TO: USI/Scientific & Technical Information Division
Attention: Miss Winnie M. Morgan

FROM: GP/Office of Assistant General Counsel for
Patent Matters

SUBJECT: Announcement of NASA-Owned U. S. Patents in STAR

In accordance with the procedures agreed upon by Code GP
and Code USI, the attached NASA-owned U. S. Patent is being
forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U. S. Patent No. : 3,480,789

Government or
Corporate Employee : Government

Supplementary Corporate
Source (if applicable) : N/0

NASA Patent Case No. : Y5C-10841-1

NOTE - If this patent covers an invention made by a corporate
employee of a NASA Contractor, the following is applicable:

Yes □ No ☒

Pursuant to Section 305(a) of the National Aeronautics and
Space Act, the name of the Administrator of NASA appears on
the first page of the patent; however, the name of the actual
inventor (author) appears at the heading of Column No. 1 of
the Specification, following the words "... with respect to
an invention of ..."
VOLTAGE REGULATOR WITH PLURAL PARALLEL POWER SOURCE SECTIONS

Filed July 28, 1966

FIG. 1(a) (PRIOR ART)

FIG. 1(b)

INVENTOR.

WILLIAM G. BINCKLEY
WARREN H. WRIGHT

BY ATTORNEYS
VOLTAGE REGULATOR WITH FLURAL PARALLEL POWER SOURCE SECTIONS

Filed July 28, 1966

FIG. 4

FIG. 5

INVENTOR
WILLIAM G. BINCKLEY
WARREN H. WRIGHT
BY Arthur Freiberg

ATTORNEYS
This invention relates to improved voltage regulating systems useful, for example, for controlling the output voltage of large electric power sources, such as solar cell arrays.

Many voltage regulating applications exist where it is very important that power dissipation and consequent heat generation be minimized. For example, in spacecraft installations, it is often necessary to limit the output voltage of high power (e.g., greater than 100 watts) solar cell arrays without developing any large localized heat dissipation areas. Although various regulators known to exist are capable of adequately limiting voltage variations, each is characterized by certain disadvantageous features which make it unsatisfactory for spacecraft applications.

For example, dissipative type regulators often present thermal problems which preclude locating the dissipating elements within the spacecraft. As a consequence, it has been required to distribute the dissipating elements, e.g., power transistors, on the external solar array surfaces to permit direct radiative cooling. However, this approach requires the provision of heaters or special thermal energy storage devices in order to provide a sufficiently elevated temperature during periods of solar eclipse to maintain transistors above minimum operating temperature limits.

Some regulators use semiconductor switches to disconnect or short circuit sections of the solar array when low power demands exist. This reduces the amount of power remaining to be controlled by the regulator. This approach requires increased control complexity however, with a corresponding decreased reliability. Attempts have also been made to use regulators employing pulse width modulated switching transistors to control power dissipation in resistors. However, these regulators are characterized by increased radio frequency interference, increased control complexity, and filtering requirements which result in degraded response.

In view of the foregoing, it is an object of the present invention to provide an improved system for regulating or limiting the output voltage of various power sources.

It is a more particular object of the present invention to provide a dissipative voltage limiter system in which heat dissipation is minimized.

In accordance with the present invention, a load is connected to a supply line or bus across which is connected a plurality of parallel substantially identical power source sections. As is typical, the output voltage provided by each section increases as the output current drawn from that section decreases. In order to prevent the output voltage to the load from increasing as the load current demand is reduced, individually acting dissipative paths are provided, each being connected to one of the power source sections. In a first embodiment of the invention, the dissipative paths comprise shunt paths connected across the power source sections. The shunt paths are all controlled in response to the output of a comparator which compares the bus voltage against a reference. Thus, as the load current falls off and the bus voltage consequently begins to rise, the comparator will provide a control signal to the shunt paths to initially actuate one shunt path to thereby draw additional current from the associated power source section to lower the output voltage thereof. The additional current is of course steered through the actuated shunt path and does not affect the load. In another embodiment of the invention, the dissipative paths are connected in series with the power source sections.

The dissipative paths are preferably comprised of power transistors which of course dissipate very small amounts of power in their off and fully saturated states respectively. Maximum power is dissipated when the transistors are operated somewhere in their linear operating range. Means responsive to the comparator control signals are associated with each of the dissipative paths to maintain the paths in sequence as the control signal increases or decreases. In this manner, all of the dissipative path power transistors except one will either be in an off or saturated state. In other words, only one of the power transistors at a time can be operating in its linear range. As a consequence, power dissipation and localized heating will be minimized.

The novel features that are considered characteristic of this invention are set forth with particularity in the appended claims. The invention will best be understood from the following description read in connection with the accompanying drawings, in which:

FIGURE 1(a) is a block diagram of a voltage limiting system in accordance with the present invention;

FIGURE 1(b) is a diagram illustrating the output characteristic of the power supply of FIGURE 1(a);

FIGURE 2(a) is a block diagram of a first embodiment of a voltage limiting system in accordance with the present invention;

FIGURES 2(b)-(d) are diagrams respectively describing the characteristics of the power supply sections of FIGURE 2(a);

FIGURE 3(a) is a block diagram of a second embodiment of the voltage limiting system in accordance with the present invention;

FIGURES 3(b)-(g) are diagrams describing the operating characteristics of the power supply subsections of FIGURE 3(a);

FIGURE 4 is a block diagram of an alternative arrangement in accordance with the present invention; and

FIGURE 5 is a block diagram of a still further embodiment of a voltage limiting system in accordance with the present invention.

Attention is initially called to FIGURE 1(a) of the drawings which illustrates a typical prior art dissipative shunt path voltage limiting system. More particularly, FIGURE 1(a) illustrates a power source 10 connected to current supply lines or bus conductors 12 and 14. A load 16 is connected across the lines 12 and 14 and draws a load current I_L therefrom. It is desired that the voltage V_L across the load be maintained constant for varying values of load I_L.

Prior to considering the elements employed in the configuration of FIGURE 1(a) to maintain the load voltage V_L constant, attention is called to FIGURE 1(b) which illustrates a curve describing the output current-voltage characteristic of the power source 10. The characteristic described by FIGURE 1(b) is typical of many different types of power sources and as an example, it will be assumed herein that the power source 10 comprises an array of solar cells as are presently commonly employed for spacecraft applications.

The solid curve in FIGURE 1(b) illustrates that in order for the supply to provide an output voltage V_L, it is necessary to draw a current I_S therefrom. If a lesser current I_S is drawn, then the supply will provide a greater voltage, i.e. V_L'. In order to limit the voltage applied to the load 16 to the value of V_L when a load current I_L equal to I_S is being drawn, systems in the prior art have employed a shunt path 18 to draw a current I_T. By drawing the current I_T from the supply, the voltage...
Vc will be established across the load and by steering the current ISH through the shunt path 18, the current IL (equal to Ic) will be delivered to the load. The shunt path 18 in FIGURE 1(a) is controlled by a control voltage signal provided by an error amplifier 20. The error amplifier source voltage to the comparator 22 compares the load voltage Vc with a voltage provided by a reference source 24. The reference source 24 can be conventional in construction and can, for example, comprise a Zener diode type device.

If the load voltage Vc exceeds the voltage provided by the reference source 24, the comparator 22 provides a signal to the error amplifier 20 which in turn provides a control voltage signal to the shunt path 18 to increase the current ISH to thus increase the supply current IS and consequently lower the voltage Vc. On the other hand, if the load 16 varies so as to increase the current IL, the load voltage Vc would tend to decrease thus reducing the magnitude of shunt current ISH required. The comparator 22 will sense the decrease in the load voltage and thereby control the error amplifier 20 to decrease the shunt current ISH.

As a consequence of drawing the shunt current ISH through the shunt path 18, power (IV) will be dissipated in that shunt path 18. This dissipated power is represented by the shaded area in FIGURE 1(b). The present invention as represented by FIGURES 2-4 reduces the magnitude of the power dissipation in the shunt path 18 to thus increase system efficiency and minimize large localized heat dissipation areas.

Attention is now called to FIGURE 2(a) which illustrates a first embodiment in accordance with the present invention. The embodiment of FIGURE 2(a) contemplates that the power source be segregated into N sections which are connected in parallel so as to be equivalent to the power source 20 illustrated in FIGURE 1(a). More particularly, the embodiment of FIGURE 2(a) illustrates power source sections 28a, 28b, and 28c. FIGURES 2(b), 2(c), and 2(d) respectively illustrate the output current versus output voltage characteristics of each of the source sections. Inasmuch as it has been assumed for purposes of clarity that the three source sections of FIGURE 2(a), when connected in parallel, are equivalent to the power source 20 of FIGURE 1(a), it will be noted that the sum of the characteristic curves shown in FIGURE 2(b), (c), and (d) equal the characteristic curve of FIGURE 1(b). Each of the power source sections 30 is connected through a diode 32 to the supply line 34. The lower terminal of each of the source sections is connected to the supply line 36.

A load 38 is connected between the supply lines 34 and 36. A source of reference voltage 40 is connected to one input of a comparator 42 which compares the reference voltage to the voltage Vc appearing across the load 38. The output of the comparator 42 is connected to the input of an error amplifier 44 whose output is connected to each of a plurality of voltage sensing control devices 46. Each of the control devices 46 controls a different shunt path 48. Thus, control device 46a controls shunt path 48a which is connected across source section 30a. Similarly, control device 46b controls shunt path 48b connected across source section 30b. Likewise, control device 46c controls shunt path 48c connected across source section 30c.

The construction of exemplary control devices 46 and shunt paths 48 will be discussed in connection with the embodiment of FIGURE 3(a). Suffice it to say at this point that the control devices 46 are each responsive to a different value of output voltage signal provided by error amplifier 44. Thus, let it be assumed that at a minimum value of control voltage, the control device 46a turns on the shunt path 48a to draw shunt current ISHa. As the control voltage increases, the shunt path 48a is driven into saturation and if the control voltage increases further, the control device 46a activates the shunt path 48a to start drawing current ISHa. Thus, the control devices 46 are controlled in sequence such that as the control voltage increases, the shunt paths 48 will successively saturate. Moreover, each shunt path 48 is preferably designed to saturate at substantially the voltage required for the subsequent shunt path to begin to conduct. Thus, all of the shunt elements 48 except one will define either a nonconducting (off) condition or a saturated (full on) condition with only one of the shunt paths operating in a linear region between a full on and a full off condition.

In order to understand the manner in which the embodiment of FIGURE 2(a) operates, attention is directed to FIGURES 2(b), (c), and (d). The current IL drawn by the load 38 is equal to the sum of the currents ISh, IShb, and IShc applied to the supply line 34 through the diodes 32. As an example, let it be assumed that the current IL drawn by the load 38 is the same as that shown in FIGURE 1(b) and requires substantially the full output current from one of the source sections 30, a partial current from a second of the source sections and no current from a third source section. Thus, as shown in FIGURE 2(b), the source section 30b will provide a current IShb which is equal to the current ISh through the diode 32b. In other words, the current ISh through shunt path 48b will be equal to zero. This condition will occur because the control or error voltage provided to the amplifier 44 will be insufficient to cause the control device 46b to initiate conduction in shunt path 48b.

On the other hand, partial current must be delivered to the supply line 34 from source section 30a. However, it is also necessary that the voltage supplied by section 30a be equal to the load voltage Vc. Accordingly, the source section 30a must supply current ISha. Inasmuch as only current IShb should be delivered through the diode 32b to the supply line 34, it is necessary that the shunt path 48b draw shunt current ISHb. The shaded area in FIGURE 2(c) of course represents the power dissipated in shunt path 48b.

Inasmuch as it was not required that source section 30a supply its full output current, then of course source section 30a need supply no current to the supply line. Thus, a current ISha saturating the shunt path 48a will flow there through.

From the explanation of FIGURE 2(a), it should be apparent that shunt path 48a is saturated and therefore dissipates very little power equal to the product of the saturation current and saturation voltage. The shunt path 48b, on the other hand, is in a fully off or nonconducting state and therefore dissipates no power except perhaps for very small amounts attributable to leakage currents. The shunt path 48c is operating in a linear operating range and dissipates power represented by the shaded portion illustrated in FIGURE 2(c). It should however be appreciated that this shaded area is considerably smaller than the shaded area of FIGURE 1(b). Accordingly, it should be appreciated that the configuration of FIGURE 2(a) in which a plurality of parallel shunt paths are controlled such that only one can be operated in a linear range at a time results in a reduction of localized heat dissipation as compared with conventional systems.

Attention is now called to FIGURE 3(a) which illustrates an improved embodiment of the invention in which each of the source sections shown in FIGURE 2(a) is comprised of two or more subsections connected in series with the shunt paths operating on only one of the subsections. More particularly, the embodiment of FIGURE 3(a) contemplates employing a plurality of parallel paths as shown in FIGURE 2(a) except however instead of employing a single source section in each path, the embodiment of FIGURE 3(a) contemplates connecting source subsections in series. Thus, source subsections 50a and 50b are connected in series between supply lines 54 and 56. Similarly, source subsections 50c and 50d are connected in series with diode 52 between lines 54 and 56. Also, source subsections
The voltage is of a magnitude sufficient to break down the transistor. In the embodiment of FIGURE 3(a), the shunt paths are defined by power transistors 66. Thus, the emitter collector path of transistor 661 is connected across source subsection 50H1. Similarly, the emitter collector paths of power transistors 662 and 663 are respectively connected across sections 50H2 and 50H3. Consequently, the curves shown in FIGURE 2(a) is saturated. It will be appreciated that once one of the power transistors 66 in FIGURE 3(a) is saturated, it is not desirable that the base current through transistor 66 be increased. Accordingly, the configuration of FIGURE 3(a) may be modified by substituting the arrangement shown in FIGURE 4 for the arrangements enclosed within each of the dotted line boxes shown in FIGURE 3(a). Thus, a current limiter 80 is preferably connected in series with the voltage control device or Zener diode 68. In order to provide even less current for the Zener diode 68, an additional stage of current gain can be incorporated between the Zener diode 68 and power transistor 66 as shown in FIGURE 4. More particularly, it will be employed whose collector is connected to the upper terminal of the supply subsection A and whose emitter is connected to the base of transistor 66. Thus, utilizing the configuration of FIGURE 4, a smaller current from the error amplifier 64 is required to saturate the shunt path than is required in FIGURE 3(a). More particularly, the smaller current provided by the error amplifier controls the transistor 82 which in turn develops a larger base current for transistor 66 sufficient to saturate it.

It should be appreciated that in both embodiments of the invention thus far described, illustrated in FIGURES 2 and 3, the dissipative elements, i.e. the power transistors are connected in shunt across the power source sections. Attention is now called to FIGURE 5 which illustrates a further embodiment of the invention in which the dissipative power transistors are connected in series with the power source sections. As in the embodiments of FIGURES 2 and 3, the dissipative elements are sequentially controlled such that only one operates in a linear range at a time with all other dissipative elements either defining a full on or full off condition.

More particularly, the embodiment of FIGURE 5 includes power source sections 90A, 90B and 90C which can be identical to the power source sections illustrated in FIGURE 2. Each section 90 is connected in series with the emitter-collector path of a power transistor 92 between supply lines 94 and 96. Thus, sources 90A, 90B, and 90C are respectively connected to the upper terminal of the supply subsection A and whose emitter is connected to the base of the power transistor 92. Thus, utilizing the configuration of FIGURE 5, a smaller current from the error amplifier 100 is required to saturate the power transistor 92 which in turn develops a larger base current for transistor 66 sufficient to saturate it.

As in FIGURE 2(a), it should be appreciated that all but one of the power transistors 66 is operating in either a fully off or saturated state. Thus, only the transistor 662 in FIGURE 3(a) is operating in a linear region. Its power dissipation is represented by the shaded area in FIGURE 3(e) and it should be appreciated that this area is the same as the area shown in FIGURE 2(c) inasmuch as a lower voltage will exist across the shunt path. Thus, FIGURE 3(e) further even further reduces localized heat dissipation.

The system is designed to require even less dissipation than is required in FIGURE 4, a smaller current from the error amplifier 80 is required to saturate the shunt path than is required in FIGURE 3(a). More particularly, the smaller current provided by the error amplifier controls the transistor 92 which in turn develops a larger base current for transistor 66 sufficient to saturate it.
saturation. Assume now that the load current demand decreases such that the voltage V_T tends to increase. As a consequence, the output from the error amplifier 100 will fall, thus reducing the base drive currents to the transistors 92, and initially taking transistor 92, out of saturation to accordingly reduce the current I_92 as required. As a consequence of the reduction of current I_{92}, the output voltage of source 90 will increase. However, the voltage drop across the emitter-collector path of transistor 92_2 will also increase to thus maintain the voltage V_T between supply lines 94 and 96. As the load current demand decreases further, transistor 92_2 will become off biased or open circuited. As should be appreciated, the circuit is designed so that the next transistor, i.e. 92_2, comes out of saturation into the linear operating range at about the same level at which transistor 92_2 becomes nonconductive. Accordingly, for any level of load current demand within an intended operating range, only one of the transistors 92 will be operating in a linear region and all others will either be saturated or open circuited. As a consequence, with the shunt path embodiments of FIGURES 2 and 3, localized power dissipation will be reduced as compared to prior art systems.

From the foregoing, it should be appreciated that voltage limiting systems have been shown herein in which localized heat dissipation is reduced as compared to prior art systems. The improved performance of embodiments of the present invention is essentially attributable to the concept of sequentially controlling the dissipation paths so that no more than one path operates in a linear region at any one time. In addition, it should also be appreciated that systems in accordance with the invention possess a high degree of reliability as a consequence of their inherent redundancy. Thus, an open circuit failure mode in one section will merely result in another section being driven into saturation if required. Short circuit failure modes are compensated for by the automatic removal of the dissipation path of another section from a saturated condition.

Although it has been assumed herein that all of the power source sections or subsections have identical output characteristics, it should be appreciated that this is not essential to the invention and has been assumed only to simplify the explanation. It should also be understood that although several specific embodiments of the invention have been shown herein, it is recognized that modifications and variations falling within the scope of the invention will readily occur to those skilled in the art. For example only, other known devices can be substituted for the Zener diodes and transistors illustrated. Accordingly, it is not intended that the scope of the invention be limited by the specific embodiments discussed.

What is claimed is:

1. In combination with a supply line having a variable load coupled thereto, power source means connected to said supply line for establishing a predetermined voltage thereon over a wide range of load current demands, said power source means comprising:

a plurality of first power source sections connected to said supply line in parallel;

a plurality of actuatable dissipation paths each connected to a different one of said first sections; and

means responsive to a changing difference between the voltage on said supply line and said predetermined voltage for actuating said dissipation paths in accordance with a predetermined sequence.

2. The combination of claim 1 wherein each of said dissipation paths is connected in shunt across a different one of said first sections.

3. The combination of claim 1 wherein each of said dissipation paths is connected in series with a different one of said first sections.

4. The combination of claim 1 wherein each of said dissipation paths can define a full off state, a full on state, and a linear operating condition; and

means for assuring that no more than one dissipation path defines a linear operating condition for any single value of said difference between said voltage on said supply line and said predetermined voltage.

5. The combination of claim 1 including a source providing said predetermined voltage; and

comparator means connected to said supply line and said source for providing a control signal proportional to the difference therebetween.

6. The combination of claim 5 wherein each of said dissipation paths includes a transistor capable of defining an off condition, a saturated condition and a linear operating condition; and

means responsive to each value of said control signal for causing no more than one of said transistors to define said linear operating condition at a time and all other of said transistors to define either an off or saturated condition.

7. The combination of claim 6 wherein said means responsive to said control signal includes a plurality of voltage sensing devices each coupled to a different one of said transistors, each of said voltage sensing devices being responsive to a different voltage value.

8. The combination of claim 7 wherein each of said voltage sensing devices comprises a Zener diode.

9. The combination of claim 1 including a plurality of second power source sections, each second section being connected in series with a different one of said first sections.

10. The combination of claim 9 including a source providing said predetermined voltage; and

comparator means connected to said supply line and said source for providing a control voltage signal proportional to the difference therebetween.

11. The combination of claim 10 wherein each of said dissipation paths includes a transistor capable of defining an off condition, a saturated condition and a linear operating condition;

a plurality of voltage sensing devices each responsive to a different value of control voltage signal; and

a plurality of gain means each coupling a different one of said sensing devices to a different one of said first transistors.

12. The combination of claim 11 wherein each of said gain means comprises a second transistor.

13. The combination of claim 11 wherein each of said voltage sensing devices comprises a Zener diode; and

a plurality of current limiters each connected in series with a different one of said Zener diodes.

References Cited

UNITED STATES PATENTS
3,238,438 3/1966 Rhine 307—44 X

JOHN F. COUCH, Primary Examiner
A. D. PELLINEN, Assistant Examiner

U.S. Cl. X.R.

307—69; 323—1, 19