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1. INTRODUCTION

"This report describes a hardware/software study of the Space Shuttle data
'r;{énagement system. The study purpose. was to identify at an early stage
in system development those computer hardware characteristics and soft-
ware development approaches that will have substantial impact on software
costs and schedules. The underlying motivation was to prevent software
development from becoming the pacing item in Space Shuttie system reali-
zatiom.

The study addressed three aspects of system development. An analysis
of the overall Space Shuttle objectives, mission requirements, and base-
line hardware configurations determined the nature and magnitude of the
computational functions that the data man-a.gement system will be called
upon to perform. Tradeoff studies investigated the software advantages
and disadvantages of alternative computer hardware configurations and
archite¢tures; single=computer (or simplex), multicomputer, and multi-
processor configurations were examined, together with detailed architec-
tural -fea.:_t‘ili'es that could be used in each., Finally, support hardware/
software studies investigated means of facilitating flight software develop-
ment. Two arcas were addressed: high=order languages in which the
flight software might be coded, and simulations and other analytic tools
that might be used in verifying its correctness.
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2. SUMMARY

This section very briefly abstracts the study conclusions and recommenda-
tions and then goes into somewhat greater supporting detail on the individ-
ual study areas.

2.1 Conclusions and Recommendations ;

The functionzl analysis revealed-that some subsystem hardware configura-
tions and system requirements pose unreasonable computational loads. The
present overall range of computational requirements is extremely wide and
" must be narrowed if meaningful decisions are to be made as to the com-
puter configuration. Recommendation: The functional analysis: should be
continued. )

Available data permitted basic domputational requirements to be estimated
for maximum, moderate, and midimum subsystem hardware configurations.
From these requirements it was concluded that a simplex computer would

be adequate for the minimum computational load, but that a multicomputer

or multiprocessor configuration would be required for the moderate or maxi-.
mum loads. '

The computer configuration analysis showed that software costs would be
lower for a centralized computer organization than for a distributed or fed-
erated organization. It was further determined that effective separation of
a program's functional elements could be accomplished by software methods
in a centralized organization, just as separation would be accomplished
physically in a federated organization. Recommendation: A centralized
computer organization should be used.

Studies of-executive types as part of the computer configuration analysis
showed a polling executive to be simpler to verify than an interrupt execu-
tive, but not as flexible or responsive to likely system requirements. Anal-
ysis of verification problems indicated that control of interrupt,é}'and of in-
terrupt levels could minimize the verification problems associated with an
interrupt 'executive. Recommendation: An interrupt executive should be
utilized, suitably restricted as to interrupt occurrences and levels.

Further investigation of verification problems indicated that a‘-s‘.'implex
computer configuration would permit the simplest and easiest software
verification. Recommendation: If the minimum computational require-
ments prevail, a simplex computer should be utilized.

3.
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A multiprocessor configuration with a distributed executive was found to
result in slightly simpler software than an equivalent multicomputer, and
in much simpler software than a multiprocessor with a fixed or floating
executive, Recommendation: A multiprocessor configuration with a dis-
tributed executive should be utilized in the event that the computational
requirements exceed the capabilities of 2 simplex computer.

In analyzing the architectural aspects it was determined that those most
significant in terms of software costs would be adequate memory, speed,
and input/output margins. Recommendation: Memory, speed, and input/
output margins of at least 40% should be provided in the hardware. Effec-
tive management controls will be required to prevent this margin from
being utilized for new and possibly unneeded functions.

Software costs can be reduced by from 5 to 10% if other desirable archi-
tectural features are provided. Recomrmpendation: The computer should
have the following characteristics:

® Adequate instruction set, including floating-point
arithmetic

® Hardware memory locks or their equivalent

® Extensive hardware error~checking, diagnosis, and
correction facilities

¢ Save and restart facilities

® Interrupt-control facilities

Many additional architectural aspects individually have a small effect but

in combination can significantly influence software costs. Recommendation:
A computer having the features listed below on the left should be selected in
preference to one having the characteristics listed on the right:

Desirable Undesirable

Auxiliary memory

Virtual memeory

Interleaved memory

Limited addressing range

. Buffered input/output Unique or unusual instructions
Partial-word addressing Variable-length instruction

. General-purpose registers and data formats

. Read-only/read-write
memory partitioning

. Uniform instruction
execution times

The programming language investigation showed that the use of a high-
order language will reduce software development costs, even though the

I,



language selected might not be completely suitable for all functions. The
suitability of the compiler was found to be more important than that of the
language itself. This is s0 because developing a completely efficient, cor-
rect, and comprehensive compiler for the Space Shuttle application will
take a relatively long time. Portions of the flight software -- notably the
executive -- will still have to be coded in assembly language, and verifica-
tion will have to be performed at the assembly language level. Recommen-
dation: A high-order language should be used, beginning as early as pos-
sible. Attention should be concentrated on compiler development rather .
than on further language development or refinement.

In the verification studies, the conclusion was reached that simulations
will continue to be the most important verification tools. However, the
anticipated speed, size, and complexity of the flight computer configura-
tion will result in corresponding increases in simulation execution times,
which, for interpretive simulations, will approach unacceptable amounts.
Recommendation: Interpretive computer simulation diagnostic methods
and outputs should be improved to maximize the information obtained from
each simulation run. Further, hybrid simulation techniques should be ex-
tended to yield information now efficiently obtainable only from interpretive
simulations.

Another conclusion regarding verification was that each type of simulation
is suitable only for particular roles, and problems detected by one type
may require the use of another for adequate diagnosis., Recommendation:
A master test plan should be developed and impleménted covermg simula-
tion use and comparison.

Finally, simulations can demonstrate the existence of software errors
but cannot absolutely prove their absence. One technique was developed for
designing programs whose correcthess could be proved, and ancther for
proving the correctness of relatively simple programs. Recommendation:
These techniques should be further developed, and additional techn:.ques
should be :anestlgated .

2.2 Funétional Analysis

Because hardware definition was incomplete and changing during. the func-
tional analysis, ‘it was not possible to establish firm and detailed quantita-
tive measures of the computational load to be imposed on the data manage-
ment system. The analysis did illustrate how otherwise reasonable sub-
system hardware: configurations .and system requirements, notably those
of the docking laser and the displays, can result in an unreasonable
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computational load. Sufficient data were available to permit basic compu-
tational regquirements to be determined for three possible Space Shuttle
configurations:

* - A maximum system able to satisfy all mission require-
ments and providing complete support and status monitor-
ing for all associated subsystems

L A minimum system able to satisfy the basic mission re-
quirements but providing for minimum onboard checkout
and having many functions performed by hardware distinct
from the central computer facility

¢ A moderate system providing capabilities midway between
those of the two extremes

The primary computing requirements for these three configurations are
summarized in Table 1. All requirements for the minimum configuration
are within the capabilities provided by existing simplex computers. How-
ever, the computational speed required for the moderate and maximum
configurations cannot be provided by either existing or foreseeable sim-~
plex computers: a multicomputer or multiprocessor would be required to
provide the necessary effective computational speed.

For all Space Shuttle configurations, the table indicates only the minimum
necessary capabilities. It does not include provision for expansion to sup-
port new subsystems and additional mission requirements, nor does it
provide allowances for software inefficiencies. Even though the 24-bit word
size would be adequate for the minimum configuration, a larger word size

Table 1. Summary of Computational Requirements
for Three Space Shuttle Configurations

Configuration
Parameter Minimum | Moderate | Maximum
Total memory size (thousand words) 43 120 250
Word size (bits) 24 32 32
Add time (microseconds) 25 .25 .10

wba



would nearly eliminate the need for double-precision operations and hence

is preferable. As regards memory size and computational speed, the archi-
tectural aspects studies indicated that adequate margins are the most im-
portant factors in determining software costs, Capacities exceeding the
minimum values listed are mandatory if software costs are to be minimized.
An allowance of'40% for the inefficiency component alone would permit use
of a high~order language to simplify program coding and, in addition,
executive design and programming standards that simplify software verifi-
cation.

The range of requirements indicated for the three possible configurations
is extremely wide. It must be narrowed so that decisions concerning the
computer configuration can be made in a way that minimizes the cost and
difficulty of software development. Therefore, the functional analysis

should be continued through the completion of the flight software develop-
ment. )

2.3 Computer Configuration

The software problems inherent in a computer system in which most of the
computational capability is concentrated in a central facility were first
contrasted with those inherent in a system in which the computational capa-
bilities are in large part distributed to the subsystems., In the central-
ized system, the relatively small amount of processing performed at the
subsystem level would largely be restricted to data formatting, compac-
tion, and limit checking, and to input/output buffering. However, in a

few instances -- for example, a strapped-down inertial reference unit -~
more complicated computations would be performed at the subsystem level.
In a distributed, or federated, system, the ceniral computer facility would
do significantly less processing; its principal task would be to control and
coordinate the activities of two or more computers that were both logically
and physically closely linked to particular subsystems or sets of subsystems.

A centralized system would permit a substantial majority of the software
to be developed for a computer architecture that facilitates both program-
ming and verification, and it would simplify the communication between
related functional programs. A federated system, on the other hand, would
greatly complicate the problem of allocating computational resources and
would be less flexible. Therefore, a centralized system would result in
lower software production costs than a federated system. The isolation
that prevents a program in one computer from erroneously interfering with
a program in another can be achieved in a centralized system by proper

T
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The executive, whether polling or interrupt, is in any event simpler to
develop and easier to verify for the simplex computer than for the multi-
computer or multiprocessor. For these two configurations, significant
executive design aspects are the location of the executive and tasks and
the assignment of processors to tasks. In the distributed-executive
scheme, which is applicable to both configurations, each computer or
processor has its own executive and tasks. In the multiprocessor/fixed-
executive scheme, the executive is assigned to one processor; this one
executive then dynamically controls the execution of all tasks, allocating
them to processors as dictated by the computational load. In the multi~
processor/floating-executive scheme, both the executive and the tasks
are allocated according to the mix of tasks in execution.

Although the fixed and floating executives offer increased flexibility and
performance, the greatly increased verification problems they presenf led
to the conclusion that the distributed executive is more suitable for a Space
Shuttle multiprocessor configuration. As regards distributed executives

for multicomputer vs. multiprocessor, the only significant difference lies
in the mechanism for communicating between tasks allocated to different
computers or processors, In the multicomputer, this communication must
be done through the normal input/output operations, while for the multiproc-
essor it is accomplished by simple, direct memory access methods,

In terms of minimizing software development difficulty and cost, the sim-
plex configuration would be best. A simplex configuration may not be suf-
ficient, however, if anything more than the minimum functions are to be
performed by the data management system. Indeed, great increase in soft-
ware development difficulty will occur if a simplex configuration is chosen
that provides inadequate or barely adequate computational capabilities., Of
the two remaining configurations, the multiprocessor with a distributed ex-
ecutive would result in slightly lower software development costs than the
multicomputer, Therefore, it is recommended that a simplex computer he
selected if it can provide the necessary computational capability; this is
likely only if the Space Shuttle hardware configuration and system require-
ments are close to minimal. If more computational capability is needed,
the multiprocessor configuration with a distributed executive should be
chosen in preference to a multicomputer configuration,

The multiprocessor with fixed or floating executive has been excluded be-
cause of the verification difficulties these two executive designs present.

Indeed, verifying the executives for all of the configurations is one of the
most difficult problems that will be encountered in software development,



Enough extess computational capability must be provided so that program-
ming standards can be employed that, although increasing the software
overhead, reduce€ verification difficulty. That is to say, the selected com-
puter or computers must provide an adequate margin of compuational capa-
bility so that tradeoffs between program efficiency and verification ease can
always be decided in favor of the latter.

2.4 Computer Architecture

In this portion of the study, the advantages of specific architectural char-
acteristics were identified and their impact on the cost and difficulty of
Space Shuttle executive and task program development and verification
estimated. Although hardware costs were not explicitly included, only those
architectures that have been demonstrated or could practicably be imple-
mented were considered,

The basic criteria influencing software development and verification dif-
ficulty and cost were defined in terms of the suitability or adequacy of the
following classes of architectural features:

Memory

Execution speed

Input/output facilities
Instruction set

Word format

Register organization

Restart and self-test provisions
Interrupt-handling facilities

Minimum capability levels with respect to the first three criteria are man-
datory if the software is to be produced at all, After the basic requirements
have been satisfied, the most important characteristics were found to be the
memory, speed, and input/output capability margins that simplify both cod-
ing and verification,

Coding and verification costs increase sharply as the memory usage and ex-
ecution time-approach the available capabilities. On the other hand, given
sufficient memory, speed, and input/output capabilities, almost any instruc-
tion set, register organization, and word format can be used without drasti=
cally increasing software costs, Providing surplus capacity poses a problem,
however. Unneeded functions may be added simply because the capacity ex-
ists, leading to an even larger program that may then have to be tailored to
match what turns out to be a barely adequate computation capability. If is
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therefore vital that effective management controls be imposed so that the
margins provided will be utilized for reducing rather than increasing soft-
ware costs,.

While no other architectural aspects were found to have an impact equal to
that of adequate memory, speed, and input/output margins, appreciable
reductions in software cost would result from a computer design that incor-
porates a significant number of those remaining. As an example, provid-
ing hardware floating-point arithmetic would reduce the size of the software
by up to 5%, and this reduction would translate into even greater reductions
in programming and verification difficulty. As another example, providing
hardware memory locks and special save and restart instructions would
have a smaller impact on program size but just as significant an impact on
verification ease: many operations that otherwise would have to be checked
individually would be accomplished automatically by the hardware, Finally,
some aspects, such as interrupt-control mechanisms, would enable the
adoption of software design approaches that would otherwise be impossible,

It is recommmended that the computer configuration have memory, speed,
and input/output capability margins of at least 40%. It should also provide

the following architectural features, each of which will affect overall soft-
ware costs by about 5 to 10%: | '

A suitable instruction set, including hardware floating-
point arithmetic

® Hardware memory locks, memory bound registers, or
similar hardware protection mechanisms

Extensive hardware error-checking and diagnostic facilities,
with appropriate feasible correction capabilities

© Provisions for saving computer registers and other status
information and for restoring these registers and the status
with a minimum of program steps in the event of a computer
malfunction

° Capability for enabling and disabling interrupts, both abso-
lutely and according to at least three priority levels

Besides the architectural aspects already discussed, the overall software

costs are affected to a2 lesser degree by the presence or absence of other
features, Verification problems would be eased by providing partitioning

wli-



into read-only and read-write segments, uniform instruction execution times,
and buffered input/output. Capabilities for partial-word addressing and
general-purpose registers would be beneficial because these features reduce
data handling. With regard to the way in which an adequate memory margin
is achieved, a computer architecture that used an auxiliary memeory or some
form of virtual memory would be less desirable than one that provided an
eguivalent amount of uniform main memory. Interleaved memory is simi-
larly undesirable; even though it provided adequate speed margin, verifica-
tion problems would ensue because repeatability of program execution

times would be seriously compromised, Other architectural aspects such
as limited addressing range, unique or unusual instructions, and variable
instruction and data formats are undesirable because they require rmore
effort on the part of both programmers and verifiers.

There are still other architectural aspects that are of even less concern
in terms of software development costs, but of great concern to the hard-
ware designer -- so much so that they may determine whether the more
important software-impacting features can be incorporated at all. A fa-
cility for microprogramming is such an aspect. While the instruction set
is software-important, the means of providing suitable instructions --
whether by microprogramming or hardwired logic -~ is of no significant
concern to the programmer.

2.5 Programming Languages

The suitability of six high-order languages for Space Shuttle onboard software
development was investigated in terms of such characteristics as the amount
of the problem that could easily and effectively be stated in the language,

the control the language affords over computer hardware operations, and
the extent that the language can be utilized throughout the software develop-
ment cycle. Of the six languages, four were designed especially for aero-
space gpplications: CLASP (Computer Language for Aeronautics and Space
Programming), SPL Mk II (Space Programming Language Mk II), SPL Mk
iV, and HAL. Two -- FORTRAN and PL/I ~- were primarily designed for
genéral-purpose applications. Compiler considerations were also investi-
gated, with the most influential found to be the efficiency and correctness

of the machine code generated, the diagnostic facilities provided, and the
compiler development cost and time.

FORTRAN was found to have few advantages and many disadvantages for
enboard software development. A smaller portion of the software could
be coded in CLASP or SPL Mk II than in the more comprehensive languages
HAL, SPL Mk IV, and PL/I. However, with the simpler languages object
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code effunency would be greater and the cost of compiler developnyent
smaller. The executive program would in any event have tc be written

in assembly language: the simpler languages lack the necessary features,
while the compilers for the more comprehensive languages would be un-
able to generate the highly efficient object code required, Overall, it was
concluded that use of any of the aerospace-oriénted languages -to the extent
possible would reduce software development costs. The problem of com-
piler efficiency, the principal obstacle to the use of a high-order language,
can be reduced by providing adequate memory and speed margins in the
computer configuration.

Accordingly, it is recommended that a high-order language be used. Even
though ‘they have deficiencies, any of the existing aerospace-oriented pro-
gramming languages would be appropnate, with their compilers being
more significant than the language capabilities as such., Because of the dif-
f1cu1ty in obtaining a completely suitable compiler, particularly for the
larger languages SPL Mk IV and HAL, memory and speed estimates should
provide for object code 1neff1c1enc1es of about 15% and, for the reasons
stated above, the executive program should be coded in assembly language
In view of the possibility that a new compiler will in some cases generate
erroneous object code because of its own deficiencies, verification must
continue to be done at the machine or assembly code level. Substantial
verification benefits can be achieved, however, because the compiler can
be so implemented as to.enforce conformance with programming standards
and conventions,

2.6 . Verification Tools and Techniques

In this part of the study it was determined that the three types of simulations
used in previous aerospace software verification activities ~- engineering
simulations, interpretive computer simulations, and hybrid simulations --
will continue to be the most important verification tools for the Space Shuttle
onboard software. However, meansof improvingthesetools and their use are
required. A deficiency of interpretive simulations has always been the ratio
between simulation time and real time, and with the much faster Space
Shuttle computer system this unfavorable time ratio will become even worse.
Two partial solutions to this problem were conceived, First, the inferpre-
tive simulation should contain more extensive and automatic diagnostic and
information~gathering features that, at the expense of a slight increase in
simulation time, would permit more to be learned from each simulation run,
“thus reducing the number of runs required. Second, the hybrid simulation
..8hould be improved so that' it can provide much of the detailed information

- about internal program behavior that presently is obtained only through an
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interpretive simulation., One means of making this possible is to design
the flight computer so that its internal operation can be monitored by an-~
other diagnostic computer that would be a new part of the usual hybrid
simulation setup.

Of course simulation tools cannot be used to prove the absence of program
errors; they can only demonstrate an error's existence. In view of the
large number of exrors possible in the large and complex Space Shuttle on-
board computer program, analytic verification methods should be developed
to aid in proving program correctness and to indicate program design meth-
ods that would result in programs whose correctness could be demonstrated.
Two such approaches were explored: one defining the constraints that must
be satisfied to achieve program correctness when a restart occurs, and one
to prove program correctness for a limited number of program structures.

It is recommended that improvement of simulation tools and techniques be
pursued, and that a master test plan be defined for comparing simulation
results and validating the simulations themselves. Further, the develop-
ment of means for demonstrating program correctness should also be pur-
sued and the tools integrated into the Space Shuttle software development
and verification procedures,

- 14-



3. " FUNCTIONAL ANALYSIS

The analysis of the functions to be performed by the Space: Shuttle computer
system was undertaken to establish its desired characteristics in terms of
the computational load to be imposed 6n it. Computational Toad can be esti-
mated in terms of the computer memory required, the number -of instruc-
tions that must be executed in a given interval, and the 1nput /output rates
that must be maintained. Also important are factors relating fo the com-
putational tasks: their relative priorities, their periodicity, t}ie amount of
intertask communication, and the number and-attributes of routlnes shared
between tasks.

The analysis began by assembling and evaluating available reference data.
Where the available documentation was incomplete or inconsistent, assump-
tions were made as to the most probable hardware configuration, In some
areas, models were constructed and the range of requirements for alter-
native’ conflguratlons was determined; in others, experience w1th existing
systems was sufficient to allow the expected behavior of their Space Shuttle
counterparts to be determined. The most detailed analysis was performed
on the guidance, nav1ga.t10n ‘and control portions of the system, since
these’ offered both the greatest computational load and the most comprehen-
sive source material.

It was not possible to establish firm and detailed functional requirements;
rather, the functional analysis indicated the rough order of magnitude of
comp_uta.tlpna.l requirements. At this stage of Space Shuttle system-defini-
tion, the computational load ranges from one close to that of Apollo to one
that large ground-based computers of today would have difficulty in sup-
porting. As the interfacing hardware becomes firmer, extension of

the functional analysis would allow requirements to be determined with
greater realism,

A major computational function not analyzed in the present study is the mal-
function (or error) diagnosis, circumvention, and system reconfiguration
necessary to meet the fail-operational /fail-operational /fail-safe. require-
ments. A preliminary survey of this function indicated that the software
needed to implement this requirement could double the computational load,
while the far greater number of possible sequences of program execution
introduced by this software could increase by an order of magnitude the
time and cost required for verification, The added information- afforded

by further hardware design definition should permit meaningful: analysm

of reconfiguration requlrements.
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Overall computing load estimates were developed for three conceptual con-
figurations «- minimum, moderate, and maximum -- defined as follows:

L Minimum Configuration: This system provides for a
gimbaled inertial unit or a strapdown syster with its own
processor; a basic set of sensors (e.g., star trackér or
telescope and RF¥ -only navigation); limited onboard target-
ing; basic telemetry without data compression; displays
essentially unprocessed in the central unit; status monitor-
ing for guidance and control and other subsystems; and an
executive appropriate to a multiprogrammed simplex com-
puter with an interpretive language.

L Moderate Configuration: This system allows for a strap-
down inertial unit processed in the central computer;
unitized pointing platform and docking laser (with mini-
mum filtering); dual propulsion systems (main and orbit
maneuvering) with active load alleviation; extended on-
board targeting; downlink data compression; a pair of
redundant unified displays; status monitoring for the ex-
tended sensor set and for single-parameter checks of
interfacing systems; and an advanced simplex executive
without interpreter,

9 Maximum Configuration: This system assumes a strap-
down inertial unit processed centrally; the full sensor
complement with a state-of-the-art filter; adaptability to
three propulsion systems (including turbojet} with active
load alleviation; onboard targeting for arbitrary rendez-
vous; data analysis including pattern recognition and multi-
parameter trend analysis; dual, independent unified displays;
full monitoring of status of avionics and all other recon-
figurable systems; and a multiprocessor executive without
interpreter.

The computational requirements for these three configurations are presented
in Table 2. Supporting analyses for the individual hardware subsystems
follow in the remainder of this section. These analyses include hardware
configurations supplemental to the configurations of Table 2; and some sub-
systems, notably the display subsystem and the docking laser, can result

in computational loads far in excess of the estimations in Table 2. That

is, the data in Table 2 represent the best estimation of what actually will be
required for Space Shuttle.
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Table 2. Computational Requirements for
Three Space Shuttle Configurations

Configuration
Parameter -
Minimum | Moderate Mazimum
Total memory size {thousand words) 43.0 120 250
Inertial reference 2.5 i5 i5
Navigation sensors 2.5 20 50
Guidance, navigation, and
control 10.0 40 : 50
Telecommunications 0.5 2 20
Display and control 1.5 15 30
Guidance and control status
monitoring 1.0 8 10
Other subsystem status
monitoring 10 10 40
Executive, interpreter, and ‘
overhead 15 i0 35
Word size {(bits) 24 32 32
Add time (microseconds) 25 0.25 0.10
3.1 Inertial Reference

Two major classes of inertial references exist, distinguished by the nature
of the gyro integration. A gimbaled system implicitly integrates attitude
changes by maintaining a stable member, while a strapdown system main-
tains its reference as a set of data in the computer, which performs an
electronic (normally digital) integration. The strapdown system, with its
explicit computer integration, is more computationally demanding than the
gimbaled system.. Its higher reliability and lower cost make it the more
likely selection for Space Shuttle.

The computational requirements of four strapdown systems representative

of the state of the art are summarized in Table 3. The Lunar Module Abort
Guidance System (LM/AGS) was self-contained except for alignment {derived

-17=



Table 3. Computational Requirements for
Strapdown Inertial References

System
Parameter
’ ILM/AGS ASST RSS | MIT/SIRU
Memory capacity (words) 4096 2150 13,130 16, 384
Memory cycle time (psec) 5.0 4.0 1.75 0.96
Word size (bits) 18 18 24 16
Number of instructions 27 -- 43 --
Add time (psec) 10 -- 3.5 1.92 .
Multiply time (psec) 70 - 14 . 5.76
Major cycle interval (sec) 2 i-2 i 0.5
Minozr cycle interval (msec) 20-40 10-20 | 40 | ST

from memory of the primary system). The Advanced Supersonic Transport
(ASST) strapdown system incorporated redundant sensors and limited logic
for failure detection, diagnosis, and correction, The Redundant Sensor
System (RSS} employed more elaborate reconfiguration logic, increasing
the software requirements considerably., Of all the four systems, the MIT/
SIRU {Strapdown Inertial Reference Unit) most closely approximates Space
Shuttle requirements,

The MIT/SIRU uses six gyros and six accelerometers aligned perpendicular
to the faces of a dodecahedron. The computing capacity indicated for the
MIT/SIRU is capable of performing the integration and formatting required
of any strapdown system, plus fail-operational/fail-operational reconfigura-
tion in its entirety. The logic to support reconfiguration for a third level

of failure detection and diagnosis might be developed, but would be gualita-
tively different in form and would impose a very large load on the computing
system. Instead of the extra software, a second SIRU may be used. That
choice also protects against catastrophic failure, so is preferred. If the
dual system is used, the computing load would be approximately double

that shown in the table.

The primary information to be supplied by the inertial reference to the data
management system is the attitude of the vehicle in inertial space. The
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initial form of gyro data is the pulse representing an increment of attitude
about that gyro's input axis. In any strapdown system, these pulses must
be accumulated and transformed through rotation of coordinates- to derive

- inertial attitude. The nonorthogonal arrangement of SIRU axes complicates
the rotation.algorithm but'c‘ioes not alter the basic task.

In dividing the attitude determination between local and central p}ocessors,
three choices exist: local formatting only, local accumulation and format-
ting, or full local attitude determination. If local processing is restricted
to formatting, major burdens are imposed not only on the central processor
but also on the data bus, which must transmit up to 1600 pulses per second
per sensor. By accumulating the pulses in a local buffer, the data rate may
be reduced without adding major computation. During the 10-msec minor
cycle, 16 pulses are accumulated per sensor and may be transmitted with
only 4 bits. They may be packed into words of length established by the data
bus design; the effective rate is fixed at 48 bits per cycle. Additional bits
are required for sensor status data.

" Full use of a local processor is desirable for the SIRU because the computing
burden is high: The coordinate conversion must be performed every 10 msec,
whether executed in the local processor or the central computer. A conven-
ient form for the output of attitude from the local processor is a set of
quaternions (four 16-bit words). Although local coordinate conversion
increases the traffic on the data bus, the saving in central computing is felt
to be worthwhile. The accumulated velocity increments may also be trans-
formed into an inertial frame in the local processor (however, subsequent
integration to a state vector in the local processor would require external
data and thus is undesirable). The transformed velocity increment may be
packed into a single 16-bit word for each minor cycle. In such application

of the local processor, an interface is maintained with the data bus equiva-
lent to that of a gimbaled platform with accumulated AV. Development of
suitable alignment algorithms may then permit central routines to be taken
from programs proved on earlier projects.

In any division of computing burden between central and local units, status
data must be provided for reconfiguration. The specific data required,
their rates, and their processing requirements are not yet known. it is
assumed that the local processor can perform high-rate filtering in the pre-
ferred configuration and that two 16-bit words per minor cycle will suffice
to maintain the central files. In the absence of local processing, both high
data rates and extensive central processing would be needed.
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3.2 Navigation Sensors

The attitude and state vector estimates maintained by the inertial reference
must first be established and should be updated through the use -of special-
purposge navigation sensors, A wide range of sensor systems has been
considered for Space Shuttle. The simplest configuration in terms of com-
puting load involves radio frequency transponding from known ground loca-
tions. The heaviest computing load is that for a system employing three
sensors -- star tracker, sun sensor, and horizon scanner -- mounted on a
unitized pointing platform having two degrees of freedom and driven by
computer commands. Computational requirements for such a system are
summarized in Table 4 and were derived as follows.

Initial alignment of the inertial reference will require stabilization of the
spacecraft, acquisition of the sun and the horizon by the sensors, driving
the platform to put each of at least two reference stars sequentially in the
star tracker field of view, and processing tracker error signals, platform
azimuth and elevation, and spacecraft attitude (from the inertial reference)
for each sighting, Alignment will be confirmed confirmed driving the
platform to at least one additional reference star and verifying its location
in the star tracker's field.

Occasional star sightings will be made under computer control to maintain

alignment, and the altitude-of’'a sequence of reference stars above the hori-
zon will provide position data. Operationally, one or two such points may be

Table 4. Computational Requirements for Navigation Sensors

Data Rate
Component Data Format
Alignment - Tracking
Platform orientation .
Analog servo 2% 16 bits 10 sps 1 sps
Digital servo 2 X 16 bits 30 sps ! i sps
+ 'Star tracker 2 X 16 bits + discrete discrete
Sun sensor 2 X 16 bits discrete discrete
Horizon scanner 2 X 16 bits 10 sps 10 sps
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taken every 10 minutes, as the other tasks permit, to minimize residual
errors. Each platform angle covers a range of +3(0°, for which 16-bit
quantization seems desirable. The horizon scanner provides only eleva-
tion deviation, which, depending on the scanner field of view, may be
quantized with up to 14 bits. Similarly, azimuth and elevation deviation
from the sun sensor may be quantized to 14 bits each; however, practical
arguments suggest that 16 bits will be used. If the star tracker field is

5° in each axis, 16-bit quantization of its data pair appears meore than
adequate, yielding less than 0.6 sec error. With regard to data rate, it
is assumed that the horizon scanner will provide periodic data of the order
of 10 times per second. The sun sensor and star tracker will have data
available continuously; the former will be sampled up to 10 times per
second, while the latter need be read only once per star. These rates are
marginal to obtain 5-sec accuracy with a residual attitude rate of O. 01°/sec.'

Once alignment has been obtained, there appears to be no requirement to
command the platform repetitively; that is, given an inertial reference, a
single pair of platform commands will.drive the sensors to the desired afti-
tude through a platform servo loop. This implies a data rate of 10 samples
per second., If the reliability or other cost of such a loop is unacceptable, it
it will be necessary to generate incremental commands with computer-derived
damping to drive the platform to the desired posi':tion. In that event, plat=
form angles may have to be both read and commanded at up to 30 times per
second to obtain the desired stability, and it may be preferable to use a
platform rate command rather than an angle command as the interface. The
analogy between these functions and those of the digital autopilot may be
strong enough to allow some common usage of routines.

In addition to the estimates presented in Table 4, normal monitor and com-
mand functions will be required, and calibration is indicated for the horizon
scanner and will probably be required for the other sensors as well. Lack-
ing data on the mechanisms to be employed, it is estimmated that a few hundred
words of program may be needed for each sensor; that the star tracker and
sun sensor would be calibrated once for each set of measurements (perhaps
once per 10 minutes of use }; and that the horizon scanner will require col-
lection of data over several scans, perhaps 10, in every 10 minutes of use.

3.3 Displays

The display hardware is less completely defined that any of the other avionics
subsystems. To estimate computer requirements, one dynamic display
example - the video image of the runaway for blind landing -=- was constructed
and analyzed in detail, From AWAILS or from ILS and the altitude radar,
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the computing system determines the vector in inertial coordinates to the
end of the runway; this may be rotated into the vehicle frame. The magni-
tude of the vector (distance to the end of the runway) establishes the scale
of the image, while the pitch, roll, and yaw angles control the display
perspective.

Any one of several analog mechanizations may be used to support a CRT
image or a projected slide of the data with frequent update. The maximum
load such an analog-supported display would impose on the computing sys-
tem would be four 24-bit words sent 30 times per second. Up to 46 add
times may be required to format each word, yielding 4800 adds per second.

The analog support equipment, while it reduces the digital load, is both
heavy and subject to failure. Replacing the analog hardware with special-
purpose digital devices does not alter the problem; only centralized digital
processing reduces the display penalty by providing redundancy through
equipment already onboard. However, in providing the display of the
example with digital processing, a heavy computing load is added to the
central processor. The 30-frame-per-second rate is still required to
avoid flicker, but now each point must be commanded by the central com-
puter.

An algorithm that minimizes the central processing required was developed
for generating the display. In comnstructing the algorithm and the example,
it was assumed that only straight lines with a single intensity level would be
required, even though several values of intensity may be desired for other
purposes. Even so, each display frame requires six sets of four segment
parameters and one inversion. F¥or each of the 400 to 500 lines in a frame,
the computer must apply the algorithm to each display line (six multiplies,
six adds), determine the termini of each segment (12 adds), test each termi-
nus for inclusion in the frame (four or eight compares), and assemble a
sequence of binary words in which each bit corresponds to a point on the
scan line, Typically, 15 words will be required to depict a scan line, sug-
gesting a composite requirement for each line in excess of 6 multiplies, 18
adds, 24 compares, and 15 logical OR's. The available time, determined
by the required frame-~per-second rate, is 30 msec divided by 400 lines, or
75 psec. Assuming that 10 adds require the same time as one multiply, the
arithmetic operations alone require an add time of less than 1 usec.

Table 5 summarizes the results thus derived for the analog-supported and
the centralized displays. It can be seen that even a central processor with
2 0. 5-usec add time would be hard pressed to handle the unsupported display
when the logical operations for each line are added to the arithmetic opera-
tions, and when the projections required to provide segment information at
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Table 5. Computational Requirements for One Dynamic Display

Supported Centralized
Parameter Display Display
Bits per frame 96 200, 000
Words per second 120 220, 000
Adds per second <5,000 >1, 000,000

the frame level are included. Further increases in computing load may
arise from the need for color display; redundant and supplemental displays;
and requirements for trend analysis or other digital processing, Thus
from this work it is apparent that the range of requirements for the displays
is several orders of magnitude. Fortunately, analog hardware can be used
to maintain a reasonable computing load.

3.4 Trackers

Three tracking subsystems were reviewed: the docking laser, the rendez-
vous radar, and the infrared tracker. The resulting computing load in terms
of data and command rates is developed below and summarized in Table 6.

It should be pointed out that no interaction between these subsystems was
indicated in the pertinent preliminary literature -- although it is likely that
such interaction will exist and that it will have significant computational
impact.

Table 6. Computational Requiremerits for Trackers

Tracker Data . Computer Commands,
Tracker Bits/Sample | Samples/Second | Bits/Command | Commands/Second .
. 3 3
Docking laser 24 <i0 16 10
i
Rendezvous radar 48 10 16 noniterative
Infrared tracker i6 | - -
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3.4. 1 Docking Laser

The Space Shuttle requires a new type of sensor to determine the attitude
of a passive base for docking, The one studied employs a modulated laser
beam to determine the range along the beam and the displacement from
its center of the return from each of three reflective targets on the docking
ring. 'The modulation allows a separate range processor to establish the
distance to each target within a fraction of the shorter modulation wave-
length (13 ft) over a separation equal to the longer wavelength (1300 ft).
Target position in the plane perpendicular to the beam is determined by
electronic scanning of the detector. The beam must dwell on each target
long enough to obtain a suitable signal-to-noise ratio; it is estimated that
the maximum data rate from the docking laser is 1000 measurements per
second.

Range is quantized with 8 bits of coarse data and 4 of fine to provide resolu-
tion of 5 in. The position of the scan at maximum signal is encoded with

6 bits in each direction. Scan command may be provided by a local processor
on receipt of a discrete from the central computer, or it may be provided
directly by the central computer; this implies a data rate in excess of 10
bits per second. Another alternative is to use some local processing to
reduce the load on the data bus, decoding a 16-bit word each millisecond
into a search pattern,

Reduction of the laser data is a major problem for the computer. One
method was studied in which a coordinate converter, dynamic models

of the Space Shuttle and target, and a Kalman filter are employed. The
coordinate converter rotates the reference system into a frame with mini-
mum filtering to reduce the total computing load. The dynamic models then
estimate the attitude and position of each vehicle for comparison with sensor
data, and the Kalman filter determines the best estimate of attitude and posi-
tion from the past and present sensor data, taking into account detectable
sensor errors. The Kalman filter is the only known means of determining
docking information with the required precision. Among the operations
required for its use are the inversion of a matrix presently estimated to
contain over 1000 elements. Ideally, the filter would be applied to each
target as detected by the laser, requiring up to 1000 matrix inversions per
second., The resulting load is the equivalent of 50 X 105 additions per sec-
ond, a value which cannot be handled by even a large ground computer.

Only when detailed system requirements and sensor designs have been es-
tablished can a practicable filter be developed. -

3.4.2 Rendezvous Radar

The rendezvous radar locates an active target through scanning and detection
of a microwave beam, with the electronic scan either generated in the radar
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or commanded by the central computer. The scan position at maximum
return locates two coordinates of the target; each coordinate may require
8-bit encoding to maintain accuracy. Sixteen bits may be provided for
each of range and range rate, so that there will be 48 bits in each data set.
Although lower rates have been suggested for Space Shuttle, automatic
rendezvous may require up to 10 data sets per second. The phased array
used on the radar is amenable to a Cartesian coordinate system, with 8

8 bits in each dimension providing scan commands, Signal lockis main-
tained by radar electronics, so that only one set of commands is needed

to acquire and maintain lock.

3.4.3 Infrared Rendezvous Tracker

The infrared rendezvous tracker detects the thermal radiation of the base

to determine polar coordinates within its field of view (5° full-cone angle
about the longitudinal axis). Scanning is entirely under internal control.

Data should be available at least once per second, each set consisting of

the azimuth and elevation of the base, with each angle encoded to no more
than 8 bits. Depending upon detector design, it may be possible to use the
infrared rendezvous tracker with the sun in the field or reflected by the base.
It is possible that sun-avoidance logic for the scan pattern may be required,
suggesting two 8-bit words per second from the computing system to the

scan control when the sun is in the field of view.

3.5 Landing Aids

Five landing aids were reviewed: altitude radar, ATC transponder, VOR
TACAN, instrument landing system (II.S), and all-weather automatic instru-
ment landing system (AWAILS). Their computing loads, as derived during
the functional analysis, are discussed below and summarized in Table 7 in
terms of data rates. The last three systems are complementary in principle
but will have significant periods of combined operation where their data will
be supplementary. '

Table 7. Computational Requirements for Landing Aids

e

Landing Aid Data Rates
Altitude radar 16 bits/100 milliseconds
ATC transponder 9 x 24 bps (output from DMS)
VOR TACAN 3 X 8 bps
ILS 2 X 8 bps + 1" discrete
AWAILS 3 X 8 bps
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3.5.1 Altitude Radar

This landing aid determines height above the local terrain from the transit
time of a 9-GHz signal. Since terrain variation will be a significant factor
in the received data; smoothing will be required by the computing system.
It seems likely that 16 bits will suffice for the data, and that a nominal
rate of the order of 100 msec between samples will provide rapid response
and effective smoothing. One possibility is that landing at the nominal site
would call for removal of known terrain variation from the data, either
complementing or replacing smoothing. Since the vehicle must be capable
of landing at unplanned sites, such a feature for the nominal seems to be
of little advantage, while it might commit a significant portion of memory.

3.5, 2 ATC Transponder

The air traffic control transponder is modulated with avionics data for
ground control. The following data should be required no more than once
per second:

® Reference time (GMT): 16 bits

'® Mean altitude above terrain (unweighted average
of altitude radar data): 16 bits

@ Inertial state vector {referenced to the rotating
earth): 6 X 16 bits

® System status code (synthesized from individual
status data); 16 bits

Other data available in the landing phase would appear to be of little value

to those receiving the transponder signal, since the computing system inter-
face is independent of the operating mode of the transponder during landing
phases.

3.5.3 VOR TACAN

VOR TACAN is a pair of data sources {omnirange and TACAN) providing
inflight data relative to earth-fixed transmitters. Each system employs a
signal from the ground, decoded onboard into an identifying tone for the
transmitter, a reference bearing, and a variable bearing as a function of
vehicle position relative to the antenna. It is assumed that manual identifi-
cation of the station will be employed, since the analog/digital and digital
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requirements for automatic identification seem unnecessarily costly, TACAN
also includes an active ranging path to its antenna., Particularly because of
the short range over which VOR TACAN data are good, 8-bit encoding of each
bearing signal .and of range would appear sufficient. While data are avail-
able essentially continuously, sampling once per second should be sufficient.

3.5.4 118

The instrument landing system is used to bring the vehicle to the middle
marker of the runway through detection of azimuth and elevation from a refer-
ence transmitter; a supplementary antenna signals passing of the outer and
middle markers. The detected-signals of glide slope (elevation) and localizer
(azimuth) miay be usefully encoded to about 8 bits and sampled once per
second. The two marker signalsg should be discretes to the computing system,
and require sampling at the same rate but for only the brief period near their
expected occurrence. Ambiguities-exist in ILS data and may require resolu-
tion in the computing system, both for display and for automatic landing.
Comparison between inertial reference and ILS data should be sufficient to
deterimine which of the five possible ILS references has been detected and

to optimize the landing trajectory. '

3.5.5 AWAILS

The all-weather automatic instrument landing system, employed only in the
final stages of landing, provides angular interfaces equivalent to those of
ILS and supplements them with measurement of range to a transponder on
the runway. Again, 8-bit encoding of each of the three data inputs should
suffice and sampling once per second would appear adequate.

3.6 Primary Propulsion Subsystems

The orbiter primary propulsion subsystems may employ two separate sets
of engines: the main engines for the final stage of boost and the orbit
maneuvering subsystem for subsequent major thrust maneuvers. A reason-
able construct-for operation of either engine subsystem calls for a set of
pre-ignitioh commands over a period of seconds to minutes, an engine-on -
signal maintained throughout thrusting, gimbal angle commands of indeter-
minate rate and quantization for both degrees of freedom, and a mixture-
ratio command. In the absence of data about a specific subsystem con-
figuration, the estimates summarized in Table 8 were made for the design
carrying least load on the computing system. These estimates assume that’
each engine may be giimbaled approximately 5° aBout each axis; quantization
to 0, 1° would be useful. A reasonable interface would allow for up to
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Table 8. Computational Requirements for
Primary Propulsion Subsystems

Function Requirements
Gimbaling 4 axes: 10 bps/axis + 1 discrete
Throttling 6 (air-breathing) engines: .? bps + 1 discrete
Start sequence 1 command (discrete) with computer countdown
Engine-on 1 command (discrete) with computer countdown

Mixture ratio 2 (rocket) engines: 1 bps + 1 discrete

10 commands per second per axis, each incrementing or decrementing the
gimbal angle by one count. Initiation of thrust may use two discretes (engine
sequence start and thrust start), or it may require a sequence of discretes
issued on a time base; the most difficult implementation would provide dis-
cretes triggered by measurements of propulsion parameters under com-
puting system control. Measurement of propellant quantities and flow rates
provides tlie data for computer determination of the desired mixture ratio;
the increment/decrement discrete is required no more than once per second.
Each incremental signal requires a discrete which causes the controller to
drive to the reference (null) position.

3.7 Reaction Control Subsystem

The reaction control subsystem employs 20 thrust chambers burning hydrogen
and oxygen to generate relatively small torques and forces for attitude con-
trol and small velocity increments. If continuous thrusting is possible, the
output of the computing system may be a discrete for each chamber (assum-
ing hard=wiring rather than the use of the data bus). In that event, the signal
is counted down with a tolerance of the order of 1 to 5 msec. If only a pulsed
mode is available, the number of such pulses (up to perhaps 800 per second}
must be transferred to the buffer in a local processor for each assembly.

Two or three such items are required for each assembly, depending upon
whether four or six thurst chambers are used.

Many configurations may be constructed in which computing system functions
are assigned to local hardware and software. The above configuration does
not allow for some modes of employing rate gyros, nor is it clearly the
preferred type of interface for control surfaces in atmospheric flight. The
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specific mechanism by which a command signal actuates the reaction con-
trol subsystem was not clear, and is significant in determining the software
requirements. A representative computing load might involve 20 thrust-on
discretes, up to six active at once, and each counted down at 400 bits per

second (may be synchronous),
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4, . COMPUTER CONFIGURATION

The Space Shuttle onboard software may be divided into two categories:

functional and executive. The functional software performs the functions
dictated by the requirements of the hardware subsystems and the mission ’
objectives. The executive soitware controls and coordinates the execu- )

tion of the functional software in accordance with overall system requlreu
ments.

As shown in Figure 1, the functional software may be subdivided accord-
ing to the functions to be performed, such as guidance, control, and )
checkout. Within these subdivisions it may be further categorized as to
the specific computations to be performed, such as initialization and the
computations performed at the minor and major cycle intervals. This’
final division of the functional software is made according to what will be
called tasks; each task consisting of well defined computations to be per-
formed at specified times or when specific criteria are satisfied. 'In‘gen-
eral, each task will require some maximum time for execution. '

Total Onboard

Software
Functional . Executive
Software Software
Guidance Control Checkout Scheduler 1/0 - Re-
Controller configurer

S

Injtialization] | Minor Cycle Major Cycle

Figure 1. Onbeard Software Structure Outline
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Executing the many tasks will require the sharing of computer.resources
guch as the scratchpad memory and the input/output devices. The execu-
tive software will coordinate this sharing and control the resulting opera-
tions. Like the functional software, it may be divided into tasks, such as
scheduing the functional tasks for execution, controlling and performing
their input/output operations, and reconfiguring the computer system
according to the computational load or the health of the computer hardware

compoenents.

The functional tasks can be designed, coded, checked out, and verified in-
dependently of the specific computer configuration, except for the ways
which these tasks interact with the executive system, Development of the
executive, on the other hand, is intimately tied to the computer configura-
tion, both as regards: 1) the problems a particular configuration may
present in performing the task-oriented executive operations, and Z) the
special executive operations that the configuration might itself demand to
be performed. Therefore, the tradeoff of alternative computer configura-
tions was approached by studying the advantages and disadvantages of the
executive software.

Three alternatives were examined to determine which, for the anticipated
Space Shuttle functional requirements, would be the most suitable config-
uration from a software point of view:

e Simplex Computer: The simplex or single computer, by
far the most common configuration for both aerospace and
general~-purpose applications, consists of a single arith-
metic and control processor, a memory or a collection of
memory banks, and an input/output processor or controller.

¢  Multicomputer: This configuration consists of two or more
simplex computers, each having its own arithmetic and con-
trol processor and memory. The separate computers, which
need not be identical, commmunicate with each other by means
of their individual input/output provisions.

. Multiprocessor: This configuration consists of two or more
arithmetic and control processors connected to 2 common
memeory such that, in general, any processor can execute
any program or access data located anywhere in memory.

The simplex and multiprocessor configurations are inherently centralized
organizations, both physically and logically; the central computer facility
performs the computational functions required by the hardware subsystems,
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similarly to the way a commercial dataeprocessing center supplies com-
putational services to its users. A multicomputer configuration can be
physically and logically considered as either a centralized system or a
decentralized (or federated) system, depending on the number of com-
puters and how the computational capabilities are allocated. In a central-
ized system there would be relatively few computers, each servicing

part of the hardware subsystems. In a federated system the computational
functions would be allocated to the computers in more of a one-to-one man-
ner, with the operation of these subsystem level computers under .control
of a master computer.

Among the software aspects relevant to the tradeoff between centralized
and federated systems are the disciplines enforced in software production,
the cost and difficulty of software production activities, the computa-
tional loads that can be supported with equivalent hardware complexity, -
and the protection that might be provided from software failures. These
are discussed first, followed by a look at the functions to be performed

by the executive, and next by preliminary executive designs for the three
computer configurations, The section concludes with a summary of execu-
tive and computer configuration comparisons.

4,1 Centralization/Decentralization Considerations

The basic option available in the physical organization of the Space Shuttle
data management system is that between centralization and distribution of
the computing capacity. Neither extreme is probable: concentration of
digital processing in a single central computer would overioad the data
bus, while some central functions (e.g., steering, mission control, re-
configuration) could not reasonably be allocated to a remote processor.
Thus the requirement is to optimize the separation of functions into local
and central processors under the mission and cost constraints, A com-
plete tradeoff awaits a more complete functional analysis, and this itself
awaits spacecraft design decisions. However, many important considera-
tions are apparent at this time.

In the extreme represented by a fully centralized system, the computer is
divided intp processors whose number and usage are established by the in-
stantaneous load. All data are fed over the data bus by analog/digital con-
verters, with only minimal buffering to allow noninterfering, serial trans-
mission. Fully resolved data are received at the subsystems, so that only
format conversion is required to provide the stimuli needed for their check-
out. The data rates associated with the fully centralized configuration
would approach an order of magnitude increase over those attainable with
more extensive local processing. That penalty increases not-only the
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capacity required of the data bus, but also the input/output load en the
central processor.

In the extreme represented by a fully federated system, all processing
possible at the subsystem level is performed in dedicated processors
located with the interfacing hardware; the central computer performs
only the tasks involving the integration of data from several subsystems.
A major advantage of such a design is the discipline it forces on defining
the interfaces between software located at the subsystem level and the inte-
grating software of the central computer. In addition, the powerful com-
puting capability at the remote locations minimizes data rates and should
save both cost and weight in the distribution system. However, the rep-
lication of routines among the local processors would be great, so that
each would have to bear an overhead comparable to that of the entire cen-
tralized system. Memory and computation capacity would be committed
to executive functions and to task programs and subroutines that are
handled more efficiently in the centralized system. Furthermore, it is
unlikely that the architectural characteristics of the smaller local pro-
cessors would be conducive to easy programming. As a result, a con-
siderable amount of software would have to be developed for hardware
that is less than ideal from programming and verification points of view.

An essential computational function is the reduction of masses of data
(e.g., accelerometer pulses, supply voltages) to significant information
(e.g., steering commands, status displays). The partitioning of tasks
to central and local processors is essentially a process of optimizing the
allocation of data reduction to the different sites. The total data reduc-
tion load may be assumed to be independent of how it is allocated. Data
compression, which represents an element of the filtering the system
will be required to perform, would have to be executed either explicitly
or implicitly in the central processor if local capability were omitted.
Once such elementary capabilities as accumulation of accelerometer
pulses are assumed in the local processors, there is a tendency to add
others to reduce the load on the central unit.

With each level of compression at the local processor, less raw data

need be forwarded to the central unit. At some point, data among sub-
systems must be correlated; at that stage, central processing is indicated.
Typical of that case is the determination of steering commands from en-
gine, accelerometer, and gyro data. A fully decentralized system would
reduce the role of the central unit to that of performing multisource data
analyses. Performing these analyses will require powerful processing
units and an extensive memory regardiess of how the functions are dis-
tributed. In the federated configuration, some local processors will be
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comparable with the central processor in magnitude. If the'local proces-
sors are physically and functionally remote from the central procéssor,
any redundancy requirements must be reflected in them separately. Con-
sequently, a redundant system grows rapidly more expensive with increas-
ing decentralization.

The relationship between cost and the degree of decentralization rﬁay be
illustrated by the following example of two configurations, In cne, a
processor is provided for each of N subsystems and an additional equiva-
lent processor is provided to handle interprocessor communication. If
system requirements dictate survival of any two failures in processing
units, this configuration requires 3(N+1) processors. The other, more
centralized configuration provides the sarme total computing power, but
allocated such that each processor supports three subsystems and the
balance of the required processing is provided by the central computer.
This configuration.would require N+(2/3N+1)+2 processors. The more
centralized configuration needed to accomplish the same computing is
therefore composed of 4/3N-2 processors fewer than the other, which is
significant even if there were only three subsystems (8 units against 12),
The same argument is relevant with respect to the location of memory
modules. Memory advantages also exist in that portions of code would
have to be repeated in the decentralized system, whereas in the centra-'
lized system they would merely be accessed repeatedly. :

The principal argument against centralization deals with the redaced -
cost of verification associated with breaking the code into separate pro-
grams. Decentralization enforces modularity by removing the interfacing
routines to separate processors. The same attention to software modu-
larity and interface requirements can and should be applied to the central-
ized system. Programs can be separated to minimize unwanted inter-
action through a combination of software design technigues and computer
architectural features, just as effectively as separation is‘achieved phys-
ically in the decentralized system.

4,2 HExecutive Functions

The syséem executive will be required to perform the following four
basic functions, each of which is discussed individually in what follows:

Allocate resources

Perform and coordinate I/O operations
Maintain real-time control

Preserve system integrity
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4,2.1 Resource Allocation

This function takes on different forms depending on hardware design. The
resources available may include memory banks or modules, secondary
memories, I/O devices, and processors., It is the management of these
resources, including routing of processing through the program elements,
that prompts the use of the term "executive.! Essentially, the functions
performed under resource allocation are those of controlling and manag-
ing the computer hardware as dictated by the needs of the software.

At one time, flight software requirements were such that an inflexible
sequencing of task execution could be tolerated: programs written for bal-
listic missiles required no executive. The Space Shuttle represents the
opposite pole in that the sequence of task execution will not be predictable
before flight. While some operations may always be performed before
others (e.g., boost guidance precedes reentry maneuvering), most tasks
are interleaved as a function of hardware subsystem activity.

Accommodating such a flexible sequencing environment greatly compli-
cates resource allocation; very often a task request will occur when the
available computer hardware is already allocated to performing other
tasks. In one sense the job of resource allocation is greatly simplified
when there are relatively few resources to allocate; for example, the
allocation of processors to execute tasks in a configuration with only one
processor is obvious. Resource allocation is obviously simplified if
there is a surplus of resources; in this case the allocation can be accom-
plished inefficiently yet still satisfy hardware subsystem requirements.
For example, with a large number of processors it would be possible to
initially allocate tasks such that none assigned to the same processor
would ever need to be executed at the same time.

Most tasks require the use of erasable memory for intermediate storage
and retention of input and output data. Committing memoxry by task with-
out sharing may in some cases require more memory than is available;
50 memory may have to be allocated under the control of the executive.
Similarly, if a mass memory device is used for storage of program ele~
ments required only during given mission phases, its management would
be another resource allocation function. The actual reading and writing
of the mass memory would be accomplished by the executive's I/O ele-
ments under this management. ’
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4.2,2 1/0O Performance and Coordination

Ameong the things the executive will be required to do in this category

of functions will be executing the I/O opetrations indicated by task-issued
1/0 directives, monitoring the 1/0O operations to resume task execution
when the indicated data have been received or transmitted, and. sequenc-
ing the I/O operations so that both the task requirements and-those of

the hardware subsystems are satisfied even if the I/0 directives from the
tasks appear to conflict, In some simple systems the performance of 1/0
operations is left to the functional tasks themselves. The resulting distri-
bution of 1/0 activity throughout the software introduces much duplication
and requires that any task about to perform I/O be aware of poséibly con-
flicting I/O bemg performed by all other tasks. The method is undesirable
for a software system as complex as that for the Space Shuttle, and partic-
ularly undesirable because the preponderance of the I/O in this system
uses a serial data bus. The sequencing of data on the bus mist be very
carefully managed to insure not only that the appropriate data are sent or
received, -but also that this is accomplished in a timely fashion to satisfy
the software-system's real-time constraints.

4.2.3 Real-Time Control

Some tasks qull have relatively flexible real-time constraints: if will be
permissible for them to be executed at any time during some fairly long
interval., Examples are initialization for maneuvers that may not be
scheduled to take place for some time, performing onboard targeting
.computatiofis, and checking some vehicle hardware subsystems. For
such tasks the important thing is that they be done rather than the pre-
cise time at which they are executed. These tasks comprise the back-
ground computation. Other tasks will have to be performed in response
to some specific stimulus within some short period of time, and for these
the executive must make certain that the real-timme constraints are ful-
filled. Examples of such tasks are those involved in making the proper
responses to controller or keyboard inputs of the crew and those that, in
response to an error signal, reconfigure the system to minimize the effect
of the errors :

Thus the executive must allow for the maintenance of real-time control
between task software, hardware subsystems, and the vehicle. This
can be accomplished in many ways. One is for the executive to conduct
a poll of hardware devices and software lists to determine the tasks to
perform; another is for the executive to respond to requests for task
execution made via hairdware or software interrupts. When such an
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interrupt occurs, the executive must identify the source of the interrupt
and its associated task and priority; compare its priority with that of the
task in execution; and, if the new task is of higher priority, cause the
current task to become dormant and the new task to begin execution.

Another type of real-time control that will have to be exercised by the
executive is the scheduling of tasks that must be executed periodically,.
Examples of such tasks are the guidance and navigation major cycle com-
putations and the flight control minor cycle computations. This can be
accomplished by interrogating a real-time clock to determine when the
proper interval has passed or by responding to an appropriate periodic
interrupt.

The usual approach to maintaining real-time control is to establish a
priority scheme in which tasks that must respond very quickly to certain
stimuli are given a high priority and the background tasks a low priority.
In a priority scheme of this sort, periodic tasks must have dynamically
changing priorities, either in actuality or in effect. Normally the periodic
task has a priority so low as to prevent its ever being executed, dnd at the
appropriate times its priority is increased. Its high priority is maintained
while it is being executed, after which it returns to its former low state.
Similarly, many background tasks may require dynamic priority adjust-
ments. For example, computer self-test might normally have a low prior-
ity; and if it has not been completed in some specific interval its priority
would be increased. This would continue to occur until either it was exe-
cuted or its continuing high priority indicated that something was consum-
ing available computer resources to an unexpected and possibly erroneous
degree,

4.2.4 System Integrity

Because of the variety of things to do, the situation may occur in which
tasks to be performed require more than the time available. (One exam-
Ple of how this can be detected was just described.) When this condition
exists, a system overload has occurred. The executive must be able to
resolve these conflicts and do only those things that are mandatory for the
correct function of the system. It can resolve the conflicts by reassigning
priorities, aborting low-priority tasks, or stretching out the time allotted.

The executive must have the ability to detect some types of faults in
external devices and in the computer on which it is executing, It must
also periodically schedule tasks to perform diagnostics on the .devices and
on itself to ascertain any problems and take corrective procedures bypass-
ing the elements in error. In case a malfunction in the computer system
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is detected, the executive must be ablé to communicate with a backup com-
puter ahd switch to it in such a manner that the vehicle continues a.nd main-~
tains its scheduled mission.

Finally, thé executive must be so designed, constructed, and verified

that there is no question that it can perform its functions. It must be such
that adding or deleting tasks does not require extensive executive modifi-
cation, and must also be so written that adding or deleting hardware de-
vices similarly is easily accommodated without making more likely the
occurrence of software errors within the executive itself.

4.3 Preliminary Executive Designs

The choice among executive designs is a function of the mixture and com-~
plexity of the functional tasks, the design of the digital hardware, and.the
relative value of execution time and memory overhead. In general-
purpose computation, the executive may be called the operating system;
the generality of its use imposes a high cost in system performance that
must not be borne by the special-purpose executive for the data manage~
ment system. However, some overhead penalty should be anticipated to
allow enough flexibility to provide systermn expansion as the Space Shuttle
evolves. Optimization of executive design is a function of the range of
requirements anticipated. The initial requirements determined during
the functional analysis activity were adequate for the initial study of exe-
cutive design. While further definition of functional requirements will
allow refinement of the preliminary designs described here, it is not
expected that the conclusions will change.

The principal tradeoffs in executive design are the means by which task
execution is initiated, the flexibility permitted in task allocation, and
the residency of the executive. The task-to-processor allocation and
executive residency tradeoffs of course apply only to the multicomputer
and multiprocessor configurations.

Three alternatives exist as to the means of task initiation:

® Implied Executive: Each task, when completed, transfers
control to the next task to be done.

© Pollinig Executive: When one task's execution is com-
_pleted, the executive selects the next based on a poll of
those waiting to be done,

¢ Interrupt Bxecutive: A task is interrupted-during execu-
tion to perform a more important task.
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To simplify the comparison, preliminary executive designs for the three
task initiation alternatives were developed for the simplex configuration
only,

Three allocation and residency alternatives exist for the multicomputer
and multiprocessor configurations:

¢ Distributed Executive: Tasks are divided into fixed sets,
with each computer or processor executing only those
tasks allocated to it under control of executives perma-
nently resident in each computer or processor.

. Fixed Executive: Any task can be performed by any proc-
essor, but the executive functions are always performed by

the same processor.

. Floating Executive: Any task and the executive functions
can be performed by any processor.

The second and third alternatives would be practical only for the multi-
processor configuration, for executing on one compul':er a task located

in the memory of another would obviously be very difficult, if not impos-
sible. Therefore, distributed executive designs were developed and
compared for both the muiticomputer and multiprocesscr configurations,
but fixed and floating executives were investigated for the multiprocessor
only.

4.3.1 Implied Executive/Simplex Gomputer

The implied executive (Figure 2) does not exist as a distinct program.
Rather, executive functions are performed by the individual tasks., Each
task must know which task follows and transfer control to it for execution.
If various tasks are permissible, the burden is on the executing task to
pick the correct one and start its execution., Then the logical decisions to
determine what fo do next, properly the function of the executive, have to
be added into the task coding itself, thus complicating the task coding, re-
ducing its independence from the computer configuration, and obscuring
the actual program structure. It also becomes necessary to verify the
program as a complete assemblage of tasks rather than to do extensive
independent checking of the tasks and the executive.

Although it may be suitable at the local processor level, the irplied execu-
tive is not considered a serious candidate for the central computer facility
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Task 1

Task 2

Task 3

Figure 2. Implied Executive Concept

for the Space Shuttle; the multitude of events occurring, at times simul-
taneously, simply cannot be handled by a series of tasks execufing cone
secutively, The main purpose for describing the implied executive here
is to use it as a base for measuring the relative complexity of other exec-
utive designs. l

4.3.2 Polling Executive/Simplex Computer
If the computer configuration chosen has no hardware-generated interrupts,
an executive that interrogates the external devices for activity would be a

likely choice. After each task is completed, control is returned to the ex-
ecutive., It then determines which task to do next by performing a poll of
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the external devices and examining a software queue of tasks awaiting
execution, Figure 3 illustrates the concept and Figure 4 shows a high-
level polling executive design.

In this design, the executive is entered at the completion of every task.

The first thing the executive does is poll the input and output devices and
execufe appropriate I/0O tasks if required. Next, the current time is de-
termined by reading a hardware clock; this is necessary since, in general,
the time since the executive was last performed is unknown owing to the
varying times the tasks themselves will take to execute., Then queues of
time- and input/output-dependent tasks are examined to determine whether
any particular task should be performed. Examples of such criteria, which
may be applied singly or in combination, are the reaching of the time at
which a task should be performed, the completion of a lengthy output opera-
tion, or the receipt of an input directive to perform a specific task. If the
appropriate criteria are met, the indicated task is placed in the queue of
tasks to be executed and, unless a periodic task, removed from the criteria-
dependent task queue. Finally, the task with the highest priority in the exe-
cute queue is selected, it is removed from the execute queue, and the execu-
tive transfers control to it.

Execute Queue)
Task 1

Task 2

Executive - Task 3

Task 4

Task N

Figure 3. Polling Executive Concept
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Since there afe no hardware interrupts, the polling executive must be exe~
cuted at an/interval such that the fastest device in the system -- most likely
the timer or clock -- is serviced when needed. This requirement would nec-
essarily force all tasks to be written in such a manner that they finish execut-
ing in the allotted interval, which could be as little as, say, 20 msec. Thus
a task in this case may consist of a section of coding that is only a part of

the overall function to be performed.

The polling executive has the advantage of being repeatable, that is, under
given circumstances it would perform in the same manner. This feature is
of considerable importance in verification, However, the timing considera-
tions and the constraints they impose on task program design and develop~
ment have a substantial effect in raising software costs. Further, an attempt
to modify existing tasks or insert new ones would cause the timing to be off
unless a completely new analysis were performed.

4.3.3 Interrupt Executive/Simplex Computer

The interrupt executive, shown conceptually in Figure 5, is similar to the
polling executive as far as the queue of tasks awaiting execution is concerned.

Fxecute Queue)
Task 1
PR — Task 2
3
Executive Task 3
Task 4
Interrupt
.
.
»
Task N

Figure 5. Interrupt Executive Concept
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However, rather than waiting until 2 task is completed before deciding what
to do next, the decision is made whenever an interrupt occurs, which can
happen. -~ and does -- while a task has been but partially completed., The
interrupt carries with it an indication of why action is to be taken: this may
be that some interval has passed, that some external device is ready to
transmit or receive data, or that some hardware compoﬁent or subsystem
has failed. The first thing the executive must do is ''service'' the interrupt.

Interrupt-servicing must be able to execute at the expense of a task or job
currently executing, and when the interrupt has been serviced the inter-
rupted task or job must be able to resume at its point of suspénsion. There-
fore, all registers used by the interrupt-servicing routine must be saved
and restored in the event that they were being used by the interrupted task.
Interrupt-servicing difficulty may be compounded by allowing inferrupts of
higher priority to occur while operating and servicing a lower priority inter-
rupt. Allo{ving the interrupt~servicing routine itself to be interruptible re-
quires that it be made reentrant, that is, able to execute a section of code
before it has completed its previous assignment, Further, the time con-
sumed in performing interrupt-servicing and scheduling functions must be
minimized; for interrupts may occur very frequently, multiplying the effect
of any executive inefficiencies.

The interrupt executive is composed of at least seven distinct functional
modules as described below. The first of these, the interrupt module, is
entered whenever an interrupt occurs. The interrupt module may in turn
call any of the three input/output processing modules. The fifth module to
be described, the scheduling module, is the portion of the executive to
which each nonexecutive task transfers control when completed. The last
two modules, entered either from the tasks or the executive, perform
functions such as inserting new tasks and performing diagnostic checks.

1) Interrupt Module: Before determining the cause of and the
response to an external hardware interrupt, this module
(Figure 6) saves all volatile registers; to allow for re-
entrancy, there is a save area for each interrupt in the sys-
tem, The module then determines the cause of the interrupt
and takes the path directed. A clock interrupt results in up-
dating time and interrogating thé time-dependent task queue;
if a task were scheduled, it would be removed from this
queue and placed in the execute queue., If the new task had
a higher priority than the executing task, the scheduling
module would cause the new task to begin; if lower, the in-
terrupt module would restore all registers and branch back
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Figure 6. Interrupt Executive Design: Interrupt Module (continued)

2)

3)

to the suspended task. Similarly, the appropriate execu-
tive modules would be executed for other interrupts.

Peripheral I/0 Module: This module handles I/O requests

to peripheral devices such ds digital displays, mass stor-
age devices, and the like, providing the programmer's-inter-
facing software with them. It initiates requests and responds
to and resolves interrupts associated with these devices. In
case of errors, retry attempts will be made; if still unsuc-
cessful, this module will notify the executive to take correc-
tive action.

Data Bus I/0O Module: This module performs the functions
necessary for communication via the I/0 data bus, It
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coordinates all activity on the bus, schedules the 1O such
that optimum use is made of it, handles all interrupts asso-
ciated with it, and monitors for any error conditions that
may exist. Corrective action in case of failure or trouble
is directed to the error recovery module.

4) Other I/0 Module: All other system I/O is Iumped into a
package handled by this module. Falling in this group
would be any analog or digital I/O and any I/0O such as pulse
counters or counters of some other sort.

E) Scheduling Module: After a task has completed its function,
it branches to this module (Figure 7), which then accesses
the execute queue for the next task. If the task in queue is
a new one, the scheduling module branches to it to begin
execution; if it is a previously interrupted task, the sched-
uling module must reset the registers before performing
the branch to the task in question. - If no task is waiting,
the scheduling module starts the idle/self~test task. Be-
fore accessing the execute queue, the scheduling module
inhibits interrupts, then enables them before branching to
the next task; this ensures a graceful transition from task
to task.

6) Task Support Module: This module provides the functional
tasks with the ability to perform such operations as the in-

- sertion of tasks in the execute or time-dependent queues.
Requests for temporary memory blocks are also handled by
calls to this module, which can remain flexible for thé addi-
tion of new functions suited to be included within the execu-
tive structure.

%) Error Recovery Module: This module has the responsibility
to ensure corrective action in the event of ha.rdwa,i:e or soft-
ware error conditions. Included in this module are self-test
and diagnostic routines such that error conditions can be
ascertained and recovery procedures implemented.

The interrupt executive has a distinct advantage over the polling scheme
with which tasks need to be completed in a short interval before returning:
the interrupt executive is able to respond to real-time events as they occur.
That is, it can accept externally caused events, suspend task operation, and
perform any function necessary to respond successfully to the event. The
only delay would be in saving any volatile registers such that the system can
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resume execution at the point of suspension. One minor disadvantage is
that during the response to an interrupt, the task currently executing is
temporarily delayed. Another is that the time needed by the executive to
preserve machine status must be included in executive overhead. The
potentially most significant disadvantage, and one that requires discus-
sion, relates to ease of verification.

A major verification problem with any sofftware system consisting of a
large number of tasks lies in assuring that the required interaction be-
tween tasks is correct and that no unwanted or erroneous interactions
happen. Asanexample of the type of problem that can occur, consider
the case in which one task is computing a vector and before it is done it
is interrupted by a task that uses the same vector. It would be satisfac-
tory if the interrupting task obtained either all the old values for the vec-
tor elements or all the new values, but wrong for it to obtain a mixture
of old and new elements. What is needed in such a case is a means for
locking out the interrupting program until all the new values have heen
computed. A similar, more serious problem -- and one often more diffi-
cult to detect -~ occurs when a task places the results of its computations
in gome task intercommunication region, but before they can be used by
the task for which they are intended they are overwritten by a third task.

This potential problem of task interference, while it also exists for the
pelling 'scheme, appears to be greater for the interrupt scheme owing
to its greater complexity. Noninterference between two tasks can be
assured for the interrupt executive by proving that the tasks can be exe-
cuted in parallel, withno differences inthe results except for those that
are a consequence of deliberate and valid task interactions. For the
polling executive, noninterference can be assured by proving that exe-
cuting the tasks in any sequence produces the same results, except for the
deliberate and valid task interactions. To permit comparing the verifi-
cation difficulties for the two executives, the necessary conditions for
assuring that no interference exists were analyzed. The analysis, pre-
sented in Appendix A, indicates that the polling executive is not enough
simpler than the interrupt executive to permit a significant relaxation of
the required amount of verification.

The keys to making an interrupt executive manageable with respect to
verification are to require absolute adherence to standard task inter-
communication mechanisms, restrict the number of interrupt levels,
employ the selective inhibiting of interrupts over selected regions of

task coding, and provide for restarting interrupted programs only at se-
lected, consistent, safe places in the task coding. Use of these techniques
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for an interrupt executive can greatly reduce verification problems, thus
bringing it more into line with a polling executive as regards verification
ease.

4.3.4 Distributed Executive/Multicomputer

In a multicomputer system, tasks would be permanently allocated to indi-
vidual computers. With a two-computer system, for example, a likely
allocation would be for one computer to execute guidance, navigation, and
control tasks and the other to exeécute display and communication tasks, An
executive is required for each of the computers, and it is assumed that the
two executives will be similar. Continuing with the example, the display
computer needs to access the current state of guidance and control to allow
update of the displays, while the guidance and control computer needs to
communicate to obtain the latest command information from the crew. Thus
the executives require the ability to accomplish computer-to-computer com-
munication; this is done through the computers' 1/O provisions as indicated
in Figure 8,

The need for intercommunication requires an additional module fo be im-
plemented in the interrupt executive design previously described for the
simplex computer. Figure 9, which is a replacement for the indicated
portion of Figure 6, shows how this module is included. The intercom-
puter communications module would perform the transferring of data or
messages between computers. The transfer may be accomplished by a
simple I/0O device, or if greater sophistication and speed were needed it
might involve some form of direct coupling.

3
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Figure 8. Distributed Executive/Multicomputer Concept
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Figure 9. DBistributed Executive/Multicomputer Design

The principal advantage of a multicomputer approach is the increase in
system capacity it provides. The tasks can be logically divided into al-
most independent groups, with each group implemented on its own com-
puter and executed as an entity. An interupt directed to one computer in

no way interferes with execution on the other. This leads to another ad-
vantage: with the reduced probability that any given task will be interrupted,
overall system response time increases, Of course the cormmunication
required between computers is a disadvantage in that 2 more complex ex-
ecutive is needed. Veryifying this executive is more expensive because
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it becomes necessary to verify two or more executives running concurrent=
1y on different computers, Also, it is harder in this case to achieve repeat-
ability.

4,3.5 Distributed Executive/Multiprocessor

In the muiltiprocessor distributed executive approach (Figure 10), the
tasks would be allocated to particular memory modules and a processor
permanently assigned to each partition. The partitions would be auton-
omous entities except for a particular portion of memory in each that
would be accessible to all processors, providing an intercommunication
block so that data and commands or requests could be passed from one
partition to another at the cost of a memory cycle. Each partition would
also contain an executive that would oversee the scheduling and servicing
of interrupts associated with its resident tasks. A logical breakdown’
would be similar to the multicomputer approach: one partition assigned
to guidance and control tasks and the other to display and communication
tasks., The multiprocessor does not require the computer-to~computer
communication necessary to 2 multicomputer configuration. The execu-
tive design could be the same as that for the interrupt executive on the sim-
plex computer, with an additional module to access the common area in
each partition. In the unlikely event that there is but little intercommuni-
cation between tasks, the necessary accessing controls could be handled
automatically by the assembler or compiler, elimirating this module.

While similar to the distributed executive for a multicomputer, the distrib-
uted/multiprocessor has the advantage that intercommunication between
computers is no longer needed. Transfer of data between systems is now
done only by memory references through the appropriate executive module,
simplifying the executive design. Because the memory is continuous, the
executive offers more flexibility with regard to the partitioning of tasks
and memory allocation. Its disadvantages are the same as those of the
distributed/multicomputer executive; the repeatability problem exists, as
does the problem of verifying multiple executives executing concurrently.
In all, the distributed/multiprocessor is slightly better.

4.3.6 Fixed Executive/Multiprocessor

In this approach (Figure 11), one processor would serve as a dedicated
processor for running the executive and the others would be allocated to
task execution under control of the executive. The interrupt executive dis-
cussed earlier would serve as the base, with added coding to assign proc-
essors when a task is scheduled. When executing a task, the assigned
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processor would be limited to the area of core in which the task resided.
A common access block, available for reference by all processors, could
be used for temporary storage or for the passing of data from task to task.
The use of this block would increase as the system evolved and would
become more complex as new tasks and functions are added. However,
the complexities introduced by the need for ever greater task intercom-
munication would impact only the executive and the common access block.

A fixed executive implemented on a multiprocessor offers advantages over
any of the previously discussed executives. One is that processors are
assigned to high-priority tasks such that the task is not interrupted when an
external'interrupt occurs, This means, of course, that high-priority tasks
run to conclusion once started. This improves system throughpunt and re-
sponse time. Flexibility, capacity, and failure handling are greatly improved
.because of the processor units available. If a timing problem develops, it
may be possible to add another processor. If an error occurs in the proc-
essor assigned to any task, it is relatively simple to assign anether proc-
essor to: it. Thus, the backup problems facing the simplex and multicom-
puter configurations are more easily solved in this multiprocessor with
fixed executive, This alternative does have verification disadvantages,
however: since a task could be assigned to any processor at any time,
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repeatability cannot be assured from run to run. Thus response time and
throughput advantages are gained at the expense of verification difficulty,

4.3.7 Floating Executive /Multiprocessor

The floating executive (Figure 12) allows the executive as well as the tasks
to be executed by any processor and is a logical extension of the fixed execu-
tive. In this scheme the executive is considered another task or set of tasks,
and would of course have the highest priority of all. Briefly, the executive
would assign a processor to a particular task only when that task was about
to be executed. A processor's execution of one task could be interrupted

and that processor assigned to another, higher priority task. When a second
processor completed execution of its assigned task, it could be assigned to
the interrupted task; thus execution of a low-priority task might eventually
be accomplished by many processors in succession. Executing the executive
tasks themselves to accomplish processor allocation would be initiated either
on completion of a functional task or on receipt of an external interrupt. The
processor selector, either hardware or a combination of hardware and soft-
ware, is required so that when an external interrupt is received only one
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proce.sétor would be interrupted in executing a functional task, Task inter-
communication would be controlled by the executive, utilizing 2 common
access black to contain the shared data.

At some times there may be more processors available that tasks to per-
form; when this happens the special idle task would be activated to per-
form self-test and associated functions. It would be the function of the
executive to make certain that the execution of this idle task be rotated
among the processors and that even in times of peak computation-loading
the self-test portions of the idle task be performed occasionally.

Like the interrupt executive for the simplex configuration, the floating
executive would be composed of many modules. Of these, the scheduling
and interrupt modules are the most important, The scheduling module,
for which = high-level design is shown in Figure 13, is executed at the
completion of any non-executive tasks., This module must be reentrant:
more than one processor may complete itg task at about the same time,
which means that the scheduling module may be executed any number of
times nearly simultaneously. The scheduling module examines the queue
of tagks to be performed; if one is waiting, it removes the task from the
queue, relinquishes the queue, and begins execution of the task. If no task
is scheduled, the idle /self-test task is begun and the execute queue is
relinquished for further update. In either case, the processon/task pri-
ority indicator is updated to reflect current assignments, meaking it pos-
sible for the processor selector to route any interrupts to the processor
performing the lowest priority task.

A high-level design developed for the interrupt module is presented in
Figure 14, This module handles the dynamic assignment of processors

to tasks in response to interrupts. It is executed whenever an interrupt
occurs and, like the scheduling module, may be executed by any processor.
The first thing that it does is suppress interrupts until the ¢urrent machine
state can be saved in a pushdown stack; after this, higher priority inter-
rupts are enabled. Next the type of operation to be performed is deter-
mined and the appropriate operations performed, eithér by the interrupt
module itself or by other executive modules. I the interrupt indicates
that a functional task should be executed, that task is assigned to a free
processor if there is one; here, a free processor is defined as one that is
executing the idle task. If no processor is free, the priority of the inter-
rupting task is compared with that of the task that was being executed by
this processor before the interruption to do the executive functions, If the
new task has a lower priority than the interrupted task, the new one is
added to the execute queue, with its place in the queue a function of its
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priority, and the interrupted task'is resumed. If the new task's priority
is higher, the interrupted task is added to the execute queue along with
informiation about machine state needed to resume its execution later, and
the new task's execution is begun. The processor selector is then set to
indicate which processor is currently performing the lowest priority task.
When the next interrupt occurs, that processor will be the one to be inter-
rupted. '

The above description contains several simplifications. First, it allows
for the gcheduling of only one task in response to an interrupt; further
elaboration ‘is,required to schedule tasks in processors other than the one
already interrupted to do the executive operations. Second, if relies on
random charactetristics of the tasks themselves and their scheduling to
schedule the idle task in all processors within an allotted.period; in prac-
tice, the executive will have to assign the idle task to a procéessor in the
event that that processor has not done the idle task recently, even if doing
this results in unnecessary reallocation of another task or a slight violation
of the priority structure. Finally, the high-level description does not illus-
trate the provisions required for computer reconfiguration in the event of a
processor's hard failure; this will require additional queues for describing
processor status.

One advantage of the floating executive /multiprocessor approach is that

all pieces of the system are continually being tested for correct operation.
All processors are performing as identical parts of the total 'sysf:em,
greatly simplifying the job of removing one processor from the active list
if it fails. The floating executive offers still more advantages dver the fixed
executive with regard to throughput efficiency. Its response time is the
best of any executive design because each processor is always working on
one of the highest priority tasks. However, verification is much more
difficult than for any of the other alternatives because of the much greater
uncertainty as to which processor is doing what and the many combinations
that can occur.

4,4 Executive and Computer Configuration Comparisons-

Executive design criteria were defined and the performance of the prelim-
inary executive designs estimated. The results are summarized in Table 9;
the higher the numbers, the better the performance.

For the first criterion, size and complexity of the executive programs

themselves, the implied executive is by far the best and the floating exee-
utive the worst. The distributed executive for the multiprocessor is
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‘Table 9. Executive Design Comparison

Simplex Multicomputer Multiprocessor
Criterion JImplied | Polling § Interrupt ) -Distributed |Distributed Fixed J Floating

Size and complexity 40 20 i0 7‘ 7 8 5 4
Overhead . 40 12 10 10 10 9

Capacity 1 8 10 20 20 20 25
Response time . i 5 10 4. 1 11 12 T 14
Flexibility 0 5 1] A 11 13 15 20
Failure handling 0 0 10 10 t0 15 20
Verifiability " 20 15 10 7 7 3 1

slightly smaller and less complex than its counterpart for a multicomputer
because the use of direct memory access rather than normal input/output
simplifies task intercommunication. Estimates for the second criterion,
executive overhead, follow much the same pattern, with little significant
difference between polling, interrupt, distributed, and fixed executives.
Executive capacity, which is a measure of the number of unique tasks that
can be accommodated without requiring any executive modifications, is sig-
nificantly better for the multicomputer and multiprocessor configurations
than for the simplex computer. Executive response time of the interrupt
scheme is much better than that of the polling executive, Flexibility, the
capability of being easily modified to accommodate new system require-
ments, and failure handling, the capability to dynamically react to and
compensate for hardware failures, are likewise significantly better for the
interrupt executive. Finally, verifiability follows the same trend as size
and complexity, with the simplex polling executive better than the simplex
interrupt executive, much better than the multicomputer and multiproc=-
essor distributed executives, and very much better than the fixed or float-
ing executives.

It is concluded that the simplex configuration will lead to significantly sim-
pler software than the multicomputer or multiprocessor configurations.
Compared with a polling executive, the advantages an interrupt executive
offers with regard to capacity, response time, flexibility, and failure
handling compensate for its greater verification difficulty. The multiproc-
essor is slightly preferred over the multicomputer configuration if the
distributed executive alternative is selected. Although the multiprocessor
with the fixed or floating executive offers many advantages as far as capac=
ity, response time, flexibility, and failure handling, the verification
problems are so great that these executive designs should not be utilized
for the Space Shuttle.l
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5. COMPUTER ARCHITECTURE

The-software effect of the Space Shuttle computeér configuration will largely

be felt in the executive program, which, while the most difficult part to design
and verify, will constitute only some 10% of the total onboard software. The
effect of architectural features will impact the executive program and the
individual task programs as well, Although no specific architectural
feature will have as much impact on software design and production as will

the choice of configuration, each one will apply to much more of the software.

Basic criteria for determining software impact are discussed in this section
in terms of the suitability or adequacy of the following classes of architectural
features: )

Memory

Execution speed

Input/output facilities
Instruction set

Word format

Register organization

Restart and self-test provisions
Interrupt-handling facilities

The discussion here applies only to software, Considerations of hardware
availability, cost, and reliability will be equally important in selecting a
particular architecture. As the succeeding discussion will show, some of
the detailed architectural aspects will be important to the overall soitware
cost impact, while others, although important for other reasons, will have
a small effect on cost.

The criteria, because they apply to the total onboard software, also have
implications as regards the computer configuration. In particular, signifi-
cant architectural differences are possible between the computers at the
local and central levels in a federated configuration., In such a configura-
tion, a significant portion of the software will be for the local computers.
If these local computers are unsuitable in terms of, say, their instruction
set, then the overall software effect will be increased in proportion to the
amount of local level software.

Before proceeding with the discussion of individual architectural aspects,
it should be pointed out that for a given set of functional requirements there
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is a level of performance with respect to the first three -- memory, execu-
tion speed, and input/output facilities -- that must be satisfied if adequate
software is to be developed at all. Uncertainty in Space Shuttle avionics
subsystem hardware and mission requirements definition has not permitted
this minimum level of performance to be determined in the present study.
Whatever level is ultimately determined, capabilities in excess of the mini-
mum will have definite advantages in reducing software costs.

5.1 Memor

Memory size, characteristics, and access methods are all extremely impor-
tant in programming. Software production is greatly facilitated when these
features are suitable to both the application and the programming technigues
employed,

5.1.1 Memory Size

Memory size is the single most important hardware characteristic affecting
soitware development. If memory is inadequate, even simple programs be=-
come difficult to write, with many iterations of reading and memory reallo-
cation to ensure that all routines will fit. The immediate result is that the
programmer is forced to concentrate on efficient memory utilization and not
on the problem being solved.

A very serious complication resulting from inadequate memo'ry, especially

in verification, is usage of the same memory locations for temporary storage
of unrelated data items created by separate tasks. This is possible, in theory,
if the first task retrieves its temporarily stored data item before another task
attempts to utilize the same location. The second task must retrieve its data
item before the first task utilizes the same location again., Like bigamy, this
scheme works only if perfect separation can be guaranteed. In practice, the
common sharing of memory leads to unwanted and unpredictable interaction
between otherwise independent tasks. The problem of memory sharing also
applies to the sharing of subroutines that can be accessed from two or more
tasks. I the routine cannot be duplicated in both tasks, either it must be
demonstrated that the one task never attempts to reference the common sub-
routine before the other task has finished with it, or the subroutine must be
designed fo be reentrant. Such memory-sharing problems can exist for both
polling and interrupt executives, but are more difficult to solve for the latter.

Memory locks are one hardware feature that can be used to alleviate inter-
ference problems. However, their use in controlling the accessing of data
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that must be shared should not be complicated by also using them in situa-
tions where data sharing is not actually required. Certainly memory locks
must not be considered a substitute for adequate memory; for where mem-
ory is already restricted, the additional memory needed to operate them
often prevents their use. :

It is very difficult to predict just how much memory a set of routines will
require. In the present study, the minimum and maximum memory size
estimates (Table 2) varied by nearly an order of magnitude. Further, the
prediction process, or “sizing,'' becomes harder the more the new system
differs from existing systems, and of course the Space Shuttle system will
be unprecedented in many respects. The answer to the sizing problem is
threefold. First, the functional analysis activities should be continued up

to the point where actual onboard software coding has been completed to
ensure that proper actions can be taken to keep memory size compatible

with software functional requirements. Second, the computer architecture
should have an extensible memory organization as discussed later. Third,
sufficient surplus memory should be obtained initially. The amount of sur-
plus depends in part on the uncertainty in the software functional requirement;
in view of the present uncertainty, a surplus of 100% would not be excessive.
Even when the subsystem hardware configurations and software requirements
are firmly established, a surplus of at least 40% should be provided. This
will ensure sufficient memory to permit a high-order language, with the
attendant compiler inefficiencies, to be utilized.

One problem with surplus memory is that its very existence causes the addi-
tion of software functions which, although not required, are added to the sys-
tem because it is possible to do so. Preventing this unneeded software growth
requires both strong management and a recognition of the positive benefits
that surplus memory can offer to the reduction of software costs.

5.1.2 Extensible Memory

An extensible memory capacity is highly desirable for both hardware and
software efficiency. With such a system, memory capacity is varied by
adding or removing memory modules {or banks), which may range in size
from 4K to 32K words. With extensible memory, the capacity can be ad-
justed to hold the software, rather than requiring the software to be adjusted
to fit the memory., Any computer with fixed memory size is undesirable;

it is almost certain to be either too small or too big. If itis too small
programming costs rise sharply. If it is too big, a penaliy is paid in excess
hardware and excess weight. A broadly extensible memory consisting of
small modules need never be too big or too small by more than 5-10%.
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Figure 15 illistrates, for a fixed memory size, the relationship between
total memory cost per word and the ratio of actual memory size to the
original memoéry size estimated and purchased. The hardware contribu-
tion to total cost for such a memory configuration is constant, but the
software contribution increases greatly the more closely the memory
required approaches that available. Figure 16 illustrates the total cost
per word for an extensible memory architecture. With this architecture,
the software costs involved in coding a given function can bhe relatively
constant because enough memory can always be added to avoid the prob-
lems induced by inadequate memory. The hardware cost would be higher
for an extensible memory, and would increase in discrete jumps as more
memory had to be added to maintain the fixed software cost. However,
the sharp increase in software cost is zvoided, so that total cost per word
is lower when actual memory required closely approaches or exceeds -
original estimates. Thus the availability of the extensible memory fea-
ture would greatly reduce the sensitivity of Space Shuttle software costs
to program size underestimation.

5.1.3 Auxiliary Memory

Supplementing the main memory of many large computing systems is a
large, relatively slow auxiliary memory. Software development is simpler
and less costly without an auxiliary memory, but the hardware cost and
weight advantages of supplementing the central memory can be significant.
A detailed analysis of the requirement for auxiliarymemory is dependent
on full definition of Space Shuttle mission requirements. Study of the
available data suggests that an all-main-memory arrangement may be
desirable because:

. The executive routines must be largely, if not
entirely, resident in main memory at all times.

o At peak load, the bulk of all lines of code concerned
with mission operations will be in main memory at
once.

¢ During the most active mission phases, most of
the mission control program will almost certainly
be required to be in main memory at the same time.

5.1.4 Read-Only/Read-Write Memory

Hardware reasons -- reliability considerations, reducing electrical
power consumption, and so forth -- may exist for dividing the memory

67



into read-only and read-write portions, Temporary data items and vari-
ables are allocated to read-write, and instructions and constants to read-
only memory. The partitioning has little consequence to programming
efforts so long as there is enough of each type. But if the program will
not fit in the read-only section, or if all variables, tables, etc., will not
fit into the read-write section, the effects are the same as those of hav-
ing insufficient memory: development and verification costs are both in-
creased because routines must be tightly packed, causing increased
interaction between unrelated routines.

If all memory is read-write, there is a small penalty in confidence (or
in cost of establishing confidence) in soffware gquality because a task's
program or constants can be erroneously overwritten by another pro-
gram. In the case of read-only memory, verification must make allow-
ance for attempted erroneous writing; even though erroneous writing is
inhibited, it must be searched for as indicative of program malfunction.
That is, while a stored constant will not be destroyed by the erroneocus
attempt, subsequent reading of the location by the faulty routine will not
give the value that that routine expects. For a very large centralized
system, the absolute protection afforded vital tasks (such as the execu-
tive or those that perform the control functions) from being destroyed by
other tasks that have errors ray justify less complete verification of the
"unimportant" tasks without reducing confidence in the computer's ability
to perform the vital ones. The reduction in verification effort, however,
is not great, and any reliance on minimizing the effects of errors should
not deter efforts to find them.

5.1.5 Virtual Memory

In a computer system with virtual memory, the memory apparent to the
programmer is much larger than the physical size of main memory. Gen-
erally, main and virtual memory are divided into pages consisting of a
fixed number of words, commonly 500-1000, Only a fraction of the total
number of virtual pages resides in main memory atone time. If a routine
attempts to access a word in a page that is not in main memory, that page
is brought in from mass storage and a page not recently used is removed.

While generally aimed at time-sharing applications, a virtual memory
might be considered for the Space Shuttle as an alternative to a fixed mem-
ory size or an extensibility feature. Programmers would not need to be
concerned with running out of physical main memory, only virtual memory,
This feature would also facilitate restarts or rollbacks after failures not
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involving the mass storage device. When a page is brought into main mem-
ory, its image remains on the mass storage device. If a fault occurs, this
page may be recopied into main memory and the program reinitiated at the
point where the page originally entered main memory. In effect, a paged
virtual memory performs main memory saves automatically as the pages
are swapped from main memory onto the mass storage device.

In spite of its theoretical appeal, virtual memory has two overriding dis-
advantages for the Space Shuttle. First, the average memory access time

is slowed considerably because of the time spent in swapping pages. Second,
execution times vary unpredictably, depending on which pages happen to be
in main memory. This, in turn, depends on how many other routines are
running concurrently. Hence timing varies noticeably, limiting predicta-
bility and repeatability, both of which are very important to verification.
Accordingly, itis concluded that virtual memory is an undesirable feature.

5.1.6 Interieaved Memory

Memory interleaving is commonly used in simplex computers and multi-
processors fo minimize the average memory access time. With conven-
tional distribution of addresses, assuming a computer having several mem-
ory modules, addresses 1, 2, 3, etc., would fall in module 1, which might
be loaded down with requests for words while others remained idle. With
one form of interleaved address distribution, address 1 would be located

in module 1, address 2 in module 2, and so forth; in general, for a mem-
ory of n modules, address m is in module {, where i = m (meod n). Thus
interleaving randomizes the pattern of accesses to memory modules.

On a simplex processor, interleaving is a desirable feature. Interleaving
is invisible to the programmer; he can ignore the fact that it exists and
still gain the speed advantage. That is, interleaving could save him the
trouble of distributing program and data and variable storage areas so as
to minimize access time. The variation in access time is predictable, so
that interleaving does not make verification more difficult.

A different conclusion is reached for interleaved memory in conjunction
with a multiprocessor configuration. Assuming that different processors
had access to the same memory module, the execution time of one proc-
essor could vary depending on what functions another processor was per-
forming. This would then make execution times vary, thus limiting pre-
dictability and repeatability. Since some of the effect of interleaving is
lost anyway when two processors can access the same memory, it is con-

cluded that interleaving should not be used in the general multiprocessor
case.
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5.1.7 Nonrandom Access Memory

Even though rotating disk or drum memory machines are still in use in.some
applications, it has been assumed in the previous discussions that the main
memory is of the random access type. Nonrandom access implies variable
access times and is considerably slower than random access. In many cases
the programmer is required to structure data and program flow in a highly
unnatural manner in order to decrease the average access time. This can
be a major programming burden. Hence a computer with a nonrandom ac-
cess main memory should simply not be considered for the Space Shuttle.

5.1.8 Addressing Range

In some computers it is not possible to directly address the entire memory.
Rather, addresses in instructions represent only part of the true address,
and, as indicated in the diagram below, the addressing hardware must con-
catenate an extension or base register onto the left end of the address speci-
fied in the instruction to obtain the complete address.

=~

Part of address Part of address
obtained from specified in
extension register instruction

The purpose of this procedure is to conserve memory. Since addresses
are shorter, insfructions can be shorter; hence a smaller word length may
be feasible.

Sometimes the use of extension registers indicates a kludged machine result-
ing from an initial design in which the memozry proved too small for the in-
tended application. The memory is enlarged, and the extension register is
added to permit the larger memory to be addressed.

While offering no software advantages, the use of extension registers poses
several disadvantages for software development. The extension register(s)
must be loaded and unloaded by the programmer. A Logicon study of guid-
ance, navigation, and control programming showed that 10% of the instruc-
tions involved manipulation of extension registers. In other cases where the
average-size program module was well within the addressing range and there
was little intermodule communication, less than 3% of the instructions were
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devoted to manipulating the extension register. Based on these observations,
it is expected that the penalty in Space Shuttle software costs would be be-
tween 3% and 10%, with the most likely value being around 6%. A secondary
disadvantage is that programmers are induced to try to group instructions
and data so as to minimize extension register manipulation. Not only does
this add a further constraint to programming, but the grouping may warp an
othetwise straightforward program and make it harder to verify. The con-
clusion is that a computer requiring extension registers to address its full
range is undesirable from the software viewpoint.

5.1.9 Indirect Addressing

Normally an address specified in an instruction is the address of that instruc-
tion's operand. Some computer architectures also permit indirect address-
ing: the address specified in an instruction can be the address of the location
containing the address of the operand.

Indirect addressing is nonessential but convenient. One application is in re-
turning from a subroutine. For example, if any routine calling subroutine
XI placed its return address in cell 251, the return from subroutine XI can
be uniformly accomplished with a "JI 251" instruction, meaning jump to the
address contained in location 251. A second application is in accomplishing
computed GOTOs. For example, consider the function GOTO(A, B, C, D).
Suppose pointers corresponding to labels A, B, C, D are listed in order be-
ginning with address T. I is loaded into index register 6 and then the ine--
struction JI, 6, T is executed. The effect is to add the contents of register 6
to T, obtaining the address of the cell containing the address to which the
jump is made. A third application is in communicating values to a subrou-
tine. Suppose a vector A{l),..., A(10) is to be passed to a subroutine as an
argument. The straightforward method is to copy all 10 values into a region
of memory assocliated with the routine. If indirect addressing is possible,
only the base address of A need be passed to the subroutine. If the base
addrees is placed in BA, instructions such as ADDI 6, BA will fetch the de-
sired values from vector A. (The use of indirect addressing is likely to be
indicated by a bit in the instruction, rather than as distinct instructions.
Thus ADDI is really an add instruction with the indirect addressing bit set.)

All of these operations could be accomplished using indexing alone. Indirect
addressing is merely a convenience, one that may save less than 1% in exe-
cution time and memory requirements or in software development costs. On
the other hand, it is an invitation to intricate and overly clever coding, which
can increase verification difficulty more than the relatively minor savings in
programming effort realized. Assuming that programming standards were
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established to alleviate the verification problem, it is expected that an in-
direct addressing capability would not affect overall software costs one way
or the other.

Some computers provide cascaded indirect addressing: an additional indirect
addressing bit in every word signifies whether the remainder of the word is
an address of an operand or the address of another address. Thus the pro-
grammer may reference an operand through the address of the address of
the address of -~ ad infinitum -- the operand. Such cascading is even less
useful than indirect addressing, and may complicate the development of diag-
nostic and verification tools. For these reasons cascaded indirect address-
ing is considered undesirable for the Space Shuttle.

5.1.10 Bound.Registers

In the earlier discussion of read-only memory, the protection afforded a
vital task from inadvertent destruction was outlined. A more flexible and
effective way of doing this, and more, is to limit the region of memory ac-
cessible by a given program element by using upper- and lower-bound regis-
ters. If a routine tries to access a word whose address lies outside the
limits contained in these bound registers, execution is halted and control is
returned to the executive.

Bound registers would be useful during software checkout and verification
and would assure that vital software functions are accorded proper protec-
tion regardless of malfunctions in other functions. Any routine which tried
to fetch or write outside its legitimate region of memory would easily be
detected so that the problem could be corrected or its effect minimized.
Without this feature, errant routines would be able to sabotage the data and
programs of other routines, causing errors that might be hard to trace or
that could destroy vital instructions or data. In a very centralized data man-
agement system the use of bound registers would prevent propagation of
hardware or software failures to other parts of the system, just as would

be accomplished in a decentralized system through hardware separation at
the computer level. Again, although this feature would simplify verification
somewhat, it cannot be used as justification for a haphazard verification
effort,

If easily controllable through software, bound registers may also make it
easier to prevent unwanted interference between tasks. What is needed is
the capability for one task to inhibit any other task from reading from or
writing into a particular region of memory. If any other task attempted to
perform the inhibited operations, its execution would be suspended until
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either the particular bounds'were removed or the executive program resolved
the conflict. The provision of such powerful and flexible means of controlling
task access to common data items can simplify software production and veri-
fication by accomplishing in hardware what would otherwise have to be done
through software.

5.1.11 Memory Locks

Memory locks, an extension of the bound register feature, generally apply

to smaller memory blocks. Whereas memory bounds establish the regions
that a particular program can access, memory locks determine the programs
that can access a particular region. A memory lock may designate whether
the program's access iz to be read-only or whether both reading and writing
are permitted. Memory locks are conventionally implemented by having a
keyword for each memory region; any program attempting to access the data
in that region must supply a matching keyword.

As with bound registers, hardware memory locks would be useful during
Space Shuttle software checkout and verification. However,' they are cumber-
some to use for regulating interaction of logically related routines unless
designed specifically for the purpose. Software locks are more practical

for such situations: the domain of a software lock can be tailored to individ-
ual groups of data, while the domain of a hardware lock usually cannot.

Hardware locks having the ability {already described for bound registers) to
delimit the areas of memory accessible to a particular task and to suspend
task execution and signal the executive when these limits are exceeded can
eliminate much of the need for their software counterparts, with an attendant
savings in software production and verification costs. Procedures for the
use of hardware and software locks are discussed in detail in Appendix A.

5.2 Execution Speed

The speed of the processor will have a profound effect upon Space Shuttle
program development techniques and on ease of program verification and
modification. Unfortunately, the contribution of individual archifectural
aspects to the effective speed of a particular computer cannot be completely
determined without actually developing the total program. However, several
measures may be employed to approximate a computer's 'speed, including:
Lo
e Memory Cycle Time: the average access times for
instructions and data located in the memory
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¢ Add and Multiply Times: the execution ftimes for
relatively typical, simple, but commonly used
instructions

] Composite Instruction Times: the execution time
for a mix representative of the instructions that will
be employed for the actual program

¢ Kernel Problem Times: the time to perform common
basic operations such as matrix multiply and poly-
nomial evaluation

o Benchmark Problems Times: the time to execute a
collection of programs to solve limited but repre-
sentative hypothetical problems

The advantage of the first two measures is their simplicity; their disadvan-
tage is their inaccuracy. That is, they do not give a true indication of effec-
tive speed because they ignore the many other architectural features that
affect speed, among them the memory size, operand addressing structure,
instruction set, and register organization. The advantage of the last three
measures is their greater accuracy; their disadvantages are their greater
complexity and the greater amount that must be known about the problems
the program is to solve.

At this stage of the Space Shuttle's development it has not been possible to
define representative instruction mixes, kernel problems, or benchmark
problems. This should be done when the software requirements become
more complete, and the results used to evaluate the speed capabilities of
proposed computer architectures. This section outlines the expected effect
of adequate computational capability as determined by the recommended
approach and proposes computational capability marging. It also describes
the effect of computer architectures in which execution times are variable,
depending not only on the instructions used but also on the data being manip-
ulated.

5.2.1 Computational Capability

An absolute requirement exists for the processor to perform highly critical
computational bursts within the allotted time. Beyond this, any additional
available time can be very fruitfully used to permit conformance with desir-
able programming practices and standards and to reduce the costly attention
that otherwise would have to be paid to program optimization.
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As stated above, a computer's effective speed depends on many of its
architectural characteristics. Computation can be speeded, for example,
by reducing the amount of looping, but with a resultant increase in pro-
gram size. Or, incorporating highly specialized instructions, such as
square root, could reduce the number of instructions required to perform
a particular function, again reducing the computational time for a specific
task. These examples illustrate a classic programming tradeoff: that
between the memory-space and execution time required to accomplish a
specific function. It'is costly for a programmer to have to concern him-
self with whether space optimization or time optimization should be used
for the task he is coding. Rather, he should be able to proceed in any
reasonable and natural way. Ewven if forced to make the appropriate mem-
ory sacrifices to achieve the needed effective speed, the payoff is slight;
speed savings over the entire program are expected to be less than 5%,
even with the devotion of considerable effort.

To look at the question from another viewpoint, providing a high basic com-
putational speed is a way to reduce the importance of other architectural
features -- such as the number and power of instructions, the word size,
and the register organization -- because it permits techniques such as
interpretive subroutines to be used for operations that cannot otherwise

be easily done. In general, an adequate speed margin will reduce software
costs because it:

o Provides a Safety Factor: This may well be necessary
if computational requirements are initially underesti-
mated or are subsequently enlarged to make a software
compensation for unanticipated hardware problems.

e Eases Programming: A limited computational speed
leads to a requirement for difficult and costly time
optimization.

- Fasges Verification: An adequate speed margin permits
a program to be designed and coded with close attention
to clarity and organization and conformance with standards,
enabling it to be tested far more easily, and also allows
software self-checking and diagnostic features to be
incorporated.

o Fases Maintenance: The programming approaches and
routines can be developed and utilized in a more general
way, in many cases obviating the need for changes or re-
ducing the difficulty of making them,
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It is recommended that the Space Shuttle computer provide a computational
capability of 100% over the estimated maxirmum execution time. The mini-
mum execution time mazrgin should be 25%; and this margin is considereéd
adequate only if the computational load can be accurately estimated and is
not expected to change significantly during the software system's lifetime.
A multiprocessor configuration can to some extent permit smaller speed
margins if adding new processors to the system is relatively easy. This

is analogous to the use of extensible memory in that the additional proces-
sors extend the effective speed of the computer system. However, the ad-
vantages of adding processors are not without their corresponding software
costs: if the distributed executive design is chosen as recommended, some
redesign and recoding of the existing task communication executive modules
will be required, and some of the added computational capability will be
lost because another, albeit identical, executive program will have to be
supported.

The 100% margin is strongly recommended to eliminate the need for optimi-
zation or to allow the program to be expanded to perform twice its estimated
functions. That this margin is not unreasonably high can be demonstrated
by citing what happened with the Titan III space launch vehicle in the mid
1960s. In this instance, the flight controls were designed to operate at a
frequency of 20 msec, and the onboard computer provided a 20% safety
margin based on the estimated computation. This margin proved to be
insufficient, even with extreme code optimization. The onboard flight
control program was eventually redesigned and recoded; the major change
was a reduction in computation frequency from 50 to 25 cycles/major cycle.
A large computational speed margin would have eliminated a considerable
amount of the extra effort and cost expended in redesign.

5.2.2 Uniform Execution Times

Inability to predict precise program timing, caused in a complex program
by the many logic paths, produces great verification difficulties. The pro-
blem is greatly aggravated if instruction execution times are not completely
known. One architectural feature that can prevent their being known is a
variable-length multiply, in which the multiply time is a function of the
contents of the multiiplier. Variable ingtruction timing in agsociation with
interrupts makes it extremely difficult to predict precisely where interrupts
will fall, thereby making it difficult both to predict and to test possible com-
binations. The problem can be somewhat alleviated by careful program de-
sign, but only at the cost of placing a considerable burden on the program de-
signer for marginal gains of computation time. More discussion concerning
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interrupts follows in Section 5. 8; here the recommendation is made that the
architecture of the computer be such that all computation intervals, of any
size, be decidable.

--5.3 Input/Output Facilities

It is convenient to regard I/O activities as data transfer activities. If the
Space Shuttle central computer facility has two or more separate computers,
it will be necessary to transfer data between them. If local processors exist
at physically remote points, it will be necessary to transfer data between
the central facility and these processors, If bulk memory devices are used,
either disk or tape, data *transfer will take place betweeh them and
the central facility. In chscusslng the Space Shuttle system, "I/O'" and "data
transfer' are therefore considered synonymous. A block is defined to be a
contiguous set of memory words and a data transfer to bea copyingofa block
from one memory (disk, core, tape, register) into another memory. All
that should really be needed to accomplish such a transfer is:

e Location of the first word in the "source' block

e Location of the first word in the "sink" block

o “Length of the block {(number of words}

In some cases, one or more of these items -of information may be implicit.
For example, if the I/O involves tapes, the block length may be fixed and

so need not be specified. However, in many computer systems a programmer
must do more than just specify these three basic items of-information, From
a software standpoint, a measure of the convenience in using I/0 facilities

is how much more a programmer has to do to actually accomplish a data
transfer. How data transfer is accomplished is highly variable, and the
commands and conventions involved are generally merely an arbitrary set
established by the hardware designers. It would be unrealistic to try to
enumerate all possible conventions and the software load they would impose.

Data transfer is commonly much slower than other computer operations. The
Space Shuttle computer system will not be an exception. For example, a
1-MHz serial data bus would require 32 msec to transmit a 32-bit word, if
overhead is ignored. A computer of reasonable speed can execute 10 or 20
instructions in this length of time. It is easy to see how a simplex central
computer could spend all its time just on I/O if its CPU itself controlled data
transfers and remained idle while the transfers were taking place. In light
of the amount of data transfer that must be accommodated within the Space
Shuttle,- an independent I/0O controller is required to perform the task on
command from the CPU, leaving the CPU virtually free to perform other
processing.
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Two methods of interacting with the I/O controller have been used in the
past: buffering and cycle stealing. The buffering approach is indicated
schematically in Figure 17. The CPU transfers at high speed the informa-
tion to be transmitted into a buffer memory associated with the I/0 con-
troller, then commangls the controller to execute the 1/0 operation and pro-
ceeds with its own computation. The controller transmits the contents of
the buffer memory word by word at the slower speed required by external
devices. The controller may signal the CPU in some manner, for example
by interrupting it, when the I/O operation is completed.

External 1/0 Buffer Main
ot > CPU -
World Controller Memory Memeory

Figure 17. Buffering Method of Interaction with I/O Controller

The cycle-stealing alternative is shown schematically in Figure 18. Here,
the I/O controller directly accesses main memory. Effectively, main mem-
ory serves as a buffer. The CPU merely tells the controller the memory ad-
dress of the block of information to be transmitted and then proceeds with its
own computation. Because of the slow speed of I/O rates, the controller
needs to access the memory much less frequently than does the CPU; and

- when it requires a word for transmission, it preempts the CPU, that is, steals
a memory cycle away from the CPU. Thus the execution of the program run-
ning when the cycle stealing takes place is delayed by one memory cycle every
time the I/O controller steals a cycle., This can cause the executing program
to lose repeatability. The points in time when the I/O controller steals a
cycle and their frequency may vary depending on external circumstances such
- as bus or device availability. Transmission errors may require that a word
be retransmitted; and this can result in an apparently random variation in
timing of any program running while the cycle stealing is taking place.

External i/0O Main -
World Controller} Memory - CPU

Figure 18. Cycle-Stealing Method of Interaction with I/O Controller
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For a system using a 1-MHz data bus and a 32-bit word length, cycle steal-
ing would occur no oftener than once per 32 psec. If the main memory cycle
rite is 1 usec, the I/O coatroller will then steal no more than one out of
every 32 cycles. (If I/O overhead such as repetition and parity operations
are considered, the fraction of cycle stealing can be estimated as even
lower.) If main memory is divided into modules, the probability of inter-
ference between the I/O controller and the CPU is further reduced. If there
are N modules, the interference probability would be 1/32N, assuming
that the CPU sequentially accesses each memory block every cycle. (With
a large number of modules, it may be possible to treat one of them as a de
facto buffer, making a cycle-stealing I/O system look like a buffered I/O
system.) A reasonable number for N for Space Shuttle would be about 10,
which would give a probability of interference of about . 003. It can be con-
cluded that the magnitude of the interference will be small and that speed
degradation due to cycle stealing is negligible. However, a difference of
just one cycle time can be enough to cause loss of repeatability for software
testing and verification.

The tradeoff from a software point of view is between the slight added execu-
tive complexity required to handle buffer filing (which might be illusory if a
whole memory block were treated as an I/O buffer under the cycle-stealing
scheme) and the loss of repeatability encountered with the simpler cycle-
stealing system. Since logss of repeatability is a serious complication for
the software testing phase of development, the buffer option is judged to be
more desirable.

Another factor affecting programming complexity is the method of queueing
requests for shared I/O facilities. From a software point of view, the sim-
plest is to have the queueing done by the I/O controller(s). A program would
merely execute an instruction requesting an I/O operation and wait for a com-
pletion flag to be set in main memory, If the I/O controller(s) cannot queue
requests, or if there is no I/0 controller, the competition for shared facili-
ties may have to be handled by software. The 1/O device may be tested with

a '"test busy' instruction which causes a branch if the specified unit is in use.
Priority conflicts between separate routines must then be handled by an execu-
tive routine,

5.4 Instruction Set

The Space Shuttle computer's instruction set will be the architectural feature
of most continuous concern to the programmers. If there were no restric-
tions on memory size and task execution times, almost any required functions
could be accomplished with a very small instruction set, albeit at a consider-
able increase in effort. :
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One measure of instruction set suitability is the number of instructions re-
quired to implement a set of benchmark programs; writing such programs

for all candidate computer architectures and instruction sets and comparing
the results would indicate the one for which software costs are likely to be
lowest. This approach, while a valid one, could not be applied at this stage
of Space Shuttle development owing to the difficulty of defining representative
benchmark programs and the cost and time required for their implementation.

Many of the functions to be accomplished by the Space Shuttle data manage-
ment system have counterparts in software developments for current space
and missile systems. The usage of instructions in these applications was
examined to provide a baseline from which the suitability of instruction sets
for the Space Shuttle was evaluated. Figure 19, showing the frequency of
instruction occurrence by type for a guidance, navigation, and control pro-
gram, is typical of the kind of information utilized. The very high usage of
load and store instructions in this application is immediately apparent;

and substantial reductions in the percentage of input/cutput instructions, for
example, would not have nearly as great an effect as a small reduction in
load and store instructions. The number of shifting instructions is roughly
half the number of arithmetic instructions, indicating the penalty paid in
this architecture for the lack of floating-point arithmetic. Analysis of these
and other data concerning the frequency of instruction usage has indicated
the areas of most concern in satisfying the instruction suitability criterion.

Arithmetic Load and Store 1
Index Load and Store -
Extension Load and Store | ———
Arithmetic ]
Shifting I
Decision "
Unconditional Branch ———
Input/OQutput w
] ! 1 1 1
0 10 20 30 40 50

Frequency of Instruction Occurrence

Figure 19. Instruction Usage for Guidance, Navigation,
and Control Programming
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5.4,1 Basic Instruction Set

In addition to a minimum set of instructions without which accomplishing
any but the most elementary functions becomes very difficult, an effective
computer architecture includes those others that, although not as impor-
tant as the mandatory instructions, will accomplish frequently néeded ele -
mentary functions without requiring extraneous.or redundant information
or producing troublesome side effects. Table 10 shows the basic instruc-
tion set comprising these mandatory and highly desirable instructions.
Some instructions, such as those for input/output, restart provision, and
floating-point arithmetic, are treated separately because of their consider-
able individual impacts. It is assumed that the instructions for addition,
subtraction, multiplication, and division manipulate operands consistent
with the word length estimates presented in Table 2, that is, Z4 bits for
the minimum hardware configuration and 32 bits for the moderate and maxi-
mum configurations., If a shorter word length, say 16 bits, is provided,
then double-precision arithmetic would be included in the basic instruction
set,

Different architectures have different numbers and categories of programmer-
usable registers into which the programmer should in general have the capa-
bility to load and store. Since the number of such registers is indeterminate
until a computer architecture has been selected, the number of mandatory and
desirable instructions is a function of N, the number of such registers. These
numbers are 11 + 2(N) for the mandatory instructions alone and 30+ 2(N) for
the entire basic set.

To determine suitability of the basic instructions provided by a particular
cornputez?, its instruction set should be compared with Table 10, If the
computer's instruction set does not contain all the indicated mandatory in-
structions, it would be rated unsatisfactory and assigned a numerical value
of 0. The occurrence of each basic instruction in a computer's repertoire
would give a value of 1 to be added to the mandatory 11+ 2ZN. The highest
score that could be achieved on the basic instruction set criterion is 30 + ZNN.
It is estimated that a computer with an instruction set scoring 11+ ZN would
have 5-10% higher software costs than one with an instruction set having a
suitability of 30 + 2N. Instruction suitabilities between these extrermes would
result in software costs in proportion. Instructions in addition to the basic
30 + 2N would have less cost impact than fewer instructions than the basic
set. It is not likely that even a very large number of relatively elementary
instructions in addition to the basic set would reduce software costs by more
than 5- 10%,
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Table

10.

Basic Instruction Set

Instruciion

Category

Desirable

Mandatory

Comments

Subtract . .
Multiply . . . . o0 v e vt i i i el
Pavide . . .. ..
Load ({to register). . ... ... ...
Store {from register) ., .:....
Register exchange
Arithmetic left shift ., .. ., ...
Arithmetic right shift’. . ......
Logical left shift . ,.........
Logical right shift
Circular left shift
Circular rvight shift. . . . ... ...
Multiple register left shift, . ...

..........

Multiple register right shift. ...
Logical "and" .. .........
I.ogical "or"

........

Liogical "exclusive or"

.......

Complement . .............
Return jump . ..
Unconditional transfer. .. .. -
Skip/transfer on positive. .. ...
Skip/transfer on negative. .. ...
Skip/transfer on zero . . . .....
Skip/trans'fer On NONzZero. .. .. .
Skip/transfer on overflow .. .. .
Skip/transfer onequal. . . .. ...
Skip/transfer onnot equal . .. . .
StOre zeXo .. .. v vt bt e unn
Increment. ....
Decrement .

I R T L I

Increment and transfer on condition

-------

-------

-------

-------

X.
X

R MoM K M

WoMoM M X oM M W K

Number of instructions a function

of number of registers
Either of these two instructions

!
j

>Any one of these seven instructions

|
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5.4.2 Floating-Point Arithmetic

For the minimum Space Shuttle configuration it is estimated that roughly

60% of the onboard program will be devoted to arithmetic calculations;

for the maximum configuration the proportion will fall to about’ 40%. In
performing fixed-point arithmetic calculations, approximately 10% of the
coding is devoted to rescaling operations and similar data manipulations

that would not be required if floating point were provided. Thus eliminating
the need for this data manipulation by providing floating-point addition, sub-
traction, multiplication, and division instructions would be of obvious benefit.

Floating-point capability does introduce some problems ?f its own, however.
Testing for zero and for equality between two floating-point operands is
complicated. Floating point also complicates modulo arithmetic, which is
often used for calculations involving angles. It is expected that much of
the data received from and transmitted to other vehicle subsystems will
continue to be maintained in fixed point, thus requiring the proper conver-
sions to be performed. Weighing the disadvantages against the far greater
. benefits attainable, it is estimated that floating-point instructions would
reduce the size and complexity of the total onboard software by about 3-7%.
This reduction in size and complexity would be directly translatable into
equivalent cost savings.

In some systems that lack hardware floating point, the equivalent arithmetic
operations are accomplished by means of subroutines.written in a special
machine-like language; a software interpreter causes their execution. This
software approach to minimizing the effect of a hardware deficiency is un-
desirable for several reasons. - First, it reduces effective computer speed
by a factor of 10 at a very minimum and in some cases by a factor of over
100. Second, the subroutines and interpreter add to the size of the onboard
program and to verification problems. Finally, the use of the interpretive
mode greatly complicates the multiprogramming of independent tasks, for
if one task is in the middle of executing a floating-point subroutine, any
interruption by another task using that same operation must be prevented or
else the subroutine must be made reentrant. Thus interpretive floating
point should in no way be considered an acceptable substitute for hardware
floating point,

Another approach to minimizing the lack of hardware floating point would be
to utilize a higher-order language that allowed the range and precision de-

sired for each fixed-point operand to be specified for arithmetic operations,
and a compiler that automatically allocated proper scalings and inserted the
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required scalings adjustments. Shifting the burden of fixed-point arithmetic
problems from the programmer to the language and compiler in this way
would be of some benefit, but would eliminate neither the analysis burden

of determining range and precision nor the verification burden of demon-
strating their adequacy and correct implementation. Furthermore, develop-
ing a compiler to accomplish automatic scaling allocation and readjustment
is very difficult. Experience with the recently completed CLLASP compiler
for a fixed-point onboard computer indicates that compiler cost would be in-
creased by at least 25% owing to the added complexity. And with the current
state of the art in compiler construction, considerable help from the pro-
grammer in scaling allocation is still required to maintain precision and
accuracy. Rather than relying on a language and compiler to obviate the
need for floating-point arithmetic, hardware floating point is mandatory if

a high-order language is to be workable on Space Shuttle.

5.4.3 Multiple and Subroutine Instructions

Some computers provide instructions that singly accomplish something that
would otherwise require many instructions. Two categories may be defined:

e  Multiple instructions by which the same elementary
operation is repeated several times -- for example,
a block copy instruction that moves many data items
from one area of memory to another

e Subroutine instructions by which an operation is
performed that would otherwise require a subroutine
composed of different basic instructions -- for
example, an instruction that computes the sine
for the operand

Generally, multiple and subroutine instructions take much less time to
execute than the sequence of basic instructions for which they are sub-
stituted, but much longer than any of the basic instructions individually.

The long execution time of multiple and subroutine instructions can intro-
duce problems if the system also utilizes interrupts. While interrupts
are not generally permitted to occur during an instruction's execution, it
may not be permissible to lock out all interrupts for the length of time a
multiple or subroutine instruction takes to execute. There is no software
solution to this dilemrna; and serious hardware and software complications
are likely to arise if interrupts occur during instruction execution. Still
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another problem, particularly with multiple instructions, is retaining the
capability of restarting when a computer error is detected. If a computer
error occurs during the execution of a multiple or subroutine instruction
that reads from a memory block and writes back into that same memory
block, restarting will not be possible unless the complete original memory
block has been saved.

Unquestionably, multiple and subroutine instructions save memeory and
execution time compared with equivalent subroutines composed of basic
instructions. Their utility is not great, however, because of their relatively
infrequent usdge. For example, when a sin/cos instruction was provided

in a hypothetical computer, the guidance, navigation, and targeting pro-
gram's execution time was reduced by 0. 1% and its memory size by 51
instructions; a cross-product instruction reduced execution time by 2. 7%
and program size by 61 ingtructions. This was the type of program that,

in the Space Shuttle application, would make the heaviest use of these
subroutine instructions. The very small number of instructions saved
indicates the small impact that subroutine instructions would have on over-
all Space Shuttle software costs. The execution time savings is somewhat
more significant, although when the total software is considered, subroutine
instructions would reduce execution time by less than 1%. It is concluded
that the expected memory and execution time savings are not sufficient to

offset the problems that multiple and subroutine instructions would intro-
duce, '

5.4.4 Unique Instructions

Nearly every computer has instructions unique to that computer alone,

. These instructions are quite complex, having many of the attributes of multi=-
ple or subroutine instructions, and accomplish operations appropriate
only to a restricted type of problem; a well-known example is the ''con-
vert by replacement from the accumulator' instruction of the IBM 7094.
The virtues of unique instructions and the means of employing them are
not obvious; hence their usage is generally confined to experienced and in-
ventive programmers and their frequency of occurrence is measured in
tenths of a percent or less. The best that could be said about unigque in-
structions is that they cause no harm, and even this is not always true.
Unique instructions complicate verification because usually there is not

a clear relationship between the computer operations that will be performed
and the programming specification. Similarly, they complicate the crea-
tion of automatic verification tools,

It is not possible to describe all instructions that could-fall into this category
because of the special characteristics of each. The major indication is the
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occurrence of an instruction that has no counterpart in any other computer
and whose suitability to the class of problems being solved is not apparent.
Frequency of occurrence by itself is not a reliable indicator; some instruc-
tions, such as restart and interrupt disable, may not be used very frequently
but are essential when they are used.

5.5 Word Format

The format of instruction words and the type and format of data words all
influence the relative ease of using a computer’s instruction set. From the
functional analysis described in Section 3, it was concluded that the data
word length for moderate and heavy Space Shuttle processing loads should
be 32 bits, based on the expected precision required. The following para-
graphs discuss some of the more probable of the many formats possible for
a basic word size of 32 bits and their effect on software implementation.

5.5.1 Instruction Words

The most common and straightforward alternative is to have instruction and
data word lengths identical. This provides considerable ease in allocating
instructions and data words throughout core. Typically, aerospace computers
have instruction words that are either consistently shorter than the data words
(the UNIVAC 1824) or are of variable length (the IBM 4 PI). The primary
motivation for making instruction words shorter than data words is to permit
full utilization of core memory. For example, if it is assumed that:

i full memory addressing to 256K words of core is allowed
the instruction repertoire consists of 128 instructions
° the processor has seven index registers

then 28 bits would be needed to encode the above information. Thus if the
basic computer word size is 32 bits, there would be at least 4 unused bits
in all instruction words. Instructions such as shifting and those loading
directly from the address field would require even fewer bits.

If the computer architecture permitted, it would be possible to fit 8 instruc-
tions into 7 basic computer words if these unused bits are employed. Such
an architecture is not likely. Another alternative, and one that has been
employed on some aerospace computers, is to reduce the number of bits
allotted for memory and index register addressing and for instruction
operation codes to allow shortening the instruction word. For example, the
main memory addressing range could be reduced to 2K, permitting an in-
struction word length of 21 bits and allowing 3 instruction words to be packed
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into 2 data words. Even more drastic, the memory addressing range could
be reduced to'256, the number of operand-cdde—distinguisha:bfe instructions
to 64, and the number of index registers to 3, permitting an instruction word

size of 16 and allowing 2 ‘instruction words to be packed 1nt0 1 basic com-

puter word.
¢

Even though the total hardware memory size may be reduced, -such trimming
of instruction formats to achieve a high instruction packing density in the
basic computer word is very undesirable from a software point of view. The
problems associated with the restricted memory addressing ranges have
already been described (Section 5.1. 8)., Having to determine the instruction
to be executed from bits in the instruction word other than the operation code
or from some previously executed operation is similarly undesirable be-
cause the programmer often will have to specify more information in coding
than would otherwise be necessary, and the verifier will ha.ve more things

to demonstrate correct.

On the other hand, allocating instructions and data according to purely logi-
cal reasons, without having to follow coding restrictions regarding use of
half-words and positioning of word or segment boundaries, makes it con-
siderably easier both to develop the program and to train others to use and
to modify it. Of course, verification advantage is gained in that the fiumber
of things that have to be checked is reduced. The computer code is more
direct, avoiding peculiarities that might arise from packing; as an example,
the use of partial-word instructions of the Honeywell 701P often requires
insertion of do~nothing instructions because instructions cannot be broken-
across word boundaries. Thus it is concluded that the most effective in-
struction word format for Space Shuttle software development is one in which
all instructions occupy a full computer word. There is no software advantage
in having partial-word instructions, while there are noticeable disadvantages.

5.5.2 Iiata Words

Four data types are expected to be reguired for Space Shuttle programming:
floating-point numbers, fixed-point or integer numbers, logical vectors, and
alphanumerié strings. Ideally, the computer instructions used in manipu-
lating each type should allow the data to be addressed directly. At the pres-
ent time the relativé amounts of each variety of data to be used in the data
management systermn cannot be accurately estimated. Clearly, the actual
mix will determine the utility of having special instructions for each data
type. '

For the vast majority of mathematical computations, floating-point numbers

are highly desirable. The format must be fixed if the floating=point opera-
tions are to be executed as single instructions. The number sign, fraction,
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exponent, exponent sign, and (in some instances) flag bits are extracted by
the processor from the addressed word according to a fixed convention. Flag
bits can be used to specify such things as options for overflow and underflow
procedures. This seems to be an unnecessary level of sophistication for this

application.

Fixed-point and integer arithmetic will still be highly useful even if a floating-
point capability is provided. They are especially useful for non-eguation-
processing functions, such as defining and modifying contents of index regis-
ters, logic control parameters, looping control, and so forth, The general
capabilities possessed by most computers are sufficient here. One helpful
architecture feature for use when handling small integers is partial word
control.

The final two data types are logical vectors and alphanumeric data. Logical
vectors are simply strings of 0's and 1's. Ideally, it should be possible to
manipulate strings of arbitrary length using only a small set of logical in-
structions, Alphanumeric data are characteristically of variable length;

the natural unit is the single alphanumeric character, Editing and manipu-
lative operations should ideally permit character-level addressing of strings
of arbitrary length.

For any of the four data types there are advantages in being able to read or
write portions of a data word without being affected by or affecting the rest
of the word. This is accomplished by providing the capability to address
half-words, quarter-words, or bytes. The ability to divide data words into
smaller addressable segments has a different software impact from that of
dividing instructions into half-words, providing additional capabilities and
flexibility in data declaration as opposed to imposing burdens on the program-
mer, Partial data word capability facilitates masking of logical information,
processing of Hollerith information, modification of branching, and so forth.
Generally, this should be done on the basis of an orderly division of the word
length resolved; for example, the division of a 32-bit word into 16-bit half-
words and/or 8-bit bytes. This capability is extremely useful and is recom-
mended. :

An extension of this technique is to make a computer capable of handling a
completely variable data word length. Computer ""word length" is commonly
defined as the number of bits retrieved by a single memory fetch. With
variable-field-length addressing, the physical word length is of no'great
concern to the programmer: the memory appears to be a continuous hori-
zontal string of bits. A data item is accessed by giving the address of the
leftmost bit plus the length (in bits) of the item. Data of arbitrary length

=88«



may thus be stored or retrieved from any point in memory. There is no
need to pack and unpack small items in a single word; long items need not be
artificially divided into words; and no effort is required to extract subcom-
ponents of a data'item. Thus the programmer is free to let the actual rep-
resentation reflect his internal conception of the data. For convenience, a
fixed default word length may be provided for use when the specification of
variable field lengths becomes burdensome.

This feature is considered undesirable for the Space Shuttle data manage-
ment system. Not only would it provide relatively little additional utility in
developing software, but it would also impose heavy burdens. It would regquire
complicated and detailed interfaces to be defined between programs sharing
data of different lengths and would increase verification difficulty because

of the greater possibility for errors in interfaces and the many types of data
manipulations that would have to be checked.

5.6 Register Organization

Registers are involved in nearly all basic computer functions. A large
number.of registers, interacting in many complex ways, increases both
programming and verification difficulty. A minimum set may be too re-
strictive, necessitating additional data manipulation to accomplish simple
functions, and this, too, will increase programming and verification dif-
ficulty. Factors influencing register suitability are reviewed here; it
turns out that none of them has a major impact on software costs. Regis-
ters used to perform input/output operations are not included; these more
properly designate a convenient way to interface the processor rather than
serving as a means of facilitating problem solving using the computer.

5.6.1 Multiple Registers

From the viewpoint of facilitating software development, the optimal com-
puter architecture in terms of registers is one that provides a sufficient
number of general-purpose registers that can be used to perform all func-
tions of the accumulator, quotient registers, index registers, and masking
registers. Thus registers could be used as multipliers and multiplicands,
or dividends and divisors, or to contain a bit mask to be used in perform-
ing logical arithmetic, Also, index registers could be included in these
general-purpose registers, allowing index quantities to be computed and
used without requiring intermediate load and store instructions. Not only
would it be convenient for programmers to have several of these general-
purpose registers, but providing several could also result in a savings of
memory and execution time. In a typical guidance, navigation, and control
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computer having a single accumulator and a single index register, it can

be expected that roughly 40% of all instructions are register loads and
stores. Providing several general registers would greatly reduce the num-
ber of temporary stores and recalls that would otherwise be required.

This is not to say that the number of registers should be expanded indefi-
nitely. At some point, very little additional gains are made, and too many
registers make it difficult to verify and change the software. For example,
if the practice is followed of keeping items in registers through long coding
sequences, information can be lost by inappropriate transfers. Another
problem presented by large numbers of registers ~. securing them in the
event of an interrupt -~ can be simplified by appropriate computer design;
for example, by having blocks of registers that can be selected by a single
instruction.

For the Space Shuttle, it is desirable that the registers be general purpose,
thus providing flexibility, power, and simplicity for program development.
An examination of the code produced by compilers for computers having
multiple arithmetic registers indicates that seldom are more than six
required to do a reasonable job of register allocation. Coding in assem-
bly language often results in the use of as many arithmetic registers as
are available, usually because of tricky coding or carefully tailored opti-
mization, both of which should be avoided if software costs are to be mini-
mized. Additional registers can probably be usefully provided up to about
10; more than these will provide only marginal gains in software develop-
ment, while increasingly complicating verification. Finally, a rapid and
simple hardware means should be provided for securing the contents of
registers; this might take the form of a single instruction that saves all
registers or one that switches between blocks of registers.

5.6.2 Index Registers

An index register is one whose contents can be automatically added to an
address specified in an instruction, resulting in a new effective address.
Two categories can be distinguished. True index registers are used option-
ally, that is, an instruction must specifically request that the address in
the instruction be indexed. A base register's value is added to every
address, whether data or branching.

Index registers are usually applied as follows:
L] Accessing elements of vectors, matrices, and tables

L Liooping control
. Many-way decision branches
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¢ Providing reentirancy of routines
o Providing relocation of routines

The use of index registers for the first three applications is familiar and
has no unusual requirements. The programming ease afforded in these
applications indicates that the Space Shuttle computer should incorporate
index registers; if it does not, some very similar substitute must be
provided, particularly to facilitate vector, matrix, and table opérations.

The fourth application, reentrancy, requires that each incarnation of a
routine have its own data region. This is easily accomplished if the base
address of the new data region can be loaded into an index register, and
if the address of each datum can be augmented by the contents of that reg-
ister. Since reentrant routines use the same program, it is important
that the contents of this register not be added to addresses of branch
instructions in the reentrant routine. Although in many cases the use of
reentrant routines may be desirable, relying on such an indexing feature
as the sole mechanism to enable reentrancy will lead to many verifica-
tion problems. The fifth application, relocation, utilizes a base register.
With this feature, a routine may be loaded into any part of memory and

is relativized by loading the base register with the base address of the
routine.

Reentrancy and relocation of routines facilitate program development
only if complicated program structures are involved. Because little use
of such structures is envisioned, the benefits obtainable from the last
two applications of index registers are not great. Certainly the overall
Space Shuttle software design should not attempt to relocate program ele-
ments dynamically; even if an auxiliary memory were used, the program
elements loaded as a function of mission phase should always be loaded
into the same memory addresses. Thus while index registers will not
be required for reentrancy or relocation reasons in particular, their
ather applications are sufficient to justify their inclusion.

5.6.3 Register Stacks

One or more hardware-implemented register stacks, together with re-
lated machine instructions, can simplify or eliminate many lcad-and-
store chores usually required in performing subroutine calls and compli-
cated arithmetic and logical expressions. The Honeywell 701P is an
existing aerospace computer which has such an architecture.

Basically, the implementation, shown in Figure 20, uses three registers
(R{, R2, and P) coupled with a section of main memory. From a logical
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R1

Figure 20, Stack Operation

point of view, R1 and R2Z are the top two words in the stack., A load from
memory brings a new word into RI after first:

o .Incrementing the pointer in P

¢ Moving the contents of R2 into the word in main
memory indicated by P

e Moving the contents of R1i into R2

A store into memory reverses the procedure., Thus the load and store in-
structions respectively push down and pop up the stack. Operations such
as "add" or '"logical and"' are performed on the top two words in the stack
and the result is returned to the top of the stack. This concept retains
data available in the stack for sbusequent use. If variables can be pro-
pitiously ordered, arithmetic can be performed with a minimum of loads
and stores. Another slight advantage comes in terms of compiler opera-
tion, as there can be a closer correspondence between the compiler's
intermediate language and machine instructions.
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Subroutine transfers and returns can also be performed more rapidly and
more easily if special subroutine branch and refurn instructions are pro-
vided in conjunction with a hardware stack. A return pointer and other
necessary information are placed on a stack before transferring to the
subroutine, and removed to effect the return. Adding one level of indirect
addressing in conjunction with the stack enables all task routines and sub-
routines to be made automatically reentrant. As a routine or subroutine
goes into execution, either through a subroutine call or initiation by the
task scheduler, a marker is placed on the stack and the parameters and
data for the routine are entered above it. Addressing of data local to the
routine is relative. Prior to data fetch, the address of the marker is
added to the relative address to obtain the absolute address. Essentially,
the details of reentrant programming have been built into hardware.

With regard to whether the stacked register computer offers any advan-
tages for Space Shuttle, it can be argued that it represents a way of mak-
ing some software gains over a computer having a conventional architec-
ture. However, most of these gains would not be significant compared to
conventional designs having an appropriate set of instructions and register
design, such as have already been recommended. It is concluded that the
selection of either a stacked register machine or a more conventional
design is relatively unimportant in terms of software implications.

5,7 Restart and Self-Test Provisions

Maintaining computer system integrity and d_eteétion of malfunctions is
essential for the Space Shuttle computer. Restart and seli-test are two
classes of activities for performing these functions.

5.7.1 Restart

Aerospace computers are susceptible to transient errors caused by ran-
dom events such as power supply surges or dips and radio-frequency
interference. Such transient errors usually result in unwanted changes
to the contents of volatile registers or ' other volatile storage devices.

If the contents of volatile registers have recently been stored away in
nonvolatile memory, it often may be possible to restart the computation
by reloading them (including the instruction counter) from nonvolatile
memory. This type of restart is a method by which software can recover
from a large class of transient errors.

The minimum hardware provision required is sorme mechanism for de-
tecting transient errors. In the simplest case this detection merely
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causes an interrupt. If this is the only provision, the programming nec-
essary to provide for the possibility of a restart is tedious: at frequent
intervals the contents of all volatile registers must be stored away indi-
vidually in nonvolatile memory, and an executive routine must be written
to reload the registers when the transient error interrupt occurs. On a
machine for which protection from such transient errors is desirable or
mandatory, special provisions should be made both for storing the con-
tents of volatile registers and for reloading them after an error is de-
tected. For example, the Honeywell 701P has a save instruction which
causes the volatile registers to be stored antomatically. When a fault

is detected, the volatile registers are automatically reloaded with the
values stored by the last save instruction and execution is resumed with-
out aid from software. The programmer is required to insert the appro-
priate save instructions, but the burden of doing so is much less than
that of saving all volatile registers using the conventional store instruc-
tions. A method for inserting save-for-restart instructions into a pro-
gram to guarantee correct operation after a restart is discussed in
Appendix B.

To ensure that restarts will work after an error at any point, the save-
for-restart instructions must appear frequently in the program code.
Hence the delay encountered when a restart is performed will be the
equivalent of oniy a few instruction times. However, saves could eas-
ily account for 10% of the total number of instructions, and thus repre-
sent a considerable load both on execution time and on main memory
capacity. Furthermore, the problem of determining the proper points
at which to insert the save instruction is not trivial. The conclusion is
that a computer that is susceptible to transient errors and requires re-
start protection is less desirable than one that is not susceptible. If
restart protection must be provided, it is very desirable that it be per-
formed by a powerful save-for-restart instruction.

Of course, a hard failure can also trigger a restart. In this case, the
machine might loop indefinitely if there were no other provisions, Com-
monly this problem is handled by a mechanism that counts the number of
times a program has restarted at a given point. After a fixed number of
restarts have failed, logic steps in to halt the restarting mechanism,
possibly causing an interrupt indicating a hard failure.

5.7.2 Self-Test and Fault Diagnosis
From a software point of view, the best computer would be one that either

did not require self-test and fault diagnosis or performed these operations
automatically.
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From a reliability point of view, it is not desirable that the only way of
detecting faults be by means of software self-test. Self-tests cannot be
performed continuously, and faults occurring during the intervals between
tests could be calarmitous,’ It is highly desirable that fault detection be
performed continuously by hardware. Computers have been designed that
automatically detect and automatically correct all failures in their hard-
ware. An example is the STAR computer being developed at The Jet
Propulsion Laboratory. For such a computer the burdens of reliability
considerations, self-test, fault diagnosis, restart protection, etc., are
removed from software development. This is an extremely desirable
feature.

If the Space Shuttle computer cannot do all of the required error detec-
tion, correction, and diagnosis by hardware mechanisms, it is preferable
that as much as possible of the error detection be done by hardware,
leaving the required diagnosis and correction to be performed by software.
This is consistent with the philosophy that simple tasks that must be per-
formed at high frequency are best performed by hardware, while complex
tasks of lower frequency are best performed by software. With such an
architecture, hardware would generate an interrupt when an error was
detected., The executive system would then transfer the current job to a
spare unit, and diagnosis and cure would be performed on the failed unit.
In the absence of complete hardware self-testing, software self-test is
commonly used as a background task; that is, self-test is performed when
all necessary tasks are completed. This ensures that the machine is
operating correctly when a new work cycle begins. In the multiprogram-

ming environment, self-test could thus be treated as the lowest priority
task.

One means of performing self-test is by comparing the results of the
same computations performed on two or more computers. The following
example shows how the hardware efficiency of a triply redundant system
may be compared with that of a doubly redundant system. The triply
redundant system votes on all cutputs. Errors are detected as a dis-
agreement between one computer and the other two. The effective utili-
zation is one-third; that ig, if the machine were perfectly fault-free,
only a third of the actual hardware would be needed. The doubly re-
dundant system consists of two computers, each comparing outputs.
Failure is detected by a disagreement in their outputs. Both computers
must then self-test to determine which is actually correct. Because of
the delay this job introduces, every task must be scheduled such that
even if it is delayed by the self-test routine, all deadlines are met. For
the periodically cycled tasks, if the computations require A units of time
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and self-test requires B units, then the utilization is (1/2)(A/A+B).
Hardware efficiency is higher for the triply redundant system only if
1/3>(1/2)(A/A+B), which holds only if the ratio A/B is greater than 2.
Whether this ratio is actually greater than 2 will depend on the machine
speed, the speed of the diagnostic routines, and the computations that
must be performed at the highest frequency.

5.8 Interrupt-Handling Facilities

On real-time computers, an interrupt mechanism is commonly used to
inform the executive that a request has occurred for processing a task or
group of tasks. Interrupts ensure that the task in execution is always the
important one. They are properly the concern of the executive system
designers and ought to be invisible to programmers of non-real-time tasks.

Interrupts present verification problems, many of which have been discussed
in Section 4. One partial solution is to minimize the number of interrupt
occurrences possible during program execution and to reduce the amount of
operations that must be performed by software when interrupts occur. This
can be done by providing interrupt types suitable both to the interrupt source
and the tasks invoked; an appropriate hardware priority structure and effec-
tive interrupt contro