
MSG -"02553

(ACCS;'IONN,- (~u

los angeles / san diego / washington, d.c.

21

MSC-OZ553

' N____ ___ 2_____....

2
(ACCSSION NUMjsEO

S(THRU)

S(NASA C f TM2_ORA CD
'CRINUMBER)

(CArEG-oRY)­

~VLOGICON
Jos angeles /san diego /washington, d.c.

ftoPtoeuc.d b,NATINAL TECHNICALINFORMATION SERVICE
$PfinPI1oid, Va. 22151

MSC-02553

Report No. CS-7107-ROZ16

February 26, 1971

cp>
Advanced Software Techniques for

Space Shuttle Data Management Systems

Final Report

By

Raymond J. Rubey, Wayne A. Ganzel,

Michael D. Richter, and Steven A. Vere

For

Manned Spacecraft Center

National Aeronautics and Space Administration

Contract No. NAS 9-11225

* Approved

R. Dean Hartwick, Manager

255 w. fifth street, san pedro, california 90731 Computation and Software Department

U LOGICON

ACKNOWLEDGMENT

This study was carried out in cooperation with per­
sonnel from NASA/MSC EB5. The assistance of
Irving Burtzlaff and Donald Barron is greatly appre­
ciated.

Distribution of this report is provided in the inter­
est of information exchange and should not be con­
strued as endorsement by NASA of the material
presented. Responsibility for the contents resides
in the organization that prepared it.

-11­

TABLE OF CONTENTS

1. Introduction i

Z. Summ ary 3

2. 1 Conclusions and Recommendations 3

Z. 2 Functional Analysis.- 55........................

2. 3 Computer Configuration 7

2.4 Computer Architecture to

Z. 5 Programming LanguagesZ

2. 6 Verification Tools and Techniques 13

3. Functional Analysis 15

3. 1 Inertial Reference 17

3. 2 Navigation Sensors 20

3.3 Displays 21

3.4 Trackers Z3

3.5 Landing Aids 25

3.6 Primary Propulsion Subsystems 27

3. 7 Reaction Control Subsystem 28

4. Computer Configuration 3 1

4. 1 Centralization/Decentralization Considerations 33

4. 2 Executive Functions 35

4. 3 Preliminary Executive Designs 39

4.4 Executive and Computer Configuration Comparisons . . 59

5. Computer Architecture 63

5. ± Memory 64

5.Z Execution Speed 73

5.3 Input/Output Facilities 77

5.4 Instruction Set 79

5.5 W ord Form at 86

5.6 Register Organization 89

5.7 Restart and Self-Test Provisions 93

5.8 Interrupt-Handling Facilities 96

5.9 Summary of Conclusions 100

6. Evaluation Methodology
 103

7. Programming Languages iii

7. 1 Language Suitability iiZ

7. 2 Compiler Suitability it5

7.3 Language Influence on the Software Development Cycle. iz0
7.4 Summary of Conclusions iZ4

-IIi­

8. Verification Tools and Techniques27

8. 1 Engineering Simulation i 7

8. 2 Interpretive Computer Simulation 131

8. 3 Hybrid Simulation 139

8.4- Other Verification Tools 143

8.5 Master Test Plan.... £48

8.6 Summary of Conclusions 155

Appendix A - Task Interaction 157

Appendix B - A Methodology for Restart Protection 169

Appendix C - Proving Program Correctness 177

- iv­

LIST OF FIGURES

i. Onboard Software Structure Outline 	 3 i

Z. Implied Executive Concept 	 41

3. Polling Executive Concept 	 4Z

4. Polling Executive Design 43

5. Interrupt Executive Concept 	 44

6. Interrupt Executive Design: Interrupt Module 	 46

7. Interrupt Executive Design: Scheduling Module 49

8. Distributed Executive/Multicomputer Concept............. 	 51

9. Distributed Executive/Multicomputer Design 52

i0. Distributed Executive/Multiprocessor Concept 54

ii. Fixed Executive/Multiprocessor Concept 55

iz. Floating Executive/Multiprocessor Concept 56

13. 	 Floating Executive /Multiprocessor Design:

Scheduling Module 58

14. 	 Floating Executive/Multiprocessor Design:

Interrupt Module 60

is. Fixed Memory Costs 66

16. Extensible Memory Costs 	 66

17. 	 Buffering Method of Interaction with I/O

Controller 78

18. 	 Cycle-Stealing Method of Interaction with

I/O Controller 78

19. 	 Instruction Usage for Guidance, Navigation,

and Control Programming 80

20. Stack Operation 92

zi. Performance- Probability Functions 105

zz. Performance-Payoff Function 109

Z3. Basic Simulation Model 129

24. Typical ICS Control Loop 133

Z5. Hybrid Simulation, Diagnostic Configuration............. 14Z

26. Absolute Value Sequence 	 147

-- %-­

LIST OF 	 TABLES

i. 	 Summary of Computational Requirements for

Three Space Shuttle Configurations 6

Z. 	 Computational Requirements for Three Space
Shuttle Configurations i7

3. 	 Computational Requirements for Strapdown Inertial
Referencest8

4. Computational Requirements for Navigation Sensors z0
5. 	 Computational Requirements for One Dynamic

Display 23

6. Computational Requirements for Trackers 	 23

7. Computational Requirements for Landing Aids 	 Z5

8. 	 Computational Requirements for Primary

Propulsion Subsystems 28

9. Executive Design Comparison 61

i0. Basic Instruction Set 82

ii. Performance- Probability Matrix 	 106

iz. 	 Language Capabilities Required for Different

Software Functions t13
3. Computer Influence on Language Suitability 	 114

14. 	 Language Characteristics for Different Software

Development Phases 121

-vi­

i. INTRODUCTION

This report describes a hardware/software study of the Space Shuttle data
nanagement system. The study purpose.was to identify at an early stage
in system development those computer hardware characteristics and soft­
vare development approaches that will have substantial impact on software

costs and schedules. The underlying motivation was to prevent software
development from becoming the pacing item in Space Shuttle system reali­
zation;

The study addressed three aspects of system &evelopment. An analysis
of the overall Space Shuttle objectives, mission requirements, and base­
line hardware configurations determined the nature and magnitude of the
computati6nal functions that the data management system will be called
upon to perform. Tradeoff studies investigated the software advantages
and disaxhantages of alternative computer hardware configurations and
architecfures; single-computer (or simplex), multicomputer, and multi­
processor configurations were examined, together-with detailed architec­
tural feait'ies that could be used in each. Finally, support hardware/
software studies investigated means of facilitating flight software develop­
ment. Two areas were addressed: high order languages in which the
flight software might be coded, and simulations and other analytic tools
that might be used in verifying its correctness.

PCUDING PAGE BLANK]NOT F!LMEI

2. SUMMARY

This section very briefly abstracts the study conclusions and recommenda­
tions and then goes into somewhat greater supporting detail on the individ­
ual study areas.

Z. I Conclusions and Recommendations

The functional analysis revealed'that some subsystem hardware 6onfigura­
tions and system requirements pose unreasonable computational loads. The
present overall range of comput'ational requirements is extremely wide and
must be narrowed if meaningful decisions are to be made as to the com­
puter configuration. 'Recommendation: The functional analysis&should be
continued.

Available data permitted basic conputational- requirements to 'be estimated
for maximum, moderate, and minimun subsystem hardware configurations.
From these requirements it was concluded that a simplex computer would
be adequate for the minimum computational load, but that a multicomputer
or multiprocessor configuration would be required for the moderate or maxi-.
mum loads.

The computer configuration analysis showed that software costs would be
lower for a centralized computer organization than for a distributed or fed­
erated organization., It was further determined that effective separation of
a program's functional elements could be accomplished by software methods
in a centralized organization, just as separation would be accomplished
physically in a federated organization. Recommendation: A c'entralized
computer organization should be used.

Studies of-executive types as part of the computer configurationanalysis
showed a polling executive to be simpler to verify than an interrupt execu­
tive, but not as flexible or responsive to likely system requirements. Anal­
ysis of verification problems indicated that control of interruptis.nd of in­
terrupt levels could minimize the verification problems associated with an
interrupt -executive. Recommendation: An interrupt executive 'should be
utilized, suitably restricted as to interrupt occurrences and levels.

Further investigation of verification problems indicated that a -simplex
computer cohfiguration would permit the simplest and easiest software
verification. Recommendation: If the minimum computational require­
ments prevail, a simplex computer should be utilized.

-3­

http:interruptis.nd

A multiprocessor configuration with a distributed executive was found to
result in slightly simpler software than an equivalent multicomputer, and
in much simpler software than a multiprocessor with a fixed or floating
executive. Recommendation: A multiprocessor configuration with a dis­
tributed executive should be utilized in the event that the computational
requirements exceed the capabilities of a simplex computer.

In analyzing the architectural aspects it was determined that those most
significant in terms of software costs would be adequate memory, speed,
and input/output margins. Recommendation: Memory, speed, and input/
output margins of at least 40% should be provided in the hardware. Effec­
tive management controls will be required to prevent this margin from
being utilized for new and possibly unneeded functions.

Software costs can be reduced by from 5 to ±0%e if other desirable archi­
tectural features are provided. Recommendation: The computer should
have the following characteristics:

* 	 Adequate instruction set, including floating-point
arithmetic

* Hardware memory locks or their equivalent
* 	 Extensive hardware error-checking, diagnosis, and

correction facilities
* Save 	and restart facilities
* Interrupt-control facilities

Many additional architectural aspects individually have a small effect but
in combination can significantly influence software costs. Recommendation:
A computer having the features listed below on the left should be selected in
preference to one having the characteristics listed on the right:

Desirable 	 Undesirable

* 	 Read-only/read-write 0 Auxiliary memory

memory partitioning 6 Virtual memory

* 	 Uniform instruction • Interleaved memory

execution times a Limited addressing range

* Buffered input/output * Unique or unusual instructions
* Partial-word addressing * Variable-length instruction
" General-purpose registers and data formats

The programming language investigation showed that the use of a high­
order language will reduce software development costs, even though the

-4­

language selected might not be completely suitable for all functions. The
suitability of the cornpiler was found to be more important than that of the
language itself. This is so because developing a completely efficient, cor­
rect, and comprehensive compiler for the Space Shuttle application will
take a relatively long time. Portions of the flight software -- notably the
executive -- will still have to be coded in assembly language, and verifica­
tion will have to be performed at the assembly language level. Recommen­
dation: A high-order language should be used, beginning as early as pos­
sible. Attention should be concentrated on compiler development rather
than on further language development or refinement.

In the verification studies, the conclusion was reached that simulations
will continue to be the most important verification tools. However, the
anticipated speed, size, and complexity of the flight computer configura­
tion will result in corresponding increases in simulation execution times,
which, for interpretive simulations, will approach unacceptable amounts.
Recommendation: Interpretive computer simulation diagnostic methods
and outputs should be improved to maximize the' information obtained from
each simulation run. Further, hybrid simulation techniques should be ex­
tended to yield information now efficiently obtainable only from interpretive
simulations.

Another conclusion regarding verification was that each type of simulation
is suitable only for particular roles, and problems detected by one type
may require the use of another for adequate diagnosis. Recommendation:
A master test plan should be developed and implemented covering simula­
tion use and comparison.

Finally, simulations can demonstrate the existence of software errors
but cannot absblutely prove their absence. One technique was developed for
designing programs whose correcthess could be proved, and another for
proving the correctness of relatively simple programs. Recommendation:
These techniques should be further-developed, and additional techniques
should be investigated.

Z. 2 Functional Analysis

Because hardware definition #as incomplete and changing during the func­
tional analysis, -it was not possible to establish firm and detailed quantita­
tive measures of the computational load to be imposed on the data manage­
ment system. The analysi's didillustrate how otherwise reasonable sub­
system hardware: configurations .and system requirements, notably those
of the docking laser and the aisplays, can result in an unreasonable

.- 5­

computational load. Sufficientfdita were available to permit basic compu­
tational requirements to be determined for three possible Space Shuttle
configurations:

* - A maximum system able to satisfy all mission require­
ments and providing complete support and status monitor­
ing 	for all associated subsystems

* 	 A minimum system able to satisfy the basic mission re­
quirements but providing for minimum onboard checkout
and having many functions performed by hardware distinct
from the central computer facility

* 	 A moderate system providing capabilities midway between
those of the two extremes

The 	primary computing requirements for these three configurations are
summarized in Table i. All requirements for the minimum configuration
are 	within the capabilities provided by existing simplex computers. How­
ever, the computational speed required for the moderate and maximum
configurations cannot be provided by either existing or foreseeable sim­
plex 	computers: a multicomputer or multiprocessor would be required to
provide the necessary effective computational speed.

For 	all Space Shuttle configurations, the table indicates only the minimum
necessary capabilities. It does not include provision for expansion to sup­
port new subsystems and additional mission requirements, nor does it
provide allowances for software inefficiencies. Even though the 24-bit word
size 	would be adequate for the minimum configuration, a larger word size

Table I. Summary of Computational Requirements
for Three Space Shuttle Configurations

Configuration

Parameter Minimum Moderate Mtlaximum

Total memory size (thousand words) 43 i20 250

Word size (bits) 	 24 32 32

Add 	time (microseconds) 25 .25 .10

-6­

2.3

would nearly eliminate the need for double-precision operations and hence
is preferable. As regards memory size and computational speed, the archi­
tectural aspects studies indicated that adequate margins are the most im­
portant factors in determining software costs. Capacities exceeding, the
minimum values listed are mandatory if software costs are to be minimized.
An allowance of'40% for the inefficiency component alone would permit use
of a high-order language to simplify program coding and, in addition,
executive design and programming standards that simplify software verifi­
cation.

The range of requirements indicated for the three possible configurations
is extremely wide. It must be narrowed so that decisions concerning the
computer configuration can be made in a way that minimizes the cost and
difficulty of software development. Therefore, the functional analysis
should be continued through the completion of the flight software develop­
ment.

Computer Configuration

The software problems inherent in a computer system in which most of the
computational capability is concentrated in a central facility were first
contrasted with those inherent in a system in which the computational capa­
bilities are in large part distributed to the subsystems. In the central­
ized system, the relatively small amount of processing performed at the
subsystem level would largely be restricted to data formatting, compac­
tion, and limit checking, and to input/output buffering. However, in a
few instances -- for example, a strapped-down inertial reference unit -­
more complicated computations would be performed at the subsystem level.
In a distributed, or federated, system, the central computer facility would
do significantly less processing; its principal task would be to control and
coordinate the activities of two or more computers that were both logically
and physically closely linked to particular subsystems or sets of subsystems.

A centralized system would permit a substantial majority of the software
to be developed for a computer architecture that facilitates both program­
ming and verification, and it would simplify the communication between
related functional programs. A federated system, on the other hand', would
greatly complicate the problem of allocating computational resources and
would be less flexible. Therefore, a centralized system would result in
lower software production costs than a federated system. The isolation

that prevents a program in one computer from erroneously interfering with
a program in another can be achieved in a centralized system by proper

-7­

PR&,f)NdPAO1]' BLANK NOT FILMD

The executive, whether polling or interrupt, is in any event simpler to
develop and easier to verify for the simplex computer than for the multi­
computer or multiprocessor. For these two configurations, significant
executive design aspects are the location of the executive and tasks and
the assignment of processors to tasks. In the distributed-executive
scheme, which is applicable to both configurations, each computer or
processor has its own executive and tasks. In the multiprocessor/fixed­
executive scheme, the executive is assigned to one processor; this one
executive then dynamically controls the execution of all tasks, allocating
them to processors as dictated by the computational load. In the multi­
processor/floating-executive scheme, both the executive and the tasks
are allocated according to the mix of tasks in execution.

Although the fixed and floating executives offer increased flexibility and
performance, the greatly increased verification problems they present led
to the conclusion that the distributed executive is more suitable for a Space
Shuttle multiprocessor configuration. As regards distributed executives
for multicomputer vs. multiprocessor, the only significant difference lies
in the mechanism for communicating between tasks allocated to different
computers or processors. In the multicomputer, this communication must
be done through the normal input/output operations, while for the multiproc­
essor it is accomplished by simple, direct memory access methods.

In terms of minimizing software development difficulty and cost, the sim­
plex configuration would be best. A simplex configuration may not be suf­
ficient, however, if anything more than the minimum functions are to be
performed by the data management system. Indeed, great increase in soft­
ware development difficulty will occur if a simplex configuration is chosen
that provides inadequate or barely adequate computational capabilities. Of
the two remaining configurations, the multiprocessbr with a distributed ex­
ecutive would result in slightly lower software7 development costs than the
multicomputer. Therefore, it is recommended that a simplex computer be
selected if it can provide the necessary computational capability; this is
likely only if the Space Shuttle hardware configuration and system require­
ments are close to minimal. If more computational capability is needed,
the multiprocessor configuration with a distributed executive should be
chosen in preference to a multicomputer configuration.

The multiprocessor with fixed or floating executive has been excluded be­
cause of the verification difficulties these two executive designs present.
Indeed, verifying the executives for all of the configurations is one of the
most difficult problems that will be encountered in software development.

-9­

2.4

Enough excess computational capability must be provided so that program­
ming standards can be employed that, although increasing the software
overhead, reduce verification difficulty. That is to say, the selected com­
puter or computers must provide an adequate margin of compuational capa­
bility so that tradeoffs between program efficiency and verification ease can
always be decided in favor of the latter.

Computer Architecture

In this portion of the study, the advantages of specific architectural char­
acteristics were identified and their impact on the cost and difficulty of
Space Shuttle executive and task program development and verification
estimated. Although hardware costs were not explicitly included, only those
architectures that have been demonstrated or could practicably be imple­
mented were considered.

The basic criteria influencing software development and verification dif­
ficulty and cost were defined in terms of the suitability or adequacy of the
following classes of architectural features:

* Memory

" Execution speed

* Input/output facilities
* Instruction set
• Word format
* Register organization
o Restart and self-test provisions
* Interrupt -handling facilities

Minimum capability levels with respect to the first three criteria are man­
datory if the software is to be produced at all. After the basic requirements
have been satisfied, the most important characteristics were found to be the
memory, speed, and input/output capability margins that simplify both cod­
ing and verification.

Coding and verification costs increase sharply as the memory usage and ex­
ecution time-approach the available capabilities. On the other hand, given
sufficient memory, speed, and input/output capabilities, almost any instruc­
tion set, register organization, and word format can be used without drasti­
cally increasing software costs. Providing surplus capacity poses a problem,
however. Unneeded functions may be added simply because the capacity ex­
ists, leading to an even larger program that may then have to be tailored to
match what turns out to be a barely adequate computation capability. It is

-jo­

therefore vital that effective management controls be imposed so that the
margins provided will be utilized for reducing rather than increasing soft­
ware costs.

While no other architectural aspects were found to have an impact equal to
that of adequate memory, speed, and input/output margins, appreciable
reductions in software cost would result from a computer design that incor­
porates a significant number of those remaining. As an example, provid­
ing hardware floating-point arithmetic would reduce the size of the software
by up to 5%, and this reduction would translate into even greater reductions
in programming and verification difficulty. As another example, providing
hardware memory locks and special save and restart instructions would
have a smaller impact on program size but just as significant an impact on
verification ease: many operations that otherwise would have to be checked
individually would be accomplished automatically by the hardware. Finally,
some aspects, such as interrupt-control mechanisms, would enable the
adoption of software design approaches that would otherwise be impossible.

It is 	 recommended that the computer configuration have memory, speed,
and 	input/output capability margins of at least 40%. It should also provide
the following architectural features, each of which will affect overall soft­
ware costs by about 5 to 10%:

* 	 A suitable instruction set, including hardware floating­
point arithmetic

* 	 Hardware memory locks, memory bound registers, or
similar hardware protection mechanisms

* 	 Extensive hardware error-checking and diagnostic facilities,
with appropriate feasible correction capabilities

* 	 Provisions for saving computer registers and other status
information and for restoring these registers and the status
with a minimum of program steps in the event of a computer
malfunction

" 	 Capability for enabling and disabling interrupts, both abso­
lutely and according to at least three priority levels

Besides the architectural aspects already discussed, the overall software
costa are affected to a lesser degree by the presence or absence of other
features. Verification problems would be eased by providing partitioning

-ii­

into read-only and read-write segments, uniform instruction execution times,
and buffered input/output. Capabilities for partial-word addressing and
general-purpose registers would be beneficial because these features reduce
data handling. With regard to the way in which an adequate memory margin
is achieved, a computer architecture that used an auxiliary memory or some
form of virtual memory would be less desirable than one that provided an
equivalent amount of uniform main memory. Interleaved memory is simi­
larly undesirable; even though it provided adequate speed margin, verifica­
tion problems would ensue because repeatability of program execution
times would be seriously compromised. Other architectural aspects such
as limited addressing range, unique or unusual instructions, and variable
instruction and data formats are undesirable because they require more
effort on the part of both programmers and verifiers.

There are still other architectural aspects that are of even less concern
in terms of software development costs, but of great concern to the hard­
ware designer -- so much so that they may determine whether the more
important software-impacting features can be incorporated at all. A fa­
cility for microprogramming is such an aspect. While the instruction set
is software-important, the means of providing suitable instructions -­
whether by microprogramming or hardwired logic -- is of no significant
concern to the programmer.

Z. 5 Programming Languages

The suitability of six high-order languages for Space Shuttle onboard software
development was investigated in terms of such characteristics as the amount
of the problem that could easily and effectively be stated in the language,
the control the language affords over computer hardware operations, and
the extent that the language can be utilized throughout the software develop­
ment cycle. Of the six languages, four were designed especially for aero­
space applications: CLASP (Computer Language for Aeronautics and Space
Programming), SPL Mk II (Space Programming Language Mk I), SPL Mk
IV, and HAL. Two -- FORTRAN and PL/I -- were primarily designed for
general-purpose applications. Compiler considerations were also investi­
gated, with the most influential found to be the efficiency and correctness
of the machine code generated, the diagnostic facilities provided, and the
compiler development cost and time.

FORTRAN was found to have few advantages and many disadvantages for
anboard software development. A smaller portion of the software could
be coded in CLASP or SPL Mk II than in the more comprehensive languages
HAL, SPL Mk IV, and PL/I. However, with the simpler languages object

-12­

code efficiency would be greater and the cost of compiler development
smaller. The executive program wbuld in any event have td be written
in assemrbly language: the simpler languages lack the necessary features,
while the 'compilers for the more comprehensive languages would be un­
able to generate the highly efficient object code required:. Overall, it was
concluded that use of any of the aerospace-oriented lianguages to the extent
possibie would reduce software development costs. The problem of com­
piler efficiency, the principal obstacle to the use of a high-order language,
can be reduced by providing adequate memory and speed margins in the
computer configuration.

Accordingly, it is recommended that a high-order language be used. Even
though They have deficiencies, any of the existiig aerospace-oriented pro­
gramming languages would be appropriate, with their compilers being
more significant than the language capabilities as such. Because of the dif­
ficulty in obtaining a completely suitable compiler, particularly for the
larger languages SPL Mk IV, and-HAL, memory and speed estimates should
provide for object code inefficiencies of about 15% and, for the reasons
stated above, the executive program should be coded in assembly language.
In view of the possibility that a new compiler will in some cases generate
erroneous object code because of its own deficiencies, verification must
continue to be done at the machi'ne or assembly code level. Substantial
verification benefits can be achieved, however, because the compiler can
be so implemented as to. enforce conformance with programming standards
and conventions.

z. 6 Verification Tools and Techniques

In this part of the study it was determined that the three types of simulations
used in previous aerospace software verification activities -- engineering
simulations, interpretive computer simulations, and hybrid simulations -­
will continue to be the most important verification tools for the Space Shuttle
onboard software. However, means of improvingthese tools and their use are
required. A deficiency of interpretive simulations has always been the ratio
between simulation time and real time, and with the much faster Space
Shuttle computer system this unfavorable time ratio will become even worse.
Two partial solutions to this problem were conceived. First, the interpre­
tive simulation should contain more extensive and automatic diagnostic and
information-gathering features that, at the expense of a slight"increase in
simulation time, would permit more to be learned from each simulation run,

"thus reducing the number of runs required. Second, the hybrid 'imulation
should be improved so that'it can provide much of the detailed information
about internal program behavior that presently is obtained only thiough an

-i.3­

interpretive simulation. One means of making this possible is to design
the flight computer so that its internal operation can be monitored by an­
other diagnostic computer that would be a new part of the usual hybrid
simulation setup.

Of course simulation tools cannot be used to prove the absence of program
errors; they can only demonstrate an error's existence. In view of the
large number of errors possible in the large and complex Space Shuttle on­
board computer program, analytic verification methods should be developed
to aid in proving program correctness and to indicate program design meth­
ods that would result in programs whose correctness could be demonstrated.
Two such approaches were explored: one defining the constraints that must
be satisfied to achieve program correctness when a restart occurs, and one
to prove program correctness for a limited number of program structures.

It is recommended that improvement of simulation tools and techniques be
pursued, and that a master test plan be defined for comparing simulation
results and validating the simulations themselves. Further, the develop­
ment of means for demonstrating program correctness should also be pur­
sued and the tools integrated into the Space Shuttle software development
and verification procedures.

_14­

3. FUNCTIONAL ANALYSIS

The ana'lysis of the functions to be performed by the Space Shuttle computer
system'was undertaken to estabtish its desired characteristics in terms of
the computational load to be imposed on it. Computationalload can be esti­
mated in terms of the computer memory required, the number -of instruc­
tions that must be executed in a given interval, and the input/output rates
that must be maintained. Also important are factors relating to the com­
putational tasks: their relative priorities, their periodicity, the amount of
intertask communication, and the number and-attributes of routinies shared
between tasks.

The analysis began by assembling and evaluating available reference data.
Where tile available documentation was incomplete or inconsistent, assump­
tions were made as to the most probable hardware configuration. In some
areas, models were constructed, and the range of requirements for alter­
native configurations was determined; in others, experience with'existing
systerns was sufficient to allow the expected behavior of their Space Shuttle
counterparts to be determined. The most detailed analysis was performed
on the guidance, navigation, and control portions of the system, since
these offered both the greatest computational load and the most comprehen­
sive source material.

It was not possible to establish firm and detailed functional requirements;
rather, the functional analysis indicated the rough order of nignitude of
computational requirements. At this stage of Space Shuttle system-defini­
tion, the computational load ranges from one close to that of Apollo to one
that large ground-based computers of today would have difficulty in sup­
porting. As the interfacing hardware becomes firmer, extension of
the functional analysis would allow requirements to be determined with
greater realism.

A major computational function not analyzed in the present study is the mal­
function (or error) diagnosis, circumvention, and system reconfiguration
necessary to meet the fail-operational/fail -operational/fail- safe. require­
ments. A preliminary survey of this function indicated that the software
needed to implement this requirement could double the conmputitional load,
while the far greater number of possible sequences of program execution
introduced by this software could increase by an order of magnitude the
time and cost required for verification. The added information'afforded
by further -hardware design definition shodld permit meaningful analysis
of reconfiguration requirements.

Overall computing load estimates were developed for three conceptual con­
figurations -- minimum, moderate, and maximum -- defined as follows:

* 	 Minimum Configuration: This system prorides for a
gimbaled inertial unit or a strapdown system with its own
processor; a basic set of sensors (e. g., star tiacker or
telescope and RF-only navigation); limited onboard target­
ing; basic telemetry without data compression; displays
essentially unprocessed in the central unit; status monitor­
ing for guidance and control and other subsystems; and an
executive appropriate to a multiprogrammed simplex com­
puter with an interpretive language.

* 	 Moderate Configuration: This system allows for a strap­
down inertial unit processed in the central computer;
unitized pointing platform and docking laser (with mini­
mum filtering); dual propulsion systems (main and orbit
maneuvering) with active load alleviation; extended on­
board targeting; downlink data compression; a pair of
redundant unified displays; status monitoring for the ex­
tended sensor set and for single-parameter checks of
interfacing systems; and an advanced simplex executive
without interpreter.

* 	 Maximum Configuration: This system assumes a strap­
down inertial unit processed centrally; the full sensor
complement with a state-of-the-art filter; adaptability to
three propulsion systems (including turbojet) with active
load alleviation; onboard targeting for arbitrary rendez­
vous; data analysis including pattern recognition and multi­
parameter trend analysis; dual, independent unified displays;
full monitoring of status of avionics and all other recon­
figurable systems; and a multiprocessor executive without
interpreter.

The computational requirements for these three configurations are presented
in Table 2. Supporting analyses for the individual hardware subsystems
follow in the remainder of this section. These analyses include hardware
configurations supplemental to the configurations of Table 2; and some sub­
systems, notably the display subsystem and the docking laser, can result
in computational loads far in excess of the estimations in Table 2. That
is, the data in Table 2 represent the best estimation of what actually will be
required for Space Shuttle.

-16­

Table 2. Computational Requirements for
Three Space Shuttle Configurations

Configuration
Parameter

Minimum Moderate Maximum

Total memory size (thousand words) 43.0 1z0 250

Inertial reference 2. 5 15 15
Navigation sensors 2.5 20 50
Guidance, navigation, and

control i0.0 40 50
Telecommunications 0. 5 2 Z0
Display and control 1. 5 15 30
Guidance and control status

monitoring 1. 0 8 1 0
Other subsystem status

monitoring 10 i0 40
Executive, interpreter, and

overhead 15 10 35

Word size (bits) Z4 32 32

Add time (microseconds) Z5 0.25 0. 10

3. 1 Inertial Reference

Two major classes of inertial references exist, distinguished by the nature
of the gyro integration. A gimbaled system implicitly integrates attitude
changes by maintaining a stable member, while a strapdown system main­
tains its reference as a set of data in the computer, which performs an
electronic -(normally digital) integration. The strapdown system, with its
explicit computer integration, is more computationally demanding than the
gimbaled system.. Its higher reliability and lower cost make it the more
likely selection for Space Shuttle.

The computational requirements of four strapdown systems representative
of the state of the art are summarized in Table 3. The Lunar Module Abort
Guidance System (LM/AGS) was self-contained except for alignment (derived

-17­

Table 3. Computational Requirements for

Strapdown Inertial References

System
Parameter

LM/AGS ASST RSS MIT/SIRU

Memory capacity (words) 4096 2150 13, 130 16, 384

Memory cycle time (psec) 5.0 4. 0 1. 75 0. 96

Word size (bits) 18 18 24 16

Number of instructions 27 -- 43 --

Add time (9sec) 1O -- 3. 5 1. 9Z

Multiply time (Psec) 70 -- 14 5.76

Major cycle interval (sec) Z i-2 1 0. 5

Minor cycle interval (msec) 20-40 10-20 40 10

from memory of the primary system). The Advanced Supersonic Transport
(ASST) strapdown system incorporated redundant sensors and limited logic
for failure detection, diagnosis, and correction. The Redundant Sensor
System (RSS) employed more elaborate reconfiguration logic, increasing
the software requirements considerably. Of all the four systems, the MIT/
SIRU (Strapdown Inertial Reference Unit) most closely approximates Space
Shuttle requirements.

The MIT/SIRU uses six gyros and six accelerometers aligned perpendicular
to the faces of a dodecahedron. The computing capacity indicated for the
MIT/SIRU is capable of performing the integration and formatting required
of any strapdown system, plus fail-operational/fail - operational reconfigura­
tion in its entirety. The logic to support reconfiguration for a third level
of failure detection and diagnosis might be developed, but would be qualita­
tively different in form and would impose a very large load on the computing
system. Instead of the extra software, a second SIRU may be used. That
choice also protects against catastrophic failure, so is preferred. If the
dual system is used, the computing load would be approximately double
that shown in the table.

The primary information to be supplied by the inertial reference to the data
management system is the attitude of the vehicle in inertial space. The

-18­

initial form of gyro data is the pulse representing an increment of attitude
about that gyro's input axis. In any strapdown system, these pulses must
be accumulated and transformed through rotation of coordinates- to derive
inertial attitude. The nonorthogonal arrangement of SIRU axes complicates
the rotation. algorithm but does not alter the basic task.

In dividing the attitude determination between local and central processors,
three choices exist: local formatting only, local accumulation a4d format­
ting, or full local attitude determination. If local processing is restricted
to formatting, major burdens are imposed not only on the central processor
but also on the data bus, which must transmit up to 1600 pulses per second
per sensor. By accumulating the pulses in a local buffer, the data rate may
be reduced without adding major computation. During the 1i0-msec minor
cycle, 16 pulses are accumulated per sensor and may be transmitted with
only 4 bits. They may be packed into words of length established by the data
bus design; the effective rate is fixed at 48 bits per cycle. Additional bits
are required for sensor status data.

Full use of a local processor is desirable for the SIRU because -the computing
burden is high The coordinate conversion must be performed every 10 msec,
whether executed in the local processor or the central computer. A conven­
ient form for the- output of attitude from the local processor is a, set of
quaternions (four 16-bit words). Although local coordinate conversion
increases the traffic on the data bus, the saving in central computing is felt
to be worthwhile. The accumulated velocity increments may also be trans­
formed into an inertial frame in the local processor (however, subsequent
integration to a state vector in the local processor would require external
data and thus is undesirable). The transformed velocity increment may be
packed into a single 16-bit word for each minor cycle. In such application
of the local processor, an interface is maintained with the data bus equiva­
lent to that of a gimbaled platform with accumulated AV. Development of
suitable alignment algorithms may then permit central routiies to be taken
from programs proved on earlier projects.

In any division of computing burden between central and local units, status
data must be provided for reconfiguration. The specific data required,
their rates, and their processing requirements are not yet known. 'I-t is
assumed that the local processor can perform high-rate filtering-in the pre­
ferred configuration and that two 16-bit words per minor cycle will suffice
to maintain the central files. In the absence of local processing, both high
data rates and extensive central processing would be needed.

-19­

3. Z Navigation Sensors

The attitude and state vector estimates maintained by the inertial reference
must first be established and should be updated through the use -of -pecial­
purpose navigation sensors. A wide range of sensor systems ha's been
considered for Space Shuttle. The simplest configuration in ternms of com­
puting load involves radio frequency transponding from known ground loca­
tions. The heaviest computing load is that for a system employing -three
sensors -- star tracker, sun sensor, and horizon scanner -- mounted on a
unitized pointing platform having two degrees of freedom and driven by
computer commands. Computational requirements for such a system are
summarized in Table 4 -and were derived as follows.

Initial alignment of the inertial reference will require stabilization of the
spacecraft, acquisition of the sun and the horizon by the sensors, driving
the platform to put each of at least two reference stars sequentially in the
star tracker field of view, and processing tracker error signals, platform
azimuth and elevation, and spacecraft attitude (from the inertial reference)
for each sighting. Alignment will be confirmed confirmed driving the
platform to at least one additional reference star and verifying its location
in the star tracker's field.

Occasional star sightings will be made under computer control to maintain
alignment, and the altitude -of a sequence of reference stars above the hori­
zon will provide position data. Operationally, one or two such points may be

Table 4. Computational Requirements for Navigation Sensors

Data Rate
Component Data Format

Alignment - Tracking

Platform orientation

Analog servo 2 X 16 bits 10 sps I sps

Digital servo 2 x 16 bits 30 sps - i sps

'Star tracker 2 X 16 bits discrete discrete

Sun sensor 2 X 16 bits discrete discrete

Horizon scanner 2 x 16 bits 10 sps to sps

-20­

taken every 10 minutes, as the other tasks permit, to minimize residual
errors. Each platform angle covers a range of ±300, for which 16-bit
quantization seems desirable. The horizon scanner provides only eleva­
tion deviation, which, depending on the scanner field of view, may be
quantized with up to 14 bits. Similarly, azimuth and elevation deviation
from the sun sensor may be quantized to 14 bits each; however, practical
arguments suggest that 16 bits will be used. If the star tracker field is
50 in each axis, 16-bit quantization of its data pair appears more than
adequate, yielding less than 0.6 sec error. With regard to data rate, it
is assumed that the horizon scanner will provide periodic data of the order
of 10 times per second. The sun sensor and star tracker will have data
available continuously; the former will be sampled up to 10 times per
second, while the latter need be read only once per star. These rates are

° /marginal to obtain 5-sic accuracy with a residual attitude rate of 0.0i sec.

Once alignment has been obtained, there appears to be no requirement to
command the platform repetitively; that is, given an inertial reference, a
single pair of platform commands will-drive the sensors to the desired atti­
tude through a platform servo loop. This implies a data rate of 10 samples
per second. If the reliability or other cost of such a loop is unacceptable, it
it will be necessary to generate incremental commands with computer-derived
damping to drive the platform to the desired position. In that event, plat­
form angles may have to be both read and commanded at up to 30 times per
second to obtain the desired stability, and it may be preferable to use a
platform rate command rather than an angle command as the interface. The
analogy between these functions and those of the digital autopilot may be
strong enough to allow some common usage of routines.

In addition to the estimates presented in Table 4, normal monitor and com­
mand functions will be required, and calibration is indicated for the horizon
scanner and will probably be required for the other sensors as well. Lack­
ing data on the mechanisms to be employed, it is estimated that a few hundred
words of program may be needed for each sensor; that the star tracker and
sun sensor would be calibrated once for each set of measurements (perhaps
once per 10 minutes of use); and that the horizon scanner will require col­
lection of data over several scans, perhaps 10, in every 10 minutes of use.

3.3 Displays

The display hardware is less completely defined that any of the other avionics
subsystems. To estimate computer requirements, one dynamic display
example -- the video image of the runaway for blind landing -- was constructed
and analyzed in detail. From AWAILS or from ILS and the altitude radar,

-Zi­

the computing system determines the vector in inertial coordinates to the
end of the runway; this may be rotated into the vehicle frame. The magni­
tude of the vector (distance to the end of the runway) establishes the scale
of the image, while the pitch, roll, and yaw angles control the display
perspective.

Any one of several analog mechanizations may be used to support a CRT
image or a projected slide of the data with frequent update. The maximum
load such an analog-supported display would impose on the computing sys­
tem would be four 24-bit words sent 30 times per second. Up to 40- add
times may be required to format each word, yielding 4800 adds per second.

The analog support equipment, while it reduces the digital load, is both
heavy and subject to failure. Replacing the analog hardware with special­
purpose digital devices does not alter the problem; only centralized digital
processing reduces the display penalty by providing redundancy through
equipment already onboard. However, in providing the display of the
example with digital processing, a heavy computing load is added to the
central processor. The 30-frame-per-second rate is still required to
avoid flicker, but now each point must be commanded by the central com­
puter.

An algorithm that minimizes the central processing required was developed
for generating the display. In constructing the algorithm and the example,
it was assumed that only straight lines with a single intensity level would be
required, even though several values of intensity may be desired for other
purposes. Even so, each display frame requires six sets of four segment
parameters and one inversion. For each of the 400 to 500 lines in a frame,
the computer must apply the algorithm to each display line (six multiplies,
six adds), determine the termini of each segment (iZ adds), test each termi­
nus for inclusion in the frame (four or eight compares), and assemble a
sequence of binary words in which each bit corresponds to a point on the
scan line. Typically, 15 words will be required to depict a scan line, sug­
gesting a composite requirement for each line in excess of 6 multiplies, 18
adds, 24 compares, and 15 logical OR's. The available time, determined
by the required frame-per-second rate, is 30 msec divided by 400 lines, or
75 11sec. Assuming that 10 adds require the same time as one multiply, the
arithmetic operations alone require an add time of less than I Psec.

Table 5 summarizes the results thus derived for the analog-supported and
the centralized displays. It can be seen that even a central processor with
a 0. 5-psec add time would be hard pressed to handle the unsupported display
when the logical operations for each line are added to the arithmetic opera­
tions, and when the projections required to provide segment information at

-2Z2­

Table 5. Computational Requirements for One Dynamic Display

Supported Centralized
Parameter Display Display

Bits per frame 96 200, 000

Words per second 120 220, 000

Adds per second <5,000 >i, 000,000

the frame level are included. Further increases in computing load may
arise from the need for color display; redundant and supplemeatal displays;
and requirements for trend analysis or other digital processing. Thus
from this work it is apparent that the range of requirements for the displays
is several orders of magnitude. Fortunately, analog hardware can be used
to maintain a reasonable computing load.

3.4 Trackers

Three tracking subsystems were reviewed: the docking laser, the rendez­
vous radar, and the infrared tracker. The resulting computing load in terms
of data and command.rates is developed below and summarized in Table 6.
It should be pointed out that no interaction between these subsystems.was
indicated in the pertinent preliminary literature -- although -it is likely that
such interaction will exist and that it will have significant computational
impact.

Table 6. Computational Requiremeits for Trackers

Tracker Data Computer Commands,

Tracker Bits/Sample Samples/Second Bits/Command Commands/Second.

Docking laser 24 <i03 16 0 3

Rendezvous radar 48 10 16 noniterative

Infrared tracker 16 i

-23­

3.4. i Docking Laser

The Space Shuttle requires a new type of sensor to determine the attitude
of a passive base for docking. The one studied employs a modulated laser
beam to determine the range along the beam and the displacement from
its center of the return from each of three reflective targets on the docking
ring. The modulation allows a separate range processor to establish the
distance to each target within a fraction of the shorter modulation wave­
length (13 ft) over a separation equal to the longer wavelength (1300 ft).
Target position in the plane perpendicular to the beam is determined by
electronic scanning of the detector. The beam must dwell on each target
long enough to obtain a suitable signal-to-noise ratio; it is estimated that
the maximum data rate from the docking laser is 1000 measurements per
second.

Range is quantized with 8 bits of coarse data and 4 of fine to provide resolu­
tion of 5 in. The position of the scan at maximum signal is encoded with
6 bits in each direction. Scan command may be provided by a local processor
on receipt of a discrete from the central computer, or it may be provided
directly by the central computer; this implies a data rate in excess of 106
bits per second. Another alternative is to use some local processing to
reduce the load on the data bus, decoding a 16-bit word each millisecond
into a search pattern.

Reduction of the laser data is a major problem for the computer. One
method was studied in which a coordinate converter, dynamic models
of the Space Shuttle and target, and a Kalman filter are employed. The
coordinate converter rotates the reference system into a frame with mini­
mum filtering to reduce the total computing load. The dynamic models then
estimate the attitude and position of each vehicle for comparison with sensor
data, and the Kalman filter determines the best estimate of attitude and posi­
tion from the past and present sensor data, taking into account detectable
sensor errors. The Kalman filter is the only known means of determining
docking information with the required precision. Among the operations
required for its use are the inversion of a matrix presently estimated to
contain over 1000 elements. Ideally, the filter would be applied to each
target as detected by the laser, requiring up to 1000 matrix inversions per
second. The resulting load is the equivalent of 50 X 106 additions per sec­
ond , a value which cannot be handled by even a large ground computer.
Only when detailed system requirements and sensor designs have been es­
tablished can a practicable filter be developed.

3.4.2 Rendezvous Radar

The rendezvous radar locates an active target through scanning and detection
of a microwave beam, with the electronic scan either generated in the radar

-24­

or commanded by the central computer. The scan position at maximum
return locates two coordinates of the target; each coordinate may require
8-bit encoding to maintain accuracy. Sixteen bits may be provided for
each of range and range rate, so that there will be 48 bits in each data set.
Although lower rates have been suggested for Space Shuttle, automatic
rendezvous may require up to 10 data sets per second. The phased array
used on the radar is amenable to a Cartesian coordinate system, with 8

8 bits in each dimension providing scan commands. Signal lock is main­
tained by radar electronics, so that only one set of commands is needed
to acquire and maintain lock.

3.4.3 Infrared Rendezvous Tracker

The infrared rendezvous tracker detects the thermal radiation of the base
to deteriine polar coordinates within its field of view (50 full-cone angle
about the longitudinal axis). Scanning is entirely under internal control.
Data should be available at least once per second, each set consisting of
the azimuth and elevation of the base, with each angle encoded to no more
than 8 bits. Depending upon detector design, it may be possible to use the
infrared rendezvous tracker with the sun in the field or reflected by the base.
It is possible that sun-avoidance logic for the scan pattern may be required,
suggesting two 8-bit words per second from the computing system to the
scan control when the sun is in the field of view.

3. 5 Landing Aids

Five landing aids were reviewed: altitude radar, ATC transponder, VOR
TACAN, instrument landing system (ILS), and all-weather automatic instru­
ment landing system (AWAILS). Their computing loads, as derived during
the functional analysis, are discussed below and summarized in Table 7 in
terms of data rates. The last three systems are complementary in principle
but will have significant periods of combined operation where their data will
be supplementary.

Table 7. Computational Requirements for Landing Aids

Landing Aid Data Rates

Altitude radar 16 bits/iO milliseconds
ATC transponder 9 X 24 bps (output from DMS)
VOR TACAN 3 X 8 bps
ILS Z x 8 bps + f discrete
AWAILS 3 x 8 bps

_25­

3.5. 1 Altitude Radar

This landing aid determines height above the local terrain from the transit
time of a 9-GHz signal. Since terrain variation will be a significant factor
in the received data; smoothing will be required by the computing system.
It seems likely that 16 bits will suffice for the data, and that a nominal
rate of the order of 100 msec between samples will provide rapid response
and effective smoothing. One possibility is that landing at the nominal site
would call for removal of known terrain variation from the data, either
complementing or replacing smoothing. Since the vehicle must be capable
of 	landing at unplanned sites, such a feature for the nominal seems to be
of 	little advantage, while it might commit a significant portion of memory.

3. 	 5.2 ATC Transponder

The air traffic control transponder is modulated with avionics data for
ground control. The following data should be required no more than once
per second:

O 	 Reference time (GMT): 16 bits

o 	 Mean altitude above terrain (unweighted average
of altitude radar data): 16 bits

o 	 Inertial state vector (referenced to the rotating
earth): 6 X 16 bits

* 	 System status code (synthesized from individual
status data): 16 bits

Other data available in the landing phase would appear to be of little value
to those receiving the transponder signal, since the computing system inter­
face is independent of the operating mode of the transponder during landing
phases.

3.5.3 VOR TACAN

VOR TACAN is a pair of data sources (omnirange and TACAN) providing
inflight data relative to earth-fixed transmitters. Each system employs a
signal from the ground, decoded onboard into an identifying tone for the
transmitter, a reference bearing, and a variable bearing as a function of
vehicle position relative to the antenna. It is assumed that manual identifi­
cation of the station will be employed, since the analog/digital and digital

-z6­

3.6

requirements for automatic identification seem unnecessarily costly. TACAN
also includes an active ranging path to its antenna. Particularly because of
the short range over which VOR TACAN data are good, 8-bit encoding of each
bearing 6ignal and of range would appear sufficient. While data are avail­
able essentially continuously, sampling once per second should be sufficient.

3.5.4 ILS

The instrument landing system is used to bring the vehicle to the middle
marker of the runway through detection of azimuth and elevation from a refer­
ence transmitter; a supplementary antenna signals passing of the outer and
middle markers. The detected signals of glide slope (elevation) and localizer
(azimuth) may be usefully encoded to about 8 bits and sampled once per
second. The two marker signals should be discretes to the computing system,
and require sampling at the same rate but for only the brief period near their
expected occurrence. Ambiguities -exist in ILS data and may require resolu­
tion in the computing system, both for display and for automatic landing.
Comparison between inertial reference and ILS data should be sufficient to
determine which of the five possible ILS references has been detected and
to optimize the landing trajectory.

3.5.5 AWAILS

The all-weather automatic instrument landing system, employed only in the
final stages of landing, provides angular interfaces equivalent to those of
IMS and supplements"them with measurement of range to a transponder on
the runway. Again, 8-bit encoding of each of the three data inputs should
suffice and sampling once per second would-appear adequate.

Primary Propulsion Subsystems

The orbiter primary propulsion subsystems may employ two separate sets
of engines: the main engines for the final stage- of boost and the orbit
maneuvering subsystem for subsequent major thrust maneuvers. A reason­
able 	construct -for operation of either engine subsystem calls for a set of
pre-ignition commands over a peiiod of seconds to minutes, an engine-on
signal maintained throughout thrusting, gimbal angle commands of indeter­
minate rate and quantization for both degrees of freedom, and a mixture­
ratio command. In the absence of data about a specifi-c subsystem con­
figuration, the estimates summarized in Table 8 were made for the design
carrying least load on the computing system. These estimates assume that
each 	engine may be gimbaled approximately 50 about each axis; quantization

i0to 0. would be useful. A reasonable interface would allow for up to

-27­

Table 8. Computational Requirements for
Primary Propulsion Subsystems

Function Requirements

Gimbaling 4 axes: 10 bps/axis + i discrete

Throttling 6 (air-breathing) engines: . ? bps + I discrete

Start sequence i command (discrete) with computer countdown

Engine-on I command (discrete) with computer countdown

Mixture ratio 2 (rocket) engines: i bps + I discrete

10 commands per second per axis, each incrementing or decrementiig the
gimbal angle by one count. Initiation of thrust may use two discretes (engine
sequence start and thrust start), or it may require a sequence of discretes
issued on a time base; the most difficult implementation would provide dis­
cretes triggered by measurements of propulsion parameters under com­
puting system control. Measurement of propellant quantities and flow rates
provides the data for computer determination of the desired mixture ratio;
the increment/decrement discrete is required no more than once per second.
Each incremental signal requires a discrete which causes the controller to
drive to the reference (null) position.

3.7 Reaction Control Subsystem

The reaction control subsystem employs 20 thrust chambers burning hydrogen
and oxygen to generate relatively small torques and forces for attitude con­
trol and small velocity increments. If continuous thrusting is possible, the
output of the computing system may be a discrete for each chamber (assum­
ing hard-wiring rather than the use of the data bus). In that event, the signal
is counted down with a tolerance of the order of I to 5 msec. If only a pulsed
mode is available, the number of such pulses (up to perhaps 800 per second)
must be transferred to the buffer in a local processor for each assembly.
Two or three such items are required for each assembly, depending upon
whether four or six thurst chambers are used.

Many configurations may be constructed in which computing system functions
are assigned, to local hardware and software. The above configuration does
not allow for some modes of employing rate gyros, nor is it clearly the
preferred type of interface for control surfaces in atmospheric flight. The

-28­

specific mechanism by which a command signal actuates the reaction con­
trol subsystem was not clear, and is significant in determining the software
requirements. A representative computing load might involve 20 thrust-on
discretes, up to six active at once, and each counted down at 400 bits per
second (may be synchronous).

-z9­

4. COMPUTER CONFIGURATION

The Space Shuttle onboard software rhay be divided into two categories:
functional and executive. The functional software performs the functions
dictated by the requirements of the-hardware subsystems and the mission

objectives. The executive software controls and coordinates the execu­
tion of the functional software in accordance with overall system require­
ments.

As shown in Figure i, the fun'ctional software may be subdivided accord­

ing to the fuhctions to be performed, such as guidance, control, and

checkout. Within these subdivisions it may be further categorized as to

the specific computations to be performed, such as initialization and the

computations performed at the minor and major cycle intervals. This'

final division of the functional software is made according to what will be

called tasks; each task consisting of well defined computations to be per­

formed at specified times or when specific criteria are satisfied. 'In gen­

eral, each task will require some maximum time for execution.

S Total Onboard

Guid Fueconl

IniialzatonMinor-Cycle

chekotechduerive

Major Cycle

controller

Re

confiue

Figure 1. Onboard Software Structure Outline

-31­

Executing the many tasks will require the sharing of computer.resources
such as the scratchpad memory and the input/output devices. The execu­
tive 	software will coordinate this sharing and control the resulting opera­
tions. Like the functional software, it may be divided into tasks, such as
scheduing the functional tasks for execution, controlling and performing
their input/output operations, and reconfiguring the computer system
according to the computational load or the health of the computer hardware
components.

The 	functional tasks can be designed, coded, checked out, and verified in­
dependently of the specific computer configuration, except for the ways
which these tasks interact with the executive system. Development of the
executive, on the other hand, is intimately tied to the computer configura­
tion, both as regards: i) the problems a particular configuration may
present in performing the task-oriented executive operations, and 2) the
special executive operations that the configuration might itself demand to
be performed. Therefore, the tradeoff of alternative computer configura­
tions was approached by studying the advantages and disadvantages of the
executive software.

Three alternatives were examined to determine which, for the anticipated
Space Shuttle functional requirements, would be the most suitable config­
uration from a software point of view:

* 	 Simplex Computer: The simplex or single computer, by
far the most common configuration for both aerospace and
general-purpose applications, consists of a single arith­
metic and control processor, a memory or a collection of
memory banks, and an input/output processor or controller.

* 	 Multicomputer: This configuration consists of two or more
simplex computers, each having its own arithmetic and con­
trol processor and memory. The separate computers, which
need not be identical, communicate with each other by means
of their individual input/output provisions.

* 	 Multiprocessor: This configuration consists of two or more
arithmetic and control processors connected to a common
memory such that, in general, any processor can execute
any program or access data located anywhere in memory.

The simplex and multiprocessor configurations are inherently centralized
organizations, both physically and logically; the central computer facility
performs the computational functions required by the hardware subsystems,

-3Z­

similarly to the way a commercial data-processing center supplies com­
putational services to its users. A multicomputer configuration can be
physically and logically considered as either a centralized system or a
decentralized (or federated), system, depending on the number of com­
puters and how the computational capabilities are allocated. In a central­
ized system there would be relatively few computers, each servicing
part of the hardware subsystems. In a federated system the computational
functions would be allocated to the computers in more of a one-to-one man­
ner, with the operation of these subsystem level computers under control
of a master computer.

Among the software aspects relevant to the tradeoff between centralized
and federated systems are the disciplines enforced in software production,
the cost and difficulty of software production activities, the computa­
tional loads that can be supported with equivalent hardware complexity,
and the protection that might be provided from software failures. These
are discussed first, followed by a look at the functions to be performed
by the executive, and next by preliminary executive designs for the three
computer configurations. The section concludes with a summary of execu­
tive and computer configuration comparisons.

4. 1 Centralization/Decentralization Considerations

The basic option available in the physical organization of the Space Shuttle
data management system is that between centralization and distribution of
the computing capacity. Neither extreme is probable: concentration of
digital processing in a single central computer would overload the data
bus, while some central functions (e.g., steering, mission control, re­
configuration) could not reasonably be allocated to a remote processor.
Thus the requirement is to optimize the separation of functions into local
and central processors under the mission and cost constraints. A com­
plete tradeoff awaits a more complete functional analysis, and this itself
awaits spacecraft design decisions. However, many important cpnsidera­
tions are apparent at this time.

In the extreme represented by a fully centralized system, the computer is
divided into, processors whose number and usage are established by the in­
stantaneous'load. All data are fed over the data bus by analog/digital con­
verters, with only minimal buffering to allow noninterfering, serial t-rans­
mission. Fully resolved data are received at the subsystems, so that only
format conversion is required to provide the stimuli needed, for their check­
out. The data rates associated with the fully centralized configuration
would approach an order of magnitude increase over those attainable with
more 'extensive local processing. That penalty increases not-only the

-33­

capacity required of the data bus, but also the input/output load on the
central processor.

In the extreme represented by a fully federated system, all processing
possible at the subsystem level is performed in dedicated processors
located with the interfacing hardware; the central computer performs
only the tasks involving the integration of data from several subsystems.
A major advantage of such a design is the discipline it forces on defining
the interfaces between software located at the subsystem level and the inte­
grating software of the central computer. In addition, the powerful com­
puting capability at the remote locations minimizes data rates and should
save both cost and weight in the distribution system. However, the rep­
lication of routines among the local processors would be great, so that
each would have to bear an overhead comparable to that of the entire cen­
tralized system. Memory and computation capacity would be committed
to executive functions and to task programs and subroutines that are
handled more efficiently in the centralized system. Furthermore, it is
unlikely that the architectural characteristics of the smaller local pro­
cessors would be conducive to easy programming. As a result, a con­
siderable amount of software would have to be developed for hardware
that is less than ideal from programming and verification points of view.

An essential computational function is the reduction of masses of data
(e. g., accelerometer pulses, supply voltages) to significant information
(e. g., steering commands, status displays). The partitioning of tasks
to central and local processors is essentially a process of optimizing the
allocation of data reduction to the different sites. The total data reduc­
tion load may be assumed to be independent of how it is allocated. Data
compression, which represents an element of the filtering the system
will be required to perform, would have to be executed either explicitly
or implicitly in the central processor if local capability were omitted.
Once such elementary capabilities as accumulation of accelerometer
pulses are assumed in the local processors, there is a tendency to add
others to reduce the load on the central unit.

With each level of compression at the local processor, less raw data
need be forwarded to the central unit. At some point, data among sub­
systems must be correlated; at that stage, central processing is indicated.
Typical of that case is the determination of steering commands from en­
gine, accelerometer, and gyro data. A fully decentralized system would
reduce the role of the central unit to that of performing multisource data
analyses. Performing these analyses will require powerful processing
units and an extensive memory regardless of how the functions are dis­
tributed. In the federated configuration, some local processors will be

-34­

comparable with the central processor in magnitude. If the-local proces­
sbrs are physically and functionally remote from the central proc6ssor,
any redundancy requirements must be reflected in them separately. Con­
sequently, a redundant system grows rapidly more expensive with increas­
ing decentralization.

The relationship between cost and the degree of decentralization may be
illustrated by the following example of two configurations. In one, a
processor is provided for each of N subsystems and an additional equiva­
lent processor is provided to handle interprocessor communication. If
system requirements dictate survival of any two failures in processing
units, this configuration requires 3(N+i) processors. The other, more
centralized configuration provides the same total computing power, but
allocated such that each processor supports three subsystems and the
balance of the required processing is provided by the central computer.
This configurationwould require N+(Z/3N+i)+2 processors. The more
centralized configuration needed to accomplish the same computing is
therefore composed of 4/3N-2 processors fewer than the other, which is
significant even if there were only three subsystems (8 units against iZ).
The same argument is relevant with respect to the location of memory
modules. Memory advantages also exist in that portions of code would
have to be repeated in the decentralized system, whereas in the centra-­
lized system they would merely be accessed repeatedly.

The principal argument against centralization deals with the redaced
cost of verification associated with breaking the code into separate pro­
grams. Decentralization enforces modularity by removing the interfacing
routines to separate processors. The same attention to software'niodu-'
larity and interface requirements can and should be applied to the central­
ized system. Programs can be separated to minimize unwanted inter- ­

action through a combination of software design techniques and computer
architectural features, just as effectively as separation is achieved phys­
ically in the decentralized system.

4, 2 Executive Functions

The system executive will be required to perform the following four
basic functions, each of which is discussed individually in what follows:

* Allocate resources
* Perform and coordinate I/O operations

" Maintain real-time control

0 Preserve system integrity

-35- ­

4. 2. 1 Resource Allocation

This function takes on different forms depending on hardware design. The

resources available may include memory banks or modules, secondary

memories, I/O devices, and processors. It is the management of these
resources, including routing of processing through the program elements,

that prompts the use of the term "executive. "T Essentially, the functions

performed under resource allocation are those of controlling and manag­

ing the computer hardware as dictated by the needs of the software.

At one time, flight software requirements were such that an inflexible
sequencing of task execution could be tolerated: programs written for bal­
listic missiles required no executive. The Space Shuttle represents the
opposite pole in that the sequence of task execution will not be predictable
before flight. While some operations may always be performed before
others (e. g., boost guidance precedes reentry maneuvering), most tasks

are interleaved as a function of hardware subsystem activity.

Accommodating such a flexible sequencing environment greatly compli­
cates resource allocation; very often a task request will occur when the
available computer hardware is already allocated to performing other
tasks. In one sense the job of resource allocation is greatly simplified
when there are relatively few resources to allocate; for example, the
allocation of processors to execute tasks in a configuration with only one
processor is obvious. Resource allocation is obviously simplified if
there is a surplus of resources; in this case the allocation can be accom­
plished inefficiently yet still satisfy hardware subsystem requirements.
For example, with a large number of processors it would be possible to
initially allocate tasks such that none assigned to the same processor

would ever need to be executed at the same time.

Most tasks require the use of erasable memory for intermediate storage
and retention of input and output data. Committing memory by task with­
out sharing may in some cases require more memory than is available;
so memory may have to be allocated under the control of the executive.
Similarly, if a mass memory device is used for storage of program ele­
ments required only during given mission phases, its management would
be another resource allocation function. The actual reading and writing
of the mass memory would be accomplished by the executive's I/O ele­
ments under this management.

-36­

4. 2. 2 I/O Performance and Coordination

Among the things the executive will be required to do in this category
of functions will be executing the [/0 operations indicated'by task-issued
I/O directives, monitoring the I/O operations to resume task execution
when the indicated data have been received or transmitted, and sequenc­
ing the I/O operations so that both the task requirements and'those of
the h&rdwdre subsystems are satisfied even if the I/O directives from the
tasks appear to conflict. In some simple systems the performance of I/O
operations is left to the functional tasks themselves. The resul'ting distri­
butiof oftI/O activity throqghout the software introduces much duplication
and requireg that any task about to perform I/O be aware of possibly con­
flicting I/O being performed by all other tasks. The method is undesirable
for a-software system as complex as that for the Space Shuttle, and partic­
ularly undesirable because the preponderance of the I/O in this system
uses a serial data bus. The sequencing of data on the bus mcst be very
carefully managed to insure not only that the appropriate data are sent or
received, 'but also that this is accomplished in a timely fashion to satisfy
the software -system's real-time constraints.

4. Z. 3 Real-Time Control

Some tasks skill have relatively flexible real-time constraints-: it will be
permissible for them to be executed at any time during some fairly long
interval. Examples are initialization for maneuvers that may not be
scheduled to take place for some time, performing onboard targeting
computatiofns, and checking some vehicle hardware subsystems. For
such tasks the important thing is that they be done rather than the pre­
cise time at which they are executed. These tasks comprise the back­
ground computation. Other tasks will have to be performed in response
to some specific stimulus within some short period of time, and, for these
the executive must make certain that the real-time constraints are ful­
filled. Examples of such tasks are those involved in making the proper
responses to controller or keyboard inputs of the crew and those that, in
response to an error signal, reconfigure the system to minimize the effect
of the errori.

Thus the executive must allow for the maintenance of real-time control,
between task software, hardware subsystems, and the vehicle. This
can be accomplished in many ways. One is for the executive -to conduct
a poll of hardware devices and software lists to determine the tasks to
perform;, another is for the executive to respond to requests for task
execution made via hardware or software interrupts. When such an

-37­

interrupt occurs, the executive must identify the source of the interrupt
and its associated task and priority; compare its priority with that of the
task in execution; and, if the new task is of higher priority, cause the
current task to become dormant and the new task to begin execution.

Another type of real- time control that will have to be exercised by the
executive is the scheduling of tasks that must be executed periodically.
Examples of such tasks are the guidance and navigation major cycle com­
putations and the flight control minor cycle computations. This can be
accomplished by interrogating a real-time clock to determine when the
proper interval has passed or by responding to an appropriate periodic
interrupt.

The usual approach to maintaining real-time control is to establish a
priority scheme in which tasks that must respond very quickly to certain
stimuli are given a high priority and the background tasks a low priority.
In a priority scheme of this sort, periodic tasks must have dynamically
changing priorities, either in actuality or in effect. Normally the periodic
task has a priority so low as to prevent its ever being executed, and at the
appropriate times its priority is increased. Its high priority is maintained
while it is being executed, after which it returns to its former low state.
Similarly, many background tasks may require dynamic priority adjust­
ments. For example, computer self-test might normally have a low prior­
ity; and if it has not been completed in some specific interval its priority
would be increased. This would continue to occur until either it was exe­
cuted or its continuing high priority indicated that something was consum­
ing available computer resources to an unexpected and possibly erroneous
degree.

4, 2.4 System Integrity

Because of the variety of things to do, the situation may occur in which
tasks to be performed require more than the time available. (One exam­
ple of how this can be detected was just described.) When this condition
exists, a system overload has occurred. The executive must be able to
resolve these conflicts and do only those things that are mandatory for the
correct function of the system. It can resolve the conflicts by reassigning
priorities, aborting low-priority tasks, or stretching out the time allotted.

The executive must have the ability to detect some types of faults in
external devices and in the computer on which it is executing. It must
also periodically schedule tasks to perform diagnostics on the devices and
on itself to ascertain any problems and take corrective procedures bypass­
ing the elements in error. In case a malfunction in the computer system

-38­

4.3

is detected, the executive must be able to communicate with a backup com­
puter ahd switch to it in such a manner that the vehicle continues and main­
tains its scheduled mission.

Finally, the executive must be so designed, constructed, and verified
that there is no question that it can perform its functions. It must be such
that adding or deleting tasks does not require extensive executive modifi­
catiol, and must also be so written that adding or deleting hardware de­
vices similarly is easily accommodated without making more likely the
oc currence of software errors within the executive itself.

Preliminary Executive Designs

The choice among executive designs is a function of the mixture and com­
plexity of the functional tasks, the design of the digital hardware, and-the
relative value of execution time and memory overhead. In general­
purpose computation, the executive may be called the operating system;
the generality of its use imposes a high cost in system performance that
must not be borne by the special-purpose executive for the data manage­
ment system. However, some overhead penalty should be anticipated to
allow enough flexibility to provide system expansion as the Space Shuttle
evolves. Optimization of executive design is a function of the range of
requirements anticipated. The initial requirements determined during
the functional analysis activity were adequate for the initial study of exe­
cutive design. While further definition of functional requirements will
allow refinement of the preliminary designs described here, it is not
expected that the conclusions will change.

The 	principal tradeoffs in executive design are the means by which task
execution is initiated, the flexibility permitted in task allocation, and
the residency of the executive. The task-to-processor allocation and
eiecutive r-esidency tradeoffs of course apply only to the multicomputer
and multiprocessor configurations.

three alternatives exist as to the means of task initiation:

* 	 Implied Executive: Each task, when completed, transfers
control to the next task to be done.

* 	 Polling Executive: When one task's execution is com­
-	 pleted, the executive selects the next based on a poll of

those waiting to be done.

Interrupt Executive: A task is interrupted-during execu­
tion to perform a more important task.

-39­

0

To simplify the comparison, preliminary executive designs for the three
task 	initiation alternatives were developed for the simplex configuration
only.

Three allocation and residency alternatives exist for the multicomputer
and-multiprocessor configurations:

* 	 Distributed Executive: Tasks are divided into fixed sets,
with each computer or processor executing only those
tasks allocated to it under control of executives perma­
nently resident in each computer or processor.

* 	 Fixed Executive: Any task can be performed by any proc­
essor, but the executive functions are always performed by
the same processor.

* 	 Floating Executive: Any task and the executive functions
can be performed by any processor.

The second and third alternatives would be practical only for the multi­
processor configuration, for executing on one computer a task located
in the memory of another would obviously be very difficult, if not impos­
sible. Therefore, distributed executive designs were developed and
compared for both the multicomputer and multiprocessor configurations,
but fixed and floating executives were investigated for the multiprocessor
only.

4. 3. 	 1 Implied Executive/Simpfex Computer

The implied executive (Figure 2) does not exist as a distinct program.
Rather, executive functions are performed by the individual tasks. Each
task must know which task follows and transfer control to it for execution.
If various tasks are permissible, the burden is on the executing task to
pick the correct one and start its execution. Then the logical decisions to
determine what to do next, properly the function of the executive, have to
be added into the task coding itself, thus complicating the task coding, re­
ducing its independence from the computer configuration, and obscuring
the actual program structure. It also becomes necessary to verify the
program as a complete assemblage of tasks rather than to do extensive
independent checking of the tasks and the executive.

Although it may be suitable at the local processor level, the implied execu­
tive is not considered a serious candidate for the central computer facility

-40­

TaskI

Task 2

Task 3

1

Task N

Figure 2. Implied Executive Concept

for the Space Shuttle; the multitude of events occurring, at times simul­
taneously, simply cannot be handled by a series of tasks executing con­
secutively. The main purpose for describing the implied executive here
is -to use it as a base for measuring the relative complexity of other exec­
utive designs.

4. 3.2 Polling Executive/Simplex Computer

If the computer configuration chosen has no hardware-generated interrupts,
an executive that interrogates the external devices for activity would be a
likely choice. After each task is completed, control is returned to the ex­
ecutive. It then determines which task to do next by performing a poll of

-41­

the external devices and examining a software queue of tasks awaiting
execution. Figure 3 illustrates the concept and Figure 4 shows a high­
level polling executive design.

In this design, the executive is entered at the completion of every task.
The first thing the executive does is poll the input and output devices and
execute appropriate I/O tasks if required. Next, the current time is de­
termined by reading a hardware clock; this is necessary since, in general,
the time since the executive was last performed is unknown owing to the
varying times the tasks themselves will take to execute. Then queues of
time- and input/output-dependent tasks are examined to determine whether
any particular task should be performed. Examples of such criteria, which
may be applied singly or in combination, are the reaching of the time at
which a task should be performed, the completion of a lengthy output opera­
tion, or the receipt of an input directive to perform a specific task. If the
appropriate criteria are met, the indicated task is placed in the queue of
tasks to be executed and, unless a periodic task, removed from the criteria­
dependent task queue. Finally, the task with the highest priority in the exe­
cute queue is selected, it is removed from the execute queue, and the execu­
tive transfers control to it.

Eecute Queue
Task I

Figure 3. Polling Executive Concept

-4Z­

*start

J 'Rea@d Clock

l PlceTsk

Place Task

in Execute
- Qoeue?

e a
Task

to Perfo
t This Ti

n o

Get F'irstT!ask

in E e ut u u

Remove Task
from Criteria.

Dependent Task
-

Remove Task
from Execute

Queue

Figure 4. Polling Execative Design

-t43 ­

Since there a-te no hardware interrupts, the polling executive must be exe­
cuted at an/interval such that the fastest device in the system -- most likely
the timer 'or clock -- is serviced when needed. This requirement would nec­
essarily force all tasks to be written in such a manner that they finish execut­
ing in the allotted interval, which could be as little as, say, 20 rnsec. Thus
a task in this case may consist of a section of coding that is only a part of
the overall function to be performed.

The polling executive has the advantage of being repeatable, that is, under
given circumstances it would perform in the same manner. This feature is
of considerable importance in verification. However, the timing considera­
tions and the constraints they impose on task program design and develop­
ment have a substantial effect in raising software costs. Further, an attempt
to modify existing tasks or insert new ones would cause the timing to be off
unless a completely new analysis were performed.

4.3.3 Interrupt Executive/Simplex Computer

The interrupt executive, shown conceptually in Figure 5, is similar to the
polling executive as far as the queue of tasks awaiting execution is concerned.

Execute Queue
Task I

Task Z

" Task 3

Task N

Figure 5. Interrupt Executive Concept

-44­

However; rather than waiting until a task is completed before deciding what
to do next, the decision is made whenever an interrupt occurs, which can
happen-- and does -- while a task has been but partially completed. The
interrupt carries with it an indication of why action is to be taken: this may
be that some interval has passed, that some external device is ready to
transmit or receive data, or that some hardware component or subsystem
has failed. The first thing the executive must do is "service" the interrupt.

Interrupt-servicing must be able to execute at the expense of a task or job
currently executing, and when the interrupt has been serviced the -inter­
rupted task or job must be able to resume at its point of suspbnsion. There­
fore, all registers used by the interrupt-servicing routine must be saved
and restored in the event that they were being used by the interrupted task.
Interrupt-servicing difficulty may be compounded by allowing interrupts of
higher priority to occur while operating and servicing a lower priority inter­
rupt. Allowing the interrupt-servicing routine itself to be interruptible re­
quires that it be made reentrant, that is, able to execute a section of code
before it has completed its previous assignment. Further, the time con­
sumed in performing interrupt-servicing and scheduling functions must be
minimized; for interrupts may occur very frequently, multiplying the effect
of any executive inefficiencies.

The interrupt executive is composed of at least seven distinct functional
modules as described below. The first of these, the interrupt module, is
entered whenever an interrupt occurs. The interrupt module may in turn
call any of the three input/output processing modules. The fifth module to
be described, the scheduling module, is the portion of the executive to
which each nonexecutive task transfers control when completed. The last
two modules, entered either from the tasks or the executive, perform
functions such as inserting new tasks and performing diagnostic checks.

i) Interrupt Module: Before determining the cause of and the
response to an external hardware interrupt, this module
(Figure 6) saves all volatile registers; to allow for re­
entrancy, there is a save area for each interrupt in the sys­
tem. The module then determines the cause of the interrupt
and takes the path directed. A clock interrupt results in up­
dating time and interrogating the time-dependent task queue;
if a task were scheduled, it would be removed from this
queue and placed in the execute queue. If the new task had
a higher priority than the executing task, the scheduling
module would cause the new task to begin; if lower, the in­
terrupt module would restore all registers and branch back

-45­

7

lnihibit

Interrupts

Save Machine
;Status

Enable Higher

Priority

Interrupts

lock
 Update

6Clock

no - no

Tro oae

Task
 DetTs

ysi
Takterrupt

| StinenotTaasn
xct

T i m e ­rPol a cey

e n
sya eda s ~ D epend ent T ask
kfre.te.

A ssig m ent T ablQ u aue

RemoveeTasrxeuieDsg:strutMdl

~Pl

Dk
Fgr6.Interrupt c Tasknr Iahn

n
,
cte
ram e

e.a Queue

eue
STa s k

?Exec

En
 abl
nog
n
q

e
nal u
entsrr

nternpt

Mdu

Desgn:Intrrut

Execfie

6. Interrupt
Figure

achneas, wthR6-aIt~to.

Figure 6. Interrupt Executive Design: Interrupt Module (continued)

to the suspended task. Similarly, the appropriate execn­
modules wouldBtive be executed for other interrupts.

2) 	 Peripheral [// Module: This module handles I/O requests

to peripheral devices such as digital displays, mass stor­
age devices, and the like, providing the programmer's-inter­

facing software with them. It initiates requests and responds
to and resolves interrupts associated with these devices. In

case of errors, retry attempts will be made; if still unsuc­
cessful, this modu e will notify the executive to take correc­
tive 	action.

3) 	 Data Bus I /0 Module: This module performs the functions
necessary for communication via the I/0 data bus. It

-47­

coordinates all activity on the bus, schedules the I/O such
that optimum use is made of it, handles all -interrupts asso­
ciated with it, and monitors for any error conditions that
may 	exist. Corrective action in case of failure or trouble
is directed to the error recovery module.

4) 	 Other I/O Module: All other system I/O is lumped into a
package handled by this module. Falling in this group
would be any analog or digital I/O and any I/O such as pulse
counters or counters of some other sort.

5) 	 Scheduling Module: After a task has completed its function,
it branches to this module (Figure 7), which then accesses
the execute queue for the next task. If the task in queue is
a new one, the scheduling module branches to it to begin
execution; if it is a previously interrupted task, the sched­
uling module must reset the registers before performing
the branch to the task in -question. If no task is waiting,
the scheduling module starts the idle/self-test task. Be­
fore accessing the execute queue, the scheduling module
inhibits interrupts, then enables them before branching to
the next task; this ensures a graceful transition from task
to task.

6) 	 Task Support Module: This module provides the functional
tasks with the ability to perform such operations as the in­
sertion of tasks in the execute or time-dependent queues.
Requests for temporary memory blocks are also handled by
calls to this module, which can remain flexible for the addi­
tion of new functions suited to be included within the execu­
tive structure.

7) 	 Error Recovery Module: This module has the responsibility
to ensure corrective action in the event of hardware or soft­
ware error conditions. Included in this module are self-test
and diagnostic routines such that error conditions can be
ascertained and recovery procedures implemented.

The 	interrupt executive has a distinct advantage over the polling scheme
with 	which tasks need to be completed in a short interval before returning:
the interrupt executive is able to respond to real-time events as they occur.
That is, it can accept externally caused events, suspend task operation, and
perform any function necessary to respond successfully to the event. The
only delay would be in saving any volatile registers such that the system can

-48­

7Start

Interrupts

in Ex e cte no9__ Start

Q e eSelf-Tes

Remove Task
from Queue

yes esoeRegisterV~es forRetr estar
? Task Restart

Enable
tInterrupts

Begin Task

Execution

Figure 7. Interrupt Executive Design: Scheduling Module

-49­

resume execution at the point of suspension. One minor disadvantage is
that during the response to an interrupt, the task currently executing is
temporarily delayed. Another is that the time needed by the executive to
preserve machine status must be included in executive overhead. The
potentially most significant disadvantage, and one that requires discus­
sion, relates to ease of verification.

A major verification problem with any software system consisting of a
large number of tasks lies in assuring that the required interaction be­
tween tasks is correct and that no unwanted or erroneous interactions
happen. As an example of the type of problem that can occur, consider
the case in which one task is computing a vector and before it is done it
is interrupted by a task that uses the same vector. It would be satisfac­
tory if the interrupting task obtained either all the old values for the vec­
tor elements or all the new values, but wrong for it to obtain a mixture
of old and new elements. What is needed in such a case is a means for
locking out the interrupting program until all the new values have been
computed. A similar, more serious problem -- and one often more diffi­
cult to detect -- occurs when a task places the results of its computations
in some task intercommunication region, but before they can be used by
the task for which they are intended they are overwritten by a third task.

This potential problem of task interference, while it also exists for the
polling 'scheme, appears to be greater for the interrupt scheme owing
to its greater complexity. Noninterference between two tasks can be
assured for the interrupt executive by proving that the tasks can be exe­
cuted in parallel, withno differences in the results except for those that
are a consequence of deliberate and valid task interactions. For the
polling executive, noninterference can be assured by proving that exe­
cuting the tasks in any sequence produces the same results, except for the
deliberate and valid task interactions. To permit comparing the verifi­
cation difficulties for the two executives, the necessary conditions for
assuring that no interference exists were analyzed. The analysis, pre­
sented in Appendix A, indicates that the polling executive is not enough
simpler than the interrupt executive to permit a significant relaxatibn of
the required amount of verification.

The keys to making an interrupt executive manageable with respect to
verification are to require absolute adherence to standard task inter­
communication mechanisms, restrict the number of interrupt levels,
employ the selective inhibiting of interrupts over selected regions of
task coding, and provide for restarting interrupted programs only at se­
lected, consistent, safe places in the task coding. Use of these techniques

-50­

for an interrupt executive can greatly reduce verification problems, thus
bringing it more into line with a polling executive as regards verification
ease.

4.3.4 Distributed Executive/Multicomputer

In a multicomputer system, tasks would be permanently allocated to indi­
vidual computers. With a two-computer system, for example, a likely
allocation would be for one computer to execute guidance, navigation, and
control tasks and the other to execute display and communication tasks. An
executive is required for each of the computers, and it is assumed that the
two executives will be similar. Continuing with the example, the display
computer needs to access the current state of guidance and control to allow
update of the displays, while the guidance and control computer needs to
communicate to obtain the latest command information from the crew, Thus
the executives require the ability to accomplish computer-to-computer com­
munication; this is done through the computers' I/O provisions as indicated
in Figure 8.

The need for intercommunication requires an additional module to be fin­
plemented in the interrupt executive design previously described for the
simplex computer. Figure 9, which is a replacement for the indicated
portion of Figure 6, shows how this module is included. The intercom­
puter communications module would perform the transferring of data or
messages between computers. The transfer may be accomplished by a
simple I/ device, or if greater sophistication and speed were needed it
might involve some form of direct coupling.

Task A Task i

Task 2
sT C Task 3

Task D Task 4

Figure 8. Distributed Executive/Multicomputer Concept

-5i­

A

Da ta / calle '­

ss Te tasks Data Bus
? 1I/0 Module

Devie Dvic

rrs pur ai yes tercoput r
nrnmiuni eaxecu ive ismonsi

Module

Othe

r

1/0 Module
putr ndexipeue s n eiy. An eutdrce t n optri

vatae:wih0 h redace p rblt htan ie akwllb ner e

ovral rspns icras.O com h caiyse tm imuni

Figure 9. Distributed Executive /Multic omput er Design

The principal advantage of a multicomputer approach is the increase in
System capacity it provides. The tasks can be logically divided into al­
most independent grou~ps, with each group implemented on its own com­
puter and executed as an entity. An interupt directed to one computer in
no wvay interferes with execution on the other. This leads to another ad­
vantage: with the reduced prbability that any given task will be interrupted,
overall system response time increases. O""3fcourse "the c8rnmuni cion
required between computers is a disadvantage in that a more complex ex­
ecutive is needed. Veryifying this executive is more expensive because

-52­

it becomes necessary to verify two or more executives running concurrent­

ly on different computers. Also, it is harder in this case to achieve repeat­

ability.

4.3.5 Distributed Executive/MultiprocessOr

In the multiprocessor distributed executive approach (Figure 10), the
tasks would be allocated to particular memory modules and a processor
permanently assigned to each partition. The partitions would be auton­
omous entities except for a particular portion of memory in each that
would be accessible to all processors, providing an intercommunication
block so that data and commands or requests could be passed from one
partition to another at the cost of a memory cycle. Each partition would
also contain an executive that would oversee the scheduling and servicing
of interrupts associated with its resident tasks. A logical breakdown
would be similar to the multicomputer approach: one partition assigned
to guidance and control tasks and the other to display and communication
tasks. The multiprocessor does not require the computer-to-compuflter
communication necessary to a multicomputer configuration. The execu­
tive design could be the same as that for the interrupt executive on the sim­

plex computer, with an additional module to access the common area in

each partition. In the unlikely event that there is but little intercommuni­

cation between tasks, the necessary accessing controls could be handled
automatically by the assembler or compiler, eliminating this module.

While similar to the distributed executive for a multicomputer, the distrib­

uted/multiprocessor has the advantage that intercommunication between
computers is no longer needed. Transfer of data between systems is now
done only by memory references through the appropriate executive module,
simplifying the executive design. Because the memory is continuous, the
executive offers more flexibility with regard to the partitioning of tasks

and memory allocation. Its disadvantages are the same as those of the
distributed/multicomputer executive; the repeatability problem exists, as
does the problem of verifying multiple executives executing concurrently.
In all, the distributed/multiprocessor is slightly better.

4.3.6 Fixed Executive/Multiprocessor

In this approach (Figure ii), one processor would serve as a dedicated
processor for running the executive and the others would be allocated to
task execution under control of the executive. The interrupt executive dis­
cussed earlier would serve as the base, with added coding to assign proc­
essors when a task is scheduled. When executing a task, the assigned

-53­

PARTITION i

Memory
Module 1

Task I

Task 2
*

'

Memory
Module 2

PARTITION 2,

Memory
Module 5

Task 50

Task 51

0

Memory
Module 6

U'

Memory
Module 3

Memory
Module 4

Memory
Module 7

Memory
Module 8

Intercommuni-
cation Block I Executive i

Intercommuni­
,tipr 'Black 2 Executive 2

Partition iPatioZ
Interrupts Processor I pts Processor 2

Figure 10. Distributed Executive/Multiprocessor Concept

processor would be limited to the area of core in which the task resided.
A common access block, available for reference by all prQcessors, could
be used for temporary storage or for the passing of data from task to task.
The use of this block would increase as the system evolved and would
become more complex as new tasks and functions are added. However,
the complexities introduced by the need for ever greater task intercom­
munication would impact only the executive and the common access block.

A fixed executive implemented on a multiprocessor offers advantages over
any of the previously discussed executives. One is that processors are
assigned-to high-priority tasks such that the task is not interrupted when an
external'interrupt occurs. This means, of course, that high-priority tasks
run to conclusion once started. This improves system throughput and re­
sponse time. Flexibility, capacity, and failure handling are greatly improved
because of the processor units available. If a timing problem develops, it
may be possible to add another processor. If an error occurs in the proc­
essor assigned to any task, it is relatively simple to assign another proc­
essor tor it. Thus, the backup problems facing the simplex and multicom­
puter configurations are more easily solved in this multiprocessor with
fixed executive. This alternative does have verification disadvantages,
however: since a task could be assigned to any processor at any time,

MEMORY

to

U0)

oz

U a

Figure ii. Fixed Executive/Multiprocessor Concept

-55­

repeatability cannot be assured from run to run. Thus response time and

throughput advantages are gained at the expense of verification difficulty.

4. 3.7 Floating Executive /Multiprocessor

The floating executive (Figure i2) allows the executive as well as the tasks

to be executed by any processor and is a logical extension of the fixed execu­

tive. In this scheme the executive is considered another task or set of tasks,

and would of course have the highest priority of all. Briefly., the executive

would assign a processor to a particular task only when that task was about

to be executed. A processor's execution of one task could be interrupted

and that processor assigned to another, higher priority task. When a second

processor completed execution of its assigned task, it could be assigned to

the interrupted task; thus execution of a low-priority task might eventually

be accomplished by many processors in succession. Executing the executive

tasks themselves to accomplish processor allocation would be initiated either

on completion of a functional task or on receipt of an external interrupt. The

processor selector, either hardware or a combination of hardware and soft­

ware, is required so that when an external interrupt is received only one

MEMORY

0

0

Interrupts r cessor --- Input /Output

N ector

Figure 12. Floating Executive/Multiprocessor Concept

-56­

processor would be interrupted in executing a functional task. Task inter­
communication would be controlled by the executive, utilizing a common
access block to contain the shared data.

At some times there may be more processors available that tasks to per­
form; when this happens the special idle task would be activated to per­
form self-test and associated functions. It would be the fun'ctioni of the
executive to make certain that the execution of this idle task be rotated
among the processors and that even in times of peak computation loading
the self-test portions of the idle task be performed occasionally.

Like -the interrupt executive for the simplex configuration, the floating
executive would be composed of many modules. Of these, the scheduling
and: interrupt modules are the most important. The scheduling module,
for which - high-level design is shown in Figure 13, is executed at the
comptletion of any non-executive tasks. This module must be reentrant:
more than one processor may complete its task at about the same time,
which means that the scheduling module may be executed any number of
times nearly simultaneously. The scheduling module examines the queue
of tasks to -be performed; if one is waiting, it removes the taskfrbm the
queue, relinquishes the queue, and begins execution of the task. If no task
is scheduled, the idle/self-test task is begun and the execute queue is
relinquished for further update. In either case, the processor/task pri­
ority indicator is updated to reflect current assignments, making it pos­
sible for the processor selector to route any interrupts to the processor
performing the lowest priority task.

A high-level design developed for the interrupt module is presented in
Figure 14. This module handles the dynamic assignment of processors
to tasks in response to interrupts. It is executed whenever an interrupt
occurs and, like the scheduling module, may be executed by any processor.
The first thing that it does is suppress interrupts until the current machine
state can be saved in a pushdown stack; after this, higher priority inter­
rupts are enabled. Next the type of operation to be performed -is deter­
mined and the appropriate operations performed, either by tie interrupt
module itself or by other executive modules. If the interrupt indicates
that a -functional task should be executed, that task is assigned to a free
processor if there is one; here, a free processor is defined as one that is
executing the idle task. If no processor is free, the priority of the inter­
rupting task is compared with that of the task that was being executed by
this processor before the interruption to do the executive functions. If the
new task has a lower priority than the interrupted task, the new one is
added to the execute queue, with its place in the queue a function of its

-57­

Start

yes xecut

Select Highest
Priority Task In
Execute Queue.'

Initialize Registers
as Indicated by
Execute Queue

Data

Set Processor/ Set Processor/
Task Priority Task Priority

Indicator Indicator

Allocate Idle/ Allocate
Self-Test Task Selected Ta-sk

to This to This
Processor

Figure 13. Floating Executive /Multiprocessor Design:
Scheduling Module

-58­

4.4

priority, and the interrupted taskyis resumed. If the new task's priority
is higher, the interrupted task is added to the execute queue along with
information about machine state needed to resume its execution later, and
the newtask's execution is begun. The processor selector is then set to
indicate which processor is currently performing the lowest priority task.
When the -next interrupt occurs, that processor will be the one to be inter­
rupted.

The above description contains several simplifications. First, it allows
for the scheduling of only one task in response to an interrupt; further
elaboration is required to schedule tasks in processors other-than the one
already interrupted to do the executive operations. Second, it relies on
random characteristics of the tasks themselves and their scheduling to
schedule the idle task in all processors within an allotted period-; in prac­
tice, the executive will have to assign the idle task to a processor in the
event that that processor has not done the idle task recently, even if doing
this -results in unnecessary reallocation of another task or a slight violation
of the priority structure. Finally, the high-level description does not illus­
trate the provisions required for computer reconfiguration in the event of a
processor's hard failure; this will require additional queues for describing
processor status.

One advantage of the floating executive /multiprocessor approach is that
all pieces of the system are continually being tested for correct operation.
All processors are performing as identical parts of the total system,
greatly simplifying the job of removing one processor from the active list
if it fails. The floating executive offers still more advantages dyer the fixed
executive with regard to throughput efficiency. Its response time is the
best of any executive design because each processor is always, working on
one of the highest priority tasks. However, verification is much more
difficult than for any of the other alternatives because of the much greater
uncertainty as to which processor is doing what and the many combinations
that can occur.

Executive and Computer Configuration Comparisons

Executive design criteria were defined and the performance of the prelim­
inary executive designs estimated. The results are summarized in Table 9;
the higher the numbers, the better the performance.

For the first criterion, size and complexity of the executive programs
themselves, the implied executive is by far the best and the floating exee­

titve the worst. The distributed executive for the multiprocessor is

-59­

Inhibit
Interrupts

Save O f

infor1m latem
Computer

Status t

n

AcodigtoT

oo

Pae
Qmaeu e

oerP
a /Initu

Iorm
td

e

Retorenpt
S aR

lific

AC c es Inre
InerutClc

eterm nt Ts

en - Se-Pro esso Sectr~gTeroer P rt
e engdenteruTak

Tiet

Plch e STas.

Inof~terptid-Tieetore u prg a

1-60

-Ad Tak,e-

in rd r

~cleTa k

r o so

fiorlt

:nentm

Thern a Tas Hge Pr ior ity e.~

Fig ei. ot ing xectiv/MTipressrDein:etrrpnMdl

Acord4 toeTo aing

of .. ~te. 0

Pae/MLiow rs

.. a n ic, ur-60-'~t

Deig: nrrrpiMoul

Table 9. Executive Design Comparison

Simplex Multicomputer Multiprocessor
Criterion Implied Polling Lterrupt -Distributed Distributed Fixed Floating

Size and complexity 40 20 10 7 8 5 4

Overhead 40 12 to 10 10 9 8

Capacity 1 8 to 20 20 20 25

Response time 1 5 10 11 11 12 14

rlexibility 0 5 10 It 13 is 20

Failure handling 0 0 to t0 10 is 20

Verifiability 20 15 10 7 7 3 1

slightly smaller and less complex than its counterpart for a maulticomputer
because the use of direct memory access rather than normal input/output
simplifies task intercommunication. Estimates for the second criterion,
executive overhead, follow much the same pattern, with little significant
difference between polling, interrupt, distributed, and fixed executives.
Executive capacity, which is a measure of the number of unique tasks that
can be accommodated without requiring any executive modifications, is sig­
nificantly better for the multicomputer and multiprocessor configurations
than for the simplex computer. Executive response time of the interrupt
scheme is much better than that of the polling executive. Flexibility, the
capability of being easily modified to accommodate new system require­
ments, and failure handling, the capability to dynamically react to and
compensate for hardware failures, are likewise significantly better for the
interrupt executive. Finally, verifiability follows the same trend as size
and complexity, with the simplex polling executive better than the simplex
interrupt executive, much better than the multicomputer and multiproc­
essor distributed executives, and very much better than the fixed or float­
ing executives.

It is concluded that the simplex configuration will lead to significantly sim­
pler software than the multicomputer or multiprocessor configurations.
Compared with a polling executive, -the advantages an interrupt executive
offers-with regard to capacity, response time, flexibility, and failure
handling compensate for its greater verification difficulty. The multiproc­
essor is slightly preferred over the multicomputer configuration if the
distributed executive alternative is selected. Although the multiprocessor
with the fixed or floating executive offers many advantages as far as capac­
ity, response time, flexibility, and failure handling, the verification
problems are so great that these executive designs should not be utilized
for the Space Shuttle.i

-6,

SEIRWE V'B BLANK NOT flLMM

5. COMPUTER ARCHITECTURE

The.software effect of the Space Shuttle computer configuration will largely
be felt in the executive, program, which, while the most difficult part to design
and verify, will constitute only some 10% of the total onboard software. The
effect of architectural features will impact the executive program and the
individual task programs as well. Although no specific architectural
feature will have as much impact on software design and production as will
the choice of configuration, each one will apply to much more of the software.

Basic criteria for determining software impact are discussed in this section
in terms of the suitability or adequacy of the following classes of architectural
features:

" Memory
* Execution speed

" Input/output facilities

* Instruction set
* Word format
* Register organization

*~ Restart and self-test provisions

* Interrupt-handling facilities

The discussion here applies only to software. Considerations of hardware
availability, cost, and reliability will be equally important in selecting a
particular architecture. As the succeeding discussion will show, some of
the detailed architectural aspects will be important to the overall software
cost impact, while others, although important for other reasons, will have
a small effect on cost.

The criteria, because they apply to the total onboard software, also have
implications as regards the computer configuration. In particular, signifi­
cant architectural differences are possible between the computers at the
local and central levels in a federated configuration. In such a configura­
tion, a significant portion of the software will be for the local computers.
If these local computers are unsuitable in terms of, say, their instruction
set, then the overall software effect will be increased in proportion to the
amount of local level software.

Before proceeding with the discussion of individual architectural aspects,

it should be pointed out that for a given set of functional requirements there

-63­

is a level of performance with respect to the first three -- memory, execu­
tion speed, and input/output facilities -- that must be satisfied if adequate
software is to be developed at all. Uncertainty in Space Shuttle avionics
subsystem hardware and mission requirements definition has not permitted
this minimum level of performance to be determined in the present study.
Whatever level is ultimately determined, capabilities in excess of the mini­
mum will have definite advantages in reducing software costs.

5. 1 Memory

Memory size, characteristics, and access methods are all extremely impor­
tant in programming. Software production is greatly facilitated when these
features are suitable to both the application and the programming techniques
employed.

5. 1. 1 Memory Size

Memory size is the single most important hardware characteristic affecting
software development. If memory is inadequate, even simple programs be­
come difficult to write, with many iterations of reading and memory reallo­
cation to ensure that all routines will fit. The immediate result is that the
programmer is forced to concentrate on efficient memory utilization and not
on the problem being solved.

A very serious complication resulting from inadequate memory, especially
in verification, is usage of the same memory locations for temporary storage
of unrelated data items created by separate tasks. This is possible, in theory,
if the first task retrieves its temporarily stored data item before another task
attempts to utilize the same location. The second task must retrieve its data
item before the first task utilizes the same location again. Like bigamy, this
scheme works only if perfect separation can be guaranteed. In practice, the
common sharing of memory leads to unwanted and unpredictable interaction
between otherwise independent tasks. The problem of memory sharing also
applies to the sharing of subroutines that can be accessed from two or more
tasks. If the routine cannot be duplicated in both tasks, either it must be
demonstrated that the one task never attempts to reference the common sub­
routine before the other task has finished with it, or the subroutine must be
designed to be reentrant. Such memory-sharing problems can exist for both
polling and interrupt executives, but are more difficult to solve for the latter.

Memory locks are one hardware feature that can be used to alleviate inter­
ference problems. However, their use in controlling the accessing of data

-64­

that must be shared should not be complicated by also using them in situa­
tions where data sharing is not actually required. Certainly memory locks
must not be considered a substitute for adequate memory; for where mem­
ory is already restricted, the additional memory needed to operate them

often prevents their use. -

It is very difficult to predict just how much memory a set of routines will
require. In the present study, the minimum and maximum memory size
estimates (Table 2) varied by nearly an order of magnitude. Further, the
prediction process, or "sizing, becomes harder the more the new system
differs from existing systems, and of course the Space Shuttle system will
be unprecedented in many respects. The answer to the sizing problem is
threefold. First, the functional analysis activities should be continued up
to the point where actual onboard software coding has been completed to
ensure that proper actions can be taken to keep memory size compatible
with software functional requirements. Second, the computer architecture
should have an extensible memory organization as discussed later. Third,
sufficient surplus memory should be obtained initially. The amount of sur­
plus depends in part on the uncertainty in the software functional requirement;
in view of the present uncertainty, a surplus of i00% would not be excessive.
Even when the subsystem hardware configurations and software requirements
are firmly established, a surplus of at least 40% should be provided. This
will ensure sufficient memory to permit a high-order language, with the
attendant compiler inefficiencies, to be utilized.

One problem with surplus memory is that its very existence causes the addi­
tion of software functions which, although not required, are added to the sys­
tem because it is possible to do so. Preventing this unneeded software growth
requires both strong management and a recognition of the positive benefits
that surplus memory can offer to the reduction of software costs.

5. 1.2 Extensible Memory

An extensible memory capacity is highly desirable for both hardware and

software efficiency. With such a system, memory capacity is varied by

adding or removing memory modules (or banks), which may range in size

from 4K to 32K words. With extensible memory, the capacity can be ad­

justed to hold the software, rather than requiring the software to be adjusted

to fit the memory. Any computer with fixed memory size is undesirable;
it is almost certain to be either too small or too big. If it is too small,

programming costs rise sharply. If it is too big, a penalty is paid in excess

hardware and excess weight. A broadly extensible memory consisting of

small modules need never be too big or too small by more than 5-i0%.

-65­

Total
Cost/Word

lidtal
Coft/\ord

0'

SoftSare Cost/CoWrd

Hardware Cost/Word

Hardware Cost/Word
Software Cost/Word

Memory Required/Original Memory Estimates Memory Required/Original Memory Estimates

Figure 15. Fixed Memory Costs Figure 16. Extensible Memory Costs

Figure 15 illistrates, for a fixed memory size, the relationship between
total memory cost per word and the ratio of actual memory size to the
original memory size'estimated and purchased. The hardware contribu­
tion to total cost for such a memory configuration is constant, but the
software contribution increases greatly the more closely the memory
required approaches that available. Figure 16 illustrates the total cost
per word for an extensible memory architecture. With this architecture,
the software costs involved in coding a given function can be relatively
constant because enough memory can always be added to avoid the prob­
lems induced by inadequate memory. The hardware cost would be higher
for an extensible memory, and would increase in discrete jumps as more
memory had to be added to maintain the fixed software cost. However,
the sharp increase in software cost is avoided, so that total cost per word
is lower when actual memory required closely approaches or exceeds ­

original estimates. Thus the availability of the extensible memory fea­
ture would greatly reduce the sensitivity of Space Shuttle software costs
to program size underestimation.

5. 1. 	3 Auxiliary Memory

Supplementing the main memory of many large computing systems is a
large, relatively slow auxiliary memory. Software development is simpler
and less costly without an auxiliary memory, but the hardware cost and
weight advantages of supplementing the central memory can be significant.
A detailed analysis of the requirement for auxiliarymemory is dependent
on full definition of Space Shuttle mission requirements. Study of the
available data suggests that an all-main-memory arrangement may be
desirable because:

0 	 The executive routines must be largely, if not
entirely, resident in main memory at all times.

o 	 At peak load, the bulk of all lines of code concerned
with mission operations will be in main memory at
once.

* 	 During the most active mission phases, most of
the mission control program will almost certainly
be required to be in main memory at the same time.

5. 1.4 Read-Only/Read-W rite Memory

Hardware reasons -- reliability considerations, reducing electrical
power consumption, and so forth -- may exist for dividing the memory

-67­

into read-only and read-write portions. Temporary data items and vari­
ables are allocated to read-write, and instructions and constants to read­
only memory. The partitioning has little consequence to programming
efforts so long as there is enough of each type. But if the program will
not fit in the read-only section, or if all variables, tables, etc. , will not
fit into the read-write section, the effects are the same as those of hav­
ing insufficient memory: development and verification costs are both in­
creased because routines must be tightly packed, causing increased
interaction between unrelated routines.

If all memory is read-write, there is a small penalty in confidence (or
in cost of establishing confidence) in software quality because a task's
program or constants can be erroneously overwritten by another pro­
gram. In the case of read-only memory, verification must make allow­
ance for attempted erroneous writing; even though erroneous writing is
inhibited, it must be searched for as indicative of program malfunction.
That is, while a stored constant will not be destroyed by the erroneous
attempt, subsequent reading of the location by the faulty routine will not
give the value that that routine expects. For a very large centralized
system, the absolute protection afforded vital tasks (such as the execu­
tive or those that perform the control functions) from being destroyed by
other tasks that have errors may justify less complete verification of the
"tunimportant" tasks without reducing confidence in the computer's ability
to perform the vital ones. The reduction in verification effort, however,
is not great, and any reliance on minimizing the effects of errors should
not deter efforts to find them.

5. f. 5 Virtual Memory

In a computer system with virtual memory, the memory apparent to the
programmer is much larger than the physical size of main memory. Gen­
erally, main and virtual memory are divided into pages consisting of a
fixed number of words, commonly 500- 1000. Only a fraction of the total
number of virtual pages resides in main memory atone time. If a routine
attempts to access a word in a page that is not in main memory, that page
is brought in from mass storage and a page not recently used is removed.

While generally aimed at time-sharing applications, a virtual memory
might be considered for the Space Shuttle as an alternative to a fixed mem­
ory size or an extensibility feature. Programmers would not need to be
concerned with running out of physical main memory, only virtual memory.
This feature would also facilitate restarts or rollbacks after failures not

-68­

involving the mass storage device. When a page is brought into main mem­
ory, its image remains on the mass storage device. If a fault occurs, this
page may be recopied into main memory and the program reinitiated at the
point where the page originally entered main memory. In effect, a paged
virtual memory performs main memory saves automatically as the pages
are swapped from main memory onto the mass storage device.

In spite of its theoretical appeal, virtual memory has two overriding dis­
advantages for the Space Shuttle. First, the average memory access time
is slowed considerably because of the time spent in swapping pages. Second,
execution times vary unpredictably, depending on which pages happen to be
in main memory. This, in turn, depends on how many other routines are
running concurrently. Hence timing varies noticeably, limiting predicta­
bility and repeatability, both of which are very important to verification.
Accordingly, it is concluded that virtual memory is an undesirable feature.

5. i. 6 Interleaved Memory

Memory interleaving is commonly used in simplex computers and multi­
processors to minimize the average memory access time. With conven­
tional distribution of addresses, assuming a computer having several mem­
ory modules, addresses i, 2, 3, etc. , would fall in module 1, which might
be loaded down with requests for words while others remained idle. With
one form of interleaved address distribution, address i would be located
in module i, address 2 in module Z, and so forth; in general, for a mem­
ory of n modules, address m is in module i, where i = m (mod n) '. Thus
interleaving randomizes the pattern of accesses to memory modules.

On a simplex processor, interleaving is a desirable feature. Interleaving
is invisible to the programmer; he can ignore the fact that it exists and
still gain the speed advantage. That is, interleaving could save him the
trouble of distributing program and data and variable storage areas so as

to minimize access time. The variation in access time is predictable, so

that interleaving does not make verification more difficult.

A different conclusion is reached for interleaved memory in conjunction
with a multiprocessor configuration. Assuming that different processors
had access to the same memory module, the execution time of one proc­
essor could vary depending on .what functions another processor was per­
forming. This would then make execution times vary, thus limiting pre­
dictability and repeatability. Since some of the effect of interleaving is
lost anyway when two processors can access the same memory, it is con­
cluded that interleaving should not be used in the general multiprocessor
case.

-69­

5. 1. 7 Nonrandom Access Memory

Even though rotating disk or drum memory machines are still in use in.some
applications, it has been as sumed in the previous dis cuss ions that the main
memory is of the random access type. Nonrandom access implies variable
access times and is considerably slower than random access. In many cases
the programmer is required to structure data and program flow in a highly
unnatural manner in order to decrease the average access time. This can
be a major programming burden. Hence a computer with a nonrandom ac­
cess main memory should simply not be considered for the Space Shuttle.

5. 1. 8 Addressing Range

In some computers it is not possible to directly address the entire memory.
Rather, addresses in instructions represent only part of the true address,
and, as indicated in the diagram below, the addressing hardware must con­
catenate an extension or base register onto the left end of the address speci­
fied in the instruction to obtain the complete address.

Part of address Part of address
obtained from specified in
extension register instruction

The purpose of this procedure is to conserve memory. Since addresses
are shorter, instructions can be shorter; hence a smaller word length may
be feasible.

Sometimes the use of extension registers indicates a kludged machine result­
ing from an initial design in which the memory proved too small for the in­
tended application. The memory is enlarged, and the extension register is
added to permit the larger memory to be addressed.

While offering no software advantages, the use of extension registers poses
several disadvantages for software development. The extension register(s)
must be loaded and unloaded by the programmer. A Logicon study of guid­
ance, navigation, and control programming showed that 10% of the instruc­
tions involved manipulation of extension registers. In other cases where the
average-size program module was well within the addressing range and there
was little intermodule communication, less than 3% of the instructions were

-70­

devoted to manipulating the extension register. Based on these observations,
it is expected that the penalty in Space Shuttle software costs would be be­
tween 3% and 10%, with the most likely value being around 6%. A secondary
disadvantage is that programmers are induced to try to group instructions
and data so as to minimize extension register manipulation. Not only does
this add a further constraint to programming, but the grouping may warp an
otherwise straightforward program and make it harder to verify. The con­
clusion is that a computer requiring extension registers to address its full
range is undesirable from the software viewpoint.

5. 1. 9 Indirect Addressing

Normally an address specified in an instruction is the address of that instruc­
tion's operand. Some computer architectures also permit indirect address­
ing: the address specified in an instruction can be the address of the location
containing the address of the operand.

Indirect addressing is nonessential but convenient. One application is in re­
turning from a subroutine. For example, if any routine calling subroutine
XI placed its return address in cell 251, the return from subroutine XI can
be uniformly accomplished with a "JI 251" instruction, meaning jump to the
address contained in location 251. A second application is in accomplishing
computed GOTOs. For example, consider the function GOTO(A, B, C, D)I.
Suppose pointers corresponding to labels A, B, C, D are listed in order be­
ginning with address T. I is loaded into index register 6 and then the in-­
struction JI, 6, T is executed. The effect is to add the contents of register 6
to T, obtaining the address of the cell containing the address to which the
jump is made. A third application is in communicating values to a subrou­
tine. Suppose a vector A(1), ... , A(10) is to be passed to a subroutine as an
argument. The straightforward method is to copy all 10 values into a region
of memory associated with the routine. If indirect addressing is possible,
only the base address of A need be passed to the subroutine. If the base
address is placed in BA, instructions such as ADDI 6, BA will fetch the de­
sired values from vector A. (The use of indirect addressing is likely to be
indicated by a bit in the instruction, rather than as distinct instructions.
Thus ADDI is really an add instruction with the indirect addressing bit set.)

All of these operations could be accomplished using indexing alone. Indirect
addressing is merely a convenience, one that may save less than i% in exe­
cution time and memory requirements or in software development costs. On
the other hand, it is an invitation to intricate and overly, clever coding, which
can increase verification difficulty more than the relatively minor savings in
programming effort realized. Assuming that programming standards were

-71­

established to alleviate the verification problem, it is expected that an in­
direct addressing capability would not affect overall software costs one way
or the other.

Some computers provide cascaded indirect addressing: an additional indirect
addressing bit in every word signifies whether the remainder of the word is
an address of an operand or the address of another address. Thus the pro­
grammer may reference an operand through the address of the address of
the address of -- ad infinitum -- the operand. Such cascading is even less
useful than indirect addressing, and may complicate the development of diag­
nostic and verification tools. For these reasons cascaded indirect address­
ing is considered undesirable for the Space Shuttle.

5.. 1. i0 Bound-Registers

In the earlier discussion of read-only memory, the protection afforded a
vital task from inadvertent destruction was outlined. A more flexible and
effective way of doing this, and more, is to limit the region of memory ac­
cessible by a given program element by using upper- and lower-bound regis­
ters. If a routine tries to access a word whose address lies outside the
limits contained in these bound registers, execution is halted and control is
returned to the executive.

Bound registers would be useful during software checkout and verification
and would assure that vital software functions are accorded proper protec­
tion regardless of malfunctions in other functions. Any routine which tried
to fetch or write outside its legitimate region of memory would easily be
detected so that the problem could be corrected or its effect minimized.
Without this feature, errant routines would be able to sabotage the data and
programs of other routines, causing errors that might be hard to trace or
that could destroy vital instructions or data. In a very centralized data man­
agement system the use of bound registers would prevent propagation of
hardware or software failures to other parts of the system, just as would
be accomplished in a decentralized system through hardware separation at
the computer level. Again, although this feature would simplify verification
somewhat, it cannot be used as justification for a haphazard verification
effo rt.

If easily controllable through software, bound registers may also make it
easier to prevent unwanted interference between tasks. What is needed is
the capability for one task to inhibit any other task from reading from or
writing into a particular region of memory. If any other task attempted to
perform the inhibited operations, its execution would be suspended until

-7Z­

either the particular bounds were removed or the executive program resolved
the conflict. The provision of such powerful and flexible means of controlling
task access to common data items can simplify software production and veri­
fication by accomplishing in hardware what would otherwise have to be done
through software.

5. i. 	 ii Memory Locks

Memory locks, an extension of the bound register feature, generally apply
to smaller memory blocks. Whereas memory bounds establish the regions
that a particular program can access, memory locks determine the programs
that can access a particular region. A memory lock may designate whether
the program's access is to be read-only or whether both reading and writing
are permitted. Memory locks are conventionally implemented by having a
keyword for each memory region; any program attempting to access the data
in that region must supply a matching keyword.

As with bound registers, hardware memory locks would be useful during
Space Shuttle software checkout and verification. .However,' they are cumber­
some to use for regulating interaction of logically related routines unless
designed specifically for the purpose. Software locks are more practical
for such situations: the domain of a software lock can be tailored to individ­
ual 	groups of data, while the domain of a hardware lock usually cannot.

Hardware locks having the ability (already described for bound registers) to
delimit the areas of memory accessible to a particular task and to suspend
task execution and signal the executive when these limits are exceeded can
eliminate much of the need for their software counterparts, with an attendant
savings in software production and verification costs. Procedures for the
use 	of hardware and software locks are discussed in detail in Appendix A.

5. 2 Execution Speed

The 	speed of the processor will have a profound effect upon Space Shuttle
program development techniques and on ease of program verification and
modification. Unfortunately, the contribution of individual architectural
aspects to the effective speed of a particular computer cannot be completely
determined without actually developing the total program. However, several
measures may be employed to approximate a computer's 'speed, including:

a 	 Memory Cycle Time: the average access times for
instructions and data located in the memory

-73­

* 	 Add and Multiply Times: the execution times for
relatively typical, simple, but commonly used
instructions

* 	 Composite Instruction Times: the execution time
for a mix representative of the instructions that will
be employed for the actual program

* 	 Kernel Problem Times: the time to perform common
basic operations such as matrix multiply and poly­
nomial evaluation

o 	 Benchmark Problems Times: the time to execute a
collection of programs to solve limited but repre­
sentative hypothetical problems

The advantage of the first two measures is their simplicity; their disadvan­
tage is their inaccuracy. That is, they do not give a true indication of effec­
tive speed because they ignore the many other architectural features that
affect speed, among them the memory size, operand addressing structure,
instruction set, and register organization. The advantage of the last three
measures is their greater accuracy; their disadvantages are their greater
complexity and the greater amount that must be known about the problems
the program is to solve.

At this stage of the Space Shuttle's development it has not been possible to
define representative instruction mixes, kernel problems, or benchmark
problems. This should be done when the software requirements become
more complete, and the results used to evaluate the speed capabilities of
proposed computer architectures. This section outlines the expected effect
of adequate computational capability as determined by the recommended
approach and proposes computational capability margins. It also describes
the effect of computer architectures in which execution times are variable,
depending not only on the instructions used but also on the data being manip­
ulated.

5. 2. 	 1 Computational Capability

An absolute requirement exists for the processor to perform highly critical
computational bursts within the allotted time. Beyond this, any additional
available time can be very fruitfully used to permit conformance with desir­
able programming practices and standards and to reduce the costly attention
that otherwise would have to be paid to program optimization.

-74­

As stated above, a computer' s effective speed depends on many of its
architectural characteristics. Computation can be speeded, for example,
by reducing the amount of looping, but with a resultant increase in pro­
gram size. Or, incorporating highly specialized instructions, such as
square root, could reduce the number of instructions required to perform
a particular function, again reducing the computational time for a specific
task. These examples illustrate a classic programming tradeoff: that
between the memory, space and execution time required to accomplish a
specific function. Itlis costly for a programmer to have to concern him­
self with whether space optimization or time optimization should be used
for the task he is coding. Rather, he should be able to proceed in any
reasonable and natural way. Even if forced to make the appropriate mem­
ory sacrifices to achieve the needed effective speed, the payoff is slight;
speed savings over the entire program are expected to be less than 5%,
even with the devotion of considerable effort.

To look at the question from another viewpoint, providing a high basic com­
putational speed is a way to reduce the importance of other architectural
features -- such as the number and power of instructions, the word size,
and the register organization -- because it permits techniques such as
ihterpretive subroutines to be used for operations that cannot otherwise
be easily done. In general, an adequate speed margin will reduce software
costs because it:

o Provides a Safety Factor: This may well be necessary
if computational requirements are initially underesti­
mated or are subsequently enlarged to make a software
compensation for unanticipated hardware problems.

* 	 Eases Programming: A limited computational speed
leads to a requirement for difficult and costly time
optimization.

* 	 Eases Verification: An adequate speed margin permits
a program to be designed and coded with close attention
to clarity and organization and conformance with standards,
enabling it to be tested far more easily, and-also allows
software self-checking and diagnostic features to be
incorporated.

* 	 Eases Maintenance: The programming approaches and
routines can be developed and utilized in a more general
way, in many cases obviating the need for changes or re­
ducing the difficulty of making them.

-7,5-.

It is recommended that the Space Shuttle computer provide a computational
capability of i00% over the estimated maximum execution time. The mini­
mum execution time margin should be 25%; and this margin is considered
adequate only if the computational load can be accurately estimated and is
not expected to change significantly during the software system's lifetime.
A multiprocessor configuration can to some extent permit smaller speed
margins if adding new processors to the system is relatively easy. This
is analogous to the use of extensible memory in that the additional proces­
sors extend the effective speed of the computer system. However, the ad­
vantages of adding processors are not without their corresponding software
costs: if the distributed executive design is chosen as recommended, some
redesign and recoding of the existing task communication executive modules
will be required, and some of the added computational capability will be
lost because another, albeit identical, executive program will have to be
supported.

The i00% margin is strongly recommended to eliminate the need for optimi­
zation or to allow the program to be expanded to perform twice its estimated
functions. That this margin is not unreasonably high can be demonstrated
by citing what happened with the Titan III space launch vehicle in the mid
19 6 0s. In this instance, the flight controls were designed to operate at a
frequency of Z0 msec, and the onboard computer provided a 20% safety
margin based on the estimated computation. This margin proved to be
insufficient, even with extreme code optimization. The onboard flight
control program was eventually redesigned and recoded; the major change
was a reduction in computation frequency from 50 to 25 cycles/major cycle.
A large computational speed margin would have eliminated a considerable
amount of the extra effort and cost expended in redesign.

5. 2. 2 Uniform Execution Times

Inability to predict precise program timing, caused in a complex program
by the many logic paths, produces great verification difficulties. The pro­
blem is greatly aggravated if instruction execution times are not completely
known. One architectural feature that can prevent their being known is a
variable-length multiply, in which the multiply time is a function of the
contents of the multiplier. Variable instruction timing in association with
interrupts makes it extremely difficult to predict precisely where interrupts
will fall, thereby making it difficult both to predict and to test possible com­
binations. The problem can be somewhat alleviated by careful program de­
sign, but only at the cost of placing a considerable burden on the program de­
signer for marginal gains of computation time. More discussion concerning

-76­

interrupts follows in Section 5. 8; here the recommendation is made that the

architecture of the computer be such that all computation intervals, of any

size, be decidable.

-.5.3 Input/Output Facilities

It is convenient to regard I/O activities as data transfer activities. If the
Space Shuttle central compute rfacility has two or more separate comphters,
it will be necessary to transfer data between them. If local processors exist
at physically remote points, it will be necessary to transfer data between
the central facility and these processors. If bulk memory devices are used,
either disk or tape, datatransfer will take place betweeh them and
the central facility. In discussing the Space Shuttle system, "I/O" and "data
transfer" are therefore considered synonymous. A block is defined to be a
contiguous set of memory words and a data transfer to be a copyingof a block
from one memory (disk, core, tape, register) into another memory. All
that should really be needed to accomplish such a transfer is:

" Location of the first word in the "source" block
* Location of the first word in the "sink" block
a 'Length of the block (number of words)

In some cases, one or more of these items of information may be implicit.
For example, if the I/O involves tapes, the block length may be fixed and
so need not be specified. However, in many computer systems a programmer
must do more than just specify these three basic items of-information. From
a software standpoint, a measure of the convenience in using I/O facilities
is how much more a programmer has to do to actually accomplish a data
transfer. How data transfer is accomplished is highly variable, and the

commands and conventions involved are generally merely an arbitrary sot

established by the hardware designers. It would be unrealistic to try to

enumerate all possible conventions and the software load they would impose.

Data transfer is commonly much slower than other computer operations. The
Space.Shuttle computer system will not be an exception. For example, a

i-MHz serial data bus would require 32 msec to transmit a 32-bit word, if

overhead is ignored. A computer of reasonable speed can execute 10 or Z0

instructions in this length of time. It is easy to see how a simplex central

computer could spend all its time just on I/O if its CPU itself controlled data
transfers and remained idle while the transfers were taking place. In light
of the amount of data transfer that must be accommodated within the Space
Shuttle,- an independent I/O controller is required to perform the task on
command -from the CPU, leaving the CPU virtually free to perform other

processing.

-77­

Two methods of interacting with the I/O controller have been used in the

past: buffering and cycle stealing. The buffering approach is indicated

schematically in Figure 17. The CPU transfers at high speed the informa­
tion to be transmitted into a buffer memory associated with the I/C con­
troller, then commands the controller to execute the I/O operation and pro­
ceeds with its own computation. The controller transmits the contents of

the buffer memory word by word at the slower speed required by external

devices. The controller may signal the CPU in some manner, for example

by interrupting it, when the I/O operation is completed.

External ' / _ ufr CU Mi

World Controllerj t Memory

Figure 17. Buffering Method of Interaction with I/O Controller

The cycle-stealing alternative is shown schematically in Figure 18. Here,
the I/O controller directly accesses main memory. Effectively, main mem­
ory serves as a buffer. The CPU merely tells the controller the memory ad­
dress of the block of information to be transmitted and then proceeds with its
own computation. Because of the slow speed of 1/O rates, the controller
needs to access the memory much less frequently than does the CPU; and
when it requires a word for transmission, it preempts the CPU, that is, steals
a memory cycle away from the CPU. Thus the execution of the program run­
ning when the cycle stealing takes place is delayed by one memory cycle every
time the I/O controller steals a cycle. This can cause the executing.program
to lose repeatability. The points in time when the I/O controller steals a
cycle and their frequency may vary depending on external circumstances such

- as bus or device availability. Transmission errors may require that a word
be retransmitted; and this can result in an apparently random variation in
timing of any program running while the cycle stealing is taking place.

External, / Ml

World Controller Memory

Figure 18. Cycle-Stealing Method of Interaction with I/0 Controller

-78­

For a system using a i-MHz data bus and a 32-bit word length, cycle steal­
ing would occur no oftener than once per 32 psec. If the main memory cycle
r;ite is i psec; the I/O controller will then steal no more than one out of'
every 32 cycles. (If I/O overhead such as repetition and parity operations
are considered, the fraction of cycle stealing can be estimated as even
lower.) If main memory is divided into modules, the probability of inter­
ference between the I/O controller and the CPU is further reduced. If there
'a're N modules, the interference probability would be i/32N, assuming
that the CPU sequentially accesses each memory block every cycle. (With
a large number of modules, it may be possible to treat one of them as a de
facto buffer, making a cycle-stealing 1/O system look like a buffered I/O
system.) A reasonable number for N for Space Shuttle would be about 10,
which would give a probability of interference of about . 003. It can be con­
cluded that the magnitude of the interference will be small and that speed
degradation due to cycle stealing is negligible. However, a difference of
just one cycle time can be enough to cause loss of repeatability for software
testing and verification.

The tradeoff from a software point of view is between the slight added execu­
tive complexity required to handle buffer filing (which might be illusory if a
'whole memory block were treated as an I/O buffer under the cycle-stealing
scheme) and the loss of repeatability encountered with the simpler cycle­
stealing system. Since loss of repeatability is a serious complication for
the software testing phase of development, the buffer option is judged to be
more desirable.

Another factor affecting programming complexity is the method of queueing
requests for shared I/O facilities. From a software point of view, the sim­
plest is to have the queueing done by the I/O controller(s). A program would
merely execute an instruction requesting an I/O operation and wait for a com­
pletion flag to be set in main memory. If the I/O controller(s) cannot queue
requests, or if there is no I/O controller, the competition for shared facili­
ties may have to be handled by software. The I/O device may be tested with
a "test busy" instruction which causes a branch if the specified unit is in use.
Priority conflicts between separate routines must then be handled by an execu­
tive routine.

Instruction Set

The Space Shuttle computer's instruction set will be the architectural 'feature
of most continuous concern to the programmers. If there were no. restric­
tions on memory size and task execution times, almost any required functions
could be accomplished with a very small instruction set, albeit at a consider­
able increase in effort.

-79­

5.4

One measure of instruction set suitability is the number of instructions re­
quired to implement a set of benchmark programs; writing. such programs
for all candidate- computer architectures and instruction sets and comparing
the results would indicate the one for which software costs are likely to be
lowest. This approach, while a valid one, could not be applied at this stage
of Space Shuttle development owing to the difficulty of defining representative
benchmark programs and the cost and time required for their implementation.

Many of the functions to be accomplished by the Space Shuttle data manage­
ment system have counterparts in software developments for current space
and missile systems. The usage of instructions in these applications was
examined to provide a baseline from which the suitability of instruction sets
for the Space Shuttle was evaluated. Figure 19, showing the frequency of
instruction occurrence by type for a guidance, navigation, and control pro­
gram, is typical of the kind of information utilized. The very high usage of
load and store instructions in this application is immediately apparent;
and substantial reductions in the percentage of input/output instructions, for
example, would not have nearly as great an effect as a small reduction in
load and store instructions. The number of shifting instructions is roughly
half the number of arithmetic instructions, indicating the penalty paid in
this architecture for the lack of floating-point arithmetic. Analysis of these
and other data concerning the frequency of instruction usage has indicated
the areas- of most concern in satisfying the instruction suitability criterion.

Arithmetic Load and Store

Index Load and Store

Extension Load and Store

Arithmetic

Shifting

Decision

Unconditional B ranch

Input/Output I
I I I I

0 10 20 30 40 50

Frequency of Instruction Occurrence

Figure 19. Instruction Usage for Guidance, Navigation,
and Control Programming

-80­

5. 4. 1 Basic Instruction Set

In addition to a minimum set of instructions without which accomplishing
any but the most elementary functions becomes very difficult, an effective
computer architecture includes those others that, although not as impor­
tant as the mandatory instructions, will accomplish frequently needed ele ­
mentary functions without requiring extraneous,or redundant information
or producing troublesome side effects. Table 10 shows the basic instruc­
tion set comprising these mandatory and highly desirable instructions.
Some instructions, such as those for input/output, restart provision, and
floating-point arithmetic, are treated separately because of their consider­
able individual impacts. It is assumed that the instructions for addition,
subtraction, multiplication, and division manipulate operands consistent
with the word length estimates presented in Table 2, that is, Z4 bits for
the minimum hardware configuration and 32 bits for the moderate and maxi­
mum configurations. If a shorter word length, say 16 bits, is provided,
then double-precision arithmetic would be included in the basic instruction
set.

Different architectures have different numbers and categories of programmer­
usable registers into which the programmer should in general have the capa­
bility to load and store. Since the number of such registers is indeterminate
until a computer architecture has been selected, the number of mandatory and
desirable instructions is a function of N, the number of such registers. These
numbers are 11 + 2(N) for the mandatory instructions alone and 30 + Z(N) for

the entire basic set.

To determine suitability of the basic instructions provided by a particular
computer, its instruction set should be compared with Table 10. If the
computer's instruction set does not contain all the indicated mandatory in­
structions, it would be rated unsatisfactory and assigned a numerical value
of 0. The occurrence of each basic instruction in a computer's repertoire
would give a value of I to be added to the mandatory 11 + 2N. The highest
score that could be achieved on the basic instruction set criterion is 30 + 2N.
It is estimated that a computer with an instruction set scoring i i + ZN would
have 5-10% higher software costa than one with an instruction set having a
suitability of 30 + 2N. Instruction suitabilities between these extremes would
result in software costs in proportion. Instructions in addition to the basic
30 + ZN would have less cost impact than fewer instructions than the basic
set. It is not likely that even a very large number of relatively elementary
instructions in addition to the basic set would reduce software costs by more
than 5- f0%.

-81­

Table 10. Basic Instruction Set

CommentsCategoryInstrucion MandatoryDesirable

Add X -

Subtract X

Multiply X

Load (to register) X Number of instructions a function

Store (from register) X jof number of registers

Logical right shift c

Circular left shift X .Either of these two instructions

Skip/transfer on nonzero X Any one of these seven instructions

Divide X

Register exchange X

Arithmetic left shift X

Arithmetic right shift.. X

Logical left shift X

Circular right shift........................ X

Multiple register left shift X

Multiple register right shift X

Logical "and" X

Logical "or"................ X

Logical "exclusive or X

Complement X

Return jump X

Unconditional transfer X

Skip/transfer on positive X

Skip/transfer on negative X

Skip/transfer on zero X

Skip/transfer on overflow X

Skip/transfer on equal.................... X

Skip/transfer on not equal X

Store zero X

Increment X

Decrement X

Increment and transfer on condition X

-8Z­

5.4.2 Floating-Point Arithmetic

For the minimum Space Shuttle configuration it is estimated that'roughly
60% of the onboard program will be devoted to arithmetic calculations;

for the maximum configuration the proportion will fall to about' 40%. In
performing fixed-point arithmetic calculations, approximately 10% of the
coding is devoted to rescaling operations and similar data manipulations
that would not be required if floating point were provided. Thus eliminating

the need for this data manipulation by providing floating-point addition, sub­
traction, 'multiplication, and division instructions would ,be of obvious benefit.

Floating-point capability does introduce some problems of its own, however.
Testing for zero and for equality between two floating-point operands is

complicated. Floating point also complicates modulo arithmetic, which is
often used for calculations involving angles. It is expected that much. of
the data received from and transmitted to other vehicle subsystems will
continue to be maintained in fixed point, thus requiring the proper conver­
sions to be performed. Weighing the disadvantages against the far greater

benefits attainable, it is estimated that floating-point instructions would
reduce the size and complexity of the total onboard software by about 3-7%.

This reduction in size and complexity would be directly translatable into
equivalent cost savings.

In some systems that lack hardware floating point, the equivalent arithmetic
operations are accomplished by means of subroutines.written in a special
machine-like language; a software interpreter causes their execution. This
software approach to minimizing the effect of a hardware deficiency is un­
desirable for several reasons. - First, it reduces effective computer speed
by a factor of 10 at a very minimum and in some cases by a factor of over
100. Second, the subroutines and interpreter add to the size of the onboard
program and to verification problems. Finally, the use of the interpretive
mode greatly complicates the multiprogramming of independent tasks, for
if one task is in the middle of executing a floating-point subroutine, any
interruption by another task using that same operation must be prevented or
else the subroutine must be niade reentrant. Thus interpretive floating
point should in no way be considered an acceptable substitute for hardware
floating point.

Another approach to minimizing the lack of hardware floating point would be
to utilize a higher-order language that allowed the range and precision de­
sired for each fixed-point operand to be specified for arithmetic operations,
and a compiler that automatically allocated proper scalings and inserted the

-83­

required scalings adjustments. Shifting the burden of fixed-point arithmetic
problems from the programmer to the language and compiler in this way
would be of some benefit, but would eliminate neither the, analysis burden
of determining range and precision nor the verification burden of demon­
strating their adequacy and correct implementation. Furthermore, develop­
ing 	a compiler to accomplish automatic scaling allocation and readjustment
is very difficult. Experience with the recently completed CLASP compiler
for 	a fixed-point onboard computer indicates that compiler cost would be in­
creased by at least 25% owing to the added complexity. And with the current
state of the art in compiler construction, considerable help from the pro­
grammer in scaling allocation is still required to maintain precision and
accuracy. Rather than relying on a language and compiler to obviate the
need for floating-point arithmetic, hardware floating point is mandatory if
a high-order language is to be workable on Space Shuttle.

5.4.3 Multiple and Subroutine Instructions

Some computers provide instructions that singly accomplish something that
would otherwise require many instructions. Two categories may be defined:

* 	 Multiple instructions by which the same elementary
operation is repeated several times -- for example,

a block copy instruction that moves many data items
from one area of memory to another

o 	 Subroutine instructions by which an operation is
performed that would otherwise require a subroutine
composed of different basic instructions -- for
example, an instruction that computes the sine
for the operand

Generally, multiple and subroutine instructions take much less time to
execute than the sequence of basic instructions for which they are sub­
stituted, but much longer than any of the basic instructions individually.

The long execution time of multiple and subroutine instructions can intro­
duce problems if the system also utilizes interrupts. While interrupts
are not generally permitted to occur during an instruction's execution, it
may not be permissible to lock out all interrupts for the length of time a
multiple or subroutine instruction takes to execute. There is no software
solution to this dilemma; and serious hardware and software complications
are likely to arise if interrupts occur during instruction execution. Still

-84­

another problem, particularly with multiple instructions, is retaining the
capability of restarting when a computer error is detected. If a computer
error occurs during the execution of a multiple or subroutine instruction
that reads from a memory block and writes back into that same memory
block, restarting will not be possible unless the complete original memory
block has been saved.

Unquestionably, multiple and subroutine instructions save memory and
execution time compared with equivalent subroutines composed of basic
instructions. Their utility is not great, however, because of their relatively
infrequent usage. For example, when a sin/cos instruction was provided
in a hypothetical computer, the guidance, navigation, and targeting pro­
gram's execution time was reduced by 0. 1% and its memory size by 51
instructions; a cross-product instruction reduced execution time by 2. 7%
and program size by 61 instructions. This was the type of program that,
in the Space Shuttle application, would make the heaviest use of these
subroutine instructions. The very small number of instructions saved
indicates the small impact that subroutine instructions would have on over­
all Space Shuttle software costs. The execution time savings is somewhat
more significant, although when the total software is considered, subroutine
instructions would reduce execution time by less than i%. It is concluded
that the expected memory and execution time savings are not sufficient to
offset the problems that multiple and subroutine instructions would intro­
duce.

5.4.4 Unique Instructions

Nearly every computer has instructions unique to that computer alone.
These instructions are quite complex, having many of the attributes of multi­
ple or subroutine instructions, and accomplish operations appropriate
only to a restricted type of problem; a well-known example is the "con­
vert by replacement from the accumulator" instruction of the IBM 7094.
The virtues of unique instructions and the means of employing them are
not obvious; hence their usage is generally confined to experienced and in­
ventive programmers and their frequency of occurrence is measured in
tenths of a percent or less. The-best that could be said about unique in­
structions is that they cause no harm, and even this is not always true.
Unique instructions complicate verification because usually there is not
a clear relationship between the computer operations that will be performed
and the programming specification. Similarly, they complicate the crea­
tion of automatic verification tools.

It is not possible to describe all instructions that could fall into this category
because of the special characteristics of each. The major indication is the

-85­

occurrence of an instruction that has no counterpart in any other computer
and whose suitability to the class of problems being solved is not apparent.
Frequency of occurrence by itself is not a reliable indicator; some instruc­
tions, such as restart and interrupt disable, may not be used very frequently
but are essential when they are used.

5. 5 Word Format

The format of instruction words and the type and format of data words all
influence the relative ease of using a computer's instruction set. From the
functional analysis described in Section 3, it was concluded that the data
word length for moderate and heavy Space Shuttle processing loads should
be 32 bits, based on the expected precision required. The following para­
graphs discuss some of the more probable of the many formats possible for
a basic word size of 32 bits and their effect on software implementation.

5. 5. 1 Instruction Words

The most common and straightforward alternative is to have instruction and
data word lengths identical. This provides considerable ease in allocating
instructions and data words throughout core. Typically, aerospace computers
have instruction words that are either consistently shorter than the data words
(the UNIVAC 1824) or are of variable length (the IBM 4 PI). The primary
motivation for making instruction words shorter than data words is to permit
full utilization of core memory. For example, if it is assumed that:

* full memory addressing to 256K words of core is allowed
* the instruction repertoire consists of 128 instructions
" the processor has seven index registers

then 28 bits would be needed to encode the above information. Thus if the
basic computer word size is 32 bits, there would be at least 4 unused bits
in all instruction words. Instructions such as shifting and those loading
directly from the address field would require even fewer bits.

If the computer architecture permitted, it would be possible to fit 8 instruc­
tions into 7 basic computer words if these unused bits are employed. Such
an architecture is not likely. Another alternative, and one that has been
employed on some aerospace computers, is to reduce the number of bits
allotted for memory and index register addressing and for instruction
operation codes to allow shortening the instruction word. For example, the
main memory addressing range could be reduced to ZK, permitting an in­
struction word length of 21 bits and allowing 3 instruction words to be packed

-86­

into Z data words. Even more drastic, the memory addressing range could
be reduced to'256, the number of operand-cdde-distinguishabfe instructions
to 64, and the number of index registers to 3, permittinig an instruction word
size of i6 and allowing Z Iinstruction words to be packed intb I basic com­
puter word.

Even though the total hardware memory size may be reduced, such trimming
of instruction formats to achieve a high instruction packing density in the
basic computer word is very undesirable from a software point of view. The
problems associated with the restricted memory addressing ranges have
already been described (Section 5. f.8). Having to determine the instruction
to be executed from bits in the instruction word other than the operation code
or from some previously executed operation is similarly undesirable be­
cause the programmer often will have to specify more information in coding
than would otherwise be necessary, and the verifier will have more things
to demonstrate correct.

On the other hand, allocating instructions and data according to purely logi­
cal reasons, without having to follow coding restrictions regarding use of
half-woids'and positioning of word or segment boundaries, makes it con­
siderably easier both to develop the program and to train others to use and
to modify it. Of course, verification advantage is gained in that the number
of things -thathave to be checked is reduced. The computer code is more
direct, avoiding peculiarities that might arise from packing; as an example,
the use of partial-word instructions of the Honeywell 701P often requires
ins-ertion of do-nothing instructions because instructions cannot be broken­
across word boundaries. Thus it is concluded that the most effective in­
structioii word format for Space Shuttle'software development is one in which
all instructions occupy a full computer word. There is no software advantage
in having partial-word instructions, while there are noticeable disadvantages.

5. 5.2 Data Words

Four data types are expected to be required for Space Shuttle prog-ramming:
floating-point numbers, fixed-point or integer numbers, logical vectors, and
alphanumeric strings. Ideally, the computer instructions used in manipu­
lating each type should allow the data to be addressed directly. At the pres­
ent time the relative amounts of each variety of data to be used in the data
management system cannot be'accurately estimated. Clearly, the actual
mix will determine the utility of having special instructions for each data
type.

For the vast majority of mathematical computations, floating-point numbers
are highly desirable. The format must be fixed if the floating-point opera­
tions are to be executed as single instructions. The number sign, fraction,

-87­

exponent, exponent sign, and (in some instances) flag bits are extracted by
the processor from the addressed word according to a fixed convention. Flag
bits can be used to specify such things as options for overflow and underflow
procedures. This seems to be an unnecessary level of sophistication for this
application.

Fixed-point and integer arithmetic will still be highly useful even if a floating­
point capability is provided. They are especially useful for non-equation­
processing functions, such as defining and modifying contents of index regis­
ters, logic control parameters, looping control, and so forth. The general
capabilities possessed by most computers are sufficient here. One helpful
architecture feature for use when handling small integers is partial word
control.

The final two data types are logical vectors and alphanumeric data. Logical
vectors are simply strings of 0's and i's. Ideally, it should be possible to
manipulate strings of arbitrary length using only a small set of logical in­
structions. Alphanumeric data are characteristically of variable length;
the natural unit is the single alphanumeric character. Editing and manipu­
lative operations should ideally permit character-level addressing of strings
of arbitrary length.

For any of the four data types there are advantages in being able to read or
write portions of a data word without being affected by or affecting the rest
of the word. This is accomplished by providing the capability to address
half-words, quarter-words, or bytes. The ability to divide data words into
smaller addressable segments has a different software impact from that of
dividing instructions into half-words, providing additional capabilities and
flexibility in data declaration as opposed to imposing burdens on the program­
mer. Partial data word capability facilitates masking of logical information,
processing of Hollerith information, modification of branching, and so forth.
Generally, this should be done on the basis of an orderly division of the word
length resolvecd; for example, the division of a 3Z-bit word into 16-bit half­
words and/or 8-bit bytes. This capability is extremely useful and is recom­
mended.

An extension of this technique is to make a computer capable of handling a
completely variable data word length. Computer "word length" is commonly
defined as the number of bits retrieved by a single memory fetch. With
variable-field-length addressing, the physical word length is of no-great
concern to the programmer: the memory appears to be a continuous hori­
zontal string of bits. A data item is accessed by giving the address of the
leftmost bit plus the length (in bits) of the item. Data of arbitrary length

-88­

may thus be stored or retrieved from any point in memory. There is no
need to pack and unpack small items in a single word; long items need not be
artificially divided into words; and no effort is required to extract subcom­
ponents of a data item. Thus the programmer is free to let the actual rep­
resentation reflect his internal conception of the data. For convenience, a
fixed default word length may be provided for use when the specification of
variable field lengths becomes burdensome.

This feature is considered undesirable for the Space Shuttle data manage­
ment system. Not only would it provide relatively little additional utility in
developing software, but it would also impose heavy burdens. It would require
complicated and detailed interfaces to be defined between programs sharing
data of different lengths and would increase verification difficulty'because
of the greater possibility for errors in interfaces and the many types of data
manipulations that would have to be checked.

5. 6 Register Organization

Registers are involved in nearly all basic computer functions. A large
number.of registers, interacting in many complex ways, increases both
programming and verification difficulty. A minimum set may be too re­
strictive, necessitating additional data manipulation to accomplish simple
functions, and this, too, will increase programming and verification dif­
ficulty. Factors influencing register suitability are reviewed here; it
turns out that none of them has a major impact on software costs. Regis­
ters used to perform input/output operations are not included; these more
properly designate a convenient way to interface the processor rather than
serving as a means of facilitating problem solving using the computer.

5. 6. i Multiple Registers

From the viewpoint of facilitating software development, the optimal com­
puter architecture in terms of registers is one that provides a sufficient
number of general-purpose registers that can -beused to perform all func­
tions of the accumulator, quotient registers, index registers, and masking
registers. Thus registers could be used as multipliers and multiplicands,
or dividends and divisors, or to contain a bit mask to be used in perform­
ing logical arithmetic. Also, index registers could be included in these
general-purpose registers, allowing index quantities to be computed and
used without requiring intermediate load and store instructions. Not only
would it be convenient for programmers to have several of these general­
purpose registers, but providing several could also result in a savings of
memory and execution time. In a typical guidance, navigation, and control

-89­

http:number.of

computer having a single accumulator and a single index register, it can
be expected that roughly 40% of all instructions are register loads and
stores. Providing several general registers would greatly reduce the num­
ber of temporary stores and recalls that would otherwise be required.

This is not to say that the number of registers should be expanded indefi­
nitely. At some point, very little additional gains are made, and too many
registers make it difficult to verify and change the software. For example,
if the practice is followed of keeping items in registers through long coding
sequences, information can be lost by inappropriate transfers. Another
problem presented by large numbers of registers -- securing them in the
event of an interrupt -- can be simplified by appropriate computer design;
for example, by having blocks of registers that can be selected by a single
instruction.

For the Space Shuttle, it is desirable that the registers be general purpose,
thus providing flexibility, power, and simplicity for program development.
An examination of the code produced by compilers for computers having
multiple arithmetic registers indicates that seldom are more than six
required to do a reasonable job of register allocation. Coding in assem­
bly language often results in the use of as many arithmetic registers as
are available, usually because of tricky coding or carefully tailored opti­
mization, both of which should be avoided if software costs are to be mini­
mized. Additional registers can probably be usefully provided up to about
10; more than these will provide only marginal gains in software develop­
ment, while increasingly complicating verification. Finally, a rapid and
simple hardware means should be provided for securing the contents of
registers; this might take the form of a single instruction that saves all
registers or one that switches between blocks of registers.

5. 6. z Index Registers

An index register is one whose contents can be automatically added to an
address specified in an instruction, resulting in a new effective address.
Two categories can be distinguished. True index registers are used option­
ally, that is, an instruction must specifically request that the address in
the instruction be indexed. A base register's value is added to every
address, whether data or branching.

Index registers are usually applied as follows:

* Accessing elements of vectors, matrices, and tables
* Looping control
* Many-way decision branches

-90­

* Providing reentrancy of routines
* Providing relocation of routines

The use of index registers for the first three applications is familiar and
has no unusual requirements. The programming ease afforded in these
applications indicates that the Space Shuttle computer should incorporate
index registers; if it does not, some very similar substitute must be
provided, particularly to facilitate vector, matrix, and table operations.

The fourth application, reentrancy, requires that each incarnation of a
routine have its own data region. This is easily accomplished if the base
address of the new data region can be loaded into an index register, and
if the address of each datum can be augmented by the contents of that reg­
ister. Since reentrant routines use the same program, it is important
that the contents of this register not be added to addresses of branch
instructions in the reentrant routine. Although in many cases the use of
reentrant routines may be desirable, relying on such an indexing feature
as the sole mechanism to enable reentrancy will lead to many verifica­
tion problems. The fifth application, relocation, utilizes a base register.
With this feature, a routine may be loaded into any part of memory and
is relativized by loading the base register with the base address of the
routine.

Reentrancy and relocation of routines facilitate program development
only if complicated program structures are involved. Because little use
of such structures is envisioned, the benefits obtainable from the last
two applications of index registers are not great. Certainly the overall
Space Shuttle software design should not attempt to relocate program ele­
ments dynamically; even if an auxiliary memory were used, the program
elements loaded as a function of mission phase should always be loaded
into the same memory addresses. Thus while index registers will not
be required for reentrancy or relocation reasons in particular, their
other applications are sufficient to justify their inclusion.

5. 6.3 Register Stacks

One or more hardware-implemented register stacks, together with re­
lated machine instructions, can simplify or eliminate many load-and­
store chores usually required in performing subroutine calls and compli­
cated arithmetic and logical expressions. The Honeywell 70 iP is an
existing aerospace computer which has such an architecture.

Basically, the implementation, shown in Figure 20, uses three registers
(RI, R2, and P) coupled with a section of main memory. From a logical

-91­

wP

F 	 RZw 	 I

Figure 20. Stack Operation

point of view, RI and RZ are the top two words in the stack. A load from
memory brings a new word into RI after first:

* 	 Incrementing the pointer in P

* 	 Moving the contents of RZ into the word in main
memory indicated by P

* 	 Moving the contents of RI into R.2

A store into memory reverses the procedure. Thus the load and store iri­
structions respectively push down and pop up the stack. Operations such
as "add" or "logical and" are performed on the top two words in the stack
and the result is returned to the top of the stack. This concept retains
data available in the stack for sbusequent use. If variables can be pro­
pitiously ordered, arithmetic can be performed with a minimum of loads
and stores. Another slight advantage comes in terms of compiler opera­
tion, as there can be a closer correspondence between the compiler's
intermediate language and machine instructions.

-92­

Subroutine transfers and returns can also be performed more rapidly and
more easily if special subroutine branch and return instructions are pro­
vided in conjunction with a hardware stack. A return pointer and other
necessary information are placed on a stack before transferring to the
subroutine, and removed to effect the return. Adding one level of indirect
addressing in conjunction with the stack enables all task routines and sub­
routines to be made automatically reentrant. As a routine or subroutine
goes into execution, either through a subroutine call or initiation by the
task scheduler, a marker is placed on the stack and the parameters and
data for the routine are entered above it. Addressing of data local to the
routine is relative. Prior to data fetch, the address of the marker is
added to the relative address to obtain the absolute address. Essentially,
the details of reentrant programming have been built into hardware.

With regard to whether the stacked register computer offers any advan­
tages for Space Shuttle, it can be argued that it represents a way of mak­
ing some software gains over a computer having a conventional architec­
ture. However, most of these gains would not be significant compared to
conventional designs having an appropriate set of instructions and register
design, such as have already been recommended. It is concluded that the
selection of either a stacked register machine or a more conventional
design is relatively unimportant in terms of software implications.

5. 7 Restart and Self-Test Provisions

Maintaining computer system integrity and detection of malfunctions is
essential for the Space Shuttle computer. Restart and self-test are two
classes of activities for performing these functions.

5.7. 1 Restart

Aerospace computers are susceptible to transient errors caused by ran­
dom events such as power supply surges or dips and radio-frequency
interference. Such transient errors usually result in unwanted changes
to the contents of volatile registers or'other volatile storage devices.
If the contents of volatile registers have recently been stored away in
nonvolatile memory, it often may be possible to restart the computation
by reloading them (including the instruction counter) from nonvolatile
memory. This type of restart is a method by which software can recover
from a large class of transient errors.

The minimum hardware provision required is some mechanism for de­
tecting transient errors. In the simplest case this detection merely

-93­

causes an interrupt. If this is the only provision, the programming nec­
essary to provide for the possibility of a restart is tedious: at frequent
intervals the contents of all volatile registers must be stored away indi­
vidually in nonvolatile memory, and an executive routine must be written
to reload the registers when the transient error interrupt occurs. On a
machine for which protection from such transient errors is desirable or
mandatory, special provisions should be made both for storing the con­
tents of volatile registers and for reloading them after an error is de­
tected. For example, the Honeywell 701P has a save instruction which
causes the volatile registers to be stored automatically. When a fault
is detected, the volatile registers are automatically reloaded with the
values stored by the last save instruction and execution is resumed with­
but aid from software. The programmer is required to insert the appro­
priate save instructions, but the burden of doing so is much less than
that of saving all volatile registers using the conventional store instruc­
tions. A method for inserting save-for-restart instructions into a pro­
gram to guarantee correct operation after a restart is discussed in
Appendix B.

To ensure that restarts will work after an error at any point, the save­
for-restart instructions must appear frequently in the program code.
Hence the delay encountered when a restart is performed will be the
equivalent of oniy a few instruction times. However, saves could eas­
ily account for 10% of the total number of instructions, and thus repre­
sent a considerable load both on execution time and on main memory
capacity. Furthermore, the problem of determining the proper points
at which to insert the save instruction is not trivial. The conclusion is
that a computer that is susceptible to transient errors and requires re­
start protection is less desirable than one that is not susceptible. If
restart protection must be provided, it is very desirable that it be per­
formed by a powerful save-for-restart instruction.

Of course, a hard failure can also trigger a restart. In this case, the
machine might loop indefinitely if there were no other provisions. Com­
monly this problem is handled by a mechanism that counts the number of
times a program has restarted at a given point. After a fixed number of
restarts have failed, logic steps in to halt the restarting mechanism,
possibly causing an interrupt indicating a hard failure.

5. 7.2 Self-Test and Fault Diagnosis

From a software point of view, the best computer would be one that either
did not require self-test and fault diagnosis or performed these operations
automatically.

-94­

From a reliability point of view, it is not desirable that the only way of
detecting faults be by means of software self-test. Self-tests cannot be

performed continuously, an faults occurring during the intervals between

tests could be calanmitous.,) It 's highly desirable that fault detection be

performed continuously by hardware. Computers have been designed that

automatically detect and automatically correct all failures in their hard­

ware. An example is the STAR computer being developed at The Jet
Propulsion Laboratory. For such a computer the burdens of reliability
considerations, self-test, fault diagnosis, restart protection, etc. , are
removed from software development. This is an extremely desirable
feature.

If the Space Shuttle computer cannot do all of the required error detec­
tion, correction, and diagnosis by hardware mechanisms, it is preferable
that as much as possible of the error detection be done by hardware,
leaving the required diagnosis and correction to be performe.d by software.
This is consistent with the philosophy that simple tasks that must be per­
formed at high frequency are best performed by hardware, while complex
tasks of lower frequency are best performed by software. With such an
architecture, hardware would generate an interrupt when an error was
detected. The executive system would then transfer the current job to a
spare unit, and diagnosis and cure would be performed on the failed unit.
In the absence of complete hardware self-testing, software self-test is
commonly used as a background task; that is, self-test is performed when
all necessary tasks are completed. This ensures that the machine is
operating correctly when a new work cycle begins. In the multiprogram­
ming environment, self-test could thus be treated as the lowest priority
task.

One means of performing self-test is by comparing the results of the
same computations performed on two or more computers. The following
example shows how the hardware efficiency of a triply redundant system
may be compared with that of a doubly redundant system. The triply
redundant system votes on all outputs. Errors are detected as a dis­
agreement between one computer and the other two. The effective utili­
zation is one-third; that is, if the machine were perfectly fault-free,
only a third of the actual hardware would be needed. The doubly re­
dundant system consists of two computers, each comparing outputs.
Failure is detected by a disagreement in their outputs. Both computers
must then self-test to determine which is actually correct. Because of
the delay this job introduces, every task must be scheduled such that
even if it is delayed by the self-test routine, all deadlines are met. For
the periodically cycled tasks, if the computations require A units of time

-95­

5.8

and self-test requires B units, then the utilization is (I/Z)(A/A+B).
Hardware efficiency is higher for the triply redundant system only if
l/3>(i/2)(A/A+B), which holds only if the ratio A/B is greater than 2.
Whether this ratio is actually greater than Z will depend on the machine
speed, the speed of the diagnostic routines, and the computations that
must be performed at the highest frequency.

Interrupt- Handling Facilities

On real-time computers, an interrupt mechanism is commonly used to
inform the executive that a request has occurred for processing a task or
group of tasks. Interrupts ensure that the task in execution is always the
important one. They are properly the concern of the executive system
designers and ought to be invisible to programmers of non-real-time tasks.

Interrupts present verification problems, many of which have been discussed
in Section 4. One partial solution is to minimize the number of interrupt
occurrences possible during program execution and to reduce the amount of
operations that must be performed by software when interrupts occur. This
can be done by providing interrupt types suitable both to the interrupt source
and the tasks invoked; an appropriate hardware priority structure and effec­
tive interrupt control mechanisms; automatic interrupt identification; and
automatic computer status preservation mechanisms. Each of these desir­
able architectural features is described below. These features are very
important to the reduction of software costs; further, serious architectural
shortcomings with respect to interrupt features may result in software whose
correctness cannot be feasibly demonstrated.

5. 8. 	 i Interrupt Types

Three types of interrupts can be distinguished for the Space Shuttle
application:

* 	 Internal Interrupts: those generated within the computer
itself to indicate the computer's and software's operation.
Examples of the source of such interrupts include the
completion of input/output operations, invalid attempts
to access memory regions protected by locks, and hard­
ware-detected redundancy and checksum errors.

* 	 External Interrupts: those generated by other subsystems
to indicate changes in their status and demands for servic­
ing by the central computer facility.

* 	 Clock Interrupts: those generated by hardware timers to
indicate that a specified interval has elapsed or a specific
time has been reached.

-96­

As regards internal interrupts, their number can be limitedby requiring
explicit checks in the software; however, such checks increa'se software
complexity at the expense of interrupt simplification. Since most opera­
tions initiated by internal interrupts are relatively simple and in large
part should be performed by the executive, this type of interrupt should
not be eliminated entirely.

The number of external interrupts is a function of both the number of sub­
systems and the rapidity with which the central computer must respond to
subsystem demands. External interrupts can be greatly reduced if not elimi­
nated by having the communication of subsystem requests for processing
received by the central computer through an executive poll of the subsystems.
By having the executive ask the subsystems if processing is required rather
than having the subsystems interrupt the current processing to tell the exe­
cutive that some other processing is also required, significant reductions
can be made in the number of interrupt occurrences and the associated veri­
fication effort. Only external interrupts which require very rapid or immedi­
ate processing, such as signals indicating the catastrophic failure of a sub­
system; should therefore be tolerated.

The third category of interrupt is vital to maintain synchronization between
the software and real time. Typically, a precision hardware clock generates
an interrupt at a regular interval. The longest time that this interval can be
is that of the most frequently executed periodic function. It is desirable that
the interval not be very much shorter than that of the most frequently exe­
cuted periodic function, or many unnecessary interrupts will have to be proc­
essed for every one that has any significance. One very desirable archi­
tectural feature is an alarm clock timer in which the interrupt interval is set
by the executive, probably by storing a value in a special register. After an
interval of the specified length has elapsed, an interrupt is generated. Aper­
iodic tasks that must be performed at some fixed future time can be sched­
uled using this type of timer. The alarm clock timer can substitute for the
interval timer by simply storing the desired interval value back into the regis­
ter after each timer interrupt. It can also serve as a watchdog to prevent
certain tasks from taking too much time.

In a multiprocessor, only the processor that should do the indicated operations
or the one with the lowest priority task should be interrupted for any of the
three interrupt types. It is desirable that the processor to be interrupted be
chosen by hardware means without interrupting another processor to perform
an executive routine, since doing so would increase executive overhead and
increase the number of combinations that must be verified.

-97-:

5. 8. 2 Interrupt Priority Levels

In the Space Shuttle computer system there will be at best several dozen
different situations that must generate interrupts. Five or six priority
levels would suffice to distinguish the relative urgency of the interrupt
requests. On the highest level might be computer hardware failure in­
terrupts caused, for example, by parity errors. A slightly lower level
might indicate manual hold, timer errors, and discrete command errors.
Another level might indicate normal interval timer interrupts and requests
for analog [/0. A fourth level might include console I/O interrupts and

RT-generated interrupts. A fifth level might indicate analog/digital con­
version I/O interrupts.

One approach is to have the executive handle all the priority considerations,
with interrupts occurring regardless of the priority of the tasks they might
invoke. A much more desirable approach is to have the hardware partici­
pate in priority control. This is accomplished by having interrupts not
immediately occur if an interrupt of higher priority is being processed.
Instead, the new interrupt would be delayed by hardware mechanisms until
all higher priority functions were complete; thenitwould occur immediately.
The advantage of this approach is obvious in terms of both reducing exec­
utive overhead and simplifying verification, for interference with high pri­
ority tasks is eliminated. Utilizing this feature requires some software
discipline, for task termination must be done by a method that the hardware
can recognize. This can be more easily accomplished if automatic-save and
restore mechanisms such as those described in Section 5. 8.4 are also pro­
vided.

5.8.3 Interrupt Disable and Enable

Another means of minimizing interrupts is to provide the facilities for
selectively disabling and enabling interrupts under software control. Some
operations may be so critical that they cannot be interrupted even to add a
new task to the queue. An example would be a high-speed transmission
such as a disk transfer; this might have low priority until it actually begins
but must then have very high priority, since processing of new interrupts
might cause transmission errors or information loss. On the other hand,
really critical interrupts, e.g. , those indicating hardware failure within
the computer, should never be disabled. During the priod in which inter­
rupts are disabled, information indicating what has occurred during that
period must be saved automatically. When the interrupts are enabled again,
this information is consulted, and if an interrupt has been suppressed
it now occurs immediately. Thus the only effect of the disable/enable

-98­

sequence is the delay of lower priority interrupts. Providing this disable/
enable capability is very important in reducing verification difficulty in
that the areas'that must be verified for interrupts can be minimized.

5.8.4 Status Save and Restore

From a software viewpoint, one of the most important aspects of an inter­
rupt mechanism is tte method by which processor status is preserved when
an interrupt occurs. Some method must be employed for saving the state of
the machine's registers at the time of the interrupt and for restoring this
state when the interrupted program is resumed. The basic approaches to
the problem of status preservation are:

i) 	 Let the interrupting program (the executive interrupt
handler) decide what to save and restore.

2) 	 Automatically (by means of hardware) store all machine
registers in a designated region in main memory -- possibly
with a stack convention to allow interrupts on top of inter­
rupts.

3) 	 Provide two or more sets of internal registers. When the
interrupt occurs, a pointer is modified to indicate that a
different set of registers is to be used.

4) 	 If the machine is such that save instructions are employed
to prepare for potential restarts, no auxiliary saving of
registers is necessary. After the interrupt is sensed,
execution may be reinitiated from the last save-point.

Option i is the least desirable but is representative of conventional flight
computer architecture. Checking that the necessary registers are saved
and restored has consequently been a major verification chore in the past.
Option 2 makes no demand on the system programmer, and the overhead
time per interrupt is constant. Option 3 likewise makes no demand on the
system programmer, unless there is the possibility of using up all the sets
of registers. Then software may have to be added to prevent register over­
flow. With many possible executive designs, the interrupted task will not
always be resumed after the interrupt has been processed. If this is the
case, even with Option 3 it would be necessary to store the contents of the
registers in a region of main memory associated with that task. Thus, a
register store instruction would be very useful. For both Options 2 and 3
a complementary register fill instruction would be useful in reinitiating a

-99­

5.9

partially completed task. Beginning with the location in memory specified
by the address, this instruction would proceed to fill the machine's regis­
ters from main memory. Options 2 and 3 are equally desirable since they
impose no software load. Choice should be made on the basis of speed
requirements. Option 2 is slower but probably cheaper. Option 3 is faster
but probably more expensive.

Option 4 deserves separate consideration because of its unique impact on
software design. If the save/restart feature is provided, the use of the
same feature for restart after an interrupt involves little or no addition to
the hardware. The program's response to an interrupt would be equal to
the fastest of the other alternatives; however, resuming the execution of
the interrupted program would effectively take much longer than with the
other alternatives because execution is resumed at a point preceding the
interruption. This back-tracking has one advantage, nevertheless, for
restarts from an interrupt are always made at defined places in the pro­
gram. Although Options 2 and 3 may overall be superior to Option 4,
there will 'be substantial advantages to Option 4 if the actual hardware
implementation of Options 2 and 3 fall short of the ideal cases described
above.

Summary of Conclusions

A conventional computer architecture, unique only in its provisions for
restart and interrupt processing and having large memory size, speed,
and input/output capability margins would result in the lowest software
development costs. These margins are the most important character­
istics; an excess capacity on the order of 40% is suggested to facilitate
software verfication, maintenance, and growth.

An extendable memory or the ability to add processors provide means
for tailoring the computer's capability to the requirements and thus are
desirable. An auxiliary memory is undesirable because of its attendant
software complications and verification difficulty and is not recommended
unless there is a substantial difference between the total memory and
teak mission phase requirements. Such a difference does not appear
likely at this time. It is also important that the instructions have the
capabilit# of addressing all of memory without requiring the use of special
extension registers and that there be provisions for selectively restrict­
ing a program's access to designated memory regions, either through
bound registers or hardware memory locks.

-ioo­

For a conventional computer with an accumulator, quotient, and index
registers, the total number of basic instructions identified is 36. In
addition, hardware floating-point arithmetic capability should be pro­
vided. Powerful or unique instructions that either repetitively perform
the same operations as the basic instructions or replace software sub­
routines do not offer any substantial benefits to compensate for the prob­
lems in restart protection and software verification that they might in­
troduce. The format of instructions should be compatible with data for­
mats, and architectures which attempt to increase the effective memory
size by packing more than one instruction into the basic data word size

should be avoided. A general-purpose multiple -register organization
in which the same register can be used as an accumulator, quotient reg­
ister, or index register depending on the instructions referencing it is
desirable because it will reduce the number of tempory data loads and
stores.

Where possible, the detection of hardware errors, both hard and tran­

sient, should be accomplished by hardware mechanisms. Similarly,
error diagnosis and correction should be done by hardware where pos­
sible. Where software mechanisms are required, such as for reloading
volatile registers after a transient failure, the computer architecture
should facilitate their construction. In the event protection of volatile
registers against transient failures must be done with software, one im­
portant feature is a save-for-restart instruction that, appropriately
located throughout the program, establishes safe points from which re­
starts can be made.

Desirable interrupt features include hardware priority control in which
lower priority interrupts are delayed during the processing of higher
priority interrupts, and interrupt enable and disable commands that can
lock out selected interrupts during execution of critical program seg­
ments. Periodic or interval timer interrupts are required to maintain
software synchronization with real time. The interrupt periods must be
compatible with the task execution frequencies. Finally, the saving of
machine status when an interrupt occurs and its restoration after the task
invoked by that interrupt has been completed should require a minimum
of programmer effort.

None of the desirable architectural features appears to pose any hard­
ware design problems although many, such as hardware floating point,
hardware memory locks, and a flexible interrupt control mechanism,
are not'generally found in aerospace computers today. On the other

-10i­

hand, many of the undesirable features are; among them are restricted
memory addressing, minimal instruction sets, and different instruction
and data word lengths. The evaluation of specific proposed computer
architectures, particularly for off-the- shelf"hardware, will require a
balancing of their respective advantages and disadvantages with refer­
ence to the criteria described in this section. A methodology for per­
forming such comparisons is described next.

-102­

6.' EVALUATION METHODOLOGY

Studying the software impact-of particular configurations and architec­
tures-is, by'itself, useful. First, it indicates early in hardware defini­
tion which-approaches can simplify production without incurring addi­
tional hardware costs, in effect stating to the computer hardware design­
ers what is important to the software analysts. Second, for a particular
hardware choice it indicates where software design and production prob­
lems are.likely to occur, so that attention can be devoted to solving them.
Finally, studying the software impact of hardware choices is the first step
in selecting the most suitable hardware, or in comparing proposed alter­
natives. The next step is to define an evaluation methodology that enables
differing and conflicting effects to be amalgamated into a meaningful esti-­
mation of total software impact.

Two relatively simple ways exist for using the evaluation criteria. One
is to estimate performance qualitatively with respect to the individual
criteria and mentally integrate the subjective evaluations into a 4ualita­
tive estimate of the particular computer system's overall software per:
formance. Such a qualitative approach can lead to valid decisions. Among
its disadvantages are the difficulty of communicating individual value judg­
ments about criteria importance and performance. This approach also
inadvertently emphasizes the problems that have most recently confronted
the evaluator, and solutions that are appealing largely because of their
technical-interest and sophistication.

Another way of evaluating a computer system is to assign weights indi­
cating the relative importance of each criterion and to determine a single
quantitative measurement for each proposed system's performance with
respect to all criteria. The system' s expected performance is then deter­
mined by summing over all criteria the product of the individual weights
and quantitative performance measurements. For example, .the instruc­
tion set suitability criterion could be assigned a weight of 10. If it were
determined that including floating-point arithmetic doubled performance
with respect to instruction set suitability, a computer that had this feature
would receive a score higher by-Z0 than one that did not. Such a simple
weighting scheme has several deficiencies. Some of them are inescapable
in a quantitative model that attempts to deal with criteria that usually are
viewed only qualitatively. Others result from the simplicity of the model:
it is not always possible to measure a proposed computer system's per­
formance on one criterion using a single number.

-f03­

Uncertainty about the software effect of system characteristics may make
a range of possible values a better indicator of expected performance than
a single value. For example, the effect of a restricted operand addressing
range in the instruction format depends on module size, programming
techniques employed, and data organization. There is some small prob­
ability that a restricted operand addressing format might affect program­
ming costs only negligibly, and another small probability that it would
increase programming costs by as much as 10%, with the most likely effect
falling between the extremes. For cases such as this, a probability dis­
tribution can more accurately depict expected performance than can a
single value.

Another limitation of a simple weighting methodology is that the benefits
obtainable from increased performance are not always directly propor­
tional to the increase, as is implied by using constant weighting functions.
For example, a memory surplus is desirable: it reduces the need for
optimizing object code, sharing commonly used subroutines, and over­
laying unrelated data. Up to a certain point its advantage is proportional
to its amount; beyond that point additional memory affords no advantages;
and at some point additional memory may increase software costs be­
cause inessential functions are added largely because it is possible to
perform them. Hence to more accurately depict the benefits of perform­
ance with respect to the criteria, nonlinear weighting functions must be
accommodated.

Thus the evaluation methodology developed during this study has two
major inputs, both of them based on the evaluation criteria. One is
expected performance with respect to each criterion. For the reasons
discussed above, it may not always be possible to establish precise
performance with respect to a criterion; rather, a range of possible
performances will be more accurate. Thus, in the general case, the
probability of each level of performance is the input function. These
performance-probability functions are required for each evaluation
criterion and proposed computer system. They are represented mathe­
matically by the expression:

P = f(y, IA.)

where

A.a = the ith computer alternative being examined

y.1 = the jth evaluation criterion

Pij the estimated probability density of y for A.

-104­

The performance-probability function Pij represents a discrete proba­
bility function where the measure of performance with respect to the
evaluation criterion Yj is discrete, and a continuous probability distri­
bution function where the measure with respect to yi is continuous.

An example performance-probability function is shown in Figure 21,
indicating a range of performance for architectures with floating-point
arithmetic. Overall performance with respect to instruction set suita­
bility is measured in terms of the number of instructions needed to code
the onboard program, with a suitability of .95 indicating that 5% fewer
instructions would be required compared to an architecture having a suit­
ability of i. Performance of a fixed-point architecture is i on the scale
chosen; that of the floating-point alternative is between . 93 and . 97 on
the same scale, with all values in between equally likely. Any convenient
scale may be chosen for any criterion; in this example the scale is based
upon the relative program sizes. Lower numbers on this scale indicate
greater suitability.

Probability

Fixed Point

25

Floating Point

0

.90 .9Z .94 .96 .98 1.0

Instruction Set Suitability

Figure 21. Performance-Probability Functions

-105­

Defining performance-probability functions for each alternative permits a
performance-probability matrix to be constructed as shown in Table iI.
The criteria appearing in the matrix for the evaluation of computer archi­
tectures would be those in the eight categories developed in the preceding
section; the examples shown in Table Ii are for the evaluation of memory
suitability. The elements of this matrix, either single-valued functions
or probability distributions, represent the expected performance of each
alternative with reference to arbitrary scales.

A further extension of the performance-probability matrix concept can be
made, although in the current study the information needed for its applica­
tion was not available. This extension involves constructing performance­
probability matrices for each foreseeable set of Space Shuttle development
environments and requirements. For example, separate performance­
probability matrices would be constructed to indicate the difference in
criteria performance when the same computer architecture is used for
both large and small Space Shuttle avionics configurations. While many
elements of these matrices might be the same, it is probable that a sig­
nificant number would be different. For example, the effect of floating­
point arithmetic on performance depends on what percentage of the total
computational load consists of strictly numeric calculations. The larger
the avionics system, the smaller the likely percentage of numeric calcu­
lations: the functions that will always have to be performed -- such as
guidance, navigation, and control -- are largely numeric, while a signi­
ficant portion of the additional capabilities of the large system would be
devoted to such things as more powerful monitoring, diagnostic, recon­
figuration, and display functions involving a higher percentage of logic
and nonnumeric data manipulation.

Table i. Performance-Probability Matrix

Expected Performance

Evaluation Criteria
Alter native I Alternative 2 . . . Alternative

Memory nargi. Pil P12 Pli

Memory addressing range P2 j P2 Pj

Memory locks P3jP 31 P3 2

Criterion i Pit Pia Pij

-106­

The next input required in the evaluation methodology enables the infor­
mation represented through the arbitrary scales of the performance­
probability functions to be transformed into units that permit summation
of performance with respect to the total set of evaluation criteria. This
is done by using performance-payoff functions to determine overall com­
puter impact on software development cost. For complete accuracy the
software impact should also be measured in terms other than just cost;
examples of such additional dimensions are the software schedule require­
ments and, software effectiveness, flexibility and verifiability. To sim­
plify the evaluation process, these aspects can be considered by includ­
ing -- in the total development cost -- the cost of conforming to a fixed
schedule and achieving uniform levels of effectiveness, flexibility, and
verifiability. Thus, for example, the difference in verification ease for
two systems could be determined by comparing the costs incurred for
each system to obtain the same confidence level in correct software
functioning. Selecting cost as the uniform scale for measuring the value
of performance facilitates comparisons between distinct aspects of soft­
ware impact. However, it should always be recognized that a simplifi­
cation -- in effect analogous to comparing apples to oranges by compar­
ing the respective costs of the nutrients they contain -- has been made.
For many purposes such simplifications are justified, although the de­
cisions made on this quantitative basis must also be compared with sub­
jective, qualitative evaluations.

The evaluation methodology has two uses. One is determining the soft­
ware impact of a specific computer configuration and architecture and of
relatively small variations. The major difficulty with this use is in es­
tablishing an absolute scale to measure costs associated with each level
of criteria performance. To establish a meaningful scale it is necessary
to know not only that providing a feature such as floating point is good as
far as reducing software production costs and schedules, but how much
reduction can be expected. The other use is in comparing the software
impact of two or more distinct configurations and architectures. Estab­
lishing an absolute measurement scale for each criterion is not as impor­
tant for this use, for a relative scale is almost as suitable. What is re­
quired in this case is a single measurement scale, whether relative or
absolute, that is valid for all criteria. For example, such a uniform
scale would be needed to compare the software impact of two proposed
computers, one having a suitable interrupt structure but an unsuitable re­
start provision and the other with these two characteristics reversed.

To a large extent establishing an absolute scale depends on the final size
and complexity of the total Space Shuttle software. As already indicated,

-107­

for example, the software cost impact of a floating-point capability de­
pends on the amount of arithmetic operations to be coded. Final deter­
rination of the acceptable hardware cost of providing floating point thus
depends on the functions to be performed. As outlined in Section 3, the
size and complexity of the total avionics system software cannot be deter­
mined until the avionics system hardware configurations are more com­
pletely and permanently defined. Thus an absolute scale for measuring
performance with respect to the evaluation criteria cannot be established
at this point.

A relative scale can be defined and would be suitable for comparing the
perforrmance expected for different configurations and architectures and
as a base for establishing an absolute scale when further information about
avionics hardware configurations and functional requirements is available.
With a relative scale, the software cost impact of an architectural feature
would be measured in terms of the expected percentage reduction in total
software cost, rather than the expected dollar amount that would result
from an absolute scale.

Performance-payoff functions are plotted with the ordinate having the same
units as the performance-probability function and the abscissa being either
absolute or relative cost. An example is shown in Figure 22 to illustrate
the relationship between instruction set suitability and relative program
development cost. Expected performance of architectures utilizing floating­
point and fixed-point arithmetic has been shown in Figure Z; Figure ZZ
illustrates the effect any of these possible levels of performance will have
on program development cost. The relationship is linear in the region
around i, but does not drop to 0 as the number of required instructions,
and therefore the instruction set's suitability, approaches 0. As the number
of instructions increases greatly on the other side of the curve, the required
software development effort increases even more rapidly.

In this simplified evaluation model the performance-payoff functions are
considered to be independent of the particular computer configuration and
architecture. Thus the cost benefit of increasing instruction set suitability
is independent of the particular architectural details leading to that increased
suitability. A performance-cost vector is defined in the same format as the
performance-probability matrix, with each element C i of this vector repre­
senting the performance-payoff function associated with the ith evaluation
criterion. Like the performance-probability matrix, this vector can be
extended in another dimension to indicate the effect of various foreseeable
Space Shuttle development environments.

-108­

Relative
Program
Development

Cost

0
0I

Instruction Set Suitability

Figure 22. Performance-Payoff Function

When the performance-probability and performance-cost functions have
been established, it is a relatively simple mathematical step to compute
the expected software cost impact of each alternative computer system.
This computation is described by the expression

E(Cij)= f dy.ji P.j C,

where E(C-i) is the expected software cost for the ith computer alternative
and jth evaluation criterion. The total software cost impact of the computer
configuration and architecture is the sum of the applicable individual cri­
terion cost impacts. The computation above reduces to the simple weight­
ing evaluation approach when Ci is a linear function and Pij is a single­
valued function.

-109­

fLANK NOTPUIEDIMGPAG

7. PROGRAMMING LANGUAGES

Two general language categories can be distinguished: -assembly or
machine-oriented languages that require the statement of problem solution
in detailed and very computer-dependent terms, and high-order languages
that allow more general, problem-oriented, and computer-independent
terms. Languages in the first category have many disadvantages. Extra
programmer effort is required because of the increased number of com­
mands that must be written. Greater possibility of coding errors exists
because of the unneeded complexity and unwanted side effects of many of
the commands. Also, formidable communication barriers are raised by
the difference in appearance between the language commands and a state­
ment of what they are to accomplish. High-order aerospace-oriented
languages with suitable compilers are just now being developed. Their
usage for Space Shuttle software development was investigated with a view
to minimizing coding, verification, and maintenance costs. The investi­
gation focused on three principal aspects:

* Language suitability
* Compiler suitability
* Language influence on the software development cycle

These aspects are individually discussed below, followed by the conclu­
sions reached. Language suitability in particular -- and, where applicable,
the other two aspects -- was studied with reference to the following six
existing high-order languages:

Special Purpose General Purpose

CLASP
Minimal FORTRAN

SPL Mk II

HAL
Comprehensive PL/ISPL Mvk IV

Of the four special-purpose languages, CLASP (Computer Language for
Aeronautics and Space Programming) and SPL IvIk II (Space Programming
Language Mk II) are almost identical, are relatively limited, and are
intended for small, fixed-point aerospace computers. SPL Mk IV and HAL
are omnibus languages intended to provide very comprehensive capabilities

-iii­

for large aerospace computers and for general-purpose computers as well.
The two general-purpose languages, FORTRAN and PL/I, are the respec­
tive minimal and comprehensive counterparts of the aerospace languages.

7. 1 Language Suitability

Ideally, a high-order programming language is machine and application
independent; that is, any such language should be suitable for any potential
computer system and for any tasks it might be called upon to implement
within that system. In practice, this ideal is never achieved. This does
not mean that a language unsuitable in only some respects cannot be used;
given sufficient time and resources, almost any language can be used to
implement any programmable function. However, software development
difficulty will be increased, schedules lengthened, and attainable level of
confidence in program correctness reduced in proportion to lack of lan­
guage suitability.

Language capabilities required for straightforward and efficient implemen­
tation of anticipated software functions are shown in Table iZ, together
with the estimated percentage of the program devoted to each function for
the minimum and maximum Space Shuttle hardware configurations. The
percentages reflect the fact that arithmetic capabilities become less impor­
tant and logical and Boolean capabilities more so as hardware complexity
increases. The effect of this shift toward logical and Boolean capabilities
is magnified in that the software itself also becomes larger to support the

increased hardware configuration.

Of the six languages considered, FORTRAN provides the fewest capabilities
for implementing all of the required functions. Even for a minimum hard­
ware configuration, it lacks adequate data description facilities, fixed-point
arithmetic modes, flexible arithmetic and logical decision statements, pro­
gram structuring facilities, and adequate hardware interaction statements.
CLASP and SPL Mk II would be adequate for the majority of the first two
classes of software functions but inadequate for implementing the Space
Shuttle display, communication, and executive software. HAL, SPL Nk IV,
and PL/I provide almost all of the necessary capabilities; HAL and SPL
Mk IV -- the two special purpose languages -- are the most suitable be­
cause they lack unneeded features and emphasize either simplifying or auto­
mating capabilities commonly used in aerospace applications.

The relationship between computer architecture and language features is
indicated in Table 13. It might be expected that the comprehensive special­
purpose languages would incorporate those features necessary to make them

-l12­

Table 12. Language Capabilities Required for Different Software Functions

Percentage
oi Program

- per Function
Software Function Minimum Maximum Language Capabilities

Hardware Hardware

Guidance, navigation, 60 40 Arithmetic data description,
and control expression evaluation, and

decision facility
Array, matrix, and vector

operations

Looping control
Subroutine and subprogram

definition and calling

Status monitoring and 15 40 All of above plus:
checkout Logical and Boolean data

description, expression

evaluation, and decision
facility

Display and commu- 15 I0 All of above plus:
nication Message and format

description

Character and bit
manipulation

Executive 10 10 All of above plus:
Hardware interaction.
I/O processing

Program structuring

File management

-113­

Table 13. Computer Influence on Language Suitability

Computer Architecture Affected Language Features

Memory istructure 	 Storage allocation and overlay facilities
Optimization directives

Word format 	 Data declaration

Multiple-precision arithmetic

Register organization 	 Hardware directives

Register allocation

Instruction set 	 Fixed-point arithmetic

Interfacing with machine language

Restart/interrupt facilities 	 Restart protection

Real-time control

Program structuring

Input/output facilities 	 I/O statements

Data formatting and conversion

Data buffering

suitable to almost any computer configuration and architecture. However,
HAL and SPL A& IV both emphasize computer independence and presently
contain few of the features that allow for often-needed direct control of spe­
cific computer operations; these remain to be provided when the languages
are implemented for an actual computer and application. CLASP and SPL
Mdk II are capable of providing the necessary computer-dependent language
features only for small and relatively simple aerospace computers compar­
able to those for which compilers have already been developed- (IBM 4PI
CP-2 and UNIVAC 1824). FORTRAN's hardware-oriented language features
are limited and directed to computer characteristics and applications quite
unlike those expected for Space Shuttle. Of all the languages considered,
PL/I is the most suitable insofar as its computer-oriented features are
concerned; this is evidenced by its effective use in complex "executive sys­
tem programming and real-time applications, of which the MULTICS and
SABRE projects are examples.

-f14­

7. 2 C6mpiler Suitability

-Even the most s Yitable language requires an equally suitable compiler if it
is to be a practical tool for software production. The criteria against which
a compiler may be evaluated to determine its suitability are relatively objec­

tive and may be stated as follows:

• Object code efficiency
o Object code correctness
• Diagnostic capability
* Compilation time
* Cost and availability

The first criterion is a measure-of the additional computational capacity that
will be required because of the way in which the high-order language is trans­
lated into machine code, while the second refers to the validity of the trans­
lation process itself. Certain levels of efficiency and correctness are-man­
datory if use of a high-order language is to be practical. The third criterion,
diagnostic capability, relates to means of improving and simplifying verifica­
tion. The lIst two refer to the costs incurred in obtaining and using the
compiler -- costs that must be offset by reduced cost of onboard software
production if high-order language usage is to be economical.

7.2. 1 Object Code Efficiency

Even a very large and powerful Space Shuttle computing system will have
memory capacity and execution speed limitations imposed by cost, size,
weight, and power consumption constraints. In all aerospace software­
developments to the present, machine or assembly language coding has
been used, through which the programmers, by applying their skills,
knowledge, and considerable effort, can produce highly optimized code.
The programs produced by such methods can be considered to be standards
against which programs written in a high-order language can be compared.
Comparing such hand-tailored code with compiler-produced code almost
always results in the latter's requiring more memory and longer execution
time. This difference between hand-tailored and compiler-produced code
is a measure of a compiler's efficiency.

Compilers differ widely in their efficiencies. In one study performed by
Logicon, three different compilers for a single language -- FORTRAN IV -­

were shown to differ by 100% in the time required to execute the same pro­
gram and by 50% in the memory required, even though-the capabilities of the
computers on which the compilers were implemented were comparable.
Furthermoi'e, differences as great as.300% were observed in comparing the

-I15­

programs produced by compilers of two different languages -- FORTRAN IV
and PL/I -- even though the source programs had the same functional capa­
bility, design, and structure. Obviously, the hardware penalties associated
with such severe inefficiencies are unacceptable; a compiler for the Space
Shuttle must do a better job of generating optimum machine code.

A compiler can be designed to perform many different types of optimization;
a partial listing will indicate their nature and the compiler complexity that
can result, and will also serve to draw attention to the approaches that a
good prografmmer uses automatically. This listing, which follows, is divided
into local and global optimization categories. Local optimization aims at
improving the translation of the programmer's statements into object code in
small, detailed, and often machine-dependent ways. Global optimization
attempts to improve the code by making changes to the structure of the pro­
gram itself. There are many more proven methods for local than for global
optimization, and their implementation is easier and their effect more
apparent.

Local Optimization Methods

i) 	 Eliminate common subexpressions

2) 	 Evaluate expressions at compile time

3) 	 Minimize use of intermediate storage by reordering
computations

4) 	 Maintain frequently used operands in registers

5) 	 Eliminate redundant instructions

6) 	 Reduce operator strength (e. g. , substitute addition for
multiplication)

7) 	 Combine several instructions into a single instruction

8) 	 Simplify storage alignment in structures

9) 	 Substitute open subroutines for references to closed
subroutines

Global Optimization Methods

i0) Eliminate calculations whose results are not used

-i16­

i i) 	 Transform nested loops into single loops

12) 	 Move code to less frequently used blocks

13) 	 Move invariant computations outside loops

14) 	 Replace a program segment with a shorter or faster
equivalent

A heavy emphasis On local optimization is mandatory for a Space Shuttle
compiler. Global optimization does not usually accomplish anything that
the programmer could not have done himself by establishing a better pro­
gram organization or using more suitable language features. Also, with
global optimization the resultant object program -- even though it produces
the desired results -- can look substantially different from the original
high-order language source program and the programmer's concept of it.
This complicates verification and maintenance in that program changes can
have a far greater effect than could have been anticipated before compilation
of the changed program.

Experience with compilers that perform a great deal of optimization is
relatively limited. One exception is the Logicon-developed CLASP com­
piler recently, delivered to NASA/MSC. This compiler employs optimiza­
tion techniques i through 8 and 10- from the list above. Benchmark pro­
gramming performed to compare the compiler-generated code with
equivalent assembly language coding revealed two things. First, it is
possible for a compiler to generate code very closely approximating hand­
written assembly code. Second, the ability of the compiler to do this
depends strongly on the programmer's knowledge of the optimization tech­
niques employed and the best way of utilizing them. Whereas a programmer
experienced with the compiler and its methods of optimization produced a
program essentially identical in size and execution time to its assembly
language counterpart, a programmer lacking familiarity with the particular
compiler produced a program some 75% slower and 80% larger.

Another factor affecting object code efficiency is the size of the program­
ming language. Developing an optimizing compiler for a large language is
a good deal more difficult. This is demonstrated by experience with the
FORTRAN IV Level H and PL/I Level F compilers for the IBM 360/65.
The FORTRAN compiler produced object code of relatively high efficiency
quite early in its development, while the PL/I compiler went through many
versions over a 5-year period and even today does not do as complete opti­
rnization as its FORTRAN counterpart. It is estimated that with a relatively
small language and considerable effort spent to include extensive optimization

-ii7­

features, a Space Shuttle compiler can be developed to generate object
code requiring only 10-15% more execution time and memory than the
best assembly language program. With a large language, including equal­
ly comprehensive optimization capabilities would be difficult, if not impos­
sible, and inefficiencies upwards of 25% can be expected.

7.2.2 Object Code Correctness

The translation from source language into target computer object code
must be correct. Achieving compiler correctness has been a major prob­
lem with many commercial compilers; in some cases the period between
initial distribution and error-free operation has been greater than 2 years.
Unless a very small and simple language is specified, it can be expected
that the same thing will happen with a Space Shuttle compiler. The chief
consequence of using a compiler in which a high level of confidence has not
yet been established is that increased efforts are required in program de­
velopment to detect and correct compiler errors promptly. No degradation
in program quality need be feared because of compiler errors, however,
because the threat of compiler-induced errors requires that verification
activities be conducted at the assembly or machine language level.

7. Z. 3 Diagnostic Capability

A high-order language can contribute significantly to software development
by making it possible to detect software errors before verification. Most
compilers detect syntax errors that prevent unambiguous or meaningful
interpretation of language statements. With somewhat greater difficulty,
other diagnostic capabilities can be implemented to detect programming
convention violations, such as the unauthorized referencing of data items;
program logic errors and inconsistencies, such as loops which do not ter­
minate; and data incompatibility as in mixed-mode floating- and fixed-point
arithmetic operations. The more diagnostic capabilities provided in the
compiler, the greater are the chances that errors will be detected early
during software development. A related requirement is that the compiler
should generate extensive listings correlating the source and object code
and describing the contents of symbol tables and dictionaries, cross­
reference tables, and memory allocation maps.

7. Z. 4 Compilation Time

In the commercial programming environment a significant portion of the
computing load is consumed by compilation, and as a consequence consid­
erable effort is spent on reducing compilation time. This is one reason

-118­

for relatively low efficiency of the object code: it would be a poor trade­
off to save, say, a minute of e_ecution time at the cost of increasihg com­
pilation time by 3 minutes. For a Space Shuttle compiler the opposite will
be true; here, compilation time will be secondary to object code efficiency.
What may be expected when: optimization is ac6orded high priority is shown
by the IBM 360/65 FORTRAN IV Level H compiler. The user of this com­
piler can select the level of'optimization. When most of the local and global
optimization techniques listed in the previous section are enabled, efficiency
improves by a factor of up to two and compilation time increases by a factor
of three.

Typical commercial compilers operating on the typical large-scale general­
purpose computer compile about 500 source statements per minute. For
Space Shuttle, the required optimization will reduce the number of state­
ments compiled to somewhere between 50 and 100 statements per minute.
A rough conversion factor of 6 to 8 object instructions generated per source
statement indicates that for the total Space Shuttle onboard program, as­
suming the moderate hardware configuration, the compilation time will be
on the order of 15 to 30 minutes. This would be excessive. However, by
doing most of the compilation at a module or task level, total compilation
time required for software development using even a relatively time­
consuming compiler will be practical. Thus even compilation times of the
magnitude suggested above will not have a significant impact on the prac­
ticality of a high-order language for Space Shuttle.

7.2. 5 Cost and Availability

Compilers are large, complex programs: those for simple languages con­
sist of upwards of 50,000 instructions, while those for large languages are
even larger and more costly than the proportional increase in language size
might indicate. It is apparent that the Space Shuttle compiler may be as
large as or larger than the onboard program to be created. In commercial
applications the cost of developing a large and complex compiler is justi­
fied by the great number of programs that will be compiled during its use­
ful lifetime. The cost of a Space Shuttle compiler cannot be spread over
more than a few complete onboard program developments; further, exten­
sive optimization capabilities -- not normally included in commercial com­
pilers because of their development cost -- will be required. The cost
savings attributable to the use of a high-order language thus must be sub­
stantially greater than the relatively high, concentrated expense of compiler
development. The magnitude of the software required for the moderate
and maximum hardware configurations indicates that this will be the case
for Space Shuttle. In addition, using the language can have a beneficial

-1i9­

7.3

effect throughout the software development cycle, thereby further in­
creasing the overall cost savings.

Language Influence on the Software Development Cycle

The language capabilities and features discussed in Section 7. i .principally
relate to the extent to which onboard programs for Space Shuttle can be
developed without resorting to extensive machine- or assembly-language­
oriented coding. The benefits of using a suitable high-order language for
coding this software, while significant, can be even greater if the language
can also be used in the other phases of the software development cycle.
Language capabilities necessary to each development phase, including
programming, are summarized in Table 14. The capabilities called out
in the table are in many cases contradictory. Thus, although comprehen­
sive general-purpose capabilities are desirable for program specification
development, this requirement is at odds with a straightforward and simple
compiler implementation to enhance suitability for the programming phase.
Similarly, it would be desirable for the programming phase if there were
few restrictions, but for checkout and verification it is important that pro­
gramming standards be enforced. Because of these and other unavoidable
contradictions, any langua-ge will be a compromise insofar as its applica­
bility to all development phases is concerned.

To describe how a high-order language can be gainfully used throughout
the software development cycle, some specific approaches are outlined be­
low. Many of the features described are not now provided in the six can­
didate languages; the discussion indicates the type of desirable language
extensions.

Assuming that a high-order language is to be used for developing the opera­
tional software, one advantage in using it also for the programming done in
the program specification development phase would be improvement of the
specification itself. As a result, the specification could contain the actual
programs that satisfy its requirements to the extent necessary at that phase
of the development. This would be particularly useful if the programs were
organized on a modular basis according to the functions to be performed.

As an example, consider how a guidance and navigation program would be
developed if the specification were enriched in this way. The program used
to develop the requirements for performing guidance and navigation would
very likely be unnecessarily sophisticated with regard to some functions
(e. g. , trigonometric subroutines) that are readily available from utility
program libraries. At the same time, it would be too elementary in other

-120­

Table 14. Language Characteristics for
Different Software Development Phases

Necessary

Development Phase Language Characteristics

Program specification Comprehensive general-purpose
development capabilities

Easy interface with other soft­
ware tools

Amenable to program modularity
Intelligible to nonprogrammers

Programming 	 Few restrictions

Easy to learn and use

Concise and natural

Straightforward and simple

compiler implementation

Checkout and 	 Extensive syntax and semantic
verification error detection facilities

Maintains program modularity
Enforces programming standards
Minimum error-provoking or

ambiguous features

Maintenance 	 Self-documenting
Isolates changes and minimizes

their effect
Extensible
Hardware and application indepen­
dence

functions (e. g. , steering command calculation and position determination)
that must be developed from scratch and for which greater detail is not
required for mission planning purposes. The program specification thus
would contain not only a selected mission profile but also a program which
generates such a profile. Continuing with this program that demonstrates
that mission requirements can be met without precisely describing how to
meet them, the too-sophisticated and too-elementary modules would be
replaced by modules representing the exact algorithms to be used. As

substitutions are made, a more and more complete picture of the actual

-i2I­

trajectory to be flown for various vehicle and environmental conditions
will develop. These algorithms, coded in the high-order language, would
form the core of the final guidance and navigation program whose develop­
ment is completed during the programming phase. The activities of this
phase will be directed in large part towards the program's computer­
dependent aspects; the actual algorithmic solution will have already been
presented in a manner which makes its incorporation in the final onboard
program a relatively simple task.

The use of a common language in all phases of onboard program devel­
opment requires that the language and ancillary software possess certain
capabilities. Information is added at each stage of the development, and
both must allow its acceptance simply and completely yet should not com­
plicate earlier phases because of its absence. As an example, the required
range and precision of each variable will not be known at the beginning of
program specification development. The initial analysis thus must be con­
ducted with ranges and precisions far greater than will be required.
Through simulations conducted with these excess values, those values
needed to meet mission requirements will be established. During the
programming phase the appropriate changes will be made to the program
developed in the earlier phase to maintain these actual values, given the
word length and arithmetic characteristics of the actual flight computer.

Programs written during the initial information-gathering phases will be
designed to execute on large-scale general-purpose computers because of
their suitability to the computational tasks, while the final onboard program
must execute on the intended special-purpose aerospace computer, or a
simulation of it. This would imply that two compilers would be needed, and
their development is one approach that can be taken. However, the structure
of most compilers suggests a different, more cost-effective, and far more
versatile approach. Most compilers have two main stages: a syntax analy­
sis stage in which the source language is translated into a computer­
independent intermediate language, and a code generation stage in which
the intermediate language is translated into the computer-dependent language
of the intended machine. In this approach, compilation of programs written
in support of specification development would be terminated at the end of
the syntax analysis stage. Execution of the intermediate language programs
thus obtained would be performed through the use of an interpreter. This
would be like the onboard computer simulation used later, but more power­
ful and flexible in control over the details of arithmetic operations, and
potentially a good deal faster.

-122­

The power and flexibility inherent in -this approach results from the capa­
bility of the compiler/interpreter user to specify the numeric r'epresentation
of variables and parameters manipulated by the program and to change this
representation with only minimum changes to the program, if any. The
utility of this concept, which has been called dataless programning, has
been examined through an expefimental progranuning language. -Dataless
programming allows the user to specify the procedures for manipulating
variables and parameters independently of their representation.. If during
program specification development he wished to study how a control algorithm
functions for various word sizes, he would simply change the number of digits
declared for each variable and parameter utilized in the algorithm but would
not modify the procedures implementing the algorithm. Similarly, all pro­
gramming done during early development phases would utilize floating point
for variables and parameters; only during the actual programming phase
would a restriction to the fixed-point mode be introduced if made necessary
by the onboard computer's architecture.

The use of the dataless programming approach, while frejeing the analysts
from concern over the details of range and precision requirements, memory
allocation-, hd similar computer-dependent aspects, does have some disad­
vantages that must be examined. First, there will be an increase in compu­
tation time to execute programs in an interpretive mode. However, this -is
compensated for by a reduction in the compilation time, since only the syntax
analysis stage is executed, and by the fact that fewer computer runs are
required, since the information gathered from individual runs increases.

A second-possible disadvantage is that errors might exist in a program and
might remain"undiscovered as long as it is being executed interpretively,
to be found only when machine language code is generated. It turns out that
the common-language compiler/interpreter approach actually reduces the
possibility of such occurrences. In the first place, the errors in translation
from one language to another are eliminated. Second; the syntax analysis
stage would be identical for both the interpretive and the machine code ver­
sions, as would be the error-chegking facilities built into this first stage;
therefore, 'differences between the results of program compilation would be
fewer for -this system than if two separate compilers were developed. Any
remaining error situations are largely due to errors or deficiencies in the
code'generation stage of the compiler and, as such, can therefore be mini­
mized through attention during compiler debugging and experience with the
system.

A third disadvantage is the possibility that utilizing the results of one phase
in another phase with relatively little repetition of the work will reduce the
amount of independent verification. It has been argued that the duplication

-123­

7.4

of effort in reprogramming for each phase is beneficial in that it reduces
the likelihood that errors will be transmitted undetected from one phase
to another. This reliance on redundancy is a costly way to achieve confi­
dence; a better solution is to provide within the system powerful program
debugging aids that become a part of the onboard computer program itself
and are carried with it through the development process. Providing and
using such debugging facilities can eliminate much duplication in verifica­
tion activities, just as duplication in the programming activities is elimi­
nated by the use of a common language. System analysts can, by including
debugging statements in the program specification, precisely specify the
tests they want performed and the reports they want generated in later
phases of program development. These tests would be performed and the
reports generated automatically, with no further action required by the
programmer.

Summary of Conclusions

No existing language meets all of the conflicting requirements that must be
fulfilled if Space Shuttle software costs are to be held to the minimum.
What is wanted is a language that is simple and easy to use but completely
capable, is' computer independent but offers full control over all computer
capabilities, and is very cheap to implement in a compiler but generates
efficient object code. It is unlikely that such a language could be defined;
any attempts to develop a perfect Space Shuttle language are likely to result
only in a language having new and different compromises.

Of the six languages examined, FORTRAN is the most clearly unsuitable.
The only advantages it offers are simplicity, the existence of extensive
experience in writing compilers for it, and some suitability for use in
other phases of Space Shuttle software development. It provides very few
of the needed capabilities: less than 50% of the required Space Shuttle on­
board software could be written in it.

CLASP and SPL Mk II are suitable for a greater percentage of the onboard
software development; about 70% of the software for a minimum hardware
configuration and 50% for a maximum configuration could be written in
either language. Compilers for aerospace computers have been written for
these languages, and the object code they generate indicates that a reasonable
degree of efficiency can be expected. Each language is small enough that a
Space Shuttle compiler can be developed without significant problems or
excessive cost or schedule impacts. However, these languages would not
be suitable for use in all phases of the software development cycle unless
modified.

-I24­

Substantially all of the onboard software could be developed using the
comprehensive languages HAL, SPL Mk IV, and PL/I, with the first two
being slightly more suitable. These languages would also be applicable
for use throughout the software development cycle, particularly if they
were enric-hed with debugging and verification features. Compiler develop­
ment is likely to be more costly than the Space Shuttle alone could justify.
Compiler development time could become critical to onboard software
development and would certainly preclude using these languages in earlier
software development phases unless off-the-shelf compilers were utilized.
Furthermore, the efficiency of the generated object code is likely to be
poor until all implications of language complexities are fully understood and
the problems they engender are adequately solved.

The lack of a language that neither has deficiencies in its capabilities nor
poses compiler implementation difficulties prevents making an unqualified
recommendation. In general, any of the special-purpose languages --

CLASP, HAL, or either version of SPL -- offers enough benefits to warrant
its use in Space Shuttle onboard software development. It is expected that
some portions of the program, particularly the executive, will have to be
written in assem bly language. This is so for the minimal languages because
they do not provide all of the necessary facilities, and for the comprehensive
languages because the object code efficiency would be too low.

-iZ5­

pRECEDING PAGE BLANK NOT FILMED

8. VERIFICATION TOOLS AND TECHNIQUES

The software and hardware used to test and verify the proper operation of
onboard software are costly but vital elements in the development process.
Past systems have relied heavily on simulation for software testing and
verification. One reason for this is the impossibility of performing ade­
quate testing in the operational environment; another is that simulation
provides increased visibility into and control over the details of software
behavior and its interaction with other subsystems.

Many of the disadvantages of simulations, such as the development cost,
the difficulty in achieving a proper blend of simplicity and fidelity, and the
time required to use them, will become more pronounced because of the
expected greater complexity in Space Shuttle software and hardware com­
pared with past systems. For these reasons improvements in the major
simulation types - - engineering, interpretive, and hybrid -- are required,
and new software testing and verification tools must be developed to sup­
plement their use.

8. 1 Engineering Simulation

The first tool to be employed in Space Shuttle software development is the
engineering simulation. It is continually used during software development,
and the vehicle and environmental models it contains are used as the basis
for sinilar models in the later interpretive computer simulations.

The engineering simulation runs on a general-purpose computer and
typically exercises a limited environment and a subset of the flight equa­
tions to perform parametric studies and design tradeoffs. An accurate
simulation of this type usually runs faster than real time, with the ratio of
real to simulated time dependent on the accuracy with which the system is
modeled. Within its constraints, an ehgineering simulation is economical
to build and use.

While the engineering simulation is rapid and inexpensive, it is character­
istically imprecise in its representation of the digital or interfacing hard­

ware, and is seldom designed to even approximate software performance
in meaningful detail. For deriving or verifying gain settings, approxi­
mations, targeting errors, and related factors, coarse modeling is ac­
ceptable. As sophistication is added to the models, two paths tend to be
followed. Some systems add sophistication to the environment model
beyond the point where the imprecision of the computer model makes en­
vironmental accuracy meaningful; others increase the accuracy of the
computer model until the drawbacks of the ICS are achieved without its

-iZ7­

advantages. Consequently, judgment must be used to determine where and
when an engineering simulation should be used and what the simulation
should include if the best compromise between sophistication and usability
is to be achieved. Each engineering simulation must also be constructed
so that its behavior and results can be easily correlated with the results
of other engineering, interpretive, and hybrid simulations. This requires

that:

* 	 Its abilities and limitations are sufficiently understood to
determine the range of tests for which it is suitable.

* 	 Its output formats are consistent with those derived from
finer models so that comparisons can be made.

* -Its use is not extended beyond its known capabilities.

Many existing engineering simulations are suitable or can be modified for
Space Shuttle software development. Their use would save simulation
development costs and, more important, reduce the time and cost required
to become familiar with simulation behavior.

During the development of Apollo, a highly successful engineering simu­
lation was built integrating equation-level flight programs with a general­
ized trajectory package. This Apollo Reference Mission Program (ARMP)
provided a complete analytic "tool for parametric studies and for determi­
nation/verification of flight program parameters. The need for lunar
operations in ARMP entailed significant complexity that is not required for
Space Shuttle. Competitive simulations exist in modular form which may
be evaluated to select a baseline engineering simulation for the Space
Shuttle. For this project, the primary new requirements are extensions
to simulate the atmospheric flight phases and to achieve input/output
compatibility with the other simulations to be used. To assure adaptability
to changing mission requirements, modularity of the simulation is essen­
tial; similarly, the need for confidence in test results suggests the use of
a baseline program already developed.

The 	basic engineering simulation model at the highest level of abstraction

is shown in Figure 23. The three blocks at the top of the figure represent
the major components of the guidance, navigation, and control subsystem.
The top center block, Data Processing and Guidance, represents all the
functions carried out by the onboard computer and its software. The solid

blocks enclosed in the two dotted blocks labeled Kinematics and Kinetics
represent vehicle dynamics. The bottom block, External Environment,
represents everything not included in the others, such as man/computer

communication and anomaly generation.

-1Z8­

Structure

External

1

I

Translational Environment
Kinematics j

A
AerodynamicsJ

Zrj

Kinematics Propulsion

Kinematics j Kinetics

Figure Z3. Basic Simulation Model

These functional blocks can be used to clarify the terminology applied to
simulations to be used in Space Shuttle software development. A six­
degree-of -freedom (6D) simulation would include a model for each of the
solid blocks, ahd detailed submodels for most of them. A three-degree­
of-freedom (3D) simulation would not include an authentic representation
of rotational kinematics and those portions of the sensors and control
models that relate to rotational dynamics. In an engineering simulation,
the data processing and guidance model will not necessarily completely
represent the functions performed by the onboard computer, but instead
will represent a form of the guidance equations more convenient to the
programming language and architecture of the machine on-which the
engineering simulation itself runs.

In a 3D simulation, the three degrees of freedom consist of the three inde­
pendent coordinates that define the vehicle's translational motion. (A rigid
body is assumed in 3D and 6D simulations.) A 3D point-mass simulation
is a true three-dimensional simulation in that the vehicle is treated as a
point mass and no rotational motions enter into the computations in any
form. The fast execution speeds of these simulations make them ideal
for planning studies, gross sizing and tradeoff analyses, and those por­
tions of detiiled analyses that do not depend on rotational effects. In a
3D zero-moments simulation, center of pressure, center of gravity, and
a central thrust application point are located within a vehicle coordinate
system as functions of mass distribution, overall engine locations, and
aerodynamic characteristics. Turning moments produced-by aerodynamic
forces are computed, and a single thrust vector is applied such-that the
total turning moments acting on the vehicle equal zero. The vehicle's
,attitude is specified independently in terms of attitude rates or attitude
angles.

The 6D simulation, like the 3D zero-moments simulation, treats the
vehicle as a three-dimensional rigid body but includes three additional
degrees of freedom- in the form of rotational motion in three dimensions.
The vehicle control system is simulated to at least the lowest response
frequencies, and the integration step size is correspondingly diminished.
The increase in running time of 2 6D simulation as compared to a 3D
simulation is due in part to an increase in computational complexity, but
is even more a result of a higher frequency for control system calculations.
The differences in computational frequencies between 3D zero-moments
and 6D simulations can be of the order of 50:1 (1/2 sec to 10 rnsec). Hence
using a 6D simulation in its pure digital form is a time-consuming proc­
ess. Whereas 3D simulations run-faster than real time on computers of the

-130­

8.2

UNIVAC 1108 class, 6D simulations usually run considerably slower. "The
more heavily used 6D simulation programs have been generalized to allow
greater flexibility and growth potential, but these very features have tended
to place additional burdens on the user, whose primary interest is in being
able to perform his runs with a minimum of extraneous manipulations and
delay. Also, even with the added complexity and smaller step sizes of the
6D simulations, the digital models may not sirhulate high-frequency-response
characteristics with the fidelity required by control system users. Oh the
other hand, the all-digital 6D simulation provides repeatability, flexibility
of execution, accuracy., extensive data output capability, and the capability
to monitor and trace variables.

Interpretive Computer Simulation

Engineering simulations contain imperfect models of the computer system
that, although adequate for such things as program specification develop­
ment and software sizing, are inadequate for onboard software checkout
and verification. The need for a very accurate computer system model
for checkout and verification suggests that the actual onboard computer be
employed, and this is done in the hybrid simulations reviewed in the next
section. However, in many cases the actual computer hardware is not
suitable for software debugging and verification owing to its lack of diag-.
nostic information and options in execution. Also, the actual computer,
may not even be available early in the software development cycle. Hence
it is generally necessary to employ a simulation that faithfully represents
the condition of every register in the onboard computer before and after
the execution of each inistruction and that also maintains a simulated-real­
time clock. Such a register-by-register simulation can be implemented
through either the translator or the interpreter method.

With the translator, method, the computer program, which is originally in
the onboard (target) computer language, is preprocessed to produce an
equivalent' program in the simulator (host) computer language. The sub­
sequent execution of the new program on the host computer is equivalent
to execution of the original program on the target computer. When the
translation is faithful, the host computer code will include all operations
necessary to repiresent the target computer's word length, instruction
functions, and timing. When absolute fidelity is not required, simplifi­
cations such as neglecting word-length differences are made. The number
of host computer instructions per target computer 'instruction depends on
the architectural differences between host and target computers and the
faithfulness of the translation. In any case, the translator method tends
to create host computer storage problems owing to the expansion of the

-131­

program when translated. On the other hand, the speed of execution of
the translated program is not reduced by repeated examination of each
target computer instruction, as is the case with the interpreter method.

The interpreter method also involves a one-to-many transformation of the
computer program code. However, instead of producing an entirely new
program for subsequent execution on the host computer, the ICS takes the
target computer code as input and faithfully executes it by means of calls
on subroutines that produce exact copies of the target computer registers
and set a simulated-real-time clock after each target instruction. Since
the ICS interprets the target computer code at execution time rather than,
executing a translated code, it is inefficient in that it retranslates each
target computer instruction each time it is encountered. On the other
hand, this procedure facilitates the handling of modifiable instructions,
interrupts, and diagnostic functions during execution.t

Figure 24 shows a typical ICS control loop. The first step is to obtain the
target computer instruction whose execution is to be simulated. This
instruction is then decomposed into its component parts, such as the
operation code, operand address, etc. Based on the operation code, the
control loop then branches to the appropriate subroutine for simulating
the instruction's execution. The instruction subroutine can be very simple,
particularly if the instructions for the host and target computers are very
similar. The simulated-real-time clock is usually updated by the instruc­
tion subroutine because the target computer instructions vary as to their
execution time; this may even be a function of the operands being manipu­
lated. The instruction subroutine returns to the control loop and the
simulated-real-time clock is examined to see if it is time for an interrupt,
an I/O update operation, or further vehicle and environment simulation
computations.

All of the steps to this point in the control loop are directed towards
duplicating the target computer's behavior, with little information being
generated for the programmer or analyst beyond that which he could
obtain by observing the actual target computer executing the same pro­
gram. A typical ICS requires the execution of approximately 25 host
instructions to perform the operations just described in the simulation of
a single target computer instruction. The coding of the ICS control loop
and the instruction subroutines is a relatively simple and well-defined
task for a typical onboard computer; the major problems are in the input
and output interfaces. If these tasks were all that were required in the
development of an ICS, the total job would take only a few manmonths.

-f 32­

T orarget o0 Udat

Suruier/0Sbote

ubotn Surue E tc

Computer
ntInterf -4

C orerarge

nogosi

,e. nerface

" e?

noge

FigureZ TypicalISnter

Ti..-i33­

ol Loo

VehDicloet/

Environmen

The remainder of the operations outlined in Figure 24 enable the ICS to
be a powerful debugging and verification tool, and require most of the ICS
development effort. These operations consist of testing both time and loca­
tion keys to determine whether any diagnostic functions should be performed.
A location key is associated with a particular instruction in the onboard com­
puter program; only the simulated execution of that particular instruction re­
sults in the indicated diagnostic function being performed. A time key, on
the other hand, is not associated with a particular instruction; the indicated
diagnostic functions are performed whenever the simulated time reaches a
certain value, regardless of the instruction being executed. Time keys may
also be periodic in that they both invoke a diagnostic function at the current
time and set a new time key which invokes a diagnostic function at some later
time. Examples of diagnostic functions include the printout, in convenient
formats, of register and memory contents; the checking and comparison,
within specified limits, of register and memory contents; and the injection
of controlled errors into input or intermediate parameters.

While -a majority of the ICS development effort is devoted to the diagnostic
portions, most instructions will not invoke any diagnostic functions. The
execution time penalty paid for these extensive diagnostic facilities is
due almost'entirely to the testing of the location and time keys. This
testing can be accomplished with about five host computer instructions.

ICSs are employed either open loop or in closed loop with the effects of
vehicle and environmental behavior supplied by the appropriate elements
of the engineering simulation. In the open-loop rcade, ICSs are used in
coding and checkout to perform simple tests on small routines, instruc­
tion sequencing, and merging of program modules. In the closed-loop
mode, they are used extensively for detailed onboard program testing
and accuracy assessment. In closed loop with an engineering simulation,
the ICS often offers a better diagnostic capability than the actual target
computer ahd is easier to maintain. Such a system has complete
repeatability and can be used to create artificial stimuli to force the
program into seldom-used branches when desired.

The speed of an ICS is slower than real time. If the selected Space
Shuttle computer fulfills the computational requirement of the moderate
load outlined in Section 3 (120, 000 words, 0. 25 msec add time), the
increase in speed compared with the Apollo Guidance Computer will have
a great impact on the practicality of extensive ICS utilization.

-134­

To facilitate discussion of these matters, the basic simulation speed is
defined as follows:

T

p

where T
P

= time required to perform real-world process p, (real time)

Ts(p) = time required to simulate p on simulator s

For ICS considerations, P can be considered to be a function of the
following target and host computer relationships:

1 -	 the ratio of host computer speed to target computer speeds

11 - the average number of host computer instructions (per
target computer instruction) to simulate a target computer
instruction

p. 	 - the average number of host computer instructions (per'
target computer instruction) to perform diagnostics

S- the slowdown due to the vehicle and environmental simu­
e lation (simulation time to real time)

The 	approximate functional relationship between the above factors is

p=p Us(n + Pd) + Pe

A more precise formulation for p might require that a least-common­
speed quantum and a least-common-instruction quantum be defined to
more faithfully represent the relation between p and pn. For example
a more accurate pn cam be computed as a wejghled average of the
number of basic host computer cycles required to simulate the various
target computer instruction types, as follows:

in nZ 	 w.Z.b
.=i jlii 'j

Pn- m

W.

-135­

where n = t6tal number of target computer instruction types

n = total number of host computer instruction types

w. = weighting factor that reflects the usage frequency of the ith
i target instruction type

a.. = number of times the jth host computer instruction type is
1i used in simulating the ith target computer instruction type

b. 	= number of host computer cycles to perform the jth host
computer instruction type

Average values for V. appear to fall within a range of about 15 to 30, de­
pending on the severity of differences between host and target computer
architectures. Certain assumptions are inherent in these considerations,
e. g., host computer word length is greater than or equal to target com­
puter word length. The best p. values can be expected when host and tar­
get computers come from the same "family, " such as the UNIVAC 1830
and i108 or the IBM 4PI and 360. When the target computer is a true sub­
set of the host computer, 1n will approach unity.

For 	the Space Shuttle it is very unlikely that p. would ever equal I regard­
less 	of the compatibility between host and target computers. Even when
the instruction sets are compatible, slight differences in timing and input/
output characteristics, interfacing with a vehicle and environmental simu­
lation, and providing comprehensive location- and time-keyed diagnostic
functions will necessitate executing essentially all the control loop func­
tions outlined in Figure 24. To be effective an ICS must be more than just
a simulation of the target computer; it must provide more capabilities for
verification. Therefore, a host computer must provide more than just in­
struction set compatibility if substantial improvements in basic simulation
speed are to be obtained. A microprogrammable host computer could
achieve this; however, full employment of the nicroprogramrning features
would require that the basic control loop as well as the instruction subrou­
tines be coded in the microprogramning language rather than in the basic
machine, assembly, or higher order language used to develop the conven­
tional ICS. Such a microprogrammed ICS would be desirable as far as the
improvements possible in the 1n ratio. However, no large general-purpose
computer available today appears to offer the flexibility needed for ICS de­
velopment while retaining all characteristics necessary for the other pro­
grams it must execute, such as the system executive, assemblers and com­
pilers, and the vehicle and environment simulation.

-136­

Another approach to reducing the total time of simulations is to reduce
the ps ratio by employing faster host computers. Unfortunately, the speed
of general-purpdse computers is not likely to increase in proportion to the
increase in the hypothetical moderate Space Shuttle computer over the
Apollo Guidance Computer, indicating that even if the fastest general­
purpose computers are employed there will be an increase in simulation
time owing to the ps ratio.

oTwo remaining factors in total simulation time are pd and Ie To decrease
pd (the average number of host computer instructions performing diagnostic
functions), a corresponding reduction in the power, amount, and complete­
ness of the diagnostic functions performed would be required. To allow
this to occur would be self-defeating because the principal advantage of the
ICS is its diagnostic capability. As the discussion to follow will demonstrate,
more rather than less diagnostic capabilities should be employed; therefore
Pt1 will increase slightly rather than decrease. Reductions in pe (vehicle and
environmeit simulation time) are tied to the accuracy of the models employed,
although some savings may be possible by using 6D simulations only for the
mission phases and program testing where 3D cannot be used. Hence no
significant changes in this factor are expected.

Based on estimations of target computer speed for the moderate Space Shuttle
computer system presented in Table 2, and assuming a host computer com­
parable to tle UNIVAC 1108, a basic simulation speed of 100 can be expected.
Even with the most optimistic values for is and un and a nearly compatible
and very fast host computer, the basic simulation speed would remain as
high as 20. The corresponding simulation speed for the Apollo Guidance Com­
puter was about 3.

Because of the anticipated and unavoidable indrease in ICS execution time for
the Space Shuttle, it is imperative that improvements be made in utilizing
the information obtained from each simulation, thereby reducing the total
number of simulations that must be run.

While ICSs contain numerous aids for analysis, the full potential of automat­
ed aids has not been realized. For example, one of the functions that must
be verified is that a flight program issues discretes at precise points along
the trajectory. This is typically checked by having the ICS print out the value
of time associated with the discrete issuance, and having an analyst manually
confirm that the discrete issuance was timely. If it was not, he must deter­
mine why, make a fix, and start again. The checking of discrete times could
be automated, thereby saving the time required to make the check. (It could

-137­

also provide for the display of information concerning the discrete occur­
rence, and if the issuance were bad could stop the run automatically, thus
saving computer time.) In general, any function that is amenable to check­
listing for testing purposes is potentially amenable to this type of treat­
ment.

Another type of aid that can be considered involves the use of ICSs in
program development. During the early debugging stages the program­
mer is not particularly interested in many of the powerful 1CS debugging
features. He would be interested however, in inserting simple driving
data and hand-computed comparison data at intermediate points. In the
event that the comparison failed, the programmer would then be able to
trace information back to the last valid comparison point.

It appears that only where ICSs are heavily used in a production mode
for verification does their cost, in terms of computer time, approach
the cost of the user-analyst. In most other instances the user cost is
more, sometimes (e. g. , in code development) considerably more.
Therefore, to utilize ICSs effectively, ways must be found to reduce
their running time, and even more important, to increase the informa­
tion obtained from each simulation run and to reduce the number of
simulations producing no information. Thus a definitive need exists to
shift to the simulation the work now performed by analysts.

In the preceding section the use of a high-order language was recom­
mended for onboard program development. By integrating the develop­
ment of the compiler for this language with the ICS, debugging and
verification can be greatly facilitated. Among the improvements gained
is the ability to perform these tasks using the same symbology as that
used in program development. Another is the ability to have the tests
constructed and performed in one stage automatically repeated in later
stages. The integration of the compiler and ICS requires directives that
until now have been used to control ICS operation be made part of the high­
order language. Some of the candidate Space Shuttle languages, notably
CLASP and SPL, already contain directives that allow debugging functions
to be iniated through the language itself; these functions are rudimentary
but can serve as the base for the powerful capability needed. The debug­
ging aids, although included as part of the source program, generate in­
put for the ICS that cause it to perform the required functions. They in­
crease the information obtained about the program's behavior during simu­
lation, but do not affect its behavior as such.

-138­

8.3

In the design of debugging aids, provision must be made to include the
functions required during all program development phases: specification
development as well as programming. The general form of the functions
that should be included can best be described by providing an example.

The capability of signaling that a computed quantity exceeds specified
limits is one necessary function. Assume that during specification devel­
opment a requirement is established that vehicle acceleration, as deter­
mined by the program, must not exceed some maximum value. This re­
quirement could be included in the source program by a statement of the
form SIGNAL ERRORA WHEN VDOT IS GREATER THAN 200. In process­
ing this command, the compiler would transmit information to the ICS that
would cause the setting of flags such that whenever VDOT was calculated a
comparison would be made between it and the critical value ZOO. When­
ever it exceeded ZOO, the message labeled ERRORA would be printed by
the ICS.- Similarly desirable debugging functions would make it possible
to describe timing limitations on program execution, or to describe in­
valid program execution sequences. The analysts responsible for speci­
fication development should be able to describe, within the format of the
debugging aids, as much of the requirements imposed on the onboard pro­
gram as possible. These computer-intelligible statements would be made
a part of the program included in the specification. Then the appropriate
checks to verify conformance with the specification would be made auto­
matically on all subsequent executions of the program in the ICS mode.

Hybrid Simulation

A hybrid simulation incorporates digital and analog devices and, in many
cases, the actual avionics system hardware. The onboard computer is
represented in the hybrid simulation by an exact hardware equivalent.
The simulation of the vehicle and environment is provided by a combina­
tion of digital and analog computers, together with any actual avionics
hardware that itself is to be tested or that is needed to provide realism
because computer models are inadequate. Interfaces between the on­
board computer and the vehicle and environment simulation are similarly
providedby digital or analog devices or, when appropriate, by actual avi­
onics system hardware. Other hardware, such as recorders and displays,
is incorporated in the hybrid simulation to aid in observing the simulation' s
behavior and to record intermediate and final results. Generally, such
recording and display devices are oriented more towards observing and
recording the parameters measuring vehicle and environment behavior
than towards providing any insight into the operation of the onboard com­
puter software. Finally, other peripheral hardware is provided for loading

-139­

the onboard computer with instructions and constants and determining
the contents of computer memory and registers, although in a static
rather than a dynamic sense.

Where a significant amount of actual avionics system hardware is em­
ployed, the effect of its behavior on the overall system is usually repre­
sented more accurately than in any other simulation. However, when
actual hardware is incorporated into the hybrid simulation, it is often
necessary to modify either other avionics hardware elements or the sig­
nals generated by them to adequately represent flight conditions in the
laboratory. In that event, particular attention must be given to the fi­
delity of the altered element, since the effects of a modeling error may
be both significant and subtle.

Because it employs the actual flight computer and some avionics system
hardware, a hybrid simulation can run in real time. For some purposes,
such as subsystem testing and crew training, this real-time behavior is
very desirable, if not absolutely mandatory. It demonstrates the correct
interaction between hardware and software, eliminating most uncertainties
that may still exist when only an idealized model of the hardware can be
employed, as is the case with the interpretive computer simulation.

There are significant economic and practical advantages for using the
hybrid simulation rather than the ICS; these derive from its more rapid
execution'time. For the larger Space Shuttle hardware configurations
it will be possible to perform many more hybrid than interpretive sim­
ulations in a given period of time. Since the more times a program is
executed correctly, the greater the confidence is in its overall correct­
ness, hybrid simulations will be used extensively-for Space Shuttle soft­
ware verification.

The major deficiency of a hybrid simulation as compared to an interpre­
tive simulation is thatmuch less information can be obtained about de­
tails of program behavior. Whereas with an interpretive computer sim­
ulator the contents of an onboard computer register are easily obtained
at any time during program execution, and the value found can be printed
in any convenient format without interfering with normal onboard pro­
gram execution, with a hybrid simulation internal computer registers can
be examined only when the onboard program's execution is halted. Thus
with a hybrid simulation the great majority of software diagnosis must
be accomplished by examing the inputs and outputs of'the computer and
postmortem dumps of its memory and registers.

Exact duplication of hybrid simulation results is very difficult to achieve.
This further complicates its use in software verification, for it may not
be possible to reproduce the symptoms of potential problems observed.
To achieve simulation repeatability, three things are required: input re­
cordability, output recordability, and input specifiability. Input and out­
put recordability mean that all computer inputs-and outputs can be recorded
in a format suitable for both the programmer-analyst and subsequent ma­
chine processing. Input specifiability means that it is possible to duplicate
the inputs exactly, with regard to both numerical values and temporal se­
quencing. Repeatability and specifiability , particularly the latter, are
very difficult to achieve in a hybrid simulation.

In essence, because of its speed a hybrid simulation allows many more sim­
ulations to be run, increasing the chances of uncovering software problems.
It is a poor tool for diagnosing these problems, once found: it does not pro­
vide sufficient information about internal software behavior and repeating
the conditions that spotlighted the problems is difficult.

The diagnostic capabilities of the hybrid simulation could be improved if
the onboard computer could operate in conjunction with a monitor computer.
In such a setup, the monitor computer has greater access to internal com­
puter operations, can simulate onboard computer internal operations to
which it does not have access, and can record the detailed information ob­
tained for later formatting and output. The operation of the monitor com­
puter must not be allowed to interfere with the operation or real-time syn­
chronization of the onboard computer. The onboard and the monitor com­
puters must, of course, have facilities to permit monitoring in real time;
this requires that the onboard computer possess capabilities not utilized for
flight operations. The diagnostic-oriented design of the onboard and monitor­
ing computers combination can solve many problems not solved in current
designs.

Although the specific details of the required design characteristics have not
been examined, a few examples will be presented to indicate their nature.
One approach, illustrated in Figure 25, is to have the monitor computer
share the onboard computer memory with the onboard processor. The mon­
itor computer can receive and record the inputs and outputs of the onboard
computer; detect and duplicate the execution of each onboard computer in­
struction during program execution; and control the onboard computer clock,
enabling the monitor computer to start or stop it when non-real-time opera­
tion is tolerable. The monitor computer's processor would have to be

-41­

Monitor

Memory

_______________ Monitor Processor

Operation
[Onb oar

Simulationa

Clock
Control

and
Synchro ization Onboard 1

Instruction 1/0
Execution

Monitor Monitor

Onboard Environment
Processor I Simulation

Figure 25. Hybrid Simulation, Diagnostic Configuration

significantly faster than that of the onboard computer, enabling it to simu­
late the onboard program's execution for instructions not involving memory
reading or writing. The simulator of the onboard computer, which is part
of the monitor computer, is no less accurate than an interpretive computer
simulator, but would be considerably simpler for several reasons. First,
it needs a minimal control loop since it receives, from the onboard proc­
essor through the instruction execution monitor, an indication of what in­
structions it should be simulating- Second, it has access to all of the in­
puts, outputs, and memory of the onboard computer. Finally, since the
monitor computer is specially designed or adapted to operate in conjunc­
tion with the onboard computer, the two can be identical as to instruction
set and other architectural characteristics, greatly simplifying develop­
ment of the onboard computer simulation.

-142­

8.4

A difficulty in implementing such a diagnostic hybrid simulation lies in en­
abling the monitor computer to access the onboard memory without inter­
fering with the real-time behavior of the onboard computer. One way of
accomplishing this is to have an onboard memory with twice the effective
speed needed as far as the onboard processor is concerned. Another'way,
although less desirable because it may introduce differences between the
hybrid simulation's and actual computer's behavior, is to employ the double­
speed memory in the hybrid simulation-only and to use a similar, but
slower, flight-qualified memory in the actual vehicle. In simulation, then,
every second memory access cycle would be assigned to the monitor proc­
essor, while during actual flight every second memory access cycle would
be a do-nothing operation. This effective reduction in available memory
cycle time is a great price to pay for achieving verification suitability; and
a detailed examination of other hardware alternatives to achieve the same
end is required. An example of a less powerful scheme that should be stud­
ied for the onboard hardware is to allow the monitor to access the onboard
memory only during the intervals when the onboard processor is not access­
ing it; such as when long multiply and divide instructions are being executed.
Another scheme is to maintain a duplicate of the onboard memory within the
monitor memory, updating it by means of the information received from the
instruction execution monitor, with the monitor processor directly access­
ing the onboard memory only in non-real-time situations.

The development of such a hybrid simulation diagnostic configuration would
require extra hardware to be added to the basic onboard configuration, since
no discrepancy can be tolerated between the onboard computer's behavior in
the hybrid simulation and its behavior during an actual mission. One exam­
ple, in which this hardware has a faster memory than is actually utilized,
has been discussed; other examples include the connectors, amplifiers, and
isolation circuitry needed to accomplish the desired data paths. The bene­
fits obtainable by such a hybrid simulation diagnostic configuration are the
greater amount of software testing and verification made possible in real
time, and the corresponding reduction in the reliance that must be placed
on interpretive computer simulations to completely diagnose problems first
observed using hybrid simulations.

Other Verification Tools

The simulations discussed in the previous paragraphs have several dis­
advantages. From the standpoint of verification, the main one is that they
can indicate the presence of software errors but caniot prove their absence.
Thus simulation may lead to the detection of an error through the ob­
servation of an irregularity in the output, but the failure to observe any

-i43­

irregularities may simply be due to the fact that the right combination of
error-inducing input values and timing has not yet come about. In the past,
this deficiency of the simulation as the principal verification technique has
been compensated by performing very careful and detailed visfal checks of
the software (often called desk- or sight-checking), and by also performing
such a large number of simulations that most error-producing combinations
will be exercised.

The anticipated increase in the size and complexity of the Space Shuttle on­
board computer program will make the task of performing visual checks
much more difficult and, coupled with an increase in the ratio of simulation
time to real time, will reduce the completeness of the simulations that can
be performed in a reasonable time. Therefore, verification approaches
other than using simulations must be investigated.

One such type of verification tool, the automatic flowcharter, has already
been utilized in some verification activities. This tool produces flowcharts
indicating the operations performed by, and the logical structure of, the on­
board computer program. The flowcharts it produces are similar to those
made by a programmer-analyst, but more regular and without human errors.
An automatic flowcharter suitable for verification is similar to flowcharting
programs intended for software documentation purposes; these are offered
by many software vendors. Unlike documentation flowcharters, a verification­
oriented flowcharter accepts as input either machine or assembly language
rather than a high-order language, and can neither rely on nor utilize the
comment fields in producing an acceptable and readable flowchart. The flow­
charts it produces are compared with the program specification, and where
discrepancies are detected, the reason for and 'consequence of the discrep­
ancy are determined either by visual examination of the program or by exer­
cising the suspect area with the appropriate simulation.

Because it must perform a fairly complete code analysis to produce its out­
put, the automatic flowcharting program can easily be augmented to perform
repetitive checking operations. One example of such an operation is the gen­
eration of a comprehensive cross-reference list containing the names and
addresses of all program variables, the program instructions referencing
each variable by name, the means of reference (e. g., direct addressing, in­
dexing, or indirect addressing), and the type of referencing (i. e. , reading
or writing). Where the same address has multiple references with different
names, as would be the case when data regions are overlayed, the cross­
reference list would name the program elements sharing the common loca­
tion to aid in finding any data conflicts between otherwise independent
elements.

-144­

The advantages of automatic flowcharters as compared to simulations are
the reduced.computer time they require in use, the facility they provide
for early checking of program segments that will normally be executed late
in the mission, and the intelligibility of their outputs to nonprogrammers.
Although the use of an automatic flowcharter requires the preparation of a
correct, detailed , and complete program specification to serve as the com­
parison standard, this requirement should not be viewed as a disadvantage;
such a programming specification should be prepared in any base. Con­
structing a practical flowcharter requires that restrictions be placed on the
use of tricky or obscure code sequences in the program to be checked, but
this merely means enforcement of good programming practices and should
not be viewed as a disadvantage.

The most significant real disadvantage of flowcharters, and one that pre­
vents them from becomingthe primary verification tools, is that the tech­
nique has not been used enough to provide the level of confidence obtained
by observing that the program actually operates correctly during simula­
tion, even though the number of simulation runs is necessarily limited.
This is reasonable: given the current state of their development, it is not
expected'that automatic flowcharters would be able to reveal all of the soft­
ware errors in a given Space Shuttle computer program. In particular,
omissions or ambiguities in the programming specification and error in
program timing, interaction, and sequencing may not be uncovered. The
only way to overcome this disadvantage is to utilize the automatic flow­
charter in parallel with conventional verification simulations. If, as ex­
pected, using the automatic flowcharter results in the discovery and diag­
nosis of many errors before they are detected in simulation, its worth will
be demonstrated. For this reason it is recommended that an automatic
flowcharter be developed and used early in the Space Shuttle program veri­
fication process. The cost of developing the tool, while not negligible,
would be repaid by the fewer number of simulation runs otherwise required
for verification. The automatic flowcharting program can execute on any
conventional large-scale digital computer available; the difference in suit­
ability between computers is largely due to the availability of graphics sup­
port software. Although flowcharts can be produced on a conventional line
printer, greater readability and conciseness requires a graphic output de­
vice-such as a high-speed digital plotter or a CRT/microfilm display and
recorder.

As regards still other verification concepts, two general approaches have
been explored. One would minimize the manual comparison of machine­
produced flowcharts against the programming specification by mechanizing
the comparison, just as the creation of flowcharts is mechanized. This

-145­

would require error-free and onboard-program-independent encoding of
the program specification itself into a form suitable for internal computer
representation. Such an approach is roughly equivalent to producing two
versions of the program in different languages, one of which is machine­
oriented, and comparing the two. Except for the reduction in manual effort,
this approach does not offer any verification advantages for Space Shuttle
software development; indeed, it would require the additional step of demon­
strating the correctness of the way in which the programming specification
was encoded. Only in a limited area is the performance of such automatic
comparisons recommended: checking the values of program constants and
discovering code sequences that violate established conventions or ground
rules can best be accomplished using automatic verification tools.

The other verification concept referred to above is the proving of program
correctness by analytic methods. Basically, this consists of establishing
the state and environment of the computer before the program is executed,
determining the state of the computer after the program has been executed,
and comparing the final state with the desired state. The description of the
computer's final state includes not only the variables that were computed
and retained in the computer memory but, more importantly, all variables
that were output. In contrast to simulation, actual numeric values of vari­
ables would not be determined; instead, general expressions representing
the relationships between variables would be constructed. For example,
consider the program illustrated in Figure 26. By simulation it would be
possible to establish that if the input variable at point a were -2, then the
value of X at point b would be +Z. Using simulation alone, without further
analysis of the program itself, many test cases would be required to estab­
lish that the X at point b is always equal to the absolute value of A. A
program correctness proof for such a flowchart would assert that X at
point b would be equal to A if A at point a is greater than or equal to
zero, and would be equal to -A otherwise. This assertion can then be re­
placed by the equivalent assertion that X at point b is equal to the absolute
value of A at point a.

The advantage of such a program correctness proof is that the assertions
as to program behavior are valid-for all data values, whereas simulations
can be used to rigorously establish program behavior only for a limited
number of data values. Of course in the simple example provided, the
behavior for all data values can be inferred from a limited number of test
cases; in a more complex program this is not often the case.

Analytic program correctness proofs are described further in Appendix C.
The theory of program correctness proofs for relatively ideal cases has

-146­

a

b

Figure Z6. Absolute Value Sequence

been studied for several years. The concepts outlined in Appendix C are
a distillation of the findings until now, together with some new refinements
that are a necessary first step in applying past work to the Space Shuttle.
As indicated in the appendix, it is now possible to prove the correctness of
small but fairly complex programs by manual methods. The next step
should be to determine the limits, with regards to program size and com­
plexity, within which these manual techniques are practical. The princi­
pal problems with current program correctness proof, techniques are the
complexity of the proofs developed and the considerable manual effort
required to produce them. One reason for their complexity is that many
of the assertions about a program's behavior do not relate to specific as­
pects of the programming specification, but result from internal program
operations. The complexity can be minimized by intelligent selection of
the significant assertions by the person developing the program correct­
ness proof, but this only increases the manual effort required. Concern

-147­

8.5

with the amount of manual effort stems not only from its cost. What is
even more important is the possibility that an error will be made, leading
to an assertion that an incorrect program is correct.

Completely automatic methods for proving program correctness probably
cannot be developed soon enough to be of benefit in Space Shuttle verifica­
tion. A more promising approach, within the Space Shuttle time scale, is
to develop a computer program for checking manually generated proofs.
No saving in verification effort would result, but the possibility of error
could be greatly reduced. One way for performing machine-checking of
manual proofs is to insert assertions of program behavior in appropriate
places in the program to be examined and then have the computer check
whether the assertions are valid.

Although program correctness proofs are a new and untested verifica-­
tion technique and cannot be expected to replace simulations as the major
verification tools, it is recommended that the approach be further devel­
oped. First, it will supplement simulation activities, and experience in
its application may allow reductions in the number of simulations that
must be performed during verification. Second, the insight gained into
program behavior will indicate program design approaches that facilitate
verification, whether by correctness proofs or simulation. The methods
presented in Appendix A for detecting program interaction and utilizing
memory locks, and the method presented in Appendix B for locating save
instructions to achieve restart protection are in part a result of the con­
cepts explored for program correctness proofs.

Master Test Plan

The development and use of verification tools described in the preced­
ing sections must be coordinated to minimize overall verification cost
and maximize verification effectiveness. To this end a master test plan
should be developed. The importance of doing so cannot be overempha­
sized, for the costs resulting from using duplicate or incompatible verifi­
cation tools and from unanticipated reiterations during verification can
far exceed the hardware or software costs associated with any particular
computer architectural feature.

The following paragraphs describe the three aspects that the master test
plan must cover; these are the levels at which verification activities should

-148­

be conducted, the allocation of verification tools to the tests conducted

at each level, and the coordination of simulation tool development.

8. 5. 1 Verification Levels

The size and complexity of the onboard software make testing only the
final, integrated program completely infeasible. Delaying verification
until the complete program has been constructed would make it very dif­
ficult to isolate errors or anomalies. The calendar time and simulation
facility time needed to perform all of the verification tests for every mis­
sion phase would both be excessive. Management would not have adequate
visibility into the status and quality of the software being developed. And
of course detecting errors early in software development simplifies their
correction and greatly reduces total testing requirements. For these rea­
sons, verification must be done at each stage in the development of the on­
board program. The phasing should be such as to test small software units
thoroughly; to assemble these units into large units that can be shown to be
error-feee by testing the interfaces bet-ween'the smaller units; to test the
growing program for progressively longer mission phases and/or more
complex subsystems; and, finally, to compare the performance of the com­
plete, integrated program with the performance observed in all previous
tests and with the mission requirements. Thus at least five distinct veri­
fication levels must be identified in the master test plan:

o Functional testing
* Unit testing
o Miission phase/subsystem testing
* Integrated testing
* Miission verification

For each of these verification levels, specific requirements must be satis­
fied before testing at that level can be considered complete. This does not
mean that progressing from one level to another must await satisfaction of
all requirements at the lower level; indeed, much testing maybe done in
parallel. However, the most cost-effective place in which to discover er­
rors is the earliest possible level.

8.5. f. i Functional Testing: Functional testing evaluates software per­
formance at the equation level to determine if the software design itself
can satisfy all possible mission requirements. Thus it is concerned with
the algorithms to be coded, rather than the code itself. The following are
examples of performance aspects that must be demonstrated correct at the
functional testing level:

-149­

" 	 Accuracy and stability

* 	 Operator interfacing

* 	 Redundancy requirements, including backup, reaction
to failure, and reconfiguration

. Capability of being verified

* 	 Subsystem loading requirements, including volumes and
rate s

Functional testing is initiated as early as possible, that is, as soon as
a fairly complete programming specification is available. When additions
or modifications to the programming specification are made, functional
testing is repeated to verify their correctness and assess their overall
software impact. The results of functional testing are used as references
for comparis6n with results of testing at higher levels. Another impor­
tant functional testing output is the identification of performance limits
for the software design. Clearly if the basic design is adequate only within
certain limits, the implementation of that design will-very probably lie
within the same performance envelope.

The principal tool employed in software testing is the engineering simula­
tion. B'ecause of the speed of the engineering simulation, a return to the
functional testing level may often be advantageous in the diagnosis of soft­
ware deficiencies at a subsequent testing level.

8.5. 	f. 2 Unit Testing: This is the first level at which the actual coding
is tested, rather than the algorithms or some intermediate representation
of the ultimate onboard program. A unit may be a subroutine, a program
module, or any other identifiable program element that performs a specific
function and that has interfaces with other units, receiving particular inputs
and transmitting particular outputs to them. In general, units should be
chosen compatible with: the subsystem hardware configuration, when the
hardware is used during the mission plan, and what the functional require­
ments are. Thus one unit might be the computations associated with the
rendezvous radar preflight checkout functions, and another might be attitude
control during reentry.

At the level of unit testing, verification is conducted in terms of require­
ments relating to the correctness of program units as self-contained pack­
ages. The primary effort is devoted to proving that the unit is a correct

-f50­

translation of the specification for it. Some of the aspects of software
behavior that must be demonstrated correct at this level are:

o Unit entry and exit
* Arithmetic accuracy
o Nominal logic paths
* Off-nominal and backup logic paths

e Ranges of variables

o Data format and sequence compatibility

a Execution time

Unit testing, initially accomplished with an interpretive computer simula­
tion operating in the open-loop mode, can profitably employ automatic flow­
chart generators and program correctness proofs as well. Closed-loop
ICS operation usually requires a larger portion of the total onboard soft­
ware than a typical unit, so its use at the unit testing level is re­
stricted. When adequate unit testing can be done only in closed loop and
the unit itself is not self-sufficient, the missing units can be replaced by
their counterparts developed for the engineering simulation and already
demonstrated to be correct at the functional testing level.

The isolation afforded by unit testing from interaction with other segments
of code is invaluable in localizing programming errors, timing irregular­
ities, and other difficulties at the subroutine level. Because of the isola­
tion of units and the concomitant isolation of the effects of software errors,
errors detected at higher -levels can often be more efficiently diagnosed
at the unit level, using the outputs from the higher levels to drive the sus­
pect unit in an open-loop mode to reproduce the failure.

8.5. 1. 3 Mission Phase/Subsystem Testing: This is the testing of many
program units assembled into a relatively large group that performs a spe­
cific function, such as all software used during boost, or all display system
software. For the Space Shuttle, the.most likely grouping for testing at the
mission phase/subsystem level is by functional breakdown, such as guid­
ance and navigation, and, within thei.functional breakdown, by mission phase,
such as the guidance and navigationiportion of boost.

Mission phase/subsystem testing diffrs from unit testing in that it requires
the grouping of many units, and from't he subsequent integrated testing in
that not all of the units are used, but only those required for a specific func­
tion or period of time. The mission phase/subsystem testing level assumes
that there has been some previous unit testing, and is primarily directed

-i5­

toward testing the interaction of the tested units. Requirements demon­
strated correct at this level include:

* 	 Input/output processing
* Interrupt processing

" Restart provisions

* Refreshing or reconfiguring the software
" Performance of the range of anticipated mission objectives
* 	 Operator interfacing

Mission phase/subsystem testing uses both interpretive and hybrid simula­
tions, and also can employ automatic equation generators and program
correctness proofs. Most simulations at this level are performed in the
closed-loop mode.

8. 5. . 4 Integrated Testing: This is the first level at which the complete
onboard program is assembled and tested. Conformance with the program­
ming specification, previously checked for single units or functional groups
of units at the earlier levels, is demonstrated at this level for every unit.
At the level of full integration testing, the emphasis shifts to whether the
program meets overall requirements and provides all needed capabilities.
Integrated testing is concerned with interaction problems that become ap­
parent only with the final assembling of the complete program. Examples
of software aspects that must be demonstrated correct at this level include:

* 	 Integration of the assembled or compiled program

" 	 Overlay structure

* 	 Formatting, sequencing, and timing of data transfers
between functional groups

While integrated testing may be executed on either a hybrid or an interpre­
tive simulation, the large number of simulations required combined with the
longer execution time of the ICS prevent heavy reliance on interpretive simu­
lation. Automatic flowcharters and program correctness proofs do not have
very great suitability at this level, being chiefly useful for detecting and veri­
fying unit interactions unobservable at the lower levels.

8. 5. 1. 5 Mission Verification: While prior levels are primarily concerned
with ferreting out all errors that might lie within the program, the empha­
sis changes at this final level to verifying program aspects for a single

-152­

mission; that is, instead of being concerned with a broad data range, verifi­
cation testing is concerned with whether specific data and procedures will
properly perform the mission for which they are to be used. This requires,
among other things, that complete mission studies be conducted.

Examples of software aspects that must be demonstrated correct during mis­
sion verification are:

* 	 Satisfaction of all specific mission requirements

* 	 Correspondence between mission tests and the results
of functional testing

* 	 Consistent and complete documentation

One good technique of determining whether mission requirements are satis­
ffied is to compare the results of the detailed simulations used at this level
(an ICS/ engineering simulation or a hybrid simulation employing a model
of the flight computer) with the results of the earlier functional testing for
which simpler simulations were used.

8.5.2 Verification Tool Allocation

The efficient utilization of the tools and facilities discussed above requires
their allocation to appropriate verification levels so that fulfillment of all
requirements at each level can be demonstrated. In the past, allocations
have usually been made on a local basis, with little attempt to use general
tools such as engineering simulations for more than one purpose; to develop
such tools according to a common standard; or to take advantage at one level
of information gained at an earlier level. The arguments in favor of spend­
ing the resources necessary to make an effective allocation are straightfor­
ward: the cost of developing the support tools and facilities could be lowered,
some confusion in comparing results from different simulations could be elim­
inated, and the amount of effort required to set up specific tests could be
rediiced.

Several valid approaches exist for allocating tools and facilities to verifica­
tion 	levels, and each must be considered for the Space Shuttle. One is to
determine the types of errors expected to be discovered at a level, and to
allocate the tools and facilities most likely to reveal errors of the types ex­
pected to be most prevalent. For example, the first time errors in unit
interaction are likely to be discovered is at the mission phase/subsystem
level; hence analytic tools that check data, file, and format compatibility
should be heavily used at this level.

-53­

Another approach is to make the allocation that minimizes the disadvantages
of each tool and facility. For example, an ICS/engineering simulation re­
quires comparatively large amounts of large-scale general-purpose com­
puter time and so cannot run a large number of test cases in a short time.
Thus it would be relatively unsuitable for integrated testing. The speed
advantage of a hybrid simulation over an ICS is at least an order of magni­
tude in present systems, and may be far greater as the capability of the
flight system increases, indicating the hybrid simulation's suitability for
performing a large number of tests. The relatively low level of detailed
diagnostic information about program behavior -that can be obtained from a
hybrid simulation indicates that effective diagnosis of any anomalous re­
sults will require utilization of the ICS/engineering simulation. The com­
posite cost of verification using the two complementary simulations should
be greatly reduced over the cost of using one alone, since it would be ex­
pected that few tests -would be anomalous.

A third approach to allocation is to utilize the specific tools or facilities at
the levels where no other setup would demonstrate satisfaction of the re­
quirements. For example, hybrid simulation can provide a more accurate
representation of computing delays and other subsystem-timing-related
aspects than is possible with the ICS and should be used for demonstrating
such aspects.

8. 5.3 Verification Tool Development and Comparisons

The final element in the master test plan concerns the development of veri­
fication tools, with particular emphasis on the capabilities and limitations
of each simulation. In the course of most past software developments,
several engineering, interpretive, and hybrid simulations were produced.
In part this resulted from the nature of the software development process.
Different organizations having dissimilar large general-purpose computers
often independently developed their own engineering and interpretive com­
puter simulations; different organizations testing their own hardware com­
ponents similarly developed hybrid simulations, with each subsystem repre­
sented to an appropriate but different fidelity. One often-expressed motiva­
tion for duplication is that an error in one simulation is unlikely to exist in
a second; therefore an onboard software error that would be masked by an
error in one simulation would be likely to be revealed using a redundant
simulation. This motivation does not justify developing redundant simula­
tions for verification: the effort could be better spent in ascertaining and
improving the fidelity of a single appropriate simulation. Whatever the
practical reasons for developing multiple simulations, the verification pro­
cess does not require more than one of each type.

-154­

8.6

However many simulations may be developed, it is important that meaning­
ful comparison between them can be made. For each simulation, the master
test plan should indicate the fidelity of its constituent components, its range
of validity, the mission phases for which it is appropriate, aid the differ­
ences that will exist between it ahd other simulations. For example, the
relationship between simulation execution time and real timie must be de­
scribed to indicate both the applications for which the simulation is useful
and the number of simulations that can be performed in a given period. This
information should be prepared before simulation development and updated
during and after development. Specific test procedures for each simulation
should be described in the plan, along with the comparisons that must be­
made before the simulation can be accepted as a software verification tool.
To the greatest extent possible the test procedures should include the con­
tent and formats of the outputs produced, particularly those which are not
normal onboard computer outputs. The output formats and the input proce­
dures and formats should be the same where similar simulated quantities

- are involved. The master test plan should indicate the availability of each
,simulation facility from the standpoints of its development schedule,- its
normal setup time, and the time required by its other users. And finally,
although the master test plan should be produced at a very early stage in
the Space Shuttle software development, certainly before any major simula­
tions are constructed, it must be revised a's often as necessary to reflect
the observed behavior of -the verification tools and facilities"and the chang­
ing requirenents imposed on the onboard software.

Summary of Conclusions

M1inimizing the verification effort needed for the Space Shuttle onboard soft­
ware has several aspects. The verification effort required is a function of
the size and the complexity of the onboard software; both, in turn, are de­
termined by the functional requirements. As discussed in Section 3, several
alternatives are possible depending on the hardware configuration and the
overall requirements imposed on the software. The first step, then, in
minimizing verification costs is to choose those alternatives which reduce
the onboard software's size and complexity. The next step, as discussed
in Section 4, is to select the computer configuration and the software execu­
tive design which can easily satisfy the functional requirements and which also
offer those characteristics, such as repeatability, that facilitate verification.
The third step is to choose a particular computer architecture which has those
features that simplify software development, such as floating-point arithmetic,
single-instruction restart capability, and a flexible interrupt mechanism,

for these features will also simplify software verification.

-155­

For a given set of functional requirements and a particular computer config­
uration and architecture, software verification costs can be reduced by im­
proving the tools and facilities used and by preparing and following a master
test plan for the efficient utilization of these tools and facilities. The most
promising improvemerits that should be made in the simulation tools include
increased automatic checking and more flexible diagnostic control for inter­
pretive computer simulations, and more visibility into the internal soft­
ware operation for the hybrid simulations. The interpretive computer simu­
lation provides the greatest insight in the internal behavior of software, but
a major deficiency in light of the expected size and complexity of the Space
Shuttle software is the length of time needed to perform simulations. By
increasing the information gained from each interpretive simulation through
the use of the suggested improvements, the total number of simulations re­
quired can be reduced. By enriching hybrid simulation capabilities in the
suggested areas, this tool can be a practical substitute for the interpretive
simulation in many areas. In addition, verification tools such as automatic
flowcharters and program correctness proof checkers should be developed
to supplement the simulation tools. Finally, the tools themselves must be
developed and used in accordance witha coordinated plan thatwill enable the
detection of errors as early as possible, the easy diagnosis of errors, and
the comprehensive testing of all significant software characteristics.

The further development of the concepts presented into a complete, dynamic,
and useful master test plan document is the next step that must be taken to
assure that the development and application of the verification tools are both
done with the least cost and schedule impact. Even with the best of tools
and plans, software verification will be a major constituent in the Space
Shuttle software development process. To make certain that verification
can be accomplished in an effective and timely manner, it is imperative that
verification continue to receive early attention.

-156­

•APPENDIX A
TASK INTERACTION

For software that has a large numb-er of tasks executable in many'permuta­
tions and combinations, demonstrating that the tasks do not interact undesir­
ably or erroneously is very difficult. The problem is particularly apparent
for interrupt executives: two routines, each of which may'be internally
correct, can together cause a software failure to occur when one- routine
interrupts another at an inopportune point in its execution. This appendix
presents techniques for detecting undesirable logical interactions between
an interrupting routine and the routine(s) it interrupts. It shows that, from
the standpoint of logical interaction, the question of allowing routine B to be
executed in parallel with routine A is identical to the questi6n of allowing
routine B to interrupt routine A. Formal criteria already existing for deter­
mining whether two routines can be executed in parallel are applied to the
problem of determining situations where an interrupt could cause a software
failure. These criteria are also developed for determining, situations in
which potentially undesirable task interactions can occur between two tasks
that could be executed in parallel, as in a polling executive. The results
for the interrupt and polling cases are then compared. Finally, hardware
and software. methods are described for eliminating interference .problems.

A-i. 'ANALYTIC DETECTION OF LOGICAL INTERFERENCE

In considering the memory locations accessed by a routine A, four dis­
joint sets can be distinguished:

M i (A) = the set of memory locations which are only read by A.

M 2 (A) = the set of memory locations which are first read by A.
and later written into by A.

M 3 (A) = the set of memory locations which are only written into
by A.

M 4 (A) = the set of memory locations which are first written into
by A and later read' from by A.

Now define

R(A) = M(A)UM 2 (A)UM4(A)
W(A) = MZ(A) U M 3 (A) U M 4 (A)'

Rf(A) = M1 (A) UM 2 (A)

- i57­

Thus R(A) is the set of locations which are read from by A at, some point,
and W(A) is the set of locations which are read first by A. From a practical
standpoint, it is important to add that if routine A is involved in identification
activity, the inputs to A must be included in R(A) and the outputs from A must
be included in W(A).

In deciding whether two routines can be executed in parallel, the situation
in Figure A-I is considered. A and B are two segments of code (routines)
that tentatively have a serial 6rdering. P represents the remainder of the
program. The basic observation on logical interaction is: if, during the
execution of the routine, none of the memory locations which it reads are
modified by another routine, then that routine is guaranteed free of undesir­
able logical interference. This observation is embodied in the following three
conditions, which ensure that two routines A and B can be executed in parallel
(as shown in Figure A-2):

R(B) fW(A) =

R(A) QIW(B) = cp

W(A) AW(B) nRf (P) = cp

The first condition states that B does not read any memory locations written
into by A. The second condition stated that A does not read any memory
locations written into by B. The third condition states that P does not first
read from any locations which are written into by both A and B. If this last
condition were not true, a race condition would exist: the execution of P
would depend on whether A or B was the last to write into the elements of
W(A) fW(B).

A

Figure A-i. Serial Task Execution Figure A-Z. Parallel Task Execution
-158­

Now consider the problem bf interrupts. Two routines, A and B, executed
in normal order can be indicated as in the first part of Figure A-3. If B
interrupts A,:theo-execiition , ,sequenqe-dan.be indicatedta-s,4ln tfhLgeae,conddraw­
ing. A I and A 2 indicate the two segments of A which are separated by the
execution of B. (Yindicates the interrupt point. P indicates, succeeding rou­
tines. Again absence of undesirable logical interaction can be guaranteed
if the memory locations which a routine reads are undisturbed. The condi­
tions for a particular interrupt situation are:

W(A Z) nR(B) = T

R(AZ) fW(B) = T

-W(A 2) fW(B) flnf(P) = p

The interrupt point a may occur anywhere in A, and the instructions com­
prising A2 will always be a subset of instructions comprising A, i. e.., A2 9A.
Thus the general conditions are:

W(A) nR(B) = p

R(A) fW(B) = p

-W(A) NW(B) NRf(P) = p

These conditions are identical to those which guarantee that A-and B can be

executed in parallel as shown in the third illustration of Figure A-3.

A1

A B

A2

A
z

B P

P p

Serial Interrupt Parallel

Execution Execution Execution

Figure A-3. Task Sequencing

-i59­

http:sequenqe-dan.be

It has been proposed that the verification problem posed by interrupts might
be solved if all routines were segmented, with "interrupts" permitted only
at the end of a segment rather than at the end of any instruction. It is cer­
tain that this suggestion was made on the implicit assumption that verifica­
tion 	of interrupts would be performed by the ad hoc manual techniques which
have been used in the past. The development of analytic interruptibility cri­
teria brings into question the desirability of the segmentation idea. The
obvious disadvantages of segmentation are:

" 	 Degraded response time (since an interrupting routine must
wait until a segment has been completed)

o 	 The extra effort required to program routines in segments

It is 	 felt that in some instances this last point could become a major burden
on the programmer.

To further investigate the segmentation suggestion we will need the concept
of execution commutivity. Two routines A and B will be termed commutative
if the execution sequence A, B produces the same results as the execution
sequence B, A. The conditions which ensure comnrnutivity of two routines
are slightly less restrictive than the conditions which ensure interruptibility.
Only locations in the set Rf must remain unchanged. If a read from a loca­
tion is preceded by a write into the same location, a prior write by another
routine has no effect. The commutivity conditions take the form:

Rf (A) nW(B) ­
Rf(B) AW(A) =
W(A) fW(B) nlRf (P) =

If the R's and W's are replaced by the corresponding M's in the conditions
for comnutivity and interruptibility and the redundant terms are eliminated,
the terms which must be null are found to be:

-160­

Conunutivity Interruptibility

Mi(A) MZ(B) M i (A) MZ(B)

Mi(A) M 3 (B) Mi(A) M 3 (B)

-Mi(A)Z14(B) Mi (A) M4(B)

M 2 (A) M i (B) M2 (A)M i(B)

MZ(A) MZ(B) M2 (A) MZ(B)

M2 (A) M 3 (B) Mz(A)M 3 (B)

MZ(A)M4(B) MZ(A)M 4 (B)

M 3 (A) M i (B) M 3 (A) M i(B)

M 3 (A) MZ(B) M 3 (A)MZ(B)

M 3 (A) M 3 (B)Pf(P) M3(A)M 3 (B) Rf(P)

M 3(A) M4(B) Rf(P) M 3 (A)M4(B)

M4(A)Mi(B) M4(A) Mi1 (B)

M4(A)MZ(B) M4(A) MZ(B)

M 4 (A) M 3 (B) Rf(P) M 4 (A)M 3 (B)

M4(A)M4(B) Rf(P) M 4(A) M 4 (B).

The two lists are almost identical. However, inthree instances an extra

RP (P) term makes the commutivity conditions slightly more complex. To
analytically check interaction of two segmented routines A and B it i's nec­
essary to check the comnnutivity of each segment of A with each segment
of B. Define Ci as the amount of computation required to check interrupt­
ibility of two routines A and B. Define C2 as the amount of computation
required to check the commutivity of each of n segments of A with each of
n segments of B. Define C3 as the amount of computation required to check
commutivity of A and B. We have already seen that Ci is slightly less than
C3. A comparison between Cg and C 3 is desired, so that C1 and CZ can be
compared. To compare CZ and C3 we malke the following argument:

With segmented commutivity, each set M., would contain roughly I /M as
many elements as with unsegmented comrnutivity. Hence, with segmenta­
tion, checking the nullity of each double term (e. g., M 3 (A) Mi*(B)) would

zrequiretroughly i/n as much computation. However, since each routine
is divided into n segments, there are n2 conmutivity combinations to check
instead of one. This would imply that CZ is roughly independent of n, i. e. ,
CZ P G3. However, in general each set Mi,will contain more than i/n as many
elements. ,A memory location may be accessed several timhes, but it 'will
appear only in one of the sets Mi. If segmentation divides the accesses into
two parts, the total number of elements is actually increased. To illustrate
this the following example is presented.

-161­

read X

Si

write X

A a

read XC

82

write X

X would fall in the category M 2 (A). If segmentation occurs at point a, then
X E M 2 (S I) and X E MZ(SZ). Segmentation can also cause elements to change
sets. Hence C Z (n+i) 2 CZ(n), and in general the greater-than relation will
hold, i.e. , C2 increases with increasing n. Consequently Cj < C2 and the
segmentation idea is judged disadvantageous if interrupt verification is per­
formed analytically.

A-2. PREVENTION OF LOGICAL INTERFERENCE

It has been shown how logical interactions between routines can be detected
or shown to be nonexistent. The next question is: If a logical interaction is
detected, what, if anything, can be done about it? The following discussion
presents alternative methods for "curing" the problems once they are detected.
Both hardware/ software and software/ software tradeoffs are discernible.

A-2. i Discrimination by the Executive

If a software failure will occur when routine B interrupts routine A, one solu­
tion is to prevent B from ever interrupting A. For each routine a list can
be prepared of all routines which are permitted to interrupt it (or which are
not permitted to interrupt it, if this list is shorter). If the executive would
interrupt routine A and begin routine B, it must first check routine A's list
to see if the interrupt is allowable.

A-Z.2 Memory Locks

To make any routine A secure from undesirable interrupts, the following
requirements are sufficient:

-162­

1) 	 Read locks are placed on all locations in the set W(A) at
the beginning of A. After the last write statement in A for
a given location, the lock on that location is lifted.

2) 	 Write locks are placed on all locations in the set R(A) at
the beginning of A. After the last read statement in A for
a given location, the lock on that location is lifted.

3) 	 Write locks are placed on all locations in the set W(A) at the
beginning of A and lifted at the end of A.

The pointer lock is one method for implementing requirement i or 2 for a
linear data structure.

To see that these locking procedures are effective, recall the three condi­
tions for interruptibility:

R(B) fW(A) =

R(A) nW(B) =

R (P) fW(A) nW(B) = c0

Requirement I exactly satisfies the first condition, since the read lock
on W.(A) halts any routine B only if it tries to read from W(A). Require­
ment 2 exactly satisfies the second, since the write lock on R(A) halts
any routine B only if it tries to write into R(A). Requirement 3 over­
satisfies the third condition. The write lock on W(A) will halt any rou­
tine B if it tries to write into W(A). This is equivalentto the condition
W(A) nW(B) = a which implies that the third condition is true.

A simpler procedure is to place a total lock on R(A) and W(A) for the,
entire duration of routine A. The disadvantage is that other routines will
sometimes be blocked unnecessarily.

A-Z.'3 Data Duplication Schemes (Buffering)

For the important special case where the routine to be interrupted is per­
formed repeatedly, the common memory locations can be made proprietary
by duplicating them. Figure A-4 shows the situation before correction.
M = W(A) fR(B), that is, M is the set of locations written into by routine
A and read from by routine B. Consequently B may not interrupt A. The
dashed arrows indicate the cyclic performance of A, with delay function A.
B may also be cyclic, but this is not indicated. One solution is shown in
Figure A-5. Here M i and M? are duplicate sets-of memory locations.
is a routine or possibly a single, uninterruptible block transfer instruction

-163­

C

A® -t A

M

B

Figure A-4. Single Memory Figure A-5. Memory Buffering
Region Accessing

that copies the contents of Mj into M 2 . C is always executed after execu­
tion of A. Since now W(A)flR(B) = cD. B can be allowed to interrupt A after
the first iteration of A, or at any time, if M 2 is initially primed with values.
However, B cannot interrupt C, since W(C) nfR(B) = M2. Thus noninterrupt­
ibility of A has been traded for noninterruptibility of C. This is often a good
trade since C will generally take much less time to execute than A. Conse­
quently, this solution is useful in instances where B cannot wait until A is
completed. The cost is the duplication of M and the cost of C.

It will be noted that C cannot be permitted to interrupt B. From a logical
standpoint, there is no reason why C should be permitted to interrupt B.
A' is allowed to begin its computations (using possibly volatile data) on sched­
ule, and only the copying operation need be delayed until completion of B.
Either a memory lock or executive discrimination can be used to ensure
that Adoes not interrupt B. However, if conflicts are to be eliminated
solely by making C a block transfer instruction, more elaborate buffering
is required. The same procedure that was used to isolate A from B can
be used to isolate C from B. The result is shown in Figure A-6. B copies
M 2 into M 3 and-is always executed immediately prior to B.

-164­

AN

Figure A-6. Extended Buffering

An alternate solution is indicated in Figure A-7. Again M, and Mz are
identical. b is a single pointer bit.

b =0b O= B writes into MIreads from M z

b= f Awrites into M?{B reads from M,

D is a "routine" which inverts the bit b. The dashed arrow indicates pro­
gram flow. Thus D is always performed immediately after A. Let u be
a continuous variable indicating the iteration of A being performed. If A
is not in execution or interrupted, u is an integer. If A is in execution,
say working on the third iteration, then 2 <u <3, depending on how far
through A the execution has progressed. This scheme guarantees that
while A is in execution

R(B) nW(Au) =

and, depending on the value of b,

R(B) fW(A [u]) = Mi or M 2 .

Hence B may now interrupt A at any point. Noninterruptibility of A has
been traded for noninterruptibility of D, since b = W(D) l R(B). Timewise,

-165­

this is an excellent trade, since D merely involves the changing of a single
bit. The cost is the added complexity of A and B, the duplication of M,
and the cost D and the bit b.

Figure A-7. Buffering with Pointer Bits

-166­

Again, D may not interrupt B. If this capability is necessary or desirable,
the arrangement of Figure A-8 is required. Here B' copies the bit b i into
the bit b 2 prior to execution of B. Now only A' and B' are not mutually
interruptible, and each could be accomplished by no more than one or two
instructions, representing a negligible delay.

Figure. A-8. Buffering with Pointer Bits (Elaboration)

-167­

APPENDIX B
A METHODOLOGY FOR RESTART PROTECTION

The Space Shuttle system is dependent on successful computer operation
for mission success, if not for crew safety. While software alone can

protect the system against some classes of failure, special-purpose hard­
ware is needed for detection and diagnosis of others. Such a failure may

be external to the data management system (e. g. , power loss) or internal

(e. g. , parity failure). In either case, the data in the central registers
of the system are suspect, and must be restored to consistent values before
operation can be resumed. This appendix defines the requirements for
success in a restart following a transient failure.

In order to 	identify the conditions for successful restart, we must first
define "success. " It is straightforward to pin down what is meant in the

event that there are no external inputs to the program, but the problem

is complicated when such outside sources as a clock, guidance sensors,

or a human 	operator may alter the processing.

Definition: 	 A restart is said to be successful if and only if each value cal­
culated following recovery is identical with that which would

have been calculated at the same time in the absence of the

interruption.

To satisfy the condition above, all external data must be supplied appro­
priately despite the interruption, the program must preserve accuracy
over the gap, and all data written by the program after the restart must
be consistent. The hardware must accumulate or extrapolate mission
data, since the program is not aware of the time lost; some software assist­
ance may be provided in the restart routine if a noninterruptible clock is
provided and appropriate code is executed. Programming must incorporate
safeguards (notably in integration routines) against loss of accuracy. This
appendix addresses only the problem of data consistency and protection

through use of a save instruction.

The memory of the computer is divisible into volatile and nonvolatile regions.
,A volatile cell is one whose value may have been altered during the interrup­
tion; it is typified by the central registers. A nonvolatile cell is assumed
to retain its value during the interruption, as would be the case for a mag­
netic core. The save instruction preserves the values in volatile memory

by copying them into a nonvolatile area reserved for that function. Follow­
ing interruption, the restart routine copies the saved values into volatile

-169­

memory and resumes operation at the save; any software extrapolation is
performed within the restart routine, prior to copying the saved values.

For the restart to succeed, each subsequent write operation must provide
a value accurate by the defined conditions. Clearly, if each datum read
after recovery is accurate and the program runs correctly, then the restart
is successful. Some special cases may tolerate reading an invalid datum,
but these are so few and so hard to account for in analysis of the code that
they will be neglected. Thus, reading of accurate data is assumed necessary
as well as sufficient for successful restart. Any datum read by the program
must come from one of three sources: external interface (assumed accurate
by hardware or hardware/software provision); volatile memory (restored to
a consistent set by the restart routine); or nonvolatile memory. It is only
the last of those sources which may be in error. For a datum from non­
volatile memory to be inconsistent with the restored volatile memory, it
must have been written since the last save instruction, the one to which
volatile memory was restored.

To derive and prove the sufficiency condition, we consider the first invalid
datum read following the restart. Its value must have been written into non­
volatile memory since the last save, i. e. , since the save before the interrup­
tion. Only two cases !may be constructed:

1) 	 It was written after the save but before the interruption and not
written since restart.

2) 	 It was written after the restart.

But 	if it had been written after the restart, it would either have been written
correctly or derived from only valid source data (since it was assumed to be
the first invalid datum). Therefore:

A) 	 It is sufficient for protection against restart failure that each
read of a nonvolatile cell is separated from a subsequent write
by a save instruction.

Under this condition, no cell may be the first invalid one read, since each
sequence READ X ... WRITE X is interrupted by a save.

The 	above argument leads to a still stronger condition which may be shown
to be necessary as well as sufficient. If the cell containing the first incorrect
value had been written after the restart, it would have had only valid source
data, hence would not have been incorrect. Consequently:

-170­

B) It is necessary and sufficient for protection against restart
failure that in each sequence of code beginning with one save
instruction and containing no more, each nonvolatile cell
which is both read and written is written before it is first
read.

The proof of necessity is based on a sequence violating the condition: SAVE
...READ X ... ' WRITE X, with no other save or write iistruction. Ignor­
ing the trivial cases in which the value written is always identical with that
which was read, or in which a value is read but never used in subsequent
code, we examine the impact of an interruption immediately following the
WRITE X. After restart, the updated value written before- interruption will
be read instead of the value read on the previous pass. Hence, the WRITE X
following restart will be incorrect and the restart will have been unsuccess­
ful.

The complexity of condition B suggests lengthier restatement in line with
the flowchart of Figure B-i. Two lists are established: one of the non­
volatile cells which are being written (T), the other of those being read (S).
The lists are mutually exclusive, so that once a cell is entered into either
S or T, it is not repeated in the other. The lists are erased by a save instruc­
tion in the logical flow. Thus in the sequence of code between consecutive
saves, a cell read before it is written is entered into S and one written first
is entered into T. The necessary-and-sufficient condition is that in such
a sequence, no cell in S is written.

Figure B-2 illustrates the flow for the sufficient-only condition using the
same terminology applied in Figure B-I. In both figures, progress along
the logical path is traced by incrementing the instruction counter I. The
additional logic required to treat branching and calls to subroutines is not
shown, since it is dependent on the particular system design. Similarly,
implementation-peculiar instructions, including implicit reads and writes,
are.not shown in the illustrations.

The choice between the necessary-and-sufficient and the sufficient-only
conditions is based upon the requirements of the program. The following
example is illustrative of the difference in effect which may be obtained.

Hypothesize a routine which initializes, then executes a loop. The initial­
ization is a sequence of writes, while each pass through the loop reads,
then rewrites the same variables. The necessary-and-sufficient condition
requires Only a save at the start of initialization, while the sufficient-only
condition will require at least one save for each pass. Thus, a restart

-171­

est

PeeI foo

Yesh

T Ta rget

No

o d Tre

T t

SorI

YIs

Step

Yess

too

Followe I

with SAVE

I o

urs

Figu~ S (SourNcessyn -u

tT

iin S or i Yes

-. rc in7Ye

ISes-St-P~~t IVESV

Test

I forowNo

r thA gO lic e tSnSoure.i

-i3

during looping will recycle to the initialization in one case and to the last
pass in the other. (Good programming practice will usually require only
one save in the loop.)

One class of instructions with representatives in many languages presents
problems in restart protection. These instructions carry implicit read or
write operations, or both. A list-processing computer provides an implicit
store into 'the stack with each load from core, and an implicit read from
the stack with each write into memory. An instruction such as increment
both reads and writes a single cell; we term such an operation reflexive.
Other reflexive instructions are shifts, complement, absolute value, and
sign. The reflexive instructions are established by the instruction set and
must be considered separately for each machine. Some characteristics
are treated here since they are applicable to a spectrum of computers.

A reflexive instruction operating on a cell of volatile memory presents no
difficulty since restart protection is effected by the save. Some such in­
structions, notably absolute value and sign, may be repeated without alter­
ing the value of the cell, hence add no difficulty in the general case. Most
reflexive operations read a cell, alter the value, then write into the same
location in nonvolatile memory. In most applications, the necessary-and­
sufficient condition would then require a save during the execution of the
single instruction; the sufficient-only condition would always require it. The
object of the reflexive instruction may have been written since the last save;
in that case, the necessary-and-sufficient condition is satisfied without spe­
cial attention. Otherwise, returning to the previous save on restart would
cause the reflexive instruction to execute twice on the cell, leading to failure.
Software methods -- somewhat cumbersome -- may obviate the problem
through transfer to scratch pad, reflexive operation on the scratch location,
save, then storage. The remaining alternatives are to incorporate the save
within the reflexive instruction or accept the risk of interruption following
the reflexive operation but prior to the next save.

Because a list processor contains many implicit read and write operations,
we shall consider, this configuration separately. The hardware is assumed
to contain a nonvolatile list and a volatile pointer into the list to indicate the
present state. A load operation adds a value to the list and increments the
pointer; a store pushes the pointer below the previous location in transfer­
ring the word from the list. Any unary operation is reflexive, and one of
higher order (e. g. , binary or vector) is reflexive on one or more lower
cells and displaces the pointer. Finally, we shall assume that there is an
instruction COPYn which repeats the top n entries above the previous value
of the pointer.

- i74­

The top cell of the list is the most sensitive to reflexive operations. If it
lies above the saved location of the pointer, on restart it will be written
before it is read, hence is safe. Unfortunately, any write into the stack
below the saved location is prone to restart failure. The general case
has arithmetic operations and stores pushing the pointer down until it
penetrates the saved location. A subsequent store is generally safe since
most hardware would retrieve the value from the stack and -move the
pointer, but would leave the copied datum in the stack in its former posi­
tion. Any other stack operation entails a write into a nonvolatile (list)
location previously read. In most cases, the first such write below the
saved pointer will not have been written since the save, requiring the addi­
tion of a save instruction.

The 	following rules safeguard the list in a simple implementation:

f) 	 The only stack operation permitted below the saved pointer
is a simple store.

2) 	 An instruction which would violate rule i on execution must
be preceded by a save and a COPYn, with n at least equal
to the possible penetration of the instruction.

3) 	 A sequence of store instructions penetrating the saved­
pointer location must be followed by a save.

The particular instruction set of the computer dictates the implementation
required; but the condition which must be met remains inflexible. For
example, the HDC-70iP computer for Minuteman III returns from a sub­
routine with an instruction that restores the saved data to those prior to
the subroutine call. To preclude restart failure, no save instruction should
be incorporated into a subroutine, and no need for a save can be tolerated
in one. The coding required to remove the need for a save from the sub­
routine is extensive and costly, but without such coding there would exist
a possible failure point in the program.

Implementation of the constraints may take many forms, and should be dic­
tated by the application. If each entry point into a routine is a save instruc­
tion, that routine is isolated from the rest of the program; when more than
one programmer is working on the code, such isolation is highly desirable.
One implementation wvould call for the programmer to identify the separable
routines to be coded and for the compiler or assembler to insert a save in
one pass at each entry point and to add the necessary-and-sufficient saves
in a second pass. As an alternative, the sufficient saves may be inserted

-175­

throughout the program by the assembler; that course is preferred except
in a list processor, where stack operations should use the stronger condi­
tion. Figures B-i and B-Z, previously introduced, chart flow through an
implementation for each condition. The flow might be incorporated in sup­
port programs for any level of the development: compiler, assembler, or
post-coding analysis. Both the choice of level and the difficulty of incor­
poration are functions of the language, the host machine, and the pre-existing
support tools. In some cases (e. g. , languages with indexed instructions),
fully automatic insertion may be impractical.

Ground.systems may be less dependent than flight software on restart pro­
tection for life and ultimate success, but the financial penalty for non­
restartable programs is large. The save instruction may be added to the
present repertoire without increasing the size of the instruction set. It need
only be added to the hardware, software, or firmware implementing the pro­
gramming language for each jump instruction. It would then be implemented
before storage by adding a GOTO (next instruction) where needed. A penalty
is paid in the efficiency of the resulting program, since any implementation
of the save costs time and core, but many applications would find it profit­
able overall. The feasibility of implementation, like the desirability of pro­
tecting against all restarts, must be evaluated for each system considered.

The constraints outlined above have been applied to HDC-701 P Minuteman
III coding now under way, with some difficulty arising from the instruction
set employed. Had the requirements for restart protection been realized
prior to hardware design, a compatible instruction set might have been gen­
erated, reducing both the cost and the difficulty of coding.

It should be noted that application of the necessary-and-sufficient algorithm
provides analytic assurance of restart protection; no testing is required to
verify safety in the event of restart. Similar work has been undertaken in
the area of interruptibility by Bernstein and others2 but does not appear
to have been reduced to practice yet. With the massive increase in the cost
of software verification in recent projects, it is to be hoped that extension
of analytic tools can reduce the verification burden.

i. 	 A. J. Bernstein, "Analysis of Programs for Parallel Processing,"

IEEE Trans. on Electronic Computers, October 1966, pp. 757-763.

2. 	 C. V. larnamoorthy and M. J. Gonzalez, "A Survey of Techniques
for Recognizing Parallel Processable Streams in Computer Programs,"
FJCC Proceedings, 1969, pp. 1-15.

-176­

APPENDIX C
PROVING PROGRAM CORRECTNESS

The purpose of a program correctness proof is to show in a rigorous
mathematical fashion that a given program performs a desired function
and halts. (The word "function" is used here in the mathematical sense.)
A program is regarded as performing a mapping from the input variables
to the output variables. An essential requirement for a correctness proof
is a precise specification of the function to be computed. Without this spe­
cification the word "correctness" can have no meaning.

Current methods for showing that a program "works" are ad hoc and inher­
ently inconclusive. The usual technique is to observe the program's per­
formance on specially selected data, and to show that the program produces
the correct answer in these cases. in general, this proves very little about
the program's performance on other data, and all programmers can point
to cases where mistakes were found after the programmer had convinced
himself that the program was correct. A program correctness proof proves
that a program will perform correctly on all data, even if, as is the usual
case, there is an infinite or extremely large number of possible input data
sets. The amount of effort required by a correctness proof appears to be a
linear function of program size. As presently performed, program verifica­
tion is a function of the number of possible execution paths, and the effort
required to check all execution paths increases roughly exponentially with
program size.

It is critically important in discussing correctness proofs to distinguish
between the function cornouted and the algorithm (program) for computing
that function. The correctness proof demonstrates that a given algorithm
(program) computes a specified function. The word "correctness" must
not be extrapolated beyond the domain to which it applies. A correctness
proof does not show that the function being computed is the correct one
for accomplishing some desired goal. A correctness proof can only be
used to show that a program satisfies its specifications. The proof says
nothing about the correctness of those specifications. For example, if
one of the guidance equations is erroneous in the specifications for a mis­
sile flight program, a correctness proof will not detect the error.

C- i, THE SEMANTICS OF IDEALIZED PROGRAM STATEMENTS

At present, correctness proofs are formulated in terms of idealized algo­
rithms consisting of three types of statements:

-177­

i) Assignment statements
2) Unconditional branch statements ("go to" statements)
3) Conditional branch statements

In discussing the semantics of these statements, it is more convenient to
consider the flowchart form of an algorithm than the linear listing form.
In proving that an algorithm is correct, we make assertions at convenient
points in the flowchart. These .ssertions will specify relations which hold
between program variables. The "meaning" of a statement is operationally
defined as -the change from the assertions which are true before the state­
ment is executed into the assertions which are true after the statement is
executed.

A sample assignment statement is shown in Figure C-i. * If S is the set of
assertions true at point a, then

S /% (A = B + C)

is true at point b. A significant question is: What is the difference between
an assignment operator and an equal sign ? If a given program variable is
assigned a value only once in a program, then there is no difference.)I a
variable is assigned a value more than once, it is convenient for proof pur­
poses to regard each assignment as creating a new variable. For example,
the sequence

A -B

A*-A+I

is equivalent to the two equations

A,=B

A = A +1I

Sequence subscripts.will be used when a variable is assigned a talue more
than once. Assignment statements then become equations and their sequen­
tial ordering is rendered superfluous. If the variable is assigned values in
a loop, a variable sequence subscript is used. This will be considered in
more detail when loops are discussed.

A "go to" statement becomes merely a connecting line in a flowchart. For
example, the program sequence

*Figures appear at the end of the appendix.

-178­

Statement I
Statement 2
Statement 3

LI: Statement 4
Statement 5
Statement 6
go to Li

becomes the flowchart of Figure C-2. The meaning of the statement "go
to Li" is: if S is the set of assertions true before execution of the "go to"

statement, then S is also true at the point Li.

Conditonal branch statements are assumed to be of binary type, as shown

in Figure C-3. P is any predicate defined on the program variables; for

example (A + B > 0). If S is true at point a, S A P is true at point b and
S A P is true at point c.

C-2. METHODS FOR PROVING CORRECTNESS

In discussing the methods for proving correctness, it is desirable to dis­

tinguish three types of structures:

i) Straight-line segments

2) If P then X structures

3) Loops

Straight-line segments are treated by assigning sequence subscripts.
Assignment statements then become equations. The assertions true at a

given point are simply the collection of equations defined up to that point.

Consider the sequence

I<-B+J

A ~A + I
E -A

A <-I + 4

The flowchart with assertions attached is shown in Figure C-4. From the

fixed set of equations it is easily shown by simple substitution that

I -

E =B+C+i
A =5

- 79

The number of assertions is seen to increase with each new assignment

statement. However, substitution can be used to eliminate variables which

have been written over, in the case A I and A2 .

"If P then X" structures represent loop-free branching, as shown in Fig­
ure 0-5. The "X" may be thought of as any block of instructions, for example,
an ALGOL begin-end block. P is any predicate over the program variables.
V 0 is the vector of variables defined at point a. The block X performs a
mapping f fromV to V. If S is the set of assertions true at point a, then*

S A (V, =V O PV (V 1 = f(Vo))P)

is true at point b. Thus, to maintain consistent sequence subscripts, the

"do nothing" branch P is regarded as performing the operations V &V

i -o*

As a simple example, consider the program segment of Figure C- 6. At

point a the assertion is X, = A. At point B the assertions are:

X =A

(X2 = A) A (X i < 0) V (X z = -A) A (X i < 0)

From these assertions it can be concluded that

x2 X- IAI

Loops can be classified according to the number of entry and exit points.
We can further distinguish three classes of single-exit loops: test-first,

test-middle, and test-last. The classification is according to where the

exit test is in relation to the body of the loop. The test-first loop is

shown in Figure C-7. The loop index k is added for purposes of analysis

and proof. The dotted lines indicate it is artifactual. The assertions true

at point a are a function of the loop index, and are written A(k). Similarly,

since the variables in the predicate P are a function of k, the predicate is

expressed as P(k). On exit from the loop it is known that P(k) AA(k-i) is

i true, and P(r) is false forti r < k-i.

*The usual precedence rule for logical operators is employed, i. e., nega­
tion, conjunction, disjunction, in order of strong to weak. Also, the con­
junction symbol (A) is occasionally replaced by concatenation of operands.

-i80­

The test-last loop is shown in Figure C-8. On exit from this loop it is
<known that A(k) A P(k) is true and P(r) is false for i r, < k.

The test-middle loop is shown in Figure C-9. On the kth iteration of the
loop, A(k) is the set of assertions true at point b. On exit, it is known
that

A(k) AB(k - i) A P(k)

is true. Since the section B is not performed until after. the test, if exit
occurs the variables assigned values in B have the values assigned on itera­
tion k-I, but variables assigned values in section A have values assigned
on iteration k. Variables used in the predicate may be a combination of
values from section A and section B.

The single-entry, single-exit loop may then be modeled as in Figure C-10.
SO is the set of assertions true on entry to the loop; Se is the set of asser­
tions true on exit from the loop. The loop thus can be regarded as a black
box with a logical transfer function which converts S o into Se -

If a loop has multiple exits, the set of assertions that are trhe when each
exit is taken can be found just as for the case of a single exit. The
black box model for such a loop is shown in Figure C-i. At point a,
So (the set of assertions true on entry to the loop) is true. At point
bi, Bi(k) (the set of assertions true on taking the ith exit on the kth
iteration of the loop) is true. From a black box standpoint, a loop with
n exits is like an n-ary conditional branch. For such a loop, proof pro­
ceeds by determining the conditions Bi(k). Once these are determined, the
interior of the loop is no longer of interest. Its entire effect is expressed
by the transformation for SO to the Bi(k).

If a loop has more than one entry point, for purposes of analysis and proof
it is possible to split it into several single-entry loops for which the entry
is at the top. The technique will be illustrated for the example of Figure
C-iZ. A test-last, single-exit loop is shown, but the technique can be
applied to loops with multiple exits of any type. Entry i is at the top and
entry 2 is somewhere in the body of the loop. A and B are the segments of
the loop body above and below the second entry, respectively. For pur­
poses of analysis and proof, the single loop can be split into the two loops
of Figures C-13 and C-14. For entry i, the loop of Figure C-iZ is equiva­
lent to the loop of Figure C-j3. For entry 2, the loop of Figure C-12 is
equivalent to the loop of Figure C-14. Thus for middle entries, the phase

-i8i­

of the loop is shifted to produce a top-entry loop. By successively split­
ting loops and shifting the phase, a multiple-entry loop can be converted
into several single-entry loops with the entry at the top. These loops can
then be treated by the techniques already developed.

From a logical standpoint, the criterion for correctness may be regarded
as a theorem to be proved, with the statements of the program regarded
as the given. Rules of inference, such as substitution of equals, induc­
tion, and properties of numbers, are used to show that the theorem is
implied by the given.

C-3. EXAMPLES OF CORRECTNESS PROOFS

As a simple example, consider the following program segments:

I <- i

A <-- 0

Li: if (I > N) then go to LZ

A A-A+B(I)

S I-1+i

go to L I

LZ: halt

The variables I and A are assigned new values on each iteration of the
loop. For purposes of analysis, these variables are given the variable
subscript k. Proof statements are added to the program below and are
shown in braces.

A '0

I= i, A0 0t

Li: if (I >N) then go to LZ

P =- (-i N)

-i82­

A - A+ B(I)

f 4- 1+l

= Ak-i

Ik -- -i +I

go to Li

k =A + B(k)j

LZ: halt

N

A= E
r=1

B(r)

A nonrecursive definition of Ak is found by induction:

A0=0
AO0

A, 0 + B(i) = B(i)
IL

A2 =A 1 + B(2)-= B(1) + B(2)

k

Ak X B(r)

r-=I

Similarly for I,

I0=

I =1 0+i

Ik= k+ i

On exit, P(k) istrue, i.e., Iki>N or k> N.

But P(k-i) is false, i.e., I 5 N or k-I N. If N is a nonnegative

integer, k - i N.

1=1

-183­

On exit,

k- i
=A Alki ' 	 E B(r)

r= i

or

N
Az B(r)

r= I

One aspect which has not been mentioned is the halting problem. To show
that a program will halt, it is necessary to show that for every loop in the
program the exit test is satisfiable after some finite number of iterations.
From the theory of recursive functions, it is known that the halting problem
is in general undecidable; that is, there exist programs for which it is
impossible to predict halting. For the vast majority of practical programs,
however, showing that an exit test will eventually be satisfied is straight­
forward,. In many cases loops are performed a fixed number of times, i. e,
DO loops in FORTRAN. For loops with a potentially unbounded number of
iterations, mathematical convergence theorems may be applicable. If the
proof that an exit test is satisfiable is not apparent, it should be the respon­
sibility of the programmer to show that an infinite loop cannot result. It
should not be the burden of the verification analyst to show that an infinite
loop can occur.

As a second 	example, a proof will be given of the logical correctness of a
simple sorting routine. The flowchart is shown in Figure C-15. The
proof will be presented in terms of the flowchart. However, it is also
possible to present the same proof by inserting the proof statements at
appropriate points in the program.

The program 	operates on a vector of N elements A(i), A(Z), ... , A(N),
rearranging the elements so that A(i) is the smallest and A(N) the larg­
est, with values increasing monotonically from left to right. In rigorous
form, the criteria for correctness are:

eA__ in) 	 -Aout)

A(k) < A(k + 	1) for I < k < N - i

The first condition merely states that all the elements of the initial vector
are present in the final vector. The second condition states that the values
do not decrease in value from left to right.

- 184­

For the proof, the inner loop is treated first. Indices are assigned to
obtain the diagram of Figure C-16. For k = 0, it is true that

A(IMfl k) A(A) where M Y ! 9 M + k

To show that this assertion is true for general k, we show that its-validity
for k implies validity for k + i.

Jk=M +k

so P 3 (k) = JA(M + k) < A(IMINk j)}

and P3k(l+i) = {A(M + k + i) < A(IMINk)}

We assume that

A(IMINk) A(Y) for M < Y M + k

The instructions between point a and point b in Figure C-15 form an if P
then X structure, and so at point b it is true that

(IMINk = Jk) P3 v (IMINk = IMINk- i P3

Consequently, on the (k+I) Stiteration,

IMINk+1 = Jk+1 = M +k + I

if

A(M + k + i)< A(IMINk)

and hence

A(IMINk+i) = A(M + k + i)

If

A(IMIN) A(M +k + 1)

then

IMINk+ = IMINk

-185­

and hence

A(IMIN k+i) A(M + k + i)

Hence, on the (k+i)s t iteration at point b,

A(IMINk+i) < A(M +k + 1)

and so

A(IMINk+1) 9 A(A)for M : Y s M +k + i

Thus for the general k,

A(IMINk) A(Y) 2 M + kk for M !

=On exit, Jk N or M +k = N. So k = N - M, and hence

A(IMIN) A(L) M!9 N

The inner loop, together with its initialization, is thus reduced to this single

statement.

The entire sorting routine can now be represented as shown in Figure C-17.
In closed form, Mk = k + i. The last four statements in the body of the loop

can be reduced to

Ak(IMINk) = Alk- (k)

After the first iteration,

Ai(s) s A(s+i) for i < s !9 k for k = i

since

A(I) = A(IMIN) A(1) for I Y N

and the swap of

A(MIN)k_- A(M)

-i186­

preserves the relation

(ac-A._) (acAk) fork =

Again we assume this is true for general k, and show it is true for k+t.

A + 1 (k + 1) = Ak(IMINk + i) < Ak(Y) for k + 1 e < Nk

. A k + i (k+ + i +)

and so

A k + 1 (s) < A k + (s + i) for i s -<k + I

Since

(QeA) (aeA + 0

then

(ae.n)i (ceA k + 1
)

On exit,

Mk N+I

k+ i =N= I or k=N

So

AN(s) < AN(s + i) for i < s N

and hence

Aout
= AN

(aeA- (aeAut

-187­

While the examples of this discussion are relatively simple, it is important
to point out that the same principles -will apply to programs of arbitrary
size. London ("Proving Programs Correct: Some Techniques and Exam­
ples, " BIT, Vol. i0, 1970) reports that programs of realistic size have
been proven correct using a proof technique which is actually less sys­
tematic than the method presented here

-188­

I a

A <-B + C

jb

Figure C-I. Assignment Statement

Statement 1 I

Statement 2

-tv[Statement 6

Statement 3

t

Stat~ement: 6

Figure C-Z. "'Go To" Statements

-189­

Figure C-3. Conditional

Branch Statement

AA<-B+GC

A 1 =B+C
A2 = A + I

E<-A+ A = A2
° Ai = B + C

I=i____

A Z = Aj + I
E = A,-I A2

B4

A z = Al + I

~A 1 =B+C

E =A 2

A 3 = I + 4
A = A 3

Figure 4. Straight-Line Segments
-190­

a

p I? p

bi

Figure C-5. "If P then X" Structures

X -A

P
? >x< 0

-1i

Figure C-6. Example of "If P hen X"

-i91­

k-O

"_j

PW

Figure C-7. Test-First Loop

I -- 0 I _'
k- 0

lk-k. . +iL-- ..

-A

P (k) Exit

< P

Figure C-8. Test-Last Loop
- i92­

a s0

k-

L
b S

e

A Figure C- 10. Single-Entry,

Single-Exit Loop

aP

Exit

a

bb b

Figure G- 11. Multiple-
Exit Loop

Figure C-9. Test-Middle Loop

-193­

Entry i

f

A

2 Entry 2

B

1 2

A B

Figure C- 12. Composite

B Loop Example

_
P

Figure C-j3. Entry I Figure C- 4. Entry Z
Equivalent Equivalent

-194­

Start

Mel

M - 1
PZ

M N-M+I So

Te A(M a

A(M)e - AI I

Figure 0- i5. Sort Example
- I95­

J 0 =M

IMINO = M

(k = 0)

i N? (k k+1)

P 2 j k = k-I
P3 = fA(Jk) <A(IMINk-)

(IMINk = k) P 3 v (If1Nk = IMINki)-P 3

Figure C-16. Sort Example Inner Loop

-196­

'Start

M -- J

OP

Ak-I (IM]N k) < Ak-L(Y) for Mk- e N

Tk = Ak-I (Mk-1)

Ak (Mk- d = Ak- IMI k

Ak (IINk =

IMk= "ki+

Figure C-17. Sort Example Outer Loop

-197­

255 w fifth street, san pedro. california 90731 * (213) 831-0811

'075 camino del ro south, san diego, california 92110(714) 291-4240

6231 leesburg pike, falls church, virginia 22044 - (703) 534-7087

