:

FIGURE 1(a) is a block diagram of a voltage limiting system in accordance with the present invention; FIGURE 1(b) is a diagram illustrating the output characteristic of the power supply of FIGURE 1(a); FIGURE 2(a) is a block diagram of a first embodiment of a voltage limiting system in accordance with the present invention; FIGURES 2(b)-(d) are diagrams respectively describing the characteristics of the power supply sections of FIGURE 2(a); FIGURE 3(a) is a block diagram of a second embodiment of the voltage limiting system in accordance with the present invention; FIGURES 3(b)-(g) are diagrams describing the operating characteristics of the power supply subsections of FIGURE 3(a); FIGURE 4 is a block diagram of an alternative arrangement in accordance with the present invention; and FIGURE 5 is a block diagram of a still further embodiment of a voltage limiting system in accordance with the present invention.

Attention is initially called to FIGURE 1(a) of the drawings which illustrates a typical prior art dissipative shunt path voltage limiting system. More particularly, FIGURE 1(a) illustrates a power source 10 connected to current supply lines or bus conductors 12 and 14. A load 16 is connected across the lines 12 and 14 and draws a load current I L therefrom. It is desired that the voltage V L across the load be maintained constant for varying values of load I L.

Prior to considering the elements employed in the configuration of FIGURE 1(a) to maintain the load voltage V L constant, attention is called to FIGURE 1(b) which illustrates a curve describing the output current-voltage characteristic of the power source 10. The characteristic described by FIGURE 1(b) is typical of many different types of power sources and as an example, it will be assumed herein that the power source 10 comprises an array of solar cells as are presently commonly employed for spacecraft use.

The solid curve in FIGURE 1(b) illustrates that in order for the supply to provide a constant output voltage V L, it is necessary to draw a current I L therefrom. If a lesser current I L is drawn, then the supply will provide a greater voltage, i.e. V L'. In order to limit the voltage applied to the load 16 to the value of V L when a load current I L is equal to I L' being drawn, systems in the prior art have employed a shunt path 18 to draw a current I G. By drawing the current I G from the supply, the voltage...
$\sum_2,480,789$

V_1 will be established across the load and by steering the current I_{SH} through the shunt path 18, the current I_b (equal to I'_b) will be delivered to the load. The shunt path 18 in FIGURE 1(a) is controlled by a control voltage signal provided by an error amplifier 20. The error amplifier 20 is responsive to a comparator 22 which compares the load voltage V_L with a voltage provided by a reference source 24. The reference source 24 can be conventional in construction and can, for example, comprise a Zener diode type device.

If the load voltage V_L exceeds the voltage provided by the reference source 24, the comparator 22 provides a signal to the error amplifier 20 which in turn provides a control voltage signal to the shunt path 18 to increase the current I_{SH} to thus increase the supply current I_b and consequently lower the voltage V_L. On the other hand, if the load 16 varies so as to increase the current I_b, the load voltage V_L would tend to decrease thus reducing the magnitude of shunt current I_{SH} required. The comparator 22 will sense the decrease in the load voltage and thereby control the error amplifier 20 to decrease the shunt current I_{SH}.

As a consequence of drawing the shunt current I_{SH} through the shunt path 18, power (IV) will be dissipated in the shunt path 18. This dissipated power is represented by the shaded area in FIGURE 1(b). The present invention as represented by FIGURES 2-4 reduces the magnitude of the power dissipation in the shunt path 18 to thus increase system efficiency and minimize large localized heat dissipation areas.

Attention is now called to FIGURE 2(a) which illustrates a first embodiment in accordance with the present invention. The embodiment of FIGURE 2(a) contemplates that the power source be segregated into N sections which are connected in parallel so as to be equivalent to the power source 10 illustrated in FIGURE 1(a). More particularly, the embodiment of FIGURE 2(a) illustrates power source sections 30b, 30c, and 30d. FIGURES 2(b), 2(c), and 2(d) respectively illustrate the output current versus output voltage characteristics of each of the source sections. Inasmuch as it has been assumed for purposes of clarity that the three source sections of FIGURE 2(a), when connected in parallel, are equivalent to the power source 20 illustrated in FIGURE 1(a), it will be noted that the sum of the characteristic curves shown in FIGURES 2(b), 2(c), and 2(d) equal the characteristic curve of FIGURE 1(b). Each of the power source sections 30 is connected through a diode 32 to the current supply line 34. The lower terminal of each of the source sections is connected to a supply line 36.

A load 38 is connected between the supply lines 34 and 36. A source of reference voltage 40 is connected to one input of a comparator 42 which compares the reference voltage to the voltage V_L appearing across the load 38. The output of the comparator 42 is connected to the input of an error amplifier 44 whose output is connected to each of a plurality of voltage sensing control devices 46. Each of the control devices 46 controls a different shunt path 48. Thus, control device 46a controls shunt path 48a which is connected across source section 30b. Similarly, control device 46b controls shunt path 48b connected across source section 30c. Likewise, control device 46c controls shunt path 48c connected across source section 30d.

The construction of exemplary control devices 46 and shunt paths 48 will be discussed in connection with the embodiment of FIGURE 3(a). Suffice it to say at this point that the control devices 46 are each responsive to a different value of control voltage signal provided by error amplifier 44. Thus, let it be assumed that at a minimum value of control voltage, the control device 46f turns on the shunt path 48f to draw shunt current I_{SH} as the control voltage increases, the shunt path 48f is driven into saturation and the control device 46f activates the shunt path 48f to start drawing current I_{SH}. Thus, the control devices 46 are controlled in sequence such that as the control voltage increases, the shunt paths 48 will successively saturate. Moreover, each shunt path 48 is preferably designed to saturate at substantially the voltage required for the subsequent shunt path to begin conduction. Thus, all of the shunt elements 48 except one will define either a nonconducting (full off) condition or a saturated (full on) condition with only one of the shunt paths operating in a linear region between a full on and a full off condition.

In order to understand the manner in which the embodiment of FIGURE 2(a) operates, attention is called to FIGURES 2(b), 2(c), and 2(d). The current I_b drawn by the load 38 is equal to the sum of the currents I_{2a}, I_{2b}, and I_{2c} applied to the supply line 34 through the diodes 32. As an example, let it be assumed that the current I_3 drawn by the load 38 is the same as that shown in FIGURE 1(b) and requires substantially the full output current from one of the source sections 30, a partial current from a second of the source sections and no current from a third source section. Thus, as shown in FIGURE 2(b), the source section 30a will provide a current I_{2a} which is equal to the current I_3 through the diode 32a. In other words, the current I_{SH} through shunt path 48a will be equal to zero. This condition will occur because the control or error voltage provided by the amplifier 44 will be insufficient to cause the control device 46a to initiate conduction in shunt path 48a.

On the other hand, partial current must be delivered to the supply line 34 from source section 30b. However, it is also necessary that the voltage supplied by section 30b be equal to the load voltage V_L. Accordingly, the source section 30b must supply current I_{2b}. Inasmuch as only current I_{2b} should be delivered through the diode 32b to the supply line 34, it is necessary that the shunt path 48b draw shunt current I_{SH}, the shaded area in FIGURE 2(c) of course represents the power dissipated in shunt path 48b.

Inasmuch as it was not required that source section 30c supply its full output current, then of course source section 30c need supply no current I_{2c} to the supply line. Thus, a current I_{SH} saturating the shunt path 48c will flow therethrough.

From the explanation of FIGURE 2(a), it should be apparent that shunt path 48c is saturated and therefore dissipates very little power equal to the product of the saturation current and saturation voltage. The shunt path 48c, on the other hand, is in a fully off or nonconducting state and therefore dissipates no power except perhaps for very small amounts attributable to leakage currents. The shunt path 48c is operating in a linear operating range and dissipates power represented by the shaded portion illustrated in FIGURE 2(c). It should however be appreciated that this shaded area is considerably smaller than the shaded area of FIGURE 1(b). Accordingly, it should be appreciated that the configuration of FIGURE 2(a) in which a plurality of parallel shunt paths are controlled such that only one can be operated in a linear range at a time results in a reduction of localized heat dissipation as compared with conventional systems.

Attention is now called to FIGURE 3(a) which illustrates an improved embodiment of the invention in which each of the source sections shown in FIGURE 2(a) is comprised of two or more subsections connected in series with the shunt paths operating on only one of the subsections. More particularly, the embodiment of FIGURE 3(a) contemplates employing a plurality of parallel paths as shown in FIGURE 2(a) except however instead of employing a single source section in each path, the embodiment of FIGURE 3(a) contemplates connecting source subsections in series. Thus, source subsections 50aA and 50bB are connected in series between supply lines 54 and 56. Similarly, source subsections 50cA and 50dB are connected in series with diode 52 between lines 54 and 56. Also, source subsections
\[5 \]

50\textsubscript{NA} and 50\textsubscript{NB} are connected in series with diode 52\textsubscript{A} between lines 54 and 56. Load 58 is connected between lines 54 and 56. As before, a comparator 60 is connected to a source of reference voltage 62 to compare the load voltage \(V_L \) with the reference voltage. The output of the comparator 60 is connected to an error amplifier 64 which provides a voltage control signal to control the shunt path through transistor 66 (denoted 65\textsubscript{A}, 65\textsubscript{B}, 66\textsubscript{A}, 66\textsubscript{B}, 58, and 56). Connected between the base of each of the power transistors 66 and the error amplifier 64 is a Zener diode 68 which performs the function of the control devices 46 shown in FIGURE 2(a). Thus, Zener diodes 68\textsubscript{A} and 68\textsubscript{B} are respectively connected to the bases of power transistors 66\textsubscript{A} and 66\textsubscript{B}.

In order to facilitate an understanding of the embodiment in FIGURE 3(a), the characteristic curves of FIGURES 3(b)-(e) have been selected such that each pair of subsectioned connections in series is equivalent to one of the supply sections shown in FIGURE 2(a). More particularly, it will be noted that the characteristic curve of subsections 50\textsubscript{B1} and 50\textsubscript{B2} can be obtained from FIGURE 2(b). Similarly, the sum of the curves of FIGURES 3(d) and 3(e) respectively representing the characteristics of subsections 50\textsubscript{A1} and 50\textsubscript{B1} equals the curve of FIGURE 3(c). Inasmuch as the sum of the curves of FIGURES 3(f) and 3(g) represents the characteristics of subsections 50\textsubscript{A2} and 50\textsubscript{B2}, it follows that the characteristic curve of subsections 50\textsubscript{A1} and 50\textsubscript{B1} equals the curve of FIGURE 2(d).

Assume as before that the load 58 draws a current \(I_L \) which is of a magnitude requiring the full output of subsections 50\textsubscript{A1} and 50\textsubscript{B1}, a partial output from subsections 50\textsubscript{A2} and 50\textsubscript{B2}, and no output from subsections 50\textsubscript{B1}, 50\textsubscript{B3}, and 50\textsubscript{B4}. More particularly, note in FIGURES 3(b) and 3(c) subsections 50\textsubscript{A1} and 50\textsubscript{B1} supply a current \(I_{1A} \) and respectively provide output voltages \(V_{1A} \) and \(V_{1B} \). The sum of \(V_{1A} \) and \(V_{1B} \) is equal to the load voltage \(V_L \). Inasmuch as the full output of subsections 50\textsubscript{A1} and 50\textsubscript{B1} is required, no shunt current from the error amplifier to saturate the shunt path than is required in elsewhere. However, sources 50\textsubscript{A1}, 50\textsubscript{A2}, 50\textsubscript{B1}, 50\textsubscript{B2}, and 50\textsubscript{B3} are respectively connected to the bases of power transistors 66\textsubscript{A}, 66\textsubscript{B}, and 66\textsubscript{C}.

It will be noted that the subsections 50\textsubscript{A1} and 50\textsubscript{B1} provide a current \(I_{1A} \) through diode 52\textsubscript{A}. As can be seen in FIGURE 2(d), subsection 50\textsubscript{A1} will provide an output voltage \(V_{2A} \), providing a current \(I_{2A} \) to the subsection 50\textsubscript{B1} will provide a voltage \(V_{2B} \), where the sum of \(V_{2A} \) and \(V_{2B} \) is greater than \(V_L \). Consequently, subsection \(V_{2A} \) must provide a greater current \(I_{2A} \) to reduce its output voltage to \(V_{2B} \) such that the sum of \(V_{2A} \) and \(V_{2B} \) equals \(V_L \). The difference in current between \(I_{2A} \) provided by subsection \(50\textsubscript{B1} \) and \(I_{2B} \) provided by subsection \(50\textsubscript{B2} \) represents the current magnitude of the shunt current \(I_{sh} \) which must be drawn through the power transistor 66\textsubscript{A}. The magnitude of the shunt current \(I_{sh} \) is of course determined by the magnitude of the control voltage provided by the amplifier 64. As should be clear from FIGURES 3(d) and 3(e), the control voltage is of a magnitude sufficient to break down Zener diode 68, but is insufficient to saturate transistor 66\textsubscript{A}.

As in FIGURE 2(a), it should be appreciated that all but one of the power transistors 66 is operating in either a fully on or saturated state. Thus, only the transistor 66\textsubscript{A} in FIGURE 3(a) is operating in a linear region. Its power dissipation is represented by the shaded area in FIGURE 3(c) and it should be appreciated that this area is even smaller than the corresponding dissipation area shown in FIGURE 2(c) inasmuch as a lower voltage will exist across the shunt path. Thus, FIGURE 3(e) even further reduces localized heat dissipation.

It will be appreciated of course that once one of the power transistors 66 in FIGURE 3(a) is saturated, it is not desirable that the base current there through continue to increase as the control voltage provided by the error amplifier 64 increases. Accordingly, the configuration of FIGURE 3(a) can be modified by substituting the arrangement shown in FIGURE 4 for the arrangements enclosed within each of the dotted line boxes shown in FIGURE 3(a). Thus, a current limiter 80 is preferably connected in series with the voltage sensing control device or Zener diode 68. In order to require even less current from the error amplifier to saturate the power transistor 66, an additional stage of current gain can be incorporated between the Zener diode 68 and power transistor 66 as shown in FIGURE 4. More particularly, an error amplifier 112 is employed whose collector is connected to the upper terminal of the supply subsection A and whose emitter is connected to the base of transistor 66. Thus, using the configuration of FIGURE 4, a smaller current from the error amplifier 64 is required to saturate the shunt path than is required in FIGURE 3(a). More particularly, the smaller current provided by the error amplifier controls the transistor 82 which in turn develops a larger base current for transistor 66 sufficient to saturate it.

It should be appreciated that in both embodiments of the invention thus far described, illustrated in FIGURES 2 and 3, the dissipative elements, i.e. the power transistors are connected in shunt across the power source sections. Attention is now called to FIGURE 5 which illustrates a further embodiment of the invention in which the dissipative power transistors are connected in series with the power source sections. Like in the embodiments of FIGURES 2 and 3, the dissipative elements are sequentially controlled by a voltage control device 98, which can for example comprise a Zener diode, to the output of an error amplifier 92. As in the previously discussed embodiments, the Zener diodes 98\textsubscript{A}, 98\textsubscript{B}, and 98\textsubscript{C} are selected to break down at different voltage levels. The error amplifier 92 is responsive to the output of a voltage comparator 102 which is connected between the supply line 94 and a source of reference voltage 104. A load 106 is of course connected between supply lines 94 and 96.

In order to understand the operation of the embodiment of FIGURE 5, assume initially that the load current \(I_L \) being drawn by load 106 is at a maximum. This will require that source sections 90\textsubscript{A}, 90\textsubscript{B}, and 90\textsubscript{C} respectively supply currents \(I_{L3} \), \(I_{L2} \), and \(I_{L1} \) corresponding to the load voltage \(V_L \). The system is designed such that for this situation, all of the transistors 92 are saturated. That is, unless the voltage \(V_9 \) tends to exceed the voltage provided by reference source 104, the comparator 102 will control the error amplifier 100 such that it breaks down all of the Zener diodes 98 to drive the transistors 92 into...
saturation. Assume now that the load current demand decreases such that the voltage \(V_t \) tends to increase. As a consequence, the output from the error amplifier 100 will fall, thus reducing the base drive currents to the transistors \(92_1 \) and initially taking transistor \(92_N \) out of saturation to accordingly reduce the current \(I_b \) as required. As a consequence of the reduction of current \(I_b \), the output voltage of source \(90 \) will increase. However, the voltage drop across the emitter-collector path of transistor \(92_N \) will also increase to thus maintain the voltage \(V_t \) between supply lines 94 and 96. As the load current demand decreases further, transistor \(92_N \) will become off biased or open circuited. As should be appreciated, the circuit is designed so that the next transistor, i.e. \(92_N \), comes out of saturation into the linear operating range at about the same level at which transistor \(92_N \) becomes nonconductive. Accordingly, for any level of load current demand within an intended operating range, only one of the transistors \(92 \) will be operating in a linear region and all others will either be saturated or open circuited. As a consequence, as with the shunt path embodiments of FIGURES 2 and 3, localized power dissipation will be reduced as compared to prior art systems.

From the foregoing, it should be appreciated that voltage limiting systems have been shown herein in which localized heat dissipation is reduced as compared to prior art systems. The improved performance of embodiments of the present invention is essentially attributable to the concept of sequentially controlling the dissipation paths so that no more than one path operates in a linear region at any one time. In addition, it should also be appreciated that systems in accordance with the invention possess a high degree of reliability as a consequence of their inherent redundancy. Thus, an open circuit failure mode in one section will merely result in another section being driven into saturation if required. Short circuit failure modes are compensated for by the automatic removal of the dissipation path of another section from a saturated condition.

Although it has been assumed herein that all of the power source sections or subsections have identical output characteristics, it should be appreciated that this is not essential to the invention and has been assumed only to simplify the explanation. It should also be understood that although several specific embodiments of the invention have been shown herein, it is recognized that modifications and variations falling within the scope of the invention will readily occur to those skilled in the art. For example only, other known devices can be substituted for the Zener diodes and transistors illustrated. Accordingly, it is not intended that the scope of the invention be limited by the specific embodiments discussed.

What is claimed is:

1. In combination with a supply line having a variable load coupled thereto, power source means connected to said supply line for establishing a predetermined voltage thereon over a wide range of load current demands, said power source means comprising:
 a plurality of first power source sections connected to said supply line in parallel;
 a plurality of actuated dissipation paths each connected to a different one of said first sections; and
 means responsive to a changing difference between the voltage on said supply line and said predetermined voltage for actuating said dissipation paths in accordance with a predetermined sequence.
2. The combination of claim 1 wherein each of said dissipation paths is connected in shunt across a different one of said first sections.
3. The combination of claim 1 wherein each of said dissipation paths is connected in series with a different one of said first sections.
4. The combination of claim 1 wherein each of said dissipation paths can define a full off state, a full on state, and a linear operating condition; and
 means for assuring that no more than one dissipation path defines a linear operating condition for any single value of said difference between said voltage on said supply line and said predetermined voltage.
5. The combination of claim 1 including a source providing said predetermined voltage; and
 comparator means connected to said supply line and said source for providing a control signal proportional to the difference therebetween.
6. The combination of claim 5 wherein each of said dissipation paths includes a transistor capable of defining an off condition, a saturated condition and a linear operating condition; and
 means responsive to each value of said control signal for causing no more than one of said transistors to define said linear operating condition at a time and all other of said transistors to define either an off or saturated condition.
7. The combination of claim 6 wherein said means responsive to said control signal includes a plurality of voltage sensing devices each coupled to a different one of said transistors, each of said voltage sensing devices being responsive to a different voltage value.
8. The combination of claim 7 wherein each of said voltage sensing devices comprises a Zener diode.
9. The combination of claim 1 including a plurality of second power source sections, each second section being connected in series with a different one of said first sections.
10. The combination of claim 9 including a source providing said predetermined voltage; and
 comparator means connected to said supply line and said source for providing a control voltage signal proportional to the difference therebetween.
11. The combination of claim 10 wherein each of said dissipation paths includes a transistor capable of defining an off condition, a saturated condition and a linear operating condition;
 a plurality of voltage sensing devices each responsive to a different value of control voltage signal; and
 a plurality of gain means each coupling a different one of said sensing devices to a different one of said first transistors.
12. The combination of claim 11 wherein each of said gain means comprises a second transistor.
13. The combination of claim 11 wherein each of said voltage sensing devices comprises a Zener diode; and
 a plurality of current limiters each connected in series with a different one of said Zener diodes.

References Cited

UNITED STATES PATENTS
3,238,438 3/1966 Rhyne -------------- 307--44 X

JOHN F. COUCH, Primary Examiner
A. D. PELLINEN, Assistant Examiner
U.S. Cl. X.R.
307--69; 323--1, 19