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i. INTRODUCTION 

This report describes a hardware/software study of the Space Shuttle data 
nanagement system. The study purpose.was to identify at an early stage 
in system development those computer hardware characteristics and soft­
vare development approaches that will have substantial impact on software 

costs and schedules. The underlying motivation was to prevent software 
development from becoming the pacing item in Space Shuttle system reali­
zation; 

The study addressed three aspects of system &evelopment. An analysis 
of the overall Space Shuttle objectives, mission requirements, and base­
line hardware configurations determined the nature and magnitude of the 
computati6nal functions that the data management system will be called 
upon to perform. Tradeoff studies investigated the software advantages 
and disaxhantages of alternative computer hardware configurations and 
architecfures; single-computer (or simplex), multicomputer, and multi­
processor configurations were examined, together-with detailed architec­
tural feait'ies that could be used in each. Finally, support hardware/ 
software studies investigated means of facilitating flight software develop­
ment. Two areas were addressed: high order languages in which the 
flight software might be coded, and simulations and other analytic tools 
that might be used in verifying its correctness. 
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2. SUMMARY 

This section very briefly abstracts the study conclusions and recommenda­
tions and then goes into somewhat greater supporting detail on the individ­
ual study areas. 

Z. I Conclusions and Recommendations 

The functional analysis revealed'that some subsystem hardware 6onfigura­
tions and system requirements pose unreasonable computational loads. The 
present overall range of comput'ational requirements is extremely wide and 
must be narrowed if meaningful decisions are to be made as to the com­
puter configuration. 'Recommendation: The functional analysis&should be 
continued. 

Available data permitted basic conputational- requirements to 'be estimated 
for maximum, moderate, and minimun subsystem hardware configurations. 
From these requirements it was concluded that a simplex computer would 
be adequate for the minimum computational load, but that a multicomputer 
or multiprocessor configuration would be required for the moderate or maxi-. 
mum loads. 

The computer configuration analysis showed that software costs would be 
lower for a centralized computer organization than for a distributed or fed­
erated organization., It was further determined that effective separation of 
a program's functional elements could be accomplished by software methods 
in a centralized organization, just as separation would be accomplished 
physically in a federated organization. Recommendation: A c'entralized 
computer organization should be used. 

Studies of-executive types as part of the computer configurationanalysis 
showed a polling executive to be simpler to verify than an interrupt execu­
tive, but not as flexible or responsive to likely system requirements. Anal­
ysis of verification problems indicated that control of interruptis.nd of in­
terrupt levels could minimize the verification problems associated with an 
interrupt -executive. Recommendation: An interrupt executive 'should be 
utilized, suitably restricted as to interrupt occurrences and levels. 

Further investigation of verification problems indicated that a -simplex 
computer cohfiguration would permit the simplest and easiest software 
verification. Recommendation: If the minimum computational require­
ments prevail, a simplex computer should be utilized. 
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A multiprocessor configuration with a distributed executive was found to 
result in slightly simpler software than an equivalent multicomputer, and 
in much simpler software than a multiprocessor with a fixed or floating 
executive. Recommendation: A multiprocessor configuration with a dis­
tributed executive should be utilized in the event that the computational 
requirements exceed the capabilities of a simplex computer. 

In analyzing the architectural aspects it was determined that those most 
significant in terms of software costs would be adequate memory, speed, 
and input/output margins. Recommendation: Memory, speed, and input/ 
output margins of at least 40% should be provided in the hardware. Effec­
tive management controls will be required to prevent this margin from 
being utilized for new and possibly unneeded functions. 

Software costs can be reduced by from 5 to ±0%e if other desirable archi­
tectural features are provided. Recommendation: The computer should 
have the following characteristics: 

* 	 Adequate instruction set, including floating-point 
arithmetic 

* Hardware memory locks or their equivalent 
* 	 Extensive hardware error-checking, diagnosis, and 

correction facilities 
* Save 	and restart facilities 
* Interrupt-control facilities 

Many additional architectural aspects individually have a small effect but 
in combination can significantly influence software costs. Recommendation: 
A computer having the features listed below on the left should be selected in 
preference to one having the characteristics listed on the right: 

Desirable 	 Undesirable 

* 	 Read-only/read-write 0 Auxiliary memory
 
memory partitioning 6 Virtual memory
 

* 	 Uniform instruction • Interleaved memory
 
execution times a Limited addressing range
 

* Buffered input/output * Unique or unusual instructions 
* Partial-word addressing * Variable-length instruction 
" General-purpose registers and data formats 

The programming language investigation showed that the use of a high­
order language will reduce software development costs, even though the 
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language selected might not be completely suitable for all functions. The 
suitability of the cornpiler was found to be more important than that of the 
language itself. This is so because developing a completely efficient, cor­
rect, and comprehensive compiler for the Space Shuttle application will 
take a relatively long time. Portions of the flight software -- notably the 
executive -- will still have to be coded in assembly language, and verifica­
tion will have to be performed at the assembly language level. Recommen­
dation: A high-order language should be used, beginning as early as pos­
sible. Attention should be concentrated on compiler development rather 
than on further language development or refinement. 

In the verification studies, the conclusion was reached that simulations 
will continue to be the most important verification tools. However, the 
anticipated speed, size, and complexity of the flight computer configura­
tion will result in corresponding increases in simulation execution times, 
which, for interpretive simulations, will approach unacceptable amounts. 
Recommendation: Interpretive computer simulation diagnostic methods 
and outputs should be improved to maximize the' information obtained from 
each simulation run. Further, hybrid simulation techniques should be ex­
tended to yield information now efficiently obtainable only from interpretive 
simulations. 

Another conclusion regarding verification was that each type of simulation 
is suitable only for particular roles, and problems detected by one type 
may require the use of another for adequate diagnosis. Recommendation: 
A master test plan should be developed and implemented covering simula­
tion use and comparison. 

Finally, simulations can demonstrate the existence of software errors 
but cannot absblutely prove their absence. One technique was developed for 
designing programs whose correcthess could be proved, and another for 
proving the correctness of relatively simple programs. Recommendation: 
These techniques should be further-developed, and additional techniques 
should be investigated. 

Z. 2 Functional Analysis 

Because hardware definition #as incomplete and changing during the func­
tional analysis, -it was not possible to establish firm and detailed quantita­
tive measures of the computational load to be imposed on the data manage­
ment system. The analysi's didillustrate how otherwise reasonable sub­
system hardware: configurations .and system requirements, notably those 
of the docking laser and the aisplays, can result in an unreasonable 
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computational load. Sufficientfdita were available to permit basic compu­
tational requirements to be determined for three possible Space Shuttle 
configurations: 

* - A maximum system able to satisfy all mission require­
ments and providing complete support and status monitor­
ing 	for all associated subsystems 

* 	 A minimum system able to satisfy the basic mission re­
quirements but providing for minimum onboard checkout 
and having many functions performed by hardware distinct 
from the central computer facility 

* 	 A moderate system providing capabilities midway between 
those of the two extremes 

The 	primary computing requirements for these three configurations are 
summarized in Table i. All requirements for the minimum configuration 
are 	within the capabilities provided by existing simplex computers. How­
ever, the computational speed required for the moderate and maximum 
configurations cannot be provided by either existing or foreseeable sim­
plex 	computers: a multicomputer or multiprocessor would be required to 
provide the necessary effective computational speed. 

For 	all Space Shuttle configurations, the table indicates only the minimum 
necessary capabilities. It does not include provision for expansion to sup­
port new subsystems and additional mission requirements, nor does it 
provide allowances for software inefficiencies. Even though the 24-bit word 
size 	would be adequate for the minimum configuration, a larger word size 

Table I. Summary of Computational Requirements 
for Three Space Shuttle Configurations 

Configuration 

Parameter Minimum Moderate Mtlaximum 

Total memory size (thousand words) 43 i20 250 

Word size (bits) 	 24 32 32 

Add 	time (microseconds) 25 .25 .10 
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2.3 

would nearly eliminate the need for double-precision operations and hence 
is preferable. As regards memory size and computational speed, the archi­
tectural aspects studies indicated that adequate margins are the most im­
portant factors in determining software costs. Capacities exceeding, the 
minimum values listed are mandatory if software costs are to be minimized. 
An allowance of'40% for the inefficiency component alone would permit use 
of a high-order language to simplify program coding and, in addition, 
executive design and programming standards that simplify software verifi­
cation. 

The range of requirements indicated for the three possible configurations 
is extremely wide. It must be narrowed so that decisions concerning the 
computer configuration can be made in a way that minimizes the cost and 
difficulty of software development. Therefore, the functional analysis 
should be continued through the completion of the flight software develop­
ment. 

Computer Configuration 

The software problems inherent in a computer system in which most of the 
computational capability is concentrated in a central facility were first 
contrasted with those inherent in a system in which the computational capa­
bilities are in large part distributed to the subsystems. In the central­
ized system, the relatively small amount of processing performed at the 
subsystem level would largely be restricted to data formatting, compac­
tion, and limit checking, and to input/output buffering. However, in a 
few instances -- for example, a strapped-down inertial reference unit -­
more complicated computations would be performed at the subsystem level. 
In a distributed, or federated, system, the central computer facility would 
do significantly less processing; its principal task would be to control and 
coordinate the activities of two or more computers that were both logically 
and physically closely linked to particular subsystems or sets of subsystems. 

A centralized system would permit a substantial majority of the software 
to be developed for a computer architecture that facilitates both program­
ming and verification, and it would simplify the communication between 
related functional programs. A federated system, on the other hand', would 
greatly complicate the problem of allocating computational resources and 
would be less flexible. Therefore, a centralized system would result in 
lower software production costs than a federated system. The isolation 

that prevents a program in one computer from erroneously interfering with 
a program in another can be achieved in a centralized system by proper 
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The executive, whether polling or interrupt, is in any event simpler to 
develop and easier to verify for the simplex computer than for the multi­
computer or multiprocessor. For these two configurations, significant 
executive design aspects are the location of the executive and tasks and 
the assignment of processors to tasks. In the distributed-executive 
scheme, which is applicable to both configurations, each computer or 
processor has its own executive and tasks. In the multiprocessor/fixed­
executive scheme, the executive is assigned to one processor; this one 
executive then dynamically controls the execution of all tasks, allocating 
them to processors as dictated by the computational load. In the multi­
processor/floating-executive scheme, both the executive and the tasks 
are allocated according to the mix of tasks in execution. 

Although the fixed and floating executives offer increased flexibility and 
performance, the greatly increased verification problems they present led 
to the conclusion that the distributed executive is more suitable for a Space 
Shuttle multiprocessor configuration. As regards distributed executives 
for multicomputer vs. multiprocessor, the only significant difference lies 
in the mechanism for communicating between tasks allocated to different 
computers or processors. In the multicomputer, this communication must 
be done through the normal input/output operations, while for the multiproc­
essor it is accomplished by simple, direct memory access methods. 

In terms of minimizing software development difficulty and cost, the sim­
plex configuration would be best. A simplex configuration may not be suf­
ficient, however, if anything more than the minimum functions are to be 
performed by the data management system. Indeed, great increase in soft­
ware development difficulty will occur if a simplex configuration is chosen 
that provides inadequate or barely adequate computational capabilities. Of 
the two remaining configurations, the multiprocessbr with a distributed ex­
ecutive would result in slightly lower software7 development costs than the 
multicomputer. Therefore, it is recommended that a simplex computer be 
selected if it can provide the necessary computational capability; this is 
likely only if the Space Shuttle hardware configuration and system require­
ments are close to minimal. If more computational capability is needed, 
the multiprocessor configuration with a distributed executive should be 
chosen in preference to a multicomputer configuration. 

The multiprocessor with fixed or floating executive has been excluded be­
cause of the verification difficulties these two executive designs present. 
Indeed, verifying the executives for all of the configurations is one of the 
most difficult problems that will be encountered in software development. 
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2.4 

Enough excess computational capability must be provided so that program­
ming standards can be employed that, although increasing the software 
overhead, reduce verification difficulty. That is to say, the selected com­
puter or computers must provide an adequate margin of compuational capa­
bility so that tradeoffs between program efficiency and verification ease can 
always be decided in favor of the latter. 

Computer Architecture 

In this portion of the study, the advantages of specific architectural char­
acteristics were identified and their impact on the cost and difficulty of 
Space Shuttle executive and task program development and verification 
estimated. Although hardware costs were not explicitly included, only those 
architectures that have been demonstrated or could practicably be imple­
mented were considered. 

The basic criteria influencing software development and verification dif­
ficulty and cost were defined in terms of the suitability or adequacy of the 
following classes of architectural features: 

* Memory
 
" Execution speed
 
* Input/output facilities 
* Instruction set 
• Word format 
* Register organization 
o Restart and self-test provisions 
* Interrupt -handling facilities 

Minimum capability levels with respect to the first three criteria are man­
datory if the software is to be produced at all. After the basic requirements 
have been satisfied, the most important characteristics were found to be the 
memory, speed, and input/output capability margins that simplify both cod­
ing and verification. 

Coding and verification costs increase sharply as the memory usage and ex­
ecution time-approach the available capabilities. On the other hand, given 
sufficient memory, speed, and input/output capabilities, almost any instruc­
tion set, register organization, and word format can be used without drasti­
cally increasing software costs. Providing surplus capacity poses a problem, 
however. Unneeded functions may be added simply because the capacity ex­
ists, leading to an even larger program that may then have to be tailored to 
match what turns out to be a barely adequate computation capability. It is 
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therefore vital that effective management controls be imposed so that the 
margins provided will be utilized for reducing rather than increasing soft­
ware costs. 

While no other architectural aspects were found to have an impact equal to 
that of adequate memory, speed, and input/output margins, appreciable 
reductions in software cost would result from a computer design that incor­
porates a significant number of those remaining. As an example, provid­
ing hardware floating-point arithmetic would reduce the size of the software 
by up to 5%, and this reduction would translate into even greater reductions 
in programming and verification difficulty. As another example, providing 
hardware memory locks and special save and restart instructions would 
have a smaller impact on program size but just as significant an impact on 
verification ease: many operations that otherwise would have to be checked 
individually would be accomplished automatically by the hardware. Finally, 
some aspects, such as interrupt-control mechanisms, would enable the 
adoption of software design approaches that would otherwise be impossible. 

It is 	 recommended that the computer configuration have memory, speed, 
and 	input/output capability margins of at least 40%. It should also provide 
the following architectural features, each of which will affect overall soft­
ware costs by about 5 to 10%: 

* 	 A suitable instruction set, including hardware floating­
point arithmetic 

* 	 Hardware memory locks, memory bound registers, or 
similar hardware protection mechanisms 

* 	 Extensive hardware error-checking and diagnostic facilities, 
with appropriate feasible correction capabilities 

* 	 Provisions for saving computer registers and other status 
information and for restoring these registers and the status 
with a minimum of program steps in the event of a computer 
malfunction 

" 	 Capability for enabling and disabling interrupts, both abso­
lutely and according to at least three priority levels 

Besides the architectural aspects already discussed, the overall software 
costa are affected to a lesser degree by the presence or absence of other 
features. Verification problems would be eased by providing partitioning 
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into read-only and read-write segments, uniform instruction execution times, 
and buffered input/output. Capabilities for partial-word addressing and 
general-purpose registers would be beneficial because these features reduce 
data handling. With regard to the way in which an adequate memory margin 
is achieved, a computer architecture that used an auxiliary memory or some 
form of virtual memory would be less desirable than one that provided an 
equivalent amount of uniform main memory. Interleaved memory is simi­
larly undesirable; even though it provided adequate speed margin, verifica­
tion problems would ensue because repeatability of program execution 
times would be seriously compromised. Other architectural aspects such 
as limited addressing range, unique or unusual instructions, and variable 
instruction and data formats are undesirable because they require more 
effort on the part of both programmers and verifiers. 

There are still other architectural aspects that are of even less concern 
in terms of software development costs, but of great concern to the hard­
ware designer -- so much so that they may determine whether the more 
important software-impacting features can be incorporated at all. A fa­
cility for microprogramming is such an aspect. While the instruction set 
is software-important, the means of providing suitable instructions -­
whether by microprogramming or hardwired logic -- is of no significant 
concern to the programmer. 

Z. 5 Programming Languages 

The suitability of six high-order languages for Space Shuttle onboard software 
development was investigated in terms of such characteristics as the amount 
of the problem that could easily and effectively be stated in the language, 
the control the language affords over computer hardware operations, and 
the extent that the language can be utilized throughout the software develop­
ment cycle. Of the six languages, four were designed especially for aero­
space applications: CLASP (Computer Language for Aeronautics and Space 
Programming), SPL Mk II (Space Programming Language Mk I), SPL Mk 
IV, and HAL. Two -- FORTRAN and PL/I -- were primarily designed for 
general-purpose applications. Compiler considerations were also investi­
gated, with the most influential found to be the efficiency and correctness 
of the machine code generated, the diagnostic facilities provided, and the 
compiler development cost and time. 

FORTRAN was found to have few advantages and many disadvantages for 
anboard software development. A smaller portion of the software could 
be coded in CLASP or SPL Mk II than in the more comprehensive languages 
HAL, SPL Mk IV, and PL/I. However, with the simpler languages object 
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code efficiency would be greater and the cost of compiler development 
smaller. The executive program wbuld in any event have td be written 
in assemrbly language: the simpler languages lack the necessary features, 
while the 'compilers for the more comprehensive languages would be un­
able to generate the highly efficient object code required:. Overall, it was 
concluded that use of any of the aerospace-oriented lianguages to the extent 
possibie would reduce software development costs. The problem of com­
piler efficiency, the principal obstacle to the use of a high-order language, 
can be reduced by providing adequate memory and speed margins in the 
computer configuration. 

Accordingly, it is recommended that a high-order language be used. Even 
though They have deficiencies, any of the existiig aerospace-oriented pro­
gramming languages would be appropriate, with their compilers being 
more significant than the language capabilities as such. Because of the dif­
ficulty in obtaining a completely suitable compiler, particularly for the 
larger languages SPL Mk IV, and-HAL, memory and speed estimates should 
provide for object code inefficiencies of about 15% and, for the reasons 
stated above, the executive program should be coded in assembly language. 
In view of the possibility that a new compiler will in some cases generate 
erroneous object code because of its own deficiencies, verification must 
continue to be done at the machi'ne or assembly code level. Substantial 
verification benefits can be achieved, however, because the compiler can 
be so implemented as to. enforce conformance with programming standards 
and conventions. 

z. 6 Verification Tools and Techniques 

In this part of the study it was determined that the three types of simulations 
used in previous aerospace software verification activities -- engineering 
simulations, interpretive computer simulations, and hybrid simulations -­
will continue to be the most important verification tools for the Space Shuttle 
onboard software. However, means of improvingthese tools and their use are 
required. A deficiency of interpretive simulations has always been the ratio 
between simulation time and real time, and with the much faster Space 
Shuttle computer system this unfavorable time ratio will become even worse. 
Two partial solutions to this problem were conceived. First, the interpre­
tive simulation should contain more extensive and automatic diagnostic and 
information-gathering features that, at the expense of a slight"increase in 
simulation time, would permit more to be learned from each simulation run, 

"thus reducing the number of runs required. Second, the hybrid 'imulation 
should be improved so that'it can provide much of the detailed information 
about internal program behavior that presently is obtained only thiough an 
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interpretive simulation. One means of making this possible is to design 
the flight computer so that its internal operation can be monitored by an­
other diagnostic computer that would be a new part of the usual hybrid 
simulation setup. 

Of course simulation tools cannot be used to prove the absence of program 
errors; they can only demonstrate an error's existence. In view of the 
large number of errors possible in the large and complex Space Shuttle on­
board computer program, analytic verification methods should be developed 
to aid in proving program correctness and to indicate program design meth­
ods that would result in programs whose correctness could be demonstrated. 
Two such approaches were explored: one defining the constraints that must 
be satisfied to achieve program correctness when a restart occurs, and one 
to prove program correctness for a limited number of program structures. 

It is recommended that improvement of simulation tools and techniques be 
pursued, and that a master test plan be defined for comparing simulation 
results and validating the simulations themselves. Further, the develop­
ment of means for demonstrating program correctness should also be pur­
sued and the tools integrated into the Space Shuttle software development 
and verification procedures. 
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3. FUNCTIONAL ANALYSIS 

The ana'lysis of the functions to be performed by the Space Shuttle computer 
system'was undertaken to estabtish its desired characteristics in terms of 
the computational load to be imposed on it. Computationalload can be esti­
mated in terms of the computer memory required, the number -of instruc­
tions that must be executed in a given interval, and the input/output rates 
that must be maintained. Also important are factors relating to the com­
putational tasks: their relative priorities, their periodicity, the amount of 
intertask communication, and the number and-attributes of routinies shared 
between tasks. 

The analysis began by assembling and evaluating available reference data. 
Where tile available documentation was incomplete or inconsistent, assump­
tions were made as to the most probable hardware configuration. In some 
areas, models were constructed, and the range of requirements for alter­
native configurations was determined; in others, experience with'existing 
systerns was sufficient to allow the expected behavior of their Space Shuttle 
counterparts to be determined. The most detailed analysis was performed 
on the guidance, navigation, and control portions of the system, since 
these offered both the greatest computational load and the most comprehen­
sive source material. 

It was not possible to establish firm and detailed functional requirements; 
rather, the functional analysis indicated the rough order of nignitude of 
computational requirements. At this stage of Space Shuttle system-defini­
tion, the computational load ranges from one close to that of Apollo to one 
that large ground-based computers of today would have difficulty in sup­
porting. As the interfacing hardware becomes firmer, extension of 
the functional analysis would allow requirements to be determined with 
greater realism. 

A major computational function not analyzed in the present study is the mal­
function (or error) diagnosis, circumvention, and system reconfiguration 
necessary to meet the fail-operational/fail -operational/fail- safe. require­
ments. A preliminary survey of this function indicated that the software 
needed to implement this requirement could double the conmputitional load, 
while the far greater number of possible sequences of program execution 
introduced by this software could increase by an order of magnitude the 
time and cost required for verification. The added information'afforded 
by further -hardware design definition shodld permit meaningful analysis 
of reconfiguration requirements. 



Overall computing load estimates were developed for three conceptual con­
figurations -- minimum, moderate, and maximum -- defined as follows: 

* 	 Minimum Configuration: This system prorides for a 
gimbaled inertial unit or a strapdown system with its own 
processor; a basic set of sensors (e. g., star tiacker or 
telescope and RF-only navigation); limited onboard target­
ing; basic telemetry without data compression; displays 
essentially unprocessed in the central unit; status monitor­
ing for guidance and control and other subsystems; and an 
executive appropriate to a multiprogrammed simplex com­
puter with an interpretive language. 

* 	 Moderate Configuration: This system allows for a strap­
down inertial unit processed in the central computer; 
unitized pointing platform and docking laser (with mini­
mum filtering); dual propulsion systems (main and orbit 
maneuvering) with active load alleviation; extended on­
board targeting; downlink data compression; a pair of 
redundant unified displays; status monitoring for the ex­
tended sensor set and for single-parameter checks of 
interfacing systems; and an advanced simplex executive 
without interpreter. 

* 	 Maximum Configuration: This system assumes a strap­
down inertial unit processed centrally; the full sensor 
complement with a state-of-the-art filter; adaptability to 
three propulsion systems (including turbojet) with active 
load alleviation; onboard targeting for arbitrary rendez­
vous; data analysis including pattern recognition and multi­
parameter trend analysis; dual, independent unified displays; 
full monitoring of status of avionics and all other recon­
figurable systems; and a multiprocessor executive without 
interpreter. 

The computational requirements for these three configurations are presented 
in Table 2. Supporting analyses for the individual hardware subsystems 
follow in the remainder of this section. These analyses include hardware 
configurations supplemental to the configurations of Table 2; and some sub­
systems, notably the display subsystem and the docking laser, can result 
in computational loads far in excess of the estimations in Table 2. That 
is, the data in Table 2 represent the best estimation of what actually will be 
required for Space Shuttle. 
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Table 2. Computational Requirements for 
Three Space Shuttle Configurations 

Configuration 
Parameter 

Minimum Moderate Maximum 

Total memory size (thousand words) 43.0 1z0 250 

Inertial reference 2. 5 15 15 
Navigation sensors 2.5 20 50 
Guidance, navigation, and 

control i0.0 40 50 
Telecommunications 0. 5 2 Z0 
Display and control 1. 5 15 30 
Guidance and control status 

monitoring 1. 0 8 1 0 
Other subsystem status 

monitoring 10 i0 40 
Executive, interpreter, and 

overhead 15 10 35 

Word size (bits) Z4 32 32 

Add time (microseconds) Z5 0.25 0. 10 

3. 1 Inertial Reference 

Two major classes of inertial references exist, distinguished by the nature 
of the gyro integration. A gimbaled system implicitly integrates attitude 
changes by maintaining a stable member, while a strapdown system main­
tains its reference as a set of data in the computer, which performs an 
electronic -(normally digital) integration. The strapdown system, with its 
explicit computer integration, is more computationally demanding than the 
gimbaled system.. Its higher reliability and lower cost make it the more 
likely selection for Space Shuttle. 

The computational requirements of four strapdown systems representative 
of the state of the art are summarized in Table 3. The Lunar Module Abort 
Guidance System (LM/AGS) was self-contained except for alignment (derived 
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Table 3. Computational Requirements for
 
Strapdown Inertial References
 

System 
Parameter 

LM/AGS ASST RSS MIT/SIRU 

Memory capacity (words) 4096 2150 13, 130 16, 384 

Memory cycle time (psec) 5.0 4. 0 1. 75 0. 96 

Word size (bits) 18 18 24 16 

Number of instructions 27 -- 43 --

Add time (9sec) 1O -- 3. 5 1. 9Z 

Multiply time (Psec) 70 -- 14 5.76 

Major cycle interval (sec) Z i-2 1 0. 5 

Minor cycle interval (msec) 20-40 10-20 40 10 

from memory of the primary system). The Advanced Supersonic Transport 
(ASST) strapdown system incorporated redundant sensors and limited logic 
for failure detection, diagnosis, and correction. The Redundant Sensor 
System (RSS) employed more elaborate reconfiguration logic, increasing 
the software requirements considerably. Of all the four systems, the MIT/ 
SIRU (Strapdown Inertial Reference Unit) most closely approximates Space 
Shuttle requirements. 

The MIT/SIRU uses six gyros and six accelerometers aligned perpendicular 
to the faces of a dodecahedron. The computing capacity indicated for the 
MIT/SIRU is capable of performing the integration and formatting required 
of any strapdown system, plus fail-operational/fail - operational reconfigura­
tion in its entirety. The logic to support reconfiguration for a third level 
of failure detection and diagnosis might be developed, but would be qualita­
tively different in form and would impose a very large load on the computing 
system. Instead of the extra software, a second SIRU may be used. That 
choice also protects against catastrophic failure, so is preferred. If the 
dual system is used, the computing load would be approximately double 
that shown in the table. 

The primary information to be supplied by the inertial reference to the data 
management system is the attitude of the vehicle in inertial space. The 
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initial form of gyro data is the pulse representing an increment of attitude 
about that gyro's input axis. In any strapdown system, these pulses must 
be accumulated and transformed through rotation of coordinates- to derive 
inertial attitude. The nonorthogonal arrangement of SIRU axes complicates 
the rotation. algorithm but does not alter the basic task. 

In dividing the attitude determination between local and central processors, 
three choices exist: local formatting only, local accumulation a4d format­
ting, or full local attitude determination. If local processing is restricted 
to formatting, major burdens are imposed not only on the central processor 
but also on the data bus, which must transmit up to 1600 pulses per second 
per sensor. By accumulating the pulses in a local buffer, the data rate may 
be reduced without adding major computation. During the 1i0-msec minor 
cycle, 16 pulses are accumulated per sensor and may be transmitted with 
only 4 bits. They may be packed into words of length established by the data 
bus design; the effective rate is fixed at 48 bits per cycle. Additional bits 
are required for sensor status data. 

Full use of a local processor is desirable for the SIRU because -the computing 
burden is high The coordinate conversion must be performed every 10 msec, 
whether executed in the local processor or the central computer. A conven­
ient form for the- output of attitude from the local processor is a, set of 
quaternions (four 16-bit words). Although local coordinate conversion 
increases the traffic on the data bus, the saving in central computing is felt 
to be worthwhile. The accumulated velocity increments may also be trans­
formed into an inertial frame in the local processor (however, subsequent 
integration to a state vector in the local processor would require external 
data and thus is undesirable). The transformed velocity increment may be 
packed into a single 16-bit word for each minor cycle. In such application 
of the local processor, an interface is maintained with the data bus equiva­
lent to that of a gimbaled platform with accumulated AV. Development of 
suitable alignment algorithms may then permit central routiies to be taken 
from programs proved on earlier projects. 

In any division of computing burden between central and local units, status 
data must be provided for reconfiguration. The specific data required, 
their rates, and their processing requirements are not yet known. 'I-t is 
assumed that the local processor can perform high-rate filtering-in the pre­
ferred configuration and that two 16-bit words per minor cycle will suffice 
to maintain the central files. In the absence of local processing, both high 
data rates and extensive central processing would be needed. 

-19­



3. Z Navigation Sensors 

The attitude and state vector estimates maintained by the inertial reference 
must first be established and should be updated through the use -of -pecial­
purpose navigation sensors. A wide range of sensor systems ha's been 
considered for Space Shuttle. The simplest configuration in ternms of com­
puting load involves radio frequency transponding from known ground loca­
tions. The heaviest computing load is that for a system employing -three 
sensors -- star tracker, sun sensor, and horizon scanner -- mounted on a 
unitized pointing platform having two degrees of freedom and driven by 
computer commands. Computational requirements for such a system are 
summarized in Table 4 -and were derived as follows. 

Initial alignment of the inertial reference will require stabilization of the 
spacecraft, acquisition of the sun and the horizon by the sensors, driving 
the platform to put each of at least two reference stars sequentially in the 
star tracker field of view, and processing tracker error signals, platform 
azimuth and elevation, and spacecraft attitude (from the inertial reference) 
for each sighting. Alignment will be confirmed confirmed driving the 
platform to at least one additional reference star and verifying its location 
in the star tracker's field. 

Occasional star sightings will be made under computer control to maintain 
alignment, and the altitude -of a sequence of reference stars above the hori­
zon will provide position data. Operationally, one or two such points may be 

Table 4. Computational Requirements for Navigation Sensors 

Data Rate 
Component Data Format 

Alignment - Tracking 

Platform orientation 

Analog servo 2 X 16 bits 10 sps I sps 

Digital servo 2 x 16 bits 30 sps - i sps 

'Star tracker 2 X 16 bits discrete discrete 

Sun sensor 2 X 16 bits discrete discrete 

Horizon scanner 2 x 16 bits 10 sps to sps 
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taken every 10 minutes, as the other tasks permit, to minimize residual 
errors. Each platform angle covers a range of ±300, for which 16-bit 
quantization seems desirable. The horizon scanner provides only eleva­
tion deviation, which, depending on the scanner field of view, may be 
quantized with up to 14 bits. Similarly, azimuth and elevation deviation 
from the sun sensor may be quantized to 14 bits each; however, practical 
arguments suggest that 16 bits will be used. If the star tracker field is 
50 in each axis, 16-bit quantization of its data pair appears more than 
adequate, yielding less than 0.6 sec error. With regard to data rate, it 
is assumed that the horizon scanner will provide periodic data of the order 
of 10 times per second. The sun sensor and star tracker will have data 
available continuously; the former will be sampled up to 10 times per 
second, while the latter need be read only once per star. These rates are 

° /marginal to obtain 5-sic accuracy with a residual attitude rate of 0.0i sec. 

Once alignment has been obtained, there appears to be no requirement to 
command the platform repetitively; that is, given an inertial reference, a 
single pair of platform commands will-drive the sensors to the desired atti­
tude through a platform servo loop. This implies a data rate of 10 samples 
per second. If the reliability or other cost of such a loop is unacceptable, it 
it will be necessary to generate incremental commands with computer-derived 
damping to drive the platform to the desired position. In that event, plat­
form angles may have to be both read and commanded at up to 30 times per 
second to obtain the desired stability, and it may be preferable to use a 
platform rate command rather than an angle command as the interface. The 
analogy between these functions and those of the digital autopilot may be 
strong enough to allow some common usage of routines. 

In addition to the estimates presented in Table 4, normal monitor and com­
mand functions will be required, and calibration is indicated for the horizon 
scanner and will probably be required for the other sensors as well. Lack­
ing data on the mechanisms to be employed, it is estimated that a few hundred 
words of program may be needed for each sensor; that the star tracker and 
sun sensor would be calibrated once for each set of measurements (perhaps 
once per 10 minutes of use); and that the horizon scanner will require col­
lection of data over several scans, perhaps 10, in every 10 minutes of use. 

3.3 Displays 

The display hardware is less completely defined that any of the other avionics 
subsystems. To estimate computer requirements, one dynamic display 
example -- the video image of the runaway for blind landing -- was constructed 
and analyzed in detail. From AWAILS or from ILS and the altitude radar, 
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the computing system determines the vector in inertial coordinates to the 
end of the runway; this may be rotated into the vehicle frame. The magni­
tude of the vector (distance to the end of the runway) establishes the scale 
of the image, while the pitch, roll, and yaw angles control the display 
perspective. 

Any one of several analog mechanizations may be used to support a CRT 
image or a projected slide of the data with frequent update. The maximum 
load such an analog-supported display would impose on the computing sys­
tem would be four 24-bit words sent 30 times per second. Up to 40- add 
times may be required to format each word, yielding 4800 adds per second. 

The analog support equipment, while it reduces the digital load, is both 
heavy and subject to failure. Replacing the analog hardware with special­
purpose digital devices does not alter the problem; only centralized digital 
processing reduces the display penalty by providing redundancy through 
equipment already onboard. However, in providing the display of the 
example with digital processing, a heavy computing load is added to the 
central processor. The 30-frame-per-second rate is still required to 
avoid flicker, but now each point must be commanded by the central com­
puter. 

An algorithm that minimizes the central processing required was developed 
for generating the display. In constructing the algorithm and the example, 
it was assumed that only straight lines with a single intensity level would be 
required, even though several values of intensity may be desired for other 
purposes. Even so, each display frame requires six sets of four segment 
parameters and one inversion. For each of the 400 to 500 lines in a frame, 
the computer must apply the algorithm to each display line (six multiplies, 
six adds), determine the termini of each segment (iZ adds), test each termi­
nus for inclusion in the frame (four or eight compares), and assemble a 
sequence of binary words in which each bit corresponds to a point on the 
scan line. Typically, 15 words will be required to depict a scan line, sug­
gesting a composite requirement for each line in excess of 6 multiplies, 18 
adds, 24 compares, and 15 logical OR's. The available time, determined 
by the required frame-per-second rate, is 30 msec divided by 400 lines, or 
75 11sec. Assuming that 10 adds require the same time as one multiply, the 
arithmetic operations alone require an add time of less than I Psec. 

Table 5 summarizes the results thus derived for the analog-supported and 
the centralized displays. It can be seen that even a central processor with 
a 0. 5-psec add time would be hard pressed to handle the unsupported display 
when the logical operations for each line are added to the arithmetic opera­
tions, and when the projections required to provide segment information at 
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Table 5. Computational Requirements for One Dynamic Display 

Supported Centralized 
Parameter Display Display 

Bits per frame 96 200, 000 

Words per second 120 220, 000 

Adds per second <5,000 >i, 000,000 

the frame level are included. Further increases in computing load may 
arise from the need for color display; redundant and supplemeatal displays; 
and requirements for trend analysis or other digital processing. Thus 
from this work it is apparent that the range of requirements for the displays 
is several orders of magnitude. Fortunately, analog hardware can be used 
to maintain a reasonable computing load. 

3.4 Trackers
 

Three tracking subsystems were reviewed: the docking laser, the rendez­
vous radar, and the infrared tracker. The resulting computing load in terms 
of data and command.rates is developed below and summarized in Table 6. 
It should be pointed out that no interaction between these subsystems.was 
indicated in the pertinent preliminary literature -- although -it is likely that 
such interaction will exist and that it will have significant computational 
impact. 

Table 6. Computational Requiremeits for Trackers 

Tracker Data Computer Commands, 

Tracker Bits/Sample Samples/Second Bits/Command Commands/Second. 

Docking laser 24 <i03 16 0 3 

Rendezvous radar 48 10 16 noniterative 

Infrared tracker 16 i ....
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3.4. i Docking Laser 

The Space Shuttle requires a new type of sensor to determine the attitude 
of a passive base for docking. The one studied employs a modulated laser 
beam to determine the range along the beam and the displacement from 
its center of the return from each of three reflective targets on the docking 
ring. The modulation allows a separate range processor to establish the 
distance to each target within a fraction of the shorter modulation wave­
length (13 ft) over a separation equal to the longer wavelength (1300 ft). 
Target position in the plane perpendicular to the beam is determined by 
electronic scanning of the detector. The beam must dwell on each target 
long enough to obtain a suitable signal-to-noise ratio; it is estimated that 
the maximum data rate from the docking laser is 1000 measurements per 
second.
 

Range is quantized with 8 bits of coarse data and 4 of fine to provide resolu­
tion of 5 in. The position of the scan at maximum signal is encoded with 
6 bits in each direction. Scan command may be provided by a local processor 
on receipt of a discrete from the central computer, or it may be provided 
directly by the central computer; this implies a data rate in excess of 106 
bits per second. Another alternative is to use some local processing to 
reduce the load on the data bus, decoding a 16-bit word each millisecond 
into a search pattern. 

Reduction of the laser data is a major problem for the computer. One 
method was studied in which a coordinate converter, dynamic models 
of the Space Shuttle and target, and a Kalman filter are employed. The 
coordinate converter rotates the reference system into a frame with mini­
mum filtering to reduce the total computing load. The dynamic models then 
estimate the attitude and position of each vehicle for comparison with sensor 
data, and the Kalman filter determines the best estimate of attitude and posi­
tion from the past and present sensor data, taking into account detectable 
sensor errors. The Kalman filter is the only known means of determining 
docking information with the required precision. Among the operations 
required for its use are the inversion of a matrix presently estimated to 
contain over 1000 elements. Ideally, the filter would be applied to each 
target as detected by the laser, requiring up to 1000 matrix inversions per 
second. The resulting load is the equivalent of 50 X 106 additions per sec­
ond , a value which cannot be handled by even a large ground computer. 
Only when detailed system requirements and sensor designs have been es­
tablished can a practicable filter be developed. 

3.4.2 Rendezvous Radar 

The rendezvous radar locates an active target through scanning and detection 
of a microwave beam, with the electronic scan either generated in the radar 

-24­



or commanded by the central computer. The scan position at maximum 
return locates two coordinates of the target; each coordinate may require 
8-bit encoding to maintain accuracy. Sixteen bits may be provided for 
each of range and range rate, so that there will be 48 bits in each data set. 
Although lower rates have been suggested for Space Shuttle, automatic 
rendezvous may require up to 10 data sets per second. The phased array 
used on the radar is amenable to a Cartesian coordinate system, with 8 

8 bits in each dimension providing scan commands. Signal lock is main­
tained by radar electronics, so that only one set of commands is needed 
to acquire and maintain lock. 

3.4.3 Infrared Rendezvous Tracker 

The infrared rendezvous tracker detects the thermal radiation of the base 
to deteriine polar coordinates within its field of view (50 full-cone angle 
about the longitudinal axis). Scanning is entirely under internal control. 
Data should be available at least once per second, each set consisting of 
the azimuth and elevation of the base, with each angle encoded to no more 
than 8 bits. Depending upon detector design, it may be possible to use the 
infrared rendezvous tracker with the sun in the field or reflected by the base. 
It is possible that sun-avoidance logic for the scan pattern may be required, 
suggesting two 8-bit words per second from the computing system to the 
scan control when the sun is in the field of view. 

3. 5 Landing Aids 

Five landing aids were reviewed: altitude radar, ATC transponder, VOR 
TACAN, instrument landing system (ILS), and all-weather automatic instru­
ment landing system (AWAILS). Their computing loads, as derived during 
the functional analysis, are discussed below and summarized in Table 7 in 
terms of data rates. The last three systems are complementary in principle 
but will have significant periods of combined operation where their data will 
be supplementary. 

Table 7. Computational Requirements for Landing Aids 

Landing Aid Data Rates 

Altitude radar 16 bits/iO milliseconds 
ATC transponder 9 X 24 bps (output from DMS) 
VOR TACAN 3 X 8 bps 
ILS Z x 8 bps + f discrete 
AWAILS 3 x 8 bps 
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3.5. 1 Altitude Radar 

This landing aid determines height above the local terrain from the transit 
time of a 9-GHz signal. Since terrain variation will be a significant factor 
in the received data; smoothing will be required by the computing system. 
It seems likely that 16 bits will suffice for the data, and that a nominal 
rate of the order of 100 msec between samples will provide rapid response 
and effective smoothing. One possibility is that landing at the nominal site 
would call for removal of known terrain variation from the data, either 
complementing or replacing smoothing. Since the vehicle must be capable 
of 	landing at unplanned sites, such a feature for the nominal seems to be 
of 	little advantage, while it might commit a significant portion of memory. 

3. 	 5.2 ATC Transponder 

The air traffic control transponder is modulated with avionics data for 
ground control. The following data should be required no more than once 
per second: 

O 	 Reference time (GMT): 16 bits 

o 	 Mean altitude above terrain (unweighted average 
of altitude radar data): 16 bits 

o 	 Inertial state vector (referenced to the rotating 
earth): 6 X 16 bits 

* 	 System status code (synthesized from individual 
status data): 16 bits 

Other data available in the landing phase would appear to be of little value 
to those receiving the transponder signal, since the computing system inter­
face is independent of the operating mode of the transponder during landing 
phases. 

3.5.3 VOR TACAN 

VOR TACAN is a pair of data sources (omnirange and TACAN) providing 
inflight data relative to earth-fixed transmitters. Each system employs a 
signal from the ground, decoded onboard into an identifying tone for the 
transmitter, a reference bearing, and a variable bearing as a function of 
vehicle position relative to the antenna. It is assumed that manual identifi­
cation of the station will be employed, since the analog/digital and digital 
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3.6 

requirements for automatic identification seem unnecessarily costly. TACAN 
also includes an active ranging path to its antenna. Particularly because of 
the short range over which VOR TACAN data are good, 8-bit encoding of each 
bearing 6ignal and of range would appear sufficient. While data are avail­
able essentially continuously, sampling once per second should be sufficient. 

3.5.4 ILS 

The instrument landing system is used to bring the vehicle to the middle 
marker of the runway through detection of azimuth and elevation from a refer­
ence transmitter; a supplementary antenna signals passing of the outer and 
middle markers. The detected signals of glide slope (elevation) and localizer 
(azimuth) may be usefully encoded to about 8 bits and sampled once per 
second. The two marker signals should be discretes to the computing system, 
and require sampling at the same rate but for only the brief period near their 
expected occurrence. Ambiguities -exist in ILS data and may require resolu­
tion in the computing system, both for display and for automatic landing. 
Comparison between inertial reference and ILS data should be sufficient to 
determine which of the five possible ILS references has been detected and 
to optimize the landing trajectory. 

3.5.5 AWAILS 

The all-weather automatic instrument landing system, employed only in the 
final stages of landing, provides angular interfaces equivalent to those of 
IMS and supplements"them with measurement of range to a transponder on 
the runway. Again, 8-bit encoding of each of the three data inputs should 
suffice and sampling once per second would-appear adequate. 

Primary Propulsion Subsystems 

The orbiter primary propulsion subsystems may employ two separate sets 
of engines: the main engines for the final stage- of boost and the orbit 
maneuvering subsystem for subsequent major thrust maneuvers. A reason­
able 	construct -for operation of either engine subsystem calls for a set of 
pre-ignition commands over a peiiod of seconds to minutes, an engine-on 
signal maintained throughout thrusting, gimbal angle commands of indeter­
minate rate and quantization for both degrees of freedom, and a mixture­
ratio command. In the absence of data about a specifi-c subsystem con­
figuration, the estimates summarized in Table 8 were made for the design 
carrying least load on the computing system. These estimates assume that 
each 	engine may be gimbaled approximately 50 about each axis; quantization 

i0to 0. would be useful. A reasonable interface would allow for up to 
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Table 8. Computational Requirements for 
Primary Propulsion Subsystems 

Function Requirements 

Gimbaling 4 axes: 10 bps/axis + i discrete 

Throttling 6 (air-breathing) engines: . ? bps + I discrete 

Start sequence i command (discrete) with computer countdown 

Engine-on I command (discrete) with computer countdown 

Mixture ratio 2 (rocket) engines: i bps + I discrete 

10 commands per second per axis, each incrementing or decrementiig the 
gimbal angle by one count. Initiation of thrust may use two discretes (engine 
sequence start and thrust start), or it may require a sequence of discretes 
issued on a time base; the most difficult implementation would provide dis­
cretes triggered by measurements of propulsion parameters under com­
puting system control. Measurement of propellant quantities and flow rates 
provides the data for computer determination of the desired mixture ratio; 
the increment/decrement discrete is required no more than once per second. 
Each incremental signal requires a discrete which causes the controller to 
drive to the reference (null) position. 

3.7 Reaction Control Subsystem 

The reaction control subsystem employs 20 thrust chambers burning hydrogen 
and oxygen to generate relatively small torques and forces for attitude con­
trol and small velocity increments. If continuous thrusting is possible, the 
output of the computing system may be a discrete for each chamber (assum­
ing hard-wiring rather than the use of the data bus). In that event, the signal 
is counted down with a tolerance of the order of I to 5 msec. If only a pulsed 
mode is available, the number of such pulses (up to perhaps 800 per second) 
must be transferred to the buffer in a local processor for each assembly. 
Two or three such items are required for each assembly, depending upon 
whether four or six thurst chambers are used. 

Many configurations may be constructed in which computing system functions 
are assigned, to local hardware and software. The above configuration does 
not allow for some modes of employing rate gyros, nor is it clearly the 
preferred type of interface for control surfaces in atmospheric flight. The 
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specific mechanism by which a command signal actuates the reaction con­
trol subsystem was not clear, and is significant in determining the software 
requirements. A representative computing load might involve 20 thrust-on 
discretes, up to six active at once, and each counted down at 400 bits per 
second (may be synchronous). 
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4. COMPUTER CONFIGURATION 

The Space Shuttle onboard software rhay be divided into two categories: 
functional and executive. The functional software performs the functions 
dictated by the requirements of the-hardware subsystems and the mission 

objectives. The executive software controls and coordinates the execu­
tion of the functional software in accordance with overall system require­
ments. 

As shown in Figure i, the fun'ctional software may be subdivided accord­

ing to the fuhctions to be performed, such as guidance, control, and 

checkout. Within these subdivisions it may be further categorized as to 

the specific computations to be performed, such as initialization and the 

computations performed at the minor and major cycle intervals. This' 

final division of the functional software is made according to what will be 

called tasks; each task consisting of well defined computations to be per­

formed at specified times or when specific criteria are satisfied. 'In gen­

eral, each task will require some maximum time for execution. 

S Total Onboard 
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Figure 1. Onboard Software Structure Outline 
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Executing the many tasks will require the sharing of computer.resources 
such as the scratchpad memory and the input/output devices. The execu­
tive 	software will coordinate this sharing and control the resulting opera­
tions. Like the functional software, it may be divided into tasks, such as 
scheduing the functional tasks for execution, controlling and performing 
their input/output operations, and reconfiguring the computer system 
according to the computational load or the health of the computer hardware 
components. 

The 	functional tasks can be designed, coded, checked out, and verified in­
dependently of the specific computer configuration, except for the ways 
which these tasks interact with the executive system. Development of the 
executive, on the other hand, is intimately tied to the computer configura­
tion, both as regards: i) the problems a particular configuration may 
present in performing the task-oriented executive operations, and 2) the 
special executive operations that the configuration might itself demand to 
be performed. Therefore, the tradeoff of alternative computer configura­
tions was approached by studying the advantages and disadvantages of the 
executive software. 

Three alternatives were examined to determine which, for the anticipated 
Space Shuttle functional requirements, would be the most suitable config­
uration from a software point of view: 

* 	 Simplex Computer: The simplex or single computer, by 
far the most common configuration for both aerospace and 
general-purpose applications, consists of a single arith­
metic and control processor, a memory or a collection of 
memory banks, and an input/output processor or controller. 

* 	 Multicomputer: This configuration consists of two or more 
simplex computers, each having its own arithmetic and con­
trol processor and memory. The separate computers, which 
need not be identical, communicate with each other by means 
of their individual input/output provisions. 

* 	 Multiprocessor: This configuration consists of two or more 
arithmetic and control processors connected to a common 
memory such that, in general, any processor can execute 
any program or access data located anywhere in memory. 

The simplex and multiprocessor configurations are inherently centralized 
organizations, both physically and logically; the central computer facility 
performs the computational functions required by the hardware subsystems, 
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similarly to the way a commercial data-processing center supplies com­
putational services to its users. A multicomputer configuration can be 
physically and logically considered as either a centralized system or a 
decentralized (or federated), system, depending on the number of com­
puters and how the computational capabilities are allocated. In a central­
ized system there would be relatively few computers, each servicing 
part of the hardware subsystems. In a federated system the computational 
functions would be allocated to the computers in more of a one-to-one man­
ner, with the operation of these subsystem level computers under control 
of a master computer. 

Among the software aspects relevant to the tradeoff between centralized 
and federated systems are the disciplines enforced in software production, 
the cost and difficulty of software production activities, the computa­
tional loads that can be supported with equivalent hardware complexity, 
and the protection that might be provided from software failures. These 
are discussed first, followed by a look at the functions to be performed 
by the executive, and next by preliminary executive designs for the three 
computer configurations. The section concludes with a summary of execu­
tive and computer configuration comparisons. 

4. 1 Centralization/Decentralization Considerations 

The basic option available in the physical organization of the Space Shuttle 
data management system is that between centralization and distribution of 
the computing capacity. Neither extreme is probable: concentration of 
digital processing in a single central computer would overload the data 
bus, while some central functions (e.g., steering, mission control, re­
configuration) could not reasonably be allocated to a remote processor. 
Thus the requirement is to optimize the separation of functions into local 
and central processors under the mission and cost constraints. A com­
plete tradeoff awaits a more complete functional analysis, and this itself 
awaits spacecraft design decisions. However, many important cpnsidera­
tions are apparent at this time. 

In the extreme represented by a fully centralized system, the computer is 
divided into, processors whose number and usage are established by the in­
stantaneous'load. All data are fed over the data bus by analog/digital con­
verters, with only minimal buffering to allow noninterfering, serial t-rans­
mission. Fully resolved data are received at the subsystems, so that only 
format conversion is required to provide the stimuli needed, for their check­
out. The data rates associated with the fully centralized configuration 
would approach an order of magnitude increase over those attainable with 
more 'extensive local processing. That penalty increases not-only the 
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capacity required of the data bus, but also the input/output load on the 
central processor. 

In the extreme represented by a fully federated system, all processing 
possible at the subsystem level is performed in dedicated processors 
located with the interfacing hardware; the central computer performs 
only the tasks involving the integration of data from several subsystems. 
A major advantage of such a design is the discipline it forces on defining 
the interfaces between software located at the subsystem level and the inte­
grating software of the central computer. In addition, the powerful com­
puting capability at the remote locations minimizes data rates and should 
save both cost and weight in the distribution system. However, the rep­
lication of routines among the local processors would be great, so that 
each would have to bear an overhead comparable to that of the entire cen­
tralized system. Memory and computation capacity would be committed 
to executive functions and to task programs and subroutines that are 
handled more efficiently in the centralized system. Furthermore, it is 
unlikely that the architectural characteristics of the smaller local pro­
cessors would be conducive to easy programming. As a result, a con­
siderable amount of software would have to be developed for hardware 
that is less than ideal from programming and verification points of view. 

An essential computational function is the reduction of masses of data 
(e. g., accelerometer pulses, supply voltages) to significant information 
(e. g., steering commands, status displays). The partitioning of tasks 
to central and local processors is essentially a process of optimizing the 
allocation of data reduction to the different sites. The total data reduc­
tion load may be assumed to be independent of how it is allocated. Data 
compression, which represents an element of the filtering the system 
will be required to perform, would have to be executed either explicitly 
or implicitly in the central processor if local capability were omitted. 
Once such elementary capabilities as accumulation of accelerometer 
pulses are assumed in the local processors, there is a tendency to add 
others to reduce the load on the central unit. 

With each level of compression at the local processor, less raw data 
need be forwarded to the central unit. At some point, data among sub­
systems must be correlated; at that stage, central processing is indicated. 
Typical of that case is the determination of steering commands from en­
gine, accelerometer, and gyro data. A fully decentralized system would 
reduce the role of the central unit to that of performing multisource data 
analyses. Performing these analyses will require powerful processing 
units and an extensive memory regardless of how the functions are dis­
tributed. In the federated configuration, some local processors will be 
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comparable with the central processor in magnitude. If the-local proces­
sbrs are physically and functionally remote from the central proc6ssor, 
any redundancy requirements must be reflected in them separately. Con­
sequently, a redundant system grows rapidly more expensive with increas­
ing decentralization. 

The relationship between cost and the degree of decentralization may be 
illustrated by the following example of two configurations. In one, a 
processor is provided for each of N subsystems and an additional equiva­
lent processor is provided to handle interprocessor communication. If 
system requirements dictate survival of any two failures in processing 
units, this configuration requires 3(N+i) processors. The other, more 
centralized configuration provides the same total computing power, but 
allocated such that each processor supports three subsystems and the 
balance of the required processing is provided by the central computer. 
This configurationwould require N+(Z/3N+i)+2 processors. The more 
centralized configuration needed to accomplish the same computing is 
therefore composed of 4/3N-2 processors fewer than the other, which is 
significant even if there were only three subsystems (8 units against iZ). 
The same argument is relevant with respect to the location of memory 
modules. Memory advantages also exist in that portions of code would 
have to be repeated in the decentralized system, whereas in the centra-­
lized system they would merely be accessed repeatedly. 

The principal argument against centralization deals with the redaced 
cost of verification associated with breaking the code into separate pro­
grams. Decentralization enforces modularity by removing the interfacing 
routines to separate processors. The same attention to software'niodu-' 
larity and interface requirements can and should be applied to the central­
ized system. Programs can be separated to minimize unwanted inter- ­

action through a combination of software design techniques and computer 
architectural features, just as effectively as separation is achieved phys­
ically in the decentralized system. 

4, 2 Executive Functions 

The system executive will be required to perform the following four 
basic functions, each of which is discussed individually in what follows: 

* Allocate resources 
* Perform and coordinate I/O operations
 
" Maintain real-time control
 
0 Preserve system integrity 
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4. 2. 1 Resource Allocation 

This function takes on different forms depending on hardware design. The 

resources available may include memory banks or modules, secondary 

memories, I/O devices, and processors. It is the management of these 
resources, including routing of processing through the program elements, 

that prompts the use of the term "executive. "T Essentially, the functions 

performed under resource allocation are those of controlling and manag­

ing the computer hardware as dictated by the needs of the software. 

At one time, flight software requirements were such that an inflexible 
sequencing of task execution could be tolerated: programs written for bal­
listic missiles required no executive. The Space Shuttle represents the 
opposite pole in that the sequence of task execution will not be predictable 
before flight. While some operations may always be performed before 
others (e. g., boost guidance precedes reentry maneuvering), most tasks 

are interleaved as a function of hardware subsystem activity. 

Accommodating such a flexible sequencing environment greatly compli­
cates resource allocation; very often a task request will occur when the 
available computer hardware is already allocated to performing other 
tasks. In one sense the job of resource allocation is greatly simplified 
when there are relatively few resources to allocate; for example, the 
allocation of processors to execute tasks in a configuration with only one 
processor is obvious. Resource allocation is obviously simplified if 
there is a surplus of resources; in this case the allocation can be accom­
plished inefficiently yet still satisfy hardware subsystem requirements. 
For example, with a large number of processors it would be possible to 
initially allocate tasks such that none assigned to the same processor 

would ever need to be executed at the same time. 

Most tasks require the use of erasable memory for intermediate storage 
and retention of input and output data. Committing memory by task with­
out sharing may in some cases require more memory than is available; 
so memory may have to be allocated under the control of the executive. 
Similarly, if a mass memory device is used for storage of program ele­
ments required only during given mission phases, its management would 
be another resource allocation function. The actual reading and writing 
of the mass memory would be accomplished by the executive's I/O ele­
ments under this management. 
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4. 2. 2 I/O Performance and Coordination 

Among the things the executive will be required to do in this category 
of functions will be executing the [/0 operations indicated'by task-issued 
I/O directives, monitoring the I/O operations to resume task execution 
when the indicated data have been received or transmitted, and sequenc­
ing the I/O operations so that both the task requirements and'those of 
the h&rdwdre subsystems are satisfied even if the I/O directives from the 
tasks appear to conflict. In some simple systems the performance of I/O 
operations is left to the functional tasks themselves. The resul'ting distri­
butiof oftI/O activity throqghout the software introduces much duplication 
and requireg that any task about to perform I/O be aware of possibly con­
flicting I/O being performed by all other tasks. The method is undesirable 
for a-software system as complex as that for the Space Shuttle, and partic­
ularly undesirable because the preponderance of the I/O in this system 
uses a serial data bus. The sequencing of data on the bus mcst be very 
carefully managed to insure not only that the appropriate data are sent or 
received, 'but also that this is accomplished in a timely fashion to satisfy 
the software -system's real-time constraints. 

4. Z. 3 Real-Time Control 

Some tasks skill have relatively flexible real-time constraints-: it will be 
permissible for them to be executed at any time during some fairly long 
interval. Examples are initialization for maneuvers that may not be 
scheduled to take place for some time, performing onboard targeting 
computatiofns, and checking some vehicle hardware subsystems. For 
such tasks the important thing is that they be done rather than the pre­
cise time at which they are executed. These tasks comprise the back­
ground computation. Other tasks will have to be performed in response 
to some specific stimulus within some short period of time, and, for these 
the executive must make certain that the real-time constraints are ful­
filled. Examples of such tasks are those involved in making the proper 
responses to controller or keyboard inputs of the crew and those that, in 
response to an error signal, reconfigure the system to minimize the effect 
of the errori. 

Thus the executive must allow for the maintenance of real-time control, 
between task software, hardware subsystems, and the vehicle. This 
can be accomplished in many ways. One is for the executive -to conduct 
a poll of hardware devices and software lists to determine the tasks to 
perform;, another is for the executive to respond to requests for task 
execution made via hardware or software interrupts. When such an 
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interrupt occurs, the executive must identify the source of the interrupt 
and its associated task and priority; compare its priority with that of the 
task in execution; and, if the new task is of higher priority, cause the 
current task to become dormant and the new task to begin execution. 

Another type of real- time control that will have to be exercised by the 
executive is the scheduling of tasks that must be executed periodically. 
Examples of such tasks are the guidance and navigation major cycle com­
putations and the flight control minor cycle computations. This can be 
accomplished by interrogating a real-time clock to determine when the 
proper interval has passed or by responding to an appropriate periodic 
interrupt. 

The usual approach to maintaining real-time control is to establish a 
priority scheme in which tasks that must respond very quickly to certain 
stimuli are given a high priority and the background tasks a low priority. 
In a priority scheme of this sort, periodic tasks must have dynamically 
changing priorities, either in actuality or in effect. Normally the periodic 
task has a priority so low as to prevent its ever being executed, and at the 
appropriate times its priority is increased. Its high priority is maintained 
while it is being executed, after which it returns to its former low state. 
Similarly, many background tasks may require dynamic priority adjust­
ments. For example, computer self-test might normally have a low prior­
ity; and if it has not been completed in some specific interval its priority 
would be increased. This would continue to occur until either it was exe­
cuted or its continuing high priority indicated that something was consum­
ing available computer resources to an unexpected and possibly erroneous 
degree.
 

4, 2.4 System Integrity 

Because of the variety of things to do, the situation may occur in which 
tasks to be performed require more than the time available. (One exam­
ple of how this can be detected was just described. ) When this condition 
exists, a system overload has occurred. The executive must be able to 
resolve these conflicts and do only those things that are mandatory for the 
correct function of the system. It can resolve the conflicts by reassigning 
priorities, aborting low-priority tasks, or stretching out the time allotted. 

The executive must have the ability to detect some types of faults in 
external devices and in the computer on which it is executing. It must 
also periodically schedule tasks to perform diagnostics on the devices and 
on itself to ascertain any problems and take corrective procedures bypass­
ing the elements in error. In case a malfunction in the computer system 
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4.3 

is detected, the executive must be able to communicate with a backup com­
puter ahd switch to it in such a manner that the vehicle continues and main­
tains its scheduled mission. 

Finally, the executive must be so designed, constructed, and verified 
that there is no question that it can perform its functions. It must be such 
that adding or deleting tasks does not require extensive executive modifi­
catiol, and must also be so written that adding or deleting hardware de­
vices similarly is easily accommodated without making more likely the 
oc currence of software errors within the executive itself. 

Preliminary Executive Designs 

The choice among executive designs is a function of the mixture and com­
plexity of the functional tasks, the design of the digital hardware, and-the 
relative value of execution time and memory overhead. In general­
purpose computation, the executive may be called the operating system; 
the generality of its use imposes a high cost in system performance that 
must not be borne by the special-purpose executive for the data manage­
ment system. However, some overhead penalty should be anticipated to 
allow enough flexibility to provide system expansion as the Space Shuttle 
evolves. Optimization of executive design is a function of the range of 
requirements anticipated. The initial requirements determined during 
the functional analysis activity were adequate for the initial study of exe­
cutive design. While further definition of functional requirements will 
allow refinement of the preliminary designs described here, it is not 
expected that the conclusions will change. 

The 	principal tradeoffs in executive design are the means by which task 
execution is initiated, the flexibility permitted in task allocation, and 
the residency of the executive. The task-to-processor allocation and 
eiecutive r-esidency tradeoffs of course apply only to the multicomputer 
and multiprocessor configurations. 

three alternatives exist as to the means of task initiation: 

* 	 Implied Executive: Each task, when completed, transfers 
control to the next task to be done. 

* 	 Polling Executive: When one task's execution is com­
-	 pleted, the executive selects the next based on a poll of 

those waiting to be done. 

Interrupt Executive: A task is interrupted-during execu­
tion to perform a more important task. 
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To simplify the comparison, preliminary executive designs for the three 
task 	initiation alternatives were developed for the simplex configuration 
only. 

Three allocation and residency alternatives exist for the multicomputer 
and-multiprocessor configurations: 

* 	 Distributed Executive: Tasks are divided into fixed sets, 
with each computer or processor executing only those 
tasks allocated to it under control of executives perma­
nently resident in each computer or processor. 

* 	 Fixed Executive: Any task can be performed by any proc­
essor, but the executive functions are always performed by 
the same processor. 

* 	 Floating Executive: Any task and the executive functions 
can be performed by any processor. 

The second and third alternatives would be practical only for the multi­
processor configuration, for executing on one computer a task located 
in the memory of another would obviously be very difficult, if not impos­
sible. Therefore, distributed executive designs were developed and 
compared for both the multicomputer and multiprocessor configurations, 
but fixed and floating executives were investigated for the multiprocessor 
only. 

4. 3. 	 1 Implied Executive/Simpfex Computer 

The implied executive (Figure 2) does not exist as a distinct program. 
Rather, executive functions are performed by the individual tasks. Each 
task must know which task follows and transfer control to it for execution. 
If various tasks are permissible, the burden is on the executing task to 
pick the correct one and start its execution. Then the logical decisions to 
determine what to do next, properly the function of the executive, have to 
be added into the task coding itself, thus complicating the task coding, re­
ducing its independence from the computer configuration, and obscuring 
the actual program structure. It also becomes necessary to verify the 
program as a complete assemblage of tasks rather than to do extensive 
independent checking of the tasks and the executive. 

Although it may be suitable at the local processor level, the implied execu­
tive is not considered a serious candidate for the central computer facility 
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Figure 2. Implied Executive Concept 

for the Space Shuttle; the multitude of events occurring, at times simul­
taneously, simply cannot be handled by a series of tasks executing con­
secutively. The main purpose for describing the implied executive here 
is -to use it as a base for measuring the relative complexity of other exec­
utive designs. 

4. 3.2 Polling Executive/Simplex Computer 

If the computer configuration chosen has no hardware-generated interrupts, 
an executive that interrogates the external devices for activity would be a 
likely choice. After each task is completed, control is returned to the ex­
ecutive. It then determines which task to do next by performing a poll of 
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the external devices and examining a software queue of tasks awaiting 
execution. Figure 3 illustrates the concept and Figure 4 shows a high­
level polling executive design. 

In this design, the executive is entered at the completion of every task. 
The first thing the executive does is poll the input and output devices and 
execute appropriate I/O tasks if required. Next, the current time is de­
termined by reading a hardware clock; this is necessary since, in general, 
the time since the executive was last performed is unknown owing to the 
varying times the tasks themselves will take to execute. Then queues of 
time- and input/output-dependent tasks are examined to determine whether 
any particular task should be performed. Examples of such criteria, which 
may be applied singly or in combination, are the reaching of the time at 
which a task should be performed, the completion of a lengthy output opera­
tion, or the receipt of an input directive to perform a specific task. If the 
appropriate criteria are met, the indicated task is placed in the queue of 
tasks to be executed and, unless a periodic task, removed from the criteria­
dependent task queue. Finally, the task with the highest priority in the exe­
cute queue is selected, it is removed from the execute queue, and the execu­
tive transfers control to it. 

Eecute Queue 
Task I 

Figure 3. Polling Executive Concept 
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Since there a-te no hardware interrupts, the polling executive must be exe­
cuted at an/interval such that the fastest device in the system -- most likely 
the timer 'or clock -- is serviced when needed. This requirement would nec­
essarily force all tasks to be written in such a manner that they finish execut­
ing in the allotted interval, which could be as little as, say, 20 rnsec. Thus 
a task in this case may consist of a section of coding that is only a part of 
the overall function to be performed. 

The polling executive has the advantage of being repeatable, that is, under 
given circumstances it would perform in the same manner. This feature is 
of considerable importance in verification. However, the timing considera­
tions and the constraints they impose on task program design and develop­
ment have a substantial effect in raising software costs. Further, an attempt 
to modify existing tasks or insert new ones would cause the timing to be off 
unless a completely new analysis were performed. 

4.3.3 Interrupt Executive/Simplex Computer 

The interrupt executive, shown conceptually in Figure 5, is similar to the 
polling executive as far as the queue of tasks awaiting execution is concerned. 

Execute Queue 
Task I 

Task Z 

" Task 3 

Task N 

Figure 5. Interrupt Executive Concept 
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However; rather than waiting until a task is completed before deciding what 
to do next, the decision is made whenever an interrupt occurs, which can 
happen-- and does -- while a task has been but partially completed. The 
interrupt carries with it an indication of why action is to be taken: this may 
be that some interval has passed, that some external device is ready to 
transmit or receive data, or that some hardware component or subsystem 
has failed. The first thing the executive must do is "service" the interrupt. 

Interrupt-servicing must be able to execute at the expense of a task or job 
currently executing, and when the interrupt has been serviced the -inter­
rupted task or job must be able to resume at its point of suspbnsion. There­
fore, all registers used by the interrupt-servicing routine must be saved 
and restored in the event that they were being used by the interrupted task. 
Interrupt-servicing difficulty may be compounded by allowing interrupts of 
higher priority to occur while operating and servicing a lower priority inter­
rupt. Allowing the interrupt-servicing routine itself to be interruptible re­
quires that it be made reentrant, that is, able to execute a section of code 
before it has completed its previous assignment. Further, the time con­
sumed in performing interrupt-servicing and scheduling functions must be 
minimized; for interrupts may occur very frequently, multiplying the effect 
of any executive inefficiencies. 

The interrupt executive is composed of at least seven distinct functional 
modules as described below. The first of these, the interrupt module, is 
entered whenever an interrupt occurs. The interrupt module may in turn 
call any of the three input/output processing modules. The fifth module to 
be described, the scheduling module, is the portion of the executive to 
which each nonexecutive task transfers control when completed. The last 
two modules, entered either from the tasks or the executive, perform 
functions such as inserting new tasks and performing diagnostic checks. 

i) Interrupt Module: Before determining the cause of and the 
response to an external hardware interrupt, this module 
(Figure 6) saves all volatile registers; to allow for re­
entrancy, there is a save area for each interrupt in the sys­
tem. The module then determines the cause of the interrupt 
and takes the path directed. A clock interrupt results in up­
dating time and interrogating the time-dependent task queue; 
if a task were scheduled, it would be removed from this 
queue and placed in the execute queue. If the new task had 
a higher priority than the executing task, the scheduling 
module would cause the new task to begin; if lower, the in­
terrupt module would restore all registers and branch back 

-45­



7
 
lnihibit 

Interrupts
 

Save Machine 
;Status
 

Enable Higher
 
Priority
 

Interrupts
 

lock 
 Update
 

6Clock
 

no - no
 

Tro oae
 
Task 
 DetTs
 

ysi
Takterrupt 


| StinenotTaasn 
xct
 

T i m e ­rPol a cey 

e n 
sya eda s ~ D epend ent T ask 
kfre.te. 


A ssig m ent T ablQ u aue 

RemoveeTasrxeuieDsg:strutMdl

~Pl 

Dk
Fgr6.Interrupt c Tasknr Iahn 

n
,
cte
ram e 

e.a Queue
 

eue 
STa s k 


?Exec 


En 
 abl 
nog
n 
q 

e
nal u
entsrr 

nternpt 


Mdu
 
Desgn:Intrrut


Execfie 

6. Interrupt
Figure 


achneas, wthR6-aIt~to. 



Figure 6. Interrupt Executive Design: Interrupt Module (continued) 

to the suspended task. Similarly, the appropriate execn­
modules wouldBtive be executed for other interrupts. 

2) 	 Peripheral [// Module: This module handles I/O requests 

to peripheral devices such as digital displays, mass stor­
age devices, and the like, providing the programmer's-inter­

facing software with them. It initiates requests and responds 
to and resolves interrupts associated with these devices. In 

case of errors, retry attempts will be made; if still unsuc­
cessful, this modu e will notify the executive to take correc­
tive 	action. 

3) 	 Data Bus I /0 Module: This module performs the functions 
necessary for communication via the I/0 data bus. It 
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coordinates all activity on the bus, schedules the I/O such 
that optimum use is made of it, handles all -interrupts asso­
ciated with it, and monitors for any error conditions that 
may 	exist. Corrective action in case of failure or trouble 
is directed to the error recovery module. 

4) 	 Other I/O Module: All other system I/O is lumped into a 
package handled by this module. Falling in this group 
would be any analog or digital I/O and any I/O such as pulse 
counters or counters of some other sort. 

5) 	 Scheduling Module: After a task has completed its function, 
it branches to this module (Figure 7), which then accesses 
the execute queue for the next task. If the task in queue is 
a new one, the scheduling module branches to it to begin 
execution; if it is a previously interrupted task, the sched­
uling module must reset the registers before performing 
the branch to the task in -question. If no task is waiting, 
the scheduling module starts the idle/self-test task. Be­
fore accessing the execute queue, the scheduling module 
inhibits interrupts, then enables them before branching to 
the next task; this ensures a graceful transition from task 
to task. 

6) 	 Task Support Module: This module provides the functional 
tasks with the ability to perform such operations as the in­
sertion of tasks in the execute or time-dependent queues. 
Requests for temporary memory blocks are also handled by
calls to this module, which can remain flexible for the addi­
tion of new functions suited to be included within the execu­
tive structure. 

7) 	 Error Recovery Module: This module has the responsibility 
to ensure corrective action in the event of hardware or soft­
ware error conditions. Included in this module are self-test 
and diagnostic routines such that error conditions can be 
ascertained and recovery procedures implemented. 

The 	interrupt executive has a distinct advantage over the polling scheme 
with 	which tasks need to be completed in a short interval before returning: 
the interrupt executive is able to respond to real-time events as they occur. 
That is, it can accept externally caused events, suspend task operation, and 
perform any function necessary to respond successfully to the event. The 
only delay would be in saving any volatile registers such that the system can 
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resume execution at the point of suspension. One minor disadvantage is 
that during the response to an interrupt, the task currently executing is 
temporarily delayed. Another is that the time needed by the executive to 
preserve machine status must be included in executive overhead. The 
potentially most significant disadvantage, and one that requires discus­
sion, relates to ease of verification. 

A major verification problem with any software system consisting of a 
large number of tasks lies in assuring that the required interaction be­
tween tasks is correct and that no unwanted or erroneous interactions 
happen. As an example of the type of problem that can occur, consider 
the case in which one task is computing a vector and before it is done it 
is interrupted by a task that uses the same vector. It would be satisfac­
tory if the interrupting task obtained either all the old values for the vec­
tor elements or all the new values, but wrong for it to obtain a mixture 
of old and new elements. What is needed in such a case is a means for 
locking out the interrupting program until all the new values have been 
computed. A similar, more serious problem -- and one often more diffi­
cult to detect -- occurs when a task places the results of its computations 
in some task intercommunication region, but before they can be used by 
the task for which they are intended they are overwritten by a third task. 

This potential problem of task interference, while it also exists for the 
polling 'scheme, appears to be greater for the interrupt scheme owing 
to its greater complexity. Noninterference between two tasks can be 
assured for the interrupt executive by proving that the tasks can be exe­
cuted in parallel, withno differences in the results except for those that 
are a consequence of deliberate and valid task interactions. For the 
polling executive, noninterference can be assured by proving that exe­
cuting the tasks in any sequence produces the same results, except for the 
deliberate and valid task interactions. To permit comparing the verifi­
cation difficulties for the two executives, the necessary conditions for 
assuring that no interference exists were analyzed. The analysis, pre­
sented in Appendix A, indicates that the polling executive is not enough 
simpler than the interrupt executive to permit a significant relaxatibn of 
the required amount of verification. 

The keys to making an interrupt executive manageable with respect to 
verification are to require absolute adherence to standard task inter­
communication mechanisms, restrict the number of interrupt levels, 
employ the selective inhibiting of interrupts over selected regions of 
task coding, and provide for restarting interrupted programs only at se­
lected, consistent, safe places in the task coding. Use of these techniques 
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for an interrupt executive can greatly reduce verification problems, thus 
bringing it more into line with a polling executive as regards verification 
ease. 

4.3.4 Distributed Executive/Multicomputer 

In a multicomputer system, tasks would be permanently allocated to indi­
vidual computers. With a two-computer system, for example, a likely 
allocation would be for one computer to execute guidance, navigation, and 
control tasks and the other to execute display and communication tasks. An 
executive is required for each of the computers, and it is assumed that the 
two executives will be similar. Continuing with the example, the display 
computer needs to access the current state of guidance and control to allow 
update of the displays, while the guidance and control computer needs to 
communicate to obtain the latest command information from the crew, Thus 
the executives require the ability to accomplish computer-to-computer com­
munication; this is done through the computers' I/O provisions as indicated 
in Figure 8. 

The need for intercommunication requires an additional module to be fin­
plemented in the interrupt executive design previously described for the 
simplex computer. Figure 9, which is a replacement for the indicated 
portion of Figure 6, shows how this module is included. The intercom­
puter communications module would perform the transferring of data or 
messages between computers. The transfer may be accomplished by a 
simple I/ device, or if greater sophistication and speed were needed it 
might involve some form of direct coupling. 

Task A Task i 

Task 2 
sT C Task 3 

Task D Task 4 

Figure 8. Distributed Executive/Multicomputer Concept 
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Figure 9. Distributed Executive /Multic omput er Design 

The principal advantage of a multicomputer approach is the increase in 
System capacity it provides. The tasks can be logically divided into al­
most independent grou~ps, with each group implemented on its own com­
puter and executed as an entity. An interupt directed to one computer in 
no wvay interferes with execution on the other. This leads to another ad­
vantage: with the reduced prbability that any given task will be interrupted, 
overall system response time increases. O""3fcourse "the c8rnmuni cion 
required between computers is a disadvantage in that a more complex ex­
ecutive is needed. Veryifying this executive is more expensive because 
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it becomes necessary to verify two or more executives running concurrent­

ly on different computers. Also, it is harder in this case to achieve repeat­

ability. 

4.3.5 Distributed Executive/MultiprocessOr 

In the multiprocessor distributed executive approach (Figure 10), the 
tasks would be allocated to particular memory modules and a processor 
permanently assigned to each partition. The partitions would be auton­
omous entities except for a particular portion of memory in each that 
would be accessible to all processors, providing an intercommunication 
block so that data and commands or requests could be passed from one 
partition to another at the cost of a memory cycle. Each partition would 
also contain an executive that would oversee the scheduling and servicing 
of interrupts associated with its resident tasks. A logical breakdown 
would be similar to the multicomputer approach: one partition assigned 
to guidance and control tasks and the other to display and communication 
tasks. The multiprocessor does not require the computer-to-compuflter 
communication necessary to a multicomputer configuration. The execu­
tive design could be the same as that for the interrupt executive on the sim­

plex computer, with an additional module to access the common area in 

each partition. In the unlikely event that there is but little intercommuni­

cation between tasks, the necessary accessing controls could be handled 
automatically by the assembler or compiler, eliminating this module. 

While similar to the distributed executive for a multicomputer, the distrib­

uted/multiprocessor has the advantage that intercommunication between 
computers is no longer needed. Transfer of data between systems is now 
done only by memory references through the appropriate executive module, 
simplifying the executive design. Because the memory is continuous, the 
executive offers more flexibility with regard to the partitioning of tasks 

and memory allocation. Its disadvantages are the same as those of the 
distributed/multicomputer executive; the repeatability problem exists, as 
does the problem of verifying multiple executives executing concurrently. 
In all, the distributed/multiprocessor is slightly better. 

4.3.6 Fixed Executive/Multiprocessor 

In this approach (Figure ii), one processor would serve as a dedicated 
processor for running the executive and the others would be allocated to 
task execution under control of the executive. The interrupt executive dis­
cussed earlier would serve as the base, with added coding to assign proc­
essors when a task is scheduled. When executing a task, the assigned 
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processor would be limited to the area of core in which the task resided. 
A common access block, available for reference by all prQcessors, could 
be used for temporary storage or for the passing of data from task to task. 
The use of this block would increase as the system evolved and would 
become more complex as new tasks and functions are added. However, 
the complexities introduced by the need for ever greater task intercom­
munication would impact only the executive and the common access block. 

A fixed executive implemented on a multiprocessor offers advantages over 
any of the previously discussed executives. One is that processors are 
assigned-to high-priority tasks such that the task is not interrupted when an 
external'interrupt occurs. This means, of course, that high-priority tasks 
run to conclusion once started. This improves system throughput and re­
sponse time. Flexibility, capacity, and failure handling are greatly improved 
because of the processor units available. If a timing problem develops, it 
may be possible to add another processor. If an error occurs in the proc­
essor assigned to any task, it is relatively simple to assign another proc­
essor tor it. Thus, the backup problems facing the simplex and multicom­
puter configurations are more easily solved in this multiprocessor with 
fixed executive. This alternative does have verification disadvantages, 
however: since a task could be assigned to any processor at any time, 
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Figure ii. Fixed Executive/Multiprocessor Concept 
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repeatability cannot be assured from run to run. Thus response time and 

throughput advantages are gained at the expense of verification difficulty. 

4. 3.7 Floating Executive /Multiprocessor 

The floating executive (Figure i2) allows the executive as well as the tasks 

to be executed by any processor and is a logical extension of the fixed execu­

tive. In this scheme the executive is considered another task or set of tasks, 

and would of course have the highest priority of all. Briefly., the executive 

would assign a processor to a particular task only when that task was about 

to be executed. A processor's execution of one task could be interrupted 

and that processor assigned to another, higher priority task. When a second 

processor completed execution of its assigned task, it could be assigned to 

the interrupted task; thus execution of a low-priority task might eventually 

be accomplished by many processors in succession. Executing the executive 

tasks themselves to accomplish processor allocation would be initiated either 

on completion of a functional task or on receipt of an external interrupt. The 

processor selector, either hardware or a combination of hardware and soft­

ware, is required so that when an external interrupt is received only one 

MEMORY 
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Figure 12. Floating Executive/Multiprocessor Concept 
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processor would be interrupted in executing a functional task. Task inter­
communication would be controlled by the executive, utilizing a common 
access block to contain the shared data. 

At some times there may be more processors available that tasks to per­
form; when this happens the special idle task would be activated to per­
form self-test and associated functions. It would be the fun'ctioni of the 
executive to make certain that the execution of this idle task be rotated 
among the processors and that even in times of peak computation loading 
the self-test portions of the idle task be performed occasionally. 

Like -the interrupt executive for the simplex configuration, the floating 
executive would be composed of many modules. Of these, the scheduling 
and: interrupt modules are the most important. The scheduling module, 
for which - high-level design is shown in Figure 13, is executed at the 
comptletion of any non-executive tasks. This module must be reentrant: 
more than one processor may complete its task at about the same time, 
which means that the scheduling module may be executed any number of 
times nearly simultaneously. The scheduling module examines the queue 
of tasks to -be performed; if one is waiting, it removes the taskfrbm the 
queue, relinquishes the queue, and begins execution of the task. If no task 
is scheduled, the idle/self-test task is begun and the execute queue is 
relinquished for further update. In either case, the processor/task pri­
ority indicator is updated to reflect current assignments, making it pos­
sible for the processor selector to route any interrupts to the processor 
performing the lowest priority task. 

A high-level design developed for the interrupt module is presented in 
Figure 14. This module handles the dynamic assignment of processors 
to tasks in response to interrupts. It is executed whenever an interrupt 
occurs and, like the scheduling module, may be executed by any processor. 
The first thing that it does is suppress interrupts until the current machine 
state can be saved in a pushdown stack; after this, higher priority inter­
rupts are enabled. Next the type of operation to be performed -is deter­
mined and the appropriate operations performed, either by tie interrupt 
module itself or by other executive modules. If the interrupt indicates 
that a -functional task should be executed, that task is assigned to a free 
processor if there is one; here, a free processor is defined as one that is 
executing the idle task. If no processor is free, the priority of the inter­
rupting task is compared with that of the task that was being executed by 
this processor before the interruption to do the executive functions. If the 
new task has a lower priority than the interrupted task, the new one is 
added to the execute queue, with its place in the queue a function of its 
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4.4 

priority, and the interrupted taskyis resumed. If the new task's priority 
is higher, the interrupted task is added to the execute queue along with 
information about machine state needed to resume its execution later, and 
the newtask's execution is begun. The processor selector is then set to 
indicate which processor is currently performing the lowest priority task. 
When the -next interrupt occurs, that processor will be the one to be inter­
rupted. 

The above description contains several simplifications. First, it allows 
for the scheduling of only one task in response to an interrupt; further 
elaboration is required to schedule tasks in processors other-than the one 
already interrupted to do the executive operations. Second, it relies on 
random characteristics of the tasks themselves and their scheduling to 
schedule the idle task in all processors within an allotted period-; in prac­
tice, the executive will have to assign the idle task to a processor in the 
event that that processor has not done the idle task recently, even if doing 
this -results in unnecessary reallocation of another task or a slight violation 
of the priority structure. Finally, the high-level description does not illus­
trate the provisions required for computer reconfiguration in the event of a 
processor's hard failure; this will require additional queues for describing 
processor status. 

One advantage of the floating executive /multiprocessor approach is that 
all pieces of the system are continually being tested for correct operation. 
All processors are performing as identical parts of the total system, 
greatly simplifying the job of removing one processor from the active list 
if it fails. The floating executive offers still more advantages dyer the fixed 
executive with regard to throughput efficiency. Its response time is the 
best of any executive design because each processor is always, working on 
one of the highest priority tasks. However, verification is much more 
difficult than for any of the other alternatives because of the much greater 
uncertainty as to which processor is doing what and the many combinations 
that can occur. 

Executive and Computer Configuration Comparisons 

Executive design criteria were defined and the performance of the prelim­
inary executive designs estimated. The results are summarized in Table 9; 
the higher the numbers, the better the performance. 

For the first criterion, size and complexity of the executive programs 
themselves, the implied executive is by far the best and the floating exee­

titve the worst. The distributed executive for the multiprocessor is 
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Table 9. Executive Design Comparison 

Simplex Multicomputer Multiprocessor 
Criterion Implied Polling Lterrupt -Distributed Distributed Fixed Floating 

Size and complexity 40 20 10 7 8 5 4 

Overhead 40 12 to 10 10 9 8 

Capacity 1 8 to 20 20 20 25 

Response time 1 5 10 11 11 12 14 

rlexibility 0 5 10 It 13 is 20 

Failure handling 0 0 to t0 10 is 20 

Verifiability 20 15 10 7 7 3 1 

slightly smaller and less complex than its counterpart for a maulticomputer 
because the use of direct memory access rather than normal input/output 
simplifies task intercommunication. Estimates for the second criterion, 
executive overhead, follow much the same pattern, with little significant 
difference between polling, interrupt, distributed, and fixed executives. 
Executive capacity, which is a measure of the number of unique tasks that 
can be accommodated without requiring any executive modifications, is sig­
nificantly better for the multicomputer and multiprocessor configurations 
than for the simplex computer. Executive response time of the interrupt 
scheme is much better than that of the polling executive. Flexibility, the 
capability of being easily modified to accommodate new system require­
ments, and failure handling, the capability to dynamically react to and 
compensate for hardware failures, are likewise significantly better for the 
interrupt executive. Finally, verifiability follows the same trend as size 
and complexity, with the simplex polling executive better than the simplex 
interrupt executive, much better than the multicomputer and multiproc­
essor distributed executives, and very much better than the fixed or float­
ing executives. 

It is concluded that the simplex configuration will lead to significantly sim­
pler software than the multicomputer or multiprocessor configurations. 
Compared with a polling executive, -the advantages an interrupt executive 
offers-with regard to capacity, response time, flexibility, and failure 
handling compensate for its greater verification difficulty. The multiproc­
essor is slightly preferred over the multicomputer configuration if the 
distributed executive alternative is selected. Although the multiprocessor 
with the fixed or floating executive offers many advantages as far as capac­
ity, response time, flexibility, and failure handling, the verification 
problems are so great that these executive designs should not be utilized 
for the Space Shuttle.i 
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5. COMPUTER ARCHITECTURE 

The.software effect of the Space Shuttle computer configuration will largely 
be felt in the executive, program, which, while the most difficult part to design 
and verify, will constitute only some 10% of the total onboard software. The 
effect of architectural features will impact the executive program and the 
individual task programs as well. Although no specific architectural 
feature will have as much impact on software design and production as will 
the choice of configuration, each one will apply to much more of the software. 

Basic criteria for determining software impact are discussed in this section 
in terms of the suitability or adequacy of the following classes of architectural 
features: 

" Memory 
* Execution speed
 
" Input/output facilities
 
* Instruction set 
* Word format 
* Register organization
 
*~ Restart and self-test provisions
 
* Interrupt-handling facilities 

The discussion here applies only to software. Considerations of hardware 
availability, cost, and reliability will be equally important in selecting a 
particular architecture. As the succeeding discussion will show, some of 
the detailed architectural aspects will be important to the overall software 
cost impact, while others, although important for other reasons, will have 
a small effect on cost. 

The criteria, because they apply to the total onboard software, also have 
implications as regards the computer configuration. In particular, signifi­
cant architectural differences are possible between the computers at the 
local and central levels in a federated configuration. In such a configura­
tion, a significant portion of the software will be for the local computers. 
If these local computers are unsuitable in terms of, say, their instruction 
set, then the overall software effect will be increased in proportion to the 
amount of local level software. 

Before proceeding with the discussion of individual architectural aspects,
 
it should be pointed out that for a given set of functional requirements there
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is a level of performance with respect to the first three -- memory, execu­
tion speed, and input/output facilities -- that must be satisfied if adequate 
software is to be developed at all. Uncertainty in Space Shuttle avionics 
subsystem hardware and mission requirements definition has not permitted 
this minimum level of performance to be determined in the present study. 
Whatever level is ultimately determined, capabilities in excess of the mini­
mum will have definite advantages in reducing software costs. 

5. 1 Memory 

Memory size, characteristics, and access methods are all extremely impor­
tant in programming. Software production is greatly facilitated when these 
features are suitable to both the application and the programming techniques 
employed. 

5. 1. 1 Memory Size 

Memory size is the single most important hardware characteristic affecting 
software development. If memory is inadequate, even simple programs be­
come difficult to write, with many iterations of reading and memory reallo­
cation to ensure that all routines will fit. The immediate result is that the 
programmer is forced to concentrate on efficient memory utilization and not 
on the problem being solved. 

A very serious complication resulting from inadequate memory, especially 
in verification, is usage of the same memory locations for temporary storage 
of unrelated data items created by separate tasks. This is possible, in theory, 
if the first task retrieves its temporarily stored data item before another task 
attempts to utilize the same location. The second task must retrieve its data 
item before the first task utilizes the same location again. Like bigamy, this 
scheme works only if perfect separation can be guaranteed. In practice, the 
common sharing of memory leads to unwanted and unpredictable interaction 
between otherwise independent tasks. The problem of memory sharing also 
applies to the sharing of subroutines that can be accessed from two or more 
tasks. If the routine cannot be duplicated in both tasks, either it must be 
demonstrated that the one task never attempts to reference the common sub­
routine before the other task has finished with it, or the subroutine must be 
designed to be reentrant. Such memory-sharing problems can exist for both 
polling and interrupt executives, but are more difficult to solve for the latter. 

Memory locks are one hardware feature that can be used to alleviate inter­
ference problems. However, their use in controlling the accessing of data 
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that must be shared should not be complicated by also using them in situa­
tions where data sharing is not actually required. Certainly memory locks 
must not be considered a substitute for adequate memory; for where mem­
ory is already restricted, the additional memory needed to operate them 

often prevents their use. -

It is very difficult to predict just how much memory a set of routines will 
require. In the present study, the minimum and maximum memory size 
estimates (Table 2) varied by nearly an order of magnitude. Further, the 
prediction process, or "sizing, becomes harder the more the new system 
differs from existing systems, and of course the Space Shuttle system will 
be unprecedented in many respects. The answer to the sizing problem is 
threefold. First, the functional analysis activities should be continued up 
to the point where actual onboard software coding has been completed to 
ensure that proper actions can be taken to keep memory size compatible 
with software functional requirements. Second, the computer architecture 
should have an extensible memory organization as discussed later. Third, 
sufficient surplus memory should be obtained initially. The amount of sur­
plus depends in part on the uncertainty in the software functional requirement; 
in view of the present uncertainty, a surplus of i00% would not be excessive. 
Even when the subsystem hardware configurations and software requirements 
are firmly established, a surplus of at least 40% should be provided. This 
will ensure sufficient memory to permit a high-order language, with the 
attendant compiler inefficiencies, to be utilized. 

One problem with surplus memory is that its very existence causes the addi­
tion of software functions which, although not required, are added to the sys­
tem because it is possible to do so. Preventing this unneeded software growth 
requires both strong management and a recognition of the positive benefits 
that surplus memory can offer to the reduction of software costs. 

5. 1.2 Extensible Memory 

An extensible memory capacity is highly desirable for both hardware and 

software efficiency. With such a system, memory capacity is varied by 

adding or removing memory modules (or banks), which may range in size 

from 4K to 32K words. With extensible memory, the capacity can be ad­

justed to hold the software, rather than requiring the software to be adjusted 

to fit the memory. Any computer with fixed memory size is undesirable; 
it is almost certain to be either too small or too big. If it is too small, 

programming costs rise sharply. If it is too big, a penalty is paid in excess 

hardware and excess weight. A broadly extensible memory consisting of 

small modules need never be too big or too small by more than 5-i0%. 
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Figure 15 illistrates, for a fixed memory size, the relationship between 
total memory cost per word and the ratio of actual memory size to the 
original memory size'estimated and purchased. The hardware contribu­
tion to total cost for such a memory configuration is constant, but the 
software contribution increases greatly the more closely the memory 
required approaches that available. Figure 16 illustrates the total cost 
per word for an extensible memory architecture. With this architecture, 
the software costs involved in coding a given function can be relatively 
constant because enough memory can always be added to avoid the prob­
lems induced by inadequate memory. The hardware cost would be higher 
for an extensible memory, and would increase in discrete jumps as more 
memory had to be added to maintain the fixed software cost. However, 
the sharp increase in software cost is avoided, so that total cost per word 
is lower when actual memory required closely approaches or exceeds ­

original estimates. Thus the availability of the extensible memory fea­
ture would greatly reduce the sensitivity of Space Shuttle software costs 
to program size underestimation. 

5. 1. 	3 Auxiliary Memory 

Supplementing the main memory of many large computing systems is a 
large, relatively slow auxiliary memory. Software development is simpler 
and less costly without an auxiliary memory, but the hardware cost and 
weight advantages of supplementing the central memory can be significant. 
A detailed analysis of the requirement for auxiliarymemory is dependent 
on full definition of Space Shuttle mission requirements. Study of the 
available data suggests that an all-main-memory arrangement may be 
desirable because: 

0 	 The executive routines must be largely, if not 
entirely, resident in main memory at all times. 

o 	 At peak load, the bulk of all lines of code concerned 
with mission operations will be in main memory at 
once. 

* 	 During the most active mission phases, most of 
the mission control program will almost certainly 
be required to be in main memory at the same time. 

5. 1.4 Read-Only/Read-W rite Memory 

Hardware reasons -- reliability considerations, reducing electrical 
power consumption, and so forth -- may exist for dividing the memory 
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into read-only and read-write portions. Temporary data items and vari­
ables are allocated to read-write, and instructions and constants to read­
only memory. The partitioning has little consequence to programming 
efforts so long as there is enough of each type. But if the program will 
not fit in the read-only section, or if all variables, tables, etc. , will not 
fit into the read-write section, the effects are the same as those of hav­
ing insufficient memory: development and verification costs are both in­
creased because routines must be tightly packed, causing increased 
interaction between unrelated routines. 

If all memory is read-write, there is a small penalty in confidence (or 
in cost of establishing confidence) in software quality because a task's 
program or constants can be erroneously overwritten by another pro­
gram. In the case of read-only memory, verification must make allow­
ance for attempted erroneous writing; even though erroneous writing is 
inhibited, it must be searched for as indicative of program malfunction. 
That is, while a stored constant will not be destroyed by the erroneous 
attempt, subsequent reading of the location by the faulty routine will not 
give the value that that routine expects. For a very large centralized 
system, the absolute protection afforded vital tasks (such as the execu­
tive or those that perform the control functions) from being destroyed by 
other tasks that have errors may justify less complete verification of the 
"tunimportant" tasks without reducing confidence in the computer's ability 
to perform the vital ones. The reduction in verification effort, however, 
is not great, and any reliance on minimizing the effects of errors should 
not deter efforts to find them. 

5. f. 5 Virtual Memory 

In a computer system with virtual memory, the memory apparent to the 
programmer is much larger than the physical size of main memory. Gen­
erally, main and virtual memory are divided into pages consisting of a 
fixed number of words, commonly 500- 1000. Only a fraction of the total 
number of virtual pages resides in main memory atone time. If a routine 
attempts to access a word in a page that is not in main memory, that page 
is brought in from mass storage and a page not recently used is removed. 

While generally aimed at time-sharing applications, a virtual memory 
might be considered for the Space Shuttle as an alternative to a fixed mem­
ory size or an extensibility feature. Programmers would not need to be 
concerned with running out of physical main memory, only virtual memory. 
This feature would also facilitate restarts or rollbacks after failures not 
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involving the mass storage device. When a page is brought into main mem­
ory, its image remains on the mass storage device. If a fault occurs, this 
page may be recopied into main memory and the program reinitiated at the 
point where the page originally entered main memory. In effect, a paged 
virtual memory performs main memory saves automatically as the pages 
are swapped from main memory onto the mass storage device. 

In spite of its theoretical appeal, virtual memory has two overriding dis­
advantages for the Space Shuttle. First, the average memory access time 
is slowed considerably because of the time spent in swapping pages. Second, 
execution times vary unpredictably, depending on which pages happen to be 
in main memory. This, in turn, depends on how many other routines are 
running concurrently. Hence timing varies noticeably, limiting predicta­
bility and repeatability, both of which are very important to verification. 
Accordingly, it is concluded that virtual memory is an undesirable feature. 

5. i. 6 Interleaved Memory 

Memory interleaving is commonly used in simplex computers and multi­
processors to minimize the average memory access time. With conven­
tional distribution of addresses, assuming a computer having several mem­
ory modules, addresses i, 2, 3, etc. , would fall in module 1, which might 
be loaded down with requests for words while others remained idle. With 
one form of interleaved address distribution, address i would be located 
in module i, address 2 in module Z, and so forth; in general, for a mem­
ory of n modules, address m is in module i, where i = m (mod n) '. Thus 
interleaving randomizes the pattern of accesses to memory modules. 

On a simplex processor, interleaving is a desirable feature. Interleaving 
is invisible to the programmer; he can ignore the fact that it exists and 
still gain the speed advantage. That is, interleaving could save him the 
trouble of distributing program and data and variable storage areas so as
 
to minimize access time. The variation in access time is predictable, so
 
that interleaving does not make verification more difficult.
 

A different conclusion is reached for interleaved memory in conjunction 
with a multiprocessor configuration. Assuming that different processors 
had access to the same memory module, the execution time of one proc­
essor could vary depending on .what functions another processor was per­
forming. This would then make execution times vary, thus limiting pre­
dictability and repeatability. Since some of the effect of interleaving is 
lost anyway when two processors can access the same memory, it is con­
cluded that interleaving should not be used in the general multiprocessor 
case. 
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5. 1. 7 Nonrandom Access Memory 

Even though rotating disk or drum memory machines are still in use in.some 
applications, it has been as sumed in the previous dis cuss ions that the main 
memory is of the random access type. Nonrandom access implies variable 
access times and is considerably slower than random access. In many cases 
the programmer is required to structure data and program flow in a highly 
unnatural manner in order to decrease the average access time. This can 
be a major programming burden. Hence a computer with a nonrandom ac­
cess main memory should simply not be considered for the Space Shuttle. 

5. 1. 8 Addressing Range 

In some computers it is not possible to directly address the entire memory. 
Rather, addresses in instructions represent only part of the true address, 
and, as indicated in the diagram below, the addressing hardware must con­
catenate an extension or base register onto the left end of the address speci­
fied in the instruction to obtain the complete address. 

Part of address Part of address 
obtained from specified in 
extension register instruction 

The purpose of this procedure is to conserve memory. Since addresses 
are shorter, instructions can be shorter; hence a smaller word length may 
be feasible. 

Sometimes the use of extension registers indicates a kludged machine result­
ing from an initial design in which the memory proved too small for the in­
tended application. The memory is enlarged, and the extension register is 
added to permit the larger memory to be addressed. 

While offering no software advantages, the use of extension registers poses 
several disadvantages for software development. The extension register(s) 
must be loaded and unloaded by the programmer. A Logicon study of guid­
ance, navigation, and control programming showed that 10% of the instruc­
tions involved manipulation of extension registers. In other cases where the 
average-size program module was well within the addressing range and there 
was little intermodule communication, less than 3% of the instructions were 
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devoted to manipulating the extension register. Based on these observations, 
it is expected that the penalty in Space Shuttle software costs would be be­
tween 3% and 10%, with the most likely value being around 6%. A secondary 
disadvantage is that programmers are induced to try to group instructions 
and data so as to minimize extension register manipulation. Not only does 
this add a further constraint to programming, but the grouping may warp an 
otherwise straightforward program and make it harder to verify. The con­
clusion is that a computer requiring extension registers to address its full 
range is undesirable from the software viewpoint. 

5. 1. 9 Indirect Addressing 

Normally an address specified in an instruction is the address of that instruc­
tion's operand. Some computer architectures also permit indirect address­
ing: the address specified in an instruction can be the address of the location 
containing the address of the operand. 

Indirect addressing is nonessential but convenient. One application is in re­
turning from a subroutine. For example, if any routine calling subroutine 
XI placed its return address in cell 251, the return from subroutine XI can 
be uniformly accomplished with a "JI 251" instruction, meaning jump to the 
address contained in location 251. A second application is in accomplishing 
computed GOTOs. For example, consider the function GOTO(A, B, C, D)I. 
Suppose pointers corresponding to labels A, B, C, D are listed in order be­
ginning with address T. I is loaded into index register 6 and then the in-­
struction JI, 6, T is executed. The effect is to add the contents of register 6 
to T, obtaining the address of the cell containing the address to which the 
jump is made. A third application is in communicating values to a subrou­
tine. Suppose a vector A(1), ... , A(10) is to be passed to a subroutine as an 
argument. The straightforward method is to copy all 10 values into a region 
of memory associated with the routine. If indirect addressing is possible, 
only the base address of A need be passed to the subroutine. If the base 
address is placed in BA, instructions such as ADDI 6, BA will fetch the de­
sired values from vector A. (The use of indirect addressing is likely to be 
indicated by a bit in the instruction, rather than as distinct instructions. 
Thus ADDI is really an add instruction with the indirect addressing bit set.) 

All of these operations could be accomplished using indexing alone. Indirect 
addressing is merely a convenience, one that may save less than i% in exe­
cution time and memory requirements or in software development costs. On 
the other hand, it is an invitation to intricate and overly, clever coding, which 
can increase verification difficulty more than the relatively minor savings in 
programming effort realized. Assuming that programming standards were 
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established to alleviate the verification problem, it is expected that an in­
direct addressing capability would not affect overall software costs one way 
or the other. 

Some computers provide cascaded indirect addressing: an additional indirect 
addressing bit in every word signifies whether the remainder of the word is 
an address of an operand or the address of another address. Thus the pro­
grammer may reference an operand through the address of the address of 
the address of -- ad infinitum -- the operand. Such cascading is even less 
useful than indirect addressing, and may complicate the development of diag­
nostic and verification tools. For these reasons cascaded indirect address­
ing is considered undesirable for the Space Shuttle. 

5.. 1. i0 Bound-Registers 

In the earlier discussion of read-only memory, the protection afforded a 
vital task from inadvertent destruction was outlined. A more flexible and 
effective way of doing this, and more, is to limit the region of memory ac­
cessible by a given program element by using upper- and lower-bound regis­
ters. If a routine tries to access a word whose address lies outside the 
limits contained in these bound registers, execution is halted and control is 
returned to the executive. 

Bound registers would be useful during software checkout and verification 
and would assure that vital software functions are accorded proper protec­
tion regardless of malfunctions in other functions. Any routine which tried 
to fetch or write outside its legitimate region of memory would easily be 
detected so that the problem could be corrected or its effect minimized. 
Without this feature, errant routines would be able to sabotage the data and 
programs of other routines, causing errors that might be hard to trace or 
that could destroy vital instructions or data. In a very centralized data man­
agement system the use of bound registers would prevent propagation of 
hardware or software failures to other parts of the system, just as would 
be accomplished in a decentralized system through hardware separation at 
the computer level. Again, although this feature would simplify verification 
somewhat, it cannot be used as justification for a haphazard verification 
effo rt. 

If easily controllable through software, bound registers may also make it 
easier to prevent unwanted interference between tasks. What is needed is 
the capability for one task to inhibit any other task from reading from or 
writing into a particular region of memory. If any other task attempted to 
perform the inhibited operations, its execution would be suspended until 
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either the particular bounds were removed or the executive program resolved 
the conflict. The provision of such powerful and flexible means of controlling 
task access to common data items can simplify software production and veri­
fication by accomplishing in hardware what would otherwise have to be done 
through software. 

5. i. 	 ii Memory Locks 

Memory locks, an extension of the bound register feature, generally apply 
to smaller memory blocks. Whereas memory bounds establish the regions 
that a particular program can access, memory locks determine the programs 
that can access a particular region. A memory lock may designate whether 
the program's access is to be read-only or whether both reading and writing 
are permitted. Memory locks are conventionally implemented by having a 
keyword for each memory region; any program attempting to access the data 
in that region must supply a matching keyword. 

As with bound registers, hardware memory locks would be useful during 
Space Shuttle software checkout and verification. .However,' they are cumber­
some to use for regulating interaction of logically related routines unless 
designed specifically for the purpose. Software locks are more practical 
for such situations: the domain of a software lock can be tailored to individ­
ual 	groups of data, while the domain of a hardware lock usually cannot. 

Hardware locks having the ability (already described for bound registers) to 
delimit the areas of memory accessible to a particular task and to suspend 
task execution and signal the executive when these limits are exceeded can 
eliminate much of the need for their software counterparts, with an attendant 
savings in software production and verification costs. Procedures for the 
use 	of hardware and software locks are discussed in detail in Appendix A. 

5. 2 Execution Speed 

The 	speed of the processor will have a profound effect upon Space Shuttle 
program development techniques and on ease of program verification and 
modification. Unfortunately, the contribution of individual architectural 
aspects to the effective speed of a particular computer cannot be completely 
determined without actually developing the total program. However, several 
measures may be employed to approximate a computer's 'speed, including: 

a 	 Memory Cycle Time: the average access times for 
instructions and data located in the memory 
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* 	 Add and Multiply Times: the execution times for 
relatively typical, simple, but commonly used 
instructions 

* 	 Composite Instruction Times: the execution time 
for a mix representative of the instructions that will 
be employed for the actual program 

* 	 Kernel Problem Times: the time to perform common 
basic operations such as matrix multiply and poly­
nomial evaluation 

o 	 Benchmark Problems Times: the time to execute a 
collection of programs to solve limited but repre­
sentative hypothetical problems 

The advantage of the first two measures is their simplicity; their disadvan­
tage is their inaccuracy. That is, they do not give a true indication of effec­
tive speed because they ignore the many other architectural features that 
affect speed, among them the memory size, operand addressing structure, 
instruction set, and register organization. The advantage of the last three 
measures is their greater accuracy; their disadvantages are their greater 
complexity and the greater amount that must be known about the problems 
the program is to solve. 

At this stage of the Space Shuttle's development it has not been possible to 
define representative instruction mixes, kernel problems, or benchmark 
problems. This should be done when the software requirements become 
more complete, and the results used to evaluate the speed capabilities of 
proposed computer architectures. This section outlines the expected effect 
of adequate computational capability as determined by the recommended 
approach and proposes computational capability margins. It also describes 
the effect of computer architectures in which execution times are variable, 
depending not only on the instructions used but also on the data being manip­
ulated. 

5. 2. 	 1 Computational Capability 

An absolute requirement exists for the processor to perform highly critical 
computational bursts within the allotted time. Beyond this, any additional 
available time can be very fruitfully used to permit conformance with desir­
able programming practices and standards and to reduce the costly attention 
that otherwise would have to be paid to program optimization. 
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As stated above, a computer' s effective speed depends on many of its 
architectural characteristics. Computation can be speeded, for example, 
by reducing the amount of looping, but with a resultant increase in pro­
gram size. Or, incorporating highly specialized instructions, such as 
square root, could reduce the number of instructions required to perform 
a particular function, again reducing the computational time for a specific 
task. These examples illustrate a classic programming tradeoff: that 
between the memory, space and execution time required to accomplish a 
specific function. Itlis costly for a programmer to have to concern him­
self with whether space optimization or time optimization should be used 
for the task he is coding. Rather, he should be able to proceed in any 
reasonable and natural way. Even if forced to make the appropriate mem­
ory sacrifices to achieve the needed effective speed, the payoff is slight; 
speed savings over the entire program are expected to be less than 5%, 
even with the devotion of considerable effort. 

To look at the question from another viewpoint, providing a high basic com­
putational speed is a way to reduce the importance of other architectural 
features -- such as the number and power of instructions, the word size, 
and the register organization -- because it permits techniques such as 
ihterpretive subroutines to be used for operations that cannot otherwise 
be easily done. In general, an adequate speed margin will reduce software 
costs because it: 

o Provides a Safety Factor: This may well be necessary 
if computational requirements are initially underesti­
mated or are subsequently enlarged to make a software 
compensation for unanticipated hardware problems. 

* 	 Eases Programming: A limited computational speed 
leads to a requirement for difficult and costly time 
optimization. 

* 	 Eases Verification: An adequate speed margin permits 
a program to be designed and coded with close attention 
to clarity and organization and conformance with standards, 
enabling it to be tested far more easily, and-also allows 
software self-checking and diagnostic features to be 
incorporated. 

* 	 Eases Maintenance: The programming approaches and 
routines can be developed and utilized in a more general 
way, in many cases obviating the need for changes or re­
ducing the difficulty of making them. 
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It is recommended that the Space Shuttle computer provide a computational 
capability of i00% over the estimated maximum execution time. The mini­
mum execution time margin should be 25%; and this margin is considered 
adequate only if the computational load can be accurately estimated and is 
not expected to change significantly during the software system's lifetime. 
A multiprocessor configuration can to some extent permit smaller speed 
margins if adding new processors to the system is relatively easy. This 
is analogous to the use of extensible memory in that the additional proces­
sors extend the effective speed of the computer system. However, the ad­
vantages of adding processors are not without their corresponding software 
costs: if the distributed executive design is chosen as recommended, some 
redesign and recoding of the existing task communication executive modules 
will be required, and some of the added computational capability will be 
lost because another, albeit identical, executive program will have to be 
supported. 

The i00% margin is strongly recommended to eliminate the need for optimi­
zation or to allow the program to be expanded to perform twice its estimated 
functions. That this margin is not unreasonably high can be demonstrated 
by citing what happened with the Titan III space launch vehicle in the mid 
19 6 0s. In this instance, the flight controls were designed to operate at a 
frequency of Z0 msec, and the onboard computer provided a 20% safety 
margin based on the estimated computation. This margin proved to be 
insufficient, even with extreme code optimization. The onboard flight 
control program was eventually redesigned and recoded; the major change 
was a reduction in computation frequency from 50 to 25 cycles/major cycle. 
A large computational speed margin would have eliminated a considerable 
amount of the extra effort and cost expended in redesign. 

5. 2. 2 Uniform Execution Times 

Inability to predict precise program timing, caused in a complex program 
by the many logic paths, produces great verification difficulties. The pro­
blem is greatly aggravated if instruction execution times are not completely 
known. One architectural feature that can prevent their being known is a 
variable-length multiply, in which the multiply time is a function of the 
contents of the multiplier. Variable instruction timing in association with 
interrupts makes it extremely difficult to predict precisely where interrupts 
will fall, thereby making it difficult both to predict and to test possible com­
binations. The problem can be somewhat alleviated by careful program de­
sign, but only at the cost of placing a considerable burden on the program de­
signer for marginal gains of computation time. More discussion concerning 
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interrupts follows in Section 5. 8; here the recommendation is made that the
 
architecture of the computer be such that all computation intervals, of any
 
size, be decidable.
 

-.5.3 Input/Output Facilities 

It is convenient to regard I/O activities as data transfer activities. If the 
Space Shuttle central compute rfacility has two or more separate comphters, 
it will be necessary to transfer data between them. If local processors exist 
at physically remote points, it will be necessary to transfer data between 
the central facility and these processors. If bulk memory devices are used, 
either disk or tape, datatransfer will take place betweeh them and 
the central facility. In discussing the Space Shuttle system, "I/O" and "data 
transfer" are therefore considered synonymous. A block is defined to be a 
contiguous set of memory words and a data transfer to be a copyingof a block 
from one memory (disk, core, tape, register) into another memory. All 
that should really be needed to accomplish such a transfer is: 

" Location of the first word in the "source" block 
* Location of the first word in the "sink" block 
a 'Length of the block (number of words) 

In some cases, one or more of these items of information may be implicit. 
For example, if the I/O involves tapes, the block length may be fixed and 
so need not be specified. However, in many computer systems a programmer 
must do more than just specify these three basic items of-information. From 
a software standpoint, a measure of the convenience in using I/O facilities 
is how much more a programmer has to do to actually accomplish a data 
transfer. How data transfer is accomplished is highly variable, and the
 
commands and conventions involved are generally merely an arbitrary sot
 
established by the hardware designers. It would be unrealistic to try to
 
enumerate all possible conventions and the software load they would impose.
 

Data transfer is commonly much slower than other computer operations. The 
Space.Shuttle computer system will not be an exception. For example, a
 
i-MHz serial data bus would require 32 msec to transmit a 32-bit word, if
 
overhead is ignored. A computer of reasonable speed can execute 10 or Z0
 
instructions in this length of time. It is easy to see how a simplex central
 
computer could spend all its time just on I/O if its CPU itself controlled data 
transfers and remained idle while the transfers were taking place. In light 
of the amount of data transfer that must be accommodated within the Space 
Shuttle,- an independent I/O controller is required to perform the task on 
command -from the CPU, leaving the CPU virtually free to perform other
 
processing.
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Two methods of interacting with the I/O controller have been used in the
 
past: buffering and cycle stealing. The buffering approach is indicated
 
schematically in Figure 17. The CPU transfers at high speed the informa­
tion to be transmitted into a buffer memory associated with the I/C con­
troller, then commands the controller to execute the I/O operation and pro­
ceeds with its own computation. The controller transmits the contents of
 
the buffer memory word by word at the slower speed required by external
 
devices. The controller may signal the CPU in some manner, for example
 
by interrupting it, when the I/O operation is completed.
 

External ' / _ ufr CU Mi 

World Controllerj t Memory 

Figure 17. Buffering Method of Interaction with I/O Controller 

The cycle-stealing alternative is shown schematically in Figure 18. Here, 
the I/O controller directly accesses main memory. Effectively, main mem­
ory serves as a buffer. The CPU merely tells the controller the memory ad­
dress of the block of information to be transmitted and then proceeds with its 
own computation. Because of the slow speed of 1/O rates, the controller 
needs to access the memory much less frequently than does the CPU; and 
when it requires a word for transmission, it preempts the CPU, that is, steals 
a memory cycle away from the CPU. Thus the execution of the program run­
ning when the cycle stealing takes place is delayed by one memory cycle every 
time the I/O controller steals a cycle. This can cause the executing.program 
to lose repeatability. The points in time when the I/O controller steals a 
cycle and their frequency may vary depending on external circumstances such 

- as bus or device availability. Transmission errors may require that a word 
be retransmitted; and this can result in an apparently random variation in 
timing of any program running while the cycle stealing is taking place. 

External, / Ml 

World Controller Memory 

Figure 18. Cycle-Stealing Method of Interaction with I/0 Controller 

-78­



For a system using a i-MHz data bus and a 32-bit word length, cycle steal­
ing would occur no oftener than once per 32 psec. If the main memory cycle 
r;ite is i psec; the I/O controller will then steal no more than one out of' 
every 32 cycles. (If I/O overhead such as repetition and parity operations 
are considered, the fraction of cycle stealing can be estimated as even 
lower. ) If main memory is divided into modules, the probability of inter­
ference between the I/O controller and the CPU is further reduced. If there 
'a're N modules, the interference probability would be i/32N, assuming 
that the CPU sequentially accesses each memory block every cycle. (With 
a large number of modules, it may be possible to treat one of them as a de 
facto buffer, making a cycle-stealing 1/O system look like a buffered I/O 
system. ) A reasonable number for N for Space Shuttle would be about 10, 
which would give a probability of interference of about . 003. It can be con­
cluded that the magnitude of the interference will be small and that speed 
degradation due to cycle stealing is negligible. However, a difference of 
just one cycle time can be enough to cause loss of repeatability for software 
testing and verification. 

The tradeoff from a software point of view is between the slight added execu­
tive complexity required to handle buffer filing (which might be illusory if a 
'whole memory block were treated as an I/O buffer under the cycle-stealing 
scheme) and the loss of repeatability encountered with the simpler cycle­
stealing system. Since loss of repeatability is a serious complication for 
the software testing phase of development, the buffer option is judged to be 
more desirable. 

Another factor affecting programming complexity is the method of queueing 
requests for shared I/O facilities. From a software point of view, the sim­
plest is to have the queueing done by the I/O controller(s). A program would 
merely execute an instruction requesting an I/O operation and wait for a com­
pletion flag to be set in main memory. If the I/O controller(s) cannot queue 
requests, or if there is no I/O controller, the competition for shared facili­
ties may have to be handled by software. The I/O device may be tested with 
a "test busy" instruction which causes a branch if the specified unit is in use. 
Priority conflicts between separate routines must then be handled by an execu­
tive routine. 

Instruction Set 

The Space Shuttle computer's instruction set will be the architectural 'feature 
of most continuous concern to the programmers. If there were no. restric­
tions on memory size and task execution times, almost any required functions 
could be accomplished with a very small instruction set, albeit at a consider­
able increase in effort. 
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One measure of instruction set suitability is the number of instructions re­
quired to implement a set of benchmark programs; writing. such programs 
for all candidate- computer architectures and instruction sets and comparing 
the results would indicate the one for which software costs are likely to be 
lowest. This approach, while a valid one, could not be applied at this stage 
of Space Shuttle development owing to the difficulty of defining representative 
benchmark programs and the cost and time required for their implementation. 

Many of the functions to be accomplished by the Space Shuttle data manage­
ment system have counterparts in software developments for current space 
and missile systems. The usage of instructions in these applications was 
examined to provide a baseline from which the suitability of instruction sets 
for the Space Shuttle was evaluated. Figure 19, showing the frequency of 
instruction occurrence by type for a guidance, navigation, and control pro­
gram, is typical of the kind of information utilized. The very high usage of 
load and store instructions in this application is immediately apparent; 
and substantial reductions in the percentage of input/output instructions, for 
example, would not have nearly as great an effect as a small reduction in 
load and store instructions. The number of shifting instructions is roughly 
half the number of arithmetic instructions, indicating the penalty paid in 
this architecture for the lack of floating-point arithmetic. Analysis of these 
and other data concerning the frequency of instruction usage has indicated 
the areas- of most concern in satisfying the instruction suitability criterion. 

Arithmetic Load and Store 

Index Load and Store 

Extension Load and Store 

Arithmetic 

Shifting 

Decision 

Unconditional B ranch 

Input/Output I 
I I I I 

0 10 20 30 40 50 

Frequency of Instruction Occurrence 

Figure 19. Instruction Usage for Guidance, Navigation, 
and Control Programming 
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5. 4. 1 Basic Instruction Set 

In addition to a minimum set of instructions without which accomplishing 
any but the most elementary functions becomes very difficult, an effective 
computer architecture includes those others that, although not as impor­
tant as the mandatory instructions, will accomplish frequently needed ele ­
mentary functions without requiring extraneous,or redundant information 
or producing troublesome side effects. Table 10 shows the basic instruc­
tion set comprising these mandatory and highly desirable instructions. 
Some instructions, such as those for input/output, restart provision, and 
floating-point arithmetic, are treated separately because of their consider­
able individual impacts. It is assumed that the instructions for addition, 
subtraction, multiplication, and division manipulate operands consistent 
with the word length estimates presented in Table 2, that is, Z4 bits for 
the minimum hardware configuration and 32 bits for the moderate and maxi­
mum configurations. If a shorter word length, say 16 bits, is provided, 
then double-precision arithmetic would be included in the basic instruction 
set. 

Different architectures have different numbers and categories of programmer­
usable registers into which the programmer should in general have the capa­
bility to load and store. Since the number of such registers is indeterminate 
until a computer architecture has been selected, the number of mandatory and 
desirable instructions is a function of N, the number of such registers. These 
numbers are 11 + 2(N) for the mandatory instructions alone and 30 + Z(N) for 

the entire basic set. 

To determine suitability of the basic instructions provided by a particular 
computer, its instruction set should be compared with Table 10. If the 
computer's instruction set does not contain all the indicated mandatory in­
structions, it would be rated unsatisfactory and assigned a numerical value 
of 0. The occurrence of each basic instruction in a computer's repertoire 
would give a value of I to be added to the mandatory 11 + 2N. The highest 
score that could be achieved on the basic instruction set criterion is 30 + 2N. 
It is estimated that a computer with an instruction set scoring i i + ZN would 
have 5-10% higher software costa than one with an instruction set having a 
suitability of 30 + 2N. Instruction suitabilities between these extremes would 
result in software costs in proportion. Instructions in addition to the basic 
30 + ZN would have less cost impact than fewer instructions than the basic 
set. It is not likely that even a very large number of relatively elementary 
instructions in addition to the basic set would reduce software costs by more 
than 5- f0%. 
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Table 10. Basic Instruction Set 

CommentsCategoryInstrucion MandatoryDesirable 


Add . ................... ........ X -


Subtract ... .............. ......... X
 

Multiply . ................ ........ X
 

Load (to register) ........... ....... X Number of instructions a function
 

Store (from register) ....................... X jof number of registers
 

Logical right shift ............... c
 

Circular left shift .......... .................. X .Either of these two instructions
 

Skip/transfer on nonzero .................. X Any one of these seven instructions
 

Divide .......................... ........ X
 

Register exchange ...... .... X
 

Arithmetic left shift .......... X
 

Arithmetic right shift.. .......... X
 

Logical left shift .... ........... X
 

Circular right shift........................ X
 

Multiple register left shift ..... ........ X
 

Multiple register right shift .... ....... X
 

Logical "and" ............. ....... X
 

Logical "or"................ X
 

Logical "exclusive or ....... X
 

Complement ................... X
 

Return jump ........................... X
 

Unconditional transfer ........ ............. X
 

Skip/transfer on positive ...... . ............. X
 

Skip/transfer on negative ...... ............. X
 

Skip/transfer on zero ........ .............. X
 

Skip/transfer on overflow ..... ........ X
 

Skip/transfer on equal.................... X
 

Skip/transfer on not equal ........ X
 

Store zero ............... X
 

Increment .................... . X
 

Decrement ................... X
 

Increment and transfer on condition X
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5.4.2 Floating-Point Arithmetic 

For the minimum Space Shuttle configuration it is estimated that'roughly 
60% of the onboard program will be devoted to arithmetic calculations; 

for the maximum configuration the proportion will fall to about' 40%. In 
performing fixed-point arithmetic calculations, approximately 10% of the 
coding is devoted to rescaling operations and similar data manipulations 
that would not be required if floating point were provided. Thus eliminating 

the need for this data manipulation by providing floating-point addition, sub­
traction, 'multiplication, and division instructions would ,be of obvious benefit. 

Floating-point capability does introduce some problems of its own, however. 
Testing for zero and for equality between two floating-point operands is 

complicated. Floating point also complicates modulo arithmetic, which is 
often used for calculations involving angles. It is expected that much. of 
the data received from and transmitted to other vehicle subsystems will 
continue to be maintained in fixed point, thus requiring the proper conver­
sions to be performed. Weighing the disadvantages against the far greater 

benefits attainable, it is estimated that floating-point instructions would 
reduce the size and complexity of the total onboard software by about 3-7%. 

This reduction in size and complexity would be directly translatable into 
equivalent cost savings. 

In some systems that lack hardware floating point, the equivalent arithmetic 
operations are accomplished by means of subroutines.written in a special 
machine-like language; a software interpreter causes their execution. This 
software approach to minimizing the effect of a hardware deficiency is un­
desirable for several reasons. - First, it reduces effective computer speed 
by a factor of 10 at a very minimum and in some cases by a factor of over 
100. Second, the subroutines and interpreter add to the size of the onboard 
program and to verification problems. Finally, the use of the interpretive 
mode greatly complicates the multiprogramming of independent tasks, for 
if one task is in the middle of executing a floating-point subroutine, any 
interruption by another task using that same operation must be prevented or 
else the subroutine must be niade reentrant. Thus interpretive floating 
point should in no way be considered an acceptable substitute for hardware 
floating point. 

Another approach to minimizing the lack of hardware floating point would be 
to utilize a higher-order language that allowed the range and precision de­
sired for each fixed-point operand to be specified for arithmetic operations, 
and a compiler that automatically allocated proper scalings and inserted the 
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required scalings adjustments. Shifting the burden of fixed-point arithmetic 
problems from the programmer to the language and compiler in this way 
would be of some benefit, but would eliminate neither the, analysis burden 
of determining range and precision nor the verification burden of demon­
strating their adequacy and correct implementation. Furthermore, develop­
ing 	a compiler to accomplish automatic scaling allocation and readjustment 
is very difficult. Experience with the recently completed CLASP compiler 
for 	a fixed-point onboard computer indicates that compiler cost would be in­
creased by at least 25% owing to the added complexity. And with the current 
state of the art in compiler construction, considerable help from the pro­
grammer in scaling allocation is still required to maintain precision and 
accuracy. Rather than relying on a language and compiler to obviate the 
need for floating-point arithmetic, hardware floating point is mandatory if 
a high-order language is to be workable on Space Shuttle. 

5.4.3 Multiple and Subroutine Instructions 

Some computers provide instructions that singly accomplish something that 
would otherwise require many instructions. Two categories may be defined: 

* 	 Multiple instructions by which the same elementary 
operation is repeated several times -- for example, 

a block copy instruction that moves many data items 
from one area of memory to another 

o 	 Subroutine instructions by which an operation is 
performed that would otherwise require a subroutine 
composed of different basic instructions -- for 
example, an instruction that computes the sine 
for the operand 

Generally, multiple and subroutine instructions take much less time to 
execute than the sequence of basic instructions for which they are sub­
stituted, but much longer than any of the basic instructions individually. 

The long execution time of multiple and subroutine instructions can intro­
duce problems if the system also utilizes interrupts. While interrupts 
are not generally permitted to occur during an instruction's execution, it 
may not be permissible to lock out all interrupts for the length of time a 
multiple or subroutine instruction takes to execute. There is no software 
solution to this dilemma; and serious hardware and software complications 
are likely to arise if interrupts occur during instruction execution. Still 
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another problem, particularly with multiple instructions, is retaining the 
capability of restarting when a computer error is detected. If a computer 
error occurs during the execution of a multiple or subroutine instruction 
that reads from a memory block and writes back into that same memory 
block, restarting will not be possible unless the complete original memory 
block has been saved. 

Unquestionably, multiple and subroutine instructions save memory and 
execution time compared with equivalent subroutines composed of basic 
instructions. Their utility is not great, however, because of their relatively 
infrequent usage. For example, when a sin/cos instruction was provided 
in a hypothetical computer, the guidance, navigation, and targeting pro­
gram's execution time was reduced by 0. 1% and its memory size by 51 
instructions; a cross-product instruction reduced execution time by 2. 7% 
and program size by 61 instructions. This was the type of program that, 
in the Space Shuttle application, would make the heaviest use of these 
subroutine instructions. The very small number of instructions saved 
indicates the small impact that subroutine instructions would have on over­
all Space Shuttle software costs. The execution time savings is somewhat 
more significant, although when the total software is considered, subroutine 
instructions would reduce execution time by less than i%. It is concluded 
that the expected memory and execution time savings are not sufficient to 
offset the problems that multiple and subroutine instructions would intro­
duce. 

5.4.4 Unique Instructions 

Nearly every computer has instructions unique to that computer alone. 
These instructions are quite complex, having many of the attributes of multi­
ple or subroutine instructions, and accomplish operations appropriate 
only to a restricted type of problem; a well-known example is the "con­
vert by replacement from the accumulator" instruction of the IBM 7094. 
The virtues of unique instructions and the means of employing them are 
not obvious; hence their usage is generally confined to experienced and in­
ventive programmers and their frequency of occurrence is measured in 
tenths of a percent or less. The-best that could be said about unique in­
structions is that they cause no harm, and even this is not always true. 
Unique instructions complicate verification because usually there is not 
a clear relationship between the computer operations that will be performed 
and the programming specification. Similarly, they complicate the crea­
tion of automatic verification tools. 

It is not possible to describe all instructions that could fall into this category 
because of the special characteristics of each. The major indication is the 
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occurrence of an instruction that has no counterpart in any other computer 
and whose suitability to the class of problems being solved is not apparent. 
Frequency of occurrence by itself is not a reliable indicator; some instruc­
tions, such as restart and interrupt disable, may not be used very frequently 
but are essential when they are used. 

5. 5 Word Format 

The format of instruction words and the type and format of data words all 
influence the relative ease of using a computer's instruction set. From the 
functional analysis described in Section 3, it was concluded that the data 
word length for moderate and heavy Space Shuttle processing loads should 
be 32 bits, based on the expected precision required. The following para­
graphs discuss some of the more probable of the many formats possible for 
a basic word size of 32 bits and their effect on software implementation. 

5. 5. 1 Instruction Words 

The most common and straightforward alternative is to have instruction and 
data word lengths identical. This provides considerable ease in allocating 
instructions and data words throughout core. Typically, aerospace computers
have instruction words that are either consistently shorter than the data words 
(the UNIVAC 1824) or are of variable length (the IBM 4 PI). The primary 
motivation for making instruction words shorter than data words is to permit 
full utilization of core memory. For example, if it is assumed that: 

* full memory addressing to 256K words of core is allowed 
* the instruction repertoire consists of 128 instructions 
" the processor has seven index registers 

then 28 bits would be needed to encode the above information. Thus if the 
basic computer word size is 32 bits, there would be at least 4 unused bits 
in all instruction words. Instructions such as shifting and those loading 
directly from the address field would require even fewer bits. 

If the computer architecture permitted, it would be possible to fit 8 instruc­
tions into 7 basic computer words if these unused bits are employed. Such 
an architecture is not likely. Another alternative, and one that has been 
employed on some aerospace computers, is to reduce the number of bits 
allotted for memory and index register addressing and for instruction 
operation codes to allow shortening the instruction word. For example, the 
main memory addressing range could be reduced to ZK, permitting an in­
struction word length of 21 bits and allowing 3 instruction words to be packed 
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into Z data words. Even more drastic, the memory addressing range could 
be reduced to'256, the number of operand-cdde-distinguishabfe instructions 
to 64, and the number of index registers to 3, permittinig an instruction word 
size of i6 and allowing Z Iinstruction words to be packed intb I basic com­
puter word. 

Even though the total hardware memory size may be reduced, such trimming 
of instruction formats to achieve a high instruction packing density in the 
basic computer word is very undesirable from a software point of view. The 
problems associated with the restricted memory addressing ranges have 
already been described (Section 5. f.8). Having to determine the instruction 
to be executed from bits in the instruction word other than the operation code 
or from some previously executed operation is similarly undesirable be­
cause the programmer often will have to specify more information in coding 
than would otherwise be necessary, and the verifier will have more things 
to demonstrate correct. 

On the other hand, allocating instructions and data according to purely logi­
cal reasons, without having to follow coding restrictions regarding use of 
half-woids'and positioning of word or segment boundaries, makes it con­
siderably easier both to develop the program and to train others to use and 
to modify it. Of course, verification advantage is gained in that the number 
of things -thathave to be checked is reduced. The computer code is more 
direct, avoiding peculiarities that might arise from packing; as an example, 
the use of partial-word instructions of the Honeywell 701P often requires 
ins-ertion of do-nothing instructions because instructions cannot be broken­
across word boundaries. Thus it is concluded that the most effective in­
structioii word format for Space Shuttle'software development is one in which 
all instructions occupy a full computer word. There is no software advantage 
in having partial-word instructions, while there are noticeable disadvantages. 

5. 5.2 Data Words 

Four data types are expected to be required for Space Shuttle prog-ramming: 
floating-point numbers, fixed-point or integer numbers, logical vectors, and 
alphanumeric strings. Ideally, the computer instructions used in manipu­
lating each type should allow the data to be addressed directly. At the pres­
ent time the relative amounts of each variety of data to be used in the data 
management system cannot be'accurately estimated. Clearly, the actual 
mix will determine the utility of having special instructions for each data 
type. 

For the vast majority of mathematical computations, floating-point numbers 
are highly desirable. The format must be fixed if the floating-point opera­
tions are to be executed as single instructions. The number sign, fraction, 
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exponent, exponent sign, and (in some instances) flag bits are extracted by 
the processor from the addressed word according to a fixed convention. Flag 
bits can be used to specify such things as options for overflow and underflow 
procedures. This seems to be an unnecessary level of sophistication for this 
application. 

Fixed-point and integer arithmetic will still be highly useful even if a floating­
point capability is provided. They are especially useful for non-equation­
processing functions, such as defining and modifying contents of index regis­
ters, logic control parameters, looping control, and so forth. The general 
capabilities possessed by most computers are sufficient here. One helpful 
architecture feature for use when handling small integers is partial word 
control. 

The final two data types are logical vectors and alphanumeric data. Logical 
vectors are simply strings of 0's and i's. Ideally, it should be possible to 
manipulate strings of arbitrary length using only a small set of logical in­
structions. Alphanumeric data are characteristically of variable length; 
the natural unit is the single alphanumeric character. Editing and manipu­
lative operations should ideally permit character-level addressing of strings 
of arbitrary length. 

For any of the four data types there are advantages in being able to read or 
write portions of a data word without being affected by or affecting the rest 
of the word. This is accomplished by providing the capability to address 
half-words, quarter-words, or bytes. The ability to divide data words into 
smaller addressable segments has a different software impact from that of 
dividing instructions into half-words, providing additional capabilities and 
flexibility in data declaration as opposed to imposing burdens on the program­
mer. Partial data word capability facilitates masking of logical information, 
processing of Hollerith information, modification of branching, and so forth. 
Generally, this should be done on the basis of an orderly division of the word 
length resolvecd; for example, the division of a 3Z-bit word into 16-bit half­
words and/or 8-bit bytes. This capability is extremely useful and is recom­
mended. 

An extension of this technique is to make a computer capable of handling a 
completely variable data word length. Computer "word length" is commonly 
defined as the number of bits retrieved by a single memory fetch. With 
variable-field-length addressing, the physical word length is of no-great 
concern to the programmer: the memory appears to be a continuous hori­
zontal string of bits. A data item is accessed by giving the address of the 
leftmost bit plus the length (in bits) of the item. Data of arbitrary length 
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may thus be stored or retrieved from any point in memory. There is no 
need to pack and unpack small items in a single word; long items need not be 
artificially divided into words; and no effort is required to extract subcom­
ponents of a data item. Thus the programmer is free to let the actual rep­
resentation reflect his internal conception of the data. For convenience, a 
fixed default word length may be provided for use when the specification of 
variable field lengths becomes burdensome. 

This feature is considered undesirable for the Space Shuttle data manage­
ment system. Not only would it provide relatively little additional utility in 
developing software, but it would also impose heavy burdens. It would require 
complicated and detailed interfaces to be defined between programs sharing 
data of different lengths and would increase verification difficulty'because 
of the greater possibility for errors in interfaces and the many types of data 
manipulations that would have to be checked. 

5. 6 Register Organization 

Registers are involved in nearly all basic computer functions. A large 
number.of registers, interacting in many complex ways, increases both 
programming and verification difficulty. A minimum set may be too re­
strictive, necessitating additional data manipulation to accomplish simple 
functions, and this, too, will increase programming and verification dif­
ficulty. Factors influencing register suitability are reviewed here; it 
turns out that none of them has a major impact on software costs. Regis­
ters used to perform input/output operations are not included; these more 
properly designate a convenient way to interface the processor rather than 
serving as a means of facilitating problem solving using the computer. 

5. 6. i Multiple Registers 

From the viewpoint of facilitating software development, the optimal com­
puter architecture in terms of registers is one that provides a sufficient 
number of general-purpose registers that can -beused to perform all func­
tions of the accumulator, quotient registers, index registers, and masking 
registers. Thus registers could be used as multipliers and multiplicands, 
or dividends and divisors, or to contain a bit mask to be used in perform­
ing logical arithmetic. Also, index registers could be included in these 
general-purpose registers, allowing index quantities to be computed and 
used without requiring intermediate load and store instructions. Not only 
would it be convenient for programmers to have several of these general­
purpose registers, but providing several could also result in a savings of 
memory and execution time. In a typical guidance, navigation, and control 
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computer having a single accumulator and a single index register, it can 
be expected that roughly 40% of all instructions are register loads and 
stores. Providing several general registers would greatly reduce the num­
ber of temporary stores and recalls that would otherwise be required. 

This is not to say that the number of registers should be expanded indefi­
nitely. At some point, very little additional gains are made, and too many 
registers make it difficult to verify and change the software. For example, 
if the practice is followed of keeping items in registers through long coding 
sequences, information can be lost by inappropriate transfers. Another 
problem presented by large numbers of registers -- securing them in the 
event of an interrupt -- can be simplified by appropriate computer design; 
for example, by having blocks of registers that can be selected by a single 
instruction. 

For the Space Shuttle, it is desirable that the registers be general purpose, 
thus providing flexibility, power, and simplicity for program development. 
An examination of the code produced by compilers for computers having 
multiple arithmetic registers indicates that seldom are more than six 
required to do a reasonable job of register allocation. Coding in assem­
bly language often results in the use of as many arithmetic registers as 
are available, usually because of tricky coding or carefully tailored opti­
mization, both of which should be avoided if software costs are to be mini­
mized. Additional registers can probably be usefully provided up to about 
10; more than these will provide only marginal gains in software develop­
ment, while increasingly complicating verification. Finally, a rapid and 
simple hardware means should be provided for securing the contents of 
registers; this might take the form of a single instruction that saves all 
registers or one that switches between blocks of registers. 

5. 6. z Index Registers 

An index register is one whose contents can be automatically added to an 
address specified in an instruction, resulting in a new effective address. 
Two categories can be distinguished. True index registers are used option­
ally, that is, an instruction must specifically request that the address in 
the instruction be indexed. A base register's value is added to every 
address, whether data or branching. 

Index registers are usually applied as follows: 

* Accessing elements of vectors, matrices, and tables 
* Looping control 
* Many-way decision branches 
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* Providing reentrancy of routines 
* Providing relocation of routines 

The use of index registers for the first three applications is familiar and 
has no unusual requirements. The programming ease afforded in these 
applications indicates that the Space Shuttle computer should incorporate 
index registers; if it does not, some very similar substitute must be 
provided, particularly to facilitate vector, matrix, and table operations. 

The fourth application, reentrancy, requires that each incarnation of a 
routine have its own data region. This is easily accomplished if the base 
address of the new data region can be loaded into an index register, and 
if the address of each datum can be augmented by the contents of that reg­
ister. Since reentrant routines use the same program, it is important 
that the contents of this register not be added to addresses of branch 
instructions in the reentrant routine. Although in many cases the use of 
reentrant routines may be desirable, relying on such an indexing feature 
as the sole mechanism to enable reentrancy will lead to many verifica­
tion problems. The fifth application, relocation, utilizes a base register. 
With this feature, a routine may be loaded into any part of memory and 
is relativized by loading the base register with the base address of the 
routine. 

Reentrancy and relocation of routines facilitate program development 
only if complicated program structures are involved. Because little use 
of such structures is envisioned, the benefits obtainable from the last 
two applications of index registers are not great. Certainly the overall 
Space Shuttle software design should not attempt to relocate program ele­
ments dynamically; even if an auxiliary memory were used, the program 
elements loaded as a function of mission phase should always be loaded 
into the same memory addresses. Thus while index registers will not 
be required for reentrancy or relocation reasons in particular, their 
other applications are sufficient to justify their inclusion. 

5. 6.3 Register Stacks 

One or more hardware-implemented register stacks, together with re­
lated machine instructions, can simplify or eliminate many load-and­
store chores usually required in performing subroutine calls and compli­
cated arithmetic and logical expressions. The Honeywell 70 iP is an 
existing aerospace computer which has such an architecture. 

Basically, the implementation, shown in Figure 20, uses three registers 
(RI, R2, and P) coupled with a section of main memory. From a logical 
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F 	 RZw 	 I 

Figure 20. Stack Operation 

point of view, RI and RZ are the top two words in the stack. A load from 
memory brings a new word into RI after first: 

* 	 Incrementing the pointer in P 

* 	 Moving the contents of RZ into the word in main 
memory indicated by P 

* 	 Moving the contents of RI into R.2 

A store into memory reverses the procedure. Thus the load and store iri­
structions respectively push down and pop up the stack. Operations such 
as "add" or "logical and" are performed on the top two words in the stack 
and the result is returned to the top of the stack. This concept retains 
data available in the stack for sbusequent use. If variables can be pro­
pitiously ordered, arithmetic can be performed with a minimum of loads 
and stores. Another slight advantage comes in terms of compiler opera­
tion, as there can be a closer correspondence between the compiler's 
intermediate language and machine instructions. 
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Subroutine transfers and returns can also be performed more rapidly and 
more easily if special subroutine branch and return instructions are pro­
vided in conjunction with a hardware stack. A return pointer and other 
necessary information are placed on a stack before transferring to the 
subroutine, and removed to effect the return. Adding one level of indirect 
addressing in conjunction with the stack enables all task routines and sub­
routines to be made automatically reentrant. As a routine or subroutine 
goes into execution, either through a subroutine call or initiation by the 
task scheduler, a marker is placed on the stack and the parameters and 
data for the routine are entered above it. Addressing of data local to the 
routine is relative. Prior to data fetch, the address of the marker is 
added to the relative address to obtain the absolute address. Essentially, 
the details of reentrant programming have been built into hardware. 

With regard to whether the stacked register computer offers any advan­
tages for Space Shuttle, it can be argued that it represents a way of mak­
ing some software gains over a computer having a conventional architec­
ture. However, most of these gains would not be significant compared to 
conventional designs having an appropriate set of instructions and register 
design, such as have already been recommended. It is concluded that the 
selection of either a stacked register machine or a more conventional 
design is relatively unimportant in terms of software implications. 

5. 7 Restart and Self-Test Provisions 

Maintaining computer system integrity and detection of malfunctions is 
essential for the Space Shuttle computer. Restart and self-test are two 
classes of activities for performing these functions. 

5.7. 1 Restart 

Aerospace computers are susceptible to transient errors caused by ran­
dom events such as power supply surges or dips and radio-frequency 
interference. Such transient errors usually result in unwanted changes 
to the contents of volatile registers or'other volatile storage devices. 
If the contents of volatile registers have recently been stored away in 
nonvolatile memory, it often may be possible to restart the computation 
by reloading them (including the instruction counter) from nonvolatile 
memory. This type of restart is a method by which software can recover 
from a large class of transient errors. 

The minimum hardware provision required is some mechanism for de­
tecting transient errors. In the simplest case this detection merely 
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causes an interrupt. If this is the only provision, the programming nec­
essary to provide for the possibility of a restart is tedious: at frequent 
intervals the contents of all volatile registers must be stored away indi­
vidually in nonvolatile memory, and an executive routine must be written 
to reload the registers when the transient error interrupt occurs. On a 
machine for which protection from such transient errors is desirable or 
mandatory, special provisions should be made both for storing the con­
tents of volatile registers and for reloading them after an error is de­
tected. For example, the Honeywell 701P has a save instruction which 
causes the volatile registers to be stored automatically. When a fault 
is detected, the volatile registers are automatically reloaded with the 
values stored by the last save instruction and execution is resumed with­
but aid from software. The programmer is required to insert the appro­
priate save instructions, but the burden of doing so is much less than 
that of saving all volatile registers using the conventional store instruc­
tions. A method for inserting save-for-restart instructions into a pro­
gram to guarantee correct operation after a restart is discussed in 
Appendix B. 

To ensure that restarts will work after an error at any point, the save­
for-restart instructions must appear frequently in the program code. 
Hence the delay encountered when a restart is performed will be the 
equivalent of oniy a few instruction times. However, saves could eas­
ily account for 10% of the total number of instructions, and thus repre­
sent a considerable load both on execution time and on main memory 
capacity. Furthermore, the problem of determining the proper points 
at which to insert the save instruction is not trivial. The conclusion is 
that a computer that is susceptible to transient errors and requires re­
start protection is less desirable than one that is not susceptible. If 
restart protection must be provided, it is very desirable that it be per­
formed by a powerful save-for-restart instruction. 

Of course, a hard failure can also trigger a restart. In this case, the 
machine might loop indefinitely if there were no other provisions. Com­
monly this problem is handled by a mechanism that counts the number of 
times a program has restarted at a given point. After a fixed number of 
restarts have failed, logic steps in to halt the restarting mechanism, 
possibly causing an interrupt indicating a hard failure. 

5. 7.2 Self-Test and Fault Diagnosis 

From a software point of view, the best computer would be one that either 
did not require self-test and fault diagnosis or performed these operations 
automatically. 

-94­



From a reliability point of view, it is not desirable that the only way of 
detecting faults be by means of software self-test. Self-tests cannot be 

performed continuously, an faults occurring during the intervals between 

tests could be calanmitous.,) It 's highly desirable that fault detection be 

performed continuously by hardware. Computers have been designed that 

automatically detect and automatically correct all failures in their hard­

ware. An example is the STAR computer being developed at The Jet 
Propulsion Laboratory. For such a computer the burdens of reliability 
considerations, self-test, fault diagnosis, restart protection, etc. , are 
removed from software development. This is an extremely desirable 
feature. 

If the Space Shuttle computer cannot do all of the required error detec­
tion, correction, and diagnosis by hardware mechanisms, it is preferable 
that as much as possible of the error detection be done by hardware, 
leaving the required diagnosis and correction to be performe.d by software. 
This is consistent with the philosophy that simple tasks that must be per­
formed at high frequency are best performed by hardware, while complex 
tasks of lower frequency are best performed by software. With such an 
architecture, hardware would generate an interrupt when an error was 
detected. The executive system would then transfer the current job to a 
spare unit, and diagnosis and cure would be performed on the failed unit. 
In the absence of complete hardware self-testing, software self-test is 
commonly used as a background task; that is, self-test is performed when 
all necessary tasks are completed. This ensures that the machine is 
operating correctly when a new work cycle begins. In the multiprogram­
ming environment, self-test could thus be treated as the lowest priority 
task. 

One means of performing self-test is by comparing the results of the 
same computations performed on two or more computers. The following 
example shows how the hardware efficiency of a triply redundant system 
may be compared with that of a doubly redundant system. The triply 
redundant system votes on all outputs. Errors are detected as a dis­
agreement between one computer and the other two. The effective utili­
zation is one-third; that is, if the machine were perfectly fault-free, 
only a third of the actual hardware would be needed. The doubly re­
dundant system consists of two computers, each comparing outputs. 
Failure is detected by a disagreement in their outputs. Both computers 
must then self-test to determine which is actually correct. Because of 
the delay this job introduces, every task must be scheduled such that 
even if it is delayed by the self-test routine, all deadlines are met. For 
the periodically cycled tasks, if the computations require A units of time 
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5.8 

and self-test requires B units, then the utilization is (I/Z)(A/A+B). 
Hardware efficiency is higher for the triply redundant system only if 
l/3>(i/2)(A/A+B), which holds only if the ratio A/B is greater than 2. 
Whether this ratio is actually greater than Z will depend on the machine 
speed, the speed of the diagnostic routines, and the computations that 
must be performed at the highest frequency. 

Interrupt- Handling Facilities 

On real-time computers, an interrupt mechanism is commonly used to 
inform the executive that a request has occurred for processing a task or 
group of tasks. Interrupts ensure that the task in execution is always the 
important one. They are properly the concern of the executive system 
designers and ought to be invisible to programmers of non-real-time tasks. 

Interrupts present verification problems, many of which have been discussed 
in Section 4. One partial solution is to minimize the number of interrupt 
occurrences possible during program execution and to reduce the amount of 
operations that must be performed by software when interrupts occur. This 
can be done by providing interrupt types suitable both to the interrupt source 
and the tasks invoked; an appropriate hardware priority structure and effec­
tive interrupt control mechanisms; automatic interrupt identification; and 
automatic computer status preservation mechanisms. Each of these desir­
able architectural features is described below. These features are very 
important to the reduction of software costs; further, serious architectural 
shortcomings with respect to interrupt features may result in software whose 
correctness cannot be feasibly demonstrated. 

5. 8. 	 i Interrupt Types 

Three types of interrupts can be distinguished for the Space Shuttle 
application: 

* 	 Internal Interrupts: those generated within the computer 
itself to indicate the computer's and software's operation. 
Examples of the source of such interrupts include the 
completion of input/output operations, invalid attempts 
to access memory regions protected by locks, and hard­
ware-detected redundancy and checksum errors. 

* 	 External Interrupts: those generated by other subsystems 
to indicate changes in their status and demands for servic­
ing by the central computer facility. 

* 	 Clock Interrupts: those generated by hardware timers to 
indicate that a specified interval has elapsed or a specific 
time has been reached. 
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As regards internal interrupts, their number can be limitedby requiring 
explicit checks in the software; however, such checks increa'se software 
complexity at the expense of interrupt simplification. Since most opera­
tions initiated by internal interrupts are relatively simple and in large 
part should be performed by the executive, this type of interrupt should 
not be eliminated entirely. 

The number of external interrupts is a function of both the number of sub­
systems and the rapidity with which the central computer must respond to 
subsystem demands. External interrupts can be greatly reduced if not elimi­
nated by having the communication of subsystem requests for processing 
received by the central computer through an executive poll of the subsystems. 
By having the executive ask the subsystems if processing is required rather 
than having the subsystems interrupt the current processing to tell the exe­
cutive that some other processing is also required, significant reductions 
can be made in the number of interrupt occurrences and the associated veri­
fication effort. Only external interrupts which require very rapid or immedi­
ate processing, such as signals indicating the catastrophic failure of a sub­
system; should therefore be tolerated. 

The third category of interrupt is vital to maintain synchronization between 
the software and real time. Typically, a precision hardware clock generates 
an interrupt at a regular interval. The longest time that this interval can be 
is that of the most frequently executed periodic function. It is desirable that 
the interval not be very much shorter than that of the most frequently exe­
cuted periodic function, or many unnecessary interrupts will have to be proc­
essed for every one that has any significance. One very desirable archi­
tectural feature is an alarm clock timer in which the interrupt interval is set 
by the executive, probably by storing a value in a special register. After an 
interval of the specified length has elapsed, an interrupt is generated. Aper­
iodic tasks that must be performed at some fixed future time can be sched­
uled using this type of timer. The alarm clock timer can substitute for the 
interval timer by simply storing the desired interval value back into the regis­
ter after each timer interrupt. It can also serve as a watchdog to prevent 
certain tasks from taking too much time. 

In a multiprocessor, only the processor that should do the indicated operations 
or the one with the lowest priority task should be interrupted for any of the 
three interrupt types. It is desirable that the processor to be interrupted be 
chosen by hardware means without interrupting another processor to perform 
an executive routine, since doing so would increase executive overhead and 
increase the number of combinations that must be verified. 

-97-:
 



5. 8. 2 Interrupt Priority Levels 

In the Space Shuttle computer system there will be at best several dozen 
different situations that must generate interrupts. Five or six priority 
levels would suffice to distinguish the relative urgency of the interrupt 
requests. On the highest level might be computer hardware failure in­
terrupts caused, for example, by parity errors. A slightly lower level 
might indicate manual hold, timer errors, and discrete command errors. 
Another level might indicate normal interval timer interrupts and requests 
for analog [/0. A fourth level might include console I/O interrupts and 

RT-generated interrupts. A fifth level might indicate analog/digital con­
version I/O interrupts. 

One approach is to have the executive handle all the priority considerations, 
with interrupts occurring regardless of the priority of the tasks they might 
invoke. A much more desirable approach is to have the hardware partici­
pate in priority control. This is accomplished by having interrupts not 
immediately occur if an interrupt of higher priority is being processed. 
Instead, the new interrupt would be delayed by hardware mechanisms until 
all higher priority functions were complete; thenitwould occur immediately. 
The advantage of this approach is obvious in terms of both reducing exec­
utive overhead and simplifying verification, for interference with high pri­
ority tasks is eliminated. Utilizing this feature requires some software 
discipline, for task termination must be done by a method that the hardware 
can recognize. This can be more easily accomplished if automatic-save and 
restore mechanisms such as those described in Section 5. 8.4 are also pro­
vided. 

5.8.3 Interrupt Disable and Enable 

Another means of minimizing interrupts is to provide the facilities for 
selectively disabling and enabling interrupts under software control. Some 
operations may be so critical that they cannot be interrupted even to add a 
new task to the queue. An example would be a high-speed transmission 
such as a disk transfer; this might have low priority until it actually begins 
but must then have very high priority, since processing of new interrupts 
might cause transmission errors or information loss. On the other hand, 
really critical interrupts, e.g. , those indicating hardware failure within 
the computer, should never be disabled. During the priod in which inter­
rupts are disabled, information indicating what has occurred during that 
period must be saved automatically. When the interrupts are enabled again, 
this information is consulted, and if an interrupt has been suppressed 
it now occurs immediately. Thus the only effect of the disable/enable 
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sequence is the delay of lower priority interrupts. Providing this disable/ 
enable capability is very important in reducing verification difficulty in 
that the areas'that must be verified for interrupts can be minimized. 

5.8.4 Status Save and Restore 

From a software viewpoint, one of the most important aspects of an inter­
rupt mechanism is tte method by which processor status is preserved when 
an interrupt occurs. Some method must be employed for saving the state of 
the machine's registers at the time of the interrupt and for restoring this 
state when the interrupted program is resumed. The basic approaches to 
the problem of status preservation are: 

i) 	 Let the interrupting program (the executive interrupt 
handler) decide what to save and restore. 

2) 	 Automatically (by means of hardware) store all machine 
registers in a designated region in main memory -- possibly 
with a stack convention to allow interrupts on top of inter­
rupts. 

3) 	 Provide two or more sets of internal registers. When the 
interrupt occurs, a pointer is modified to indicate that a 
different set of registers is to be used. 

4) 	 If the machine is such that save instructions are employed 
to prepare for potential restarts, no auxiliary saving of 
registers is necessary. After the interrupt is sensed, 
execution may be reinitiated from the last save-point. 

Option i is the least desirable but is representative of conventional flight 
computer architecture. Checking that the necessary registers are saved 
and restored has consequently been a major verification chore in the past. 
Option 2 makes no demand on the system programmer, and the overhead 
time per interrupt is constant. Option 3 likewise makes no demand on the 
system programmer, unless there is the possibility of using up all the sets 
of registers. Then software may have to be added to prevent register over­
flow. With many possible executive designs, the interrupted task will not 
always be resumed after the interrupt has been processed. If this is the 
case, even with Option 3 it would be necessary to store the contents of the 
registers in a region of main memory associated with that task. Thus, a 
register store instruction would be very useful. For both Options 2 and 3 
a complementary register fill instruction would be useful in reinitiating a 
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partially completed task. Beginning with the location in memory specified 
by the address, this instruction would proceed to fill the machine's regis­
ters from main memory. Options 2 and 3 are equally desirable since they 
impose no software load. Choice should be made on the basis of speed 
requirements. Option 2 is slower but probably cheaper. Option 3 is faster 
but probably more expensive. 

Option 4 deserves separate consideration because of its unique impact on 
software design. If the save/restart feature is provided, the use of the 
same feature for restart after an interrupt involves little or no addition to 
the hardware. The program's response to an interrupt would be equal to 
the fastest of the other alternatives; however, resuming the execution of 
the interrupted program would effectively take much longer than with the 
other alternatives because execution is resumed at a point preceding the 
interruption. This back-tracking has one advantage, nevertheless, for 
restarts from an interrupt are always made at defined places in the pro­
gram. Although Options 2 and 3 may overall be superior to Option 4, 
there will 'be substantial advantages to Option 4 if the actual hardware 
implementation of Options 2 and 3 fall short of the ideal cases described 
above. 

Summary of Conclusions 

A conventional computer architecture, unique only in its provisions for 
restart and interrupt processing and having large memory size, speed, 
and input/output capability margins would result in the lowest software 
development costs. These margins are the most important character­
istics; an excess capacity on the order of 40% is suggested to facilitate 
software verfication, maintenance, and growth. 

An extendable memory or the ability to add processors provide means 
for tailoring the computer's capability to the requirements and thus are 
desirable. An auxiliary memory is undesirable because of its attendant 
software complications and verification difficulty and is not recommended 
unless there is a substantial difference between the total memory and 
teak mission phase requirements. Such a difference does not appear
likely at this time. It is also important that the instructions have the 
capabilit# of addressing all of memory without requiring the use of special 
extension registers and that there be provisions for selectively restrict­
ing a program's access to designated memory regions, either through 
bound registers or hardware memory locks. 

-ioo­



For a conventional computer with an accumulator, quotient, and index 
registers, the total number of basic instructions identified is 36. In 
addition, hardware floating-point arithmetic capability should be pro­
vided. Powerful or unique instructions that either repetitively perform 
the same operations as the basic instructions or replace software sub­
routines do not offer any substantial benefits to compensate for the prob­
lems in restart protection and software verification that they might in­
troduce. The format of instructions should be compatible with data for­
mats, and architectures which attempt to increase the effective memory 
size by packing more than one instruction into the basic data word size 

should be avoided. A general-purpose multiple -register organization 
in which the same register can be used as an accumulator, quotient reg­
ister, or index register depending on the instructions referencing it is 
desirable because it will reduce the number of tempory data loads and 
stores. 

Where possible, the detection of hardware errors, both hard and tran­

sient, should be accomplished by hardware mechanisms. Similarly, 
error diagnosis and correction should be done by hardware where pos­
sible. Where software mechanisms are required, such as for reloading 
volatile registers after a transient failure, the computer architecture 
should facilitate their construction. In the event protection of volatile 
registers against transient failures must be done with software, one im­
portant feature is a save-for-restart instruction that, appropriately 
located throughout the program, establishes safe points from which re­
starts can be made. 

Desirable interrupt features include hardware priority control in which 
lower priority interrupts are delayed during the processing of higher 
priority interrupts, and interrupt enable and disable commands that can 
lock out selected interrupts during execution of critical program seg­
ments. Periodic or interval timer interrupts are required to maintain 
software synchronization with real time. The interrupt periods must be 
compatible with the task execution frequencies. Finally, the saving of 
machine status when an interrupt occurs and its restoration after the task 
invoked by that interrupt has been completed should require a minimum 
of programmer effort. 

None of the desirable architectural features appears to pose any hard­
ware design problems although many, such as hardware floating point, 
hardware memory locks, and a flexible interrupt control mechanism, 
are not'generally found in aerospace computers today. On the other 
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hand, many of the undesirable features are; among them are restricted 
memory addressing, minimal instruction sets, and different instruction 
and data word lengths. The evaluation of specific proposed computer 
architectures, particularly for off-the- shelf"hardware, will require a 
balancing of their respective advantages and disadvantages with refer­
ence to the criteria described in this section. A methodology for per­
forming such comparisons is described next. 
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6.' EVALUATION METHODOLOGY 

Studying the software impact-of particular configurations and architec­
tures-is, by'itself, useful. First, it indicates early in hardware defini­
tion which-approaches can simplify production without incurring addi­
tional hardware costs, in effect stating to the computer hardware design­
ers what is important to the software analysts. Second, for a particular 
hardware choice it indicates where software design and production prob­
lems are.likely to occur, so that attention can be devoted to solving them. 
Finally, studying the software impact of hardware choices is the first step 
in selecting the most suitable hardware, or in comparing proposed alter­
natives. The next step is to define an evaluation methodology that enables 
differing and conflicting effects to be amalgamated into a meaningful esti-­
mation of total software impact. 

Two relatively simple ways exist for using the evaluation criteria. One 
is to estimate performance qualitatively with respect to the individual 
criteria and mentally integrate the subjective evaluations into a 4ualita­
tive estimate of the particular computer system's overall software per: 
formance. Such a qualitative approach can lead to valid decisions. Among 
its disadvantages are the difficulty of communicating individual value judg­
ments about criteria importance and performance. This approach also 
inadvertently emphasizes the problems that have most recently confronted 
the evaluator, and solutions that are appealing largely because of their 
technical-interest and sophistication. 

Another way of evaluating a computer system is to assign weights indi­
cating the relative importance of each criterion and to determine a single 
quantitative measurement for each proposed system's performance with 
respect to all criteria. The system' s expected performance is then deter­
mined by summing over all criteria the product of the individual weights 
and quantitative performance measurements. For example, .the instruc­
tion set suitability criterion could be assigned a weight of 10. If it were 
determined that including floating-point arithmetic doubled performance 
with respect to instruction set suitability, a computer that had this feature 
would receive a score higher by-Z0 than one that did not. Such a simple 
weighting scheme has several deficiencies. Some of them are inescapable 
in a quantitative model that attempts to deal with criteria that usually are 
viewed only qualitatively. Others result from the simplicity of the model: 
it is not always possible to measure a proposed computer system's per­
formance on one criterion using a single number. 
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Uncertainty about the software effect of system characteristics may make 
a range of possible values a better indicator of expected performance than 
a single value. For example, the effect of a restricted operand addressing 
range in the instruction format depends on module size, programming 
techniques employed, and data organization. There is some small prob­
ability that a restricted operand addressing format might affect program­
ming costs only negligibly, and another small probability that it would 
increase programming costs by as much as 10%, with the most likely effect 
falling between the extremes. For cases such as this, a probability dis­
tribution can more accurately depict expected performance than can a 
single value. 

Another limitation of a simple weighting methodology is that the benefits 
obtainable from increased performance are not always directly propor­
tional to the increase, as is implied by using constant weighting functions. 
For example, a memory surplus is desirable: it reduces the need for 
optimizing object code, sharing commonly used subroutines, and over­
laying unrelated data. Up to a certain point its advantage is proportional 
to its amount; beyond that point additional memory affords no advantages; 
and at some point additional memory may increase software costs be­
cause inessential functions are added largely because it is possible to 
perform them. Hence to more accurately depict the benefits of perform­
ance with respect to the criteria, nonlinear weighting functions must be 
accommodated. 

Thus the evaluation methodology developed during this study has two 
major inputs, both of them based on the evaluation criteria. One is 
expected performance with respect to each criterion. For the reasons 
discussed above, it may not always be possible to establish precise 
performance with respect to a criterion; rather, a range of possible 
performances will be more accurate. Thus, in the general case, the 
probability of each level of performance is the input function. These 
performance-probability functions are required for each evaluation 
criterion and proposed computer system. They are represented mathe­
matically by the expression: 

P = f(y, IA.) 

where 

A.a = the ith computer alternative being examined 

y.1 = the jth evaluation criterion 

Pij the estimated probability density of y for A. 
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The performance-probability function Pij represents a discrete proba­
bility function where the measure of performance with respect to the 
evaluation criterion Yj is discrete, and a continuous probability distri­
bution function where the measure with respect to yi is continuous. 

An example performance-probability function is shown in Figure 21, 
indicating a range of performance for architectures with floating-point 
arithmetic. Overall performance with respect to instruction set suita­
bility is measured in terms of the number of instructions needed to code 
the onboard program, with a suitability of .95 indicating that 5% fewer 
instructions would be required compared to an architecture having a suit­
ability of i. Performance of a fixed-point architecture is i on the scale 
chosen; that of the floating-point alternative is between . 93 and . 97 on 
the same scale, with all values in between equally likely. Any convenient 
scale may be chosen for any criterion; in this example the scale is based 
upon the relative program sizes. Lower numbers on this scale indicate 
greater suitability. 

Probability 

Fixed Point
 

25 

Floating Point 

0 

.90 .9Z .94 .96 .98 1.0 

Instruction Set Suitability 

Figure 21. Performance-Probability Functions 
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Defining performance-probability functions for each alternative permits a 
performance-probability matrix to be constructed as shown in Table iI. 
The criteria appearing in the matrix for the evaluation of computer archi­
tectures would be those in the eight categories developed in the preceding 
section; the examples shown in Table Ii are for the evaluation of memory 
suitability. The elements of this matrix, either single-valued functions 
or probability distributions, represent the expected performance of each 
alternative with reference to arbitrary scales. 

A further extension of the performance-probability matrix concept can be 
made, although in the current study the information needed for its applica­
tion was not available. This extension involves constructing performance­
probability matrices for each foreseeable set of Space Shuttle development 
environments and requirements. For example, separate performance­
probability matrices would be constructed to indicate the difference in 
criteria performance when the same computer architecture is used for 
both large and small Space Shuttle avionics configurations. While many 
elements of these matrices might be the same, it is probable that a sig­
nificant number would be different. For example, the effect of floating­
point arithmetic on performance depends on what percentage of the total 
computational load consists of strictly numeric calculations. The larger 
the avionics system, the smaller the likely percentage of numeric calcu­
lations: the functions that will always have to be performed -- such as 
guidance, navigation, and control -- are largely numeric, while a signi­
ficant portion of the additional capabilities of the large system would be 
devoted to such things as more powerful monitoring, diagnostic, recon­
figuration, and display functions involving a higher percentage of logic 
and nonnumeric data manipulation. 

Table i. Performance-Probability Matrix 

Expected Performance 

Evaluation Criteria 
Alter native I Alternative 2 . . . Alternative 

Memory nargi. Pil P12 Pli 

Memory addressing range P2 j P2 Pj 

Memory locks P3jP 31  P3 2  

Criterion i Pit Pia Pij 
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The next input required in the evaluation methodology enables the infor­
mation represented through the arbitrary scales of the performance­
probability functions to be transformed into units that permit summation 
of performance with respect to the total set of evaluation criteria. This 
is done by using performance-payoff functions to determine overall com­
puter impact on software development cost. For complete accuracy the 
software impact should also be measured in terms other than just cost; 
examples of such additional dimensions are the software schedule require­
ments and, software effectiveness, flexibility and verifiability. To sim­
plify the evaluation process, these aspects can be considered by includ­
ing -- in the total development cost -- the cost of conforming to a fixed 
schedule and achieving uniform levels of effectiveness, flexibility, and 
verifiability. Thus, for example, the difference in verification ease for 
two systems could be determined by comparing the costs incurred for 
each system to obtain the same confidence level in correct software 
functioning. Selecting cost as the uniform scale for measuring the value 
of performance facilitates comparisons between distinct aspects of soft­
ware impact. However, it should always be recognized that a simplifi­
cation -- in effect analogous to comparing apples to oranges by compar­
ing the respective costs of the nutrients they contain -- has been made. 
For many purposes such simplifications are justified, although the de­
cisions made on this quantitative basis must also be compared with sub­
jective, qualitative evaluations. 

The evaluation methodology has two uses. One is determining the soft­
ware impact of a specific computer configuration and architecture and of 
relatively small variations. The major difficulty with this use is in es­
tablishing an absolute scale to measure costs associated with each level 
of criteria performance. To establish a meaningful scale it is necessary 
to know not only that providing a feature such as floating point is good as 
far as reducing software production costs and schedules, but how much 
reduction can be expected. The other use is in comparing the software 
impact of two or more distinct configurations and architectures. Estab­
lishing an absolute measurement scale for each criterion is not as impor­
tant for this use, for a relative scale is almost as suitable. What is re­
quired in this case is a single measurement scale, whether relative or 
absolute, that is valid for all criteria. For example, such a uniform 
scale would be needed to compare the software impact of two proposed 
computers, one having a suitable interrupt structure but an unsuitable re­
start provision and the other with these two characteristics reversed. 

To a large extent establishing an absolute scale depends on the final size 
and complexity of the total Space Shuttle software. As already indicated, 
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for example, the software cost impact of a floating-point capability de­
pends on the amount of arithmetic operations to be coded. Final deter­
rination of the acceptable hardware cost of providing floating point thus 
depends on the functions to be performed. As outlined in Section 3, the 
size and complexity of the total avionics system software cannot be deter­
mined until the avionics system hardware configurations are more com­
pletely and permanently defined. Thus an absolute scale for measuring 
performance with respect to the evaluation criteria cannot be established 
at this point. 

A relative scale can be defined and would be suitable for comparing the 
perforrmance expected for different configurations and architectures and 
as a base for establishing an absolute scale when further information about 
avionics hardware configurations and functional requirements is available. 
With a relative scale, the software cost impact of an architectural feature 
would be measured in terms of the expected percentage reduction in total 
software cost, rather than the expected dollar amount that would result 
from an absolute scale. 

Performance-payoff functions are plotted with the ordinate having the same 
units as the performance-probability function and the abscissa being either 
absolute or relative cost. An example is shown in Figure 22 to illustrate 
the relationship between instruction set suitability and relative program 
development cost. Expected performance of architectures utilizing floating­
point and fixed-point arithmetic has been shown in Figure Z; Figure ZZ 
illustrates the effect any of these possible levels of performance will have 
on program development cost. The relationship is linear in the region 
around i, but does not drop to 0 as the number of required instructions, 
and therefore the instruction set's suitability, approaches 0. As the number 
of instructions increases greatly on the other side of the curve, the required 
software development effort increases even more rapidly. 

In this simplified evaluation model the performance-payoff functions are 
considered to be independent of the particular computer configuration and 
architecture. Thus the cost benefit of increasing instruction set suitability 
is independent of the particular architectural details leading to that increased 
suitability. A performance-cost vector is defined in the same format as the 
performance-probability matrix, with each element C i of this vector repre­
senting the performance-payoff function associated with the ith evaluation 
criterion. Like the performance-probability matrix, this vector can be 
extended in another dimension to indicate the effect of various foreseeable 
Space Shuttle development environments. 
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Figure 22. Performance-Payoff Function 

When the performance-probability and performance-cost functions have 
been established, it is a relatively simple mathematical step to compute 
the expected software cost impact of each alternative computer system. 
This computation is described by the expression 

E(Cij)= f dy.ji P.j C, 

where E(C-i) is the expected software cost for the ith computer alternative 
and jth evaluation criterion. The total software cost impact of the computer 
configuration and architecture is the sum of the applicable individual cri­
terion cost impacts. The computation above reduces to the simple weight­
ing evaluation approach when Ci is a linear function and Pij is a single­
valued function. 
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7. PROGRAMMING LANGUAGES 

Two general language categories can be distinguished: -assembly or 
machine-oriented languages that require the statement of problem solution 
in detailed and very computer-dependent terms, and high-order languages 
that allow more general, problem-oriented, and computer-independent 
terms. Languages in the first category have many disadvantages. Extra 
programmer effort is required because of the increased number of com­
mands that must be written. Greater possibility of coding errors exists 
because of the unneeded complexity and unwanted side effects of many of 
the commands. Also, formidable communication barriers are raised by 
the difference in appearance between the language commands and a state­
ment of what they are to accomplish. High-order aerospace-oriented 
languages with suitable compilers are just now being developed. Their 
usage for Space Shuttle software development was investigated with a view 
to minimizing coding, verification, and maintenance costs. The investi­
gation focused on three principal aspects: 

* Language suitability 
* Compiler suitability 
* Language influence on the software development cycle 

These aspects are individually discussed below, followed by the conclu­
sions reached. Language suitability in particular -- and, where applicable, 
the other two aspects -- was studied with reference to the following six 
existing high-order languages: 

Special Purpose General Purpose 

CLASP
Minimal FORTRAN 

SPL Mk II 

HAL 
Comprehensive PL/ISPL Mvk IV 

Of the four special-purpose languages, CLASP (Computer Language for 
Aeronautics and Space Programming) and SPL IvIk II (Space Programming 
Language Mk II) are almost identical, are relatively limited, and are 
intended for small, fixed-point aerospace computers. SPL Mk IV and HAL 
are omnibus languages intended to provide very comprehensive capabilities 
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for large aerospace computers and for general-purpose computers as well. 
The two general-purpose languages, FORTRAN and PL/I, are the respec­
tive minimal and comprehensive counterparts of the aerospace languages. 

7. 1 Language Suitability 

Ideally, a high-order programming language is machine and application 
independent; that is, any such language should be suitable for any potential 
computer system and for any tasks it might be called upon to implement 
within that system. In practice, this ideal is never achieved. This does 
not mean that a language unsuitable in only some respects cannot be used; 
given sufficient time and resources, almost any language can be used to 
implement any programmable function. However, software development 
difficulty will be increased, schedules lengthened, and attainable level of 
confidence in program correctness reduced in proportion to lack of lan­
guage suitability. 

Language capabilities required for straightforward and efficient implemen­
tation of anticipated software functions are shown in Table iZ, together 
with the estimated percentage of the program devoted to each function for 
the minimum and maximum Space Shuttle hardware configurations. The 
percentages reflect the fact that arithmetic capabilities become less impor­
tant and logical and Boolean capabilities more so as hardware complexity 
increases. The effect of this shift toward logical and Boolean capabilities 
is magnified in that the software itself also becomes larger to support the 

increased hardware configuration. 

Of the six languages considered, FORTRAN provides the fewest capabilities 
for implementing all of the required functions. Even for a minimum hard­
ware configuration, it lacks adequate data description facilities, fixed-point 
arithmetic modes, flexible arithmetic and logical decision statements, pro­
gram structuring facilities, and adequate hardware interaction statements. 
CLASP and SPL Mk II would be adequate for the majority of the first two 
classes of software functions but inadequate for implementing the Space 
Shuttle display, communication, and executive software. HAL, SPL Nk IV, 
and PL/I provide almost all of the necessary capabilities; HAL and SPL 
Mk IV -- the two special purpose languages -- are the most suitable be­
cause they lack unneeded features and emphasize either simplifying or auto­
mating capabilities commonly used in aerospace applications. 

The relationship between computer architecture and language features is 
indicated in Table 13. It might be expected that the comprehensive special­
purpose languages would incorporate those features necessary to make them 
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Table 12. Language Capabilities Required for Different Software Functions 

Percentage 
oi Program 

- per Function 
Software Function Minimum Maximum Language Capabilities 

Hardware Hardware 

Guidance, navigation, 60 40 Arithmetic data description, 
and control expression evaluation, and 

decision facility 
Array, matrix, and vector 

operations 

Looping control 
Subroutine and subprogram 

definition and calling 

Status monitoring and 15 40 All of above plus: 
checkout Logical and Boolean data 

description, expression 

evaluation, and decision 
facility 

Display and commu- 15 I0 All of above plus: 
nication Message and format 

description 

Character and bit 
manipulation 

Executive 10 10 All of above plus: 
Hardware interaction. 
I/O processing 

Program structuring 

File management 
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Table 13. Computer Influence on Language Suitability 

Computer Architecture Affected Language Features 

Memory istructure 	 Storage allocation and overlay facilities 
Optimization directives 

Word format 	 Data declaration
 
Multiple-precision arithmetic
 

Register organization 	 Hardware directives
 
Register allocation
 

Instruction set 	 Fixed-point arithmetic
 
Interfacing with machine language
 

Restart/interrupt facilities 	 Restart protection
 
Real-time control
 
Program structuring
 

Input/output facilities 	 I/O statements
 
Data formatting and conversion
 
Data buffering
 

suitable to almost any computer configuration and architecture. However, 
HAL and SPL A& IV both emphasize computer independence and presently 
contain few of the features that allow for often-needed direct control of spe­
cific computer operations; these remain to be provided when the languages 
are implemented for an actual computer and application. CLASP and SPL 
Mdk II are capable of providing the necessary computer-dependent language 
features only for small and relatively simple aerospace computers compar­
able to those for which compilers have already been developed- (IBM 4PI 
CP-2 and UNIVAC 1824). FORTRAN's hardware-oriented language features 
are limited and directed to computer characteristics and applications quite 
unlike those expected for Space Shuttle. Of all the languages considered, 
PL/I is the most suitable insofar as its computer-oriented features are 
concerned; this is evidenced by its effective use in complex "executive sys­
tem programming and real-time applications, of which the MULTICS and 
SABRE projects are examples. 
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7. 2 C6mpiler Suitability 

-Even the most s Yitable language requires an equally suitable compiler if it 
is to be a practical tool for software production. The criteria against which 
a compiler may be evaluated to determine its suitability are relatively objec­

tive and may be stated as follows: 

• Object code efficiency 
o Object code correctness 
• Diagnostic capability 
* Compilation time 
* Cost and availability 

The first criterion is a measure-of the additional computational capacity that 
will be required because of the way in which the high-order language is trans­
lated into machine code, while the second refers to the validity of the trans­
lation process itself. Certain levels of efficiency and correctness are-man­
datory if use of a high-order language is to be practical. The third criterion, 
diagnostic capability, relates to means of improving and simplifying verifica­
tion. The lIst two refer to the costs incurred in obtaining and using the 
compiler -- costs that must be offset by reduced cost of onboard software 
production if high-order language usage is to be economical. 

7.2. 1 Object Code Efficiency 

Even a very large and powerful Space Shuttle computing system will have 
memory capacity and execution speed limitations imposed by cost, size, 
weight, and power consumption constraints. In all aerospace software­
developments to the present, machine or assembly language coding has 
been used, through which the programmers, by applying their skills, 
knowledge, and considerable effort, can produce highly optimized code. 
The programs produced by such methods can be considered to be standards 
against which programs written in a high-order language can be compared. 
Comparing such hand-tailored code with compiler-produced code almost 
always results in the latter's requiring more memory and longer execution 
time. This difference between hand-tailored and compiler-produced code 
is a measure of a compiler's efficiency. 

Compilers differ widely in their efficiencies. In one study performed by 
Logicon, three different compilers for a single language -- FORTRAN IV -­

were shown to differ by 100% in the time required to execute the same pro­
gram and by 50% in the memory required, even though-the capabilities of the 
computers on which the compilers were implemented were comparable. 
Furthermoi'e, differences as great as.300% were observed in comparing the 
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programs produced by compilers of two different languages -- FORTRAN IV 
and PL/I -- even though the source programs had the same functional capa­
bility, design, and structure. Obviously, the hardware penalties associated 
with such severe inefficiencies are unacceptable; a compiler for the Space 
Shuttle must do a better job of generating optimum machine code. 

A compiler can be designed to perform many different types of optimization; 
a partial listing will indicate their nature and the compiler complexity that 
can result, and will also serve to draw attention to the approaches that a 
good prografmmer uses automatically. This listing, which follows, is divided 
into local and global optimization categories. Local optimization aims at 
improving the translation of the programmer's statements into object code in 
small, detailed, and often machine-dependent ways. Global optimization 
attempts to improve the code by making changes to the structure of the pro­
gram itself. There are many more proven methods for local than for global 
optimization, and their implementation is easier and their effect more 
apparent. 

Local Optimization Methods 

i) 	 Eliminate common subexpressions 

2) 	 Evaluate expressions at compile time 

3) 	 Minimize use of intermediate storage by reordering 
computations 

4) 	 Maintain frequently used operands in registers 

5) 	 Eliminate redundant instructions 

6) 	 Reduce operator strength (e. g. , substitute addition for 
multiplication) 

7) 	 Combine several instructions into a single instruction 

8) 	 Simplify storage alignment in structures 

9) 	 Substitute open subroutines for references to closed 
subroutines 

Global Optimization Methods 

i0) Eliminate calculations whose results are not used 
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i i) 	 Transform nested loops into single loops 

12) 	 Move code to less frequently used blocks 

13) 	 Move invariant computations outside loops 

14) 	 Replace a program segment with a shorter or faster 
equivalent 

A heavy emphasis On local optimization is mandatory for a Space Shuttle 
compiler. Global optimization does not usually accomplish anything that 
the programmer could not have done himself by establishing a better pro­
gram organization or using more suitable language features. Also, with 
global optimization the resultant object program -- even though it produces 
the desired results -- can look substantially different from the original 
high-order language source program and the programmer's concept of it. 
This complicates verification and maintenance in that program changes can 
have a far greater effect than could have been anticipated before compilation 
of the changed program. 

Experience with compilers that perform a great deal of optimization is 
relatively limited. One exception is the Logicon-developed CLASP com­
piler recently, delivered to NASA/MSC. This compiler employs optimiza­
tion techniques i through 8 and 10- from the list above. Benchmark pro­
gramming performed to compare the compiler-generated code with 
equivalent assembly language coding revealed two things. First, it is 
possible for a compiler to generate code very closely approximating hand­
written assembly code. Second, the ability of the compiler to do this 
depends strongly on the programmer's knowledge of the optimization tech­
niques employed and the best way of utilizing them. Whereas a programmer 
experienced with the compiler and its methods of optimization produced a 
program essentially identical in size and execution time to its assembly 
language counterpart, a programmer lacking familiarity with the particular 
compiler produced a program some 75% slower and 80% larger. 

Another factor affecting object code efficiency is the size of the program­
ming language. Developing an optimizing compiler for a large language is 
a good deal more difficult. This is demonstrated by experience with the 
FORTRAN IV Level H and PL/I Level F compilers for the IBM 360/65. 
The FORTRAN compiler produced object code of relatively high efficiency 
quite early in its development, while the PL/I compiler went through many 
versions over a 5-year period and even today does not do as complete opti­
rnization as its FORTRAN counterpart. It is estimated that with a relatively 
small language and considerable effort spent to include extensive optimization 
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features, a Space Shuttle compiler can be developed to generate object 
code requiring only 10-15% more execution time and memory than the 
best assembly language program. With a large language, including equal­
ly comprehensive optimization capabilities would be difficult, if not impos­
sible, and inefficiencies upwards of 25% can be expected. 

7.2.2 Object Code Correctness 

The translation from source language into target computer object code 
must be correct. Achieving compiler correctness has been a major prob­
lem with many commercial compilers; in some cases the period between 
initial distribution and error-free operation has been greater than 2 years. 
Unless a very small and simple language is specified, it can be expected 
that the same thing will happen with a Space Shuttle compiler. The chief 
consequence of using a compiler in which a high level of confidence has not 
yet been established is that increased efforts are required in program de­
velopment to detect and correct compiler errors promptly. No degradation 
in program quality need be feared because of compiler errors, however, 
because the threat of compiler-induced errors requires that verification 
activities be conducted at the assembly or machine language level. 

7. Z. 3 Diagnostic Capability 

A high-order language can contribute significantly to software development 
by making it possible to detect software errors before verification. Most 
compilers detect syntax errors that prevent unambiguous or meaningful 
interpretation of language statements. With somewhat greater difficulty, 
other diagnostic capabilities can be implemented to detect programming 
convention violations, such as the unauthorized referencing of data items; 
program logic errors and inconsistencies, such as loops which do not ter­
minate; and data incompatibility as in mixed-mode floating- and fixed-point 
arithmetic operations. The more diagnostic capabilities provided in the 
compiler, the greater are the chances that errors will be detected early 
during software development. A related requirement is that the compiler 
should generate extensive listings correlating the source and object code 
and describing the contents of symbol tables and dictionaries, cross­
reference tables, and memory allocation maps. 

7. Z. 4 Compilation Time 

In the commercial programming environment a significant portion of the 
computing load is consumed by compilation, and as a consequence consid­
erable effort is spent on reducing compilation time. This is one reason 
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for relatively low efficiency of the object code: it would be a poor trade­
off to save, say, a minute of e_ecution time at the cost of increasihg com­
pilation time by 3 minutes. For a Space Shuttle compiler the opposite will 
be true; here, compilation time will be secondary to object code efficiency. 
What may be expected when: optimization is ac6orded high priority is shown 
by the IBM 360/65 FORTRAN IV Level H compiler. The user of this com­
piler can select the level of'optimization. When most of the local and global 
optimization techniques listed in the previous section are enabled, efficiency 
improves by a factor of up to two and compilation time increases by a factor 
of three. 

Typical commercial compilers operating on the typical large-scale general­
purpose computer compile about 500 source statements per minute. For 
Space Shuttle, the required optimization will reduce the number of state­
ments compiled to somewhere between 50 and 100 statements per minute. 
A rough conversion factor of 6 to 8 object instructions generated per source 
statement indicates that for the total Space Shuttle onboard program, as­
suming the moderate hardware configuration, the compilation time will be 
on the order of 15 to 30 minutes. This would be excessive. However, by 
doing most of the compilation at a module or task level, total compilation 
time required for software development using even a relatively time­
consuming compiler will be practical. Thus even compilation times of the 
magnitude suggested above will not have a significant impact on the prac­
ticality of a high-order language for Space Shuttle. 

7.2. 5 Cost and Availability 

Compilers are large, complex programs: those for simple languages con­
sist of upwards of 50,000 instructions, while those for large languages are 
even larger and more costly than the proportional increase in language size 
might indicate. It is apparent that the Space Shuttle compiler may be as 
large as or larger than the onboard program to be created. In commercial 
applications the cost of developing a large and complex compiler is justi­
fied by the great number of programs that will be compiled during its use­
ful lifetime. The cost of a Space Shuttle compiler cannot be spread over 
more than a few complete onboard program developments; further, exten­
sive optimization capabilities -- not normally included in commercial com­
pilers because of their development cost -- will be required. The cost 
savings attributable to the use of a high-order language thus must be sub­
stantially greater than the relatively high, concentrated expense of compiler 
development. The magnitude of the software required for the moderate 
and maximum hardware configurations indicates that this will be the case 
for Space Shuttle. In addition, using the language can have a beneficial 
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7.3 

effect throughout the software development cycle, thereby further in­
creasing the overall cost savings. 

Language Influence on the Software Development Cycle 

The language capabilities and features discussed in Section 7. i .principally 
relate to the extent to which onboard programs for Space Shuttle can be 
developed without resorting to extensive machine- or assembly-language­
oriented coding. The benefits of using a suitable high-order language for 
coding this software, while significant, can be even greater if the language 
can also be used in the other phases of the software development cycle. 
Language capabilities necessary to each development phase, including 
programming, are summarized in Table 14. The capabilities called out 
in the table are in many cases contradictory. Thus, although comprehen­
sive general-purpose capabilities are desirable for program specification 
development, this requirement is at odds with a straightforward and simple 
compiler implementation to enhance suitability for the programming phase. 
Similarly, it would be desirable for the programming phase if there were 
few restrictions, but for checkout and verification it is important that pro­
gramming standards be enforced. Because of these and other unavoidable 
contradictions, any langua-ge will be a compromise insofar as its applica­
bility to all development phases is concerned. 

To describe how a high-order language can be gainfully used throughout 
the software development cycle, some specific approaches are outlined be­
low. Many of the features described are not now provided in the six can­
didate languages; the discussion indicates the type of desirable language 
extensions. 

Assuming that a high-order language is to be used for developing the opera­
tional software, one advantage in using it also for the programming done in 
the program specification development phase would be improvement of the 
specification itself. As a result, the specification could contain the actual 
programs that satisfy its requirements to the extent necessary at that phase 
of the development. This would be particularly useful if the programs were 
organized on a modular basis according to the functions to be performed. 

As an example, consider how a guidance and navigation program would be 
developed if the specification were enriched in this way. The program used 
to develop the requirements for performing guidance and navigation would 
very likely be unnecessarily sophisticated with regard to some functions 
(e. g. , trigonometric subroutines) that are readily available from utility 
program libraries. At the same time, it would be too elementary in other 
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Table 14. Language Characteristics for 
Different Software Development Phases 

Necessary
 
Development Phase Language Characteristics 

Program specification Comprehensive general-purpose 
development capabilities 

Easy interface with other soft­
ware tools 

Amenable to program modularity 
Intelligible to nonprogrammers 

Programming 	 Few restrictions
 
Easy to learn and use
 
Concise and natural
 
Straightforward and simple
 

compiler implementation 

Checkout and 	 Extensive syntax and semantic 
verification error detection facilities 

Maintains program modularity 
Enforces programming standards 
Minimum error-provoking or 

ambiguous features 

Maintenance 	 Self-documenting 
Isolates changes and minimizes 

their effect 
Extensible 
Hardware and application indepen­
dence
 

functions (e. g. , steering command calculation and position determination) 
that must be developed from scratch and for which greater detail is not 
required for mission planning purposes. The program specification thus 
would contain not only a selected mission profile but also a program which 
generates such a profile. Continuing with this program that demonstrates 
that mission requirements can be met without precisely describing how to 
meet them, the too-sophisticated and too-elementary modules would be 
replaced by modules representing the exact algorithms to be used. As 

substitutions are made, a more and more complete picture of the actual 
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trajectory to be flown for various vehicle and environmental conditions 
will develop. These algorithms, coded in the high-order language, would 
form the core of the final guidance and navigation program whose develop­
ment is completed during the programming phase. The activities of this 
phase will be directed in large part towards the program's computer­
dependent aspects; the actual algorithmic solution will have already been 
presented in a manner which makes its incorporation in the final onboard 
program a relatively simple task. 

The use of a common language in all phases of onboard program devel­
opment requires that the language and ancillary software possess certain 
capabilities. Information is added at each stage of the development, and 
both must allow its acceptance simply and completely yet should not com­
plicate earlier phases because of its absence. As an example, the required 
range and precision of each variable will not be known at the beginning of 
program specification development. The initial analysis thus must be con­
ducted with ranges and precisions far greater than will be required. 
Through simulations conducted with these excess values, those values 
needed to meet mission requirements will be established. During the 
programming phase the appropriate changes will be made to the program 
developed in the earlier phase to maintain these actual values, given the 
word length and arithmetic characteristics of the actual flight computer. 

Programs written during the initial information-gathering phases will be 
designed to execute on large-scale general-purpose computers because of 
their suitability to the computational tasks, while the final onboard program 
must execute on the intended special-purpose aerospace computer, or a 
simulation of it. This would imply that two compilers would be needed, and 
their development is one approach that can be taken. However, the structure 
of most compilers suggests a different, more cost-effective, and far more 
versatile approach. Most compilers have two main stages: a syntax analy­
sis stage in which the source language is translated into a computer­
independent intermediate language, and a code generation stage in which 
the intermediate language is translated into the computer-dependent language 
of the intended machine. In this approach, compilation of programs written 
in support of specification development would be terminated at the end of 
the syntax analysis stage. Execution of the intermediate language programs 
thus obtained would be performed through the use of an interpreter. This 
would be like the onboard computer simulation used later, but more power­
ful and flexible in control over the details of arithmetic operations, and 
potentially a good deal faster. 
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The power and flexibility inherent in -this approach results from the capa­
bility of the compiler/interpreter user to specify the numeric r'epresentation 
of variables and parameters manipulated by the program and to change this 
representation with only minimum changes to the program, if any. The 
utility of this concept, which has been called dataless programning, has 
been examined through an expefimental progranuning language. -Dataless 
programming allows the user to specify the procedures for manipulating 
variables and parameters independently of their representation.. If during 
program specification development he wished to study how a control algorithm
functions for various word sizes, he would simply change the number of digits
declared for each variable and parameter utilized in the algorithm but would 
not modify the procedures implementing the algorithm. Similarly, all pro­
gramming done during early development phases would utilize floating point 
for variables and parameters; only during the actual programming phase
would a restriction to the fixed-point mode be introduced if made necessary 
by the onboard computer's architecture. 

The use of the dataless programming approach, while frejeing the analysts
from concern over the details of range and precision requirements, memory 
allocation-, hd similar computer-dependent aspects, does have some disad­
vantages that must be examined. First, there will be an increase in compu­
tation time to execute programs in an interpretive mode. However, this -is 
compensated for by a reduction in the compilation time, since only the syntax 
analysis stage is executed, and by the fact that fewer computer runs are 
required, since the information gathered from individual runs increases. 

A second-possible disadvantage is that errors might exist in a program and 
might remain"undiscovered as long as it is being executed interpretively, 
to be found only when machine language code is generated. It turns out that 
the common-language compiler/interpreter approach actually reduces the 
possibility of such occurrences. In the first place, the errors in translation 
from one language to another are eliminated. Second; the syntax analysis 
stage would be identical for both the interpretive and the machine code ver­
sions, as would be the error-chegking facilities built into this first stage;
therefore, 'differences between the results of program compilation would be 
fewer for -this system than if two separate compilers were developed. Any
remaining error situations are largely due to errors or deficiencies in the 
code'generation stage of the compiler and, as such, can therefore be mini­
mized through attention during compiler debugging and experience with the 
system. 

A third disadvantage is the possibility that utilizing the results of one phase
in another phase with relatively little repetition of the work will reduce the 
amount of independent verification. It has been argued that the duplication 
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7.4 

of effort in reprogramming for each phase is beneficial in that it reduces 
the likelihood that errors will be transmitted undetected from one phase 
to another. This reliance on redundancy is a costly way to achieve confi­
dence; a better solution is to provide within the system powerful program 
debugging aids that become a part of the onboard computer program itself 
and are carried with it through the development process. Providing and 
using such debugging facilities can eliminate much duplication in verifica­
tion activities, just as duplication in the programming activities is elimi­
nated by the use of a common language. System analysts can, by including 
debugging statements in the program specification, precisely specify the 
tests they want performed and the reports they want generated in later 
phases of program development. These tests would be performed and the 
reports generated automatically, with no further action required by the 
programmer. 

Summary of Conclusions 

No existing language meets all of the conflicting requirements that must be 
fulfilled if Space Shuttle software costs are to be held to the minimum. 
What is wanted is a language that is simple and easy to use but completely 
capable, is' computer independent but offers full control over all computer 
capabilities, and is very cheap to implement in a compiler but generates 
efficient object code. It is unlikely that such a language could be defined; 
any attempts to develop a perfect Space Shuttle language are likely to result 
only in a language having new and different compromises. 

Of the six languages examined, FORTRAN is the most clearly unsuitable. 
The only advantages it offers are simplicity, the existence of extensive 
experience in writing compilers for it, and some suitability for use in 
other phases of Space Shuttle software development. It provides very few 
of the needed capabilities: less than 50% of the required Space Shuttle on­
board software could be written in it. 

CLASP and SPL Mk II are suitable for a greater percentage of the onboard 
software development; about 70% of the software for a minimum hardware 
configuration and 50% for a maximum configuration could be written in 
either language. Compilers for aerospace computers have been written for 
these languages, and the object code they generate indicates that a reasonable 
degree of efficiency can be expected. Each language is small enough that a 
Space Shuttle compiler can be developed without significant problems or 
excessive cost or schedule impacts. However, these languages would not 
be suitable for use in all phases of the software development cycle unless 
modified. 
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Substantially all of the onboard software could be developed using the 
comprehensive languages HAL, SPL Mk IV, and PL/I, with the first two 
being slightly more suitable. These languages would also be applicable 
for use throughout the software development cycle, particularly if they 
were enric-hed with debugging and verification features. Compiler develop­
ment is likely to be more costly than the Space Shuttle alone could justify. 
Compiler development time could become critical to onboard software 
development and would certainly preclude using these languages in earlier 
software development phases unless off-the-shelf compilers were utilized. 
Furthermore, the efficiency of the generated object code is likely to be 
poor until all implications of language complexities are fully understood and 
the problems they engender are adequately solved. 

The lack of a language that neither has deficiencies in its capabilities nor 
poses compiler implementation difficulties prevents making an unqualified 
recommendation. In general, any of the special-purpose languages --

CLASP, HAL, or either version of SPL -- offers enough benefits to warrant 
its use in Space Shuttle onboard software development. It is expected that 
some portions of the program, particularly the executive, will have to be 
written in assem bly language. This is so for the minimal languages because 
they do not provide all of the necessary facilities, and for the comprehensive 
languages because the object code efficiency would be too low. 
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8. VERIFICATION TOOLS AND TECHNIQUES 

The software and hardware used to test and verify the proper operation of 
onboard software are costly but vital elements in the development process. 
Past systems have relied heavily on simulation for software testing and 
verification. One reason for this is the impossibility of performing ade­
quate testing in the operational environment; another is that simulation 
provides increased visibility into and control over the details of software 
behavior and its interaction with other subsystems. 

Many of the disadvantages of simulations, such as the development cost, 
the difficulty in achieving a proper blend of simplicity and fidelity, and the 
time required to use them, will become more pronounced because of the 
expected greater complexity in Space Shuttle software and hardware com­
pared with past systems. For these reasons improvements in the major 
simulation types - - engineering, interpretive, and hybrid -- are required, 
and new software testing and verification tools must be developed to sup­
plement their use. 

8. 1 Engineering Simulation 

The first tool to be employed in Space Shuttle software development is the 
engineering simulation. It is continually used during software development, 
and the vehicle and environmental models it contains are used as the basis 
for sinilar models in the later interpretive computer simulations. 

The engineering simulation runs on a general-purpose computer and 
typically exercises a limited environment and a subset of the flight equa­
tions to perform parametric studies and design tradeoffs. An accurate 
simulation of this type usually runs faster than real time, with the ratio of 
real to simulated time dependent on the accuracy with which the system is 
modeled. Within its constraints, an ehgineering simulation is economical 
to build and use. 

While the engineering simulation is rapid and inexpensive, it is character­
istically imprecise in its representation of the digital or interfacing hard­

ware, and is seldom designed to even approximate software performance 
in meaningful detail. For deriving or verifying gain settings, approxi­
mations, targeting errors, and related factors, coarse modeling is ac­
ceptable. As sophistication is added to the models, two paths tend to be 
followed. Some systems add sophistication to the environment model 
beyond the point where the imprecision of the computer model makes en­
vironmental accuracy meaningful; others increase the accuracy of the 
computer model until the drawbacks of the ICS are achieved without its 
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advantages. Consequently, judgment must be used to determine where and 
when an engineering simulation should be used and what the simulation 
should include if the best compromise between sophistication and usability 
is to be achieved. Each engineering simulation must also be constructed 
so that its behavior and results can be easily correlated with the results 
of other engineering, interpretive, and hybrid simulations. This requires 

that: 

* 	 Its abilities and limitations are sufficiently understood to 
determine the range of tests for which it is suitable. 

* 	 Its output formats are consistent with those derived from 
finer models so that comparisons can be made. 

* -Its use is not extended beyond its known capabilities. 

Many existing engineering simulations are suitable or can be modified for 
Space Shuttle software development. Their use would save simulation 
development costs and, more important, reduce the time and cost required 
to become familiar with simulation behavior. 

During the development of Apollo, a highly successful engineering simu­
lation was built integrating equation-level flight programs with a general­
ized trajectory package. This Apollo Reference Mission Program (ARMP) 
provided a complete analytic "tool for parametric studies and for determi­
nation/verification of flight program parameters. The need for lunar 
operations in ARMP entailed significant complexity that is not required for 
Space Shuttle. Competitive simulations exist in modular form which may 
be evaluated to select a baseline engineering simulation for the Space 
Shuttle. For this project, the primary new requirements are extensions 
to simulate the atmospheric flight phases and to achieve input/output 
compatibility with the other simulations to be used. To assure adaptability 
to changing mission requirements, modularity of the simulation is essen­
tial; similarly, the need for confidence in test results suggests the use of 
a baseline program already developed. 

The 	basic engineering simulation model at the highest level of abstraction 

is shown in Figure 23. The three blocks at the top of the figure represent 
the major components of the guidance, navigation, and control subsystem. 
The top center block, Data Processing and Guidance, represents all the 
functions carried out by the onboard computer and its software. The solid 

blocks enclosed in the two dotted blocks labeled Kinematics and Kinetics 
represent vehicle dynamics. The bottom block, External Environment, 
represents everything not included in the others, such as man/computer 

communication and anomaly generation. 
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These functional blocks can be used to clarify the terminology applied to 
simulations to be used in Space Shuttle software development. A six­
degree-of -freedom (6D) simulation would include a model for each of the 
solid blocks, ahd detailed submodels for most of them. A three-degree­
of-freedom (3D) simulation would not include an authentic representation 
of rotational kinematics and those portions of the sensors and control 
models that relate to rotational dynamics. In an engineering simulation, 
the data processing and guidance model will not necessarily completely 
represent the functions performed by the onboard computer, but instead 
will represent a form of the guidance equations more convenient to the 
programming language and architecture of the machine on-which the 
engineering simulation itself runs. 

In a 3D simulation, the three degrees of freedom consist of the three inde­
pendent coordinates that define the vehicle's translational motion. ( A rigid 
body is assumed in 3D and 6D simulations. ) A 3D point-mass simulation 
is a true three-dimensional simulation in that the vehicle is treated as a 
point mass and no rotational motions enter into the computations in any 
form. The fast execution speeds of these simulations make them ideal 
for planning studies, gross sizing and tradeoff analyses, and those por­
tions of detiiled analyses that do not depend on rotational effects. In a 
3D zero-moments simulation, center of pressure, center of gravity, and 
a central thrust application point are located within a vehicle coordinate 
system as functions of mass distribution, overall engine locations, and 
aerodynamic characteristics. Turning moments produced-by aerodynamic 
forces are computed, and a single thrust vector is applied such-that the 
total turning moments acting on the vehicle equal zero. The vehicle's 
,attitude is specified independently in terms of attitude rates or attitude 
angles. 

The 6D simulation, like the 3D zero-moments simulation, treats the 
vehicle as a three-dimensional rigid body but includes three additional 
degrees of freedom- in the form of rotational motion in three dimensions. 
The vehicle control system is simulated to at least the lowest response 
frequencies, and the integration step size is correspondingly diminished. 
The increase in running time of 2 6D simulation as compared to a 3D 
simulation is due in part to an increase in computational complexity, but 
is even more a result of a higher frequency for control system calculations. 
The differences in computational frequencies between 3D zero-moments 
and 6D simulations can be of the order of 50:1 (1/2 sec to 10 rnsec). Hence 
using a 6D simulation in its pure digital form is a time-consuming proc­
ess. Whereas 3D simulations run-faster than real time on computers of the 
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8.2 

UNIVAC 1108 class, 6D simulations usually run considerably slower. "The 
more heavily used 6D simulation programs have been generalized to allow 
greater flexibility and growth potential, but these very features have tended 
to place additional burdens on the user, whose primary interest is in being 
able to perform his runs with a minimum of extraneous manipulations and 
delay. Also, even with the added complexity and smaller step sizes of the 
6D simulations, the digital models may not sirhulate high-frequency-response 
characteristics with the fidelity required by control system users. Oh the 
other hand, the all-digital 6D simulation provides repeatability, flexibility 
of execution, accuracy., extensive data output capability, and the capability 
to monitor and trace variables. 

Interpretive Computer Simulation 

Engineering simulations contain imperfect models of the computer system 
that, although adequate for such things as program specification develop­
ment and software sizing, are inadequate for onboard software checkout 
and verification. The need for a very accurate computer system model 
for checkout and verification suggests that the actual onboard computer be 
employed, and this is done in the hybrid simulations reviewed in the next 
section. However, in many cases the actual computer hardware is not 
suitable for software debugging and verification owing to its lack of diag-. 
nostic information and options in execution. Also, the actual computer, 
may not even be available early in the software development cycle. Hence 
it is generally necessary to employ a simulation that faithfully represents 
the condition of every register in the onboard computer before and after 
the execution of each inistruction and that also maintains a simulated-real­
time clock. Such a register-by-register simulation can be implemented 
through either the translator or the interpreter method. 

With the translator, method, the computer program, which is originally in 
the onboard (target) computer language, is preprocessed to produce an 
equivalent' program in the simulator (host) computer language. The sub­
sequent execution of the new program on the host computer is equivalent 
to execution of the original program on the target computer. When the 
translation is faithful, the host computer code will include all operations 
necessary to repiresent the target computer's word length, instruction 
functions, and timing. When absolute fidelity is not required, simplifi­
cations such as neglecting word-length differences are made. The number 
of host computer instructions per target computer 'instruction depends on 
the architectural differences between host and target computers and the 
faithfulness of the translation. In any case, the translator method tends 
to create host computer storage problems owing to the expansion of the 

-131­



program when translated. On the other hand, the speed of execution of 
the translated program is not reduced by repeated examination of each 
target computer instruction, as is the case with the interpreter method. 

The interpreter method also involves a one-to-many transformation of the 
computer program code. However, instead of producing an entirely new 
program for subsequent execution on the host computer, the ICS takes the 
target computer code as input and faithfully executes it by means of calls 
on subroutines that produce exact copies of the target computer registers 
and set a simulated-real-time clock after each target instruction. Since 
the ICS interprets the target computer code at execution time rather than, 
executing a translated code, it is inefficient in that it retranslates each 
target computer instruction each time it is encountered. On the other 
hand, this procedure facilitates the handling of modifiable instructions, 
interrupts, and diagnostic functions during execution.t 

Figure 24 shows a typical ICS control loop. The first step is to obtain the 
target computer instruction whose execution is to be simulated. This 
instruction is then decomposed into its component parts, such as the 
operation code, operand address, etc. Based on the operation code, the 
control loop then branches to the appropriate subroutine for simulating 
the instruction's execution. The instruction subroutine can be very simple, 
particularly if the instructions for the host and target computers are very 
similar. The simulated-real-time clock is usually updated by the instruc­
tion subroutine because the target computer instructions vary as to their 
execution time; this may even be a function of the operands being manipu­
lated. The instruction subroutine returns to the control loop and the 
simulated-real-time clock is examined to see if it is time for an interrupt, 
an I/O update operation, or further vehicle and environment simulation 
computations. 

All of the steps to this point in the control loop are directed towards 
duplicating the target computer's behavior, with little information being 
generated for the programmer or analyst beyond that which he could 
obtain by observing the actual target computer executing the same pro­
gram. A typical ICS requires the execution of approximately 25 host 
instructions to perform the operations just described in the simulation of 
a single target computer instruction. The coding of the ICS control loop 
and the instruction subroutines is a relatively simple and well-defined 
task for a typical onboard computer; the major problems are in the input 
and output interfaces. If these tasks were all that were required in the 
development of an ICS, the total job would take only a few manmonths. 
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The remainder of the operations outlined in Figure 24 enable the ICS to 
be a powerful debugging and verification tool, and require most of the ICS 
development effort. These operations consist of testing both time and loca­
tion keys to determine whether any diagnostic functions should be performed. 
A location key is associated with a particular instruction in the onboard com­
puter program; only the simulated execution of that particular instruction re­
sults in the indicated diagnostic function being performed. A time key, on 
the other hand, is not associated with a particular instruction; the indicated 
diagnostic functions are performed whenever the simulated time reaches a 
certain value, regardless of the instruction being executed. Time keys may 
also be periodic in that they both invoke a diagnostic function at the current 
time and set a new time key which invokes a diagnostic function at some later 
time. Examples of diagnostic functions include the printout, in convenient 
formats, of register and memory contents; the checking and comparison, 
within specified limits, of register and memory contents; and the injection 
of controlled errors into input or intermediate parameters. 

While -a majority of the ICS development effort is devoted to the diagnostic 
portions, most instructions will not invoke any diagnostic functions. The 
execution time penalty paid for these extensive diagnostic facilities is 
due almost'entirely to the testing of the location and time keys. This 
testing can be accomplished with about five host computer instructions. 

ICSs are employed either open loop or in closed loop with the effects of 
vehicle and environmental behavior supplied by the appropriate elements 
of the engineering simulation. In the open-loop rcade, ICSs are used in 
coding and checkout to perform simple tests on small routines, instruc­
tion sequencing, and merging of program modules. In the closed-loop 
mode, they are used extensively for detailed onboard program testing 
and accuracy assessment. In closed loop with an engineering simulation, 
the ICS often offers a better diagnostic capability than the actual target 
computer ahd is easier to maintain. Such a system has complete 
repeatability and can be used to create artificial stimuli to force the 
program into seldom-used branches when desired. 

The speed of an ICS is slower than real time. If the selected Space 
Shuttle computer fulfills the computational requirement of the moderate 
load outlined in Section 3 (120, 000 words, 0. 25 msec add time), the 
increase in speed compared with the Apollo Guidance Computer will have 
a great impact on the practicality of extensive ICS utilization. 
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To facilitate discussion of these matters, the basic simulation speed is 
defined as follows: 

T 

p 

where T
P 

= time required to perform real-world process p, (real time) 

Ts(p) = time required to simulate p on simulator s 

For ICS considerations, P can be considered to be a function of the 
following target and host computer relationships: 

1 -	 the ratio of host computer speed to target computer speeds 

11 - the average number of host computer instructions (per 
target computer instruction) to simulate a target computer 
instruction 

p. 	 - the average number of host computer instructions (per' 
target computer instruction) to perform diagnostics 

S- the slowdown due to the vehicle and environmental simu­
e lation (simulation time to real time) 

The 	approximate functional relationship between the above factors is 

p=p Us(n + Pd ) + Pe 

A more precise formulation for p might require that a least-common­
speed quantum and a least-common-instruction quantum be defined to 
more faithfully represent the relation between p and pn. For example 
a more accurate pn cam be computed as a wejghled average of the 
number of basic host computer cycles required to simulate the various 
target computer instruction types, as follows: 

in nZ 	 w.Z.b 
.=i jlii 'j 


Pn- m
 

W.
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where n = t6tal number of target computer instruction types 

n = total number of host computer instruction types 

w. = weighting factor that reflects the usage frequency of the ith
i target instruction type 

a.. = number of times the jth host computer instruction type is 
1i used in simulating the ith target computer instruction type 

b. 	= number of host computer cycles to perform the jth host 
computer instruction type 

Average values for V. appear to fall within a range of about 15 to 30, de­
pending on the severity of differences between host and target computer 
architectures. Certain assumptions are inherent in these considerations, 
e. g., host computer word length is greater than or equal to target com­
puter word length. The best p. values can be expected when host and tar­
get computers come from the same "family, " such as the UNIVAC 1830 
and i108 or the IBM 4PI and 360. When the target computer is a true sub­
set of the host computer, 1n will approach unity. 

For 	the Space Shuttle it is very unlikely that p. would ever equal I regard­
less 	of the compatibility between host and target computers. Even when 
the instruction sets are compatible, slight differences in timing and input/ 
output characteristics, interfacing with a vehicle and environmental simu­
lation, and providing comprehensive location- and time-keyed diagnostic 
functions will necessitate executing essentially all the control loop func­
tions outlined in Figure 24. To be effective an ICS must be more than just 
a simulation of the target computer; it must provide more capabilities for 
verification. Therefore, a host computer must provide more than just in­
struction set compatibility if substantial improvements in basic simulation 
speed are to be obtained. A microprogrammable host computer could 
achieve this; however, full employment of the nicroprogramrning features 
would require that the basic control loop as well as the instruction subrou­
tines be coded in the microprogramning language rather than in the basic 
machine, assembly, or higher order language used to develop the conven­
tional ICS. Such a microprogrammed ICS would be desirable as far as the 
improvements possible in the 1n ratio. However, no large general-purpose 
computer available today appears to offer the flexibility needed for ICS de­
velopment while retaining all characteristics necessary for the other pro­
grams it must execute, such as the system executive, assemblers and com­
pilers, and the vehicle and environment simulation. 
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Another approach to reducing the total time of simulations is to reduce 
the ps ratio by employing faster host computers. Unfortunately, the speed 
of general-purpdse computers is not likely to increase in proportion to the 
increase in the hypothetical moderate Space Shuttle computer over the 
Apollo Guidance Computer, indicating that even if the fastest general­
purpose computers are employed there will be an increase in simulation 
time owing to the ps ratio. 

oTwo remaining factors in total simulation time are pd and Ie To decrease 
pd (the average number of host computer instructions performing diagnostic 
functions), a corresponding reduction in the power, amount, and complete­
ness of the diagnostic functions performed would be required. To allow 
this to occur would be self-defeating because the principal advantage of the 
ICS is its diagnostic capability. As the discussion to follow will demonstrate, 
more rather than less diagnostic capabilities should be employed; therefore 
Pt1 will increase slightly rather than decrease. Reductions in pe (vehicle and 
environmeit simulation time) are tied to the accuracy of the models employed, 
although some savings may be possible by using 6D simulations only for the 
mission phases and program testing where 3D cannot be used. Hence no 
significant changes in this factor are expected. 

Based on estimations of target computer speed for the moderate Space Shuttle 
computer system presented in Table 2, and assuming a host computer com­
parable to tle UNIVAC 1108, a basic simulation speed of 100 can be expected. 
Even with the most optimistic values for is and un and a nearly compatible 
and very fast host computer, the basic simulation speed would remain as 
high as 20. The corresponding simulation speed for the Apollo Guidance Com­
puter was about 3. 

Because of the anticipated and unavoidable indrease in ICS execution time for 
the Space Shuttle, it is imperative that improvements be made in utilizing 
the information obtained from each simulation, thereby reducing the total 
number of simulations that must be run. 

While ICSs contain numerous aids for analysis, the full potential of automat­
ed aids has not been realized. For example, one of the functions that must 
be verified is that a flight program issues discretes at precise points along 
the trajectory. This is typically checked by having the ICS print out the value 
of time associated with the discrete issuance, and having an analyst manually 
confirm that the discrete issuance was timely. If it was not, he must deter­
mine why, make a fix, and start again. The checking of discrete times could 
be automated, thereby saving the time required to make the check. (It could 
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also provide for the display of information concerning the discrete occur­
rence, and if the issuance were bad could stop the run automatically, thus 
saving computer time. ) In general, any function that is amenable to check­
listing for testing purposes is potentially amenable to this type of treat­
ment. 

Another type of aid that can be considered involves the use of ICSs in 
program development. During the early debugging stages the program­
mer is not particularly interested in many of the powerful 1CS debugging 
features. He would be interested however, in inserting simple driving 
data and hand-computed comparison data at intermediate points. In the 
event that the comparison failed, the programmer would then be able to 
trace information back to the last valid comparison point. 

It appears that only where ICSs are heavily used in a production mode 
for verification does their cost, in terms of computer time, approach 
the cost of the user-analyst. In most other instances the user cost is 
more, sometimes (e. g. , in code development) considerably more. 
Therefore, to utilize ICSs effectively, ways must be found to reduce 
their running time, and even more important, to increase the informa­
tion obtained from each simulation run and to reduce the number of 
simulations producing no information. Thus a definitive need exists to 
shift to the simulation the work now performed by analysts. 

In the preceding section the use of a high-order language was recom­
mended for onboard program development. By integrating the develop­
ment of the compiler for this language with the ICS, debugging and 
verification can be greatly facilitated. Among the improvements gained 
is the ability to perform these tasks using the same symbology as that 
used in program development. Another is the ability to have the tests 
constructed and performed in one stage automatically repeated in later 
stages. The integration of the compiler and ICS requires directives that 
until now have been used to control ICS operation be made part of the high­
order language. Some of the candidate Space Shuttle languages, notably 
CLASP and SPL, already contain directives that allow debugging functions 
to be iniated through the language itself; these functions are rudimentary 
but can serve as the base for the powerful capability needed. The debug­
ging aids, although included as part of the source program, generate in­
put for the ICS that cause it to perform the required functions. They in­
crease the information obtained about the program's behavior during simu­
lation, but do not affect its behavior as such. 
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8.3 

In the design of debugging aids, provision must be made to include the 
functions required during all program development phases: specification 
development as well as programming. The general form of the functions 
that should be included can best be described by providing an example. 

The capability of signaling that a computed quantity exceeds specified 
limits is one necessary function. Assume that during specification devel­
opment a requirement is established that vehicle acceleration, as deter­
mined by the program, must not exceed some maximum value. This re­
quirement could be included in the source program by a statement of the 
form SIGNAL ERRORA WHEN VDOT IS GREATER THAN 200. In process­
ing this command, the compiler would transmit information to the ICS that 
would cause the setting of flags such that whenever VDOT was calculated a 
comparison would be made between it and the critical value ZOO. When­
ever it exceeded ZOO, the message labeled ERRORA would be printed by 
the ICS.- Similarly desirable debugging functions would make it possible 
to describe timing limitations on program execution, or to describe in­
valid program execution sequences. The analysts responsible for speci­
fication development should be able to describe, within the format of the 
debugging aids, as much of the requirements imposed on the onboard pro­
gram as possible. These computer-intelligible statements would be made 
a part of the program included in the specification. Then the appropriate 
checks to verify conformance with the specification would be made auto­
matically on all subsequent executions of the program in the ICS mode. 

Hybrid Simulation 

A hybrid simulation incorporates digital and analog devices and, in many 
cases, the actual avionics system hardware. The onboard computer is 
represented in the hybrid simulation by an exact hardware equivalent. 
The simulation of the vehicle and environment is provided by a combina­
tion of digital and analog computers, together with any actual avionics 
hardware that itself is to be tested or that is needed to provide realism 
because computer models are inadequate. Interfaces between the on­
board computer and the vehicle and environment simulation are similarly 
providedby digital or analog devices or, when appropriate, by actual avi­
onics system hardware. Other hardware, such as recorders and displays, 
is incorporated in the hybrid simulation to aid in observing the simulation' s 
behavior and to record intermediate and final results. Generally, such 
recording and display devices are oriented more towards observing and 
recording the parameters measuring vehicle and environment behavior 
than towards providing any insight into the operation of the onboard com­
puter software. Finally, other peripheral hardware is provided for loading 
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the onboard computer with instructions and constants and determining 
the contents of computer memory and registers, although in a static 
rather than a dynamic sense. 

Where a significant amount of actual avionics system hardware is em­
ployed, the effect of its behavior on the overall system is usually repre­
sented more accurately than in any other simulation. However, when 
actual hardware is incorporated into the hybrid simulation, it is often 
necessary to modify either other avionics hardware elements or the sig­
nals generated by them to adequately represent flight conditions in the 
laboratory. In that event, particular attention must be given to the fi­
delity of the altered element, since the effects of a modeling error may 
be both significant and subtle. 

Because it employs the actual flight computer and some avionics system 
hardware, a hybrid simulation can run in real time. For some purposes, 
such as subsystem testing and crew training, this real-time behavior is 
very desirable, if not absolutely mandatory. It demonstrates the correct 
interaction between hardware and software, eliminating most uncertainties 
that may still exist when only an idealized model of the hardware can be 
employed, as is the case with the interpretive computer simulation. 

There are significant economic and practical advantages for using the 
hybrid simulation rather than the ICS; these derive from its more rapid 
execution'time. For the larger Space Shuttle hardware configurations 
it will be possible to perform many more hybrid than interpretive sim­
ulations in a given period of time. Since the more times a program is 
executed correctly, the greater the confidence is in its overall correct­
ness, hybrid simulations will be used extensively-for Space Shuttle soft­
ware verification. 

The major deficiency of a hybrid simulation as compared to an interpre­
tive simulation is thatmuch less information can be obtained about de­
tails of program behavior. Whereas with an interpretive computer sim­
ulator the contents of an onboard computer register are easily obtained 
at any time during program execution, and the value found can be printed 
in any convenient format without interfering with normal onboard pro­
gram execution, with a hybrid simulation internal computer registers can 
be examined only when the onboard program's execution is halted. Thus 
with a hybrid simulation the great majority of software diagnosis must 
be accomplished by examing the inputs and outputs of'the computer and 
postmortem dumps of its memory and registers. 



Exact duplication of hybrid simulation results is very difficult to achieve. 
This further complicates its use in software verification, for it may not 
be possible to reproduce the symptoms of potential problems observed. 
To achieve simulation repeatability, three things are required: input re­
cordability, output recordability, and input specifiability. Input and out­
put recordability mean that all computer inputs-and outputs can be recorded 
in a format suitable for both the programmer-analyst and subsequent ma­
chine processing. Input specifiability means that it is possible to duplicate 
the inputs exactly, with regard to both numerical values and temporal se­
quencing. Repeatability and specifiability , particularly the latter, are 
very difficult to achieve in a hybrid simulation. 

In essence, because of its speed a hybrid simulation allows many more sim­
ulations to be run, increasing the chances of uncovering software problems. 
It is a poor tool for diagnosing these problems, once found: it does not pro­
vide sufficient information about internal software behavior and repeating 
the conditions that spotlighted the problems is difficult. 

The diagnostic capabilities of the hybrid simulation could be improved if 
the onboard computer could operate in conjunction with a monitor computer. 
In such a setup, the monitor computer has greater access to internal com­
puter operations, can simulate onboard computer internal operations to 
which it does not have access, and can record the detailed information ob­
tained for later formatting and output. The operation of the monitor com­
puter must not be allowed to interfere with the operation or real-time syn­
chronization of the onboard computer. The onboard and the monitor com­
puters must, of course, have facilities to permit monitoring in real time; 
this requires that the onboard computer possess capabilities not utilized for 
flight operations. The diagnostic-oriented design of the onboard and monitor­
ing computers combination can solve many problems not solved in current 
designs. 

Although the specific details of the required design characteristics have not 
been examined, a few examples will be presented to indicate their nature. 
One approach, illustrated in Figure 25, is to have the monitor computer 
share the onboard computer memory with the onboard processor. The mon­
itor computer can receive and record the inputs and outputs of the onboard 
computer; detect and duplicate the execution of each onboard computer in­
struction during program execution; and control the onboard computer clock, 
enabling the monitor computer to start or stop it when non-real-time opera­
tion is tolerable. The monitor computer's processor would have to be 
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significantly faster than that of the onboard computer, enabling it to simu­
late the onboard program's execution for instructions not involving memory 
reading or writing. The simulator of the onboard computer, which is part 
of the monitor computer, is no less accurate than an interpretive computer 
simulator, but would be considerably simpler for several reasons. First, 
it needs a minimal control loop since it receives, from the onboard proc­
essor through the instruction execution monitor, an indication of what in­
structions it should be simulating- Second, it has access to all of the in­
puts, outputs, and memory of the onboard computer. Finally, since the 
monitor computer is specially designed or adapted to operate in conjunc­
tion with the onboard computer, the two can be identical as to instruction 
set and other architectural characteristics, greatly simplifying develop­
ment of the onboard computer simulation. 
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8.4 

A difficulty in implementing such a diagnostic hybrid simulation lies in en­
abling the monitor computer to access the onboard memory without inter­
fering with the real-time behavior of the onboard computer. One way of 
accomplishing this is to have an onboard memory with twice the effective 
speed needed as far as the onboard processor is concerned. Another'way, 
although less desirable because it may introduce differences between the 
hybrid simulation's and actual computer's behavior, is to employ the double­
speed memory in the hybrid simulation-only and to use a similar, but 
slower, flight-qualified memory in the actual vehicle. In simulation, then, 
every second memory access cycle would be assigned to the monitor proc­
essor, while during actual flight every second memory access cycle would 
be a do-nothing operation. This effective reduction in available memory 
cycle time is a great price to pay for achieving verification suitability; and 
a detailed examination of other hardware alternatives to achieve the same 
end is required. An example of a less powerful scheme that should be stud­
ied for the onboard hardware is to allow the monitor to access the onboard 
memory only during the intervals when the onboard processor is not access­
ing it; such as when long multiply and divide instructions are being executed. 
Another scheme is to maintain a duplicate of the onboard memory within the 
monitor memory, updating it by means of the information received from the 
instruction execution monitor, with the monitor processor directly access­
ing the onboard memory only in non-real-time situations. 

The development of such a hybrid simulation diagnostic configuration would 
require extra hardware to be added to the basic onboard configuration, since 
no discrepancy can be tolerated between the onboard computer's behavior in 
the hybrid simulation and its behavior during an actual mission. One exam­
ple, in which this hardware has a faster memory than is actually utilized, 
has been discussed; other examples include the connectors, amplifiers, and 
isolation circuitry needed to accomplish the desired data paths. The bene­
fits obtainable by such a hybrid simulation diagnostic configuration are the 
greater amount of software testing and verification made possible in real 
time, and the corresponding reduction in the reliance that must be placed 
on interpretive computer simulations to completely diagnose problems first 
observed using hybrid simulations. 

Other Verification Tools 

The simulations discussed in the previous paragraphs have several dis­
advantages. From the standpoint of verification, the main one is that they 
can indicate the presence of software errors but caniot prove their absence. 
Thus simulation may lead to the detection of an error through the ob­
servation of an irregularity in the output, but the failure to observe any 
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irregularities may simply be due to the fact that the right combination of 
error-inducing input values and timing has not yet come about. In the past, 
this deficiency of the simulation as the principal verification technique has 
been compensated by performing very careful and detailed visfal checks of 
the software (often called desk- or sight-checking), and by also performing 
such a large number of simulations that most error-producing combinations 
will be exercised. 

The anticipated increase in the size and complexity of the Space Shuttle on­
board computer program will make the task of performing visual checks 
much more difficult and, coupled with an increase in the ratio of simulation 
time to real time, will reduce the completeness of the simulations that can 
be performed in a reasonable time. Therefore, verification approaches 
other than using simulations must be investigated. 

One such type of verification tool, the automatic flowcharter, has already 
been utilized in some verification activities. This tool produces flowcharts 
indicating the operations performed by, and the logical structure of, the on­
board computer program. The flowcharts it produces are similar to those 
made by a programmer-analyst, but more regular and without human errors. 
An automatic flowcharter suitable for verification is similar to flowcharting 
programs intended for software documentation purposes; these are offered 
by many software vendors. Unlike documentation flowcharters, a verification­
oriented flowcharter accepts as input either machine or assembly language 
rather than a high-order language, and can neither rely on nor utilize the 
comment fields in producing an acceptable and readable flowchart. The flow­
charts it produces are compared with the program specification, and where 
discrepancies are detected, the reason for and 'consequence of the discrep­
ancy are determined either by visual examination of the program or by exer­
cising the suspect area with the appropriate simulation. 

Because it must perform a fairly complete code analysis to produce its out­
put, the automatic flowcharting program can easily be augmented to perform 
repetitive checking operations. One example of such an operation is the gen­
eration of a comprehensive cross-reference list containing the names and 
addresses of all program variables, the program instructions referencing 
each variable by name, the means of reference (e. g., direct addressing, in­
dexing, or indirect addressing), and the type of referencing (i. e. , reading 
or writing). Where the same address has multiple references with different 
names, as would be the case when data regions are overlayed, the cross­
reference list would name the program elements sharing the common loca­
tion to aid in finding any data conflicts between otherwise independent 
elements. 
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The advantages of automatic flowcharters as compared to simulations are 
the reduced.computer time they require in use, the facility they provide 
for early checking of program segments that will normally be executed late 
in the mission, and the intelligibility of their outputs to nonprogrammers. 
Although the use of an automatic flowcharter requires the preparation of a 
correct, detailed , and complete program specification to serve as the com­
parison standard, this requirement should not be viewed as a disadvantage; 
such a programming specification should be prepared in any base. Con­
structing a practical flowcharter requires that restrictions be placed on the 
use of tricky or obscure code sequences in the program to be checked, but 
this merely means enforcement of good programming practices and should 
not be viewed as a disadvantage. 

The most significant real disadvantage of flowcharters, and one that pre­
vents them from becomingthe primary verification tools, is that the tech­
nique has not been used enough to provide the level of confidence obtained 
by observing that the program actually operates correctly during simula­
tion, even though the number of simulation runs is necessarily limited. 
This is reasonable: given the current state of their development, it is not 
expected'that automatic flowcharters would be able to reveal all of the soft­
ware errors in a given Space Shuttle computer program. In particular, 
omissions or ambiguities in the programming specification and error in 
program timing, interaction, and sequencing may not be uncovered. The 
only way to overcome this disadvantage is to utilize the automatic flow­
charter in parallel with conventional verification simulations. If, as ex­
pected, using the automatic flowcharter results in the discovery and diag­
nosis of many errors before they are detected in simulation, its worth will 
be demonstrated. For this reason it is recommended that an automatic 
flowcharter be developed and used early in the Space Shuttle program veri­
fication process. The cost of developing the tool, while not negligible, 
would be repaid by the fewer number of simulation runs otherwise required 
for verification. The automatic flowcharting program can execute on any 
conventional large-scale digital computer available; the difference in suit­
ability between computers is largely due to the availability of graphics sup­
port software. Although flowcharts can be produced on a conventional line 
printer, greater readability and conciseness requires a graphic output de­
vice-such as a high-speed digital plotter or a CRT/microfilm display and 
recorder.
 

As regards still other verification concepts, two general approaches have 
been explored. One would minimize the manual comparison of machine­
produced flowcharts against the programming specification by mechanizing 
the comparison, just as the creation of flowcharts is mechanized. This 

-145­



would require error-free and onboard-program-independent encoding of 
the program specification itself into a form suitable for internal computer 
representation. Such an approach is roughly equivalent to producing two 
versions of the program in different languages, one of which is machine­
oriented, and comparing the two. Except for the reduction in manual effort, 
this approach does not offer any verification advantages for Space Shuttle 
software development; indeed, it would require the additional step of demon­
strating the correctness of the way in which the programming specification 
was encoded. Only in a limited area is the performance of such automatic 
comparisons recommended: checking the values of program constants and 
discovering code sequences that violate established conventions or ground 
rules can best be accomplished using automatic verification tools. 

The other verification concept referred to above is the proving of program 
correctness by analytic methods. Basically, this consists of establishing 
the state and environment of the computer before the program is executed, 
determining the state of the computer after the program has been executed, 
and comparing the final state with the desired state. The description of the 
computer's final state includes not only the variables that were computed 
and retained in the computer memory but, more importantly, all variables 
that were output. In contrast to simulation, actual numeric values of vari­
ables would not be determined; instead, general expressions representing 
the relationships between variables would be constructed. For example, 
consider the program illustrated in Figure 26. By simulation it would be 
possible to establish that if the input variable at point a were -2, then the 
value of X at point b would be +Z. Using simulation alone, without further 
analysis of the program itself, many test cases would be required to estab­
lish that the X at point b is always equal to the absolute value of A. A 
program correctness proof for such a flowchart would assert that X at 
point b would be equal to A if A at point a is greater than or equal to 
zero, and would be equal to -A otherwise. This assertion can then be re­
placed by the equivalent assertion that X at point b is equal to the absolute 
value of A at point a. 

The advantage of such a program correctness proof is that the assertions 
as to program behavior are valid-for all data values, whereas simulations 
can be used to rigorously establish program behavior only for a limited 
number of data values. Of course in the simple example provided, the 
behavior for all data values can be inferred from a limited number of test 
cases; in a more complex program this is not often the case. 

Analytic program correctness proofs are described further in Appendix C. 
The theory of program correctness proofs for relatively ideal cases has 
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been studied for several years. The concepts outlined in Appendix C are 
a distillation of the findings until now, together with some new refinements 
that are a necessary first step in applying past work to the Space Shuttle. 
As indicated in the appendix, it is now possible to prove the correctness of 
small but fairly complex programs by manual methods. The next step 
should be to determine the limits, with regards to program size and com­
plexity, within which these manual techniques are practical. The princi­
pal problems with current program correctness proof, techniques are the 
complexity of the proofs developed and the considerable manual effort 
required to produce them. One reason for their complexity is that many 
of the assertions about a program's behavior do not relate to specific as­
pects of the programming specification, but result from internal program 
operations. The complexity can be minimized by intelligent selection of 
the significant assertions by the person developing the program correct­
ness proof, but this only increases the manual effort required. Concern 
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8.5 

with the amount of manual effort stems not only from its cost. What is 
even more important is the possibility that an error will be made, leading 
to an assertion that an incorrect program is correct. 

Completely automatic methods for proving program correctness probably 
cannot be developed soon enough to be of benefit in Space Shuttle verifica­
tion. A more promising approach, within the Space Shuttle time scale, is 
to develop a computer program for checking manually generated proofs. 
No saving in verification effort would result, but the possibility of error 
could be greatly reduced. One way for performing machine-checking of 
manual proofs is to insert assertions of program behavior in appropriate 
places in the program to be examined and then have the computer check 
whether the assertions are valid. 

Although program correctness proofs are a new and untested verifica-­
tion technique and cannot be expected to replace simulations as the major 
verification tools, it is recommended that the approach be further devel­
oped. First, it will supplement simulation activities, and experience in 
its application may allow reductions in the number of simulations that 
must be performed during verification. Second, the insight gained into 
program behavior will indicate program design approaches that facilitate 
verification, whether by correctness proofs or simulation. The methods 
presented in Appendix A for detecting program interaction and utilizing 
memory locks, and the method presented in Appendix B for locating save 
instructions to achieve restart protection are in part a result of the con­
cepts explored for program correctness proofs. 

Master Test Plan 

The development and use of verification tools described in the preced­
ing sections must be coordinated to minimize overall verification cost 
and maximize verification effectiveness. To this end a master test plan 
should be developed. The importance of doing so cannot be overempha­
sized, for the costs resulting from using duplicate or incompatible verifi­
cation tools and from unanticipated reiterations during verification can 
far exceed the hardware or software costs associated with any particular 
computer architectural feature. 

The following paragraphs describe the three aspects that the master test 
plan must cover; these are the levels at which verification activities should 
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be conducted, the allocation of verification tools to the tests conducted 

at each level, and the coordination of simulation tool development. 

8. 5. 1 Verification Levels 

The size and complexity of the onboard software make testing only the 
final, integrated program completely infeasible. Delaying verification 
until the complete program has been constructed would make it very dif­
ficult to isolate errors or anomalies. The calendar time and simulation 
facility time needed to perform all of the verification tests for every mis­
sion phase would both be excessive. Management would not have adequate 
visibility into the status and quality of the software being developed. And 
of course detecting errors early in software development simplifies their 
correction and greatly reduces total testing requirements. For these rea­
sons, verification must be done at each stage in the development of the on­
board program. The phasing should be such as to test small software units 
thoroughly; to assemble these units into large units that can be shown to be 
error-feee by testing the interfaces bet-ween'the smaller units; to test the 
growing program for progressively longer mission phases and/or more 
complex subsystems; and, finally, to compare the performance of the com­
plete, integrated program with the performance observed in all previous 
tests and with the mission requirements. Thus at least five distinct veri­
fication levels must be identified in the master test plan: 

o Functional testing 
* Unit testing 
o Miission phase/subsystem testing 
* Integrated testing 
* Miission verification 

For each of these verification levels, specific requirements must be satis­
fied before testing at that level can be considered complete. This does not 
mean that progressing from one level to another must await satisfaction of 
all requirements at the lower level; indeed, much testing maybe done in 
parallel. However, the most cost-effective place in which to discover er­
rors is the earliest possible level. 

8.5. f. i Functional Testing: Functional testing evaluates software per­
formance at the equation level to determine if the software design itself 
can satisfy all possible mission requirements. Thus it is concerned with 
the algorithms to be coded, rather than the code itself. The following are 
examples of performance aspects that must be demonstrated correct at the 
functional testing level: 
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" 	 Accuracy and stability 

* 	 Operator interfacing 

* 	 Redundancy requirements, including backup, reaction 
to failure, and reconfiguration 

. Capability of being verified 

* 	 Subsystem loading requirements, including volumes and 
rate s 

Functional testing is initiated as early as possible, that is, as soon as 
a fairly complete programming specification is available. When additions 
or modifications to the programming specification are made, functional 
testing is repeated to verify their correctness and assess their overall 
software impact. The results of functional testing are used as references 
for comparis6n with results of testing at higher levels. Another impor­
tant functional testing output is the identification of performance limits 
for the software design. Clearly if the basic design is adequate only within 
certain limits, the implementation of that design will-very probably lie 
within the same performance envelope. 

The principal tool employed in software testing is the engineering simula­
tion. B'ecause of the speed of the engineering simulation, a return to the 
functional testing level may often be advantageous in the diagnosis of soft­
ware deficiencies at a subsequent testing level. 

8.5. 	f. 2 Unit Testing: This is the first level at which the actual coding 
is tested, rather than the algorithms or some intermediate representation 
of the ultimate onboard program. A unit may be a subroutine, a program 
module, or any other identifiable program element that performs a specific 
function and that has interfaces with other units, receiving particular inputs 
and transmitting particular outputs to them. In general, units should be 
chosen compatible with: the subsystem hardware configuration, when the 
hardware is used during the mission plan, and what the functional require­
ments are. Thus one unit might be the computations associated with the 
rendezvous radar preflight checkout functions, and another might be attitude 
control during reentry. 

At the level of unit testing, verification is conducted in terms of require­
ments relating to the correctness of program units as self-contained pack­
ages. The primary effort is devoted to proving that the unit is a correct 
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translation of the specification for it. Some of the aspects of software 
behavior that must be demonstrated correct at this level are: 

o Unit entry and exit 
* Arithmetic accuracy 
o Nominal logic paths 
* Off-nominal and backup logic paths
 
e Ranges of variables
 
o Data format and sequence compatibility
 
a Execution time
 

Unit testing, initially accomplished with an interpretive computer simula­
tion operating in the open-loop mode, can profitably employ automatic flow­
chart generators and program correctness proofs as well. Closed-loop 
ICS operation usually requires a larger portion of the total onboard soft­
ware than a typical unit, so its use at the unit testing level is re­
stricted. When adequate unit testing can be done only in closed loop and 
the unit itself is not self-sufficient, the missing units can be replaced by 
their counterparts developed for the engineering simulation and already 
demonstrated to be correct at the functional testing level. 

The isolation afforded by unit testing from interaction with other segments 
of code is invaluable in localizing programming errors, timing irregular­
ities, and other difficulties at the subroutine level. Because of the isola­
tion of units and the concomitant isolation of the effects of software errors, 
errors detected at higher -levels can often be more efficiently diagnosed 
at the unit level, using the outputs from the higher levels to drive the sus­
pect unit in an open-loop mode to reproduce the failure. 

8.5. 1. 3 Mission Phase/Subsystem Testing: This is the testing of many 
program units assembled into a relatively large group that performs a spe­
cific function, such as all software used during boost, or all display system 
software. For the Space Shuttle, the.most likely grouping for testing at the 
mission phase/subsystem level is by functional breakdown, such as guid­
ance and navigation, and, within thei.functional breakdown, by mission phase, 
such as the guidance and navigationiportion of boost. 

Mission phase/subsystem testing diffrs from unit testing in that it requires 
the grouping of many units, and from't he subsequent integrated testing in 
that not all of the units are used, but only those required for a specific func­
tion or period of time. The mission phase/subsystem testing level assumes 
that there has been some previous unit testing, and is primarily directed 
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toward testing the interaction of the tested units. Requirements demon­
strated correct at this level include: 

* 	 Input/output processing 
* Interrupt processing
 
" Restart provisions
 
* Refreshing or reconfiguring the software 
" Performance of the range of anticipated mission objectives 
* 	 Operator interfacing 

Mission phase/subsystem testing uses both interpretive and hybrid simula­
tions, and also can employ automatic equation generators and program 
correctness proofs. Most simulations at this level are performed in the 
closed-loop mode. 

8. 5. . 4 Integrated Testing: This is the first level at which the complete 
onboard program is assembled and tested. Conformance with the program­
ming specification, previously checked for single units or functional groups 
of units at the earlier levels, is demonstrated at this level for every unit. 
At the level of full integration testing, the emphasis shifts to whether the 
program meets overall requirements and provides all needed capabilities. 
Integrated testing is concerned with interaction problems that become ap­
parent only with the final assembling of the complete program. Examples 
of software aspects that must be demonstrated correct at this level include: 

* 	 Integration of the assembled or compiled program 

" 	 Overlay structure 

* 	 Formatting, sequencing, and timing of data transfers 
between functional groups 

While integrated testing may be executed on either a hybrid or an interpre­
tive simulation, the large number of simulations required combined with the 
longer execution time of the ICS prevent heavy reliance on interpretive simu­
lation. Automatic flowcharters and program correctness proofs do not have 
very great suitability at this level, being chiefly useful for detecting and veri­
fying unit interactions unobservable at the lower levels. 

8. 5. 1. 5 Mission Verification: While prior levels are primarily concerned 
with ferreting out all errors that might lie within the program, the empha­
sis changes at this final level to verifying program aspects for a single 
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mission; that is, instead of being concerned with a broad data range, verifi­
cation testing is concerned with whether specific data and procedures will 
properly perform the mission for which they are to be used. This requires, 
among other things, that complete mission studies be conducted. 

Examples of software aspects that must be demonstrated correct during mis­
sion verification are: 

* 	 Satisfaction of all specific mission requirements 

* 	 Correspondence between mission tests and the results 
of functional testing 

* 	 Consistent and complete documentation 

One good technique of determining whether mission requirements are satis­
ffied is to compare the results of the detailed simulations used at this level 
(an ICS/ engineering simulation or a hybrid simulation employing a model 
of the flight computer) with the results of the earlier functional testing for 
which simpler simulations were used. 

8.5.2 Verification Tool Allocation 

The efficient utilization of the tools and facilities discussed above requires 
their allocation to appropriate verification levels so that fulfillment of all 
requirements at each level can be demonstrated. In the past, allocations 
have usually been made on a local basis, with little attempt to use general 
tools such as engineering simulations for more than one purpose; to develop 
such tools according to a common standard; or to take advantage at one level 
of information gained at an earlier level. The arguments in favor of spend­
ing the resources necessary to make an effective allocation are straightfor­
ward: the cost of developing the support tools and facilities could be lowered, 
some confusion in comparing results from different simulations could be elim­
inated, and the amount of effort required to set up specific tests could be 
rediiced. 

Several valid approaches exist for allocating tools and facilities to verifica­
tion 	levels, and each must be considered for the Space Shuttle. One is to 
determine the types of errors expected to be discovered at a level, and to 
allocate the tools and facilities most likely to reveal errors of the types ex­
pected to be most prevalent. For example, the first time errors in unit 
interaction are likely to be discovered is at the mission phase/subsystem 
level; hence analytic tools that check data, file, and format compatibility 
should be heavily used at this level. 
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Another approach is to make the allocation that minimizes the disadvantages 
of each tool and facility. For example, an ICS/engineering simulation re­
quires comparatively large amounts of large-scale general-purpose com­
puter time and so cannot run a large number of test cases in a short time. 
Thus it would be relatively unsuitable for integrated testing. The speed 
advantage of a hybrid simulation over an ICS is at least an order of magni­
tude in present systems, and may be far greater as the capability of the 
flight system increases, indicating the hybrid simulation's suitability for 
performing a large number of tests. The relatively low level of detailed 
diagnostic information about program behavior -that can be obtained from a 
hybrid simulation indicates that effective diagnosis of any anomalous re­
sults will require utilization of the ICS/engineering simulation. The com­
posite cost of verification using the two complementary simulations should 
be greatly reduced over the cost of using one alone, since it would be ex­
pected that few tests -would be anomalous. 

A third approach to allocation is to utilize the specific tools or facilities at 
the levels where no other setup would demonstrate satisfaction of the re­
quirements. For example, hybrid simulation can provide a more accurate 
representation of computing delays and other subsystem-timing-related 
aspects than is possible with the ICS and should be used for demonstrating 
such aspects. 

8. 5.3 Verification Tool Development and Comparisons 

The final element in the master test plan concerns the development of veri­
fication tools, with particular emphasis on the capabilities and limitations 
of each simulation. In the course of most past software developments, 
several engineering, interpretive, and hybrid simulations were produced. 
In part this resulted from the nature of the software development process. 
Different organizations having dissimilar large general-purpose computers 
often independently developed their own engineering and interpretive com­
puter simulations; different organizations testing their own hardware com­
ponents similarly developed hybrid simulations, with each subsystem repre­
sented to an appropriate but different fidelity. One often-expressed motiva­
tion for duplication is that an error in one simulation is unlikely to exist in 
a second; therefore an onboard software error that would be masked by an 
error in one simulation would be likely to be revealed using a redundant 
simulation. This motivation does not justify developing redundant simula­
tions for verification: the effort could be better spent in ascertaining and 
improving the fidelity of a single appropriate simulation. Whatever the 
practical reasons for developing multiple simulations, the verification pro­
cess does not require more than one of each type. 
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8.6 

However many simulations may be developed, it is important that meaning­
ful comparison between them can be made. For each simulation, the master 
test plan should indicate the fidelity of its constituent components, its range 
of validity, the mission phases for which it is appropriate, aid the differ­
ences that will exist between it ahd other simulations. For example, the 
relationship between simulation execution time and real timie must be de­
scribed to indicate both the applications for which the simulation is useful 
and the number of simulations that can be performed in a given period. This 
information should be prepared before simulation development and updated 
during and after development. Specific test procedures for each simulation 
should be described in the plan, along with the comparisons that must be­
made before the simulation can be accepted as a software verification tool. 
To the greatest extent possible the test procedures should include the con­
tent and formats of the outputs produced, particularly those which are not 
normal onboard computer outputs. The output formats and the input proce­
dures and formats should be the same where similar simulated quantities 

- are involved. The master test plan should indicate the availability of each 
,simulation facility from the standpoints of its development schedule,- its 
normal setup time, and the time required by its other users. And finally, 
although the master test plan should be produced at a very early stage in 
the Space Shuttle software development, certainly before any major simula­
tions are constructed, it must be revised a's often as necessary to reflect 
the observed behavior of -the verification tools and facilities"and the chang­
ing requirenents imposed on the onboard software. 

Summary of Conclusions 

M1inimizing the verification effort needed for the Space Shuttle onboard soft­
ware has several aspects. The verification effort required is a function of 
the size and the complexity of the onboard software; both, in turn, are de­
termined by the functional requirements. As discussed in Section 3, several 
alternatives are possible depending on the hardware configuration and the 
overall requirements imposed on the software. The first step, then, in 
minimizing verification costs is to choose those alternatives which reduce 
the onboard software's size and complexity. The next step, as discussed 
in Section 4, is to select the computer configuration and the software execu­
tive design which can easily satisfy the functional requirements and which also 
offer those characteristics, such as repeatability, that facilitate verification. 
The third step is to choose a particular computer architecture which has those 
features that simplify software development, such as floating-point arithmetic, 
single-instruction restart capability, and a flexible interrupt mechanism,
 
for these features will also simplify software verification.
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For a given set of functional requirements and a particular computer config­
uration and architecture, software verification costs can be reduced by im­
proving the tools and facilities used and by preparing and following a master 
test plan for the efficient utilization of these tools and facilities. The most 
promising improvemerits that should be made in the simulation tools include 
increased automatic checking and more flexible diagnostic control for inter­
pretive computer simulations, and more visibility into the internal soft­
ware operation for the hybrid simulations. The interpretive computer simu­
lation provides the greatest insight in the internal behavior of software, but 
a major deficiency in light of the expected size and complexity of the Space 
Shuttle software is the length of time needed to perform simulations. By 
increasing the information gained from each interpretive simulation through 
the use of the suggested improvements, the total number of simulations re­
quired can be reduced. By enriching hybrid simulation capabilities in the 
suggested areas, this tool can be a practical substitute for the interpretive 
simulation in many areas. In addition, verification tools such as automatic 
flowcharters and program correctness proof checkers should be developed 
to supplement the simulation tools. Finally, the tools themselves must be 
developed and used in accordance witha coordinated plan thatwill enable the 
detection of errors as early as possible, the easy diagnosis of errors, and 
the comprehensive testing of all significant software characteristics. 

The further development of the concepts presented into a complete, dynamic, 
and useful master test plan document is the next step that must be taken to 
assure that the development and application of the verification tools are both 
done with the least cost and schedule impact. Even with the best of tools 
and plans, software verification will be a major constituent in the Space 
Shuttle software development process. To make certain that verification 
can be accomplished in an effective and timely manner, it is imperative that 
verification continue to receive early attention. 
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•APPENDIX A 
TASK INTERACTION 

For software that has a large numb-er of tasks executable in many'permuta­
tions and combinations, demonstrating that the tasks do not interact undesir­
ably or erroneously is very difficult. The problem is particularly apparent 
for interrupt executives: two routines, each of which may'be internally 
correct, can together cause a software failure to occur when one- routine 
interrupts another at an inopportune point in its execution. This appendix 
presents techniques for detecting undesirable logical interactions between 
an interrupting routine and the routine(s) it interrupts. It shows that, from 
the standpoint of logical interaction, the question of allowing routine B to be 
executed in parallel with routine A is identical to the questi6n of allowing 
routine B to interrupt routine A. Formal criteria already existing for deter­
mining whether two routines can be executed in parallel are applied to the 
problem of determining situations where an interrupt could cause a software 
failure. These criteria are also developed for determining, situations in 
which potentially undesirable task interactions can occur between two tasks 
that could be executed in parallel, as in a polling executive. The results 
for the interrupt and polling cases are then compared. Finally, hardware 
and software. methods are described for eliminating interference .problems. 

A-i. 'ANALYTIC DETECTION OF LOGICAL INTERFERENCE 

In considering the memory locations accessed by a routine A, four dis­
joint sets can be distinguished: 

M i (A) = the set of memory locations which are only read by A. 

M 2 (A) = the set of memory locations which are first read by A. 
and later written into by A. 

M 3 (A) = the set of memory locations which are only written into 
by A. 

M 4 (A) = the set of memory locations which are first written into 
by A and later read' from by A. 

Now define 

R(A) = M(A)UM 2 (A)UM4(A)
W(A) = MZ(A) U M 3 (A) U M 4 (A)'
 
Rf(A) = M1 (A) UM 2 (A)
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Thus R(A) is the set of locations which are read from by A at, some point, 
and W(A) is the set of locations which are read first by A. From a practical 
standpoint, it is important to add that if routine A is involved in identification 
activity, the inputs to A must be included in R(A) and the outputs from A must 
be included in W(A). 

In deciding whether two routines can be executed in parallel, the situation 
in Figure A-I is considered. A and B are two segments of code (routines) 
that tentatively have a serial 6rdering. P represents the remainder of the 
program. The basic observation on logical interaction is: if, during the 
execution of the routine, none of the memory locations which it reads are 
modified by another routine, then that routine is guaranteed free of undesir­
able logical interference. This observation is embodied in the following three 
conditions, which ensure that two routines A and B can be executed in parallel 
(as shown in Figure A-2): 

R(B) fW(A) =
 
R(A) QIW(B) = cp
 
W(A) AW(B) nRf (P) = cp
 

The first condition states that B does not read any memory locations written 
into by A. The second condition stated that A does not read any memory 
locations written into by B. The third condition states that P does not first 
read from any locations which are written into by both A and B. If this last 
condition were not true, a race condition would exist: the execution of P 
would depend on whether A or B was the last to write into the elements of 
W(A) fW(B). 

A 

Figure A-i. Serial Task Execution Figure A-Z. Parallel Task Execution 
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Now consider the problem bf interrupts. Two routines, A and B, executed 
in normal order can be indicated as in the first part of Figure A-3. If B 
interrupts A,:theo-execiition , ,sequenqe-dan.be indicatedta-s,4ln tfhLgeae,conddraw­
ing. A I and A 2 indicate the two segments of A which are separated by the 
execution of B. (Yindicates the interrupt point. P indicates, succeeding rou­
tines. Again absence of undesirable logical interaction can be guaranteed 
if the memory locations which a routine reads are undisturbed. The condi­
tions for a particular interrupt situation are: 

W(A Z ) nR(B) = T
 
R(AZ) fW(B) = T
 

-W(A 2 ) fW(B) flnf(P) = p
 

The interrupt point a may occur anywhere in A, and the instructions com­
prising A2 will always be a subset of instructions comprising A, i. e.., A2 9A. 
Thus the general conditions are: 

W(A) nR(B) = p
 
R(A) fW(B) = p
 

-W(A) NW(B) NRf(P) = p
 

These conditions are identical to those which guarantee that A-and B can be
 
executed in parallel as shown in the third illustration of Figure A-3.
 

A1 

A B
 
A2
 

A
z
 

B P 

P p 

Serial Interrupt Parallel
 
Execution Execution Execution
 

Figure A-3. Task Sequencing 
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It has been proposed that the verification problem posed by interrupts might 
be solved if all routines were segmented, with "interrupts" permitted only 
at the end of a segment rather than at the end of any instruction. It is cer­
tain that this suggestion was made on the implicit assumption that verifica­
tion 	of interrupts would be performed by the ad hoc manual techniques which 
have been used in the past. The development of analytic interruptibility cri­
teria brings into question the desirability of the segmentation idea. The 
obvious disadvantages of segmentation are: 

" 	 Degraded response time (since an interrupting routine must 
wait until a segment has been completed) 

o 	 The extra effort required to program routines in segments 

It is 	 felt that in some instances this last point could become a major burden 
on the programmer. 

To further investigate the segmentation suggestion we will need the concept 
of execution commutivity. Two routines A and B will be termed commutative 
if the execution sequence A, B produces the same results as the execution 
sequence B, A. The conditions which ensure comnrnutivity of two routines 
are slightly less restrictive than the conditions which ensure interruptibility. 
Only locations in the set Rf must remain unchanged. If a read from a loca­
tion is preceded by a write into the same location, a prior write by another 
routine has no effect. The commutivity conditions take the form: 

Rf (A) nW(B) ­
Rf(B) AW(A) = 
W(A) fW(B) nlRf (P) = 

If the R's and W's are replaced by the corresponding M's in the conditions 
for comnutivity and interruptibility and the redundant terms are eliminated, 
the terms which must be null are found to be: 
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Conunutivity Interruptibility 

Mi(A) MZ(B) M i (A) MZ(B)
 
Mi(A) M 3 (B) Mi(A) M 3 (B)
 
-Mi(A)Z14(B) Mi (A) M4(B)
 
M 2 (A) M i (B) M2 (A)M i(B)
 
MZ(A) MZ(B) M2 (A) MZ(B)
 
M2 (A) M 3 (B) Mz(A)M 3 (B)
 
MZ(A)M4(B) MZ(A)M 4 (B)
 
M 3 (A) M i (B) M 3 (A) M i(B)
 
M 3 (A) MZ(B) M 3 (A)MZ(B)
 
M 3 (A) M 3 (B)Pf(P) M3(A)M 3 (B) Rf(P)
 

M 3(A) M4(B) Rf(P) M 3 (A)M4(B)
 
M4(A)Mi(B) M4(A) Mi1 (B)
 
M4(A)MZ(B) M4(A) MZ(B)
 
M 4 (A) M 3 (B) Rf(P) M 4 (A)M 3 (B)
 
M4(A)M4(B) Rf(P) M 4(A) M 4 (B).
 

The two lists are almost identical. However, inthree instances an extra
 
RP (P) term makes the commutivity conditions slightly more complex. To 
analytically check interaction of two segmented routines A and B it i's nec­
essary to check the comnnutivity of each segment of A with each segment 
of B. Define Ci as the amount of computation required to check interrupt­
ibility of two routines A and B. Define C2 as the amount of computation 
required to check the commutivity of each of n segments of A with each of 
n segments of B. Define C3 as the amount of computation required to check 
commutivity of A and B. We have already seen that Ci is slightly less than 
C3. A comparison between Cg and C 3 is desired, so that C1 and CZ can be 
compared. To compare CZ and C3 we malke the following argument: 

With segmented commutivity, each set M., would contain roughly I /M as 
many elements as with unsegmented comrnutivity. Hence, with segmenta­
tion, checking the nullity of each double term (e. g., M 3 (A) Mi*(B)) would 

zrequiretroughly i/n as much computation. However, since each routine 
is divided into n segments, there are n2 conmutivity combinations to check 
instead of one. This would imply that CZ is roughly independent of n, i. e. , 
CZ P G3. However, in general each set Mi,will contain more than i/n as many 
elements. ,A memory location may be accessed several timhes, but it 'will 
appear only in one of the sets Mi. If segmentation divides the accesses into 
two parts, the total number of elements is actually increased. To illustrate 
this the following example is presented. 
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read X 

Si 

write X 

A a 

read XC 

82 

write X 

X would fall in the category M 2 (A). If segmentation occurs at point a, then 
X E M 2 (S I ) and X E MZ(SZ). Segmentation can also cause elements to change 
sets. Hence C Z (n+i) 2 CZ(n), and in general the greater-than relation will 
hold, i.e. , C2 increases with increasing n. Consequently Cj < C2 and the 
segmentation idea is judged disadvantageous if interrupt verification is per­
formed analytically. 

A-2. PREVENTION OF LOGICAL INTERFERENCE 

It has been shown how logical interactions between routines can be detected 
or shown to be nonexistent. The next question is: If a logical interaction is 
detected, what, if anything, can be done about it? The following discussion 
presents alternative methods for "curing" the problems once they are detected. 
Both hardware/ software and software/ software tradeoffs are discernible. 

A-2. i Discrimination by the Executive 

If a software failure will occur when routine B interrupts routine A, one solu­
tion is to prevent B from ever interrupting A. For each routine a list can 
be prepared of all routines which are permitted to interrupt it (or which are 
not permitted to interrupt it, if this list is shorter). If the executive would 
interrupt routine A and begin routine B, it must first check routine A's list 
to see if the interrupt is allowable. 

A-Z.2 Memory Locks 

To make any routine A secure from undesirable interrupts, the following 
requirements are sufficient: 
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1) 	 Read locks are placed on all locations in the set W(A) at 
the beginning of A. After the last write statement in A for 
a given location, the lock on that location is lifted. 

2) 	 Write locks are placed on all locations in the set R(A) at 
the beginning of A. After the last read statement in A for 
a given location, the lock on that location is lifted. 

3) 	 Write locks are placed on all locations in the set W(A) at the 
beginning of A and lifted at the end of A. 

The pointer lock is one method for implementing requirement i or 2 for a 
linear data structure. 

To see that these locking procedures are effective, recall the three condi­
tions for interruptibility: 

R(B) fW(A) =
 
R(A) nW(B) =
 

R (P) fW(A) nW(B) = c0
 

Requirement I exactly satisfies the first condition, since the read lock 
on W.(A) halts any routine B only if it tries to read from W(A). Require­
ment 2 exactly satisfies the second, since the write lock on R(A) halts 
any routine B only if it tries to write into R(A). Requirement 3 over­
satisfies the third condition. The write lock on W(A) will halt any rou­
tine B if it tries to write into W(A). This is equivalentto the condition 
W(A) nW(B) = a which implies that the third condition is true. 

A simpler procedure is to place a total lock on R(A) and W(A) for the, 
entire duration of routine A. The disadvantage is that other routines will 
sometimes be blocked unnecessarily. 

A-Z.'3 Data Duplication Schemes (Buffering) 

For the important special case where the routine to be interrupted is per­
formed repeatedly, the common memory locations can be made proprietary 
by duplicating them. Figure A-4 shows the situation before correction. 
M = W(A) fR(B), that is, M is the set of locations written into by routine 
A and read from by routine B. Consequently B may not interrupt A. The 
dashed arrows indicate the cyclic performance of A, with delay function A. 
B may also be cyclic, but this is not indicated. One solution is shown in 
Figure A-5. Here M i and M? are duplicate sets-of memory locations. 
is a routine or possibly a single, uninterruptible block transfer instruction 
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A® -t A 

M 

B 

Figure A-4. Single Memory Figure A-5. Memory Buffering 
Region Accessing 

that copies the contents of Mj into M 2 . C is always executed after execu­
tion of A. Since now W(A)flR(B) = cD. B can be allowed to interrupt A after 
the first iteration of A, or at any time, if M 2 is initially primed with values. 
However, B cannot interrupt C, since W(C) nfR(B) = M2. Thus noninterrupt­
ibility of A has been traded for noninterruptibility of C. This is often a good 
trade since C will generally take much less time to execute than A. Conse­
quently, this solution is useful in instances where B cannot wait until A is 
completed. The cost is the duplication of M and the cost of C. 

It will be noted that C cannot be permitted to interrupt B. From a logical 
standpoint, there is no reason why C should be permitted to interrupt B. 
A' is allowed to begin its computations (using possibly volatile data) on sched­
ule, and only the copying operation need be delayed until completion of B. 
Either a memory lock or executive discrimination can be used to ensure 
that Adoes not interrupt B. However, if conflicts are to be eliminated 
solely by making C a block transfer instruction, more elaborate buffering 
is required. The same procedure that was used to isolate A from B can 
be used to isolate C from B. The result is shown in Figure A-6. B copies 
M 2 into M 3 and-is always executed immediately prior to B. 
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AN 

Figure A-6. Extended Buffering 

An alternate solution is indicated in Figure A-7. Again M, and Mz are 
identical. b is a single pointer bit. 

b =0b O= B writes into MIreads from M z 

b= f Awrites into M?{B reads from M, 

D is a "routine" which inverts the bit b. The dashed arrow indicates pro­
gram flow. Thus D is always performed immediately after A. Let u be 
a continuous variable indicating the iteration of A being performed. If A 
is not in execution or interrupted, u is an integer. If A is in execution, 
say working on the third iteration, then 2 <u <3, depending on how far 
through A the execution has progressed. This scheme guarantees that 
while A is in execution 

R(B) nW(Au) = 

and, depending on the value of b, 

R(B) fW(A [u]) = Mi or M 2 . 

Hence B may now interrupt A at any point. Noninterruptibility of A has 
been traded for noninterruptibility of D, since b = W(D) l R(B). Timewise, 
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this is an excellent trade, since D merely involves the changing of a single 
bit. The cost is the added complexity of A and B, the duplication of M, 
and the cost D and the bit b. 

Figure A-7. Buffering with Pointer Bits 
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Again, D may not interrupt B. If this capability is necessary or desirable, 
the arrangement of Figure A-8 is required. Here B' copies the bit b i into 
the bit b 2 prior to execution of B. Now only A' and B' are not mutually 
interruptible, and each could be accomplished by no more than one or two 
instructions, representing a negligible delay. 

Figure. A-8. Buffering with Pointer Bits (Elaboration) 
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APPENDIX B 
A METHODOLOGY FOR RESTART PROTECTION 

The Space Shuttle system is dependent on successful computer operation 
for mission success, if not for crew safety. While software alone can
 
protect the system against some classes of failure, special-purpose hard­
ware is needed for detection and diagnosis of others. Such a failure may
 
be external to the data management system (e. g. , power loss) or internal
 
(e. g. , parity failure). In either case, the data in the central registers 
of the system are suspect, and must be restored to consistent values before 
operation can be resumed. This appendix defines the requirements for 
success in a restart following a transient failure. 

In order to 	identify the conditions for successful restart, we must first 
define "success. " It is straightforward to pin down what is meant in the
 
event that there are no external inputs to the program, but the problem
 
is complicated when such outside sources as a clock, guidance sensors,
 
or a human 	operator may alter the processing. 

Definition: 	 A restart is said to be successful if and only if each value cal­
culated following recovery is identical with that which would
 
have been calculated at the same time in the absence of the
 
interruption.
 

To satisfy the condition above, all external data must be supplied appro­
priately despite the interruption, the program must preserve accuracy 
over the gap, and all data written by the program after the restart must 
be consistent. The hardware must accumulate or extrapolate mission 
data, since the program is not aware of the time lost; some software assist­
ance may be provided in the restart routine if a noninterruptible clock is 
provided and appropriate code is executed. Programming must incorporate 
safeguards (notably in integration routines) against loss of accuracy. This 
appendix addresses only the problem of data consistency and protection
 
through use of a save instruction.
 

The memory of the computer is divisible into volatile and nonvolatile regions. 
,A volatile cell is one whose value may have been altered during the interrup­
tion; it is typified by the central registers. A nonvolatile cell is assumed 
to retain its value during the interruption, as would be the case for a mag­
netic core. The save instruction preserves the values in volatile memory
 
by copying them into a nonvolatile area reserved for that function. Follow­
ing interruption, the restart routine copies the saved values into volatile
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memory and resumes operation at the save; any software extrapolation is 
performed within the restart routine, prior to copying the saved values. 

For the restart to succeed, each subsequent write operation must provide 
a value accurate by the defined conditions. Clearly, if each datum read 
after recovery is accurate and the program runs correctly, then the restart 
is successful. Some special cases may tolerate reading an invalid datum, 
but these are so few and so hard to account for in analysis of the code that 
they will be neglected. Thus, reading of accurate data is assumed necessary 
as well as sufficient for successful restart. Any datum read by the program 
must come from one of three sources: external interface (assumed accurate 
by hardware or hardware/software provision); volatile memory (restored to 
a consistent set by the restart routine); or nonvolatile memory. It is only 
the last of those sources which may be in error. For a datum from non­
volatile memory to be inconsistent with the restored volatile memory, it 
must have been written since the last save instruction, the one to which 
volatile memory was restored. 

To derive and prove the sufficiency condition, we consider the first invalid 
datum read following the restart. Its value must have been written into non­
volatile memory since the last save, i. e. , since the save before the interrup­
tion. Only two cases !may be constructed: 

1) 	 It was written after the save but before the interruption and not 
written since restart. 

2) 	 It was written after the restart. 

But 	if it had been written after the restart, it would either have been written 
correctly or derived from only valid source data (since it was assumed to be 
the first invalid datum). Therefore: 

A) 	 It is sufficient for protection against restart failure that each 
read of a nonvolatile cell is separated from a subsequent write 
by a save instruction. 

Under this condition, no cell may be the first invalid one read, since each 
sequence READ X ... WRITE X is interrupted by a save. 

The 	above argument leads to a still stronger condition which may be shown 
to be necessary as well as sufficient. If the cell containing the first incorrect 
value had been written after the restart, it would have had only valid source 
data, hence would not have been incorrect. Consequently: 
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B) It is necessary and sufficient for protection against restart 
failure that in each sequence of code beginning with one save 
instruction and containing no more, each nonvolatile cell 
which is both read and written is written before it is first 
read. 

The proof of necessity is based on a sequence violating the condition: SAVE 
...READ X ... ' WRITE X, with no other save or write iistruction. Ignor­
ing the trivial cases in which the value written is always identical with that 
which was read, or in which a value is read but never used in subsequent 
code, we examine the impact of an interruption immediately following the 
WRITE X. After restart, the updated value written before- interruption will 
be read instead of the value read on the previous pass. Hence, the WRITE X 
following restart will be incorrect and the restart will have been unsuccess­
ful. 

The complexity of condition B suggests lengthier restatement in line with 
the flowchart of Figure B-i. Two lists are established: one of the non­
volatile cells which are being written (T), the other of those being read (S). 
The lists are mutually exclusive, so that once a cell is entered into either 
S or T, it is not repeated in the other. The lists are erased by a save instruc­
tion in the logical flow. Thus in the sequence of code between consecutive 
saves, a cell read before it is written is entered into S and one written first 
is entered into T. The necessary-and-sufficient condition is that in such 
a sequence, no cell in S is written. 

Figure B-2 illustrates the flow for the sufficient-only condition using the 
same terminology applied in Figure B-I. In both figures, progress along 
the logical path is traced by incrementing the instruction counter I. The 
additional logic required to treat branching and calls to subroutines is not 
shown, since it is dependent on the particular system design. Similarly, 
implementation-peculiar instructions, including implicit reads and writes, 
are.not shown in the illustrations. 

The choice between the necessary-and-sufficient and the sufficient-only 
conditions is based upon the requirements of the program. The following 
example is illustrative of the difference in effect which may be obtained. 

Hypothesize a routine which initializes, then executes a loop. The initial­
ization is a sequence of writes, while each pass through the loop reads, 
then rewrites the same variables. The necessary-and-sufficient condition 
requires Only a save at the start of initialization, while the sufficient-only 
condition will require at least one save for each pass. Thus, a restart 
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during looping will recycle to the initialization in one case and to the last 
pass in the other. (Good programming practice will usually require only 
one save in the loop. ) 

One class of instructions with representatives in many languages presents 
problems in restart protection. These instructions carry implicit read or 
write operations, or both. A list-processing computer provides an implicit 
store into 'the stack with each load from core, and an implicit read from 
the stack with each write into memory. An instruction such as increment 
both reads and writes a single cell; we term such an operation reflexive. 
Other reflexive instructions are shifts, complement, absolute value, and 
sign. The reflexive instructions are established by the instruction set and 
must be considered separately for each machine. Some characteristics 
are treated here since they are applicable to a spectrum of computers. 

A reflexive instruction operating on a cell of volatile memory presents no 
difficulty since restart protection is effected by the save. Some such in­
structions, notably absolute value and sign, may be repeated without alter­
ing the value of the cell, hence add no difficulty in the general case. Most 
reflexive operations read a cell, alter the value, then write into the same 
location in nonvolatile memory. In most applications, the necessary-and­
sufficient condition would then require a save during the execution of the 
single instruction; the sufficient-only condition would always require it. The 
object of the reflexive instruction may have been written since the last save; 
in that case, the necessary-and-sufficient condition is satisfied without spe­
cial attention. Otherwise, returning to the previous save on restart would 
cause the reflexive instruction to execute twice on the cell, leading to failure. 
Software methods -- somewhat cumbersome -- may obviate the problem 
through transfer to scratch pad, reflexive operation on the scratch location, 
save, then storage. The remaining alternatives are to incorporate the save 
within the reflexive instruction or accept the risk of interruption following 
the reflexive operation but prior to the next save. 

Because a list processor contains many implicit read and write operations, 
we shall consider, this configuration separately. The hardware is assumed 
to contain a nonvolatile list and a volatile pointer into the list to indicate the 
present state. A load operation adds a value to the list and increments the 
pointer; a store pushes the pointer below the previous location in transfer­
ring the word from the list. Any unary operation is reflexive, and one of 
higher order (e. g. , binary or vector) is reflexive on one or more lower 
cells and displaces the pointer. Finally, we shall assume that there is an 
instruction COPYn which repeats the top n entries above the previous value 
of the pointer. 
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The top cell of the list is the most sensitive to reflexive operations. If it 
lies above the saved location of the pointer, on restart it will be written 
before it is read, hence is safe. Unfortunately, any write into the stack 
below the saved location is prone to restart failure. The general case 
has arithmetic operations and stores pushing the pointer down until it 
penetrates the saved location. A subsequent store is generally safe since 
most hardware would retrieve the value from the stack and -move the 
pointer, but would leave the copied datum in the stack in its former posi­
tion. Any other stack operation entails a write into a nonvolatile (list) 
location previously read. In most cases, the first such write below the 
saved pointer will not have been written since the save, requiring the addi­
tion of a save instruction. 

The 	following rules safeguard the list in a simple implementation: 

f) 	 The only stack operation permitted below the saved pointer 
is a simple store. 

2) 	 An instruction which would violate rule i on execution must 
be preceded by a save and a COPYn, with n at least equal 
to the possible penetration of the instruction. 

3) 	 A sequence of store instructions penetrating the saved­
pointer location must be followed by a save. 

The particular instruction set of the computer dictates the implementation 
required; but the condition which must be met remains inflexible. For 
example, the HDC-70iP computer for Minuteman III returns from a sub­
routine with an instruction that restores the saved data to those prior to 
the subroutine call. To preclude restart failure, no save instruction should 
be incorporated into a subroutine, and no need for a save can be tolerated 
in one. The coding required to remove the need for a save from the sub­
routine is extensive and costly, but without such coding there would exist 
a possible failure point in the program. 

Implementation of the constraints may take many forms, and should be dic­
tated by the application. If each entry point into a routine is a save instruc­
tion, that routine is isolated from the rest of the program; when more than 
one programmer is working on the code, such isolation is highly desirable. 
One implementation wvould call for the programmer to identify the separable 
routines to be coded and for the compiler or assembler to insert a save in 
one pass at each entry point and to add the necessary-and-sufficient saves 
in a second pass. As an alternative, the sufficient saves may be inserted 
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throughout the program by the assembler; that course is preferred except 
in a list processor, where stack operations should use the stronger condi­
tion. Figures B-i and B-Z, previously introduced, chart flow through an 
implementation for each condition. The flow might be incorporated in sup­
port programs for any level of the development: compiler, assembler, or 
post-coding analysis. Both the choice of level and the difficulty of incor­
poration are functions of the language, the host machine, and the pre-existing 
support tools. In some cases (e. g. , languages with indexed instructions), 
fully automatic insertion may be impractical. 

Ground.systems may be less dependent than flight software on restart pro­
tection for life and ultimate success, but the financial penalty for non­
restartable programs is large. The save instruction may be added to the 
present repertoire without increasing the size of the instruction set. It need 
only be added to the hardware, software, or firmware implementing the pro­
gramming language for each jump instruction. It would then be implemented 
before storage by adding a GOTO (next instruction) where needed. A penalty 
is paid in the efficiency of the resulting program, since any implementation 
of the save costs time and core, but many applications would find it profit­
able overall. The feasibility of implementation, like the desirability of pro­
tecting against all restarts, must be evaluated for each system considered. 

The constraints outlined above have been applied to HDC-701 P Minuteman 
III coding now under way, with some difficulty arising from the instruction 
set employed. Had the requirements for restart protection been realized 
prior to hardware design, a compatible instruction set might have been gen­
erated, reducing both the cost and the difficulty of coding. 

It should be noted that application of the necessary-and-sufficient algorithm 
provides analytic assurance of restart protection; no testing is required to 
verify safety in the event of restart. Similar work has been undertaken in 
the area of interruptibility by Bernstein and others2 but does not appear 
to have been reduced to practice yet. With the massive increase in the cost 
of software verification in recent projects, it is to be hoped that extension 
of analytic tools can reduce the verification burden. 

i. 	 A. J. Bernstein, "Analysis of Programs for Parallel Processing,"
 
IEEE Trans. on Electronic Computers, October 1966, pp. 757-763.
 

2. 	 C. V. larnamoorthy and M. J. Gonzalez, "A Survey of Techniques 
for Recognizing Parallel Processable Streams in Computer Programs," 
FJCC Proceedings, 1969, pp. 1-15. 
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APPENDIX C 
PROVING PROGRAM CORRECTNESS 

The purpose of a program correctness proof is to show in a rigorous 
mathematical fashion that a given program performs a desired function 
and halts. (The word "function" is used here in the mathematical sense.) 
A program is regarded as performing a mapping from the input variables 
to the output variables. An essential requirement for a correctness proof 
is a precise specification of the function to be computed. Without this spe­
cification the word "correctness" can have no meaning. 

Current methods for showing that a program "works" are ad hoc and inher­
ently inconclusive. The usual technique is to observe the program's per­
formance on specially selected data, and to show that the program produces 
the correct answer in these cases. in general, this proves very little about 
the program's performance on other data, and all programmers can point 
to cases where mistakes were found after the programmer had convinced 
himself that the program was correct. A program correctness proof proves 
that a program will perform correctly on all data, even if, as is the usual 
case, there is an infinite or extremely large number of possible input data 
sets. The amount of effort required by a correctness proof appears to be a 
linear function of program size. As presently performed, program verifica­
tion is a function of the number of possible execution paths, and the effort 
required to check all execution paths increases roughly exponentially with 
program size. 

It is critically important in discussing correctness proofs to distinguish 
between the function cornouted and the algorithm (program) for computing 
that function. The correctness proof demonstrates that a given algorithm 
(program) computes a specified function. The word "correctness" must 
not be extrapolated beyond the domain to which it applies. A correctness 
proof does not show that the function being computed is the correct one 
for accomplishing some desired goal. A correctness proof can only be 
used to show that a program satisfies its specifications. The proof says 
nothing about the correctness of those specifications. For example, if 
one of the guidance equations is erroneous in the specifications for a mis­
sile flight program, a correctness proof will not detect the error. 

C- i, THE SEMANTICS OF IDEALIZED PROGRAM STATEMENTS 

At present, correctness proofs are formulated in terms of idealized algo­
rithms consisting of three types of statements: 
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i) Assignment statements 
2) Unconditional branch statements ("go to" statements) 
3) Conditional branch statements 

In discussing the semantics of these statements, it is more convenient to 
consider the flowchart form of an algorithm than the linear listing form. 
In proving that an algorithm is correct, we make assertions at convenient 
points in the flowchart. These .ssertions will specify relations which hold 
between program variables. The "meaning" of a statement is operationally 
defined as -the change from the assertions which are true before the state­
ment is executed into the assertions which are true after the statement is 
executed.
 

A sample assignment statement is shown in Figure C-i. * If S is the set of 
assertions true at point a, then 

S /% (A = B + C) 

is true at point b. A significant question is: What is the difference between 
an assignment operator and an equal sign ? If a given program variable is 
assigned a value only once in a program, then there is no difference. )I a 
variable is assigned a value more than once, it is convenient for proof pur­
poses to regard each assignment as creating a new variable. For example, 
the sequence 

A -B 

A*-A+I 

is equivalent to the two equations 

A,=B 

A = A +1I 

Sequence subscripts.will be used when a variable is assigned a talue more 
than once. Assignment statements then become equations and their sequen­
tial ordering is rendered superfluous. If the variable is assigned values in 
a loop, a variable sequence subscript is used. This will be considered in 
more detail when loops are discussed. 

A "go to" statement becomes merely a connecting line in a flowchart. For 
example, the program sequence 

*Figures appear at the end of the appendix. 
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Statement I 
Statement 2 
Statement 3 

LI: Statement 4 
Statement 5 
Statement 6 
go to Li 

becomes the flowchart of Figure C-2. The meaning of the statement "go 
to Li" is: if S is the set of assertions true before execution of the "go to" 

statement, then S is also true at the point Li. 

Conditonal branch statements are assumed to be of binary type, as shown 

in Figure C-3. P is any predicate defined on the program variables; for 

example (A + B > 0). If S is true at point a, S A P is true at point b and 
S A P is true at point c. 

C-2. METHODS FOR PROVING CORRECTNESS 

In discussing the methods for proving correctness, it is desirable to dis­

tinguish three types of structures: 

i) Straight-line segments
 
2) If P then X structures
 

3) Loops
 

Straight-line segments are treated by assigning sequence subscripts. 
Assignment statements then become equations. The assertions true at a 

given point are simply the collection of equations defined up to that point. 

Consider the sequence 

I<-B+J
 

A ~A + I 
E -A 

A <-I + 4 

The flowchart with assertions attached is shown in Figure C-4. From the 

fixed set of equations it is easily shown by simple substitution that 

I -

E =B+C+i 
A =5 
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The number of assertions is seen to increase with each new assignment
 
statement. However, substitution can be used to eliminate variables which
 
have been written over, in the case A I and A2 .
 

"If P then X" structures represent loop-free branching, as shown in Fig­
ure 0-5. The "X" may be thought of as any block of instructions, for example, 
an ALGOL begin-end block. P is any predicate over the program variables. 
V 0 is the vector of variables defined at point a. The block X performs a 
mapping f fromV to V. If S is the set of assertions true at point a, then* 

S A (V, =V O PV (V 1 = f(Vo))P) 

is true at point b. Thus, to maintain consistent sequence subscripts, the
 
"do nothing" branch P is regarded as performing the operations V &V
 

i -o*
 
As a simple example, consider the program segment of Figure C- 6. At
 
point a the assertion is X, = A. At point B the assertions are:
 

X =A 

(X2 = A) A (X i < 0) V (X z = -A) A (X i < 0) 

From these assertions it can be concluded that 

x2 X- IAI 

Loops can be classified according to the number of entry and exit points. 
We can further distinguish three classes of single-exit loops: test-first,
 
test-middle, and test-last. The classification is according to where the
 
exit test is in relation to the body of the loop. The test-first loop is
 
shown in Figure C-7. The loop index k is added for purposes of analysis
 
and proof. The dotted lines indicate it is artifactual. The assertions true
 
at point a are a function of the loop index, and are written A(k). Similarly,
 
since the variables in the predicate P are a function of k, the predicate is
 
expressed as P(k). On exit from the loop it is known that P(k) AA(k-i) is
 

i true, and P(r) is false forti r < k-i. 

*The usual precedence rule for logical operators is employed, i. e., nega­
tion, conjunction, disjunction, in order of strong to weak. Also, the con­
junction symbol (A) is occasionally replaced by concatenation of operands.
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The test-last loop is shown in Figure C-8. On exit from this loop it is 
<known that A(k) A P(k) is true and P(r) is false for i r, < k. 

The test-middle loop is shown in Figure C-9. On the kth iteration of the 
loop, A(k) is the set of assertions true at point b. On exit, it is known 
that 

A(k) AB(k - i) A P(k) 

is true. Since the section B is not performed until after. the test, if exit 
occurs the variables assigned values in B have the values assigned on itera­
tion k-I, but variables assigned values in section A have values assigned 
on iteration k. Variables used in the predicate may be a combination of 
values from section A and section B. 

The single-entry, single-exit loop may then be modeled as in Figure C-10. 
SO is the set of assertions true on entry to the loop; Se is the set of asser­
tions true on exit from the loop. The loop thus can be regarded as a black 
box with a logical transfer function which converts S o into Se -

If a loop has multiple exits, the set of assertions that are trhe when each 
exit is taken can be found just as for the case of a single exit. The 
black box model for such a loop is shown in Figure C-i. At point a, 
So (the set of assertions true on entry to the loop) is true. At point 
bi, Bi(k) (the set of assertions true on taking the ith exit on the kth 
iteration of the loop) is true. From a black box standpoint, a loop with 
n exits is like an n-ary conditional branch. For such a loop, proof pro­
ceeds by determining the conditions Bi(k). Once these are determined, the 
interior of the loop is no longer of interest. Its entire effect is expressed 
by the transformation for SO to the Bi(k). 

If a loop has more than one entry point, for purposes of analysis and proof 
it is possible to split it into several single-entry loops for which the entry 
is at the top. The technique will be illustrated for the example of Figure 
C-iZ. A test-last, single-exit loop is shown, but the technique can be 
applied to loops with multiple exits of any type. Entry i is at the top and 
entry 2 is somewhere in the body of the loop. A and B are the segments of 
the loop body above and below the second entry, respectively. For pur­
poses of analysis and proof, the single loop can be split into the two loops 
of Figures C-13 and C-14. For entry i, the loop of Figure C-iZ is equiva­
lent to the loop of Figure C-j3. For entry 2, the loop of Figure C-12 is 
equivalent to the loop of Figure C-14. Thus for middle entries, the phase 
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of the loop is shifted to produce a top-entry loop. By successively split­
ting loops and shifting the phase, a multiple-entry loop can be converted 
into several single-entry loops with the entry at the top. These loops can 
then be treated by the techniques already developed. 

From a logical standpoint, the criterion for correctness may be regarded 
as a theorem to be proved, with the statements of the program regarded 
as the given. Rules of inference, such as substitution of equals, induc­
tion, and properties of numbers, are used to show that the theorem is 
implied by the given. 

C-3. EXAMPLES OF CORRECTNESS PROOFS 

As a simple example, consider the following program segments: 

I <- i 

A <-- 0 

Li: if (I > N) then go to LZ 

A A-A+B(I) 

S I-1+i 

go to L I 

LZ: halt 

The variables I and A are assigned new values on each iteration of the 
loop. For purposes of analysis, these variables are given the variable 
subscript k. Proof statements are added to the program below and are 
shown in braces. 

A '0
 

I= i, A0 0t 

Li: if (I >N) then go to LZ 

P =- ( -i N) 
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A - A+ B(I) 

f 4- 1+l 

= Ak-i 

Ik -- -i +I 

go to Li 

k =A + B(k)j 

LZ: halt 

N 

A= E 
r=1 

B(r) 

A nonrecursive definition of Ak is found by induction: 

A0=0 
AO0 

A, 0 + B(i) = B(i) 
IL 

A2 =A 1 + B(2)-= B(1) + B(2) 

k
 
Ak X B(r)
 

r-=I 

Similarly for I, 

I0= 

I =1 0+i 

Ik= k+ i 

On exit, P(k) istrue, i.e., Iki>N or k> N. 

But P(k-i) is false, i.e., I 5 N or k-I N. If N is a nonnegative 

integer, k - i N. 

1=1
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On exit, 

k- i 
=A Alki ' 	 E B(r) 

r= i 

or 

N 
Az B(r) 

r= I 

One aspect which has not been mentioned is the halting problem. To show 
that a program will halt, it is necessary to show that for every loop in the 
program the exit test is satisfiable after some finite number of iterations. 
From the theory of recursive functions, it is known that the halting problem 
is in general undecidable; that is, there exist programs for which it is 
impossible to predict halting. For the vast majority of practical programs, 
however, showing that an exit test will eventually be satisfied is straight­
forward,. In many cases loops are performed a fixed number of times, i. e, 
DO loops in FORTRAN. For loops with a potentially unbounded number of 
iterations, mathematical convergence theorems may be applicable. If the 
proof that an exit test is satisfiable is not apparent, it should be the respon­
sibility of the programmer to show that an infinite loop cannot result. It 
should not be the burden of the verification analyst to show that an infinite 
loop can occur. 

As a second 	example, a proof will be given of the logical correctness of a 
simple sorting routine. The flowchart is shown in Figure C-15. The 
proof will be presented in terms of the flowchart. However, it is also 
possible to present the same proof by inserting the proof statements at 
appropriate points in the program. 

The program 	operates on a vector of N elements A(i), A(Z), ... , A(N), 
rearranging the elements so that A(i) is the smallest and A(N) the larg­
est, with values increasing monotonically from left to right. In rigorous 
form, the criteria for correctness are: 

eA__ in ) 	 -Aout) 

A(k) < A(k + 	1) for I < k < N - i 

The first condition merely states that all the elements of the initial vector 
are present in the final vector. The second condition states that the values 
do not decrease in value from left to right. 
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For the proof, the inner loop is treated first. Indices are assigned to 
obtain the diagram of Figure C-16. For k = 0, it is true that 

A(IMfl k) A(A) where M Y ! 9 M + k 

To show that this assertion is true for general k, we show that its-validity 
for k implies validity for k + i. 

Jk=M +k 

so P 3 (k) = JA(M + k) < A(IMINk j)} 

and P3k(l+i) = {A(M + k + i) < A(IMINk)} 

We assume that 

A(IMINk) A(Y) for M < Y M + k 

The instructions between point a and point b in Figure C-15 form an if P 
then X structure, and so at point b it is true that 

(IMINk = Jk ) P3 v (IMINk = IMINk- i P3 

Consequently, on the (k+I) Stiteration, 

IMINk+1 = Jk+1 = M +k + I 

if 

A(M + k + i)< A(IMINk) 

and hence 

A(IMINk+i) = A(M + k + i) 

If 

A(IMIN ) A(M +k + 1) 

then 

IMINk+ = IMINk 
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and hence 

A(IMIN k+i) A(M + k + i) 

Hence, on the (k+i)s t iteration at point b, 

A(IMINk+i) < A(M +k + 1) 

and so 

A(IMINk+1) 9 A(A)for M : Y s M +k + i 

Thus for the general k, 

A(IMINk) A(Y) 2 M + kk for M ! 

=On exit, Jk N or M +k = N. So k = N - M, and hence 

A(IMIN) A(L) M!9 N 

The inner loop, together with its initialization, is thus reduced to this single 

statement. 

The entire sorting routine can now be represented as shown in Figure C-17. 
In closed form, Mk = k + i. The last four statements in the body of the loop 

can be reduced to 

Ak(IMINk) = Alk- (k) 

After the first iteration, 

Ai(s) s A(s+i) for i < s !9 k for k = i 

since 

A(I) = A(IMIN ) A(1) for I Y N 

and the swap of 

A(MIN)k_- A(M) 
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preserves the relation 

(ac-A._) (acAk) fork = 

Again we assume this is true for general k, and show it is true for k+t. 

A + 1 (k + 1) = Ak(IMINk + i) < Ak(Y) for k + 1 e < Nk 


. A k + i (k+ + i + ) 

and so 

A k + 1 (s) < A k + (s + i) for i s -<k + I 

Since 

(QeA) (aeA + 0 

then 

(ae.n)i (ceA k + 1
) 

On exit, 

Mk N+I 

k+ i =N= I or k=N 

So 

AN(s) < AN(s + i) for i < s N 

and hence 

Aout 
= AN
 

(aeA- (aeAut 
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While the examples of this discussion are relatively simple, it is important 
to point out that the same principles -will apply to programs of arbitrary 
size. London ("Proving Programs Correct: Some Techniques and Exam­
ples, " BIT, Vol. i0, 1970) reports that programs of realistic size have 
been proven correct using a proof technique which is actually less sys­
tematic than the method presented here 
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I a
 

A <-B + C 

jb 

Figure C-I. Assignment Statement 

Statement 1 I 

Statement 2 

-tv[Statement 6 

Statement 3 

t 

Stat~ement: 6 

Figure C-Z. "'Go To" Statements 
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Figure C-3. Conditional
 
Branch Statement
 

AA<-B+GC 

A 1 =B+C 
A2 = A + I 

E<-A+ A = A2 
° Ai = B + C 

I=i____ 

A Z = Aj + I 
E = A,-I A2

B4 

A z = Al + I 

~A 1 =B+C 

E =A 2 

A 3 = I + 4 
A = A 3 

Figure 4. Straight-Line Segments 
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a 

p I? p 

bi
 
Figure C-5. "If P then X" Structures 

X -A
 

P
? >x< 0 

-1i 

Figure C-6. Example of "If P hen X" 
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k-O 

"_j
 

PW 

Figure C-7. Test-First Loop 

I -- 0 I _'
k- 0 

lk-k. . +iL-- .. 

-A 

P (k) Exit 

< P 

Figure C-8. Test-Last Loop 
- i92­



a s0 

k-

L 
b S 

e 

A Figure C- 10. Single-Entry, 

Single-Exit Loop 

aP 

Exit 

a 

bb b 

Figure G- 11. Multiple-
Exit Loop 

Figure C-9. Test-Middle Loop 
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Figure C- 12. Composite 

B Loop Example 

_ 
P 
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Figure 0- i5. Sort Example 
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J 0 =M 

IMINO = M 

(k = 0) 

i N? (k k+1) 

P 2 j k = k-I 
P3 = fA(Jk) <A(IMINk-) 

(IMINk = k ) P 3 v (If1Nk = IMINki)-P 3 

Figure C-16. Sort Example Inner Loop 
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Tk = Ak-I (Mk-1)
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Ak (IINk =
 

IMk= "ki+ 

Figure C-17. Sort Example Outer Loop 
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