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ABSTRACT

A three dimensional model of thermospheric dynamics is developed in terms of

the eigenfunctions of the atmospheric system. Formulae for the external heat

inputs like solar XUV-radiation and corpuscular heating during geomagnetic

storms are derived in terms of these eigenfunctions. Those series contain tidal

components (depending on local time) and planetary components (depending on

seasonal time) which are the generators of tidal and planetary neutral atmospheric

waves. The relative importance of corpuscular heating when compared with

XUV-heating is estimated. Approximate analytic solutions for the generation and

propagation of the atmospheric waves within the dissipative thermosphere, ex-

cited by the solar heat, input, are given. It is shown that the eigenfunctions which

are the Hough-functions within the nondissipative lower aiinosphere change into

the spherical surface functions within the dissipative thermosphere. Moreover,

the density amplitudes of the wave modes decrease proportional to 1/n 2 where n

is the zonal wave domain number of the spherical harmonics. Therefore, only

the wave modes with low wave domain ntunbers n are significant at thermo-

spheric heights.
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A THREE DIMENSIONAL MODEL OF THERMOSPHERIC DYNAMICS:

I: HEAT INPUT AND EIGENFUNCTIONS

I. INTRODUCTION

The dynamic behavior of the neutral component of the upper atmosphere above

about 100 km altitude has been studied extensively in the last decade by means

of direct in situ measurements of the neutral density (e.g.: Taeusch et al.,

1968; Newton, 1970), the neutral wind (e.g.: Vasseur, 1969) or by satellite drag

observations (e.g. Champion, 1970; Jacchia, 1970). These observations must be

compared and confronted with variations in the ionized component of the thermo-

sphere as inferred from ionospheric drifts (Harnischm ache r and Rawer, 1968;

Sprenger and Schrnindler, 1967), meteor trail observations (Roper and Elford,

1965; Greenhow and Lovell, 1960), and geoinagnetic variations (Matushita, 1967),

as well as from measurements of electron density (Rawer and Suchy, 1967) ion

composition (von Zahn, 1970) and ion temperature (Mahajan, 1969); Waldteufel

and McClure, 1969). The available data of the neutral component of the thermo-

sphere reveal the following general picture of thermospheric dynamics:

(a) The diurnal component strongly dominates the daily density variation at

thermospheric heights above 200 km with relative amplitudes up to 0.5. The

relative amplitude and phase remain roughly constant with altitude above about

300 kin altitude. The semidiu' dial component above 200 km is weak though not

negligibly small when compared with the diurnal component;

1
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(b) The meridi.onal structure of the diurnal density variation during equinox

follows roughly a simple sin g -• law, where 0 is the co-latitude;

(c) The annual variation is relatively weak. Below 400 km altitude the density

bulge follows the zenith. angle (Jacchia and Slowey, 1967). On the other hand,

there exists a relatively strong semiannual variation within the whole thermo-

sphere which can be observed down to the stratosphere (e.g.: Cook, 1970;

Cole, 1968);

(d) The average neutral density as well as the diurnal density amplitude 	 I

strongly depend on solar activity indicating the dominant influence of the solar

XUV heat input on thermospheric dynamics;

(e) During geomagnetic storms the density increases significantly suggesting

additional heating of the thermosphere by solar corpuscular radiation and

Joule heating.

Some of these observations are consistent with ionospheric data. E.G., the dy-

namic behavior of the ionospheric F-layer can partly be interpreted by means

of neutral winds deduced from the neutral pressure field (Kohl and King, 1967).

The wind field deduced from the geomagnetic Sq current at 115 kin altitude shows

a predominant diurnal component (Kato, 1956; Stening, 1969; Tarpley, 1970).

However, some ionospheric observations are in apparent disagreement with

measurements of the neutral component. E.G., meteor trail measurements and

2



ionospheric drift measurements at higher latitudes reveal the predominance of

the semidiwenal wind component up to F-layer heights (Greenhow and Lovell,

1960; Harnischmacher and Rawer, 1968; Sprenger and Schmindler, 1967). The

neutral temperature inferred from 'Thomson-scattering measurements gives

maximum values at 16,00 local time which seems to be in disagreement with the

density maximum at 14.00 local time as determined from satellite and rocket

born measurements (Mahajan, 1968).

The neutral and ionized components of the thermosphere form a coupled dynamic

system which reacts to the gravitational tidal forces of sun and moon, to the

solar XUV-radiation, to solar corpuscular radiation and indirectly to the total

solar radiation via dynamic coupling from the lower atmosphere.

theory of thermospheric dynamics should be able to interpret the above

mentior:ed observations in a selfconsistent manner and to explain the discrep-

ancies between the observations of the neutral and the ionized component. Such

theory should lead to a clear separation between the various energy inputs and

their influence on thermospheric dynamics depending on day, season and solar

cycle. Because of the complexity of the problem we are far away from a final

theory of such kind.

Harris and Priester (1962) were the first to attack this problem. They calcu-

lated the thermodynamic reaction of a vertical air column to the solar LW heat

input. Considering heat conduction as the most important energy transport,
1 .
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i
process at thermospheric heights they were able to reproduce qualitatively the

observed diurnal behavior of the neutral thermospheric density. However,

quantitatively their results revealed a discrepancy in amplitude and phase be-

tween theory and experiment which. they resolved by introducing an unknown

second heat source.

Lagos and Mahoney (1967) extended this model to other latitudes and showed that

the EUV heat input alone is not sufficient to create the observed large thermo-

spheric temperatures at high latitudes. They concluded that horizontal. energy	 I"

transport or an other heating mechanism must be important for the heat balance

of -the thermosphere. Dickinson et al. (1968) calculated a two dimensional model

along a zonal strip. They included horizontal longitudinal winds and showed

that in their model the time of the diurnal density maximum shifted toward the

early afternoon as the result of adiabatic heating due to vertical motions.

i

A two dimensional equatorial model has been calculated by Vollard and Mayr

(1970). Here the radiation condition of characteristic waves within the thermo-

sphere has been applied as boundary condition. This allows the separation of the

contribution from the various heat sources within and outside the thermosphere.

It has been shown that within the lower thermosphere a tidal diurnal wave gener-

ated below 120 km height dominates the dynamic features while above 200 km the

thermospheric dynamics are excited primarily by the EUV-heat input within the	 iI	 .
thermosphere. The second heat source of Harris and Priester could be elimi-

	

	 is

nated by the introduction of horizontal longitudinal winds. These winds are
I

restrained by collisions with the ionospheric plasma. Heat advection due to these
IC_.
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winds shifts the phase of the density amplitude from 17 hours LT to between 14

and 15 hours LT (depending on the numerical value of the collison frequency)

consistent with the observations, and it reduces the density amplitude to the

observed values.

The two dimensional model of Volland and Mayr (1970) has been adopted to

reproduce quantitatively the dependence of the density on solar activity (Volland,

1969a). Likewise, amplitude and phase of the geomagnetic activity effect, of the

27-day rotation effect, and the semiannual effect have been calculated and show

satisfactory agreement with the observations.

A first approach to the next step - a threedimen>szonal thermospheric model -

has been made by .Lindzen and Blake (Lindzen., 1970; Lindzen and Blake, 1970).

They used the concept of equivalent plane gravity waves to study the generation

and propagation of some of the more important diurnal and semidiurnal tides

within the thermosphere.

The model of Lindzen and Blake includes the assumption that the latitudinal

structure and the equivalent depth of the various tidal modes do not change with

height within a dissipative ahnosphare. However, it is well known (e.g. Siebert,

1961.) that the eigenfunctions of atmospheric dynamics on the rotating earth which

are the Hough functions wiGhin the lower atmosphere, become the spherical

functions if one can neglect the Coriolis force. The neglect of the Coriolis force

is indeed a reasonable approximation at F-layer heights and above where ion-

neutral drag and the viscosity forces by far exceed the Coriolis force.

5
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In this paper which consists of three parts we shall study various tidal and plane-

tary wave modes, their latitudinal dependence, height structure and their genera-

tion and propagation within thermospheric altitudes. In this first part we shall

outline an analytical approach to describe these various modes with the aim of

providing insight into some of their general characteristics. For that purpose a

number of approximations are necessary.

The main approximations adopted are the use of perturbation theory and the re-

striction to gravity waves. It is well known that at thermospheric heights two

other wave types — heat conduction waves and viscosity waves — can exist. They

influence mainly the amplitudes of temperature and horizontal winds. However,

at least the influence of heat conduction waves on thermospheric dynamics has

already been studied in a two dimensional model (Volland and Mayr, 1970) and

this indicates that in our simplified model the temperature amplitude is . subject

to errors which are not too serious and which should be tolerated considering

other uncertainties involved and considering the simplifications gained.

In this part, we shall furthermore develop the solar XUV and corpuscular heat

inputs as well as Jacchia's (1964) exospheric temperature distribution into series

of spherical harmonics. This will show that only few components in this series

with low wave domain numbers are required for a sufficiently accurate repre-

sentation of the observed temperature distribution. It suggests that the spherical

functions approximate rather well the eigenfunctions of the thermospheric dynamic

system. Finally, we shall determine in this paper analytic solutions of the generation

1
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and propagation of the various eigenfunctions within an isothermal lower

atmosphere and within an isothermal thermosphere.

The analytic solutions developed in this firL,, t part shall be used in the second and

third part of this paper to calculate explicitly the wave propagation of several im-

portant tidal and planetary wave modes which are generated by the corresponding

components of the solar heat input. Those waves include the fundamental sym-

metric diurnal and semi-diurnal modes, the anti symmetric diurnal mode and the

annual and semiannual modes. In thn seo-ond and third part of this paper we shall

study moreover in detail the altitude variations in the latitudinal structure for these

modes. Especially, it will be shown how the eigenfunctions which are in the Hough

functions within the lower atmosphere transfer into the spherical functions at

thermospheric heights. P'urthermoi a a detailed analysis of the wind systems of

the various wave modes will be given.

A more sophisticated numerical study of the three dimensional thermospheric dy-

namics including heat conduction waves tend taking into account realistic tempera-

ture profiles within the thermosphere will be given in an additional paper (Volland

and Mayr, 1971a (referred to as paper I)) , 	 t

2. THE MODEL AND ITS RESTRICTIONS I'

a. Application of perturbation theory

In order to find tractable analytic solutions Cor the three rimensional spherical

model of thermospheric dynamics we have to restrict outselves to a model which

7
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is as simple as possible. The most important approximation in our approach

is the use of perturbation theory. That allows us to treat the various eigen-

functions of the atmosphere as if they were decoupled from each other and to

separate the thermospheric disturbances related to the various energy resources

of different time scale. The usual method of numerical analysis of thermospheric

data in fact implicitly adopts the same assumption when one resolves the various

perturbation periods like diurnal, semidiurnal, annual periods ect. by means of

some kind of spectral analysis. If coupling between the individual eigenfunctions

would be significant, one had to expect a significant contribution from higher har-

monics of the basic periods as well as mixed frequencies. This has not been

observed.

We can estimate the errors involv3d in such a perturbation treatment. The

horizontal and vertical winds at thermospheric heights are of the order of

luj	 100 m/sec

Iwl	 1 m/sec

(Volland and Mayr, 1970). The total time derivative in the equations of mo-

mentum and of energy conservation is for the diurnal tidal waves

d	 'a

d t Dt +(v
• grad) ^-j 0+ J k X L, + j k Z w

1^
8
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with

k x 1.5 x 10 4 km_' (horizontal wave number)

kZ - 21	
10 -Z km -- ' (vertical wave number)

HO

^? = 7.27 x 10 5 sec -1 (angular frequency of the earth's rotation)

H o is the pressure scale height. Thus, the nonlinear terms are of the order

kx u1	 ; k z wj

They still allow a perturbation treatment if one accepts errors of the order of

20/0 . If one considers the uncertainties in the experimental data as well as in

our knowledge of the energy sources and the physical coefficients like

heat conductivity, viscosity and ion-neutral collisions at thermospheric heights,

the error due to the perturbation approximation seems tolerable. Moreover, it

will be shown in the following sections that the thermosphere behaves like a low

pass filter for tidal and planetary waves. Thus it suppresses waves with great

wave domain numbers and therefore prevents the generation of higher harmonies

due to nonlinear coupling.

For the perturbated thermosphere the barometric height formula is assumed to

be valid. That implies the neglect of the vertical inertial force which, when com-

pared with the earth's acceleration force g leads to the inequality

I^^,I e< g	 10 5 m/sec

9
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valid for all tidal and planetary waves, Moreover, we shall neglect the horizontal

viscosity forces and the horizontal heat fluxes which are small compared with

the equivalent horizontal and vertical components respectively below 400 km: 	
3

4

	

r^ d2 ul., x 2 K ,^ ^^, x 2 	V	 4 Ho
2> 10'4

7, 12 U/) Z 2	 K :2 T/ :; Z 2	 k2	 R2

(u = horizontal wind; T = temperature; 	 coefficient of viscosity; K = coefficient

of heat conduction; R o is the earth's radius). Finally, we shall neglect the

metric factors in the equations of mass and energy due to the spherical co-

ordinates (r is the distance from the earth's center and z = r - R,)):

l	 6	 2

r2 jr	 r	 z

because of

2	 4 H^
3 x 10' 2

k r

Perturbation theory presupposes the knowledge of the mean physical parameters

of the steady state atmosphere. We shall adopt as such steady state atmosphere

the Jacchia model (Jacchia, 1964) and consider the vertical structure of this model
1

as the quiet thermosphere during a particular solar activity. All variations in

time and space due to temporal and spatial variations of the heat sources are con-

sidered as perturbations superimposed upon that quiet thermosphere. s

1	 '•

10



We shall also neglect the temporal variations in the neutral composition. In the

case of tidal waves such neglect leads to an underestimation of the temperature

amplitude which however is not too serious (Volland, 1969a). In the case of some

types of planetary waves the wind induced variations in the neutral composition may

give rise to substantial errors at heights where atomaric oxygen predominates.

This aspect of the thermosphere dynamics will be investigated in separate studies.

b. Restriction to gravity waves

Within the lower atmosphere, tidal waves are of the type of internal gravity

waves. Within the thermosphere, dissipation effects due to heat conduction and

molecular viscosity give rise to the generation of three new wave modes: heat

conduction waves, and two kinds of viscosity waves (Volland, 1969b). These wave

types become increasingly important with increasing height and contribute

especially to the temperature and horizontal wind amplitudes of the tidal vari-

ations. In this approach here we shall neglect those waves and restrict ourselves

only to the gravity waves. However we shall introduce the effects of heat con-

duction and viscosity in the propagation of gravity waves by replacing the second

derivatives with height of temperature and horizontal winds by height dependent

coefficients in the equations of horizontal momentum and energy conservation.

That procedure in fact is equivalent to an outfiltering of the three additional

wave types.

I

In paper I we shall take into account the heat conduction waves in the numerical

calculations. There, we shall discuss the implications due to the neglect of the

additional wave types.
11
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It will turn out that our approach in fact gives results which become only modi-

fied by a more exact treatment, Temperature and horizontal wind amplitudes

are most affected by our approach. However it is possible to simulate the in-

fluence of heat conduction waves and viscosity waves by the introduction of a

slightly modified vertical profile of the heat input and by all effective ion-neutral

collision number respectively.

The dissipation coefficients are determined in the following manner: From the

work of Jacchia (1964) we know that at a given time the vertical temperature

profile at thermospheric heights above 120 km can be rather well approximated

by the formula

i

c

T	 To., - (TW - T120 e
-(Z-Z120).'H	 (1)

Here T.̂ , is the exospheric temperature, T120 is the temperature at z 120 = 120

km altitude, and H is a scale factor which is of the order of

H 40 km

during moderate solar activity. Assuming vertical profiles of the wave

amplitudes in the form of equation (1), we obtain for the heat conduction term

in the energy equation

a 
\K 

aT) „ 2 Z yp0 QT
az	 ^z	 i,^(y_ 1)T0

(2)

IN

r
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with

77
	 2.5 n ( Tm ' T 120 ) (3 •1• - T,,)) e

q .y Q T2 p0 H2

Here is tiro = the mean density; To the mean temperature, p  the mean pres-

sure, and	 = c  /c,^-1.5 the ratio between the specific heats, -rj = A ^Pfr  the

coefficient of molecular viscosity; K = 2.5 c„ 77 the coefficient of molecular heat

conductivity (Chapman and Cowling, 1952). It will be shown later that the wind

profiles have approximately the same vertical structure as that expressed in (1).

Therefore, we find for the viscosity force in the equation of horizontal momentum.

- 
Paz (^ a z) 2 Z,,is Q 	 (3)

with

r (t^ COZ	 — L^120) (3 tl — u^) ^^- (Z—Z12o >:'H

-

4 Qu2 V0 H2

where H is the scale factor of the wind profile. Prcvided H H , both

dissipation factors Z1ic and Zvi s are of the same order of magnitude. They

tend to become constant with height because of

r•

T - -a T., a -• U,, and 
po 

cc exp (-- z/H).

An estimate using data from the Jacchia model gives

77	
z0.05atz<150km

`1, c	 Zvi s

0.1 at z > 200 kmti

13



From the more exact numerical study it is inferred that the dissipation factors

Z i,, and Z,; s are indeed of the order of 0.1 to 0.5 above 200 kin altitude.

We conclude that molecular viscosity and heat conduction can be neglected

when compared with the Coriolis parameter 1/2 below 150 kni, However, these

terms can play a significant role in thermospheric dynamics at heights above

200 km. In this connection it is worth mentioning that the ion-neutral drag term

4Z' oi ^ 22 S2
	 (4 )

(, is the collision number of ion-neutral collisions) is of the order of three at

F2-layer heights (Dalgarno, 1964). Therefore, in this height range and for tidal

and planetary waves, ion drag is generally more important than molecular

viscosity (Geisler, 1967; Kohl and King, 1967).

1

3. THE DISTRIBUTION OF THE ENERGY INPUT

The thermosphere reacts to solar heating or to gravity forces and behaves like

an oscillator system in which forced oscillations are generated. The external

energy generator may have any possible spatial and temporal distribution. If

our assumption about the validity of perturbation theory is correct, we should

be able to develop the energy generator in terms of the eigenfunctions of the

thermospheric dynamic system and to study separately the response of the

individual thermospheric wave modes to the corresponding energy modes.

14
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It is generally accepted that the influence of the gravitational forces of moon

and sun on the atmospheric tides are small when compared with the solar heat

input due to solar radiation (Chapman and Lindzen, 1970). Therefore, we shall

neglect that excitation mechanism in the following. However, electric fields may

be a significant source of wave generation. These fields originating either from

the Sq region at E layer heights or from the magnetosphere are mapped up or

down along the geomagnetic field lines and give rise to ion drift across the geo-

magnetic field at F2 layer heights. This ion drift in turn leads to wind and pres-

sure perturbations in the neutral component via ion-neutral drag (Hines, 1965a).

The electric field of the Sq region is generated by the neutral tidal wind at E

layer. heights. It thus acts like a coupling link between lower and upper ther-

mosphere. It couples a fraction of the kinetic energy of the wind field at E layer

heights to the winds at F2 layer heights. Since the wind at E layer heights itself

is generated by solar heating within and below that region, such coupling can be

considered as a vertical redistribution of the total solar heat input within the

atmosphere. In a similar sense the electric fields from the magnetosphere are

responsible for the transformation of a fraction of solar corpuscular energy

stored within the magnetosphere into wave energy of the neutral thermosphere.

They generate electric currents within the ionosphere which in turn heat the

thermosphere via Joule heating. They also force the ions to drift across the

geomagnetic field lines and induce wind and pressure variations at F layer

heights.

15



The solar heat input into the thermosphere via photo-dissociation, ion recombi-

nation, and electron cooling is itself a very complicated process and far from

being well understood. A very simple approach - hich is probably not too far

from the reality is to assume that the effective heat input per volume is pro-

portional to the mean pressure at thermospheric heights. This assumption

may even include the virtual heat input due to the electric fields. In this paper

we adopt that picture with a slight modification. We take a height dependence of

the heat input Q like

Q '. g ^ z)	 e (1-^(,(7- V O ) 2H,)	
(5)_	 J

PO

with a constant value of t. near, but not necessary equal, to one. z o	100 km

is a reference height above ground. For convenience we shall consider in this

paper an isothermal thermosphere, N = const. In the numerical study of

paper I we shall use the value c = 1 and a realistic temperature profile of the

thermosphere.

It remains to determine the temporal and spatial distribution of the heat source.

As basic period we select the time of one year with the angular frequency of

^o _	 2 "	
= 2 x 10`7 s(>c

-1
	(0)

one year

'S
3

a^
i
1

Higher periods, e.g. the eleven-year-cycle, are slow enough to be treated quasi-

stationary.
--, .

i,
16



We first consider the XUV input of the sun. In order to obtain an approximate

distribution of the Xi1V input we assume that its effective heat input is propor-

tional to the zenith angle a, of the sun

(1 + e) 
QXUV g (r)

Qxuv	 cos 	 (?)
2 Ho ,. 11

for iv, ` 7r/2, and zero otherwise. Here Qxuv is the total height, space and

time integrated averaged heat input (in erg/sec) above the reference height

z o = r. - R. where r o is the distance from the earth's center and Ito is the earth's

radius. Though the real distribution may deviate more or less from equation (7)

it should nevertheless give the right order of magnitude in particular since we

shall deal here primarily with the relative magnitudes of the various frequency

components.

We develop the function (7) into a series of spherical functions. Approximating

the tune of sun rise and sun set by

1	 .

j I

J

To - arc cos (tg 6 ctg p)	 v/2 - tg ^ ctg 9	 (8)

and Caking

cos Dtil

Siil c^

where S = 5O cos 0 . t is the solar declination with a maximum value of % = 0.4,

t is the universal time (t = 0 at the begin of the year) and 0 is the polar distance,

17



we obtain the following series:

	

Qxuv Qzuv g (z) P° -- 2 ^ cc s fl '^ t P° -- 8
.. 1 G r

'	co s 2 St n t P2	 {

	

2 Pi	 5 ^' 3 

Zu cos 2 j^ t PZ cos	 S 12 P2 cos 2 -r i ...... 	 (^)4	 16

	(r	
ro)

Q xuv - (1 +c) Qxuv /8 7, Ho ro (in erg/cm 3 sec) is the average heat input per

volume at the height z. P;; (0) are the spherical functions in Schmidt's normali-

zation depending on polar distance 0 , r = Q t+,X is the local time and X is the

geographic longitude.

Though the development equation (8) breaks down near the poles, the coefficients

of equation (9) approximate the energy distribution of (7) with an accuracy of

about ±10% which has been tested by an exact numerical calculation. In equation

(9) all terms with second or higher powers of 6  have been neglected (excopt

those that produce the semiannual component). These neglected terms have

magnitudes of the order of 0 . 1 or smaller.

Turning to the solar corpuscular heating we consider only the mean heat input

average over the individual substorms. The heat input due to precipitating fast

electrons and electric fields from the magrietosphere is confined to the auroral

ovals, and most of the heating occurs on the night time hemisphere where the

18



component of the polar electrojet flows (Alcasofu, 1968). It is well known that the

geomagnetic disturbances related to that heat input do not show a significant

annual variation. However, the semiannual component with a maximum during

the equinox is pronounced (Chapman and Bartels, 1951). The semiannual vari-

ation of the u 1 - measure of Bartels can be represented by

u l	 ii (1 - 0.1 cos 2 O h& t)	 (10)

where a depends on solar activity. u l is a measure of the disturbed geo-

magnetic horizontal component. Thus, the magnetic energy of the disturber, geo-

magnetic field is proportional to ui . Assumiag proportionality between the

magnetic energy and the dissipated heat input, we arrive at a heat source aver-

aged over storm time and space of

QcorP (1 - 0.2 cos 2 S2 9 t) (in erg/sec).	 (11)

Assuming that this heat input is deposited within an infinitely thin st ► ip at 165°

latitude on the night time hemisphere, we develop it into spherical harmonics

(Volland and Mayr, 1971b).

QCofP = Q° orP g (z) (1 -- 0.2 cos 2Q 0 (Po + 3.66 PZ 2.22 P4 +

(12)

+(0.81 Pi +3.58 P 1 +•••)cos -r+....}

7

4
s

e

. is
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with

(1+E)Q^^	 core
Ycorp

8 ,r Ho r0

the average heat input per volume at z o = r -- R.. Here, we used for convenience

the same height dependence for Q corp as for R F.UV 
• The higher order coefficients

in equation (12) may, of course, change significantly if we choose any other lati-

tude and they would decrease if we would use a strip of finite broadness. In any

case, these coefficients already indicate that this series converges very slowly,

and that we need a great number of terms to approximate sufficiently well our

assumed heat input distribution. However, as will be seen in the next section,

the atmospheric dynamic system filters out wave modes with great wave domain

numbers (n, m) so that in fact only the energy modes of lower degree in equation

(12) can exclLe significant density variations at thermospheric heights.

It should be mentioned here, that this is true only for the storm time averaged

corpuscular ',eat input. Any individual polar substorm may generate short

periodic gravity waves which travel from the auroral zones into the lower

latitudes (Testud, 1970; Chimonas and Hines, 1970). However, these waves are

a local phenomenon and outside the subject of our paper.

A third possible energy input into the thermosphere may have its origin within

the lower atmosphere. Such energy input is due to wave energy dissipation of

waves generated within the lower atmosphere and penetrating into the dissipative
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thermosphere. These waves may include the whole spectrum of short periodic

internal gravity waves (Hines, 1965b), the fundamental diurnal tidal wave (Vol-

land, 1969a) or semidiurnal tidal waves (Lindzen and Blake, 1970b). Wave dis-

sipation is a nonlinear process and therefore can not be treated in our pertur-

bation theory. This wave dissipation affects essentially the zero component PO

of the heat input and gives rise to an increase of the mean temperature. We

therefore have to introduce an additional heat source

Q0	 (1 - 0.05 cos 2 C2 ,, t) Po	 (13)

which contains a semiannual component. The numerical value of this semiannual

component is anticipated from the following results. During moderate solar

activity it is	 ,

Qo ; Qo
dis	 xuv

indicating that a significant fraction of the average exospheric temperature is

caused by that heat input due to wave dissipation (see Page 3 of this paper).

Before we shall discuss the implications of equations (9), (12) and (13) on thermo-

spher' ^ dynamics, we want to develop also the exospheric temperature

distribution Z of the Jacchia model (Jacchia and Slowey, 1967) in terms of

spherical harmonics. Jacchia's model is supposed to represent well the density

variations above about 250 km. The result is (derived for a solar activity factor 	 I , .

of F = 125 and the Jacchia parameters n' = m' = 2.5)
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T^ = To IPo •- 0.048 cos D a t PI -. 0.007 P°

+ (0,12P 1 -- 0,008 cos Q t P2) cos (-•- - 15,011)

+ 0.035 p2
2
	 12 (T - 13.2 h )1 _ ......1

0 - 0.04 Po +, C2n' Pon' cos 2 Q n t
2n'

(14)

with T o = 1000°K. Here, the first bracket on the right hand side in equation (14)

is an excellent approximation of the analytical function of Jacchia's exospheric

temperature distribution while the second bracket in equation (14) takes account

of the semiannual variation of T. which is eliminated in the Jacchia model. We

related the observed semiannual temperature amplitude to the (0.0)-component

in equation ( 14) and indicate our ignorance about any latitudinal dependence by

terms with arbitrary coefficients c 2 , which should exist due to the correspond-

ing terms in equations ( 12) and ( 13) though according to Cook ( 1970) the semi-

annual variation does not show a significant latitudinal dependence.

One aim of this paper is to relate the individual terms in equation (14) to the

corresponding energy components in equations (9), (12) and (13). That is

not possible without some ambiguity because we observe in fact the

thermospheric response of the combined energy sources. We shall return to

these questions in some detail in the two following parts of this paper. However,

1.

i
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some general conclusions can already be drawn from a comparison of equations

(9), (12), (13), and (14).

First, the XUV heat source contains a rather strong zonal (2.0) component which,

als already Lagos and Mahoney (1967) pointed out, should give rise to a very low

mean exospheric temperature at higher latitudes. The temperature distribution

of equation (14), on the contrary, shows a rather weak mean latitudinal variation

with the temperature gradient directed towards the poles. Jaccia's first model

(with his parameters n' = 2.5 and m' = 1.5) distinguished by an elongated pressure

bulge has even a mean temperature gradient directed toward the equator equivalent

to a positive (2.0)-component in the series of equation (14). Therefore, this coef-

ficient is probably very small. Such a small mean latitudinal dependence of T

can readily be explained by the auroral heating according to equation (12) which

compensates the respective (2,0)-term of the XUV heat input. Thus, we can

estimate the ratio between the total heat inputs of corpuscular and XUV

heating as

Qcorp5	 _ 0.17
Qxuv ' 8 x 3.66

A similar compensation occurs for the diurnal (1.1)-coefficients. Howe"'v^r,

here the effect is much smaller and yields a reduction of the total (1.,1)-com-

ponent by not more than 7% due to auroral heating.

23
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Secondly, the XUV heat input and the auroral heat input contribute to the (2.0)-

component of the semiannual variation in the form

15 62 Q° _0,2x3,66QU 	P°cos2^ t>0.025Q° PO cos 2Q t16 0 XUV	 Corp	 2	 a	 YIJV 2	 a

if we adopt the estimate of (15). This variation is very small. The observations

within thermospheric heights indeed seem to support a rather small latitudinal

dependence of the semiannual variation. The main contribution of the heat

sources to tho ,3emiannual variations therefore appears to come from the (0,0)

components of the auroral heat input (equation (12)) and from the heating due to

wave dissipation (equation (13)). The sum of the three heat sources is then for

the (0 ,0) component

(QxuV +Qcorp +Qdis )o = 1.17 QXUv (1 - 0.029 cos 2 n t)
I	 '^

+ Qdis (1 - 0.05 cos 2 e t).

With Q a i s ti Q xuv and Q ° o rp ti 0.17 Q0 Jv , we conclude that the predominant

generator of the semiannual variation is the energy due to wave dissipation al-

though a small but significant fraction is also generated by XUV and auroral

heating.

According to an international convention (Hines, 1970) we shall call tidal waves

all waves with periods of one lunar or solar day or a fraction of a day. These

waves are obviously generated by those energy modes in equations (9) and (12)
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with wave domain numbers m > 1. Planetary waves are wave modes with

periods exceeding one day.	 They are therefore generated by the energy

modes in equations (9), (12) and (13) with a wave domain number m = 0. Tidal

waves will be discussed in the second part, planetary waves will be treated in

the third part of this paper.

4. APPROXIMATE GENERAL SOLUTIONS OF WAVE PROPAGATION

In this section we want to solve simultaneously the equations of conservation of

mass, momentum and energy in terms of eigenfunctions of the atmospheric dy-

namic system taking into account the approximations and assumptions dis-

cussed in section 2. In the following parts of this paper we shall use these

solutions to discuss several tidal and planetary waves.

According to our assumption in section 2 the quiet steady state structure of the

atmosphere is related to the energy input of the (0,0)-components in equations

(9), (12) and (13):

(QXUV t Q'corp +Qdid P O 9 (Z)

We are interested in any departure in time and space from that quiet atmospheric

structure represented by the height-dependent mean values of temperature To

density p0 , and pressure p 0 . The perturbated physical values may be written

as temperature T, density. p, pressure p, northerly wind u, westerly wind v, and
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vertical wind w. The equations of conservation of mass, momentum and energy,

and the equation of state are then presented for these perturbated amplitudes

in spherical co-ordinates (r, g, \)

1 ap +divv +aW- w :_0
PO at	 hor a z HO

au +0.6vu-2Qev- 1 a	 au + 1 ap=0
d t	 po a z	 a z	 po r a Fj

av
vV+2Qcu_ 

1 a	 av	 1+	

T	

zz
at	 po az lac	 po r s —?^ 0

gp+p=0

D 	 w _ 1 -3 f	 a (KQ
aT

c° po a  ApoHo 
^,o 

a t 	 ') zaz

p _ o	 T

P-0
 T - To

Here, for abbreviation,

S = sill 0; C = Cos 0; Vhor = (11, V).

t

(16)

,f	

I

The factor 0.6 v in the second equation of (16) takes account of the latitudinal

mean of the ion-neutral collision number v.

a
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The heat source Q in (16) is the sum of solar XUV -, corpuscular heat input and

dissipated energy and includes also a heat sink due to infrared cooling of the

thermosphere. That cooling may be about 10% in magnitude of the XUV-heat

input (Harris and Priester, 1962). But in view of the uncertainties in the adopted

heating rate we shall not evaluate this heat sink but rather consider it as in-

cluded in the effective XUV heat source.
a

We develop the wave amplitudes of pressure p, temperature T, density p, and

vertical wind w into series of the eigenfunctions of the system (16):

P	 (P" f ( Z))

(	 f (Z))

	

cm, f (e , Z) exp (j (m \ + 2 f S2 t + s S2 o t)]	 (17)
T	 (T"' f (z))

IN	 (W"• f (Z))

with

em, f	 gym, f 0 ( Z ) Pm (c)
n	 n,n	 n

n'

Furthermore, we define

2 j f Q Ho	 p01 f
di v • Vhor - -	 P	 m, f 

y
"' f exp [j (m X + 2 T Q t + s Q , t)] .	 (19)

0	 hn

(18)
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where we introduced the following abbreviations:

f	 4- S QH)/20

co = ^'y g7f^ is the velocity of sound

f = w/2Q the Coriolis parameter

a> is the angular frequency of the wave mode

0 is the angular frequency of the sidereal day

DA (<< n) is the angular frequency of the period of one year

hm • f is the equivalent depth of the mode of wave domain numbers (n,m,f)

Ho is the scale height of the isothermal atmosphere

f (0, z) is the eigenfunction determining the latitudinal structure of the

wave mode.

For m > 1 and in the case that the dissipation terms can be neglected in (16),

the eigenfunction On'. f degenerates to the well known Hough-function of tidalri

theory (Chapman and Lindzen, 1970). Contrary to this situation, our function

O m, f depends not only on co-latitude © but also on altitude z. Likewise, the

equivalent depth h' • f which is real (either positive or negative) and which is constant

within the lower atmosphere becomes height-dependent and generally complex

within the dissipative atmosphere. This can readily be seen from equation (1.6)

if we neglect the Coriolis force in the second and third equation of (16) and in-

troduce the dissipation factors Z,; s from equation (3) and Z, ol from equation

(4). Then, the two equations of horizontal momentum in (16) become
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u	 1_	 P

2 j f  Q ,;o 	 d 0

(20)

V _

	

	 1	 ap

2j f v Q ,u, sr a^

with

f :_ f — j (0.6 ZCOi * (Zvis)u)

f v 	f — j (Zcol	
(Zvie)v).

Taking for convenience

fir -.fv^ f 	
(21)

we obtain from equations (20) and (21)

d i v v	 ti -	 1	 22r
iiOT

2 j f  Q p0 r2

where -Y is the horizontal component of the Laplace operator in spherical co-

ordinates. The Laplace equation is satisfied by the spherical harmo_ Le surface

functions

Ym = pm ( 0) eirr^	 (23)
n	 n

and yields

!^rY'	 n(n+1)Y'	 (24)
n	 n

r.

i

29



^ti

Thus, the spherical functions become the eigenfunctions of system (16), and it

follows from (18) and (19)

E, m. f	 Pm
n	 n

Consequently,

1	 for n' =n
SM. f , _.	 (25)
n.n

flo for n' n

and

A
2 2

	

}ern, 
f y 4 fk f S) r	

(26)
n	 n(n+1) g

At a fixed height the eigenfunctions of (17) are a complete orthogonal system

(Chapman and Lindzen, 1970). Therefore it is possible to develop any external

heat source Q into a series of these eigenfunctions:

Q 	 p°	 T„'f f n,, f (0, z) exp [j (m k + 2 f Q t + s ne t)]	 (27)
K

n 0. ,	 f

with

/<

K OM, f

M. f _	 n
n	 Q P0

In (27) we allowed for any angular frequency of the energy source, not

necessarily commensurable with the frequency of one sidereal day Q. That
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generalization may be important for the lunar tides and especially for the study

of individual geomagnetic storm effects which contain a continual spectrum of

periods (Volland and Mayr, 1971b). Moreover, it may be relevant for the study

of tidal motions on the planets Venus and Mercury where solar day and sidereal

day are quite different.

From equation (27) follows that

where we generally neglect the time derivative of exp (j s oA t] ,

Apparently, because of the height dependence of the eigenfunctions 01" , f , these
n

eigenfunctions are coupled with each other in a realistic atmosphere. In this

approximate treatment we shall neglect that coupling in order to obtain tractable

solutions. That is, we assume

o 
p m. f l

1	 n

nm.f	 ^Z
n	 •^ nm. f

l	 1	 . ' n	 (29)
tam, f	 c3 Z

1	 W
	 n

w m,f	 Z
rl	 j	 I	 I

In paper I we shall show that this assumption is reasonable at least outside the

height re gion between 100 and 200 Km,

(28) i
I ,,"I

1
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We are now prepared to derive from system (16) the equations for the height

dependence of the coefi cients p, w, and T. Taking account of the various as-

sumptions and approximations in sections 2 and 4, furthermore using the ap-

proximation equation (21) (which we shall abandon in the numerical study of

paper I) wo find from equation (16) the following system of ordinary differential

equations of first order for p and w:

1 d e - K e+ h
d z	 - -
	 (30)

with

pm. f; 
PI	 n	 0

n -

WM, f/c0

2 j A (1 f f K l - 2 f 
C
	 'n v _ 

ff

	

\̀ 	 h /	 hm. f	 fl
n

K-

\

2 A2	 _ 2 j A f K
f

j f\

 - (

^l=
—f n

T11 ^ A	

J m.f

k o - f
c0

1	 ^' aA _	 - _-
2 ko Ho Q
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a 

2 co

fl, 	 f - J Zt,,2 (Zt,, from Equ• (2))

while the temperature amplitude is

Tm. f ._ To 	 2 j A N 
Wm 

f+ 2 f K 
P M, f - j J m. t	 (31)

2 f h 	 C
O 	n
	

PO	

n	 n

Applying a well known matrix calculus (e.g. Volland, 1968), we find a phase

integral solution of (30) (which is approximately valid as long as the elements

of K in equation (30) change only slightly with height, and which is correct for

constant elements of K) to be

fz

C = jr ka exp j	 1<o N d	 P -1 h d + exp j' f 'K (, N d	 c (z )(32)

JZO

where

a	 ao exp (-• j ko q + 1/2 H O ) d

C =	 _	 (33)

b	 boexp
J 

(jko q l/2 HO ) d^

are the upgoing (a) and downgoing (b) characteristic waves which are connected

with the physical wave parameters of equation (30) by the transformation

e = P c.	 (34)
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The transformation matrix P is

1	 1

P:.	 (35)

F^	 F,,

with

F.g	 ±q—jAI1	
2

Ho
f`FI 2f 1_

hm. f f l )
n

and P - ' its reciprocal.

Moreover, the eigenvalues q can be found from the normalization of the co-

efficient matrix K:

- q-jA	 0
N .-. P-t K P	 (36)

0	 q -jA
as

qM, f =- A (a^', f Y j gym. f^	
_ A	 - l t 4 H

o x f	
(37)

h" , f f l,
h

The up- and downgoing waves are so defined that their amplitudes remain

bounded in the direction of propagation. Thus, the imaginary part of the eigen-

value of the upgoing waves is negative, and positive for the downgoing waves.

Moreover, we know from the theory of gravity waves (Hines, 1960) that the

* Obviously, the subscripts and sup erscripts (' ,) .should be added to the matrices e, c, h P, K,
N_ as well as to the parameters q, F a, and Fb . We omit these indices for convenience as long as
no confusion is to be expected.

r^
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1

vertical phase velocity of upgoing gravity waves is negative, Thus, the real part

of the eigenvalue of upgoing waves is negative, too, and the terms a. and .8 in

equation (37) are both positive definite. That definition includes the two special

cases of wave propagation within the nondissipative atmosphere in which

f k = f  = f. There, it is 3 = 0 for the propagation modes, and a = 0 for the

evanescent or trapped modes. Trapped modes with negative equivalent depths

have an imaginary eigenvalue of G > 1. These waves can not transport wave

energy in the vertical direction. Their wave energy leaks away vertically to

such extent that the wave amplitude of the upgoing wave decreases according to

a - exp (- k o (a -- 1) A (z -- zo ))	 (38)

Thus, the adiabatic increase of the wave amplitude due to the exponential factor

1/2 Ho in equation (33) is overcompensated by the leakage effect. We shall see

in the following that generally within the dissipative thermosphere all wave

modes have imaginary terms .8 > 1, but real terms a different from zero.

Therefore, we shall call waves of that type quasi-evanescent modes. They ful-

fill the radiation condition as well as the condition that the kinetic energy density

is bounded at z -• 10 . Our eigenvalue equation (37) of course degenerates as it

should to the eigenvalue of the nondissipative atmosphere for 	 = f  = f (Chap-

roan ar,;'. Lindzen, 1970).

i 	 n

1
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5. SPECIAL SOLUTIONS OF THE GENERATION AND PROPAGATION

OF ATMOSPHERIC WAVES

We now want to discuss two special solutions of equation (30) which have some

relevance to the generation and propagation of waves within the atmosphere.

We shall restrict ourselves in this section to an isothermal atmosphere with

constant dissipation factors Z; that is, constant elements of the coefficient

matrix K in equation (30). A more quantitative treatment including realistic

temperature profiles and vertical profiles of the dissipation factors will be

given in paper I.

a. Infinitely extended isothermal atmosphere

We first discuss the simplest case of wave propagation within an isothermal

atmosphere infinitely extended in thevertical direction which shall simulate wave

generation within the thermosphere. We assume an external heat input with the
'-

vertical profile (see equation (5))

J m,f	 0	 (1- E)(Z-Z0) /2H0
„	 J ( z o ) e	 for zo < z S z l	(39)

Outside that region the heat input is assumed zero. For the boundary conditions

we adopt the simple radiation conditions namely that waves generated within the

region z o < z < z 1 by the heat source of equation (30) can only leave that region

through z 0 and z 1 , respectively. This implies that

a ( z 0 ) = b (z o ) = 0

t
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The explicit solution of (30) then becomes

a(z).-0

for z	 z o	(41a)

b (z) = b (z 0 ) exp Ij lt o ( q 	j A) (z -• zo)j

a(z)=G ,, (1- . exp, j ko (q+j EA)(z-zo)]}

for zo 5 z < zl	 (41b)

b (z) - GI) {1 - exp ^j k (q - j E A) (z 	 z l )] 1

a(z) - a(z l ) exp [ - jko( q + j A)(z.-zl)]

for z l	 z
	 (41c)

b(z) =0

with

j T( f Fn	 jA)

	

a	 f1,(FI,	 F,) (grj F=A)

	

G	
-	 j J 	 F a +j A)

	

G I)	 fl, (FI,-F.)(q-J eA)

The physical wave parameters are according to Equations (31) and (34)

W n,, f

-a +b
co

pM, f	
(42)Fa a +Fb b

po

T m, f
n _ 1

T	 2 ff L2K'(fFa +j A)a+2K fFl, +j A)b - j J]
To 	 I,
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where

,K Q M, f

J= Jill, f = nn
(1	

,! PO

from equations (39) and (27).

With the boundary conditions (40) we implicitly neglected the reflection of waves

(generated within z o < z < Z 1 ) at the earth's surface, In an exact treatment one

would have to add to the upgoing wave in (41) the wave

a (z)	 _ L• ( zo ) exp s . .- 2 j ko g zo •-j ko (q .. j p) (z - zo)1	 (43)

which is the do,vngoing wave of equation (41a) reflected at the earth's surface.

For the trapped modes this reflected wave is insignificant at z 
o -100 km. For

the propagation waves, a is only significant in the immediate vicinity of the

lower boundary z o and it is entirely negligible when compared with the wave

generated below z o (see section 5b). Thus, our solution (41) describes suf-

ficiently well the generation and propagation of waves within the thermosphere.

From the approximated equivalent depth at thermospheric altitudes in equation

(26) and from the equation of the eigenvalue q in (37) we estimate that a wave

mode becomes quasi-evanescent in a region where

^^ic Zk;l,I>, f2
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which is certainly valid above about 200 km altitude. There the imaginary part

of the eigenvalue in (37) becomes 3 > 1, -and we find from equation (41b) that

the waves approach the asymptotic values

a G
G

for z l_ co	
(44)

b -,Gb

if the heat source equation (39) is extended into infinite. Then, the wave ampli-

tudes of equation (42) approach the asymptotic values

%V M. f fJ(2Ho /h_1_.F)	 J [n(n 1)-20	 0fkf s2^']C0 ^Ga+G^,=Ar( 
2 ^

1)f4xfHo Al	 2AL(: 2 -1)fk f n 5 2 Y+Kn(n+l)J

pm, f

F G + F G	 J ,T (1 .: e)	 J J (1 + '7.) fk r 2 -	 (45)
P,	 (E2 _ 1) f  +4 x f HO /h	 1) f  fh E2 °i'+ k n (n - 1)1

Tm, f	 pm. f
n	 (1 --E)	 n

-i

T,,	 2	 po

and from the last Equation (16),

m.f	 m,f
Fn	 (1 + 6) p^

u0	 2 
p0 -

with

r
c0
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Here, the last equations on the right hand side of equations (45) have been cal-

culated with help of the approximate equivalent depth of equation (26).

From equations (20) and (26) we find the assymptotic wave amplitudes of the

horizontal winds

u n.f	 dP

c	

-

	

C11(10 exp {j (m,\ + 2 	 t + s Q, t)}
v ,

(4G)

v m. f	 Pm

- j m C	 n	 exp i j (m,\+ 2 f ^l t+ s .0 t)}c n
	 " sin B	 A

with

C _	 j 0+ IF ) ^
n

	

2 :( 2 - 1) fk f l, d 2 y	 K n (n + 1)j

Since f i , and fk tend to become constant with altitude (see section 2) the relative

amplitudes of the waves also approach constant values if e 1, and we obtain

for z co

2 j J fk,a2 y
P/p0 _: p /p0— 

K n (n + 1)

u / C0 00 V / c0 0C	 1
n(n, 1)

(47)

T/To 	0

w/%,O
 - 2 1	

(1 - 4 fk f e2 y K/n ( n + 1))	

r I

Al ,
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That means, the thermosphere behaves like a low pass filter which suppresses

the pressure, density and horizontal wind amplitudes of the wave modes pro-

portional to 1/n(n + 1). The same is the case for the vertical wind for low wave

domain numbers n, while the vertical winds tends to become, independent of n for

large numbers n. The temperature amplitude approaches zero at great heights

which is not consistent with the observations. However, it will be seen in the

following parts of this paper that this decrease with altitude occurs very slowly and

that the assymptotic value is only reached at heights of several thousands of

kilometers. Below 400 km, the temperature remains nearly constant. As al-

ready mentioned before the temperature amplitude is significantly affected by

the neglect of heat conduction waves. In paper I it will be shown that due to

heat conduction waves the temperature amplitude slightly increases toward a

finite assymptotic value at high altitudes.

,

We can simulate this influence of heat conduction waves in our simplified model

by introducing in equation (5) a value of

E	 0.75
	

(48)

which corresponds to a heat input that decreases with altitude somewhat slower
i

than the mean pressure. Then we find the ratio between temperature and density

from (45)

41
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T/To 1 - E 0,14

u/po 1 - E

which is slightly'smaller than in the Jacchia-model (Jacchia, 1964).

Taking the value of E from equation (48) and assuming plausible physical param-

eters for the thermosphere we find from equation (45) a formula for the effective

assymptotic magnitudes of pressure, density, temperature and horizontal winds

P/Po

^m, f

T/To	--
0.4+n(n+l)

u/co

v/co

This formula is valid within the height range between about 350 and 400 km and

is a very convenient half empirical formula (Volland and Mayr, 1971b) for tidal

and planetary waves at thermospheric heights as varified by the theory (see

paper I and the results of the following parts of this paper).

b. Wave generation within the lower atmosphere

We now want to consider wave generation within the lower atmosphere which

is important for the study of the tidal propagation modes. The relative amplitudes

of tidal propagation modes with zero attenuation (Q = 0) increase with height

according to exp (Az) within the nondissipative atmosphere. We therefore expect
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significant wave amplitudes for the upgoing waves of those modes at the base of

the thermosphere which we have to add to the upgoing waves generated within

the thermosphere. The lower boundary condition at the earth's surface is that.

vertical winds should disappear. Then, taking a heat source of the form of

equation (39) within the height range between 0 < z < z o we obtain from

equation (32)

a

n (I.)	 1 - Vxp - j k ((1	 j	 Al z.' - 0 ,	 1 - exp - j k o ((I - j	 A) z^.	 rxP j - j k,) (Q • j A) r.,

f o r 0<z' zo	 (50a)
i
y	 A -

	

b (z) _ I) i l - exp ij k o ( q	 j e A) ( z - zo)j)

and

a (z) -. a ( z o ) exp l j k o ( q	 j A) ( z — zo)J

for zo < z	 (50b)	 1
b(z)_0	 i

Because of 8 > 0, it is at the earth's surface (z = 0)

a 

for z = 0	 (51)

GI)

Thus
•

W m, f
n _0

co

	

	 1
for z=0; f1i = f

ti.
Po	 f (9 - j	 A)
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At the base of the thermosphere (z = N ) it is for propagation modes:

a (z o )	 - iG,, exp	 j 1c 0 (q , j c A) zo] + G,, exp 1,j ko ( q + j A) z 0 ] i

for 3 < 1,	 (52a)

b (z o ) _: 0

and for evanescent modes:

9
a (z) - G	

f
fora>1.	 (52b)

b(zo ) =0

The observed atmospheric wave modes are the sum of the wave modes generated

by the energy input within the lower atmosphere (equation (50)) and the energy

input within the thermosphere (equation (41)).

G. CONCLUSION

In this paper we developed a three-r:imensional model of thermospheric dynamics

in terms of the eigenfunctions of the atmospheric system. These eigenfunctions

or wave modes are excited by solar heating from XUV-radiation from particle

precipita i.l w, and joule heating in the auroral zone during geomagnetic disturbances

and from energy dissipation of waves from the lower atmosphere. We determined

formulae for both solar heat sources in Terms of the eigenfunctions of the

atmospheric system. That series contains tidal components depending on local
	

in

time and planetary components depending on seasonal time. We estimated the
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relative importance of auroral heating when compared with solar XUV-heating

and found that the average auroral heating contributes not more than about 15%

to the total solar heat input.

Approximate analytic solutions for the generation and propagation of atmospheric

waves within the dissipative thermosphere excited by the solar heat input have

been derived. It was shown tluat the eigenfunctions which are the Hough-functions

within the non-dissipative lower atmosphere, change into the spherical surface

functions within the dissipative thermosphere. The amplitudes of density and

horizontal winds for the various wave modes are shown to decrease proportional

to 1/n2 where n is the zonal wave domain number of the spherical harmonics.

Therefore, only wave modes with low wave domain number n are significant at

thermospheric heights.

In two further parts of this paper we shall discuss in detail the characteristics

of various tidal and planetary wave modes, especially the height dependence of

the eigenfunctions and equivalent depths and the change in the latitudinal structure

of the wave modes. In an additional paper (Volland and Mayr, 1971a) numerical

full wave calculations are carried out to develop a more sophisticated and

quantitative thermosphere model.

C^.•
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