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THE EFFECTS OF PROPAGATION AND SOURCE DISTRIBUTION ON

COSMIC RAY COMPOSITION AND ANISOTROPY

R. Ramaty
NASA/Goddard Space Flight Center

Greenbelt, Maryland

R. E. Lingenfelter
Institute of Geophysics and Planetary Physics
University of California, Los Angeles, Cal.

Abstract

We consider the propagation and source distribution of cosmic

1	 rays. The principal requirement for the various models we consider
Y^

is that they should be capable of holding particles in dense regions
Yj

of the galactic disk for periods of time sufficient to produce the

observed fragmentation products of cosmic rays. This can be achieved

by both simple and compound diffusion provided that suitable mean

free paths and boundary conditions are chosen. The bulk of the

anisotropy is caused by the discrete nature of the cosmic ray sources.

However, models which reproduce the fragmentation products will in

general yield anisotropies consistent with available upper limits.

Invited paper presented by R. Ramaty at the Discussion on the Isotopic

Composition of Cosmic Ray Nuclei, Lyngby, Denmark, March 23 to March 25,

1971.
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INTRODUCTION

The concept of diffusive motion of cosmic rays was first proposed

by Fermi (1949). Diffusion equations for cosmic ray acceleration and

propagation were subsequently treated by several authors (e.g. Fan 1951,

Morrison, Olbert and Rossi 1954),	 Syrovatskii (1959) wrote down and

gave a general solution for a transfer equation which included spatial

diffusion, sudden losses and energy exchange.

The problem of nuclear fragmentation in interstellar space in terms

of such a transfer equation was treated in detail by Ginzburg and

Syrovatskii (1964). Because of its mathematical complications, however,

subsequent treatments of nuclear fragmentation have ignored this model

and have replaced the details of galactic propagation by the simple

statement that the fragmentation and energy loss of cosmic rays are

the result of the passage of the particles through a slab of matter

of given thickness x, measured in grams per cm 2 . Studies of the charge

composition of cosmic rays (e.g. Shapiro and Silberberg 1970), however,

have demonstrated that this slab approximation is not adequate to

account for the observed fragmentation products of both the CNO and the

iron group nuclei and that the observed elemental abundances could be

better understood in terms of a distribution P(x) of matter traversals

X.

As a possible form for P(x), Cowsik et al. (1967) have suggested

an exponential distribution for the potential path lengths of the

particles from their sources to earth. This exponential distribution,

however, is simply the result of the replacement of the diffusive term

DOn (D is the diffusion coefficient and n is the cosmic ray density)
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by an escape term n/T. The resultant transfer equation (e.g. Morrison

1961) has been widely used for the study of the propagation of cosmic

electrons in interstellar space (Hayakawa and Okuda 1962, Gould and

Burbidge 1965, Ramaty and Lingenfelter 1966). Ramaty and Lingenfelter

(1968) have also used this equation for the propagation of cosmic ray

deuterons and helium-3 nuclei.

While the problem of nuclear fragmentation can be treated without 	 4..

explicit consideration of spatial dependences, the problem of cosmic

ray anisotropy clearly depends on the spatial and temporal properties

of the source distribution and particle propagation. It was first

suggested by Baade and Zwicky (1934) that cosmic rays may predominantly

be produced by supernova explosions. This point of view has been sub-

.(Sh'ItlbNSky 1953, Ginzburg 1953) by the discoverystantially strengthened 

of non-thermal radio emission from supernova remnants. More recently,

the discovery of pulsars gave additional support to this point of view,
L

i

and even though the t detailed mechanism of cosmic ray production is as

yet unknown, it is quite-generally accepted that the production of the

bulk of the cosmic rays at earth above a few tens of MeV/nucleon is

associated with the explosive event of supernova formation.

The implications of a cosmic ray source distribution which is

A superposition of discrete events in space-time has been considered

by Lingenfelter (1969),Jones (1970a),and Ramaty, Reames and Lingenfelter

(1970),

i
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In Lingenfelter's (1969) treatment the distances and ages of

supernovae were replaced by the estimated distances and ages of known

pulsars. In the treatments of Jones (1970a) and of Ramaty, Reames, and

Lingenfelter (1970) a random distribution of supernovae in space and

time was used. The principal conclusion of these treatments was that

the possible values of cosmic ray anisotropy undergo large statistical

fluctuations as a result of the uncertainty in positions and ages of

the cosmic ray sources. Jones (1970a,b) chose to interpret the high

degree of cosmic ray isotropy in terms of such fluctuations while

Ramaty, Reames and Lingenfelter (1970) preferred a model in which the

low anisotropy is the result of the slow propagation of the cosmic rays.

While in the treatment of Ramaty, Reames and Lingenfelter (1970) this

slow propagation was achieved by simple 3-dimensional diffusion with

a short mean free path, Lingenfelter, Ramaty and Fisk (1971) showed that

the same result can be obtained by compound diffusion with a much

larger mean free path.

In the present paper we shall treat in a consistent fashion the

problems of fragmentation and anisotropy within specific models for

cosmic ray propagation and source distribution. We limit our discussion

to propagation by diffusion, both simple and compound. We shall formulate

general transfer equations for cosmic rays which take into account these

forms of propagation as well as nuclear fragmentation and energy loss.

We consider both continuous and discrete source distributions and pre-

sent the solutions of the transfer equations for ultrarelativistic as

well as mildly relativistic particles. We consider in detail the
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fragmentation of ultrarelativistic nuclei from iron to lithium and

we present the age distributions which best fit the observed fragmenta-

tion products. Finally, for the same formalism and models, we calculate

the anisotropy and compare our results with observed upper limits.

Particle Propagation and Transfer Equations for Cosmic Rays

There is considerable observational evidence, (Morris and Berge

1964, Hornby 1966, Davies 1967) that on a scale smaller than about 1 kpc

the interstellar magnetic field is quite disordered, even though on a

larger scale the field appears to lie.nearly along the spiral arms. The

major observed irregularities in the interstellar medium are interstellar

gas clouds which have a mean diameter of around 10 pc, a mean separation

of about 40 pc and a mean distance between clouds of roughly 100 pc

along an arbitrary line of sight (Allen 1963). The interstellar

magnetic field may therefore be considered as random with a scale size

.9 which could range from several parsecs to a few hundred parsecs.

Since the gyroradii of the majority of cosmic rays are much smaller

than I, cosmic-ray particles will follow field lines for distances up

to and comparable to A, and may be transferred to other field lines

thereafter. The resultant motion is random walk which can be approxi-

mated by diffusion provided that A is smaller than the linear dimension
r

of the confinement volume of the cosmic rays.

-a.

tfr.
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The validity of the diffusion approximation for the propagation

of cosmic rays in this type of magnetic field distribution has been

discussed in detail by Ginzburg and Syrovatskii (1964). The transfer

equation for the number density n(r, t,B), which allows for spatial

diffusion, energy loss and fragmentation of a particular nuclear com-

ponent of the cosmic rays, is given by

(1)	 t

Here D = 1/3 6 is the diffusion coefficient,(', ^E and Cr are position,

time, kinetic energy per nucleon and velocity, respectively, B = jC/jt

is the rate of energy loss per nucleon, and 
f l =  

Tj 4.Te	 , where Td

is the nuclear-collision loss time and T e is an escape time which in

some cases will be used in lieu of specific boundary conditions. The

source term Q ( '(*j ( E ) is in general position, time and energy dependent

and consists of both primary sources, whore nuclei are accelerated to

cosmic ray energies, and secondary sources, where nuclei are produced

by fragmentation. Equation (1) is valid for cosmic electrons as well,

provided than Td -* oo , E is total kinetic energy and J E /Jt is the

energy loss rate appropriate for electrons.

In the subsequent discussion, we shall assume that D, B, and T are

independent of r and t and are functions of £ alone. The solution of

equation (1) can then be written as (Syrovatskii 1959)

t	 .^o	
i lc	 /	 l^^^^) e^ _ ( 

aT l	 ^`^M	 ^`ra^t^^^JCc'cJ'^/ 	 (2)S 
s_

3
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Here, the integral d 3 t, 	 is over the spatial extent of the source

distribution Q; f (c^ ('^^ rC' ) satisfies the equation

with the same boundary conditions as n(C I ^) ; and 6,, and 2'

are determined by

(3)

where Do, is the diffusion coefficient at some fixed energy and it is

assumed that the particles always lose energy so that B >0 and E,>&,

The solutions of equation (3) depend on the assumed boundary

conditions. For cosmic ray propagation in the galaxy, it is convenient

to use a coordinate system with the x and y axes in the plane of the

disk and the z axis perpendicular to this plane. If we assume that

the diffusing medium is infinite in the x and y direction and has

absorbing or reflecting boundaries at z = + a, the solution of equation

(3) becomes

Fit Lr
z	(5)

3 114 i o I+ 41Lx1 1

ex 
^ - 3(I 	 t Z^x^^'	 ^i^	 Jq Q^c,	 J	 1C

where (-) or (+) correspond to absorbing or reflecting boundaries,

respectively,	 _ (x,y,z),two = (xo) yo ,zo ), and P„ and R1 are the



-. ^.^ ,.ems .^

A

-7-	 .Ri

mean free paths parallel and perpendicular to the galactic plane,

respectively.	 If a --r 00 and	 = P1 equation (5) reduces to isotropic

diffusion in an infinite medium,

ex

^L^ ^4c^ (6)

Before presenting the evaluation of equation (2) with the

diffusion solutions (5) and (6), we shall consider a possible departure s

from simple 3-dimensional diffusion. 	 in the above discussion we pointed

out that 3-dimensional diffusion is the result of motion in a disordered

magnetic field with scale size k in which particles follow field lines

for distances	 S ;,Q , and are transferred in a random manner to other

field lines for 5>. 	 such irregularities could be produced by the

cosmic raysthemselves, or by some additional source of turbvlence in
r
I

the interstellar medium. 	 These irregularities could scatter the cosmic

rays, but as long as the gyroradii of the particles are smaller than X,

this scattering is essentially one dimensional along the local field

lines.	 The resultant motion, which! combines one-dimensional diffusion

along field lines with three-dimensional random walk, is compound

diffusion (Lingenfelter, Ramaty, and Fisk 1971).	 It should be pointed

out that compound diffusion could result even if there are no small

'	 scale irregularities superimposed on the random field.	 In this case, the

additional scattering along the field lines would be the consequence of

the bends of scale size k in the random field itself.

1 ,
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When compound diffusion is taken into account, the transfer

equation (1) has to be replaced by the pair of equations

(3 
2

2t r1(^,t'E ' S^ 
3 ^` i as	 ^^n) + 'T -^^^^^ Q(r^,t)^-h^^^'^ % t >7

and

l
a s	

J	 J (8)

where s is a linear distance measured along fieA lines. 	 Equations (7)

and (8) can be solved by the same methods as equation (1). If we chose

the observation point to be at s = o, the solution can be written as

t	 p1	 Eo	
jet/ • .}

41.	 ST
J► 	

.0

(9)
o

where fl satisfies the one-dimensional diffusion equation

T°r (L0)

and	 ^o	 and T are determined by equations (4). 	 Equation (9) for

compound diffusion is equivalent to equation (2) for simple three-

dimensional diffusion provided that

c?

%)
(11)

0

; M

/...2

i.1
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If one-dimensional 	 along

is(A400 ),	 _Ai d l S O - c ' ) ^	 so

and equations (2) and (7) become in

The functions f l and f. 2 depend

to solve equations (8) and (10). F

the field lines is negligible

that r
fact identical.

on the boundary conditions used

Dr simplicity we assume infinite

diffusing media so that

^...,	
11
	 1̂

 ( 
3	 _ 3 S

e 
1	

3dA 	IL	 S 	
(12)Q

Lingenfelter, Ramaty, and Fisk (1971) have evaluated this integral	 j

as a function of % /Z. , where ^o s ^r'-fa,C aC	 is the time to

maximum for compound diffusion. The results are shown in Figure 1 to-

gether with the equivalent curve for simple 3-dimensional diffusion.

As can be seen, the decay tame for compound diffusion is much longer

than for simple diffusion. Similarly, the rise time is also much

larger, since the values of % differ by a factor of 2(r- 'ro)y^ e^

which is much larger than 1 if the distance from source	 observer

greatly exceeds the mean free path. The net result of these differences

is that cosmic ray propagation in interstellar space is much slower by

compound diffusion than by simple diffusion with the srme values of the

mean free paths.
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COSMIC RAY DENSITIES M AGE DISTRIBUTIONS

Given the source function Q, the local interstellar 	 density

can be obtained by evaluating equation (2) or (9), for simple or

compound diffusion, respectively. As discussed above, Q consists of

both primary and secondary sources. The primary sources are believed

to be discrete events in space and time such as supernova explosions

or pulsars. For such discrete events, the source distribution can

be written as

M	 (13)

where rr and 
tYn 

are the position and time of occurence of a particu-

lar source and 1". runs over the assumed source d i stribution. T)Dy

substituting equation (13) into equations (2) or (9) we get

-£m

rL (I-(" f
	, Z 1^ '&I Q , (^") Q ^

nn	 £	 J	 (14)

where E ,,, and ^^ are given by equations (4) with E, and t replaced

by F,,,,, and "CY,,,	 and f is given by equations (5) or (11), for simple

or compound diffusion, respectively.

Ramaty, Reames and Lingenfelter (1970) have evaluated equation (14)

for a random source distribution. They have shown that whereas the

cosmic-ray anisotropy undergoes large fluctuations as a result of the

discrete and variable source distribution, the cosmic-ray density

remains relatively constant. We shall consider these matters in some

detail below, after the treatment of nuclear fragmentation.

I-

v	 L

t



-11-

The secondary source consists of particles produced by nuclear

collisions of primary cosmic rays with interstellar gas. Because of

•	 the relative stability of the interstellar density of primary particles,

it is possible to assume that the secondary source is time independent

and a separable function of position and energy, i.e.

Q(c>,F _ ^^^^ ^(r^	 (15)

The energy dependent part q(f_), depends on nuclear cross sections and

kinematics as well as on the spectrum of the primary particles which

produce the secondary nuclei in question. The position dependent part,

(3 , which is chosen to be a non-dimensional function of 7 , depends

on the spatial distribution of both the interstellar gas the the equili-

brium density of the primary cosmic rays. Since both these distributions

are expected to pe !ik in the galactic plane, we assume that

p	 o+e•WV se

where	 is approximately equal to the scale height of interstellar

hydrogen. We use	 = 100 pc. By substituting equation (16) into

equations (2) or (9) we get

E	
-,-

(17)

d r, f (r ^o,^) (ro}

where .E'D and Z are given by equations (4) and CP(E) is particle

velocity at energy per nucleon F_.
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f

We consider now the evaluation of equation (17). We first

separate T into a destruction time T d and an escape time T e . Td is

energy dependent and is given by

r

where	 is the destruction cross section and R H is the interstellar

hydrogen density. In the calculation of T d we shall assume that 1L H

is a constant over the confinement volume of the cosmic rays. The

escape time Te may also be energy dependent. We assume, however, that the

mean free paths f and A are energy independent, so that the only

energy dependence of Te is through (3 , i.e.

-1	 I
(19)

where 't^ is a constant. With these assumptions, equation (17) can

be written a8

00	 Fo	 ^X
o	 ^

o	 c ;^ ^ 'at f	 rY`	 (20)

where M o is the proton mass, ^^ luX = ^1'n  n N (3) ^^E ^ 	and
a	 I

where

 J = ^J° C-Po (-I,-	 0 -	 r 1 rQ )` ) ^\ r0 /	 (22)

^I-

i^

t

.1
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P(t) is the age distribution of the cosmic rays. Using equation (16)

for S , we can evaluate P, (T) from equation (22) for any propagation

function f. For simple diffusion, with f given by equation (5), we get

To ^,
C\ _ I ' .	 er C 3(g + - ynq'' '^ e

	
3^^^ ^-4na^^ '^^.

I 	 M	 y k c 'r J
2 ,

L	 ..^^

h-

	

-ao	 q R C.'^	 y Qc 	
(23)

± Z ec^.	 3(4n,a_2a^'^ r̀̂ '^2

	

h a -ao	 y.CC't	 J

where the upper and lower signs correspond to absorbing and reflecting

boundaries, respectively, and z is the height of the observation point

above the galactic plane. If we use equation (6) instead of equation

(5) for f (or if we let Q -ao in equation (23)), we get Po (,) for

diffusion in an infinite medium

For compound diffusion, with f givenby equation (12), we obtain

(J
_ ^ ^	 3 5t	 ^2	 1	 1	

ff
	i^^^^^d'11-Ac^) e  1 14 K, 	 2. erL q	 ^{-C^r ^ 4k 5 	l	 (Z.5)

^ ^ ti

As can be seen from equations (23), (24), and (25), P o ('t'), and hence

also the age distribution P( ,C ), depend on the distance z of the point

of observation from the galactic plane. In order to investigate this

dependence, we have evaluated the quantity J	
if nuclear

b
cillisions and energy losses are neglected,this integral equals to the
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ratio between the equilibrium density and production rate per unit

volume, i '.e., from equation (20)

k ( Y ,) =	 ( ^) S PCB) j-V
1	 0	 (26)

m
Therefore, the quantity f *P	 which has temporal

dimensions, may be defined as the trapping time of the cosmic rays in

the confinement volume. The trapping time in general differs frem the

mean age of the particles given by ft^c^^/f P(^^^'^'	 , a fact

which should be kept in mind when comparing.the abundances of secondary

fragmentation products with the survival probabilities of certain radio-

active nuclei.

The spatial dependences of the trapping time and its gradient are

plotted in Figure 2. The implications of the gradient on the anisotropy

will be discussed below. Here we merely note that for the evaluation

of the cosmic ray densities at earth, we can assume that z = 0, since
ao

the variation of IP(x, ^^' 	 from z _ 0 to the present position of
v

the solar system of z = 10 pc is almost entirely negligible.

The distributions P o ( Icl) for z = 0 are shown in Figure 3 as functions

of It/'ro . As can be seen, for simple diffusion with absorbing boundaries

P. decreases rapidly with '^^2',, . Since the observed ratio of light to

medium nuclei requires a trapping time of a few million years, for simple

diffusion with absorbing boundaries, the mean free path le cannot be

larger than a few tenths of parsecs. This, however, is not the case for

reflecting boundaries where P. approaches the constant value of i/a

r^
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and the trapping time goes to infinity unless the age distribution is

cutoff at some large value of T by a finite escape probability at the

Lboundary. In fact, for values of  much larger than a few tenths of

parsecs ) PO becomes independent of I and depends only on the assumed
escape probability. In the present paper, we did not introduce such

an escape probability as an explicit boundary condition. Instead, we

use the exponential term exp(- t /'re ) to take into account the effects

of this escape.

Also shown in Figure 2 are the distributions Po for diffusion in
an infinite medium and compound diffusion. The infinite medium case

clearly lies in between the absorbing and reflecting boundary cases

and will not be further considered in this paper. The parameters

appropriate for compound diffusion will be discussed below.

COSMIC RAY FRAGMENTATION

We consider now the problem of cosmic ray fragmentation using the

age distributions derived above. We limit our discussion to relativistic

nuclei so that energy losses can be neglected and we assume that all

cross sections are energy independent. Under these assumptions,

equation (20) reduces to

ov

n ^ E^ ; ( F ) d^ ex P r_n ^cG^'t'J (?(^)
0

(27)

r

i

;t

l=
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Let j = 1^ , , N range over all stable isotopes with j = 1

corresponding to protons and j = N to Fe 56 . In the fragmentation of

nuclei heavier than hydrogen or helium, it is reasonable to assume that

the velocities, and hence also the energies per nucleon of the fragments,

are the same as those of the incident nucleus. Therefore, the equilibrium

density nj of isotope j resulting from the fragmentation of isotopes i

with equilibrium densities n i (i > j) can be written as

(28)

where	 NI YL H c C j nL^E^

f
°O 1 	 r^ 1	 (29)J e CXr^ YLNCC 'l i" ('t'J

J o	 ,.J

and CLi and C, are the fragmentation cross sections of isotope i into

isotope j and the total breakup of isotope j, respectively.

Since measurements of individual isotopes are not yet available, the

computational technique must depend on the comparison of the cal,ulated

and measured fluxes of individual elements. Let S 1 L j L ^ 2' range over

all isotopes with the same atomic number Z. The equilibrium density nZ

of element Z can then be written as

J2.	 Jl,. J 2

^t •^	 ^`2 ^^	 _	 (30)

k 
j	 '^
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where k ( S ' k <_ 2
	

) is the isotope of element Z which is most

likely produced by nucleosynthesis in the primary sources and

o-1z^^	
(31)

The first term on the right hand side of equation ( 30) is the sum

of the partial densities n produced by the fragmentation of isotopes
J

with atomic numbers greater than Z, while the second term results from

the tertiary interactions of these partial densities. The third, fourth

and fifth terms on the r.h.s. represent, respectively, the primary,

secondary, and tertiary densities of the isotope k. Equation (30) can

be solved for Nk in terms of the measured density nZ . Using this value

of Nk, we can express the densities of the individual isotopes of

element Z as follows: 	

o

its = ^' + C kN y +^`';+^ 1+C no 	 4Cti

1 !. ',

(32)

where the second term vanishes if j = jZ , the third term is zero for

all j except j = k, and the fourth and fifth terms vanish if j > k-1

and j > k-2, respectively.

The cross sections 5y , were compiled by D. V. Reames and will be

published elsewhere (Ramaty, Reames and Lingenfelter, in preparation).



-18-

Using these cross sections, we have evaluated equation (32) with

the partial densities n ,! given by equation (31), N k obtained from

equation (30), the observed densities n  as summarized by Shapiro and

Silberberg (1970), and the quantities	 given by equation (29) for a 	 a

variety of age distributions P('C). The results, summed over individual

elements, are given in Table 1, together with the observed abundances

nZ . Models (1) and (2) are 3-dimensional diffusion with absorbing and

reflecting boundaries, respectively. Model (3) is compound diffusion

and model (4) represents an exponential age distribution, i.e.

The parameters for the various models are summarized in Table 1. These

parameters were chosen so that the value of Li, Be and B to the measured

mean densities of C, N and 0 equals 0.23 (Shapiro and Silberberg 1970).

The age distributions P('C) for the same parameters are plotted in

Figure 4. As can be seen the distributions based on diffusion and disk

geometry predict more particles at large V than the exponential dis-

tribution. This is the result of the geometry we use in which the

thickness of the trapping volume is larger than that of the source, so

that particles produced close to the plane can reenter the central parts

of the disk after a relatively long trapping time in the confinement

volume.

(33)
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Using the primary equilibrium abundances N  as determined from

equation (30), we can deduce the source abundances q 

N6 ^k	 (34)

The results for the variouL, models are given in Table 2. As can

be seen the source abundances of some elements are negative, indicating

that the fragmentation process produces too many secondaries for that

element. By considering the uncertainties in the observations, however,

none of these negative abundances are significant. Nevertheless, an

age distribution with an upturn at large values of le will tend to

produce relatively less fragmentation products of the iron group for

the same U/M ratio than the exponential distribution. This effect is

most pronounced for the distributions corresponding to simple diffusion

with reflecting boundaries and compound diffusion.

COSMIC RAY ANISOTROPY

There are a number of reasons to expect anisotropy in the cosmic

ray intensity. Compton and Getting (1935) first pointed out that, even

if the cosmic ray intensity were isotropic in some rest frame other than

that of the earth, the intensity measured in the moving frame of the

earth would be anisotropic. In a detailed derivation Gleeson and Axford

(1968) show that in the relativistic limit this anisotropy in the moving

frame may be written

S : (2- +P) 7/G	 (35)

I

t

^^	 I
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where the differential intensity is assumed to be a power law in

kinetic energy per nucleon with exponent r , and v is the velocity

of the moving frame.

Thus if the cosmic rays were isotropic in the frame of the inter-

stellar medium and its associated magnetic field, the motion of the solar

system relative to this frame will cause an anisotropy. With respect

to the neighboring stars the sun has a velocity of about 20 + 0.5 km sec-1

in the direction of right assension 271° + 2 0 and declination + 30 + 1°,

or galactic longitude f = 57 + 1° and latitude 4 = + 22 + 2° (Allen
1963). In the energy range from about 10 11 to 10 15 eV where / = 2.65

we see from equation (35) that the anisotropy from this effect would be

about 3 x 10-4 . rhis is equal to the upper limit set by Elliot et al.

(1970) at 10 11 to 10 12 eV. Since the gyroradius of 10 11 to 10 12 eV

particles in the interplanetary magnetic field is on the order of 1 A.U.,

the low anisotropy observed at these energies is probably not representa-

tive of its interstellar value. Nevertheless, the cosmic ray anisotropy

in the interstellar medium should not exceed the value of 10 -3 determined

at about 2 x 10 13 eV (Cachon 1963) where the gyroradius in the inter-

planetary field is about 100 A.U. so that the effects of this field can

be neglected.

An anisotropy is also expected from the propagation of the cosmic

rays. The bulk of this anisotropy is due to the discrete nature of the

cosmic ray source distribution. However, even if this distribution were

continuous and time independent, an anisotropy would result from the

asymmetric position of the solar system with respect to the source

.,I
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distribution and the boundaries.

We can estimate the magnitude of this anisotropy from Figure 1.

For a = 300 pc, we see that (t/m)(?r't-^71^^ = 3 x io -4 Pc -1 a► A ?_=10?C.

	

The anisotropy due to this density gradient is given by 	 h./'b

Since Figure 1 was derived for 3-dimensional diffusion with absorbing

boundaries, we use k " •1/. The resultant anisotropy of N 3 x 10-5

is much smaller than the minimum anisotropy which could be expected

from the Compton-Getting effect associated with the motion ofthe sun.

In order to investigate the anisotropy resulting from the discrete-

source nature of the cosmic ray sources, we have to use the source dis-

tribution given by equation (13). For relativistic nuclei energy losses

can be neglected and all destruction cross sections become energy in-

dependent. Equation (14) can then be written as

t	 4 -1+
yt (r 	 M Q	 C Xp C— T- ^''^ J ( r ) rw+ ^ -^,N'',	 (36)	 ,

1

For ordinary diffusiotiL the anisotropy is given by

	

3,^„ Ivr-^	 I^n.,l	 I

	

rl.,	 rL (37)

By substituting equation (36) with f given by equation (5) into

equation (37) we get

	

\	 1	 2	 ti

2 t t„„,	 ^^ TYt-	 . Yn

1.	 t t	 1	 `"^
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where (^^L^ is given by

Z^	 3 _._- 3l eX	
3(x-Yh,)+3C'^-^w,^

a

	

F 4TrQt	 -t ml 	 ^'C -	
4k C'	 m

	

t	 1

x	 ?^y+40.-1^µyvi^/ '^ ^-
	 fex	 - 3('^î-^w,^-gnOl^2

	 (39)

3 tint - w^ +I^n,^)	 I + ^` Qx 
r 

3 Ii^r+^^+t{rn0.-2Az

n_	 }

where (-) and (+) correspond to absorbing and reflecting boundaries,

respectively.

We have evaluated equations (38) and (39) for a random distribution

of cosmic ray sources in the galactic disk of semithickness 100 pc

normalized to a galactic rate of 1 event per hundred years. The mean

anisotropies as functions of k are plotted in Figure 5 for absorbing

and reflecting boundaries.	 The error bars represent + IT- levels, i.e.,

the probability that for a given value of K the anisotropy will be

bracketed by the error bar is 0.66. The anisotropi e s for the absorbing-

boundary case are quite similar to the anisotropies calculated by Ramaty

ReaL:es, and Lingenf<lter (1970) for diffusion in an infinite medium with

exponential escape. As ^ increases, a small number of young sources

with large anisotropies contribute the bulk of the local cosmic-ray

flux and hence the anisotropy increases rapidly with increasing C .

In the case of reflecting boundaries and large values of ^ , the same

young so ,,rces	 have large anisotropies, but now their contribu-

tion to the local flux is much smaller and hence the total anisotropy

is much lower.

tl



-23-

For the upper limit of 10-3 (Ca

Q

chon 1962), the model with absorb-

ing boundaries requires a value of K smaller than about 1 pc. From

the study of nuclear fragmentation, we found that for this model K

is about 0,06 pc, which would allow anisotropies as low as 10 -4 . In

the model with reflecting boundaries, for Q ? 1 pc the amount of nuclear

fragmentation becomes independent of	 The upper bounds on the aniso-

tropy would require, however, that Jt be less than about one hundred

parsecs.

Finally, we consider the anisotropy if cosmic rays propagate by

compound diffusion. Since in this case, the effective diffusion co-

efficient is space and time dependent in a non-separable way, we can no

longer use equation (37) to compute the anisotropy. The streaming S, and

the related anisotropy ^= 3l s IBC hU , however, can be directly 	 .:

obtained from the continuity equation

-3

ak t S -F —^
r 

= o	 (40)

Let S be given in terms of its components from individual sources

m

By substituting equations (36) and (41) into equation (40) we get

at	 I=

__ n



i

lr^

4

i
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As above, we limit our discussion to isotropic compound diffusion in

an infinite medium. Using equation (11) for f, the magnitute of J

from equation (42) can be written as

J	 t-„,!I - Zs ds	 ,	 '^ f'1T	
S^a ► 	

(43)
J	 L

-^
where	 Y' ^ rr►, ^ 4^^ 	^' = ^ ' t W►

By using the forms of f 1 and £2 appropriate for infinite diffusive media,

equation (43) becomes

GO

PS('R,^c^,Ir 	 yac'V ^-	 I

	

44 lc^ 	 5 .! 44^o	 a	 x

where	 _

fah a

0	 ( )

(Pearson 1957).

When the numerical evaluation of equation (44) is combined with

that of equation (12), for all values of 'ry 'to, the anisotropy from

a single source, S0 jI0=j1J1I C4	 , is very closely given by

&= 3 ^ /yGt	
(46)

n

M	 ^

"S
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This result should be compared with	 =	 for simple diffusion.

Using equation (41) and (46), the anisotropy from a distribution of sources

is given by

CI C rL rv,

i-t2.

V), f (r I f I,' J t V-')J

.1	 ► (47)

^5̂

where n is given by equation (36) and f by equation (12).

We have evaluated equation (47) for the same random distribution

of cosmic ray sources as used inin conjunction with equation (38)	 for

simple diffusion. 	 For A = X = 30 pc and -C, = 2 x 107 years.

0.7 +o5^x^>a- ^
	

(48)

where the fluctuations represent + IG" levels as discussed above. As

can be seen, for compound diffusion, the anisotropy is quite small and

almost negligible in comparison with the Compton-Getting effect resulting

from the motion of the sun with respect to the local interstellar gas

and field.

CONCLUSION

We have investigated the effects of the source distribution and

propagation on the composition and anisotropy of cosmic rays. For the

calculation of the composition we used a continuous and time independent

, n



+	 r

I`

-26-

source distribution of semithickness 100 pc in the galactic disk. For

the anisotropy we used a statistical discrete source model with cosmic

ray sources occurring at random in a disk of similar spatial extent.

As specific propagation modes, we considered simple 3-dimensional

diffusion with boundary conditions and compound diffusion in an in-

finite medium with exponential escape. We found that in order to account

for the observed abundances of the fragmentation products of nuclei from

lithium to iron, the mean free path for simple diffusion with absorbing

boundaries cannot be larger than about 0.1 pc. For diffusion with

reflecting boundaries, the amount of fragmentation depends principally

on the escape probability at the boundary and is almost independent

of the mean free path. However, the upper limit on the anisotropy

requires a mean free path in this model of less than about one hundred

parsecs. For compound diffusion, both the fragmentation and anisotropy

can be accounted for if the characteristic length in the 3-dimensional

random field is about 30 pc, the mean free path for 1-dimensional

diffusion along field lines is equal to, or smaller than this value,

and the escape time from the confinement volume is about 2 x 107 years.
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CAPTION FOR TABLES

1. Charge spectrum of cosmic rays from Li to Fe. The observed abundances

were taken from Shapiro and Silberberg (1970). The calculated

abundances are the result of nuclear fragmentation with n,, = 1 cm-3.

Model 1: 3-dimensional diffusion with absorbing boundaries at b = 300 pc,

t = 0.06 pc and T  -► Co.

Model 2: 3-dimensional diffusion with reflecting boundaries at b = 200 pc,

I = 30 pc and T e = 1.4 x 10 7 years.	 ,y

Model 3: Compound diffusion with k = a = 30 pc and T e = 2 x 10 7 years.

Model 4: Exponential age distribution with T  = 3.3 x 106 years

(X = S g/cm2).

2. Source abundances of cosmic rays from Li to Fe. The parameters for

the various models were described in the caption to Table 1.
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CAPTION FOR FIGURES

1. Time profiles for simple 3-dimensional and compound diffusion.

The quantities T o are times to maximum.

2. The cosmic ray density and its gradient as a function of distance

from the plane of the disk, z. The lonYth a is the semitliicknens

of Lite trapping volunw.

3. Age distributions Po defined in equation (22) for various models.

The quantity TO are times to maximum for the distance b, the semi-

thickness of the source distribution.

4. Age distributions P defined by equation (21) for various models.

The appropriate parameters are given in the caption to Table 1.

5. The anisotropy 3 as a function of the mean free path C . The
upper and lower curves are for simple diffusion with absorbing and

reflecting boundaries, respectively.

1
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TABLE 1

FRAGMENTATION PRODUCTS

Z Element Observed Model 1 Model 2 Model 3 Model 4

26 Fe 1+ .12 0 0 0 0

25 Mn .08 + .03 .030 .023 .027 .033

24 Cr .31 + .09 .096 .070 .086 .10

23 v .09 + .03 .088 .065 .079 .096

22 Ti .18 + .05 .17 .13 .15 .18

21 Sc ,027 + .02 .059 .045 .053 .064

20 Ca .18 + .05 .17 ,12 .15 .18

19 K .053 + .027 .12 .090 .11 .14

18 Ar .18 + .05 .13 .097 .11 .14

17 C1 .044 + .026 .062 ,048 .056 .068

16 S .31 + .09 .14 .11 .13 .15

15 P .053 +
.044

•046 .037 .042 .050

14 Si 1.33 + .18 .15 .12 .13 .16

13 Al .18 + .09 .099 .081 .091 .11

12 Mg 1.86 + .18 .28 .23 .26 .30

11 Na .27 + .14 .20 1.66 .18 .21

10 Ne 1.8	 + .2 .46 .39 .43 .49

9 F .18 + .1 .26 .22 .24 .27

8 0 7.6	 + .35 .58 .51 .54 .61

7 N 2.4	 + .18 1.28 1.17 1.22 1.34

6 C 8.8 1.10 1.C: 1.06 1.15

5 B 2.4	 + .26 2.04 1.97 2.00 2.10

4 Be .97 + .26 .69 .69 .68 .69

3 Li .1.42 + .18 1.56 1.68 1.62 1.54
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TABLE 2

SOURCE ABUNDANCES
tl

Z Element Model 1 Model 2 Model 3 Model 4

26 Fe 1 1 1 1

25 Mn .048 .055 .051 .045

24 Cr .21 .23 .22 ,20

23 V .002 .023 .011 -.006

22 ri .007 .046 .023 -.007

71 !ir- ,I1)q ,f)I" I	 117'1 -.11'41

111 1;a ulU ,W1 uu 1

19 K -.059 •,031 -.047 -.070

18 Ar .042 .063 .052 .032

17 Cl -.014 -.0029 -,0095 -019

16 S .14 .15 .14 .13

15 P .0052 .011 .0082 .0022

14 Si .89 .83 .88 .89

13 Al .056 .061 .060 .051

12 Mg 1.11 1.01 1.10 1.11

11 Na .048 .060 .057 .040

10 Ne .85 .77 .84 .85

9 F -.048 -.024 -.037 -.059

8 0 4.14 3.44 3.96 4.27

7 N .62 .55 .62 .62

6 C 4.03 3.14 3.76 4.23

5 B .17 .16 .19 .15

4 Be .13 .094 .12 .14

3 Li -.056 -.068 -.068 -.053
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