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A13STRACT

The behavior of weak electrostatic waves in a collisionless mag-

netoplasma supporting a steady large amplitude whistler wave has

been studied. All waves are assumed to propagate parallel to a uni-

form background magnetic field, B o . In the presence of the whistler

wave fields each particle executes an oscillatory motion parallel to Bo,

in addition to a translation along 13 0 and transverse motions. This os-

cillation causes the Landau resonance to be replaced by a series of

new resonances between particles and the electrostatic nodes. A dis-

tribution function for the perturbed plasma is constructed by solving

the Vlasov equation, linearized in the electrostatic wave amplitudes.

A dispersion relation is obtained and solved approximately for the

growth/dalllping rate of the perturbations. Growing electrostatic

modes are found to be approximately uncoupled. Trapped particles

have a strong influence on the stability of the system.
. 10
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STABILITY OF A STEADY, LARGE

AMPLITUDE WHISTLER WAVE

I INTRODUCTION

The existence of steady, arbitrary amplitude -whistler mode solutions to

the Maxwell-V lasov equations was demonstrated in 1966 by Lutomir. ski and

Sudan 1 . These authors considered right circularly polarized waves propagating

along a uniform background magnetic field, B o , in an infinite collisionless

plasma. It was shown that no dispersion relation exists for such waves. Un-

damped, finite amplitude whistlers with arbitrarily chosen frequency w o and

wave number k o are therefore possible, in principle.

In order to decide which of these modes are likely to be observed in real

plasmas, one must be able to answer two questions. First, does a physical

mechanism exist which "constructs" the mode in a plasma? Second, is the re-

sulting equilibrium stable enough to persist for a reasonable time? In this
3

paper we consider the question of stability. Specifically, we investigate the

stability against the growth of electrostatic perturbing waves of a plasma sup-

porting a large amplitude steady whistler. Of particular interest is an electro-

static instability associated with the distribution of trapped particles.

There is a second motivation for studying the stability of undamped whistlers.

A recent the,)retical paper 2 describes a process which produces, in the absence

of instabilities, an approximate whistler mode equilibrium. In the case consid-

ered in Reference 2, a right circularly polarized transverse wave propagates 	 L

along B o in an infinite collisionless plasma initially in thermal equilibrium. 	 1	 l

The wave damps exponentially for a short time after it is launched at t = 0.

1
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The resonance damping mechanism acting on the wave rapidly saturates, due

to the phase mixing of resonant particles. The wave amplitude then executes

damped oscillations about a finite value, and the system approaches a steady

state. The presence of instabilities may modify this process. One can avoid

the difficulties inherent in a stability analysis of the complete, time dependent

system by considering just the asymptotic steady state. This can be done in a

straightforward manner, and yields some insight into the nature of the instabil-

ity mechanisms involved in the dynamic process.

We begin in Sec. II by linearizing the Vlasov equation for the electrons in

the perturbation amplitude. Ion motions are neglected and all waves are as-

sumed to propagate along B 0 . The solution to the linearized Vlasov equation is 	 r.

constructed in terms of unperturbed single particle trajectories. (The equations

of motion for a single particle in B o and the whistler fields have been solved by

Roberts and Buchsbaum, 3 and others.', 2.4 ) The perturbed distribution function

is used to obtain a dispersion relation for the Fourier components of the per-

turbation.

It is known 1-4 that the fields of a finite amplitude whistler wave trap par-

ticles, and that the motion of both trapped and entrapped charged particles in

these fields consists of an oscillation parallel to B., a translation along B o , and

transverse motions. One finds that the parallel oscillation part of the unper-

turbed particle motion, which is greatly enhanced for trapped particles, leads

	

.	 1
to new resonances with the electrostatic perturbing waves.

One also finds that the perturbing waves are approximately uncoupled, due

to the symmetry of the unperturbed wave-plasma system. If we assume that

2
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the whistler phase velocity co o /ko is less than c and work in the wave frame,

there is no electric field and the magnetic field lines are helices.

B(z)	 B, (e,, sin k o z i e  cos k o z) + Boez

The uunperturbed electron distribution function also has helical symmetry, i.e.,

the electron distribution at any point z 1 differs from that at another point z 2 only

by a rotation in velocity space through an angle q, = k 0 (z 2 - z l ). The electron

density is therefore uniform throughout space. This is in contrast to the situ-

ation encountered by Kruer, Dawson, and Sudan', and Goldman 6 , in their study

of the stability of a large amplitude electrostatic wave. In that case there is a

strong periodic spatial variation in the unperturbed electron density, and this

leads to the coupling of an infinite number of discrete perturbing waves.

Finally, in Sec. III, an approximate expression for the growth/damping rate

is derived and studied, with particular emphasis on the effects of trapped

particles.

II THE DISPERSION RELATION

The wave frame electron distribution function for a magnetoplasma sup-

porting a large amplitude, parallel propagating steady whistler is a function of

the single particle constants of motion 1 - 4 v and W, where

v = ( v iI2 
+ V12)	 (1a)

1	 Q02	 Q1
W - 2 

V11

+

 

k_) + k vl. 
sin ( k o z + Lk)	 (lb)

0	 0

The quantities v ii , v1 , and kP describe the wave frame velocity

V = vl cos 0 e. + v1 sin ^ e y + v 11 e Z

iM

3
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and

Do =	 Iel Bo /m, 01	 =	 jel 1111/m.

A small electrostatic perturbation of the form El l (z, t) e z produces a cor-

rection to the distribution function (f -' 'f_+  f 1 ) which may be computed by solving

the linearized V lasov equation.

a 
+v 

a 
e	 e

	

v x B z	 p f	 =	 E z,t 
a f(v'W)

t	 II a z	 m	 ( )	 v)	 i	 m	 II(	 ) - .a 'V'

(2)

e	 vll of 	 ^o	 D 
III 

El I	 v a v I	 vll I ko	
.D 

W

This equation may be solved formally by introducing the function z(z o ,v ol t),

which describes the zero order motion along the z axis of a particle initially

at z o , v o , The functions z o (z, v , t) and v o (z, v , t) are, like v and W, constants

of the unperturbed motion and solutions of the homogeneous equation associated

with (2). Thus

f,
	 f io(zo'vo) 

.I 

mllJt
  Ell ( z ( t ' ) , t')
0

(2a)

	

Y	 1 dz(t') o f (v, W) ciz(t') F Q0o f (v, W) dt

v at , 	 av	 dt'	 ko	 a w	 '

If one considers only growing disturbances,

e	 o
f io	 m J

	
E ll (Z 	 t')[	 ^. ]clt'	 (2b)

ro

M

i
l

i
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First order corrections to the perpendicular current field and the charge

density can be obtained directly from f 1.

J11	 =	
_. I1,0 

f'ff VL f1c13V	

^^1	 n^CJfJ f Id3V

The current density J 11 , which is in general nonzero, leads to time varying

magnetic and induced transverse electric fields. The omission of these fields

from (2) is justified when the perpendicular thermal velocity V T is much less

than c. To see this, we estimate that J1 1 VTPI ' C 0 Vr k E ll , where k is a

typical wavenumber in the spectrum of E ll (z, t). After using Maxwell's equa-

tions to relate the transverse field corrections E ll and B IL to J 1L , and introducing

the characteristic frequency `''1 and wavenumber k 1 for E 11 , B 11 , we find that

„ x BI	 k	 VTL 	_	 I

	Ell	 k1 c2 
1. , 

/ki «

El l 	 i{	 VT( c' 1/k I)
E	 k1 c 2 + wi/ki

The charge density p, produces an electric field which must he identical

with E Ii (z, t) , for self consistency. If we express E ii (z, t) in the form

CO

	

E ll (z, t )	 - J CO Eii(k) 
ei(kz- t„lt) dk,

construct the charge density by integrating (2) over velocity space, and apply

Poisson's equation, we obtain

3

. I =

5
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0	 E11(1<)	 e' (k ' - (0 ' t) k
(4)

2	 s	 `	 kx t W,t	 1 dz of	 dz 	fro	
f']iwt, fff d v f dt e C	 )-	 dt' Tv + (dt' + k o ) ^W	 dk

m

where w l (k) = w(k) - k wo/k o and wp = n,e 2/E 0 m. w(k) is the complex frequency

of E ll k (t) in the lab frame.

As noted previously, the unperturbed motion of a particle along the z axis

consists of a pure translation plus an oscillatory motion. If t + (z o , v o ) is any

time at which the particle reaches the upper turning point of its oscillatory

motion, the function z (z o, v o , t) may be written in the form

z = zo + vu(v, W) t + ^S(v, W, t - t + ) - So ]	 (5)

where S (v, W, t - t + ) is periodic in time with period T (v, W), So is S (v, W, - t+),

and v ii (v, W) is dz/dt averaged over a period. The functions v ii , S, T, t+ are

known, in the sense that they can be constructed in a straightforward way from

the exact, closed form expressions for d z/d t obtained by Roberts and

Buchsbaum (Ref. 3), or from the simpler approximate expressions given in

Ref. 2. The time dependence of exp [i k z (t)] , which appears in (4), can be

conveniently exhibited by expanding exp [ i k S (t)] in a Fourier series, so that

exp j i k z (t) r = exp I i k (z o + v il t - So) 
J	

An exp I2'Tr i(t - t + )/Tj (6a)
t	 L 

where

T	 (t - t+)
A,,(v ' W ' k) - T(v, W, f exp I 

iks(t - t + ) - 277in	 T— ] d(t - t + ) (Gb)
0

6
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After noting that [exp (i k z)) d z/d t is (i k) - I d [ exp (i k z) ] /d t and ap-

plying (G), one is able to write (4) in the form

ffm0 u 
J_m 

E ll (k)	
el (kz-ed t ) k

t	 1	 t	 t+

- ia l jj.l d've ik(zp-Sp) f LA„ I „ exp i k 1 1 t+27rn _:— dt' dk
 m n

where

Oo Df	 27rn	 1 of	 ^f

I., (v ' W ' k)	 ko DW + (^^I + lcT) v av + TTV

After integrating over t', using (5) to express (zo - So) in terms of current

dynamical variables, and expanding exp (- i k S), we obtain

m
0 = Ell(k) ei(kz-eolt)	 k

tcI?

	 L	

exp [2rri (n - m) (t - t + )/T; I
--kf f f d 3 v	 A„ A„* I .,	 ---	 - dk
 (v u + 27rn/kT - a;- /k 	 f

The terms in the double summation above for which (n - m) is not zero phase

mix away for large t, when integrated over velocities. Note also that the quantity

in curly brackets in (8) is independent of z. The implicit z dependence in

W (v ii , v l , k o z -+- q)) is removed by the integration over w (d3 v _ v, d v, d v ii dq ).

It follows that the Fourier components E ii (k) are uncoupled, and the disper-

sion relation is

I

(7)

l^

7
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cat?	 -i I, (v, W, k) d3v
1 _	 ' f ff	 ,, ( v , W) 1

2	 __^.._^^_.._ . _ _ _ 	 0	 (9)
k2	 It	 (VII H 2vn/k'1' - wi/k)

This expression was derived for growing modes, hence it is understood that the

integrals are to be taken along the real velocity axes when the frequency w, has

a positive imaginary part. The integration contours are deformed in the usual

manner to construct the analytic continuation of (9) in the lower half w,—plane.

It is easily verified that (9) reduces to the dispersion relation obtained by

Landau in the limit

0 ; -' 0 ( A„	S,,,o ; V 11 " v ii ; Io - Df /DV ).

III ESTIMATION OF I m (co)

"There is an alternative form of (9) which provides a convenient starting

point for a study of the resonant amplification or damping of perturbing waves.

After a little algebraic manipulation, and after using the fact that zIA,,I 2 = 1

[ from (G) ] , (9; may be written in the form

w 2
e (k, co)	 =	 1 •- ^ fff

-.

l a f *

v 'av
a f +

a W
IA.2] n 2I ( v , W , °),/k)i	 _-	 d 3 v :7 0 (10a)k2 ( V II	 t 2 ,7rn/kT •- (4,/k)

where

1 
ti

I (v, W, cc k) - k v	 v i 11C1 .F kOJ d W	
(10b)

0

When the growth/damping rate is small, the imaginary part of (10a) may be

expanded in powers of w ^/ WP , where wi = I ill w'. After neglecting terms

higher than first order and solving for w , one obtains
l ire

8



,a; i 	= 
`6^r 

<I (v, W, W ii /1<) > k /Q(k, co r )	 (1 la)

where w r is the real ;part of the frequency of the perturbation in the lab frame,

and

CO2

< >k - 7Tk22 fff ( )	 An (", W)12 S ( u" ) c1 3 v	 (11b)

n

Q(k, Cd r ) - Wr a
	

cr (k, CJ r )	 (11 c)
r

cv1,2	 l a fk	 o f	 y I 

A,, 2 I
Er ( fir) 

= l -.. — p fff —	 +	 C13 v 	 ( 1 ld)
k2	 v av	 c^W	 un

V,, (v, W) + 2-irn/kT - (Wk	 (11e)

Similarly, the real part if (10a) yields Er (k, Cj r ) ti 0 when wi is small, and

this determines the function ca , (k). The quantity  (k, (=) r ) determines the sign

of the energy associated with the wave E k in the lab frame. In a Maswellian

plasma Q is positive for all values of k, but negative energy waves are possible

in media sufficiently far from thermal equilibrium ("anomalous dispersion")?.

The growth or damping rate of perturbations on a given whistler equilibrium

can, in principle, be determiner) by direct application of (11), but the computa-

tions involved are clearly formidable. It is therefore helpful to obtain some

qualitative or semiquantitative information about factors influencing the stability

of the system. To simplify the problem, we assume that B 1 is small compared

to B o and study effects of lowest order in c, where

c = 13 1 /130 = Q 1/00 -

9



The Cyclotron Resonance

We begin by considering the unperturbed particle orbits. The unperturbed

path of a particle in the two dimensional phase space with coordinates k o z + ^,

v u can be determined by solving (lb) for k o z + tk and plotting k o z + 0 versus v ii .

A typical set of such paths, for particles having the same v and various values

of W, is illustrated in Fig. 1, Note that the angle 90° + k o z + q,, which is the

angle between B 1 and vl , oscillates about zero for particles following the closed

orbits. These particles are said to be "trapped" by the whistler. Untrapped

particles close to the separatrix and trapped particles interact strongly with the

wave and are termed "cyclotron resonant." (wo — k  VII LAB FRAME _ — kOVll —

Oo for cyclotron resonance.)

The following results are based on the approximate unperturbed particle

orbits developed in fief. 2. For trapped particles,

1/S2o T(v, W) = 0i [(k o v/00 ) 2 -- 1]^'/4K(1/r) + 0(c)
	 'i

V11 (v, W) _ - Sao/k o + 0(c)
	

(12a,b,c)
	

1

8 	 q(°i^r ̂sin [2n(2m + 1) (t - t+)/Tl
S(v, 6V, t + , t) _+ 0(c''^)

ko R,=o
`---

o
+++ 	(2m t 1) (1	 q^21/I.1)

Here K (1/r) is the complete elliptic integral of the first kind, and

q(1/r)	 exp {-	 K [(1 - 1/r 2 )
1,4

^ /K ( 1/r)}

	

k o V)2 
	 ,a.	 kOv2,A

r(v,W) _ (2e)^ 	01

	 ( k o) 2

^ W + c S2	 1	 (13)
o	 \ o	 L	 o

10

9



For untrapped cyclotron resonant particles,

1/00 T(v, W)	 E4	 [(kOv/Q 
0)2	 1] y'/21- K (r) + 0(c)

V,, (v, W)	 QO/kO + 277oVk O T(v, W) + 0(c)	 (14a,b,c)

Co
4cT	 q(r)

S(V, W, t + , t)	 sill [27rm(t	 t + )/T]	 + 0(e'/1 )
k	 2+0	 M	 q(

where a	 sgn (v 11 + QO /k O ).	 Finally, for non- cyclotron-resonant particles,

1/ DO T (v, W)	 EIA	 [(kOV/QO)2 - J] / /7Tr + O(E)

V,, (v, W)	 DO/kO + 2?7o-/k O T(v, W) + 0(e)	 (15a,b,c,d)

S(V, W, t + , t)	 (V, W) 2	 0 + 0(6)

The parameter r (v, W) "classifies" the unperturbed orbits according to type.

r (v, W) is greater than one for trapped particles, with r - co for particles in

the center of the nested set of closed orbits in Fig. 1.	 r (v, W) has the value

unity for particles on the separatrix and is less than one for untrapped particles,

with r ;!^ 0 (E /, ) for non-cyclotron resonant particles.

Locus of Electrostatic Resonances

Resonance between particles and a perturbing electrostatic wave occurs

when the Doppler shifted frequency of the perturbing wave, as measured in a

frame moving with the average veloc ity V,, of a particle, matches a harmonic

of the particle's oscillatory motion.	 It follows that

11
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Y(v, r, k)	 [ k V 11 (v, r) - cq (k)] T(v, 0/ 2 ,7r - n	 (16)

at electrostatic resonance, where n = 0, ±1, t2, , . . . With the aid of (12)—(15),

we depict in Fig. 2 the variation of [ kv ii	wr ] T/2 •n with ]./r (v, W), for a fixed

value of v and for particles above and below cyclotron resonance velocity. The

intersections of the curve Y (v, r, k) with the horizontal lines Y = 0, t1, -L2, .. .

mark the locations in phase space of electrostatic resonances. Note that the

higher harmonic resonances tend to cluster in the vicinity of the cyclotron

resonance. This is due to the singularity in T (v, r) at r = 1. (T (v, r)

r K (r) - rin [ (1 - r 2 ) '2 ] for untrapped particles, etc.)

It follows from (12a), (121)), and (16) that particles on the flat portion of the

curve near a/r - 0 in Fig. 2 resonate with the perturbing wave when

(v 2 - 0o/ko 
2 )/V 

T2 =	 ( w ,, + kX20/k0)/n(k001VT);4la

These particles oscillate coherently, which greatly enhances the effect of the

resonance. The frequency (ko -0 1 VT P is the "bounce frequency" wB for typical

trapped particles at the bottom of the magnetic wells, i.e., 27r/T (v, r) 	 B

when r 00 , v 2 - 0o /ko _ Vl2 

VT

Trapped Particle E ffects

In view of the preceding, one expects cyclotron resonant particles, es-

pecially trapped particles, to play an important role in the interaction between

the whistler and the perturbing waves. The effects of trapped particles are

most prominent when the Doppler shifted frequency of the perturbing wave, as

measured in the frame moving with the average velocity v ii = - 00 /k0 of the

trapped particles, is of the order of the bounce frequency ws = (k 0 Q1 VT)I

i

12
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It is therefore convenient to introduce the frequency w°, where ('J,,(k)

C') '. (k) + kQ o/k o , and to consider k chosen so that 	 O ( wB).

It is instructive to solve (10b) and (11) for < a f/a W > k . We assume that

the perturbing waves have positive energy in the lab frame (Q > 0), and that

wo < 00. The latter assumption is reasonable in the small c limit, where one

expects the whistler dispersion relation obtained from linear theory to hold

approximately, but is not necessary in general. One finds that the system is

unstable (w i > 0) if

ka

aW 
k > - ko Iw I + 1	 vav k	

k < 0

or
	 (17a,b)

a f	 1c ^o _ 	 w°
a W k < lc o w° 

1 ^M'V/ k 	0< k < (00 - `oo )l k o

The quantity in square brackets in each of these inequalities is positive.

ti
We first consider the case in which < .a f/v a v > k is positive for some

choice of k. If one considers trapped particles only, it is possible to show (Ap-

pendix A) that < a f/a W > k and < a f/v a v > k are even functions of w" , when

w" ti O (cvB ) and to lowest order in E. Given this symmetry it is easy to con-
ti

vince oneself that either (17a) or (17b) is satisfied if < a f/v a v > k is positive,

indicating that trapped particles are destabilizing.

The case in which < a f/v a v > k is negative may be more important physi-

cally, since ( -6f/va v) W - (af/vl a vl )^ ii in the small c limit. In this case (17)

implies that the plasma is wlstable if both of the following conditions are

satisfied:

13
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-	 — -- f 	 f	 k Sa o	w	 no	 NO

--	 a W k	 v a v 	 > ko (0	 1	 k	 k o	 (18a)

and

7IF
	 f

S gn
o 

W	
=	 s gn co"	 (18b)

k

PIT

_

	

	 The fact that < 3f /aW > k is even in w" guarantees that (18b) will be satisfied

for some choice of k. A semi-quantitative trapped particle instability condition
ti

may be obtained from (18a). We estimate (a f/vav) W ti - f/VT and of/3W —

/3f/nW. AW is the change in W in going from the separatrix to the bottom of a

well. For typical values of v this is — 2 Q  VT /k o . 8 scales the fr^ctional varia-

tion of f over the trapping region, in the direction normal to the surfaces of

constant W in phase space (Fig. 1). After setting 1 0)" 1 — (k o 01 VT )'^, one finds

from (18a) that trapped particles are destabilizing if

3/2

2 k	 lc V	
Eh

0	 0 T

Special Cases

For example, consider a distribution in which the trapped particles are

strongly concentrated near the centers of the nested sets of closed orbits (one

set for each value of v), and approximate the distribution function in this region

of phase space by

Z /v
fT x (2n, T/n, VT) e L

T 8
(V 11  

+ 00/ko ) 8 (V + k o z + w12)	 (19a)

14'
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where n, 1. is the density of trapped particles. It is shown in Appendix B that

this is equivalent to

	

k o I 'e'r H (v2 - 0o/ 1/k 1 )	 w2 - Sao /k 2	 1f T =	 exp	 — 6( 0) (1.9b)

	

2'/7Q0 n e
-q

( V ) VT 	 Vr	 \I'2

where H (x) is the unit step function, and

kov 2	 1	 1 ini	 1	 1
77(v) _ c^i C	 ) -

 J] /

 S( 2 - 0) = R^^ S(— - —/
0 r 2 	 R2

Substitution of (19b) into (10b) yields, to lowest order in c,

Co" 
IleTk 0 H (V2 _ ^0/k0 ^

	(V2 _ 02
	 2)
	 1

I ti	 exp -	 h' (	 - 0 I	 (20)

	

4^r k n^ VT n 3 Sao	 VT 	 r 2	 /

where

8' (1/r 2 - 0) = a S/^ r-2.

It follows from (16) and (12b) that the n = 0 resonance condition for trapped

particles is -(,6"/k =- 0. Since I (v, W, (,)') vanishes when W" = 0, the n = 0

resonance makes no contribution in this case. For very large r q (1/r) - (4r)-'.

After using (12c) in (6b) and retaining only terms of lowest order in 1/r, one has

	

IA+1 (v, W)12	 (1/r)2 (k/k o )2	 r	 ao	 (21)

The higher harmonic oscillator strengths go to zero faster than (1/r) 2 , and

these terms do not contribute to <I> in this case.

Equations (20) and (21) may be used in (11) to obtain a growth rate for the

perturbations. The integrations are most conveniently performed in terms of

15
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the variables $ r, v, and ^ = 2 (1 , + k0  + 0) . One obtains from (1a,b), (11e),

(12a,b) and (13) the results 

8k K (1/r) (v 2 - Zo/ko )'4
$(n) _	

7TInI 
(koQI)1	 S(v2 - v1?) 80'(11) '7 (cell)	

(22a)

where

= Q0	 4 K ( 1/r) cv" l 4

un 
2	

^ 
z

k 2 1 l	 2wn wB	 T
0

0-(x) = sgn x

and	

r	 1

d3 v = 14 Do 71(v) ( 1/r 2 - sin e f) - 'n/k 0 r 3 I vdv dr d^	 (22b)

The variable ^ appears only in the expression for the volume element d 3 v, and

leads to an integral of the form

+sin - l ( 1/r)

	

( 1/r 2 - sin e ff /, d	 2 K ( 1/r)

f-sin-1(1/r)

in (11b). The remaining double integral contains two S functions and is easily

evaluated. If the approximation

	

a)P	 3 k 2 VT
e r (W r , k) ti 1 - ^2 1 + 2 w2

	

r	 P

is used to evaluate Q (w,, k), one obtains for co,

coi ti - ^rcvr (WTaP /c^B) 2 e-(w /Ws )4 sgn ( Coll
)	 (23)

II
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where ,) 2 = n,, T e 2/c o m. The factor exp {- (60 11 /60 13 ) 4 } , which strongly

suppresses the trapped particle contribution to wi when o > > (.; 13 , comes

from the factor exp {- v, 2/V•1 } in (1.9a).

	

To estimate the maximum growth rate, one sets w r 	- cop and maximizes

(23) with respect to w". For 60" = 2	 &;B,

(W' )mnx.	
1.35 a;p(o)T/.;13)2

It is interesting to study the dependence of ( wi) mnx. on the amplitude of the

whistler. If wT is approximately proportional to the width of the trapping

region in velocity space, then wT ti 6116 and ( w i )	 C". The growth rate of
mo x .

the instability therefore decreases with increasing c W B t /B o . This result is

not valid for extremely small c, because of the assumption that CO, < < 60r

Finally, consider the equilibrium established when a finite amplitude

Whistler is "turned on" in an initially Maxwellian magnetoplasma and then

allowed to evolve. The approximate asymptotic distribution function for trapped

particles obtained2 by the present authors for such a process is

ti	 600 2w 0

f T ti (1T VT )- 3 
exp - V2 +	

2	
VT

k 

ti

This d i stribution shows no variation with W, and af T/a v is less than zero for

all v. In this case trapped particles help stabilize the plasma against perturba-

tions having	 wB . As in the preceeding case, the trapped particle con-

tribution to the imaginary part of 60 becomes negligible when 60 " > > wB.
i

9.
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APPENDIX A

We consider the effect of the transformation k 	 k + /\k,	 (k)	 (l: A Ak)

- w" (k) on the quantity <g ' k , when untrapped particles are ignored. Here g is

any single valued fuletiOn of v and W only. It follows from (22) and (111)) that ra°

nccurs only in the combination (,),, /a, n in < g ;  so that < g > k = G (k,

When I w" I is comparable to (,1D, Ak w -2	 (d	 /d k) - 1	 O (c l). 11 once

G (k + Ak, - (,)" /(,) B ) ti G (k, - 0 1 Ice 3 ), to lowest order in r. Using this fact, and

again referring to (22), one finds that the sole effect of the transformation

a '" , - w" is to replace n by -n in each of the terms which contribute to the

summation in (I.lb). Thus, to show that the trapped particie contribution to <g 
,'k

is an even function of w", it is only necessary to show that IA ,, I I -_ IA-,, 1 2.

Equation (12c) may be written in the form

,A

t - t +	 !!
m+!4	 m+1

8	 U( I/r) (-1)	 cos (2n1 I- 1)
S (v, W, t+, t)	 —	 ^ --	 --1-.-- .I ---

 2)1-.

+( 	 12mA 1) (	 )^0	 1 I c	 2m 11

m-0

The function exp I i k SJ is periodic in [ 2'1, (t - t .,)/T + 11 /2] , and may be ox-

paraded in a Fourier series. The coefficients of this expansion are, after using

(6 ►)),

B	 c e-innl2n	 n

But B„ = 13-,,, because S is an even function of ( 2 , (t - t + )/T -f- if /2] , hence

A - e" ^n	 i"	 -n

1 n

I=

19



and

IA. ! 2	 =	 IA..,,II

for trapped particles.

. im

20



APPENDIX B

A straiglitforward change of variables in (19a), using (1) , (13) , and the

definition

= 2I 2^r + koz 

yields

neTko11 (v2 - Q /ko	 (v2 _ Qo/ko
f 	 =	 exp	 8(1/r - 0) 8	 (B1)

20 ner^(v)VT
	

VT

ti
f T must be a function of v, W or v, r only, i .e., the density of particles in phase

space must be uniform along the particle orbits. The distribution described by

(131) satisfies this requirement, even though it appears to have a third independ-

ent variable. In fact, the orbit with 1/r = 0 consists of a single point on the

line	 = 0.

ti
A mox e convenient representation of f T is obtained by first imagining the

trapped particles to be evenly distributed aloe.;; a small but finite radius orbit

near the bottom of the well, then allowing the radius of this orbit to go to zero.

Thus

neT` . O H (v 2 - Qp/k p) 	(v2 - 0.2 	 2

	

0	 0)]f T =	 exp -	 8 ( 1/r - 0) x C	 (112)
2 00 

n e 77 ( v ) VT	 VT

where C is determined by the condition

21



	

f+sin'^(lir)	 f+sin'^(1;'r)
d Qt)(1/r2 -sin e d 	 = 2C 	 (1/r2	 -sin e A')" dF	 (B3)

	

sin -1 (1'r)	 sin-1(1.'r)

= 4C K (1/r).

C	 r/4 K ( 1/0	 (134)

[See (22b)j . The factor of 2 on the right hand side of (B3) is due to the degen-

eracy s of the coordinates r, v, A. After noting that K (1/r) — '7T/2 for large r

and inserting (B4) into (B2), one obtains the result quoted in (19b).

22
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Figure 1. Phase Plane Trajectories for Typical Trapped
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Figure 2. Electrostatic resonances occur at those points in phase space for which
[k-VII - Wr ] T /277 is zero or a positive or negative integer. Trapped particles
have r > 1; untrapped particles have r < 1. o- = Sgn (v ll + QOAO).
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